1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> UseWideMemcpyLoopLowering( 30 "use-wide-memcpy-loop-lowering", cl::init(false), 31 cl::desc("Enables the new wide memcpy loop lowering in Transforms/Utils."), 32 cl::Hidden); 33 34 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 35 cl::Hidden, 36 cl::desc("Recognize reduction patterns.")); 37 38 namespace { 39 /// \brief No-op implementation of the TTI interface using the utility base 40 /// classes. 41 /// 42 /// This is used when no target specific information is available. 43 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 44 explicit NoTTIImpl(const DataLayout &DL) 45 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 46 }; 47 } 48 49 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 50 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 51 52 TargetTransformInfo::~TargetTransformInfo() {} 53 54 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 55 : TTIImpl(std::move(Arg.TTIImpl)) {} 56 57 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 58 TTIImpl = std::move(RHS.TTIImpl); 59 return *this; 60 } 61 62 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 63 Type *OpTy) const { 64 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 65 assert(Cost >= 0 && "TTI should not produce negative costs!"); 66 return Cost; 67 } 68 69 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 70 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 71 assert(Cost >= 0 && "TTI should not produce negative costs!"); 72 return Cost; 73 } 74 75 int TargetTransformInfo::getCallCost(const Function *F, 76 ArrayRef<const Value *> Arguments) const { 77 int Cost = TTIImpl->getCallCost(F, Arguments); 78 assert(Cost >= 0 && "TTI should not produce negative costs!"); 79 return Cost; 80 } 81 82 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 83 return TTIImpl->getInliningThresholdMultiplier(); 84 } 85 86 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 87 ArrayRef<const Value *> Operands) const { 88 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 89 } 90 91 int TargetTransformInfo::getExtCost(const Instruction *I, 92 const Value *Src) const { 93 return TTIImpl->getExtCost(I, Src); 94 } 95 96 int TargetTransformInfo::getIntrinsicCost( 97 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 98 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 99 assert(Cost >= 0 && "TTI should not produce negative costs!"); 100 return Cost; 101 } 102 103 unsigned 104 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 105 unsigned &JTSize) const { 106 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 107 } 108 109 int TargetTransformInfo::getUserCost(const User *U, 110 ArrayRef<const Value *> Operands) const { 111 int Cost = TTIImpl->getUserCost(U, Operands); 112 assert(Cost >= 0 && "TTI should not produce negative costs!"); 113 return Cost; 114 } 115 116 bool TargetTransformInfo::hasBranchDivergence() const { 117 return TTIImpl->hasBranchDivergence(); 118 } 119 120 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 121 return TTIImpl->isSourceOfDivergence(V); 122 } 123 124 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 125 return TTIImpl->isAlwaysUniform(V); 126 } 127 128 unsigned TargetTransformInfo::getFlatAddressSpace() const { 129 return TTIImpl->getFlatAddressSpace(); 130 } 131 132 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 133 return TTIImpl->isLoweredToCall(F); 134 } 135 136 void TargetTransformInfo::getUnrollingPreferences( 137 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 138 return TTIImpl->getUnrollingPreferences(L, SE, UP); 139 } 140 141 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 142 return TTIImpl->isLegalAddImmediate(Imm); 143 } 144 145 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 146 return TTIImpl->isLegalICmpImmediate(Imm); 147 } 148 149 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 150 int64_t BaseOffset, 151 bool HasBaseReg, 152 int64_t Scale, 153 unsigned AddrSpace, 154 Instruction *I) const { 155 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 156 Scale, AddrSpace, I); 157 } 158 159 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 160 return TTIImpl->isLSRCostLess(C1, C2); 161 } 162 163 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 164 return TTIImpl->isLegalMaskedStore(DataType); 165 } 166 167 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 168 return TTIImpl->isLegalMaskedLoad(DataType); 169 } 170 171 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 172 return TTIImpl->isLegalMaskedGather(DataType); 173 } 174 175 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 176 return TTIImpl->isLegalMaskedScatter(DataType); 177 } 178 179 bool TargetTransformInfo::prefersVectorizedAddressing() const { 180 return TTIImpl->prefersVectorizedAddressing(); 181 } 182 183 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 184 int64_t BaseOffset, 185 bool HasBaseReg, 186 int64_t Scale, 187 unsigned AddrSpace) const { 188 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 189 Scale, AddrSpace); 190 assert(Cost >= 0 && "TTI should not produce negative costs!"); 191 return Cost; 192 } 193 194 bool TargetTransformInfo::LSRWithInstrQueries() const { 195 return TTIImpl->LSRWithInstrQueries(); 196 } 197 198 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 199 return TTIImpl->isTruncateFree(Ty1, Ty2); 200 } 201 202 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 203 return TTIImpl->isProfitableToHoist(I); 204 } 205 206 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 207 return TTIImpl->isTypeLegal(Ty); 208 } 209 210 unsigned TargetTransformInfo::getJumpBufAlignment() const { 211 return TTIImpl->getJumpBufAlignment(); 212 } 213 214 unsigned TargetTransformInfo::getJumpBufSize() const { 215 return TTIImpl->getJumpBufSize(); 216 } 217 218 bool TargetTransformInfo::shouldBuildLookupTables() const { 219 return TTIImpl->shouldBuildLookupTables(); 220 } 221 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 222 return TTIImpl->shouldBuildLookupTablesForConstant(C); 223 } 224 225 unsigned TargetTransformInfo:: 226 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 227 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 228 } 229 230 unsigned TargetTransformInfo:: 231 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 232 unsigned VF) const { 233 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 234 } 235 236 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 237 return TTIImpl->supportsEfficientVectorElementLoadStore(); 238 } 239 240 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 241 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 242 } 243 244 bool TargetTransformInfo::expandMemCmp(Instruction *I, unsigned &MaxLoadSize) const { 245 return TTIImpl->expandMemCmp(I, MaxLoadSize); 246 } 247 248 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 249 return TTIImpl->enableInterleavedAccessVectorization(); 250 } 251 252 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 253 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 254 } 255 256 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 257 unsigned BitWidth, 258 unsigned AddressSpace, 259 unsigned Alignment, 260 bool *Fast) const { 261 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 262 Alignment, Fast); 263 } 264 265 TargetTransformInfo::PopcntSupportKind 266 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 267 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 268 } 269 270 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 271 return TTIImpl->haveFastSqrt(Ty); 272 } 273 274 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 275 int Cost = TTIImpl->getFPOpCost(Ty); 276 assert(Cost >= 0 && "TTI should not produce negative costs!"); 277 return Cost; 278 } 279 280 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 281 const APInt &Imm, 282 Type *Ty) const { 283 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 284 assert(Cost >= 0 && "TTI should not produce negative costs!"); 285 return Cost; 286 } 287 288 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 289 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 290 assert(Cost >= 0 && "TTI should not produce negative costs!"); 291 return Cost; 292 } 293 294 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 295 const APInt &Imm, Type *Ty) const { 296 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 297 assert(Cost >= 0 && "TTI should not produce negative costs!"); 298 return Cost; 299 } 300 301 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 302 const APInt &Imm, Type *Ty) const { 303 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 304 assert(Cost >= 0 && "TTI should not produce negative costs!"); 305 return Cost; 306 } 307 308 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 309 return TTIImpl->getNumberOfRegisters(Vector); 310 } 311 312 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 313 return TTIImpl->getRegisterBitWidth(Vector); 314 } 315 316 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 317 return TTIImpl->getMinVectorRegisterBitWidth(); 318 } 319 320 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 321 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 322 return TTIImpl->shouldConsiderAddressTypePromotion( 323 I, AllowPromotionWithoutCommonHeader); 324 } 325 326 unsigned TargetTransformInfo::getCacheLineSize() const { 327 return TTIImpl->getCacheLineSize(); 328 } 329 330 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 331 const { 332 return TTIImpl->getCacheSize(Level); 333 } 334 335 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 336 CacheLevel Level) const { 337 return TTIImpl->getCacheAssociativity(Level); 338 } 339 340 unsigned TargetTransformInfo::getPrefetchDistance() const { 341 return TTIImpl->getPrefetchDistance(); 342 } 343 344 unsigned TargetTransformInfo::getMinPrefetchStride() const { 345 return TTIImpl->getMinPrefetchStride(); 346 } 347 348 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 349 return TTIImpl->getMaxPrefetchIterationsAhead(); 350 } 351 352 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 353 return TTIImpl->getMaxInterleaveFactor(VF); 354 } 355 356 int TargetTransformInfo::getArithmeticInstrCost( 357 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 358 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 359 OperandValueProperties Opd2PropInfo, 360 ArrayRef<const Value *> Args) const { 361 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 362 Opd1PropInfo, Opd2PropInfo, Args); 363 assert(Cost >= 0 && "TTI should not produce negative costs!"); 364 return Cost; 365 } 366 367 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 368 Type *SubTp) const { 369 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 370 assert(Cost >= 0 && "TTI should not produce negative costs!"); 371 return Cost; 372 } 373 374 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 375 Type *Src, const Instruction *I) const { 376 assert ((I == nullptr || I->getOpcode() == Opcode) && 377 "Opcode should reflect passed instruction."); 378 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 379 assert(Cost >= 0 && "TTI should not produce negative costs!"); 380 return Cost; 381 } 382 383 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 384 VectorType *VecTy, 385 unsigned Index) const { 386 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 387 assert(Cost >= 0 && "TTI should not produce negative costs!"); 388 return Cost; 389 } 390 391 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 392 int Cost = TTIImpl->getCFInstrCost(Opcode); 393 assert(Cost >= 0 && "TTI should not produce negative costs!"); 394 return Cost; 395 } 396 397 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 398 Type *CondTy, const Instruction *I) const { 399 assert ((I == nullptr || I->getOpcode() == Opcode) && 400 "Opcode should reflect passed instruction."); 401 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 402 assert(Cost >= 0 && "TTI should not produce negative costs!"); 403 return Cost; 404 } 405 406 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 407 unsigned Index) const { 408 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 409 assert(Cost >= 0 && "TTI should not produce negative costs!"); 410 return Cost; 411 } 412 413 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 414 unsigned Alignment, 415 unsigned AddressSpace, 416 const Instruction *I) const { 417 assert ((I == nullptr || I->getOpcode() == Opcode) && 418 "Opcode should reflect passed instruction."); 419 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 420 assert(Cost >= 0 && "TTI should not produce negative costs!"); 421 return Cost; 422 } 423 424 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 425 unsigned Alignment, 426 unsigned AddressSpace) const { 427 int Cost = 428 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 429 assert(Cost >= 0 && "TTI should not produce negative costs!"); 430 return Cost; 431 } 432 433 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 434 Value *Ptr, bool VariableMask, 435 unsigned Alignment) const { 436 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 437 Alignment); 438 assert(Cost >= 0 && "TTI should not produce negative costs!"); 439 return Cost; 440 } 441 442 int TargetTransformInfo::getInterleavedMemoryOpCost( 443 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 444 unsigned Alignment, unsigned AddressSpace) const { 445 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 446 Alignment, AddressSpace); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 452 ArrayRef<Type *> Tys, FastMathFlags FMF, 453 unsigned ScalarizationCostPassed) const { 454 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 455 ScalarizationCostPassed); 456 assert(Cost >= 0 && "TTI should not produce negative costs!"); 457 return Cost; 458 } 459 460 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 461 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 462 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 463 assert(Cost >= 0 && "TTI should not produce negative costs!"); 464 return Cost; 465 } 466 467 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 468 ArrayRef<Type *> Tys) const { 469 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 470 assert(Cost >= 0 && "TTI should not produce negative costs!"); 471 return Cost; 472 } 473 474 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 475 return TTIImpl->getNumberOfParts(Tp); 476 } 477 478 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 479 ScalarEvolution *SE, 480 const SCEV *Ptr) const { 481 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 482 assert(Cost >= 0 && "TTI should not produce negative costs!"); 483 return Cost; 484 } 485 486 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 487 bool IsPairwiseForm) const { 488 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 489 assert(Cost >= 0 && "TTI should not produce negative costs!"); 490 return Cost; 491 } 492 493 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 494 bool IsPairwiseForm, 495 bool IsUnsigned) const { 496 int Cost = 497 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 498 assert(Cost >= 0 && "TTI should not produce negative costs!"); 499 return Cost; 500 } 501 502 unsigned 503 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 504 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 505 } 506 507 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 508 MemIntrinsicInfo &Info) const { 509 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 510 } 511 512 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 513 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 514 } 515 516 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 517 IntrinsicInst *Inst, Type *ExpectedType) const { 518 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 519 } 520 521 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 522 Value *Length, 523 unsigned SrcAlign, 524 unsigned DestAlign) const { 525 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 526 DestAlign); 527 } 528 529 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 530 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 531 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 532 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 533 SrcAlign, DestAlign); 534 } 535 536 bool TargetTransformInfo::useWideIRMemcpyLoopLowering() const { 537 return UseWideMemcpyLoopLowering; 538 } 539 540 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 541 const Function *Callee) const { 542 return TTIImpl->areInlineCompatible(Caller, Callee); 543 } 544 545 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 546 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 547 } 548 549 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 550 return TTIImpl->isLegalToVectorizeLoad(LI); 551 } 552 553 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 554 return TTIImpl->isLegalToVectorizeStore(SI); 555 } 556 557 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 558 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 559 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 560 AddrSpace); 561 } 562 563 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 564 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 565 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 566 AddrSpace); 567 } 568 569 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 570 unsigned LoadSize, 571 unsigned ChainSizeInBytes, 572 VectorType *VecTy) const { 573 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 574 } 575 576 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 577 unsigned StoreSize, 578 unsigned ChainSizeInBytes, 579 VectorType *VecTy) const { 580 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 581 } 582 583 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 584 Type *Ty, ReductionFlags Flags) const { 585 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 586 } 587 588 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 589 return TTIImpl->shouldExpandReduction(II); 590 } 591 592 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 593 return TTIImpl->getInstructionLatency(I); 594 } 595 596 static bool isReverseVectorMask(ArrayRef<int> Mask) { 597 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 598 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 599 return false; 600 return true; 601 } 602 603 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 604 bool Vec0 = false; 605 bool Vec1 = false; 606 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 607 if (Mask[i] >= 0) { 608 if ((unsigned)Mask[i] >= NumVecElts) 609 Vec1 = true; 610 else 611 Vec0 = true; 612 } 613 } 614 return !(Vec0 && Vec1); 615 } 616 617 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 618 for (unsigned i = 0; i < Mask.size(); ++i) 619 if (Mask[i] > 0) 620 return false; 621 return true; 622 } 623 624 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 625 bool isAlternate = true; 626 unsigned MaskSize = Mask.size(); 627 628 // Example: shufflevector A, B, <0,5,2,7> 629 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 630 if (Mask[i] < 0) 631 continue; 632 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 633 } 634 635 if (isAlternate) 636 return true; 637 638 isAlternate = true; 639 // Example: shufflevector A, B, <4,1,6,3> 640 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 641 if (Mask[i] < 0) 642 continue; 643 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 644 } 645 646 return isAlternate; 647 } 648 649 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 650 TargetTransformInfo::OperandValueKind OpInfo = 651 TargetTransformInfo::OK_AnyValue; 652 653 // Check for a splat of a constant or for a non uniform vector of constants. 654 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 655 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 656 if (cast<Constant>(V)->getSplatValue() != nullptr) 657 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 658 } 659 660 // Check for a splat of a uniform value. This is not loop aware, so return 661 // true only for the obviously uniform cases (argument, globalvalue) 662 const Value *Splat = getSplatValue(V); 663 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 664 OpInfo = TargetTransformInfo::OK_UniformValue; 665 666 return OpInfo; 667 } 668 669 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 670 unsigned Level) { 671 // We don't need a shuffle if we just want to have element 0 in position 0 of 672 // the vector. 673 if (!SI && Level == 0 && IsLeft) 674 return true; 675 else if (!SI) 676 return false; 677 678 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 679 680 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 681 // we look at the left or right side. 682 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 683 Mask[i] = val; 684 685 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 686 return Mask == ActualMask; 687 } 688 689 namespace { 690 /// Kind of the reduction data. 691 enum ReductionKind { 692 RK_None, /// Not a reduction. 693 RK_Arithmetic, /// Binary reduction data. 694 RK_MinMax, /// Min/max reduction data. 695 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 696 }; 697 /// Contains opcode + LHS/RHS parts of the reduction operations. 698 struct ReductionData { 699 ReductionData() = delete; 700 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 701 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 702 assert(Kind != RK_None && "expected binary or min/max reduction only."); 703 } 704 unsigned Opcode = 0; 705 Value *LHS = nullptr; 706 Value *RHS = nullptr; 707 ReductionKind Kind = RK_None; 708 bool hasSameData(ReductionData &RD) const { 709 return Kind == RD.Kind && Opcode == RD.Opcode; 710 } 711 }; 712 } // namespace 713 714 static Optional<ReductionData> getReductionData(Instruction *I) { 715 Value *L, *R; 716 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 717 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 718 if (auto *SI = dyn_cast<SelectInst>(I)) { 719 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 720 m_SMax(m_Value(L), m_Value(R)).match(SI) || 721 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 722 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 723 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 724 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 725 auto *CI = cast<CmpInst>(SI->getCondition()); 726 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 727 } 728 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 729 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 730 auto *CI = cast<CmpInst>(SI->getCondition()); 731 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 732 } 733 } 734 return llvm::None; 735 } 736 737 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 738 unsigned Level, 739 unsigned NumLevels) { 740 // Match one level of pairwise operations. 741 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 742 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 743 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 744 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 745 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 746 if (!I) 747 return RK_None; 748 749 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 750 751 Optional<ReductionData> RD = getReductionData(I); 752 if (!RD) 753 return RK_None; 754 755 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 756 if (!LS && Level) 757 return RK_None; 758 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 759 if (!RS && Level) 760 return RK_None; 761 762 // On level 0 we can omit one shufflevector instruction. 763 if (!Level && !RS && !LS) 764 return RK_None; 765 766 // Shuffle inputs must match. 767 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 768 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 769 Value *NextLevelOp = nullptr; 770 if (NextLevelOpR && NextLevelOpL) { 771 // If we have two shuffles their operands must match. 772 if (NextLevelOpL != NextLevelOpR) 773 return RK_None; 774 775 NextLevelOp = NextLevelOpL; 776 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 777 // On the first level we can omit the shufflevector <0, undef,...>. So the 778 // input to the other shufflevector <1, undef> must match with one of the 779 // inputs to the current binary operation. 780 // Example: 781 // %NextLevelOpL = shufflevector %R, <1, undef ...> 782 // %BinOp = fadd %NextLevelOpL, %R 783 if (NextLevelOpL && NextLevelOpL != RD->RHS) 784 return RK_None; 785 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 786 return RK_None; 787 788 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 789 } else 790 return RK_None; 791 792 // Check that the next levels binary operation exists and matches with the 793 // current one. 794 if (Level + 1 != NumLevels) { 795 Optional<ReductionData> NextLevelRD = 796 getReductionData(cast<Instruction>(NextLevelOp)); 797 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 798 return RK_None; 799 } 800 801 // Shuffle mask for pairwise operation must match. 802 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 803 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 804 return RK_None; 805 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 806 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 807 return RK_None; 808 } else { 809 return RK_None; 810 } 811 812 if (++Level == NumLevels) 813 return RD->Kind; 814 815 // Match next level. 816 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 817 NumLevels); 818 } 819 820 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 821 unsigned &Opcode, Type *&Ty) { 822 if (!EnableReduxCost) 823 return RK_None; 824 825 // Need to extract the first element. 826 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 827 unsigned Idx = ~0u; 828 if (CI) 829 Idx = CI->getZExtValue(); 830 if (Idx != 0) 831 return RK_None; 832 833 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 834 if (!RdxStart) 835 return RK_None; 836 Optional<ReductionData> RD = getReductionData(RdxStart); 837 if (!RD) 838 return RK_None; 839 840 Type *VecTy = RdxStart->getType(); 841 unsigned NumVecElems = VecTy->getVectorNumElements(); 842 if (!isPowerOf2_32(NumVecElems)) 843 return RK_None; 844 845 // We look for a sequence of shuffle,shuffle,add triples like the following 846 // that builds a pairwise reduction tree. 847 // 848 // (X0, X1, X2, X3) 849 // (X0 + X1, X2 + X3, undef, undef) 850 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 851 // 852 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 853 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 854 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 855 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 856 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 857 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 858 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 859 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 860 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 861 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 862 // %r = extractelement <4 x float> %bin.rdx8, i32 0 863 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 864 RK_None) 865 return RK_None; 866 867 Opcode = RD->Opcode; 868 Ty = VecTy; 869 870 return RD->Kind; 871 } 872 873 static std::pair<Value *, ShuffleVectorInst *> 874 getShuffleAndOtherOprd(Value *L, Value *R) { 875 ShuffleVectorInst *S = nullptr; 876 877 if ((S = dyn_cast<ShuffleVectorInst>(L))) 878 return std::make_pair(R, S); 879 880 S = dyn_cast<ShuffleVectorInst>(R); 881 return std::make_pair(L, S); 882 } 883 884 static ReductionKind 885 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 886 unsigned &Opcode, Type *&Ty) { 887 if (!EnableReduxCost) 888 return RK_None; 889 890 // Need to extract the first element. 891 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 892 unsigned Idx = ~0u; 893 if (CI) 894 Idx = CI->getZExtValue(); 895 if (Idx != 0) 896 return RK_None; 897 898 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 899 if (!RdxStart) 900 return RK_None; 901 Optional<ReductionData> RD = getReductionData(RdxStart); 902 if (!RD) 903 return RK_None; 904 905 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 906 unsigned NumVecElems = VecTy->getVectorNumElements(); 907 if (!isPowerOf2_32(NumVecElems)) 908 return RK_None; 909 910 // We look for a sequence of shuffles and adds like the following matching one 911 // fadd, shuffle vector pair at a time. 912 // 913 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 914 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 915 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 916 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 917 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 918 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 919 // %r = extractelement <4 x float> %bin.rdx8, i32 0 920 921 unsigned MaskStart = 1; 922 Instruction *RdxOp = RdxStart; 923 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 924 unsigned NumVecElemsRemain = NumVecElems; 925 while (NumVecElemsRemain - 1) { 926 // Check for the right reduction operation. 927 if (!RdxOp) 928 return RK_None; 929 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 930 if (!RDLevel || !RDLevel->hasSameData(*RD)) 931 return RK_None; 932 933 Value *NextRdxOp; 934 ShuffleVectorInst *Shuffle; 935 std::tie(NextRdxOp, Shuffle) = 936 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 937 938 // Check the current reduction operation and the shuffle use the same value. 939 if (Shuffle == nullptr) 940 return RK_None; 941 if (Shuffle->getOperand(0) != NextRdxOp) 942 return RK_None; 943 944 // Check that shuffle masks matches. 945 for (unsigned j = 0; j != MaskStart; ++j) 946 ShuffleMask[j] = MaskStart + j; 947 // Fill the rest of the mask with -1 for undef. 948 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 949 950 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 951 if (ShuffleMask != Mask) 952 return RK_None; 953 954 RdxOp = dyn_cast<Instruction>(NextRdxOp); 955 NumVecElemsRemain /= 2; 956 MaskStart *= 2; 957 } 958 959 Opcode = RD->Opcode; 960 Ty = VecTy; 961 return RD->Kind; 962 } 963 964 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 965 switch (I->getOpcode()) { 966 case Instruction::GetElementPtr: 967 return getUserCost(I); 968 969 case Instruction::Ret: 970 case Instruction::PHI: 971 case Instruction::Br: { 972 return getCFInstrCost(I->getOpcode()); 973 } 974 case Instruction::Add: 975 case Instruction::FAdd: 976 case Instruction::Sub: 977 case Instruction::FSub: 978 case Instruction::Mul: 979 case Instruction::FMul: 980 case Instruction::UDiv: 981 case Instruction::SDiv: 982 case Instruction::FDiv: 983 case Instruction::URem: 984 case Instruction::SRem: 985 case Instruction::FRem: 986 case Instruction::Shl: 987 case Instruction::LShr: 988 case Instruction::AShr: 989 case Instruction::And: 990 case Instruction::Or: 991 case Instruction::Xor: { 992 TargetTransformInfo::OperandValueKind Op1VK = 993 getOperandInfo(I->getOperand(0)); 994 TargetTransformInfo::OperandValueKind Op2VK = 995 getOperandInfo(I->getOperand(1)); 996 SmallVector<const Value*, 2> Operands(I->operand_values()); 997 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 998 Op2VK, TargetTransformInfo::OP_None, 999 TargetTransformInfo::OP_None, 1000 Operands); 1001 } 1002 case Instruction::Select: { 1003 const SelectInst *SI = cast<SelectInst>(I); 1004 Type *CondTy = SI->getCondition()->getType(); 1005 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1006 } 1007 case Instruction::ICmp: 1008 case Instruction::FCmp: { 1009 Type *ValTy = I->getOperand(0)->getType(); 1010 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1011 } 1012 case Instruction::Store: { 1013 const StoreInst *SI = cast<StoreInst>(I); 1014 Type *ValTy = SI->getValueOperand()->getType(); 1015 return getMemoryOpCost(I->getOpcode(), ValTy, 1016 SI->getAlignment(), 1017 SI->getPointerAddressSpace(), I); 1018 } 1019 case Instruction::Load: { 1020 const LoadInst *LI = cast<LoadInst>(I); 1021 return getMemoryOpCost(I->getOpcode(), I->getType(), 1022 LI->getAlignment(), 1023 LI->getPointerAddressSpace(), I); 1024 } 1025 case Instruction::ZExt: 1026 case Instruction::SExt: 1027 case Instruction::FPToUI: 1028 case Instruction::FPToSI: 1029 case Instruction::FPExt: 1030 case Instruction::PtrToInt: 1031 case Instruction::IntToPtr: 1032 case Instruction::SIToFP: 1033 case Instruction::UIToFP: 1034 case Instruction::Trunc: 1035 case Instruction::FPTrunc: 1036 case Instruction::BitCast: 1037 case Instruction::AddrSpaceCast: { 1038 Type *SrcTy = I->getOperand(0)->getType(); 1039 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1040 } 1041 case Instruction::ExtractElement: { 1042 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1043 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1044 unsigned Idx = -1; 1045 if (CI) 1046 Idx = CI->getZExtValue(); 1047 1048 // Try to match a reduction sequence (series of shufflevector and vector 1049 // adds followed by a extractelement). 1050 unsigned ReduxOpCode; 1051 Type *ReduxType; 1052 1053 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1054 case RK_Arithmetic: 1055 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1056 /*IsPairwiseForm=*/false); 1057 case RK_MinMax: 1058 return getMinMaxReductionCost( 1059 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1060 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1061 case RK_UnsignedMinMax: 1062 return getMinMaxReductionCost( 1063 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1064 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1065 case RK_None: 1066 break; 1067 } 1068 1069 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1070 case RK_Arithmetic: 1071 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1072 /*IsPairwiseForm=*/true); 1073 case RK_MinMax: 1074 return getMinMaxReductionCost( 1075 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1076 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1077 case RK_UnsignedMinMax: 1078 return getMinMaxReductionCost( 1079 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1080 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1081 case RK_None: 1082 break; 1083 } 1084 1085 return getVectorInstrCost(I->getOpcode(), 1086 EEI->getOperand(0)->getType(), Idx); 1087 } 1088 case Instruction::InsertElement: { 1089 const InsertElementInst * IE = cast<InsertElementInst>(I); 1090 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1091 unsigned Idx = -1; 1092 if (CI) 1093 Idx = CI->getZExtValue(); 1094 return getVectorInstrCost(I->getOpcode(), 1095 IE->getType(), Idx); 1096 } 1097 case Instruction::ShuffleVector: { 1098 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1099 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1100 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1101 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1102 1103 if (NumVecElems == Mask.size()) { 1104 if (isReverseVectorMask(Mask)) 1105 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1106 0, nullptr); 1107 if (isAlternateVectorMask(Mask)) 1108 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1109 VecTypOp0, 0, nullptr); 1110 1111 if (isZeroEltBroadcastVectorMask(Mask)) 1112 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1113 VecTypOp0, 0, nullptr); 1114 1115 if (isSingleSourceVectorMask(Mask)) 1116 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1117 VecTypOp0, 0, nullptr); 1118 1119 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1120 VecTypOp0, 0, nullptr); 1121 } 1122 1123 return -1; 1124 } 1125 case Instruction::Call: 1126 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1127 SmallVector<Value *, 4> Args(II->arg_operands()); 1128 1129 FastMathFlags FMF; 1130 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1131 FMF = FPMO->getFastMathFlags(); 1132 1133 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1134 Args, FMF); 1135 } 1136 return -1; 1137 default: 1138 // We don't have any information on this instruction. 1139 return -1; 1140 } 1141 } 1142 1143 TargetTransformInfo::Concept::~Concept() {} 1144 1145 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1146 1147 TargetIRAnalysis::TargetIRAnalysis( 1148 std::function<Result(const Function &)> TTICallback) 1149 : TTICallback(std::move(TTICallback)) {} 1150 1151 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1152 FunctionAnalysisManager &) { 1153 return TTICallback(F); 1154 } 1155 1156 AnalysisKey TargetIRAnalysis::Key; 1157 1158 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1159 return Result(F.getParent()->getDataLayout()); 1160 } 1161 1162 // Register the basic pass. 1163 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1164 "Target Transform Information", false, true) 1165 char TargetTransformInfoWrapperPass::ID = 0; 1166 1167 void TargetTransformInfoWrapperPass::anchor() {} 1168 1169 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1170 : ImmutablePass(ID) { 1171 initializeTargetTransformInfoWrapperPassPass( 1172 *PassRegistry::getPassRegistry()); 1173 } 1174 1175 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1176 TargetIRAnalysis TIRA) 1177 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1178 initializeTargetTransformInfoWrapperPassPass( 1179 *PassRegistry::getPassRegistry()); 1180 } 1181 1182 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1183 FunctionAnalysisManager DummyFAM; 1184 TTI = TIRA.run(F, DummyFAM); 1185 return *TTI; 1186 } 1187 1188 ImmutablePass * 1189 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1190 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1191 } 1192