1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> UseWideMemcpyLoopLowering( 30 "use-wide-memcpy-loop-lowering", cl::init(false), 31 cl::desc("Enables the new wide memcpy loop lowering in Transforms/Utils."), 32 cl::Hidden); 33 34 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 35 cl::Hidden, 36 cl::desc("Recognize reduction patterns.")); 37 38 namespace { 39 /// \brief No-op implementation of the TTI interface using the utility base 40 /// classes. 41 /// 42 /// This is used when no target specific information is available. 43 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 44 explicit NoTTIImpl(const DataLayout &DL) 45 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 46 }; 47 } 48 49 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 50 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 51 52 TargetTransformInfo::~TargetTransformInfo() {} 53 54 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 55 : TTIImpl(std::move(Arg.TTIImpl)) {} 56 57 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 58 TTIImpl = std::move(RHS.TTIImpl); 59 return *this; 60 } 61 62 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 63 Type *OpTy) const { 64 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 65 assert(Cost >= 0 && "TTI should not produce negative costs!"); 66 return Cost; 67 } 68 69 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 70 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 71 assert(Cost >= 0 && "TTI should not produce negative costs!"); 72 return Cost; 73 } 74 75 int TargetTransformInfo::getCallCost(const Function *F, 76 ArrayRef<const Value *> Arguments) const { 77 int Cost = TTIImpl->getCallCost(F, Arguments); 78 assert(Cost >= 0 && "TTI should not produce negative costs!"); 79 return Cost; 80 } 81 82 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 83 return TTIImpl->getInliningThresholdMultiplier(); 84 } 85 86 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 87 ArrayRef<const Value *> Operands) const { 88 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 89 } 90 91 int TargetTransformInfo::getExtCost(const Instruction *I, 92 const Value *Src) const { 93 return TTIImpl->getExtCost(I, Src); 94 } 95 96 int TargetTransformInfo::getIntrinsicCost( 97 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 98 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 99 assert(Cost >= 0 && "TTI should not produce negative costs!"); 100 return Cost; 101 } 102 103 unsigned 104 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 105 unsigned &JTSize) const { 106 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 107 } 108 109 int TargetTransformInfo::getUserCost(const User *U, 110 ArrayRef<const Value *> Operands) const { 111 int Cost = TTIImpl->getUserCost(U, Operands); 112 assert(Cost >= 0 && "TTI should not produce negative costs!"); 113 return Cost; 114 } 115 116 bool TargetTransformInfo::hasBranchDivergence() const { 117 return TTIImpl->hasBranchDivergence(); 118 } 119 120 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 121 return TTIImpl->isSourceOfDivergence(V); 122 } 123 124 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 125 return TTIImpl->isAlwaysUniform(V); 126 } 127 128 unsigned TargetTransformInfo::getFlatAddressSpace() const { 129 return TTIImpl->getFlatAddressSpace(); 130 } 131 132 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 133 return TTIImpl->isLoweredToCall(F); 134 } 135 136 void TargetTransformInfo::getUnrollingPreferences( 137 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 138 return TTIImpl->getUnrollingPreferences(L, SE, UP); 139 } 140 141 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 142 return TTIImpl->isLegalAddImmediate(Imm); 143 } 144 145 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 146 return TTIImpl->isLegalICmpImmediate(Imm); 147 } 148 149 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 150 int64_t BaseOffset, 151 bool HasBaseReg, 152 int64_t Scale, 153 unsigned AddrSpace, 154 Instruction *I) const { 155 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 156 Scale, AddrSpace, I); 157 } 158 159 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 160 return TTIImpl->isLSRCostLess(C1, C2); 161 } 162 163 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 164 return TTIImpl->isLegalMaskedStore(DataType); 165 } 166 167 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 168 return TTIImpl->isLegalMaskedLoad(DataType); 169 } 170 171 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 172 return TTIImpl->isLegalMaskedGather(DataType); 173 } 174 175 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 176 return TTIImpl->isLegalMaskedScatter(DataType); 177 } 178 179 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 180 return TTIImpl->hasDivRemOp(DataType, IsSigned); 181 } 182 183 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 184 unsigned AddrSpace) const { 185 return TTIImpl->hasVolatileVariant(I, AddrSpace); 186 } 187 188 bool TargetTransformInfo::prefersVectorizedAddressing() const { 189 return TTIImpl->prefersVectorizedAddressing(); 190 } 191 192 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 193 int64_t BaseOffset, 194 bool HasBaseReg, 195 int64_t Scale, 196 unsigned AddrSpace) const { 197 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 198 Scale, AddrSpace); 199 assert(Cost >= 0 && "TTI should not produce negative costs!"); 200 return Cost; 201 } 202 203 bool TargetTransformInfo::LSRWithInstrQueries() const { 204 return TTIImpl->LSRWithInstrQueries(); 205 } 206 207 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 208 return TTIImpl->isTruncateFree(Ty1, Ty2); 209 } 210 211 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 212 return TTIImpl->isProfitableToHoist(I); 213 } 214 215 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 216 return TTIImpl->isTypeLegal(Ty); 217 } 218 219 unsigned TargetTransformInfo::getJumpBufAlignment() const { 220 return TTIImpl->getJumpBufAlignment(); 221 } 222 223 unsigned TargetTransformInfo::getJumpBufSize() const { 224 return TTIImpl->getJumpBufSize(); 225 } 226 227 bool TargetTransformInfo::shouldBuildLookupTables() const { 228 return TTIImpl->shouldBuildLookupTables(); 229 } 230 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 231 return TTIImpl->shouldBuildLookupTablesForConstant(C); 232 } 233 234 unsigned TargetTransformInfo:: 235 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 236 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 237 } 238 239 unsigned TargetTransformInfo:: 240 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 241 unsigned VF) const { 242 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 243 } 244 245 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 246 return TTIImpl->supportsEfficientVectorElementLoadStore(); 247 } 248 249 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 250 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 251 } 252 253 const TargetTransformInfo::MemCmpExpansionOptions * 254 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 255 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 256 } 257 258 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 259 return TTIImpl->enableInterleavedAccessVectorization(); 260 } 261 262 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 263 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 264 } 265 266 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 267 unsigned BitWidth, 268 unsigned AddressSpace, 269 unsigned Alignment, 270 bool *Fast) const { 271 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 272 Alignment, Fast); 273 } 274 275 TargetTransformInfo::PopcntSupportKind 276 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 277 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 278 } 279 280 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 281 return TTIImpl->haveFastSqrt(Ty); 282 } 283 284 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 285 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 286 } 287 288 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 289 int Cost = TTIImpl->getFPOpCost(Ty); 290 assert(Cost >= 0 && "TTI should not produce negative costs!"); 291 return Cost; 292 } 293 294 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 295 const APInt &Imm, 296 Type *Ty) const { 297 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 298 assert(Cost >= 0 && "TTI should not produce negative costs!"); 299 return Cost; 300 } 301 302 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 303 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 304 assert(Cost >= 0 && "TTI should not produce negative costs!"); 305 return Cost; 306 } 307 308 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 309 const APInt &Imm, Type *Ty) const { 310 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 311 assert(Cost >= 0 && "TTI should not produce negative costs!"); 312 return Cost; 313 } 314 315 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 316 const APInt &Imm, Type *Ty) const { 317 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 318 assert(Cost >= 0 && "TTI should not produce negative costs!"); 319 return Cost; 320 } 321 322 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 323 return TTIImpl->getNumberOfRegisters(Vector); 324 } 325 326 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 327 return TTIImpl->getRegisterBitWidth(Vector); 328 } 329 330 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 331 return TTIImpl->getMinVectorRegisterBitWidth(); 332 } 333 334 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 335 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 336 return TTIImpl->shouldConsiderAddressTypePromotion( 337 I, AllowPromotionWithoutCommonHeader); 338 } 339 340 unsigned TargetTransformInfo::getCacheLineSize() const { 341 return TTIImpl->getCacheLineSize(); 342 } 343 344 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 345 const { 346 return TTIImpl->getCacheSize(Level); 347 } 348 349 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 350 CacheLevel Level) const { 351 return TTIImpl->getCacheAssociativity(Level); 352 } 353 354 unsigned TargetTransformInfo::getPrefetchDistance() const { 355 return TTIImpl->getPrefetchDistance(); 356 } 357 358 unsigned TargetTransformInfo::getMinPrefetchStride() const { 359 return TTIImpl->getMinPrefetchStride(); 360 } 361 362 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 363 return TTIImpl->getMaxPrefetchIterationsAhead(); 364 } 365 366 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 367 return TTIImpl->getMaxInterleaveFactor(VF); 368 } 369 370 int TargetTransformInfo::getArithmeticInstrCost( 371 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 372 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 373 OperandValueProperties Opd2PropInfo, 374 ArrayRef<const Value *> Args) const { 375 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 376 Opd1PropInfo, Opd2PropInfo, Args); 377 assert(Cost >= 0 && "TTI should not produce negative costs!"); 378 return Cost; 379 } 380 381 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 382 Type *SubTp) const { 383 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 384 assert(Cost >= 0 && "TTI should not produce negative costs!"); 385 return Cost; 386 } 387 388 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 389 Type *Src, const Instruction *I) const { 390 assert ((I == nullptr || I->getOpcode() == Opcode) && 391 "Opcode should reflect passed instruction."); 392 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 393 assert(Cost >= 0 && "TTI should not produce negative costs!"); 394 return Cost; 395 } 396 397 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 398 VectorType *VecTy, 399 unsigned Index) const { 400 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 401 assert(Cost >= 0 && "TTI should not produce negative costs!"); 402 return Cost; 403 } 404 405 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 406 int Cost = TTIImpl->getCFInstrCost(Opcode); 407 assert(Cost >= 0 && "TTI should not produce negative costs!"); 408 return Cost; 409 } 410 411 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 412 Type *CondTy, const Instruction *I) const { 413 assert ((I == nullptr || I->getOpcode() == Opcode) && 414 "Opcode should reflect passed instruction."); 415 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 416 assert(Cost >= 0 && "TTI should not produce negative costs!"); 417 return Cost; 418 } 419 420 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 421 unsigned Index) const { 422 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 423 assert(Cost >= 0 && "TTI should not produce negative costs!"); 424 return Cost; 425 } 426 427 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 428 unsigned Alignment, 429 unsigned AddressSpace, 430 const Instruction *I) const { 431 assert ((I == nullptr || I->getOpcode() == Opcode) && 432 "Opcode should reflect passed instruction."); 433 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 434 assert(Cost >= 0 && "TTI should not produce negative costs!"); 435 return Cost; 436 } 437 438 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 439 unsigned Alignment, 440 unsigned AddressSpace) const { 441 int Cost = 442 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 443 assert(Cost >= 0 && "TTI should not produce negative costs!"); 444 return Cost; 445 } 446 447 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 448 Value *Ptr, bool VariableMask, 449 unsigned Alignment) const { 450 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 451 Alignment); 452 assert(Cost >= 0 && "TTI should not produce negative costs!"); 453 return Cost; 454 } 455 456 int TargetTransformInfo::getInterleavedMemoryOpCost( 457 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 458 unsigned Alignment, unsigned AddressSpace) const { 459 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 460 Alignment, AddressSpace); 461 assert(Cost >= 0 && "TTI should not produce negative costs!"); 462 return Cost; 463 } 464 465 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 466 ArrayRef<Type *> Tys, FastMathFlags FMF, 467 unsigned ScalarizationCostPassed) const { 468 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 469 ScalarizationCostPassed); 470 assert(Cost >= 0 && "TTI should not produce negative costs!"); 471 return Cost; 472 } 473 474 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 475 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 476 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 477 assert(Cost >= 0 && "TTI should not produce negative costs!"); 478 return Cost; 479 } 480 481 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 482 ArrayRef<Type *> Tys) const { 483 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 484 assert(Cost >= 0 && "TTI should not produce negative costs!"); 485 return Cost; 486 } 487 488 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 489 return TTIImpl->getNumberOfParts(Tp); 490 } 491 492 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 493 ScalarEvolution *SE, 494 const SCEV *Ptr) const { 495 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 496 assert(Cost >= 0 && "TTI should not produce negative costs!"); 497 return Cost; 498 } 499 500 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 501 bool IsPairwiseForm) const { 502 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 503 assert(Cost >= 0 && "TTI should not produce negative costs!"); 504 return Cost; 505 } 506 507 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 508 bool IsPairwiseForm, 509 bool IsUnsigned) const { 510 int Cost = 511 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 512 assert(Cost >= 0 && "TTI should not produce negative costs!"); 513 return Cost; 514 } 515 516 unsigned 517 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 518 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 519 } 520 521 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 522 MemIntrinsicInfo &Info) const { 523 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 524 } 525 526 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 527 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 528 } 529 530 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 531 IntrinsicInst *Inst, Type *ExpectedType) const { 532 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 533 } 534 535 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 536 Value *Length, 537 unsigned SrcAlign, 538 unsigned DestAlign) const { 539 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 540 DestAlign); 541 } 542 543 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 544 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 545 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 546 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 547 SrcAlign, DestAlign); 548 } 549 550 bool TargetTransformInfo::useWideIRMemcpyLoopLowering() const { 551 return UseWideMemcpyLoopLowering; 552 } 553 554 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 555 const Function *Callee) const { 556 return TTIImpl->areInlineCompatible(Caller, Callee); 557 } 558 559 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 560 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 561 } 562 563 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 564 return TTIImpl->isLegalToVectorizeLoad(LI); 565 } 566 567 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 568 return TTIImpl->isLegalToVectorizeStore(SI); 569 } 570 571 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 572 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 573 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 574 AddrSpace); 575 } 576 577 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 578 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 579 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 580 AddrSpace); 581 } 582 583 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 584 unsigned LoadSize, 585 unsigned ChainSizeInBytes, 586 VectorType *VecTy) const { 587 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 588 } 589 590 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 591 unsigned StoreSize, 592 unsigned ChainSizeInBytes, 593 VectorType *VecTy) const { 594 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 595 } 596 597 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 598 Type *Ty, ReductionFlags Flags) const { 599 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 600 } 601 602 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 603 return TTIImpl->shouldExpandReduction(II); 604 } 605 606 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 607 return TTIImpl->getInstructionLatency(I); 608 } 609 610 static bool isReverseVectorMask(ArrayRef<int> Mask) { 611 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 612 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 613 return false; 614 return true; 615 } 616 617 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 618 bool Vec0 = false; 619 bool Vec1 = false; 620 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 621 if (Mask[i] >= 0) { 622 if ((unsigned)Mask[i] >= NumVecElts) 623 Vec1 = true; 624 else 625 Vec0 = true; 626 } 627 } 628 return !(Vec0 && Vec1); 629 } 630 631 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 632 for (unsigned i = 0; i < Mask.size(); ++i) 633 if (Mask[i] > 0) 634 return false; 635 return true; 636 } 637 638 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 639 bool isAlternate = true; 640 unsigned MaskSize = Mask.size(); 641 642 // Example: shufflevector A, B, <0,5,2,7> 643 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 644 if (Mask[i] < 0) 645 continue; 646 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 647 } 648 649 if (isAlternate) 650 return true; 651 652 isAlternate = true; 653 // Example: shufflevector A, B, <4,1,6,3> 654 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 655 if (Mask[i] < 0) 656 continue; 657 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 658 } 659 660 return isAlternate; 661 } 662 663 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 664 TargetTransformInfo::OperandValueKind OpInfo = 665 TargetTransformInfo::OK_AnyValue; 666 667 // Check for a splat of a constant or for a non uniform vector of constants. 668 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 669 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 670 if (cast<Constant>(V)->getSplatValue() != nullptr) 671 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 672 } 673 674 // Check for a splat of a uniform value. This is not loop aware, so return 675 // true only for the obviously uniform cases (argument, globalvalue) 676 const Value *Splat = getSplatValue(V); 677 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 678 OpInfo = TargetTransformInfo::OK_UniformValue; 679 680 return OpInfo; 681 } 682 683 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 684 unsigned Level) { 685 // We don't need a shuffle if we just want to have element 0 in position 0 of 686 // the vector. 687 if (!SI && Level == 0 && IsLeft) 688 return true; 689 else if (!SI) 690 return false; 691 692 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 693 694 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 695 // we look at the left or right side. 696 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 697 Mask[i] = val; 698 699 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 700 return Mask == ActualMask; 701 } 702 703 namespace { 704 /// Kind of the reduction data. 705 enum ReductionKind { 706 RK_None, /// Not a reduction. 707 RK_Arithmetic, /// Binary reduction data. 708 RK_MinMax, /// Min/max reduction data. 709 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 710 }; 711 /// Contains opcode + LHS/RHS parts of the reduction operations. 712 struct ReductionData { 713 ReductionData() = delete; 714 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 715 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 716 assert(Kind != RK_None && "expected binary or min/max reduction only."); 717 } 718 unsigned Opcode = 0; 719 Value *LHS = nullptr; 720 Value *RHS = nullptr; 721 ReductionKind Kind = RK_None; 722 bool hasSameData(ReductionData &RD) const { 723 return Kind == RD.Kind && Opcode == RD.Opcode; 724 } 725 }; 726 } // namespace 727 728 static Optional<ReductionData> getReductionData(Instruction *I) { 729 Value *L, *R; 730 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 731 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 732 if (auto *SI = dyn_cast<SelectInst>(I)) { 733 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 734 m_SMax(m_Value(L), m_Value(R)).match(SI) || 735 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 736 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 737 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 738 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 739 auto *CI = cast<CmpInst>(SI->getCondition()); 740 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 741 } 742 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 743 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 744 auto *CI = cast<CmpInst>(SI->getCondition()); 745 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 746 } 747 } 748 return llvm::None; 749 } 750 751 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 752 unsigned Level, 753 unsigned NumLevels) { 754 // Match one level of pairwise operations. 755 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 756 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 757 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 758 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 759 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 760 if (!I) 761 return RK_None; 762 763 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 764 765 Optional<ReductionData> RD = getReductionData(I); 766 if (!RD) 767 return RK_None; 768 769 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 770 if (!LS && Level) 771 return RK_None; 772 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 773 if (!RS && Level) 774 return RK_None; 775 776 // On level 0 we can omit one shufflevector instruction. 777 if (!Level && !RS && !LS) 778 return RK_None; 779 780 // Shuffle inputs must match. 781 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 782 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 783 Value *NextLevelOp = nullptr; 784 if (NextLevelOpR && NextLevelOpL) { 785 // If we have two shuffles their operands must match. 786 if (NextLevelOpL != NextLevelOpR) 787 return RK_None; 788 789 NextLevelOp = NextLevelOpL; 790 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 791 // On the first level we can omit the shufflevector <0, undef,...>. So the 792 // input to the other shufflevector <1, undef> must match with one of the 793 // inputs to the current binary operation. 794 // Example: 795 // %NextLevelOpL = shufflevector %R, <1, undef ...> 796 // %BinOp = fadd %NextLevelOpL, %R 797 if (NextLevelOpL && NextLevelOpL != RD->RHS) 798 return RK_None; 799 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 800 return RK_None; 801 802 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 803 } else 804 return RK_None; 805 806 // Check that the next levels binary operation exists and matches with the 807 // current one. 808 if (Level + 1 != NumLevels) { 809 Optional<ReductionData> NextLevelRD = 810 getReductionData(cast<Instruction>(NextLevelOp)); 811 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 812 return RK_None; 813 } 814 815 // Shuffle mask for pairwise operation must match. 816 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 817 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 818 return RK_None; 819 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 820 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 821 return RK_None; 822 } else { 823 return RK_None; 824 } 825 826 if (++Level == NumLevels) 827 return RD->Kind; 828 829 // Match next level. 830 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 831 NumLevels); 832 } 833 834 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 835 unsigned &Opcode, Type *&Ty) { 836 if (!EnableReduxCost) 837 return RK_None; 838 839 // Need to extract the first element. 840 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 841 unsigned Idx = ~0u; 842 if (CI) 843 Idx = CI->getZExtValue(); 844 if (Idx != 0) 845 return RK_None; 846 847 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 848 if (!RdxStart) 849 return RK_None; 850 Optional<ReductionData> RD = getReductionData(RdxStart); 851 if (!RD) 852 return RK_None; 853 854 Type *VecTy = RdxStart->getType(); 855 unsigned NumVecElems = VecTy->getVectorNumElements(); 856 if (!isPowerOf2_32(NumVecElems)) 857 return RK_None; 858 859 // We look for a sequence of shuffle,shuffle,add triples like the following 860 // that builds a pairwise reduction tree. 861 // 862 // (X0, X1, X2, X3) 863 // (X0 + X1, X2 + X3, undef, undef) 864 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 865 // 866 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 867 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 868 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 869 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 870 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 871 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 872 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 873 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 874 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 875 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 876 // %r = extractelement <4 x float> %bin.rdx8, i32 0 877 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 878 RK_None) 879 return RK_None; 880 881 Opcode = RD->Opcode; 882 Ty = VecTy; 883 884 return RD->Kind; 885 } 886 887 static std::pair<Value *, ShuffleVectorInst *> 888 getShuffleAndOtherOprd(Value *L, Value *R) { 889 ShuffleVectorInst *S = nullptr; 890 891 if ((S = dyn_cast<ShuffleVectorInst>(L))) 892 return std::make_pair(R, S); 893 894 S = dyn_cast<ShuffleVectorInst>(R); 895 return std::make_pair(L, S); 896 } 897 898 static ReductionKind 899 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 900 unsigned &Opcode, Type *&Ty) { 901 if (!EnableReduxCost) 902 return RK_None; 903 904 // Need to extract the first element. 905 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 906 unsigned Idx = ~0u; 907 if (CI) 908 Idx = CI->getZExtValue(); 909 if (Idx != 0) 910 return RK_None; 911 912 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 913 if (!RdxStart) 914 return RK_None; 915 Optional<ReductionData> RD = getReductionData(RdxStart); 916 if (!RD) 917 return RK_None; 918 919 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 920 unsigned NumVecElems = VecTy->getVectorNumElements(); 921 if (!isPowerOf2_32(NumVecElems)) 922 return RK_None; 923 924 // We look for a sequence of shuffles and adds like the following matching one 925 // fadd, shuffle vector pair at a time. 926 // 927 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 928 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 929 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 930 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 931 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 932 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 933 // %r = extractelement <4 x float> %bin.rdx8, i32 0 934 935 unsigned MaskStart = 1; 936 Instruction *RdxOp = RdxStart; 937 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 938 unsigned NumVecElemsRemain = NumVecElems; 939 while (NumVecElemsRemain - 1) { 940 // Check for the right reduction operation. 941 if (!RdxOp) 942 return RK_None; 943 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 944 if (!RDLevel || !RDLevel->hasSameData(*RD)) 945 return RK_None; 946 947 Value *NextRdxOp; 948 ShuffleVectorInst *Shuffle; 949 std::tie(NextRdxOp, Shuffle) = 950 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 951 952 // Check the current reduction operation and the shuffle use the same value. 953 if (Shuffle == nullptr) 954 return RK_None; 955 if (Shuffle->getOperand(0) != NextRdxOp) 956 return RK_None; 957 958 // Check that shuffle masks matches. 959 for (unsigned j = 0; j != MaskStart; ++j) 960 ShuffleMask[j] = MaskStart + j; 961 // Fill the rest of the mask with -1 for undef. 962 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 963 964 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 965 if (ShuffleMask != Mask) 966 return RK_None; 967 968 RdxOp = dyn_cast<Instruction>(NextRdxOp); 969 NumVecElemsRemain /= 2; 970 MaskStart *= 2; 971 } 972 973 Opcode = RD->Opcode; 974 Ty = VecTy; 975 return RD->Kind; 976 } 977 978 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 979 switch (I->getOpcode()) { 980 case Instruction::GetElementPtr: 981 return getUserCost(I); 982 983 case Instruction::Ret: 984 case Instruction::PHI: 985 case Instruction::Br: { 986 return getCFInstrCost(I->getOpcode()); 987 } 988 case Instruction::Add: 989 case Instruction::FAdd: 990 case Instruction::Sub: 991 case Instruction::FSub: 992 case Instruction::Mul: 993 case Instruction::FMul: 994 case Instruction::UDiv: 995 case Instruction::SDiv: 996 case Instruction::FDiv: 997 case Instruction::URem: 998 case Instruction::SRem: 999 case Instruction::FRem: 1000 case Instruction::Shl: 1001 case Instruction::LShr: 1002 case Instruction::AShr: 1003 case Instruction::And: 1004 case Instruction::Or: 1005 case Instruction::Xor: { 1006 TargetTransformInfo::OperandValueKind Op1VK = 1007 getOperandInfo(I->getOperand(0)); 1008 TargetTransformInfo::OperandValueKind Op2VK = 1009 getOperandInfo(I->getOperand(1)); 1010 SmallVector<const Value*, 2> Operands(I->operand_values()); 1011 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1012 Op2VK, TargetTransformInfo::OP_None, 1013 TargetTransformInfo::OP_None, 1014 Operands); 1015 } 1016 case Instruction::Select: { 1017 const SelectInst *SI = cast<SelectInst>(I); 1018 Type *CondTy = SI->getCondition()->getType(); 1019 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1020 } 1021 case Instruction::ICmp: 1022 case Instruction::FCmp: { 1023 Type *ValTy = I->getOperand(0)->getType(); 1024 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1025 } 1026 case Instruction::Store: { 1027 const StoreInst *SI = cast<StoreInst>(I); 1028 Type *ValTy = SI->getValueOperand()->getType(); 1029 return getMemoryOpCost(I->getOpcode(), ValTy, 1030 SI->getAlignment(), 1031 SI->getPointerAddressSpace(), I); 1032 } 1033 case Instruction::Load: { 1034 const LoadInst *LI = cast<LoadInst>(I); 1035 return getMemoryOpCost(I->getOpcode(), I->getType(), 1036 LI->getAlignment(), 1037 LI->getPointerAddressSpace(), I); 1038 } 1039 case Instruction::ZExt: 1040 case Instruction::SExt: 1041 case Instruction::FPToUI: 1042 case Instruction::FPToSI: 1043 case Instruction::FPExt: 1044 case Instruction::PtrToInt: 1045 case Instruction::IntToPtr: 1046 case Instruction::SIToFP: 1047 case Instruction::UIToFP: 1048 case Instruction::Trunc: 1049 case Instruction::FPTrunc: 1050 case Instruction::BitCast: 1051 case Instruction::AddrSpaceCast: { 1052 Type *SrcTy = I->getOperand(0)->getType(); 1053 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1054 } 1055 case Instruction::ExtractElement: { 1056 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1057 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1058 unsigned Idx = -1; 1059 if (CI) 1060 Idx = CI->getZExtValue(); 1061 1062 // Try to match a reduction sequence (series of shufflevector and vector 1063 // adds followed by a extractelement). 1064 unsigned ReduxOpCode; 1065 Type *ReduxType; 1066 1067 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1068 case RK_Arithmetic: 1069 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1070 /*IsPairwiseForm=*/false); 1071 case RK_MinMax: 1072 return getMinMaxReductionCost( 1073 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1074 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1075 case RK_UnsignedMinMax: 1076 return getMinMaxReductionCost( 1077 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1078 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1079 case RK_None: 1080 break; 1081 } 1082 1083 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1084 case RK_Arithmetic: 1085 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1086 /*IsPairwiseForm=*/true); 1087 case RK_MinMax: 1088 return getMinMaxReductionCost( 1089 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1090 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1091 case RK_UnsignedMinMax: 1092 return getMinMaxReductionCost( 1093 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1094 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1095 case RK_None: 1096 break; 1097 } 1098 1099 return getVectorInstrCost(I->getOpcode(), 1100 EEI->getOperand(0)->getType(), Idx); 1101 } 1102 case Instruction::InsertElement: { 1103 const InsertElementInst * IE = cast<InsertElementInst>(I); 1104 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1105 unsigned Idx = -1; 1106 if (CI) 1107 Idx = CI->getZExtValue(); 1108 return getVectorInstrCost(I->getOpcode(), 1109 IE->getType(), Idx); 1110 } 1111 case Instruction::ShuffleVector: { 1112 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1113 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1114 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1115 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1116 1117 if (NumVecElems == Mask.size()) { 1118 if (isReverseVectorMask(Mask)) 1119 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1120 0, nullptr); 1121 if (isAlternateVectorMask(Mask)) 1122 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1123 VecTypOp0, 0, nullptr); 1124 1125 if (isZeroEltBroadcastVectorMask(Mask)) 1126 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1127 VecTypOp0, 0, nullptr); 1128 1129 if (isSingleSourceVectorMask(Mask)) 1130 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1131 VecTypOp0, 0, nullptr); 1132 1133 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1134 VecTypOp0, 0, nullptr); 1135 } 1136 1137 return -1; 1138 } 1139 case Instruction::Call: 1140 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1141 SmallVector<Value *, 4> Args(II->arg_operands()); 1142 1143 FastMathFlags FMF; 1144 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1145 FMF = FPMO->getFastMathFlags(); 1146 1147 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1148 Args, FMF); 1149 } 1150 return -1; 1151 default: 1152 // We don't have any information on this instruction. 1153 return -1; 1154 } 1155 } 1156 1157 TargetTransformInfo::Concept::~Concept() {} 1158 1159 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1160 1161 TargetIRAnalysis::TargetIRAnalysis( 1162 std::function<Result(const Function &)> TTICallback) 1163 : TTICallback(std::move(TTICallback)) {} 1164 1165 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1166 FunctionAnalysisManager &) { 1167 return TTICallback(F); 1168 } 1169 1170 AnalysisKey TargetIRAnalysis::Key; 1171 1172 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1173 return Result(F.getParent()->getDataLayout()); 1174 } 1175 1176 // Register the basic pass. 1177 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1178 "Target Transform Information", false, true) 1179 char TargetTransformInfoWrapperPass::ID = 0; 1180 1181 void TargetTransformInfoWrapperPass::anchor() {} 1182 1183 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1184 : ImmutablePass(ID) { 1185 initializeTargetTransformInfoWrapperPassPass( 1186 *PassRegistry::getPassRegistry()); 1187 } 1188 1189 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1190 TargetIRAnalysis TIRA) 1191 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1192 initializeTargetTransformInfoWrapperPassPass( 1193 *PassRegistry::getPassRegistry()); 1194 } 1195 1196 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1197 FunctionAnalysisManager DummyFAM; 1198 TTI = TIRA.run(F, DummyFAM); 1199 return *TTI; 1200 } 1201 1202 ImmutablePass * 1203 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1204 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1205 } 1206