1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26 
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "tti"
31 
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33                                      cl::Hidden,
34                                      cl::desc("Recognize reduction patterns."));
35 
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
42   explicit NoTTIImpl(const DataLayout &DL)
43       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 } // namespace
46 
47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48   // If the loop has irreducible control flow, it can not be converted to
49   // Hardware loop.
50   LoopBlocksRPO RPOT(L);
51   RPOT.perform(&LI);
52   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53     return false;
54   return true;
55 }
56 
57 IntrinsicCostAttributes::IntrinsicCostAttributes(
58     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost)
59     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
60       ScalarizationCost(ScalarizationCost) {
61 
62   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
63     FMF = FPMO->getFastMathFlags();
64 
65   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
66   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
67   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
68 }
69 
70 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
71                                                  ArrayRef<Type *> Tys,
72                                                  FastMathFlags Flags,
73                                                  const IntrinsicInst *I,
74                                                  InstructionCost ScalarCost)
75     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
76   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
77 }
78 
79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
80                                                  ArrayRef<const Value *> Args)
81     : RetTy(Ty), IID(Id) {
82 
83   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
84   ParamTys.reserve(Arguments.size());
85   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
86     ParamTys.push_back(Arguments[Idx]->getType());
87 }
88 
89 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
90                                                  ArrayRef<const Value *> Args,
91                                                  ArrayRef<Type *> Tys,
92                                                  FastMathFlags Flags,
93                                                  const IntrinsicInst *I,
94                                                  InstructionCost ScalarCost)
95     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
96   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
97   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
98 }
99 
100 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
101                                                LoopInfo &LI, DominatorTree &DT,
102                                                bool ForceNestedLoop,
103                                                bool ForceHardwareLoopPHI) {
104   SmallVector<BasicBlock *, 4> ExitingBlocks;
105   L->getExitingBlocks(ExitingBlocks);
106 
107   for (BasicBlock *BB : ExitingBlocks) {
108     // If we pass the updated counter back through a phi, we need to know
109     // which latch the updated value will be coming from.
110     if (!L->isLoopLatch(BB)) {
111       if (ForceHardwareLoopPHI || CounterInReg)
112         continue;
113     }
114 
115     const SCEV *EC = SE.getExitCount(L, BB);
116     if (isa<SCEVCouldNotCompute>(EC))
117       continue;
118     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
119       if (ConstEC->getValue()->isZero())
120         continue;
121     } else if (!SE.isLoopInvariant(EC, L))
122       continue;
123 
124     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
125       continue;
126 
127     // If this exiting block is contained in a nested loop, it is not eligible
128     // for insertion of the branch-and-decrement since the inner loop would
129     // end up messing up the value in the CTR.
130     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
131       continue;
132 
133     // We now have a loop-invariant count of loop iterations (which is not the
134     // constant zero) for which we know that this loop will not exit via this
135     // existing block.
136 
137     // We need to make sure that this block will run on every loop iteration.
138     // For this to be true, we must dominate all blocks with backedges. Such
139     // blocks are in-loop predecessors to the header block.
140     bool NotAlways = false;
141     for (BasicBlock *Pred : predecessors(L->getHeader())) {
142       if (!L->contains(Pred))
143         continue;
144 
145       if (!DT.dominates(BB, Pred)) {
146         NotAlways = true;
147         break;
148       }
149     }
150 
151     if (NotAlways)
152       continue;
153 
154     // Make sure this blocks ends with a conditional branch.
155     Instruction *TI = BB->getTerminator();
156     if (!TI)
157       continue;
158 
159     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
160       if (!BI->isConditional())
161         continue;
162 
163       ExitBranch = BI;
164     } else
165       continue;
166 
167     // Note that this block may not be the loop latch block, even if the loop
168     // has a latch block.
169     ExitBlock = BB;
170     TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType()));
171 
172     if (!EC->getType()->isPointerTy() && EC->getType() != CountType)
173       TripCount = SE.getZeroExtendExpr(TripCount, CountType);
174 
175     break;
176   }
177 
178   if (!ExitBlock)
179     return false;
180   return true;
181 }
182 
183 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
184     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
185 
186 TargetTransformInfo::~TargetTransformInfo() {}
187 
188 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
189     : TTIImpl(std::move(Arg.TTIImpl)) {}
190 
191 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
192   TTIImpl = std::move(RHS.TTIImpl);
193   return *this;
194 }
195 
196 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
197   return TTIImpl->getInliningThresholdMultiplier();
198 }
199 
200 unsigned
201 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
202   return TTIImpl->adjustInliningThreshold(CB);
203 }
204 
205 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
206   return TTIImpl->getInlinerVectorBonusPercent();
207 }
208 
209 InstructionCost
210 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
211                                 ArrayRef<const Value *> Operands,
212                                 TTI::TargetCostKind CostKind) const {
213   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
214 }
215 
216 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
217     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
218     BlockFrequencyInfo *BFI) const {
219   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
220 }
221 
222 InstructionCost
223 TargetTransformInfo::getUserCost(const User *U,
224                                  ArrayRef<const Value *> Operands,
225                                  enum TargetCostKind CostKind) const {
226   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
227   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
228          "TTI should not produce negative costs!");
229   return Cost;
230 }
231 
232 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
233   return TTIImpl->getPredictableBranchThreshold();
234 }
235 
236 bool TargetTransformInfo::hasBranchDivergence() const {
237   return TTIImpl->hasBranchDivergence();
238 }
239 
240 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
241   return TTIImpl->useGPUDivergenceAnalysis();
242 }
243 
244 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
245   return TTIImpl->isSourceOfDivergence(V);
246 }
247 
248 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
249   return TTIImpl->isAlwaysUniform(V);
250 }
251 
252 unsigned TargetTransformInfo::getFlatAddressSpace() const {
253   return TTIImpl->getFlatAddressSpace();
254 }
255 
256 bool TargetTransformInfo::collectFlatAddressOperands(
257     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
258   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
259 }
260 
261 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
262                                               unsigned ToAS) const {
263   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
264 }
265 
266 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
267   return TTIImpl->getAssumedAddrSpace(V);
268 }
269 
270 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
271     IntrinsicInst *II, Value *OldV, Value *NewV) const {
272   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
273 }
274 
275 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
276   return TTIImpl->isLoweredToCall(F);
277 }
278 
279 bool TargetTransformInfo::isHardwareLoopProfitable(
280     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
281     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
282   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
283 }
284 
285 bool TargetTransformInfo::preferPredicateOverEpilogue(
286     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
287     TargetLibraryInfo *TLI, DominatorTree *DT,
288     const LoopAccessInfo *LAI) const {
289   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
290 }
291 
292 bool TargetTransformInfo::emitGetActiveLaneMask() const {
293   return TTIImpl->emitGetActiveLaneMask();
294 }
295 
296 Optional<Instruction *>
297 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
298                                           IntrinsicInst &II) const {
299   return TTIImpl->instCombineIntrinsic(IC, II);
300 }
301 
302 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
303     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
304     bool &KnownBitsComputed) const {
305   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
306                                                    KnownBitsComputed);
307 }
308 
309 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
310     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
311     APInt &UndefElts2, APInt &UndefElts3,
312     std::function<void(Instruction *, unsigned, APInt, APInt &)>
313         SimplifyAndSetOp) const {
314   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
315       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
316       SimplifyAndSetOp);
317 }
318 
319 void TargetTransformInfo::getUnrollingPreferences(
320     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
321     OptimizationRemarkEmitter *ORE) const {
322   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
323 }
324 
325 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
326                                                 PeelingPreferences &PP) const {
327   return TTIImpl->getPeelingPreferences(L, SE, PP);
328 }
329 
330 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
331   return TTIImpl->isLegalAddImmediate(Imm);
332 }
333 
334 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
335   return TTIImpl->isLegalICmpImmediate(Imm);
336 }
337 
338 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
339                                                 int64_t BaseOffset,
340                                                 bool HasBaseReg, int64_t Scale,
341                                                 unsigned AddrSpace,
342                                                 Instruction *I) const {
343   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
344                                         Scale, AddrSpace, I);
345 }
346 
347 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
348   return TTIImpl->isLSRCostLess(C1, C2);
349 }
350 
351 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
352   return TTIImpl->isNumRegsMajorCostOfLSR();
353 }
354 
355 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
356   return TTIImpl->isProfitableLSRChainElement(I);
357 }
358 
359 bool TargetTransformInfo::canMacroFuseCmp() const {
360   return TTIImpl->canMacroFuseCmp();
361 }
362 
363 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
364                                      ScalarEvolution *SE, LoopInfo *LI,
365                                      DominatorTree *DT, AssumptionCache *AC,
366                                      TargetLibraryInfo *LibInfo) const {
367   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
368 }
369 
370 TTI::AddressingModeKind
371 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
372                                                 ScalarEvolution *SE) const {
373   return TTIImpl->getPreferredAddressingMode(L, SE);
374 }
375 
376 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
377                                              Align Alignment) const {
378   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
379 }
380 
381 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
382                                             Align Alignment) const {
383   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
384 }
385 
386 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
387                                          Align Alignment) const {
388   return TTIImpl->isLegalNTStore(DataType, Alignment);
389 }
390 
391 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
392   return TTIImpl->isLegalNTLoad(DataType, Alignment);
393 }
394 
395 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
396                                               Align Alignment) const {
397   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
398 }
399 
400 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
401                                                Align Alignment) const {
402   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
403 }
404 
405 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
406   return TTIImpl->isLegalMaskedCompressStore(DataType);
407 }
408 
409 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
410   return TTIImpl->isLegalMaskedExpandLoad(DataType);
411 }
412 
413 bool TargetTransformInfo::enableOrderedReductions() const {
414   return TTIImpl->enableOrderedReductions();
415 }
416 
417 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
418   return TTIImpl->hasDivRemOp(DataType, IsSigned);
419 }
420 
421 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
422                                              unsigned AddrSpace) const {
423   return TTIImpl->hasVolatileVariant(I, AddrSpace);
424 }
425 
426 bool TargetTransformInfo::prefersVectorizedAddressing() const {
427   return TTIImpl->prefersVectorizedAddressing();
428 }
429 
430 InstructionCost TargetTransformInfo::getScalingFactorCost(
431     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
432     int64_t Scale, unsigned AddrSpace) const {
433   InstructionCost Cost = TTIImpl->getScalingFactorCost(
434       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
435   assert(Cost >= 0 && "TTI should not produce negative costs!");
436   return Cost;
437 }
438 
439 bool TargetTransformInfo::LSRWithInstrQueries() const {
440   return TTIImpl->LSRWithInstrQueries();
441 }
442 
443 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
444   return TTIImpl->isTruncateFree(Ty1, Ty2);
445 }
446 
447 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
448   return TTIImpl->isProfitableToHoist(I);
449 }
450 
451 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
452 
453 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
454   return TTIImpl->isTypeLegal(Ty);
455 }
456 
457 InstructionCost TargetTransformInfo::getRegUsageForType(Type *Ty) const {
458   return TTIImpl->getRegUsageForType(Ty);
459 }
460 
461 bool TargetTransformInfo::shouldBuildLookupTables() const {
462   return TTIImpl->shouldBuildLookupTables();
463 }
464 
465 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
466     Constant *C) const {
467   return TTIImpl->shouldBuildLookupTablesForConstant(C);
468 }
469 
470 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
471   return TTIImpl->shouldBuildRelLookupTables();
472 }
473 
474 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
475   return TTIImpl->useColdCCForColdCall(F);
476 }
477 
478 InstructionCost
479 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
480                                               const APInt &DemandedElts,
481                                               bool Insert, bool Extract) const {
482   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
483 }
484 
485 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
486     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
487   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
488 }
489 
490 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
491   return TTIImpl->supportsEfficientVectorElementLoadStore();
492 }
493 
494 bool TargetTransformInfo::enableAggressiveInterleaving(
495     bool LoopHasReductions) const {
496   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
497 }
498 
499 TargetTransformInfo::MemCmpExpansionOptions
500 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
501   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
502 }
503 
504 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
505   return TTIImpl->enableInterleavedAccessVectorization();
506 }
507 
508 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
509   return TTIImpl->enableMaskedInterleavedAccessVectorization();
510 }
511 
512 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
513   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
514 }
515 
516 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
517                                                          unsigned BitWidth,
518                                                          unsigned AddressSpace,
519                                                          Align Alignment,
520                                                          bool *Fast) const {
521   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
522                                                  AddressSpace, Alignment, Fast);
523 }
524 
525 TargetTransformInfo::PopcntSupportKind
526 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
527   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
528 }
529 
530 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
531   return TTIImpl->haveFastSqrt(Ty);
532 }
533 
534 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
535   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
536 }
537 
538 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
539   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
540   assert(Cost >= 0 && "TTI should not produce negative costs!");
541   return Cost;
542 }
543 
544 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
545                                                            unsigned Idx,
546                                                            const APInt &Imm,
547                                                            Type *Ty) const {
548   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
549   assert(Cost >= 0 && "TTI should not produce negative costs!");
550   return Cost;
551 }
552 
553 InstructionCost
554 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
555                                    TTI::TargetCostKind CostKind) const {
556   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
557   assert(Cost >= 0 && "TTI should not produce negative costs!");
558   return Cost;
559 }
560 
561 InstructionCost TargetTransformInfo::getIntImmCostInst(
562     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
563     TTI::TargetCostKind CostKind, Instruction *Inst) const {
564   InstructionCost Cost =
565       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
566   assert(Cost >= 0 && "TTI should not produce negative costs!");
567   return Cost;
568 }
569 
570 InstructionCost
571 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
572                                          const APInt &Imm, Type *Ty,
573                                          TTI::TargetCostKind CostKind) const {
574   InstructionCost Cost =
575       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
576   assert(Cost >= 0 && "TTI should not produce negative costs!");
577   return Cost;
578 }
579 
580 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
581   return TTIImpl->getNumberOfRegisters(ClassID);
582 }
583 
584 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
585                                                       Type *Ty) const {
586   return TTIImpl->getRegisterClassForType(Vector, Ty);
587 }
588 
589 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
590   return TTIImpl->getRegisterClassName(ClassID);
591 }
592 
593 TypeSize TargetTransformInfo::getRegisterBitWidth(
594     TargetTransformInfo::RegisterKind K) const {
595   return TTIImpl->getRegisterBitWidth(K);
596 }
597 
598 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
599   return TTIImpl->getMinVectorRegisterBitWidth();
600 }
601 
602 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
603   return TTIImpl->getMaxVScale();
604 }
605 
606 bool TargetTransformInfo::shouldMaximizeVectorBandwidth() const {
607   return TTIImpl->shouldMaximizeVectorBandwidth();
608 }
609 
610 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
611                                                bool IsScalable) const {
612   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
613 }
614 
615 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
616                                            unsigned Opcode) const {
617   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
618 }
619 
620 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
621     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
622   return TTIImpl->shouldConsiderAddressTypePromotion(
623       I, AllowPromotionWithoutCommonHeader);
624 }
625 
626 unsigned TargetTransformInfo::getCacheLineSize() const {
627   return TTIImpl->getCacheLineSize();
628 }
629 
630 llvm::Optional<unsigned>
631 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
632   return TTIImpl->getCacheSize(Level);
633 }
634 
635 llvm::Optional<unsigned>
636 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
637   return TTIImpl->getCacheAssociativity(Level);
638 }
639 
640 unsigned TargetTransformInfo::getPrefetchDistance() const {
641   return TTIImpl->getPrefetchDistance();
642 }
643 
644 unsigned TargetTransformInfo::getMinPrefetchStride(
645     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
646     unsigned NumPrefetches, bool HasCall) const {
647   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
648                                        NumPrefetches, HasCall);
649 }
650 
651 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
652   return TTIImpl->getMaxPrefetchIterationsAhead();
653 }
654 
655 bool TargetTransformInfo::enableWritePrefetching() const {
656   return TTIImpl->enableWritePrefetching();
657 }
658 
659 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
660   return TTIImpl->getMaxInterleaveFactor(VF);
661 }
662 
663 TargetTransformInfo::OperandValueKind
664 TargetTransformInfo::getOperandInfo(const Value *V,
665                                     OperandValueProperties &OpProps) {
666   OperandValueKind OpInfo = OK_AnyValue;
667   OpProps = OP_None;
668 
669   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
670     if (CI->getValue().isPowerOf2())
671       OpProps = OP_PowerOf2;
672     return OK_UniformConstantValue;
673   }
674 
675   // A broadcast shuffle creates a uniform value.
676   // TODO: Add support for non-zero index broadcasts.
677   // TODO: Add support for different source vector width.
678   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
679     if (ShuffleInst->isZeroEltSplat())
680       OpInfo = OK_UniformValue;
681 
682   const Value *Splat = getSplatValue(V);
683 
684   // Check for a splat of a constant or for a non uniform vector of constants
685   // and check if the constant(s) are all powers of two.
686   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
687     OpInfo = OK_NonUniformConstantValue;
688     if (Splat) {
689       OpInfo = OK_UniformConstantValue;
690       if (auto *CI = dyn_cast<ConstantInt>(Splat))
691         if (CI->getValue().isPowerOf2())
692           OpProps = OP_PowerOf2;
693     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
694       OpProps = OP_PowerOf2;
695       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
696         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
697           if (CI->getValue().isPowerOf2())
698             continue;
699         OpProps = OP_None;
700         break;
701       }
702     }
703   }
704 
705   // Check for a splat of a uniform value. This is not loop aware, so return
706   // true only for the obviously uniform cases (argument, globalvalue)
707   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
708     OpInfo = OK_UniformValue;
709 
710   return OpInfo;
711 }
712 
713 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
714     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
715     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
716     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
717     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
718   InstructionCost Cost =
719       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
720                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
721   assert(Cost >= 0 && "TTI should not produce negative costs!");
722   return Cost;
723 }
724 
725 InstructionCost TargetTransformInfo::getShuffleCost(ShuffleKind Kind,
726                                                     VectorType *Ty,
727                                                     ArrayRef<int> Mask,
728                                                     int Index,
729                                                     VectorType *SubTp) const {
730   InstructionCost Cost = TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp);
731   assert(Cost >= 0 && "TTI should not produce negative costs!");
732   return Cost;
733 }
734 
735 TTI::CastContextHint
736 TargetTransformInfo::getCastContextHint(const Instruction *I) {
737   if (!I)
738     return CastContextHint::None;
739 
740   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
741                              unsigned GatScatOp) {
742     const Instruction *I = dyn_cast<Instruction>(V);
743     if (!I)
744       return CastContextHint::None;
745 
746     if (I->getOpcode() == LdStOp)
747       return CastContextHint::Normal;
748 
749     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
750       if (II->getIntrinsicID() == MaskedOp)
751         return TTI::CastContextHint::Masked;
752       if (II->getIntrinsicID() == GatScatOp)
753         return TTI::CastContextHint::GatherScatter;
754     }
755 
756     return TTI::CastContextHint::None;
757   };
758 
759   switch (I->getOpcode()) {
760   case Instruction::ZExt:
761   case Instruction::SExt:
762   case Instruction::FPExt:
763     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
764                             Intrinsic::masked_load, Intrinsic::masked_gather);
765   case Instruction::Trunc:
766   case Instruction::FPTrunc:
767     if (I->hasOneUse())
768       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
769                               Intrinsic::masked_store,
770                               Intrinsic::masked_scatter);
771     break;
772   default:
773     return CastContextHint::None;
774   }
775 
776   return TTI::CastContextHint::None;
777 }
778 
779 InstructionCost TargetTransformInfo::getCastInstrCost(
780     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
781     TTI::TargetCostKind CostKind, const Instruction *I) const {
782   assert((I == nullptr || I->getOpcode() == Opcode) &&
783          "Opcode should reflect passed instruction.");
784   InstructionCost Cost =
785       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
786   assert(Cost >= 0 && "TTI should not produce negative costs!");
787   return Cost;
788 }
789 
790 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
791     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
792   InstructionCost Cost =
793       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
794   assert(Cost >= 0 && "TTI should not produce negative costs!");
795   return Cost;
796 }
797 
798 InstructionCost TargetTransformInfo::getCFInstrCost(
799     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
800   assert((I == nullptr || I->getOpcode() == Opcode) &&
801          "Opcode should reflect passed instruction.");
802   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
803   assert(Cost >= 0 && "TTI should not produce negative costs!");
804   return Cost;
805 }
806 
807 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
808     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
809     TTI::TargetCostKind CostKind, const Instruction *I) const {
810   assert((I == nullptr || I->getOpcode() == Opcode) &&
811          "Opcode should reflect passed instruction.");
812   InstructionCost Cost =
813       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
814   assert(Cost >= 0 && "TTI should not produce negative costs!");
815   return Cost;
816 }
817 
818 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
819                                                         Type *Val,
820                                                         unsigned Index) const {
821   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
822   assert(Cost >= 0 && "TTI should not produce negative costs!");
823   return Cost;
824 }
825 
826 InstructionCost TargetTransformInfo::getMemoryOpCost(
827     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
828     TTI::TargetCostKind CostKind, const Instruction *I) const {
829   assert((I == nullptr || I->getOpcode() == Opcode) &&
830          "Opcode should reflect passed instruction.");
831   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
832                                                   AddressSpace, CostKind, I);
833   assert(Cost >= 0 && "TTI should not produce negative costs!");
834   return Cost;
835 }
836 
837 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
838     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
839     TTI::TargetCostKind CostKind) const {
840   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
841                                                         AddressSpace, CostKind);
842   assert(Cost >= 0 && "TTI should not produce negative costs!");
843   return Cost;
844 }
845 
846 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
847     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
848     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
849   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
850       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
851   assert(Cost >= 0 && "TTI should not produce negative costs!");
852   return Cost;
853 }
854 
855 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
856     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
857     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
858     bool UseMaskForCond, bool UseMaskForGaps) const {
859   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
860       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
861       UseMaskForCond, UseMaskForGaps);
862   assert(Cost >= 0 && "TTI should not produce negative costs!");
863   return Cost;
864 }
865 
866 InstructionCost
867 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
868                                            TTI::TargetCostKind CostKind) const {
869   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
870   assert(Cost >= 0 && "TTI should not produce negative costs!");
871   return Cost;
872 }
873 
874 InstructionCost
875 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
876                                       ArrayRef<Type *> Tys,
877                                       TTI::TargetCostKind CostKind) const {
878   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
879   assert(Cost >= 0 && "TTI should not produce negative costs!");
880   return Cost;
881 }
882 
883 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
884   return TTIImpl->getNumberOfParts(Tp);
885 }
886 
887 InstructionCost
888 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
889                                                const SCEV *Ptr) const {
890   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
891   assert(Cost >= 0 && "TTI should not produce negative costs!");
892   return Cost;
893 }
894 
895 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
896   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
897   assert(Cost >= 0 && "TTI should not produce negative costs!");
898   return Cost;
899 }
900 
901 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
902     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
903     TTI::TargetCostKind CostKind) const {
904   InstructionCost Cost =
905       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
906   assert(Cost >= 0 && "TTI should not produce negative costs!");
907   return Cost;
908 }
909 
910 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
911     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
912     TTI::TargetCostKind CostKind) const {
913   InstructionCost Cost =
914       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
915   assert(Cost >= 0 && "TTI should not produce negative costs!");
916   return Cost;
917 }
918 
919 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
920     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
921     TTI::TargetCostKind CostKind) const {
922   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
923                                               CostKind);
924 }
925 
926 InstructionCost
927 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
928   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
929 }
930 
931 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
932                                              MemIntrinsicInfo &Info) const {
933   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
934 }
935 
936 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
937   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
938 }
939 
940 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
941     IntrinsicInst *Inst, Type *ExpectedType) const {
942   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
943 }
944 
945 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
946     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
947     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
948   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
949                                             DestAddrSpace, SrcAlign, DestAlign);
950 }
951 
952 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
953     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
954     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
955     unsigned SrcAlign, unsigned DestAlign) const {
956   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
957                                              SrcAddrSpace, DestAddrSpace,
958                                              SrcAlign, DestAlign);
959 }
960 
961 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
962                                               const Function *Callee) const {
963   return TTIImpl->areInlineCompatible(Caller, Callee);
964 }
965 
966 bool TargetTransformInfo::areFunctionArgsABICompatible(
967     const Function *Caller, const Function *Callee,
968     SmallPtrSetImpl<Argument *> &Args) const {
969   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
970 }
971 
972 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
973                                              Type *Ty) const {
974   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
975 }
976 
977 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
978                                               Type *Ty) const {
979   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
980 }
981 
982 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
983   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
984 }
985 
986 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
987   return TTIImpl->isLegalToVectorizeLoad(LI);
988 }
989 
990 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
991   return TTIImpl->isLegalToVectorizeStore(SI);
992 }
993 
994 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
995     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
996   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
997                                               AddrSpace);
998 }
999 
1000 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1001     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1002   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1003                                                AddrSpace);
1004 }
1005 
1006 bool TargetTransformInfo::isLegalToVectorizeReduction(
1007     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1008   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1009 }
1010 
1011 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1012   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1013 }
1014 
1015 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1016                                                   unsigned LoadSize,
1017                                                   unsigned ChainSizeInBytes,
1018                                                   VectorType *VecTy) const {
1019   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1020 }
1021 
1022 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1023                                                    unsigned StoreSize,
1024                                                    unsigned ChainSizeInBytes,
1025                                                    VectorType *VecTy) const {
1026   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1027 }
1028 
1029 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1030                                                 ReductionFlags Flags) const {
1031   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1032 }
1033 
1034 bool TargetTransformInfo::preferPredicatedReductionSelect(
1035     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1036   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1037 }
1038 
1039 TargetTransformInfo::VPLegalization
1040 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1041   return TTIImpl->getVPLegalizationStrategy(VPI);
1042 }
1043 
1044 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1045   return TTIImpl->shouldExpandReduction(II);
1046 }
1047 
1048 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1049   return TTIImpl->getGISelRematGlobalCost();
1050 }
1051 
1052 bool TargetTransformInfo::supportsScalableVectors() const {
1053   return TTIImpl->supportsScalableVectors();
1054 }
1055 
1056 bool TargetTransformInfo::hasActiveVectorLength() const {
1057   return TTIImpl->hasActiveVectorLength();
1058 }
1059 
1060 InstructionCost
1061 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1062   return TTIImpl->getInstructionLatency(I);
1063 }
1064 
1065 InstructionCost
1066 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1067   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1068 
1069   switch (I->getOpcode()) {
1070   case Instruction::GetElementPtr:
1071   case Instruction::Ret:
1072   case Instruction::PHI:
1073   case Instruction::Br:
1074   case Instruction::Add:
1075   case Instruction::FAdd:
1076   case Instruction::Sub:
1077   case Instruction::FSub:
1078   case Instruction::Mul:
1079   case Instruction::FMul:
1080   case Instruction::UDiv:
1081   case Instruction::SDiv:
1082   case Instruction::FDiv:
1083   case Instruction::URem:
1084   case Instruction::SRem:
1085   case Instruction::FRem:
1086   case Instruction::Shl:
1087   case Instruction::LShr:
1088   case Instruction::AShr:
1089   case Instruction::And:
1090   case Instruction::Or:
1091   case Instruction::Xor:
1092   case Instruction::FNeg:
1093   case Instruction::Select:
1094   case Instruction::ICmp:
1095   case Instruction::FCmp:
1096   case Instruction::Store:
1097   case Instruction::Load:
1098   case Instruction::ZExt:
1099   case Instruction::SExt:
1100   case Instruction::FPToUI:
1101   case Instruction::FPToSI:
1102   case Instruction::FPExt:
1103   case Instruction::PtrToInt:
1104   case Instruction::IntToPtr:
1105   case Instruction::SIToFP:
1106   case Instruction::UIToFP:
1107   case Instruction::Trunc:
1108   case Instruction::FPTrunc:
1109   case Instruction::BitCast:
1110   case Instruction::AddrSpaceCast:
1111   case Instruction::ExtractElement:
1112   case Instruction::InsertElement:
1113   case Instruction::ExtractValue:
1114   case Instruction::ShuffleVector:
1115   case Instruction::Call:
1116   case Instruction::Switch:
1117     return getUserCost(I, CostKind);
1118   default:
1119     // We don't have any information on this instruction.
1120     return -1;
1121   }
1122 }
1123 
1124 TargetTransformInfo::Concept::~Concept() {}
1125 
1126 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1127 
1128 TargetIRAnalysis::TargetIRAnalysis(
1129     std::function<Result(const Function &)> TTICallback)
1130     : TTICallback(std::move(TTICallback)) {}
1131 
1132 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1133                                                FunctionAnalysisManager &) {
1134   return TTICallback(F);
1135 }
1136 
1137 AnalysisKey TargetIRAnalysis::Key;
1138 
1139 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1140   return Result(F.getParent()->getDataLayout());
1141 }
1142 
1143 // Register the basic pass.
1144 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1145                 "Target Transform Information", false, true)
1146 char TargetTransformInfoWrapperPass::ID = 0;
1147 
1148 void TargetTransformInfoWrapperPass::anchor() {}
1149 
1150 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1151     : ImmutablePass(ID) {
1152   initializeTargetTransformInfoWrapperPassPass(
1153       *PassRegistry::getPassRegistry());
1154 }
1155 
1156 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1157     TargetIRAnalysis TIRA)
1158     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1159   initializeTargetTransformInfoWrapperPassPass(
1160       *PassRegistry::getPassRegistry());
1161 }
1162 
1163 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1164   FunctionAnalysisManager DummyFAM;
1165   TTI = TIRA.run(F, DummyFAM);
1166   return *TTI;
1167 }
1168 
1169 ImmutablePass *
1170 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1171   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1172 }
1173