1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 30 cl::Hidden, 31 cl::desc("Recognize reduction patterns.")); 32 33 namespace { 34 /// No-op implementation of the TTI interface using the utility base 35 /// classes. 36 /// 37 /// This is used when no target specific information is available. 38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 39 explicit NoTTIImpl(const DataLayout &DL) 40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 41 }; 42 } 43 44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 46 47 TargetTransformInfo::~TargetTransformInfo() {} 48 49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 50 : TTIImpl(std::move(Arg.TTIImpl)) {} 51 52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 53 TTIImpl = std::move(RHS.TTIImpl); 54 return *this; 55 } 56 57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 58 Type *OpTy) const { 59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 60 assert(Cost >= 0 && "TTI should not produce negative costs!"); 61 return Cost; 62 } 63 64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments) const { 72 int Cost = TTIImpl->getCallCost(F, Arguments); 73 assert(Cost >= 0 && "TTI should not produce negative costs!"); 74 return Cost; 75 } 76 77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 78 return TTIImpl->getInliningThresholdMultiplier(); 79 } 80 81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 82 ArrayRef<const Value *> Operands) const { 83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 84 } 85 86 int TargetTransformInfo::getExtCost(const Instruction *I, 87 const Value *Src) const { 88 return TTIImpl->getExtCost(I, Src); 89 } 90 91 int TargetTransformInfo::getIntrinsicCost( 92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 94 assert(Cost >= 0 && "TTI should not produce negative costs!"); 95 return Cost; 96 } 97 98 unsigned 99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 100 unsigned &JTSize) const { 101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 102 } 103 104 int TargetTransformInfo::getUserCost(const User *U, 105 ArrayRef<const Value *> Operands) const { 106 int Cost = TTIImpl->getUserCost(U, Operands); 107 assert(Cost >= 0 && "TTI should not produce negative costs!"); 108 return Cost; 109 } 110 111 bool TargetTransformInfo::hasBranchDivergence() const { 112 return TTIImpl->hasBranchDivergence(); 113 } 114 115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 116 return TTIImpl->isSourceOfDivergence(V); 117 } 118 119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 120 return TTIImpl->isAlwaysUniform(V); 121 } 122 123 unsigned TargetTransformInfo::getFlatAddressSpace() const { 124 return TTIImpl->getFlatAddressSpace(); 125 } 126 127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 128 return TTIImpl->isLoweredToCall(F); 129 } 130 131 void TargetTransformInfo::getUnrollingPreferences( 132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 133 return TTIImpl->getUnrollingPreferences(L, SE, UP); 134 } 135 136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 137 return TTIImpl->isLegalAddImmediate(Imm); 138 } 139 140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 141 return TTIImpl->isLegalICmpImmediate(Imm); 142 } 143 144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 145 int64_t BaseOffset, 146 bool HasBaseReg, 147 int64_t Scale, 148 unsigned AddrSpace, 149 Instruction *I) const { 150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 151 Scale, AddrSpace, I); 152 } 153 154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 155 return TTIImpl->isLSRCostLess(C1, C2); 156 } 157 158 bool TargetTransformInfo::canMacroFuseCmp() const { 159 return TTIImpl->canMacroFuseCmp(); 160 } 161 162 bool TargetTransformInfo::shouldFavorPostInc() const { 163 return TTIImpl->shouldFavorPostInc(); 164 } 165 166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 167 return TTIImpl->isLegalMaskedStore(DataType); 168 } 169 170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 171 return TTIImpl->isLegalMaskedLoad(DataType); 172 } 173 174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 175 return TTIImpl->isLegalMaskedGather(DataType); 176 } 177 178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 179 return TTIImpl->isLegalMaskedScatter(DataType); 180 } 181 182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 183 return TTIImpl->hasDivRemOp(DataType, IsSigned); 184 } 185 186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 187 unsigned AddrSpace) const { 188 return TTIImpl->hasVolatileVariant(I, AddrSpace); 189 } 190 191 bool TargetTransformInfo::prefersVectorizedAddressing() const { 192 return TTIImpl->prefersVectorizedAddressing(); 193 } 194 195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 196 int64_t BaseOffset, 197 bool HasBaseReg, 198 int64_t Scale, 199 unsigned AddrSpace) const { 200 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 201 Scale, AddrSpace); 202 assert(Cost >= 0 && "TTI should not produce negative costs!"); 203 return Cost; 204 } 205 206 bool TargetTransformInfo::LSRWithInstrQueries() const { 207 return TTIImpl->LSRWithInstrQueries(); 208 } 209 210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 211 return TTIImpl->isTruncateFree(Ty1, Ty2); 212 } 213 214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 215 return TTIImpl->isProfitableToHoist(I); 216 } 217 218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 219 220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 221 return TTIImpl->isTypeLegal(Ty); 222 } 223 224 unsigned TargetTransformInfo::getJumpBufAlignment() const { 225 return TTIImpl->getJumpBufAlignment(); 226 } 227 228 unsigned TargetTransformInfo::getJumpBufSize() const { 229 return TTIImpl->getJumpBufSize(); 230 } 231 232 bool TargetTransformInfo::shouldBuildLookupTables() const { 233 return TTIImpl->shouldBuildLookupTables(); 234 } 235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 236 return TTIImpl->shouldBuildLookupTablesForConstant(C); 237 } 238 239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 240 return TTIImpl->useColdCCForColdCall(F); 241 } 242 243 unsigned TargetTransformInfo:: 244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 245 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 246 } 247 248 unsigned TargetTransformInfo:: 249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 250 unsigned VF) const { 251 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 252 } 253 254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 255 return TTIImpl->supportsEfficientVectorElementLoadStore(); 256 } 257 258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 259 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 260 } 261 262 const TargetTransformInfo::MemCmpExpansionOptions * 263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 264 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 265 } 266 267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 268 return TTIImpl->enableInterleavedAccessVectorization(); 269 } 270 271 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 272 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 273 } 274 275 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 276 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 277 } 278 279 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 280 unsigned BitWidth, 281 unsigned AddressSpace, 282 unsigned Alignment, 283 bool *Fast) const { 284 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 285 Alignment, Fast); 286 } 287 288 TargetTransformInfo::PopcntSupportKind 289 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 290 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 291 } 292 293 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 294 return TTIImpl->haveFastSqrt(Ty); 295 } 296 297 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 298 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 299 } 300 301 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 302 int Cost = TTIImpl->getFPOpCost(Ty); 303 assert(Cost >= 0 && "TTI should not produce negative costs!"); 304 return Cost; 305 } 306 307 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 308 const APInt &Imm, 309 Type *Ty) const { 310 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 311 assert(Cost >= 0 && "TTI should not produce negative costs!"); 312 return Cost; 313 } 314 315 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 316 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 317 assert(Cost >= 0 && "TTI should not produce negative costs!"); 318 return Cost; 319 } 320 321 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 322 const APInt &Imm, Type *Ty) const { 323 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 324 assert(Cost >= 0 && "TTI should not produce negative costs!"); 325 return Cost; 326 } 327 328 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 329 const APInt &Imm, Type *Ty) const { 330 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 331 assert(Cost >= 0 && "TTI should not produce negative costs!"); 332 return Cost; 333 } 334 335 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 336 return TTIImpl->getNumberOfRegisters(Vector); 337 } 338 339 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 340 return TTIImpl->getRegisterBitWidth(Vector); 341 } 342 343 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 344 return TTIImpl->getMinVectorRegisterBitWidth(); 345 } 346 347 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 348 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 349 } 350 351 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 352 return TTIImpl->getMinimumVF(ElemWidth); 353 } 354 355 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 356 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 357 return TTIImpl->shouldConsiderAddressTypePromotion( 358 I, AllowPromotionWithoutCommonHeader); 359 } 360 361 unsigned TargetTransformInfo::getCacheLineSize() const { 362 return TTIImpl->getCacheLineSize(); 363 } 364 365 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 366 const { 367 return TTIImpl->getCacheSize(Level); 368 } 369 370 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 371 CacheLevel Level) const { 372 return TTIImpl->getCacheAssociativity(Level); 373 } 374 375 unsigned TargetTransformInfo::getPrefetchDistance() const { 376 return TTIImpl->getPrefetchDistance(); 377 } 378 379 unsigned TargetTransformInfo::getMinPrefetchStride() const { 380 return TTIImpl->getMinPrefetchStride(); 381 } 382 383 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 384 return TTIImpl->getMaxPrefetchIterationsAhead(); 385 } 386 387 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 388 return TTIImpl->getMaxInterleaveFactor(VF); 389 } 390 391 TargetTransformInfo::OperandValueKind 392 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 393 OperandValueKind OpInfo = OK_AnyValue; 394 OpProps = OP_None; 395 396 if (auto *CI = dyn_cast<ConstantInt>(V)) { 397 if (CI->getValue().isPowerOf2()) 398 OpProps = OP_PowerOf2; 399 return OK_UniformConstantValue; 400 } 401 402 // A broadcast shuffle creates a uniform value. 403 // TODO: Add support for non-zero index broadcasts. 404 // TODO: Add support for different source vector width. 405 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 406 if (ShuffleInst->isZeroEltSplat()) 407 OpInfo = OK_UniformValue; 408 409 const Value *Splat = getSplatValue(V); 410 411 // Check for a splat of a constant or for a non uniform vector of constants 412 // and check if the constant(s) are all powers of two. 413 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 414 OpInfo = OK_NonUniformConstantValue; 415 if (Splat) { 416 OpInfo = OK_UniformConstantValue; 417 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 418 if (CI->getValue().isPowerOf2()) 419 OpProps = OP_PowerOf2; 420 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 421 OpProps = OP_PowerOf2; 422 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 423 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 424 if (CI->getValue().isPowerOf2()) 425 continue; 426 OpProps = OP_None; 427 break; 428 } 429 } 430 } 431 432 // Check for a splat of a uniform value. This is not loop aware, so return 433 // true only for the obviously uniform cases (argument, globalvalue) 434 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 435 OpInfo = OK_UniformValue; 436 437 return OpInfo; 438 } 439 440 int TargetTransformInfo::getArithmeticInstrCost( 441 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 442 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 443 OperandValueProperties Opd2PropInfo, 444 ArrayRef<const Value *> Args) const { 445 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 446 Opd1PropInfo, Opd2PropInfo, Args); 447 assert(Cost >= 0 && "TTI should not produce negative costs!"); 448 return Cost; 449 } 450 451 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 452 Type *SubTp) const { 453 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 454 assert(Cost >= 0 && "TTI should not produce negative costs!"); 455 return Cost; 456 } 457 458 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 459 Type *Src, const Instruction *I) const { 460 assert ((I == nullptr || I->getOpcode() == Opcode) && 461 "Opcode should reflect passed instruction."); 462 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 463 assert(Cost >= 0 && "TTI should not produce negative costs!"); 464 return Cost; 465 } 466 467 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 468 VectorType *VecTy, 469 unsigned Index) const { 470 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 471 assert(Cost >= 0 && "TTI should not produce negative costs!"); 472 return Cost; 473 } 474 475 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 476 int Cost = TTIImpl->getCFInstrCost(Opcode); 477 assert(Cost >= 0 && "TTI should not produce negative costs!"); 478 return Cost; 479 } 480 481 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 482 Type *CondTy, const Instruction *I) const { 483 assert ((I == nullptr || I->getOpcode() == Opcode) && 484 "Opcode should reflect passed instruction."); 485 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 486 assert(Cost >= 0 && "TTI should not produce negative costs!"); 487 return Cost; 488 } 489 490 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 491 unsigned Index) const { 492 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 493 assert(Cost >= 0 && "TTI should not produce negative costs!"); 494 return Cost; 495 } 496 497 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 498 unsigned Alignment, 499 unsigned AddressSpace, 500 const Instruction *I) const { 501 assert ((I == nullptr || I->getOpcode() == Opcode) && 502 "Opcode should reflect passed instruction."); 503 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 504 assert(Cost >= 0 && "TTI should not produce negative costs!"); 505 return Cost; 506 } 507 508 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 509 unsigned Alignment, 510 unsigned AddressSpace) const { 511 int Cost = 512 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 513 assert(Cost >= 0 && "TTI should not produce negative costs!"); 514 return Cost; 515 } 516 517 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 518 Value *Ptr, bool VariableMask, 519 unsigned Alignment) const { 520 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 521 Alignment); 522 assert(Cost >= 0 && "TTI should not produce negative costs!"); 523 return Cost; 524 } 525 526 int TargetTransformInfo::getInterleavedMemoryOpCost( 527 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 528 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 529 bool UseMaskForGaps) const { 530 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 531 Alignment, AddressSpace, 532 UseMaskForCond, 533 UseMaskForGaps); 534 assert(Cost >= 0 && "TTI should not produce negative costs!"); 535 return Cost; 536 } 537 538 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 539 ArrayRef<Type *> Tys, FastMathFlags FMF, 540 unsigned ScalarizationCostPassed) const { 541 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 542 ScalarizationCostPassed); 543 assert(Cost >= 0 && "TTI should not produce negative costs!"); 544 return Cost; 545 } 546 547 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 548 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 549 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 550 assert(Cost >= 0 && "TTI should not produce negative costs!"); 551 return Cost; 552 } 553 554 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 555 ArrayRef<Type *> Tys) const { 556 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 557 assert(Cost >= 0 && "TTI should not produce negative costs!"); 558 return Cost; 559 } 560 561 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 562 return TTIImpl->getNumberOfParts(Tp); 563 } 564 565 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 566 ScalarEvolution *SE, 567 const SCEV *Ptr) const { 568 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 569 assert(Cost >= 0 && "TTI should not produce negative costs!"); 570 return Cost; 571 } 572 573 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 574 bool IsPairwiseForm) const { 575 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 576 assert(Cost >= 0 && "TTI should not produce negative costs!"); 577 return Cost; 578 } 579 580 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 581 bool IsPairwiseForm, 582 bool IsUnsigned) const { 583 int Cost = 584 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 585 assert(Cost >= 0 && "TTI should not produce negative costs!"); 586 return Cost; 587 } 588 589 unsigned 590 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 591 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 592 } 593 594 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 595 MemIntrinsicInfo &Info) const { 596 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 597 } 598 599 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 600 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 601 } 602 603 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 604 IntrinsicInst *Inst, Type *ExpectedType) const { 605 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 606 } 607 608 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 609 Value *Length, 610 unsigned SrcAlign, 611 unsigned DestAlign) const { 612 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 613 DestAlign); 614 } 615 616 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 617 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 618 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 619 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 620 SrcAlign, DestAlign); 621 } 622 623 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 624 const Function *Callee) const { 625 return TTIImpl->areInlineCompatible(Caller, Callee); 626 } 627 628 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 629 Type *Ty) const { 630 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 631 } 632 633 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 634 Type *Ty) const { 635 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 636 } 637 638 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 639 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 640 } 641 642 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 643 return TTIImpl->isLegalToVectorizeLoad(LI); 644 } 645 646 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 647 return TTIImpl->isLegalToVectorizeStore(SI); 648 } 649 650 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 651 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 652 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 653 AddrSpace); 654 } 655 656 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 657 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 658 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 659 AddrSpace); 660 } 661 662 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 663 unsigned LoadSize, 664 unsigned ChainSizeInBytes, 665 VectorType *VecTy) const { 666 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 667 } 668 669 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 670 unsigned StoreSize, 671 unsigned ChainSizeInBytes, 672 VectorType *VecTy) const { 673 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 674 } 675 676 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 677 Type *Ty, ReductionFlags Flags) const { 678 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 679 } 680 681 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 682 return TTIImpl->shouldExpandReduction(II); 683 } 684 685 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 686 return TTIImpl->getInstructionLatency(I); 687 } 688 689 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 690 unsigned Level) { 691 // We don't need a shuffle if we just want to have element 0 in position 0 of 692 // the vector. 693 if (!SI && Level == 0 && IsLeft) 694 return true; 695 else if (!SI) 696 return false; 697 698 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 699 700 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 701 // we look at the left or right side. 702 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 703 Mask[i] = val; 704 705 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 706 return Mask == ActualMask; 707 } 708 709 namespace { 710 /// Kind of the reduction data. 711 enum ReductionKind { 712 RK_None, /// Not a reduction. 713 RK_Arithmetic, /// Binary reduction data. 714 RK_MinMax, /// Min/max reduction data. 715 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 716 }; 717 /// Contains opcode + LHS/RHS parts of the reduction operations. 718 struct ReductionData { 719 ReductionData() = delete; 720 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 721 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 722 assert(Kind != RK_None && "expected binary or min/max reduction only."); 723 } 724 unsigned Opcode = 0; 725 Value *LHS = nullptr; 726 Value *RHS = nullptr; 727 ReductionKind Kind = RK_None; 728 bool hasSameData(ReductionData &RD) const { 729 return Kind == RD.Kind && Opcode == RD.Opcode; 730 } 731 }; 732 } // namespace 733 734 static Optional<ReductionData> getReductionData(Instruction *I) { 735 Value *L, *R; 736 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 737 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 738 if (auto *SI = dyn_cast<SelectInst>(I)) { 739 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 740 m_SMax(m_Value(L), m_Value(R)).match(SI) || 741 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 742 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 743 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 744 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 745 auto *CI = cast<CmpInst>(SI->getCondition()); 746 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 747 } 748 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 749 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 750 auto *CI = cast<CmpInst>(SI->getCondition()); 751 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 752 } 753 } 754 return llvm::None; 755 } 756 757 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 758 unsigned Level, 759 unsigned NumLevels) { 760 // Match one level of pairwise operations. 761 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 762 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 763 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 764 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 765 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 766 if (!I) 767 return RK_None; 768 769 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 770 771 Optional<ReductionData> RD = getReductionData(I); 772 if (!RD) 773 return RK_None; 774 775 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 776 if (!LS && Level) 777 return RK_None; 778 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 779 if (!RS && Level) 780 return RK_None; 781 782 // On level 0 we can omit one shufflevector instruction. 783 if (!Level && !RS && !LS) 784 return RK_None; 785 786 // Shuffle inputs must match. 787 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 788 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 789 Value *NextLevelOp = nullptr; 790 if (NextLevelOpR && NextLevelOpL) { 791 // If we have two shuffles their operands must match. 792 if (NextLevelOpL != NextLevelOpR) 793 return RK_None; 794 795 NextLevelOp = NextLevelOpL; 796 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 797 // On the first level we can omit the shufflevector <0, undef,...>. So the 798 // input to the other shufflevector <1, undef> must match with one of the 799 // inputs to the current binary operation. 800 // Example: 801 // %NextLevelOpL = shufflevector %R, <1, undef ...> 802 // %BinOp = fadd %NextLevelOpL, %R 803 if (NextLevelOpL && NextLevelOpL != RD->RHS) 804 return RK_None; 805 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 806 return RK_None; 807 808 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 809 } else 810 return RK_None; 811 812 // Check that the next levels binary operation exists and matches with the 813 // current one. 814 if (Level + 1 != NumLevels) { 815 Optional<ReductionData> NextLevelRD = 816 getReductionData(cast<Instruction>(NextLevelOp)); 817 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 818 return RK_None; 819 } 820 821 // Shuffle mask for pairwise operation must match. 822 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 823 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 824 return RK_None; 825 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 826 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 827 return RK_None; 828 } else { 829 return RK_None; 830 } 831 832 if (++Level == NumLevels) 833 return RD->Kind; 834 835 // Match next level. 836 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 837 NumLevels); 838 } 839 840 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 841 unsigned &Opcode, Type *&Ty) { 842 if (!EnableReduxCost) 843 return RK_None; 844 845 // Need to extract the first element. 846 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 847 unsigned Idx = ~0u; 848 if (CI) 849 Idx = CI->getZExtValue(); 850 if (Idx != 0) 851 return RK_None; 852 853 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 854 if (!RdxStart) 855 return RK_None; 856 Optional<ReductionData> RD = getReductionData(RdxStart); 857 if (!RD) 858 return RK_None; 859 860 Type *VecTy = RdxStart->getType(); 861 unsigned NumVecElems = VecTy->getVectorNumElements(); 862 if (!isPowerOf2_32(NumVecElems)) 863 return RK_None; 864 865 // We look for a sequence of shuffle,shuffle,add triples like the following 866 // that builds a pairwise reduction tree. 867 // 868 // (X0, X1, X2, X3) 869 // (X0 + X1, X2 + X3, undef, undef) 870 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 871 // 872 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 873 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 874 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 875 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 876 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 877 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 878 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 879 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 880 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 881 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 882 // %r = extractelement <4 x float> %bin.rdx8, i32 0 883 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 884 RK_None) 885 return RK_None; 886 887 Opcode = RD->Opcode; 888 Ty = VecTy; 889 890 return RD->Kind; 891 } 892 893 static std::pair<Value *, ShuffleVectorInst *> 894 getShuffleAndOtherOprd(Value *L, Value *R) { 895 ShuffleVectorInst *S = nullptr; 896 897 if ((S = dyn_cast<ShuffleVectorInst>(L))) 898 return std::make_pair(R, S); 899 900 S = dyn_cast<ShuffleVectorInst>(R); 901 return std::make_pair(L, S); 902 } 903 904 static ReductionKind 905 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 906 unsigned &Opcode, Type *&Ty) { 907 if (!EnableReduxCost) 908 return RK_None; 909 910 // Need to extract the first element. 911 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 912 unsigned Idx = ~0u; 913 if (CI) 914 Idx = CI->getZExtValue(); 915 if (Idx != 0) 916 return RK_None; 917 918 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 919 if (!RdxStart) 920 return RK_None; 921 Optional<ReductionData> RD = getReductionData(RdxStart); 922 if (!RD) 923 return RK_None; 924 925 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 926 unsigned NumVecElems = VecTy->getVectorNumElements(); 927 if (!isPowerOf2_32(NumVecElems)) 928 return RK_None; 929 930 // We look for a sequence of shuffles and adds like the following matching one 931 // fadd, shuffle vector pair at a time. 932 // 933 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 934 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 935 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 936 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 937 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 938 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 939 // %r = extractelement <4 x float> %bin.rdx8, i32 0 940 941 unsigned MaskStart = 1; 942 Instruction *RdxOp = RdxStart; 943 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 944 unsigned NumVecElemsRemain = NumVecElems; 945 while (NumVecElemsRemain - 1) { 946 // Check for the right reduction operation. 947 if (!RdxOp) 948 return RK_None; 949 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 950 if (!RDLevel || !RDLevel->hasSameData(*RD)) 951 return RK_None; 952 953 Value *NextRdxOp; 954 ShuffleVectorInst *Shuffle; 955 std::tie(NextRdxOp, Shuffle) = 956 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 957 958 // Check the current reduction operation and the shuffle use the same value. 959 if (Shuffle == nullptr) 960 return RK_None; 961 if (Shuffle->getOperand(0) != NextRdxOp) 962 return RK_None; 963 964 // Check that shuffle masks matches. 965 for (unsigned j = 0; j != MaskStart; ++j) 966 ShuffleMask[j] = MaskStart + j; 967 // Fill the rest of the mask with -1 for undef. 968 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 969 970 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 971 if (ShuffleMask != Mask) 972 return RK_None; 973 974 RdxOp = dyn_cast<Instruction>(NextRdxOp); 975 NumVecElemsRemain /= 2; 976 MaskStart *= 2; 977 } 978 979 Opcode = RD->Opcode; 980 Ty = VecTy; 981 return RD->Kind; 982 } 983 984 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 985 switch (I->getOpcode()) { 986 case Instruction::GetElementPtr: 987 return getUserCost(I); 988 989 case Instruction::Ret: 990 case Instruction::PHI: 991 case Instruction::Br: { 992 return getCFInstrCost(I->getOpcode()); 993 } 994 case Instruction::Add: 995 case Instruction::FAdd: 996 case Instruction::Sub: 997 case Instruction::FSub: 998 case Instruction::Mul: 999 case Instruction::FMul: 1000 case Instruction::UDiv: 1001 case Instruction::SDiv: 1002 case Instruction::FDiv: 1003 case Instruction::URem: 1004 case Instruction::SRem: 1005 case Instruction::FRem: 1006 case Instruction::Shl: 1007 case Instruction::LShr: 1008 case Instruction::AShr: 1009 case Instruction::And: 1010 case Instruction::Or: 1011 case Instruction::Xor: { 1012 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1013 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1014 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1015 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1016 SmallVector<const Value *, 2> Operands(I->operand_values()); 1017 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1018 Op1VP, Op2VP, Operands); 1019 } 1020 case Instruction::Select: { 1021 const SelectInst *SI = cast<SelectInst>(I); 1022 Type *CondTy = SI->getCondition()->getType(); 1023 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1024 } 1025 case Instruction::ICmp: 1026 case Instruction::FCmp: { 1027 Type *ValTy = I->getOperand(0)->getType(); 1028 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1029 } 1030 case Instruction::Store: { 1031 const StoreInst *SI = cast<StoreInst>(I); 1032 Type *ValTy = SI->getValueOperand()->getType(); 1033 return getMemoryOpCost(I->getOpcode(), ValTy, 1034 SI->getAlignment(), 1035 SI->getPointerAddressSpace(), I); 1036 } 1037 case Instruction::Load: { 1038 const LoadInst *LI = cast<LoadInst>(I); 1039 return getMemoryOpCost(I->getOpcode(), I->getType(), 1040 LI->getAlignment(), 1041 LI->getPointerAddressSpace(), I); 1042 } 1043 case Instruction::ZExt: 1044 case Instruction::SExt: 1045 case Instruction::FPToUI: 1046 case Instruction::FPToSI: 1047 case Instruction::FPExt: 1048 case Instruction::PtrToInt: 1049 case Instruction::IntToPtr: 1050 case Instruction::SIToFP: 1051 case Instruction::UIToFP: 1052 case Instruction::Trunc: 1053 case Instruction::FPTrunc: 1054 case Instruction::BitCast: 1055 case Instruction::AddrSpaceCast: { 1056 Type *SrcTy = I->getOperand(0)->getType(); 1057 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1058 } 1059 case Instruction::ExtractElement: { 1060 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1061 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1062 unsigned Idx = -1; 1063 if (CI) 1064 Idx = CI->getZExtValue(); 1065 1066 // Try to match a reduction sequence (series of shufflevector and vector 1067 // adds followed by a extractelement). 1068 unsigned ReduxOpCode; 1069 Type *ReduxType; 1070 1071 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1072 case RK_Arithmetic: 1073 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1074 /*IsPairwiseForm=*/false); 1075 case RK_MinMax: 1076 return getMinMaxReductionCost( 1077 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1078 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1079 case RK_UnsignedMinMax: 1080 return getMinMaxReductionCost( 1081 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1082 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1083 case RK_None: 1084 break; 1085 } 1086 1087 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1088 case RK_Arithmetic: 1089 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1090 /*IsPairwiseForm=*/true); 1091 case RK_MinMax: 1092 return getMinMaxReductionCost( 1093 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1094 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1095 case RK_UnsignedMinMax: 1096 return getMinMaxReductionCost( 1097 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1098 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1099 case RK_None: 1100 break; 1101 } 1102 1103 return getVectorInstrCost(I->getOpcode(), 1104 EEI->getOperand(0)->getType(), Idx); 1105 } 1106 case Instruction::InsertElement: { 1107 const InsertElementInst * IE = cast<InsertElementInst>(I); 1108 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1109 unsigned Idx = -1; 1110 if (CI) 1111 Idx = CI->getZExtValue(); 1112 return getVectorInstrCost(I->getOpcode(), 1113 IE->getType(), Idx); 1114 } 1115 case Instruction::ShuffleVector: { 1116 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1117 Type *Ty = Shuffle->getType(); 1118 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1119 1120 // TODO: Identify and add costs for insert subvector, etc. 1121 int SubIndex; 1122 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1123 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1124 1125 if (Shuffle->changesLength()) 1126 return -1; 1127 1128 if (Shuffle->isIdentity()) 1129 return 0; 1130 1131 if (Shuffle->isReverse()) 1132 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1133 1134 if (Shuffle->isSelect()) 1135 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1136 1137 if (Shuffle->isTranspose()) 1138 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1139 1140 if (Shuffle->isZeroEltSplat()) 1141 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1142 1143 if (Shuffle->isSingleSource()) 1144 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1145 1146 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1147 } 1148 case Instruction::Call: 1149 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1150 SmallVector<Value *, 4> Args(II->arg_operands()); 1151 1152 FastMathFlags FMF; 1153 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1154 FMF = FPMO->getFastMathFlags(); 1155 1156 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1157 Args, FMF); 1158 } 1159 return -1; 1160 default: 1161 // We don't have any information on this instruction. 1162 return -1; 1163 } 1164 } 1165 1166 TargetTransformInfo::Concept::~Concept() {} 1167 1168 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1169 1170 TargetIRAnalysis::TargetIRAnalysis( 1171 std::function<Result(const Function &)> TTICallback) 1172 : TTICallback(std::move(TTICallback)) {} 1173 1174 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1175 FunctionAnalysisManager &) { 1176 return TTICallback(F); 1177 } 1178 1179 AnalysisKey TargetIRAnalysis::Key; 1180 1181 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1182 return Result(F.getParent()->getDataLayout()); 1183 } 1184 1185 // Register the basic pass. 1186 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1187 "Target Transform Information", false, true) 1188 char TargetTransformInfoWrapperPass::ID = 0; 1189 1190 void TargetTransformInfoWrapperPass::anchor() {} 1191 1192 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1193 : ImmutablePass(ID) { 1194 initializeTargetTransformInfoWrapperPassPass( 1195 *PassRegistry::getPassRegistry()); 1196 } 1197 1198 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1199 TargetIRAnalysis TIRA) 1200 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1201 initializeTargetTransformInfoWrapperPassPass( 1202 *PassRegistry::getPassRegistry()); 1203 } 1204 1205 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1206 FunctionAnalysisManager DummyFAM; 1207 TTI = TIRA.run(F, DummyFAM); 1208 return *TTI; 1209 } 1210 1211 ImmutablePass * 1212 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1213 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1214 } 1215