1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/Operator.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } // namespace 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 57 LoopInfo &LI, DominatorTree &DT, 58 bool ForceNestedLoop, 59 bool ForceHardwareLoopPHI) { 60 SmallVector<BasicBlock *, 4> ExitingBlocks; 61 L->getExitingBlocks(ExitingBlocks); 62 63 for (BasicBlock *BB : ExitingBlocks) { 64 // If we pass the updated counter back through a phi, we need to know 65 // which latch the updated value will be coming from. 66 if (!L->isLoopLatch(BB)) { 67 if (ForceHardwareLoopPHI || CounterInReg) 68 continue; 69 } 70 71 const SCEV *EC = SE.getExitCount(L, BB); 72 if (isa<SCEVCouldNotCompute>(EC)) 73 continue; 74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 75 if (ConstEC->getValue()->isZero()) 76 continue; 77 } else if (!SE.isLoopInvariant(EC, L)) 78 continue; 79 80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 81 continue; 82 83 // If this exiting block is contained in a nested loop, it is not eligible 84 // for insertion of the branch-and-decrement since the inner loop would 85 // end up messing up the value in the CTR. 86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 87 continue; 88 89 // We now have a loop-invariant count of loop iterations (which is not the 90 // constant zero) for which we know that this loop will not exit via this 91 // existing block. 92 93 // We need to make sure that this block will run on every loop iteration. 94 // For this to be true, we must dominate all blocks with backedges. Such 95 // blocks are in-loop predecessors to the header block. 96 bool NotAlways = false; 97 for (BasicBlock *Pred : predecessors(L->getHeader())) { 98 if (!L->contains(Pred)) 99 continue; 100 101 if (!DT.dominates(BB, Pred)) { 102 NotAlways = true; 103 break; 104 } 105 } 106 107 if (NotAlways) 108 continue; 109 110 // Make sure this blocks ends with a conditional branch. 111 Instruction *TI = BB->getTerminator(); 112 if (!TI) 113 continue; 114 115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 116 if (!BI->isConditional()) 117 continue; 118 119 ExitBranch = BI; 120 } else 121 continue; 122 123 // Note that this block may not be the loop latch block, even if the loop 124 // has a latch block. 125 ExitBlock = BB; 126 ExitCount = EC; 127 break; 128 } 129 130 if (!ExitBlock) 131 return false; 132 return true; 133 } 134 135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 137 138 TargetTransformInfo::~TargetTransformInfo() {} 139 140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 141 : TTIImpl(std::move(Arg.TTIImpl)) {} 142 143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 144 TTIImpl = std::move(RHS.TTIImpl); 145 return *this; 146 } 147 148 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 149 return TTIImpl->getInliningThresholdMultiplier(); 150 } 151 152 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 153 return TTIImpl->getInlinerVectorBonusPercent(); 154 } 155 156 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 157 ArrayRef<const Value *> Operands, 158 TTI::TargetCostKind CostKind) const { 159 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 160 } 161 162 int TargetTransformInfo::getExtCost(const Instruction *I, 163 const Value *Src) const { 164 return TTIImpl->getExtCost(I, Src); 165 } 166 167 int TargetTransformInfo::getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 168 ArrayRef<const Value *> Arguments, 169 const User *U, 170 TTI::TargetCostKind CostKind) const { 171 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U, CostKind); 172 assert(Cost >= 0 && "TTI should not produce negative costs!"); 173 return Cost; 174 } 175 176 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 177 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 178 BlockFrequencyInfo *BFI) const { 179 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 180 } 181 182 int TargetTransformInfo::getUserCost(const User *U, 183 ArrayRef<const Value *> Operands, 184 enum TargetCostKind CostKind) const { 185 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 186 assert(Cost >= 0 && "TTI should not produce negative costs!"); 187 return Cost; 188 } 189 190 bool TargetTransformInfo::hasBranchDivergence() const { 191 return TTIImpl->hasBranchDivergence(); 192 } 193 194 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 195 return TTIImpl->useGPUDivergenceAnalysis(); 196 } 197 198 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 199 return TTIImpl->isSourceOfDivergence(V); 200 } 201 202 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 203 return TTIImpl->isAlwaysUniform(V); 204 } 205 206 unsigned TargetTransformInfo::getFlatAddressSpace() const { 207 return TTIImpl->getFlatAddressSpace(); 208 } 209 210 bool TargetTransformInfo::collectFlatAddressOperands( 211 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 212 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 213 } 214 215 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 216 Value *OldV, 217 Value *NewV) const { 218 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 219 } 220 221 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 222 return TTIImpl->isLoweredToCall(F); 223 } 224 225 bool TargetTransformInfo::isHardwareLoopProfitable( 226 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 227 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 228 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 229 } 230 231 bool TargetTransformInfo::preferPredicateOverEpilogue( 232 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 233 TargetLibraryInfo *TLI, DominatorTree *DT, 234 const LoopAccessInfo *LAI) const { 235 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 236 } 237 238 void TargetTransformInfo::getUnrollingPreferences( 239 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 240 return TTIImpl->getUnrollingPreferences(L, SE, UP); 241 } 242 243 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 244 return TTIImpl->isLegalAddImmediate(Imm); 245 } 246 247 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 248 return TTIImpl->isLegalICmpImmediate(Imm); 249 } 250 251 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 252 int64_t BaseOffset, 253 bool HasBaseReg, int64_t Scale, 254 unsigned AddrSpace, 255 Instruction *I) const { 256 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 257 Scale, AddrSpace, I); 258 } 259 260 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 261 return TTIImpl->isLSRCostLess(C1, C2); 262 } 263 264 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 265 return TTIImpl->isProfitableLSRChainElement(I); 266 } 267 268 bool TargetTransformInfo::canMacroFuseCmp() const { 269 return TTIImpl->canMacroFuseCmp(); 270 } 271 272 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 273 ScalarEvolution *SE, LoopInfo *LI, 274 DominatorTree *DT, AssumptionCache *AC, 275 TargetLibraryInfo *LibInfo) const { 276 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 277 } 278 279 bool TargetTransformInfo::shouldFavorPostInc() const { 280 return TTIImpl->shouldFavorPostInc(); 281 } 282 283 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 284 return TTIImpl->shouldFavorBackedgeIndex(L); 285 } 286 287 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 288 MaybeAlign Alignment) const { 289 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 290 } 291 292 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 293 MaybeAlign Alignment) const { 294 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 295 } 296 297 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 298 Align Alignment) const { 299 return TTIImpl->isLegalNTStore(DataType, Alignment); 300 } 301 302 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 303 return TTIImpl->isLegalNTLoad(DataType, Alignment); 304 } 305 306 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 307 MaybeAlign Alignment) const { 308 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 309 } 310 311 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 312 MaybeAlign Alignment) const { 313 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 314 } 315 316 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 317 return TTIImpl->isLegalMaskedCompressStore(DataType); 318 } 319 320 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 321 return TTIImpl->isLegalMaskedExpandLoad(DataType); 322 } 323 324 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 325 return TTIImpl->hasDivRemOp(DataType, IsSigned); 326 } 327 328 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 329 unsigned AddrSpace) const { 330 return TTIImpl->hasVolatileVariant(I, AddrSpace); 331 } 332 333 bool TargetTransformInfo::prefersVectorizedAddressing() const { 334 return TTIImpl->prefersVectorizedAddressing(); 335 } 336 337 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 338 int64_t BaseOffset, 339 bool HasBaseReg, int64_t Scale, 340 unsigned AddrSpace) const { 341 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 342 Scale, AddrSpace); 343 assert(Cost >= 0 && "TTI should not produce negative costs!"); 344 return Cost; 345 } 346 347 bool TargetTransformInfo::LSRWithInstrQueries() const { 348 return TTIImpl->LSRWithInstrQueries(); 349 } 350 351 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 352 return TTIImpl->isTruncateFree(Ty1, Ty2); 353 } 354 355 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 356 return TTIImpl->isProfitableToHoist(I); 357 } 358 359 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 360 361 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 362 return TTIImpl->isTypeLegal(Ty); 363 } 364 365 bool TargetTransformInfo::shouldBuildLookupTables() const { 366 return TTIImpl->shouldBuildLookupTables(); 367 } 368 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 369 Constant *C) const { 370 return TTIImpl->shouldBuildLookupTablesForConstant(C); 371 } 372 373 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 374 return TTIImpl->useColdCCForColdCall(F); 375 } 376 377 unsigned 378 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 379 const APInt &DemandedElts, 380 bool Insert, bool Extract) const { 381 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 382 } 383 384 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 385 ArrayRef<const Value *> Args, unsigned VF) const { 386 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 387 } 388 389 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 390 return TTIImpl->supportsEfficientVectorElementLoadStore(); 391 } 392 393 bool TargetTransformInfo::enableAggressiveInterleaving( 394 bool LoopHasReductions) const { 395 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 396 } 397 398 TargetTransformInfo::MemCmpExpansionOptions 399 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 400 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 401 } 402 403 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 404 return TTIImpl->enableInterleavedAccessVectorization(); 405 } 406 407 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 408 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 409 } 410 411 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 412 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 413 } 414 415 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 416 unsigned BitWidth, 417 unsigned AddressSpace, 418 unsigned Alignment, 419 bool *Fast) const { 420 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 421 AddressSpace, Alignment, Fast); 422 } 423 424 TargetTransformInfo::PopcntSupportKind 425 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 426 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 427 } 428 429 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 430 return TTIImpl->haveFastSqrt(Ty); 431 } 432 433 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 434 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 435 } 436 437 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 438 int Cost = TTIImpl->getFPOpCost(Ty); 439 assert(Cost >= 0 && "TTI should not produce negative costs!"); 440 return Cost; 441 } 442 443 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 444 const APInt &Imm, 445 Type *Ty) const { 446 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 452 TTI::TargetCostKind CostKind) const { 453 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 454 assert(Cost >= 0 && "TTI should not produce negative costs!"); 455 return Cost; 456 } 457 458 int 459 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 460 const APInt &Imm, Type *Ty, 461 TTI::TargetCostKind CostKind) const { 462 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 463 assert(Cost >= 0 && "TTI should not produce negative costs!"); 464 return Cost; 465 } 466 467 int 468 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 469 const APInt &Imm, Type *Ty, 470 TTI::TargetCostKind CostKind) const { 471 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 477 return TTIImpl->getNumberOfRegisters(ClassID); 478 } 479 480 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 481 Type *Ty) const { 482 return TTIImpl->getRegisterClassForType(Vector, Ty); 483 } 484 485 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 486 return TTIImpl->getRegisterClassName(ClassID); 487 } 488 489 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 490 return TTIImpl->getRegisterBitWidth(Vector); 491 } 492 493 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 494 return TTIImpl->getMinVectorRegisterBitWidth(); 495 } 496 497 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 498 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 499 } 500 501 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 502 return TTIImpl->getMinimumVF(ElemWidth); 503 } 504 505 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 506 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 507 return TTIImpl->shouldConsiderAddressTypePromotion( 508 I, AllowPromotionWithoutCommonHeader); 509 } 510 511 unsigned TargetTransformInfo::getCacheLineSize() const { 512 return TTIImpl->getCacheLineSize(); 513 } 514 515 llvm::Optional<unsigned> 516 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 517 return TTIImpl->getCacheSize(Level); 518 } 519 520 llvm::Optional<unsigned> 521 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 522 return TTIImpl->getCacheAssociativity(Level); 523 } 524 525 unsigned TargetTransformInfo::getPrefetchDistance() const { 526 return TTIImpl->getPrefetchDistance(); 527 } 528 529 unsigned TargetTransformInfo::getMinPrefetchStride( 530 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 531 unsigned NumPrefetches, bool HasCall) const { 532 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 533 NumPrefetches, HasCall); 534 } 535 536 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 537 return TTIImpl->getMaxPrefetchIterationsAhead(); 538 } 539 540 bool TargetTransformInfo::enableWritePrefetching() const { 541 return TTIImpl->enableWritePrefetching(); 542 } 543 544 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 545 return TTIImpl->getMaxInterleaveFactor(VF); 546 } 547 548 TargetTransformInfo::OperandValueKind 549 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 550 OperandValueKind OpInfo = OK_AnyValue; 551 OpProps = OP_None; 552 553 if (auto *CI = dyn_cast<ConstantInt>(V)) { 554 if (CI->getValue().isPowerOf2()) 555 OpProps = OP_PowerOf2; 556 return OK_UniformConstantValue; 557 } 558 559 // A broadcast shuffle creates a uniform value. 560 // TODO: Add support for non-zero index broadcasts. 561 // TODO: Add support for different source vector width. 562 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 563 if (ShuffleInst->isZeroEltSplat()) 564 OpInfo = OK_UniformValue; 565 566 const Value *Splat = getSplatValue(V); 567 568 // Check for a splat of a constant or for a non uniform vector of constants 569 // and check if the constant(s) are all powers of two. 570 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 571 OpInfo = OK_NonUniformConstantValue; 572 if (Splat) { 573 OpInfo = OK_UniformConstantValue; 574 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 575 if (CI->getValue().isPowerOf2()) 576 OpProps = OP_PowerOf2; 577 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 578 OpProps = OP_PowerOf2; 579 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 580 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 581 if (CI->getValue().isPowerOf2()) 582 continue; 583 OpProps = OP_None; 584 break; 585 } 586 } 587 } 588 589 // Check for a splat of a uniform value. This is not loop aware, so return 590 // true only for the obviously uniform cases (argument, globalvalue) 591 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 592 OpInfo = OK_UniformValue; 593 594 return OpInfo; 595 } 596 597 int TargetTransformInfo::getArithmeticInstrCost( 598 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 599 OperandValueKind Opd1Info, 600 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 601 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 602 const Instruction *CxtI) const { 603 int Cost = TTIImpl->getArithmeticInstrCost( 604 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 605 Args, CxtI); 606 assert(Cost >= 0 && "TTI should not produce negative costs!"); 607 return Cost; 608 } 609 610 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 611 int Index, VectorType *SubTp) const { 612 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 613 assert(Cost >= 0 && "TTI should not produce negative costs!"); 614 return Cost; 615 } 616 617 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 618 TTI::TargetCostKind CostKind, 619 const Instruction *I) const { 620 assert((I == nullptr || I->getOpcode() == Opcode) && 621 "Opcode should reflect passed instruction."); 622 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 623 assert(Cost >= 0 && "TTI should not produce negative costs!"); 624 return Cost; 625 } 626 627 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 628 VectorType *VecTy, 629 unsigned Index) const { 630 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 636 TTI::TargetCostKind CostKind) const { 637 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 638 assert(Cost >= 0 && "TTI should not produce negative costs!"); 639 return Cost; 640 } 641 642 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 643 Type *CondTy, 644 TTI::TargetCostKind CostKind, 645 const Instruction *I) const { 646 assert((I == nullptr || I->getOpcode() == Opcode) && 647 "Opcode should reflect passed instruction."); 648 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 649 assert(Cost >= 0 && "TTI should not produce negative costs!"); 650 return Cost; 651 } 652 653 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 654 unsigned Index) const { 655 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 656 assert(Cost >= 0 && "TTI should not produce negative costs!"); 657 return Cost; 658 } 659 660 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 661 MaybeAlign Alignment, 662 unsigned AddressSpace, 663 TTI::TargetCostKind CostKind, 664 const Instruction *I) const { 665 assert((I == nullptr || I->getOpcode() == Opcode) && 666 "Opcode should reflect passed instruction."); 667 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 668 CostKind, I); 669 assert(Cost >= 0 && "TTI should not produce negative costs!"); 670 return Cost; 671 } 672 673 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 674 unsigned Alignment, 675 unsigned AddressSpace, 676 TTI::TargetCostKind CostKind) const { 677 int Cost = 678 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 679 CostKind); 680 assert(Cost >= 0 && "TTI should not produce negative costs!"); 681 return Cost; 682 } 683 684 int TargetTransformInfo::getGatherScatterOpCost( 685 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 686 unsigned Alignment, TTI::TargetCostKind CostKind, 687 const Instruction *I) const { 688 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 689 Alignment, CostKind, I); 690 assert(Cost >= 0 && "TTI should not produce negative costs!"); 691 return Cost; 692 } 693 694 int TargetTransformInfo::getInterleavedMemoryOpCost( 695 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 696 unsigned Alignment, unsigned AddressSpace, 697 TTI::TargetCostKind CostKind, 698 bool UseMaskForCond, bool UseMaskForGaps) const { 699 int Cost = TTIImpl->getInterleavedMemoryOpCost( 700 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 701 UseMaskForCond, UseMaskForGaps); 702 assert(Cost >= 0 && "TTI should not produce negative costs!"); 703 return Cost; 704 } 705 706 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 707 ArrayRef<Type *> Tys, 708 FastMathFlags FMF, 709 unsigned ScalarizationCostPassed, 710 TTI::TargetCostKind CostKind, 711 const Instruction *I) const { 712 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 713 ScalarizationCostPassed, CostKind, 714 I); 715 assert(Cost >= 0 && "TTI should not produce negative costs!"); 716 return Cost; 717 } 718 719 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 720 ArrayRef<Value *> Args, 721 FastMathFlags FMF, unsigned VF, 722 TTI::TargetCostKind CostKind, 723 const Instruction *I) const { 724 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, 725 CostKind, I); 726 assert(Cost >= 0 && "TTI should not produce negative costs!"); 727 return Cost; 728 } 729 730 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 731 ArrayRef<Type *> Tys, 732 TTI::TargetCostKind CostKind) const { 733 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 734 assert(Cost >= 0 && "TTI should not produce negative costs!"); 735 return Cost; 736 } 737 738 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 739 return TTIImpl->getNumberOfParts(Tp); 740 } 741 742 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 743 ScalarEvolution *SE, 744 const SCEV *Ptr) const { 745 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 746 assert(Cost >= 0 && "TTI should not produce negative costs!"); 747 return Cost; 748 } 749 750 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 751 int Cost = TTIImpl->getMemcpyCost(I); 752 assert(Cost >= 0 && "TTI should not produce negative costs!"); 753 return Cost; 754 } 755 756 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 757 VectorType *Ty, 758 bool IsPairwiseForm, 759 TTI::TargetCostKind CostKind) const { 760 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 761 CostKind); 762 assert(Cost >= 0 && "TTI should not produce negative costs!"); 763 return Cost; 764 } 765 766 int TargetTransformInfo::getMinMaxReductionCost( 767 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 768 TTI::TargetCostKind CostKind) const { 769 int Cost = 770 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 771 CostKind); 772 assert(Cost >= 0 && "TTI should not produce negative costs!"); 773 return Cost; 774 } 775 776 unsigned 777 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 778 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 779 } 780 781 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 782 MemIntrinsicInfo &Info) const { 783 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 784 } 785 786 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 787 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 788 } 789 790 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 791 IntrinsicInst *Inst, Type *ExpectedType) const { 792 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 793 } 794 795 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 796 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 797 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 798 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 799 DestAddrSpace, SrcAlign, DestAlign); 800 } 801 802 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 803 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 804 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 805 unsigned SrcAlign, unsigned DestAlign) const { 806 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 807 SrcAddrSpace, DestAddrSpace, 808 SrcAlign, DestAlign); 809 } 810 811 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 812 const Function *Callee) const { 813 return TTIImpl->areInlineCompatible(Caller, Callee); 814 } 815 816 bool TargetTransformInfo::areFunctionArgsABICompatible( 817 const Function *Caller, const Function *Callee, 818 SmallPtrSetImpl<Argument *> &Args) const { 819 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 820 } 821 822 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 823 Type *Ty) const { 824 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 825 } 826 827 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 828 Type *Ty) const { 829 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 830 } 831 832 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 833 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 834 } 835 836 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 837 return TTIImpl->isLegalToVectorizeLoad(LI); 838 } 839 840 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 841 return TTIImpl->isLegalToVectorizeStore(SI); 842 } 843 844 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 845 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 846 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 847 AddrSpace); 848 } 849 850 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 851 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 852 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 853 AddrSpace); 854 } 855 856 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 857 unsigned LoadSize, 858 unsigned ChainSizeInBytes, 859 VectorType *VecTy) const { 860 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 861 } 862 863 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 864 unsigned StoreSize, 865 unsigned ChainSizeInBytes, 866 VectorType *VecTy) const { 867 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 868 } 869 870 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 871 ReductionFlags Flags) const { 872 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 873 } 874 875 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 876 return TTIImpl->shouldExpandReduction(II); 877 } 878 879 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 880 return TTIImpl->getGISelRematGlobalCost(); 881 } 882 883 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 884 return TTIImpl->getInstructionLatency(I); 885 } 886 887 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 888 unsigned Level) { 889 // We don't need a shuffle if we just want to have element 0 in position 0 of 890 // the vector. 891 if (!SI && Level == 0 && IsLeft) 892 return true; 893 else if (!SI) 894 return false; 895 896 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 897 898 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 899 // we look at the left or right side. 900 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 901 Mask[i] = val; 902 903 ArrayRef<int> ActualMask = SI->getShuffleMask(); 904 return Mask == ActualMask; 905 } 906 907 namespace { 908 /// Kind of the reduction data. 909 enum ReductionKind { 910 RK_None, /// Not a reduction. 911 RK_Arithmetic, /// Binary reduction data. 912 RK_MinMax, /// Min/max reduction data. 913 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 914 }; 915 /// Contains opcode + LHS/RHS parts of the reduction operations. 916 struct ReductionData { 917 ReductionData() = delete; 918 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 919 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 920 assert(Kind != RK_None && "expected binary or min/max reduction only."); 921 } 922 unsigned Opcode = 0; 923 Value *LHS = nullptr; 924 Value *RHS = nullptr; 925 ReductionKind Kind = RK_None; 926 bool hasSameData(ReductionData &RD) const { 927 return Kind == RD.Kind && Opcode == RD.Opcode; 928 } 929 }; 930 } // namespace 931 932 static Optional<ReductionData> getReductionData(Instruction *I) { 933 Value *L, *R; 934 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 935 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 936 if (auto *SI = dyn_cast<SelectInst>(I)) { 937 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 938 m_SMax(m_Value(L), m_Value(R)).match(SI) || 939 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 940 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 941 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 942 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 943 auto *CI = cast<CmpInst>(SI->getCondition()); 944 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 945 } 946 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 947 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 948 auto *CI = cast<CmpInst>(SI->getCondition()); 949 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 950 } 951 } 952 return llvm::None; 953 } 954 955 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 956 unsigned Level, 957 unsigned NumLevels) { 958 // Match one level of pairwise operations. 959 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 960 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 961 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 962 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 963 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 964 if (!I) 965 return RK_None; 966 967 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 968 969 Optional<ReductionData> RD = getReductionData(I); 970 if (!RD) 971 return RK_None; 972 973 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 974 if (!LS && Level) 975 return RK_None; 976 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 977 if (!RS && Level) 978 return RK_None; 979 980 // On level 0 we can omit one shufflevector instruction. 981 if (!Level && !RS && !LS) 982 return RK_None; 983 984 // Shuffle inputs must match. 985 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 986 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 987 Value *NextLevelOp = nullptr; 988 if (NextLevelOpR && NextLevelOpL) { 989 // If we have two shuffles their operands must match. 990 if (NextLevelOpL != NextLevelOpR) 991 return RK_None; 992 993 NextLevelOp = NextLevelOpL; 994 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 995 // On the first level we can omit the shufflevector <0, undef,...>. So the 996 // input to the other shufflevector <1, undef> must match with one of the 997 // inputs to the current binary operation. 998 // Example: 999 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1000 // %BinOp = fadd %NextLevelOpL, %R 1001 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1002 return RK_None; 1003 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1004 return RK_None; 1005 1006 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1007 } else 1008 return RK_None; 1009 1010 // Check that the next levels binary operation exists and matches with the 1011 // current one. 1012 if (Level + 1 != NumLevels) { 1013 Optional<ReductionData> NextLevelRD = 1014 getReductionData(cast<Instruction>(NextLevelOp)); 1015 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1016 return RK_None; 1017 } 1018 1019 // Shuffle mask for pairwise operation must match. 1020 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1021 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1022 return RK_None; 1023 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1024 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1025 return RK_None; 1026 } else { 1027 return RK_None; 1028 } 1029 1030 if (++Level == NumLevels) 1031 return RD->Kind; 1032 1033 // Match next level. 1034 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1035 NumLevels); 1036 } 1037 1038 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1039 unsigned &Opcode, 1040 VectorType *&Ty) { 1041 if (!EnableReduxCost) 1042 return RK_None; 1043 1044 // Need to extract the first element. 1045 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1046 unsigned Idx = ~0u; 1047 if (CI) 1048 Idx = CI->getZExtValue(); 1049 if (Idx != 0) 1050 return RK_None; 1051 1052 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1053 if (!RdxStart) 1054 return RK_None; 1055 Optional<ReductionData> RD = getReductionData(RdxStart); 1056 if (!RD) 1057 return RK_None; 1058 1059 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1060 unsigned NumVecElems = VecTy->getNumElements(); 1061 if (!isPowerOf2_32(NumVecElems)) 1062 return RK_None; 1063 1064 // We look for a sequence of shuffle,shuffle,add triples like the following 1065 // that builds a pairwise reduction tree. 1066 // 1067 // (X0, X1, X2, X3) 1068 // (X0 + X1, X2 + X3, undef, undef) 1069 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1070 // 1071 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1072 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1073 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1074 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1075 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1076 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1077 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1078 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1079 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1080 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1081 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1082 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1083 RK_None) 1084 return RK_None; 1085 1086 Opcode = RD->Opcode; 1087 Ty = VecTy; 1088 1089 return RD->Kind; 1090 } 1091 1092 static std::pair<Value *, ShuffleVectorInst *> 1093 getShuffleAndOtherOprd(Value *L, Value *R) { 1094 ShuffleVectorInst *S = nullptr; 1095 1096 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1097 return std::make_pair(R, S); 1098 1099 S = dyn_cast<ShuffleVectorInst>(R); 1100 return std::make_pair(L, S); 1101 } 1102 1103 static ReductionKind 1104 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1105 unsigned &Opcode, VectorType *&Ty) { 1106 if (!EnableReduxCost) 1107 return RK_None; 1108 1109 // Need to extract the first element. 1110 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1111 unsigned Idx = ~0u; 1112 if (CI) 1113 Idx = CI->getZExtValue(); 1114 if (Idx != 0) 1115 return RK_None; 1116 1117 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1118 if (!RdxStart) 1119 return RK_None; 1120 Optional<ReductionData> RD = getReductionData(RdxStart); 1121 if (!RD) 1122 return RK_None; 1123 1124 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1125 unsigned NumVecElems = VecTy->getNumElements(); 1126 if (!isPowerOf2_32(NumVecElems)) 1127 return RK_None; 1128 1129 // We look for a sequence of shuffles and adds like the following matching one 1130 // fadd, shuffle vector pair at a time. 1131 // 1132 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1133 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1134 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1135 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1136 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1137 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1138 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1139 1140 unsigned MaskStart = 1; 1141 Instruction *RdxOp = RdxStart; 1142 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1143 unsigned NumVecElemsRemain = NumVecElems; 1144 while (NumVecElemsRemain - 1) { 1145 // Check for the right reduction operation. 1146 if (!RdxOp) 1147 return RK_None; 1148 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1149 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1150 return RK_None; 1151 1152 Value *NextRdxOp; 1153 ShuffleVectorInst *Shuffle; 1154 std::tie(NextRdxOp, Shuffle) = 1155 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1156 1157 // Check the current reduction operation and the shuffle use the same value. 1158 if (Shuffle == nullptr) 1159 return RK_None; 1160 if (Shuffle->getOperand(0) != NextRdxOp) 1161 return RK_None; 1162 1163 // Check that shuffle masks matches. 1164 for (unsigned j = 0; j != MaskStart; ++j) 1165 ShuffleMask[j] = MaskStart + j; 1166 // Fill the rest of the mask with -1 for undef. 1167 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1168 1169 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1170 if (ShuffleMask != Mask) 1171 return RK_None; 1172 1173 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1174 NumVecElemsRemain /= 2; 1175 MaskStart *= 2; 1176 } 1177 1178 Opcode = RD->Opcode; 1179 Ty = VecTy; 1180 return RD->Kind; 1181 } 1182 1183 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1184 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1185 1186 switch (I->getOpcode()) { 1187 case Instruction::GetElementPtr: 1188 return getUserCost(I, CostKind); 1189 1190 case Instruction::Ret: 1191 case Instruction::PHI: 1192 case Instruction::Br: { 1193 return getCFInstrCost(I->getOpcode(), CostKind); 1194 } 1195 case Instruction::Add: 1196 case Instruction::FAdd: 1197 case Instruction::Sub: 1198 case Instruction::FSub: 1199 case Instruction::Mul: 1200 case Instruction::FMul: 1201 case Instruction::UDiv: 1202 case Instruction::SDiv: 1203 case Instruction::FDiv: 1204 case Instruction::URem: 1205 case Instruction::SRem: 1206 case Instruction::FRem: 1207 case Instruction::Shl: 1208 case Instruction::LShr: 1209 case Instruction::AShr: 1210 case Instruction::And: 1211 case Instruction::Or: 1212 case Instruction::Xor: { 1213 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1214 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1215 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1216 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1217 SmallVector<const Value *, 2> Operands(I->operand_values()); 1218 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1219 Op1VK, Op2VK, 1220 Op1VP, Op2VP, Operands, I); 1221 } 1222 case Instruction::FNeg: { 1223 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1224 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1225 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1226 Op2VK = OK_AnyValue; 1227 Op2VP = OP_None; 1228 SmallVector<const Value *, 2> Operands(I->operand_values()); 1229 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1230 Op1VK, Op2VK, 1231 Op1VP, Op2VP, Operands, I); 1232 } 1233 case Instruction::Select: { 1234 const SelectInst *SI = cast<SelectInst>(I); 1235 Type *CondTy = SI->getCondition()->getType(); 1236 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, 1237 CostKind, I); 1238 } 1239 case Instruction::ICmp: 1240 case Instruction::FCmp: { 1241 Type *ValTy = I->getOperand(0)->getType(); 1242 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), 1243 CostKind, I); 1244 } 1245 case Instruction::Store: { 1246 const StoreInst *SI = cast<StoreInst>(I); 1247 Type *ValTy = SI->getValueOperand()->getType(); 1248 return getMemoryOpCost(I->getOpcode(), ValTy, 1249 MaybeAlign(SI->getAlignment()), 1250 SI->getPointerAddressSpace(), CostKind, I); 1251 } 1252 case Instruction::Load: { 1253 const LoadInst *LI = cast<LoadInst>(I); 1254 return getMemoryOpCost(I->getOpcode(), I->getType(), 1255 MaybeAlign(LI->getAlignment()), 1256 LI->getPointerAddressSpace(), CostKind, I); 1257 } 1258 case Instruction::ZExt: 1259 case Instruction::SExt: 1260 case Instruction::FPToUI: 1261 case Instruction::FPToSI: 1262 case Instruction::FPExt: 1263 case Instruction::PtrToInt: 1264 case Instruction::IntToPtr: 1265 case Instruction::SIToFP: 1266 case Instruction::UIToFP: 1267 case Instruction::Trunc: 1268 case Instruction::FPTrunc: 1269 case Instruction::BitCast: 1270 case Instruction::AddrSpaceCast: { 1271 Type *SrcTy = I->getOperand(0)->getType(); 1272 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, CostKind, I); 1273 } 1274 case Instruction::ExtractElement: { 1275 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1276 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1277 unsigned Idx = -1; 1278 if (CI) 1279 Idx = CI->getZExtValue(); 1280 1281 // Try to match a reduction sequence (series of shufflevector and vector 1282 // adds followed by a extractelement). 1283 unsigned ReduxOpCode; 1284 VectorType *ReduxType; 1285 1286 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1287 case RK_Arithmetic: 1288 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1289 /*IsPairwiseForm=*/false, 1290 CostKind); 1291 case RK_MinMax: 1292 return getMinMaxReductionCost( 1293 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1294 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1295 case RK_UnsignedMinMax: 1296 return getMinMaxReductionCost( 1297 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1298 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1299 case RK_None: 1300 break; 1301 } 1302 1303 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1304 case RK_Arithmetic: 1305 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1306 /*IsPairwiseForm=*/true, CostKind); 1307 case RK_MinMax: 1308 return getMinMaxReductionCost( 1309 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1310 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1311 case RK_UnsignedMinMax: 1312 return getMinMaxReductionCost( 1313 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1314 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1315 case RK_None: 1316 break; 1317 } 1318 1319 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1320 Idx); 1321 } 1322 case Instruction::InsertElement: { 1323 const InsertElementInst *IE = cast<InsertElementInst>(I); 1324 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1325 unsigned Idx = -1; 1326 if (CI) 1327 Idx = CI->getZExtValue(); 1328 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1329 } 1330 case Instruction::ExtractValue: 1331 return 0; // Model all ExtractValue nodes as free. 1332 case Instruction::ShuffleVector: { 1333 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1334 auto *Ty = cast<VectorType>(Shuffle->getType()); 1335 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1336 1337 // TODO: Identify and add costs for insert subvector, etc. 1338 int SubIndex; 1339 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1340 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1341 1342 if (Shuffle->changesLength()) 1343 return -1; 1344 1345 if (Shuffle->isIdentity()) 1346 return 0; 1347 1348 if (Shuffle->isReverse()) 1349 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1350 1351 if (Shuffle->isSelect()) 1352 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1353 1354 if (Shuffle->isTranspose()) 1355 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1356 1357 if (Shuffle->isZeroEltSplat()) 1358 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1359 1360 if (Shuffle->isSingleSource()) 1361 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1362 1363 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1364 } 1365 case Instruction::Call: 1366 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1367 SmallVector<Value *, 4> Args(II->arg_operands()); 1368 1369 FastMathFlags FMF; 1370 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1371 FMF = FPMO->getFastMathFlags(); 1372 1373 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 1374 FMF, 1, CostKind, II); 1375 } 1376 return -1; 1377 default: 1378 // We don't have any information on this instruction. 1379 return -1; 1380 } 1381 } 1382 1383 TargetTransformInfo::Concept::~Concept() {} 1384 1385 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1386 1387 TargetIRAnalysis::TargetIRAnalysis( 1388 std::function<Result(const Function &)> TTICallback) 1389 : TTICallback(std::move(TTICallback)) {} 1390 1391 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1392 FunctionAnalysisManager &) { 1393 return TTICallback(F); 1394 } 1395 1396 AnalysisKey TargetIRAnalysis::Key; 1397 1398 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1399 return Result(F.getParent()->getDataLayout()); 1400 } 1401 1402 // Register the basic pass. 1403 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1404 "Target Transform Information", false, true) 1405 char TargetTransformInfoWrapperPass::ID = 0; 1406 1407 void TargetTransformInfoWrapperPass::anchor() {} 1408 1409 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1410 : ImmutablePass(ID) { 1411 initializeTargetTransformInfoWrapperPassPass( 1412 *PassRegistry::getPassRegistry()); 1413 } 1414 1415 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1416 TargetIRAnalysis TIRA) 1417 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1418 initializeTargetTransformInfoWrapperPassPass( 1419 *PassRegistry::getPassRegistry()); 1420 } 1421 1422 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1423 FunctionAnalysisManager DummyFAM; 1424 TTI = TIRA.run(F, DummyFAM); 1425 return *TTI; 1426 } 1427 1428 ImmutablePass * 1429 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1430 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1431 } 1432