1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/Operator.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } // namespace 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 57 LoopInfo &LI, DominatorTree &DT, 58 bool ForceNestedLoop, 59 bool ForceHardwareLoopPHI) { 60 SmallVector<BasicBlock *, 4> ExitingBlocks; 61 L->getExitingBlocks(ExitingBlocks); 62 63 for (BasicBlock *BB : ExitingBlocks) { 64 // If we pass the updated counter back through a phi, we need to know 65 // which latch the updated value will be coming from. 66 if (!L->isLoopLatch(BB)) { 67 if (ForceHardwareLoopPHI || CounterInReg) 68 continue; 69 } 70 71 const SCEV *EC = SE.getExitCount(L, BB); 72 if (isa<SCEVCouldNotCompute>(EC)) 73 continue; 74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 75 if (ConstEC->getValue()->isZero()) 76 continue; 77 } else if (!SE.isLoopInvariant(EC, L)) 78 continue; 79 80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 81 continue; 82 83 // If this exiting block is contained in a nested loop, it is not eligible 84 // for insertion of the branch-and-decrement since the inner loop would 85 // end up messing up the value in the CTR. 86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 87 continue; 88 89 // We now have a loop-invariant count of loop iterations (which is not the 90 // constant zero) for which we know that this loop will not exit via this 91 // existing block. 92 93 // We need to make sure that this block will run on every loop iteration. 94 // For this to be true, we must dominate all blocks with backedges. Such 95 // blocks are in-loop predecessors to the header block. 96 bool NotAlways = false; 97 for (BasicBlock *Pred : predecessors(L->getHeader())) { 98 if (!L->contains(Pred)) 99 continue; 100 101 if (!DT.dominates(BB, Pred)) { 102 NotAlways = true; 103 break; 104 } 105 } 106 107 if (NotAlways) 108 continue; 109 110 // Make sure this blocks ends with a conditional branch. 111 Instruction *TI = BB->getTerminator(); 112 if (!TI) 113 continue; 114 115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 116 if (!BI->isConditional()) 117 continue; 118 119 ExitBranch = BI; 120 } else 121 continue; 122 123 // Note that this block may not be the loop latch block, even if the loop 124 // has a latch block. 125 ExitBlock = BB; 126 ExitCount = EC; 127 break; 128 } 129 130 if (!ExitBlock) 131 return false; 132 return true; 133 } 134 135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 137 138 TargetTransformInfo::~TargetTransformInfo() {} 139 140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 141 : TTIImpl(std::move(Arg.TTIImpl)) {} 142 143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 144 TTIImpl = std::move(RHS.TTIImpl); 145 return *this; 146 } 147 148 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 149 return TTIImpl->getInliningThresholdMultiplier(); 150 } 151 152 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 153 return TTIImpl->getInlinerVectorBonusPercent(); 154 } 155 156 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 157 ArrayRef<const Value *> Operands, 158 TTI::TargetCostKind CostKind) const { 159 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 160 } 161 162 int TargetTransformInfo::getExtCost(const Instruction *I, 163 const Value *Src) const { 164 return TTIImpl->getExtCost(I, Src); 165 } 166 167 int TargetTransformInfo::getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 168 ArrayRef<const Value *> Arguments, 169 const User *U, 170 TTI::TargetCostKind CostKind) const { 171 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U, CostKind); 172 assert(Cost >= 0 && "TTI should not produce negative costs!"); 173 return Cost; 174 } 175 176 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 177 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 178 BlockFrequencyInfo *BFI) const { 179 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 180 } 181 182 int TargetTransformInfo::getUserCost(const User *U, 183 ArrayRef<const Value *> Operands, 184 enum TargetCostKind CostKind) const { 185 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 186 assert(Cost >= 0 && "TTI should not produce negative costs!"); 187 return Cost; 188 } 189 190 bool TargetTransformInfo::hasBranchDivergence() const { 191 return TTIImpl->hasBranchDivergence(); 192 } 193 194 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 195 return TTIImpl->useGPUDivergenceAnalysis(); 196 } 197 198 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 199 return TTIImpl->isSourceOfDivergence(V); 200 } 201 202 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 203 return TTIImpl->isAlwaysUniform(V); 204 } 205 206 unsigned TargetTransformInfo::getFlatAddressSpace() const { 207 return TTIImpl->getFlatAddressSpace(); 208 } 209 210 bool TargetTransformInfo::collectFlatAddressOperands( 211 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 212 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 213 } 214 215 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 216 Value *OldV, 217 Value *NewV) const { 218 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 219 } 220 221 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 222 return TTIImpl->isLoweredToCall(F); 223 } 224 225 bool TargetTransformInfo::isHardwareLoopProfitable( 226 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 227 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 228 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 229 } 230 231 bool TargetTransformInfo::preferPredicateOverEpilogue( 232 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 233 TargetLibraryInfo *TLI, DominatorTree *DT, 234 const LoopAccessInfo *LAI) const { 235 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 236 } 237 238 void TargetTransformInfo::getUnrollingPreferences( 239 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 240 return TTIImpl->getUnrollingPreferences(L, SE, UP); 241 } 242 243 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 244 return TTIImpl->isLegalAddImmediate(Imm); 245 } 246 247 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 248 return TTIImpl->isLegalICmpImmediate(Imm); 249 } 250 251 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 252 int64_t BaseOffset, 253 bool HasBaseReg, int64_t Scale, 254 unsigned AddrSpace, 255 Instruction *I) const { 256 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 257 Scale, AddrSpace, I); 258 } 259 260 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 261 return TTIImpl->isLSRCostLess(C1, C2); 262 } 263 264 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 265 return TTIImpl->isProfitableLSRChainElement(I); 266 } 267 268 bool TargetTransformInfo::canMacroFuseCmp() const { 269 return TTIImpl->canMacroFuseCmp(); 270 } 271 272 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 273 ScalarEvolution *SE, LoopInfo *LI, 274 DominatorTree *DT, AssumptionCache *AC, 275 TargetLibraryInfo *LibInfo) const { 276 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 277 } 278 279 bool TargetTransformInfo::shouldFavorPostInc() const { 280 return TTIImpl->shouldFavorPostInc(); 281 } 282 283 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 284 return TTIImpl->shouldFavorBackedgeIndex(L); 285 } 286 287 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 288 Align Alignment) const { 289 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 290 } 291 292 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 293 Align Alignment) const { 294 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 295 } 296 297 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 298 Align Alignment) const { 299 return TTIImpl->isLegalNTStore(DataType, Alignment); 300 } 301 302 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 303 return TTIImpl->isLegalNTLoad(DataType, Alignment); 304 } 305 306 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 307 Align Alignment) const { 308 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 309 } 310 311 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 312 Align Alignment) const { 313 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 314 } 315 316 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 317 return TTIImpl->isLegalMaskedCompressStore(DataType); 318 } 319 320 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 321 return TTIImpl->isLegalMaskedExpandLoad(DataType); 322 } 323 324 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 325 return TTIImpl->hasDivRemOp(DataType, IsSigned); 326 } 327 328 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 329 unsigned AddrSpace) const { 330 return TTIImpl->hasVolatileVariant(I, AddrSpace); 331 } 332 333 bool TargetTransformInfo::prefersVectorizedAddressing() const { 334 return TTIImpl->prefersVectorizedAddressing(); 335 } 336 337 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 338 int64_t BaseOffset, 339 bool HasBaseReg, int64_t Scale, 340 unsigned AddrSpace) const { 341 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 342 Scale, AddrSpace); 343 assert(Cost >= 0 && "TTI should not produce negative costs!"); 344 return Cost; 345 } 346 347 bool TargetTransformInfo::LSRWithInstrQueries() const { 348 return TTIImpl->LSRWithInstrQueries(); 349 } 350 351 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 352 return TTIImpl->isTruncateFree(Ty1, Ty2); 353 } 354 355 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 356 return TTIImpl->isProfitableToHoist(I); 357 } 358 359 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 360 361 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 362 return TTIImpl->isTypeLegal(Ty); 363 } 364 365 bool TargetTransformInfo::shouldBuildLookupTables() const { 366 return TTIImpl->shouldBuildLookupTables(); 367 } 368 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 369 Constant *C) const { 370 return TTIImpl->shouldBuildLookupTablesForConstant(C); 371 } 372 373 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 374 return TTIImpl->useColdCCForColdCall(F); 375 } 376 377 unsigned 378 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 379 const APInt &DemandedElts, 380 bool Insert, bool Extract) const { 381 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 382 } 383 384 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 385 ArrayRef<const Value *> Args, unsigned VF) const { 386 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 387 } 388 389 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 390 return TTIImpl->supportsEfficientVectorElementLoadStore(); 391 } 392 393 bool TargetTransformInfo::enableAggressiveInterleaving( 394 bool LoopHasReductions) const { 395 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 396 } 397 398 TargetTransformInfo::MemCmpExpansionOptions 399 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 400 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 401 } 402 403 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 404 return TTIImpl->enableInterleavedAccessVectorization(); 405 } 406 407 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 408 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 409 } 410 411 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 412 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 413 } 414 415 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 416 unsigned BitWidth, 417 unsigned AddressSpace, 418 unsigned Alignment, 419 bool *Fast) const { 420 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 421 AddressSpace, Alignment, Fast); 422 } 423 424 TargetTransformInfo::PopcntSupportKind 425 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 426 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 427 } 428 429 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 430 return TTIImpl->haveFastSqrt(Ty); 431 } 432 433 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 434 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 435 } 436 437 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 438 int Cost = TTIImpl->getFPOpCost(Ty); 439 assert(Cost >= 0 && "TTI should not produce negative costs!"); 440 return Cost; 441 } 442 443 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 444 const APInt &Imm, 445 Type *Ty) const { 446 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 452 TTI::TargetCostKind CostKind) const { 453 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 454 assert(Cost >= 0 && "TTI should not produce negative costs!"); 455 return Cost; 456 } 457 458 int 459 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 460 const APInt &Imm, Type *Ty, 461 TTI::TargetCostKind CostKind) const { 462 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 463 assert(Cost >= 0 && "TTI should not produce negative costs!"); 464 return Cost; 465 } 466 467 int 468 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 469 const APInt &Imm, Type *Ty, 470 TTI::TargetCostKind CostKind) const { 471 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 472 assert(Cost >= 0 && "TTI should not produce negative costs!"); 473 return Cost; 474 } 475 476 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 477 return TTIImpl->getNumberOfRegisters(ClassID); 478 } 479 480 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 481 Type *Ty) const { 482 return TTIImpl->getRegisterClassForType(Vector, Ty); 483 } 484 485 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 486 return TTIImpl->getRegisterClassName(ClassID); 487 } 488 489 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 490 return TTIImpl->getRegisterBitWidth(Vector); 491 } 492 493 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 494 return TTIImpl->getMinVectorRegisterBitWidth(); 495 } 496 497 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 498 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 499 } 500 501 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 502 return TTIImpl->getMinimumVF(ElemWidth); 503 } 504 505 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 506 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 507 return TTIImpl->shouldConsiderAddressTypePromotion( 508 I, AllowPromotionWithoutCommonHeader); 509 } 510 511 unsigned TargetTransformInfo::getCacheLineSize() const { 512 return TTIImpl->getCacheLineSize(); 513 } 514 515 llvm::Optional<unsigned> 516 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 517 return TTIImpl->getCacheSize(Level); 518 } 519 520 llvm::Optional<unsigned> 521 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 522 return TTIImpl->getCacheAssociativity(Level); 523 } 524 525 unsigned TargetTransformInfo::getPrefetchDistance() const { 526 return TTIImpl->getPrefetchDistance(); 527 } 528 529 unsigned TargetTransformInfo::getMinPrefetchStride( 530 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 531 unsigned NumPrefetches, bool HasCall) const { 532 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 533 NumPrefetches, HasCall); 534 } 535 536 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 537 return TTIImpl->getMaxPrefetchIterationsAhead(); 538 } 539 540 bool TargetTransformInfo::enableWritePrefetching() const { 541 return TTIImpl->enableWritePrefetching(); 542 } 543 544 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 545 return TTIImpl->getMaxInterleaveFactor(VF); 546 } 547 548 TargetTransformInfo::OperandValueKind 549 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 550 OperandValueKind OpInfo = OK_AnyValue; 551 OpProps = OP_None; 552 553 if (auto *CI = dyn_cast<ConstantInt>(V)) { 554 if (CI->getValue().isPowerOf2()) 555 OpProps = OP_PowerOf2; 556 return OK_UniformConstantValue; 557 } 558 559 // A broadcast shuffle creates a uniform value. 560 // TODO: Add support for non-zero index broadcasts. 561 // TODO: Add support for different source vector width. 562 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 563 if (ShuffleInst->isZeroEltSplat()) 564 OpInfo = OK_UniformValue; 565 566 const Value *Splat = getSplatValue(V); 567 568 // Check for a splat of a constant or for a non uniform vector of constants 569 // and check if the constant(s) are all powers of two. 570 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 571 OpInfo = OK_NonUniformConstantValue; 572 if (Splat) { 573 OpInfo = OK_UniformConstantValue; 574 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 575 if (CI->getValue().isPowerOf2()) 576 OpProps = OP_PowerOf2; 577 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 578 OpProps = OP_PowerOf2; 579 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 580 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 581 if (CI->getValue().isPowerOf2()) 582 continue; 583 OpProps = OP_None; 584 break; 585 } 586 } 587 } 588 589 // Check for a splat of a uniform value. This is not loop aware, so return 590 // true only for the obviously uniform cases (argument, globalvalue) 591 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 592 OpInfo = OK_UniformValue; 593 594 return OpInfo; 595 } 596 597 int TargetTransformInfo::getArithmeticInstrCost( 598 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 599 OperandValueKind Opd1Info, 600 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 601 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 602 const Instruction *CxtI) const { 603 int Cost = TTIImpl->getArithmeticInstrCost( 604 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 605 Args, CxtI); 606 assert(Cost >= 0 && "TTI should not produce negative costs!"); 607 return Cost; 608 } 609 610 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 611 int Index, VectorType *SubTp) const { 612 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 613 assert(Cost >= 0 && "TTI should not produce negative costs!"); 614 return Cost; 615 } 616 617 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 618 TTI::TargetCostKind CostKind, 619 const Instruction *I) const { 620 assert((I == nullptr || I->getOpcode() == Opcode) && 621 "Opcode should reflect passed instruction."); 622 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 623 assert(Cost >= 0 && "TTI should not produce negative costs!"); 624 return Cost; 625 } 626 627 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 628 VectorType *VecTy, 629 unsigned Index) const { 630 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 631 assert(Cost >= 0 && "TTI should not produce negative costs!"); 632 return Cost; 633 } 634 635 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 636 TTI::TargetCostKind CostKind) const { 637 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 638 assert(Cost >= 0 && "TTI should not produce negative costs!"); 639 return Cost; 640 } 641 642 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 643 Type *CondTy, 644 TTI::TargetCostKind CostKind, 645 const Instruction *I) const { 646 assert((I == nullptr || I->getOpcode() == Opcode) && 647 "Opcode should reflect passed instruction."); 648 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 649 assert(Cost >= 0 && "TTI should not produce negative costs!"); 650 return Cost; 651 } 652 653 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 654 unsigned Index) const { 655 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 656 assert(Cost >= 0 && "TTI should not produce negative costs!"); 657 return Cost; 658 } 659 660 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 661 Align Alignment, unsigned AddressSpace, 662 TTI::TargetCostKind CostKind, 663 const Instruction *I) const { 664 assert((I == nullptr || I->getOpcode() == Opcode) && 665 "Opcode should reflect passed instruction."); 666 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 667 CostKind, I); 668 assert(Cost >= 0 && "TTI should not produce negative costs!"); 669 return Cost; 670 } 671 672 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 673 unsigned Alignment, 674 unsigned AddressSpace, 675 TTI::TargetCostKind CostKind) const { 676 int Cost = 677 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 678 CostKind); 679 assert(Cost >= 0 && "TTI should not produce negative costs!"); 680 return Cost; 681 } 682 683 int TargetTransformInfo::getGatherScatterOpCost( 684 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 685 unsigned Alignment, TTI::TargetCostKind CostKind, 686 const Instruction *I) const { 687 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 688 Alignment, CostKind, I); 689 assert(Cost >= 0 && "TTI should not produce negative costs!"); 690 return Cost; 691 } 692 693 int TargetTransformInfo::getInterleavedMemoryOpCost( 694 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 695 unsigned Alignment, unsigned AddressSpace, 696 TTI::TargetCostKind CostKind, 697 bool UseMaskForCond, bool UseMaskForGaps) const { 698 int Cost = TTIImpl->getInterleavedMemoryOpCost( 699 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 700 UseMaskForCond, UseMaskForGaps); 701 assert(Cost >= 0 && "TTI should not produce negative costs!"); 702 return Cost; 703 } 704 705 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 706 ArrayRef<Type *> Tys, 707 FastMathFlags FMF, 708 unsigned ScalarizationCostPassed, 709 TTI::TargetCostKind CostKind, 710 const Instruction *I) const { 711 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 712 ScalarizationCostPassed, CostKind, 713 I); 714 assert(Cost >= 0 && "TTI should not produce negative costs!"); 715 return Cost; 716 } 717 718 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 719 ArrayRef<Value *> Args, 720 FastMathFlags FMF, unsigned VF, 721 TTI::TargetCostKind CostKind, 722 const Instruction *I) const { 723 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, 724 CostKind, I); 725 assert(Cost >= 0 && "TTI should not produce negative costs!"); 726 return Cost; 727 } 728 729 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 730 ArrayRef<Type *> Tys, 731 TTI::TargetCostKind CostKind) const { 732 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 733 assert(Cost >= 0 && "TTI should not produce negative costs!"); 734 return Cost; 735 } 736 737 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 738 return TTIImpl->getNumberOfParts(Tp); 739 } 740 741 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 742 ScalarEvolution *SE, 743 const SCEV *Ptr) const { 744 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 745 assert(Cost >= 0 && "TTI should not produce negative costs!"); 746 return Cost; 747 } 748 749 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 750 int Cost = TTIImpl->getMemcpyCost(I); 751 assert(Cost >= 0 && "TTI should not produce negative costs!"); 752 return Cost; 753 } 754 755 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 756 VectorType *Ty, 757 bool IsPairwiseForm, 758 TTI::TargetCostKind CostKind) const { 759 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 760 CostKind); 761 assert(Cost >= 0 && "TTI should not produce negative costs!"); 762 return Cost; 763 } 764 765 int TargetTransformInfo::getMinMaxReductionCost( 766 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 767 TTI::TargetCostKind CostKind) const { 768 int Cost = 769 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 770 CostKind); 771 assert(Cost >= 0 && "TTI should not produce negative costs!"); 772 return Cost; 773 } 774 775 unsigned 776 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 777 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 778 } 779 780 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 781 MemIntrinsicInfo &Info) const { 782 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 783 } 784 785 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 786 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 787 } 788 789 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 790 IntrinsicInst *Inst, Type *ExpectedType) const { 791 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 792 } 793 794 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 795 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 796 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 797 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 798 DestAddrSpace, SrcAlign, DestAlign); 799 } 800 801 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 802 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 803 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 804 unsigned SrcAlign, unsigned DestAlign) const { 805 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 806 SrcAddrSpace, DestAddrSpace, 807 SrcAlign, DestAlign); 808 } 809 810 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 811 const Function *Callee) const { 812 return TTIImpl->areInlineCompatible(Caller, Callee); 813 } 814 815 bool TargetTransformInfo::areFunctionArgsABICompatible( 816 const Function *Caller, const Function *Callee, 817 SmallPtrSetImpl<Argument *> &Args) const { 818 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 819 } 820 821 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 822 Type *Ty) const { 823 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 824 } 825 826 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 827 Type *Ty) const { 828 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 829 } 830 831 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 832 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 833 } 834 835 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 836 return TTIImpl->isLegalToVectorizeLoad(LI); 837 } 838 839 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 840 return TTIImpl->isLegalToVectorizeStore(SI); 841 } 842 843 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 844 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 845 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 846 AddrSpace); 847 } 848 849 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 850 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 851 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 852 AddrSpace); 853 } 854 855 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 856 unsigned LoadSize, 857 unsigned ChainSizeInBytes, 858 VectorType *VecTy) const { 859 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 860 } 861 862 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 863 unsigned StoreSize, 864 unsigned ChainSizeInBytes, 865 VectorType *VecTy) const { 866 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 867 } 868 869 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 870 ReductionFlags Flags) const { 871 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 872 } 873 874 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 875 return TTIImpl->shouldExpandReduction(II); 876 } 877 878 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 879 return TTIImpl->getGISelRematGlobalCost(); 880 } 881 882 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 883 return TTIImpl->getInstructionLatency(I); 884 } 885 886 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 887 unsigned Level) { 888 // We don't need a shuffle if we just want to have element 0 in position 0 of 889 // the vector. 890 if (!SI && Level == 0 && IsLeft) 891 return true; 892 else if (!SI) 893 return false; 894 895 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 896 897 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 898 // we look at the left or right side. 899 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 900 Mask[i] = val; 901 902 ArrayRef<int> ActualMask = SI->getShuffleMask(); 903 return Mask == ActualMask; 904 } 905 906 namespace { 907 /// Kind of the reduction data. 908 enum ReductionKind { 909 RK_None, /// Not a reduction. 910 RK_Arithmetic, /// Binary reduction data. 911 RK_MinMax, /// Min/max reduction data. 912 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 913 }; 914 /// Contains opcode + LHS/RHS parts of the reduction operations. 915 struct ReductionData { 916 ReductionData() = delete; 917 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 918 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 919 assert(Kind != RK_None && "expected binary or min/max reduction only."); 920 } 921 unsigned Opcode = 0; 922 Value *LHS = nullptr; 923 Value *RHS = nullptr; 924 ReductionKind Kind = RK_None; 925 bool hasSameData(ReductionData &RD) const { 926 return Kind == RD.Kind && Opcode == RD.Opcode; 927 } 928 }; 929 } // namespace 930 931 static Optional<ReductionData> getReductionData(Instruction *I) { 932 Value *L, *R; 933 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 934 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 935 if (auto *SI = dyn_cast<SelectInst>(I)) { 936 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 937 m_SMax(m_Value(L), m_Value(R)).match(SI) || 938 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 939 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 940 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 941 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 942 auto *CI = cast<CmpInst>(SI->getCondition()); 943 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 944 } 945 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 946 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 947 auto *CI = cast<CmpInst>(SI->getCondition()); 948 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 949 } 950 } 951 return llvm::None; 952 } 953 954 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 955 unsigned Level, 956 unsigned NumLevels) { 957 // Match one level of pairwise operations. 958 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 959 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 960 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 961 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 962 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 963 if (!I) 964 return RK_None; 965 966 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 967 968 Optional<ReductionData> RD = getReductionData(I); 969 if (!RD) 970 return RK_None; 971 972 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 973 if (!LS && Level) 974 return RK_None; 975 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 976 if (!RS && Level) 977 return RK_None; 978 979 // On level 0 we can omit one shufflevector instruction. 980 if (!Level && !RS && !LS) 981 return RK_None; 982 983 // Shuffle inputs must match. 984 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 985 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 986 Value *NextLevelOp = nullptr; 987 if (NextLevelOpR && NextLevelOpL) { 988 // If we have two shuffles their operands must match. 989 if (NextLevelOpL != NextLevelOpR) 990 return RK_None; 991 992 NextLevelOp = NextLevelOpL; 993 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 994 // On the first level we can omit the shufflevector <0, undef,...>. So the 995 // input to the other shufflevector <1, undef> must match with one of the 996 // inputs to the current binary operation. 997 // Example: 998 // %NextLevelOpL = shufflevector %R, <1, undef ...> 999 // %BinOp = fadd %NextLevelOpL, %R 1000 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1001 return RK_None; 1002 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1003 return RK_None; 1004 1005 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1006 } else 1007 return RK_None; 1008 1009 // Check that the next levels binary operation exists and matches with the 1010 // current one. 1011 if (Level + 1 != NumLevels) { 1012 Optional<ReductionData> NextLevelRD = 1013 getReductionData(cast<Instruction>(NextLevelOp)); 1014 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1015 return RK_None; 1016 } 1017 1018 // Shuffle mask for pairwise operation must match. 1019 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1020 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1021 return RK_None; 1022 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1023 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1024 return RK_None; 1025 } else { 1026 return RK_None; 1027 } 1028 1029 if (++Level == NumLevels) 1030 return RD->Kind; 1031 1032 // Match next level. 1033 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1034 NumLevels); 1035 } 1036 1037 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1038 unsigned &Opcode, 1039 VectorType *&Ty) { 1040 if (!EnableReduxCost) 1041 return RK_None; 1042 1043 // Need to extract the first element. 1044 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1045 unsigned Idx = ~0u; 1046 if (CI) 1047 Idx = CI->getZExtValue(); 1048 if (Idx != 0) 1049 return RK_None; 1050 1051 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1052 if (!RdxStart) 1053 return RK_None; 1054 Optional<ReductionData> RD = getReductionData(RdxStart); 1055 if (!RD) 1056 return RK_None; 1057 1058 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1059 unsigned NumVecElems = VecTy->getNumElements(); 1060 if (!isPowerOf2_32(NumVecElems)) 1061 return RK_None; 1062 1063 // We look for a sequence of shuffle,shuffle,add triples like the following 1064 // that builds a pairwise reduction tree. 1065 // 1066 // (X0, X1, X2, X3) 1067 // (X0 + X1, X2 + X3, undef, undef) 1068 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1069 // 1070 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1071 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1072 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1073 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1074 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1075 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1076 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1077 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1078 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1079 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1080 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1081 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1082 RK_None) 1083 return RK_None; 1084 1085 Opcode = RD->Opcode; 1086 Ty = VecTy; 1087 1088 return RD->Kind; 1089 } 1090 1091 static std::pair<Value *, ShuffleVectorInst *> 1092 getShuffleAndOtherOprd(Value *L, Value *R) { 1093 ShuffleVectorInst *S = nullptr; 1094 1095 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1096 return std::make_pair(R, S); 1097 1098 S = dyn_cast<ShuffleVectorInst>(R); 1099 return std::make_pair(L, S); 1100 } 1101 1102 static ReductionKind 1103 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1104 unsigned &Opcode, VectorType *&Ty) { 1105 if (!EnableReduxCost) 1106 return RK_None; 1107 1108 // Need to extract the first element. 1109 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1110 unsigned Idx = ~0u; 1111 if (CI) 1112 Idx = CI->getZExtValue(); 1113 if (Idx != 0) 1114 return RK_None; 1115 1116 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1117 if (!RdxStart) 1118 return RK_None; 1119 Optional<ReductionData> RD = getReductionData(RdxStart); 1120 if (!RD) 1121 return RK_None; 1122 1123 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1124 unsigned NumVecElems = VecTy->getNumElements(); 1125 if (!isPowerOf2_32(NumVecElems)) 1126 return RK_None; 1127 1128 // We look for a sequence of shuffles and adds like the following matching one 1129 // fadd, shuffle vector pair at a time. 1130 // 1131 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1132 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1133 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1134 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1135 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1136 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1137 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1138 1139 unsigned MaskStart = 1; 1140 Instruction *RdxOp = RdxStart; 1141 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1142 unsigned NumVecElemsRemain = NumVecElems; 1143 while (NumVecElemsRemain - 1) { 1144 // Check for the right reduction operation. 1145 if (!RdxOp) 1146 return RK_None; 1147 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1148 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1149 return RK_None; 1150 1151 Value *NextRdxOp; 1152 ShuffleVectorInst *Shuffle; 1153 std::tie(NextRdxOp, Shuffle) = 1154 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1155 1156 // Check the current reduction operation and the shuffle use the same value. 1157 if (Shuffle == nullptr) 1158 return RK_None; 1159 if (Shuffle->getOperand(0) != NextRdxOp) 1160 return RK_None; 1161 1162 // Check that shuffle masks matches. 1163 for (unsigned j = 0; j != MaskStart; ++j) 1164 ShuffleMask[j] = MaskStart + j; 1165 // Fill the rest of the mask with -1 for undef. 1166 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1167 1168 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1169 if (ShuffleMask != Mask) 1170 return RK_None; 1171 1172 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1173 NumVecElemsRemain /= 2; 1174 MaskStart *= 2; 1175 } 1176 1177 Opcode = RD->Opcode; 1178 Ty = VecTy; 1179 return RD->Kind; 1180 } 1181 1182 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1183 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1184 1185 switch (I->getOpcode()) { 1186 case Instruction::GetElementPtr: 1187 return getUserCost(I, CostKind); 1188 1189 case Instruction::Ret: 1190 case Instruction::PHI: 1191 case Instruction::Br: { 1192 return getCFInstrCost(I->getOpcode(), CostKind); 1193 } 1194 case Instruction::Add: 1195 case Instruction::FAdd: 1196 case Instruction::Sub: 1197 case Instruction::FSub: 1198 case Instruction::Mul: 1199 case Instruction::FMul: 1200 case Instruction::UDiv: 1201 case Instruction::SDiv: 1202 case Instruction::FDiv: 1203 case Instruction::URem: 1204 case Instruction::SRem: 1205 case Instruction::FRem: 1206 case Instruction::Shl: 1207 case Instruction::LShr: 1208 case Instruction::AShr: 1209 case Instruction::And: 1210 case Instruction::Or: 1211 case Instruction::Xor: { 1212 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1213 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1214 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1215 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1216 SmallVector<const Value *, 2> Operands(I->operand_values()); 1217 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1218 Op1VK, Op2VK, 1219 Op1VP, Op2VP, Operands, I); 1220 } 1221 case Instruction::FNeg: { 1222 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1223 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1224 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1225 Op2VK = OK_AnyValue; 1226 Op2VP = OP_None; 1227 SmallVector<const Value *, 2> Operands(I->operand_values()); 1228 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1229 Op1VK, Op2VK, 1230 Op1VP, Op2VP, Operands, I); 1231 } 1232 case Instruction::Select: { 1233 const SelectInst *SI = cast<SelectInst>(I); 1234 Type *CondTy = SI->getCondition()->getType(); 1235 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, 1236 CostKind, I); 1237 } 1238 case Instruction::ICmp: 1239 case Instruction::FCmp: { 1240 Type *ValTy = I->getOperand(0)->getType(); 1241 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), 1242 CostKind, I); 1243 } 1244 case Instruction::Store: { 1245 const StoreInst *SI = cast<StoreInst>(I); 1246 Type *ValTy = SI->getValueOperand()->getType(); 1247 return getMemoryOpCost(I->getOpcode(), ValTy, SI->getAlign(), 1248 SI->getPointerAddressSpace(), CostKind, I); 1249 } 1250 case Instruction::Load: { 1251 const LoadInst *LI = cast<LoadInst>(I); 1252 return getMemoryOpCost(I->getOpcode(), I->getType(), LI->getAlign(), 1253 LI->getPointerAddressSpace(), CostKind, I); 1254 } 1255 case Instruction::ZExt: 1256 case Instruction::SExt: 1257 case Instruction::FPToUI: 1258 case Instruction::FPToSI: 1259 case Instruction::FPExt: 1260 case Instruction::PtrToInt: 1261 case Instruction::IntToPtr: 1262 case Instruction::SIToFP: 1263 case Instruction::UIToFP: 1264 case Instruction::Trunc: 1265 case Instruction::FPTrunc: 1266 case Instruction::BitCast: 1267 case Instruction::AddrSpaceCast: { 1268 Type *SrcTy = I->getOperand(0)->getType(); 1269 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, CostKind, I); 1270 } 1271 case Instruction::ExtractElement: { 1272 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1273 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1274 unsigned Idx = -1; 1275 if (CI) 1276 Idx = CI->getZExtValue(); 1277 1278 // Try to match a reduction sequence (series of shufflevector and vector 1279 // adds followed by a extractelement). 1280 unsigned ReduxOpCode; 1281 VectorType *ReduxType; 1282 1283 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1284 case RK_Arithmetic: 1285 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1286 /*IsPairwiseForm=*/false, 1287 CostKind); 1288 case RK_MinMax: 1289 return getMinMaxReductionCost( 1290 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1291 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1292 case RK_UnsignedMinMax: 1293 return getMinMaxReductionCost( 1294 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1295 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1296 case RK_None: 1297 break; 1298 } 1299 1300 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1301 case RK_Arithmetic: 1302 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1303 /*IsPairwiseForm=*/true, CostKind); 1304 case RK_MinMax: 1305 return getMinMaxReductionCost( 1306 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1307 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1308 case RK_UnsignedMinMax: 1309 return getMinMaxReductionCost( 1310 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1311 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1312 case RK_None: 1313 break; 1314 } 1315 1316 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1317 Idx); 1318 } 1319 case Instruction::InsertElement: { 1320 const InsertElementInst *IE = cast<InsertElementInst>(I); 1321 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1322 unsigned Idx = -1; 1323 if (CI) 1324 Idx = CI->getZExtValue(); 1325 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1326 } 1327 case Instruction::ExtractValue: 1328 return 0; // Model all ExtractValue nodes as free. 1329 case Instruction::ShuffleVector: { 1330 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1331 auto *Ty = cast<VectorType>(Shuffle->getType()); 1332 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1333 1334 // TODO: Identify and add costs for insert subvector, etc. 1335 int SubIndex; 1336 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1337 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1338 1339 if (Shuffle->changesLength()) 1340 return -1; 1341 1342 if (Shuffle->isIdentity()) 1343 return 0; 1344 1345 if (Shuffle->isReverse()) 1346 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1347 1348 if (Shuffle->isSelect()) 1349 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1350 1351 if (Shuffle->isTranspose()) 1352 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1353 1354 if (Shuffle->isZeroEltSplat()) 1355 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1356 1357 if (Shuffle->isSingleSource()) 1358 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1359 1360 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1361 } 1362 case Instruction::Call: 1363 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1364 SmallVector<Value *, 4> Args(II->arg_operands()); 1365 1366 FastMathFlags FMF; 1367 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1368 FMF = FPMO->getFastMathFlags(); 1369 1370 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args, 1371 FMF, 1, CostKind, II); 1372 } 1373 return -1; 1374 default: 1375 // We don't have any information on this instruction. 1376 return -1; 1377 } 1378 } 1379 1380 TargetTransformInfo::Concept::~Concept() {} 1381 1382 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1383 1384 TargetIRAnalysis::TargetIRAnalysis( 1385 std::function<Result(const Function &)> TTICallback) 1386 : TTICallback(std::move(TTICallback)) {} 1387 1388 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1389 FunctionAnalysisManager &) { 1390 return TTICallback(F); 1391 } 1392 1393 AnalysisKey TargetIRAnalysis::Key; 1394 1395 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1396 return Result(F.getParent()->getDataLayout()); 1397 } 1398 1399 // Register the basic pass. 1400 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1401 "Target Transform Information", false, true) 1402 char TargetTransformInfoWrapperPass::ID = 0; 1403 1404 void TargetTransformInfoWrapperPass::anchor() {} 1405 1406 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1407 : ImmutablePass(ID) { 1408 initializeTargetTransformInfoWrapperPassPass( 1409 *PassRegistry::getPassRegistry()); 1410 } 1411 1412 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1413 TargetIRAnalysis TIRA) 1414 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1415 initializeTargetTransformInfoWrapperPassPass( 1416 *PassRegistry::getPassRegistry()); 1417 } 1418 1419 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1420 FunctionAnalysisManager DummyFAM; 1421 TTI = TIRA.run(F, DummyFAM); 1422 return *TTI; 1423 } 1424 1425 ImmutablePass * 1426 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1427 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1428 } 1429