1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/TargetTransformInfoImpl.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/Instruction.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/Module.h" 17 #include "llvm/IR/Operator.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <utility> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "tti" 27 28 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 29 cl::Hidden, 30 cl::desc("Recognize reduction patterns.")); 31 32 namespace { 33 /// No-op implementation of the TTI interface using the utility base 34 /// classes. 35 /// 36 /// This is used when no target specific information is available. 37 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 38 explicit NoTTIImpl(const DataLayout &DL) 39 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 40 }; 41 } 42 43 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 44 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 45 46 TargetTransformInfo::~TargetTransformInfo() {} 47 48 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 49 : TTIImpl(std::move(Arg.TTIImpl)) {} 50 51 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 52 TTIImpl = std::move(RHS.TTIImpl); 53 return *this; 54 } 55 56 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 57 Type *OpTy) const { 58 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 59 assert(Cost >= 0 && "TTI should not produce negative costs!"); 60 return Cost; 61 } 62 63 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs, 64 const User *U) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments, 72 const User *U) const { 73 int Cost = TTIImpl->getCallCost(F, Arguments, U); 74 assert(Cost >= 0 && "TTI should not produce negative costs!"); 75 return Cost; 76 } 77 78 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 79 return TTIImpl->getInliningThresholdMultiplier(); 80 } 81 82 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 83 ArrayRef<const Value *> Operands) const { 84 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 85 } 86 87 int TargetTransformInfo::getExtCost(const Instruction *I, 88 const Value *Src) const { 89 return TTIImpl->getExtCost(I, Src); 90 } 91 92 int TargetTransformInfo::getIntrinsicCost( 93 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments, 94 const User *U) const { 95 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U); 96 assert(Cost >= 0 && "TTI should not produce negative costs!"); 97 return Cost; 98 } 99 100 unsigned 101 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 102 unsigned &JTSize) const { 103 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 104 } 105 106 int TargetTransformInfo::getUserCost(const User *U, 107 ArrayRef<const Value *> Operands) const { 108 int Cost = TTIImpl->getUserCost(U, Operands); 109 assert(Cost >= 0 && "TTI should not produce negative costs!"); 110 return Cost; 111 } 112 113 bool TargetTransformInfo::hasBranchDivergence() const { 114 return TTIImpl->hasBranchDivergence(); 115 } 116 117 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 118 return TTIImpl->isSourceOfDivergence(V); 119 } 120 121 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 122 return TTIImpl->isAlwaysUniform(V); 123 } 124 125 unsigned TargetTransformInfo::getFlatAddressSpace() const { 126 return TTIImpl->getFlatAddressSpace(); 127 } 128 129 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 130 return TTIImpl->isLoweredToCall(F); 131 } 132 133 bool TargetTransformInfo::isHardwareLoopProfitable( 134 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 135 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 136 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 137 } 138 139 void TargetTransformInfo::getUnrollingPreferences( 140 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 141 return TTIImpl->getUnrollingPreferences(L, SE, UP); 142 } 143 144 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 145 return TTIImpl->isLegalAddImmediate(Imm); 146 } 147 148 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 149 return TTIImpl->isLegalICmpImmediate(Imm); 150 } 151 152 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 153 int64_t BaseOffset, 154 bool HasBaseReg, 155 int64_t Scale, 156 unsigned AddrSpace, 157 Instruction *I) const { 158 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 159 Scale, AddrSpace, I); 160 } 161 162 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 163 return TTIImpl->isLSRCostLess(C1, C2); 164 } 165 166 bool TargetTransformInfo::canMacroFuseCmp() const { 167 return TTIImpl->canMacroFuseCmp(); 168 } 169 170 bool TargetTransformInfo::shouldFavorPostInc() const { 171 return TTIImpl->shouldFavorPostInc(); 172 } 173 174 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 175 return TTIImpl->shouldFavorBackedgeIndex(L); 176 } 177 178 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 179 return TTIImpl->isLegalMaskedStore(DataType); 180 } 181 182 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 183 return TTIImpl->isLegalMaskedLoad(DataType); 184 } 185 186 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 187 return TTIImpl->isLegalMaskedGather(DataType); 188 } 189 190 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 191 return TTIImpl->isLegalMaskedScatter(DataType); 192 } 193 194 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 195 return TTIImpl->isLegalMaskedCompressStore(DataType); 196 } 197 198 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 199 return TTIImpl->isLegalMaskedExpandLoad(DataType); 200 } 201 202 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 203 return TTIImpl->hasDivRemOp(DataType, IsSigned); 204 } 205 206 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 207 unsigned AddrSpace) const { 208 return TTIImpl->hasVolatileVariant(I, AddrSpace); 209 } 210 211 bool TargetTransformInfo::prefersVectorizedAddressing() const { 212 return TTIImpl->prefersVectorizedAddressing(); 213 } 214 215 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 216 int64_t BaseOffset, 217 bool HasBaseReg, 218 int64_t Scale, 219 unsigned AddrSpace) const { 220 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 221 Scale, AddrSpace); 222 assert(Cost >= 0 && "TTI should not produce negative costs!"); 223 return Cost; 224 } 225 226 bool TargetTransformInfo::LSRWithInstrQueries() const { 227 return TTIImpl->LSRWithInstrQueries(); 228 } 229 230 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 231 return TTIImpl->isTruncateFree(Ty1, Ty2); 232 } 233 234 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 235 return TTIImpl->isProfitableToHoist(I); 236 } 237 238 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 239 240 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 241 return TTIImpl->isTypeLegal(Ty); 242 } 243 244 unsigned TargetTransformInfo::getJumpBufAlignment() const { 245 return TTIImpl->getJumpBufAlignment(); 246 } 247 248 unsigned TargetTransformInfo::getJumpBufSize() const { 249 return TTIImpl->getJumpBufSize(); 250 } 251 252 bool TargetTransformInfo::shouldBuildLookupTables() const { 253 return TTIImpl->shouldBuildLookupTables(); 254 } 255 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 256 return TTIImpl->shouldBuildLookupTablesForConstant(C); 257 } 258 259 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 260 return TTIImpl->useColdCCForColdCall(F); 261 } 262 263 unsigned TargetTransformInfo:: 264 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 265 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 266 } 267 268 unsigned TargetTransformInfo:: 269 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 270 unsigned VF) const { 271 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 272 } 273 274 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 275 return TTIImpl->supportsEfficientVectorElementLoadStore(); 276 } 277 278 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 279 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 280 } 281 282 const TargetTransformInfo::MemCmpExpansionOptions * 283 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 284 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 285 } 286 287 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 288 return TTIImpl->enableInterleavedAccessVectorization(); 289 } 290 291 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 292 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 293 } 294 295 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 296 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 297 } 298 299 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 300 unsigned BitWidth, 301 unsigned AddressSpace, 302 unsigned Alignment, 303 bool *Fast) const { 304 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 305 Alignment, Fast); 306 } 307 308 TargetTransformInfo::PopcntSupportKind 309 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 310 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 311 } 312 313 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 314 return TTIImpl->haveFastSqrt(Ty); 315 } 316 317 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 318 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 319 } 320 321 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 322 int Cost = TTIImpl->getFPOpCost(Ty); 323 assert(Cost >= 0 && "TTI should not produce negative costs!"); 324 return Cost; 325 } 326 327 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 328 const APInt &Imm, 329 Type *Ty) const { 330 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 331 assert(Cost >= 0 && "TTI should not produce negative costs!"); 332 return Cost; 333 } 334 335 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 336 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 337 assert(Cost >= 0 && "TTI should not produce negative costs!"); 338 return Cost; 339 } 340 341 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 342 const APInt &Imm, Type *Ty) const { 343 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 344 assert(Cost >= 0 && "TTI should not produce negative costs!"); 345 return Cost; 346 } 347 348 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 349 const APInt &Imm, Type *Ty) const { 350 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 351 assert(Cost >= 0 && "TTI should not produce negative costs!"); 352 return Cost; 353 } 354 355 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 356 return TTIImpl->getNumberOfRegisters(Vector); 357 } 358 359 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 360 return TTIImpl->getRegisterBitWidth(Vector); 361 } 362 363 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 364 return TTIImpl->getMinVectorRegisterBitWidth(); 365 } 366 367 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 368 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 369 } 370 371 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 372 return TTIImpl->getMinimumVF(ElemWidth); 373 } 374 375 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 376 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 377 return TTIImpl->shouldConsiderAddressTypePromotion( 378 I, AllowPromotionWithoutCommonHeader); 379 } 380 381 unsigned TargetTransformInfo::getCacheLineSize() const { 382 return TTIImpl->getCacheLineSize(); 383 } 384 385 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 386 const { 387 return TTIImpl->getCacheSize(Level); 388 } 389 390 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 391 CacheLevel Level) const { 392 return TTIImpl->getCacheAssociativity(Level); 393 } 394 395 unsigned TargetTransformInfo::getPrefetchDistance() const { 396 return TTIImpl->getPrefetchDistance(); 397 } 398 399 unsigned TargetTransformInfo::getMinPrefetchStride() const { 400 return TTIImpl->getMinPrefetchStride(); 401 } 402 403 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 404 return TTIImpl->getMaxPrefetchIterationsAhead(); 405 } 406 407 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 408 return TTIImpl->getMaxInterleaveFactor(VF); 409 } 410 411 TargetTransformInfo::OperandValueKind 412 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 413 OperandValueKind OpInfo = OK_AnyValue; 414 OpProps = OP_None; 415 416 if (auto *CI = dyn_cast<ConstantInt>(V)) { 417 if (CI->getValue().isPowerOf2()) 418 OpProps = OP_PowerOf2; 419 return OK_UniformConstantValue; 420 } 421 422 // A broadcast shuffle creates a uniform value. 423 // TODO: Add support for non-zero index broadcasts. 424 // TODO: Add support for different source vector width. 425 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 426 if (ShuffleInst->isZeroEltSplat()) 427 OpInfo = OK_UniformValue; 428 429 const Value *Splat = getSplatValue(V); 430 431 // Check for a splat of a constant or for a non uniform vector of constants 432 // and check if the constant(s) are all powers of two. 433 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 434 OpInfo = OK_NonUniformConstantValue; 435 if (Splat) { 436 OpInfo = OK_UniformConstantValue; 437 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 438 if (CI->getValue().isPowerOf2()) 439 OpProps = OP_PowerOf2; 440 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 441 OpProps = OP_PowerOf2; 442 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 443 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 444 if (CI->getValue().isPowerOf2()) 445 continue; 446 OpProps = OP_None; 447 break; 448 } 449 } 450 } 451 452 // Check for a splat of a uniform value. This is not loop aware, so return 453 // true only for the obviously uniform cases (argument, globalvalue) 454 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 455 OpInfo = OK_UniformValue; 456 457 return OpInfo; 458 } 459 460 int TargetTransformInfo::getArithmeticInstrCost( 461 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 462 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 463 OperandValueProperties Opd2PropInfo, 464 ArrayRef<const Value *> Args) const { 465 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 466 Opd1PropInfo, Opd2PropInfo, Args); 467 assert(Cost >= 0 && "TTI should not produce negative costs!"); 468 return Cost; 469 } 470 471 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 472 Type *SubTp) const { 473 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 474 assert(Cost >= 0 && "TTI should not produce negative costs!"); 475 return Cost; 476 } 477 478 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 479 Type *Src, const Instruction *I) const { 480 assert ((I == nullptr || I->getOpcode() == Opcode) && 481 "Opcode should reflect passed instruction."); 482 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 483 assert(Cost >= 0 && "TTI should not produce negative costs!"); 484 return Cost; 485 } 486 487 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 488 VectorType *VecTy, 489 unsigned Index) const { 490 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 491 assert(Cost >= 0 && "TTI should not produce negative costs!"); 492 return Cost; 493 } 494 495 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 496 int Cost = TTIImpl->getCFInstrCost(Opcode); 497 assert(Cost >= 0 && "TTI should not produce negative costs!"); 498 return Cost; 499 } 500 501 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 502 Type *CondTy, const Instruction *I) const { 503 assert ((I == nullptr || I->getOpcode() == Opcode) && 504 "Opcode should reflect passed instruction."); 505 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 506 assert(Cost >= 0 && "TTI should not produce negative costs!"); 507 return Cost; 508 } 509 510 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 511 unsigned Index) const { 512 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 513 assert(Cost >= 0 && "TTI should not produce negative costs!"); 514 return Cost; 515 } 516 517 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 518 unsigned Alignment, 519 unsigned AddressSpace, 520 const Instruction *I) const { 521 assert ((I == nullptr || I->getOpcode() == Opcode) && 522 "Opcode should reflect passed instruction."); 523 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 524 assert(Cost >= 0 && "TTI should not produce negative costs!"); 525 return Cost; 526 } 527 528 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 529 unsigned Alignment, 530 unsigned AddressSpace) const { 531 int Cost = 532 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 533 assert(Cost >= 0 && "TTI should not produce negative costs!"); 534 return Cost; 535 } 536 537 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 538 Value *Ptr, bool VariableMask, 539 unsigned Alignment) const { 540 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 541 Alignment); 542 assert(Cost >= 0 && "TTI should not produce negative costs!"); 543 return Cost; 544 } 545 546 int TargetTransformInfo::getInterleavedMemoryOpCost( 547 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 548 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond, 549 bool UseMaskForGaps) const { 550 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 551 Alignment, AddressSpace, 552 UseMaskForCond, 553 UseMaskForGaps); 554 assert(Cost >= 0 && "TTI should not produce negative costs!"); 555 return Cost; 556 } 557 558 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 559 ArrayRef<Type *> Tys, FastMathFlags FMF, 560 unsigned ScalarizationCostPassed) const { 561 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 562 ScalarizationCostPassed); 563 assert(Cost >= 0 && "TTI should not produce negative costs!"); 564 return Cost; 565 } 566 567 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 568 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 569 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 570 assert(Cost >= 0 && "TTI should not produce negative costs!"); 571 return Cost; 572 } 573 574 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 575 ArrayRef<Type *> Tys) const { 576 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 577 assert(Cost >= 0 && "TTI should not produce negative costs!"); 578 return Cost; 579 } 580 581 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 582 return TTIImpl->getNumberOfParts(Tp); 583 } 584 585 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 586 ScalarEvolution *SE, 587 const SCEV *Ptr) const { 588 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 589 assert(Cost >= 0 && "TTI should not produce negative costs!"); 590 return Cost; 591 } 592 593 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 594 int Cost = TTIImpl->getMemcpyCost(I); 595 assert(Cost >= 0 && "TTI should not produce negative costs!"); 596 return Cost; 597 } 598 599 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 600 bool IsPairwiseForm) const { 601 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 602 assert(Cost >= 0 && "TTI should not produce negative costs!"); 603 return Cost; 604 } 605 606 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 607 bool IsPairwiseForm, 608 bool IsUnsigned) const { 609 int Cost = 610 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 611 assert(Cost >= 0 && "TTI should not produce negative costs!"); 612 return Cost; 613 } 614 615 unsigned 616 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 617 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 618 } 619 620 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 621 MemIntrinsicInfo &Info) const { 622 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 623 } 624 625 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 626 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 627 } 628 629 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 630 IntrinsicInst *Inst, Type *ExpectedType) const { 631 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 632 } 633 634 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 635 Value *Length, 636 unsigned SrcAlign, 637 unsigned DestAlign) const { 638 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 639 DestAlign); 640 } 641 642 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 643 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 644 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 645 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 646 SrcAlign, DestAlign); 647 } 648 649 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 650 const Function *Callee) const { 651 return TTIImpl->areInlineCompatible(Caller, Callee); 652 } 653 654 bool TargetTransformInfo::areFunctionArgsABICompatible( 655 const Function *Caller, const Function *Callee, 656 SmallPtrSetImpl<Argument *> &Args) const { 657 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 658 } 659 660 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 661 Type *Ty) const { 662 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 663 } 664 665 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 666 Type *Ty) const { 667 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 668 } 669 670 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 671 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 672 } 673 674 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 675 return TTIImpl->isLegalToVectorizeLoad(LI); 676 } 677 678 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 679 return TTIImpl->isLegalToVectorizeStore(SI); 680 } 681 682 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 683 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 684 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 685 AddrSpace); 686 } 687 688 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 689 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 690 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 691 AddrSpace); 692 } 693 694 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 695 unsigned LoadSize, 696 unsigned ChainSizeInBytes, 697 VectorType *VecTy) const { 698 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 699 } 700 701 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 702 unsigned StoreSize, 703 unsigned ChainSizeInBytes, 704 VectorType *VecTy) const { 705 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 706 } 707 708 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 709 Type *Ty, ReductionFlags Flags) const { 710 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 711 } 712 713 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 714 return TTIImpl->shouldExpandReduction(II); 715 } 716 717 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 718 return TTIImpl->getInstructionLatency(I); 719 } 720 721 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 722 unsigned Level) { 723 // We don't need a shuffle if we just want to have element 0 in position 0 of 724 // the vector. 725 if (!SI && Level == 0 && IsLeft) 726 return true; 727 else if (!SI) 728 return false; 729 730 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 731 732 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 733 // we look at the left or right side. 734 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 735 Mask[i] = val; 736 737 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 738 return Mask == ActualMask; 739 } 740 741 namespace { 742 /// Kind of the reduction data. 743 enum ReductionKind { 744 RK_None, /// Not a reduction. 745 RK_Arithmetic, /// Binary reduction data. 746 RK_MinMax, /// Min/max reduction data. 747 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 748 }; 749 /// Contains opcode + LHS/RHS parts of the reduction operations. 750 struct ReductionData { 751 ReductionData() = delete; 752 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 753 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 754 assert(Kind != RK_None && "expected binary or min/max reduction only."); 755 } 756 unsigned Opcode = 0; 757 Value *LHS = nullptr; 758 Value *RHS = nullptr; 759 ReductionKind Kind = RK_None; 760 bool hasSameData(ReductionData &RD) const { 761 return Kind == RD.Kind && Opcode == RD.Opcode; 762 } 763 }; 764 } // namespace 765 766 static Optional<ReductionData> getReductionData(Instruction *I) { 767 Value *L, *R; 768 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 769 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 770 if (auto *SI = dyn_cast<SelectInst>(I)) { 771 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 772 m_SMax(m_Value(L), m_Value(R)).match(SI) || 773 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 774 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 775 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 776 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 777 auto *CI = cast<CmpInst>(SI->getCondition()); 778 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 779 } 780 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 781 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 782 auto *CI = cast<CmpInst>(SI->getCondition()); 783 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 784 } 785 } 786 return llvm::None; 787 } 788 789 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 790 unsigned Level, 791 unsigned NumLevels) { 792 // Match one level of pairwise operations. 793 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 794 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 795 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 796 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 797 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 798 if (!I) 799 return RK_None; 800 801 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 802 803 Optional<ReductionData> RD = getReductionData(I); 804 if (!RD) 805 return RK_None; 806 807 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 808 if (!LS && Level) 809 return RK_None; 810 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 811 if (!RS && Level) 812 return RK_None; 813 814 // On level 0 we can omit one shufflevector instruction. 815 if (!Level && !RS && !LS) 816 return RK_None; 817 818 // Shuffle inputs must match. 819 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 820 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 821 Value *NextLevelOp = nullptr; 822 if (NextLevelOpR && NextLevelOpL) { 823 // If we have two shuffles their operands must match. 824 if (NextLevelOpL != NextLevelOpR) 825 return RK_None; 826 827 NextLevelOp = NextLevelOpL; 828 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 829 // On the first level we can omit the shufflevector <0, undef,...>. So the 830 // input to the other shufflevector <1, undef> must match with one of the 831 // inputs to the current binary operation. 832 // Example: 833 // %NextLevelOpL = shufflevector %R, <1, undef ...> 834 // %BinOp = fadd %NextLevelOpL, %R 835 if (NextLevelOpL && NextLevelOpL != RD->RHS) 836 return RK_None; 837 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 838 return RK_None; 839 840 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 841 } else 842 return RK_None; 843 844 // Check that the next levels binary operation exists and matches with the 845 // current one. 846 if (Level + 1 != NumLevels) { 847 Optional<ReductionData> NextLevelRD = 848 getReductionData(cast<Instruction>(NextLevelOp)); 849 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 850 return RK_None; 851 } 852 853 // Shuffle mask for pairwise operation must match. 854 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 855 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 856 return RK_None; 857 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 858 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 859 return RK_None; 860 } else { 861 return RK_None; 862 } 863 864 if (++Level == NumLevels) 865 return RD->Kind; 866 867 // Match next level. 868 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 869 NumLevels); 870 } 871 872 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 873 unsigned &Opcode, Type *&Ty) { 874 if (!EnableReduxCost) 875 return RK_None; 876 877 // Need to extract the first element. 878 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 879 unsigned Idx = ~0u; 880 if (CI) 881 Idx = CI->getZExtValue(); 882 if (Idx != 0) 883 return RK_None; 884 885 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 886 if (!RdxStart) 887 return RK_None; 888 Optional<ReductionData> RD = getReductionData(RdxStart); 889 if (!RD) 890 return RK_None; 891 892 Type *VecTy = RdxStart->getType(); 893 unsigned NumVecElems = VecTy->getVectorNumElements(); 894 if (!isPowerOf2_32(NumVecElems)) 895 return RK_None; 896 897 // We look for a sequence of shuffle,shuffle,add triples like the following 898 // that builds a pairwise reduction tree. 899 // 900 // (X0, X1, X2, X3) 901 // (X0 + X1, X2 + X3, undef, undef) 902 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 903 // 904 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 905 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 906 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 907 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 908 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 909 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 910 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 911 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 912 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 913 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 914 // %r = extractelement <4 x float> %bin.rdx8, i32 0 915 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 916 RK_None) 917 return RK_None; 918 919 Opcode = RD->Opcode; 920 Ty = VecTy; 921 922 return RD->Kind; 923 } 924 925 static std::pair<Value *, ShuffleVectorInst *> 926 getShuffleAndOtherOprd(Value *L, Value *R) { 927 ShuffleVectorInst *S = nullptr; 928 929 if ((S = dyn_cast<ShuffleVectorInst>(L))) 930 return std::make_pair(R, S); 931 932 S = dyn_cast<ShuffleVectorInst>(R); 933 return std::make_pair(L, S); 934 } 935 936 static ReductionKind 937 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 938 unsigned &Opcode, Type *&Ty) { 939 if (!EnableReduxCost) 940 return RK_None; 941 942 // Need to extract the first element. 943 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 944 unsigned Idx = ~0u; 945 if (CI) 946 Idx = CI->getZExtValue(); 947 if (Idx != 0) 948 return RK_None; 949 950 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 951 if (!RdxStart) 952 return RK_None; 953 Optional<ReductionData> RD = getReductionData(RdxStart); 954 if (!RD) 955 return RK_None; 956 957 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 958 unsigned NumVecElems = VecTy->getVectorNumElements(); 959 if (!isPowerOf2_32(NumVecElems)) 960 return RK_None; 961 962 // We look for a sequence of shuffles and adds like the following matching one 963 // fadd, shuffle vector pair at a time. 964 // 965 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 966 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 967 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 968 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 969 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 970 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 971 // %r = extractelement <4 x float> %bin.rdx8, i32 0 972 973 unsigned MaskStart = 1; 974 Instruction *RdxOp = RdxStart; 975 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 976 unsigned NumVecElemsRemain = NumVecElems; 977 while (NumVecElemsRemain - 1) { 978 // Check for the right reduction operation. 979 if (!RdxOp) 980 return RK_None; 981 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 982 if (!RDLevel || !RDLevel->hasSameData(*RD)) 983 return RK_None; 984 985 Value *NextRdxOp; 986 ShuffleVectorInst *Shuffle; 987 std::tie(NextRdxOp, Shuffle) = 988 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 989 990 // Check the current reduction operation and the shuffle use the same value. 991 if (Shuffle == nullptr) 992 return RK_None; 993 if (Shuffle->getOperand(0) != NextRdxOp) 994 return RK_None; 995 996 // Check that shuffle masks matches. 997 for (unsigned j = 0; j != MaskStart; ++j) 998 ShuffleMask[j] = MaskStart + j; 999 // Fill the rest of the mask with -1 for undef. 1000 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1001 1002 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1003 if (ShuffleMask != Mask) 1004 return RK_None; 1005 1006 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1007 NumVecElemsRemain /= 2; 1008 MaskStart *= 2; 1009 } 1010 1011 Opcode = RD->Opcode; 1012 Ty = VecTy; 1013 return RD->Kind; 1014 } 1015 1016 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1017 switch (I->getOpcode()) { 1018 case Instruction::GetElementPtr: 1019 return getUserCost(I); 1020 1021 case Instruction::Ret: 1022 case Instruction::PHI: 1023 case Instruction::Br: { 1024 return getCFInstrCost(I->getOpcode()); 1025 } 1026 case Instruction::Add: 1027 case Instruction::FAdd: 1028 case Instruction::Sub: 1029 case Instruction::FSub: 1030 case Instruction::Mul: 1031 case Instruction::FMul: 1032 case Instruction::UDiv: 1033 case Instruction::SDiv: 1034 case Instruction::FDiv: 1035 case Instruction::URem: 1036 case Instruction::SRem: 1037 case Instruction::FRem: 1038 case Instruction::Shl: 1039 case Instruction::LShr: 1040 case Instruction::AShr: 1041 case Instruction::And: 1042 case Instruction::Or: 1043 case Instruction::Xor: { 1044 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1045 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1046 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1047 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1048 SmallVector<const Value *, 2> Operands(I->operand_values()); 1049 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1050 Op1VP, Op2VP, Operands); 1051 } 1052 case Instruction::FNeg: { 1053 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1054 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1055 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1056 Op2VK = OK_AnyValue; 1057 Op2VP = OP_None; 1058 SmallVector<const Value *, 2> Operands(I->operand_values()); 1059 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK, 1060 Op1VP, Op2VP, Operands); 1061 } 1062 case Instruction::Select: { 1063 const SelectInst *SI = cast<SelectInst>(I); 1064 Type *CondTy = SI->getCondition()->getType(); 1065 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1066 } 1067 case Instruction::ICmp: 1068 case Instruction::FCmp: { 1069 Type *ValTy = I->getOperand(0)->getType(); 1070 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1071 } 1072 case Instruction::Store: { 1073 const StoreInst *SI = cast<StoreInst>(I); 1074 Type *ValTy = SI->getValueOperand()->getType(); 1075 return getMemoryOpCost(I->getOpcode(), ValTy, 1076 SI->getAlignment(), 1077 SI->getPointerAddressSpace(), I); 1078 } 1079 case Instruction::Load: { 1080 const LoadInst *LI = cast<LoadInst>(I); 1081 return getMemoryOpCost(I->getOpcode(), I->getType(), 1082 LI->getAlignment(), 1083 LI->getPointerAddressSpace(), I); 1084 } 1085 case Instruction::ZExt: 1086 case Instruction::SExt: 1087 case Instruction::FPToUI: 1088 case Instruction::FPToSI: 1089 case Instruction::FPExt: 1090 case Instruction::PtrToInt: 1091 case Instruction::IntToPtr: 1092 case Instruction::SIToFP: 1093 case Instruction::UIToFP: 1094 case Instruction::Trunc: 1095 case Instruction::FPTrunc: 1096 case Instruction::BitCast: 1097 case Instruction::AddrSpaceCast: { 1098 Type *SrcTy = I->getOperand(0)->getType(); 1099 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1100 } 1101 case Instruction::ExtractElement: { 1102 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1103 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1104 unsigned Idx = -1; 1105 if (CI) 1106 Idx = CI->getZExtValue(); 1107 1108 // Try to match a reduction sequence (series of shufflevector and vector 1109 // adds followed by a extractelement). 1110 unsigned ReduxOpCode; 1111 Type *ReduxType; 1112 1113 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1114 case RK_Arithmetic: 1115 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1116 /*IsPairwiseForm=*/false); 1117 case RK_MinMax: 1118 return getMinMaxReductionCost( 1119 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1120 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1121 case RK_UnsignedMinMax: 1122 return getMinMaxReductionCost( 1123 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1124 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1125 case RK_None: 1126 break; 1127 } 1128 1129 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1130 case RK_Arithmetic: 1131 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1132 /*IsPairwiseForm=*/true); 1133 case RK_MinMax: 1134 return getMinMaxReductionCost( 1135 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1136 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1137 case RK_UnsignedMinMax: 1138 return getMinMaxReductionCost( 1139 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1140 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1141 case RK_None: 1142 break; 1143 } 1144 1145 return getVectorInstrCost(I->getOpcode(), 1146 EEI->getOperand(0)->getType(), Idx); 1147 } 1148 case Instruction::InsertElement: { 1149 const InsertElementInst * IE = cast<InsertElementInst>(I); 1150 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1151 unsigned Idx = -1; 1152 if (CI) 1153 Idx = CI->getZExtValue(); 1154 return getVectorInstrCost(I->getOpcode(), 1155 IE->getType(), Idx); 1156 } 1157 case Instruction::ShuffleVector: { 1158 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1159 Type *Ty = Shuffle->getType(); 1160 Type *SrcTy = Shuffle->getOperand(0)->getType(); 1161 1162 // TODO: Identify and add costs for insert subvector, etc. 1163 int SubIndex; 1164 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1165 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1166 1167 if (Shuffle->changesLength()) 1168 return -1; 1169 1170 if (Shuffle->isIdentity()) 1171 return 0; 1172 1173 if (Shuffle->isReverse()) 1174 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1175 1176 if (Shuffle->isSelect()) 1177 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1178 1179 if (Shuffle->isTranspose()) 1180 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1181 1182 if (Shuffle->isZeroEltSplat()) 1183 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1184 1185 if (Shuffle->isSingleSource()) 1186 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1187 1188 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1189 } 1190 case Instruction::Call: 1191 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1192 SmallVector<Value *, 4> Args(II->arg_operands()); 1193 1194 FastMathFlags FMF; 1195 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1196 FMF = FPMO->getFastMathFlags(); 1197 1198 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1199 Args, FMF); 1200 } 1201 return -1; 1202 default: 1203 // We don't have any information on this instruction. 1204 return -1; 1205 } 1206 } 1207 1208 TargetTransformInfo::Concept::~Concept() {} 1209 1210 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1211 1212 TargetIRAnalysis::TargetIRAnalysis( 1213 std::function<Result(const Function &)> TTICallback) 1214 : TTICallback(std::move(TTICallback)) {} 1215 1216 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1217 FunctionAnalysisManager &) { 1218 return TTICallback(F); 1219 } 1220 1221 AnalysisKey TargetIRAnalysis::Key; 1222 1223 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1224 return Result(F.getParent()->getDataLayout()); 1225 } 1226 1227 // Register the basic pass. 1228 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1229 "Target Transform Information", false, true) 1230 char TargetTransformInfoWrapperPass::ID = 0; 1231 1232 void TargetTransformInfoWrapperPass::anchor() {} 1233 1234 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1235 : ImmutablePass(ID) { 1236 initializeTargetTransformInfoWrapperPassPass( 1237 *PassRegistry::getPassRegistry()); 1238 } 1239 1240 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1241 TargetIRAnalysis TIRA) 1242 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1243 initializeTargetTransformInfoWrapperPassPass( 1244 *PassRegistry::getPassRegistry()); 1245 } 1246 1247 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1248 FunctionAnalysisManager DummyFAM; 1249 TTI = TIRA.run(F, DummyFAM); 1250 return *TTI; 1251 } 1252 1253 ImmutablePass * 1254 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1255 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1256 } 1257