1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 30 cl::Hidden, 31 cl::desc("Recognize reduction patterns.")); 32 33 namespace { 34 /// \brief No-op implementation of the TTI interface using the utility base 35 /// classes. 36 /// 37 /// This is used when no target specific information is available. 38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 39 explicit NoTTIImpl(const DataLayout &DL) 40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 41 }; 42 } 43 44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 46 47 TargetTransformInfo::~TargetTransformInfo() {} 48 49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 50 : TTIImpl(std::move(Arg.TTIImpl)) {} 51 52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 53 TTIImpl = std::move(RHS.TTIImpl); 54 return *this; 55 } 56 57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 58 Type *OpTy) const { 59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 60 assert(Cost >= 0 && "TTI should not produce negative costs!"); 61 return Cost; 62 } 63 64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments) const { 72 int Cost = TTIImpl->getCallCost(F, Arguments); 73 assert(Cost >= 0 && "TTI should not produce negative costs!"); 74 return Cost; 75 } 76 77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 78 return TTIImpl->getInliningThresholdMultiplier(); 79 } 80 81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 82 ArrayRef<const Value *> Operands) const { 83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 84 } 85 86 int TargetTransformInfo::getExtCost(const Instruction *I, 87 const Value *Src) const { 88 return TTIImpl->getExtCost(I, Src); 89 } 90 91 int TargetTransformInfo::getIntrinsicCost( 92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 94 assert(Cost >= 0 && "TTI should not produce negative costs!"); 95 return Cost; 96 } 97 98 unsigned 99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 100 unsigned &JTSize) const { 101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 102 } 103 104 int TargetTransformInfo::getUserCost(const User *U, 105 ArrayRef<const Value *> Operands) const { 106 int Cost = TTIImpl->getUserCost(U, Operands); 107 assert(Cost >= 0 && "TTI should not produce negative costs!"); 108 return Cost; 109 } 110 111 bool TargetTransformInfo::hasBranchDivergence() const { 112 return TTIImpl->hasBranchDivergence(); 113 } 114 115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 116 return TTIImpl->isSourceOfDivergence(V); 117 } 118 119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 120 return TTIImpl->isAlwaysUniform(V); 121 } 122 123 unsigned TargetTransformInfo::getFlatAddressSpace() const { 124 return TTIImpl->getFlatAddressSpace(); 125 } 126 127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 128 return TTIImpl->isLoweredToCall(F); 129 } 130 131 void TargetTransformInfo::getUnrollingPreferences( 132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 133 return TTIImpl->getUnrollingPreferences(L, SE, UP); 134 } 135 136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 137 return TTIImpl->isLegalAddImmediate(Imm); 138 } 139 140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 141 return TTIImpl->isLegalICmpImmediate(Imm); 142 } 143 144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 145 int64_t BaseOffset, 146 bool HasBaseReg, 147 int64_t Scale, 148 unsigned AddrSpace, 149 Instruction *I) const { 150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 151 Scale, AddrSpace, I); 152 } 153 154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 155 return TTIImpl->isLSRCostLess(C1, C2); 156 } 157 158 bool TargetTransformInfo::canMacroFuseCmp() const { 159 return TTIImpl->canMacroFuseCmp(); 160 } 161 162 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 163 return TTIImpl->isLegalMaskedStore(DataType); 164 } 165 166 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 167 return TTIImpl->isLegalMaskedLoad(DataType); 168 } 169 170 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 171 return TTIImpl->isLegalMaskedGather(DataType); 172 } 173 174 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 175 return TTIImpl->isLegalMaskedScatter(DataType); 176 } 177 178 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 179 return TTIImpl->hasDivRemOp(DataType, IsSigned); 180 } 181 182 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 183 unsigned AddrSpace) const { 184 return TTIImpl->hasVolatileVariant(I, AddrSpace); 185 } 186 187 bool TargetTransformInfo::prefersVectorizedAddressing() const { 188 return TTIImpl->prefersVectorizedAddressing(); 189 } 190 191 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 192 int64_t BaseOffset, 193 bool HasBaseReg, 194 int64_t Scale, 195 unsigned AddrSpace) const { 196 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 197 Scale, AddrSpace); 198 assert(Cost >= 0 && "TTI should not produce negative costs!"); 199 return Cost; 200 } 201 202 bool TargetTransformInfo::LSRWithInstrQueries() const { 203 return TTIImpl->LSRWithInstrQueries(); 204 } 205 206 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 207 return TTIImpl->isTruncateFree(Ty1, Ty2); 208 } 209 210 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 211 return TTIImpl->isProfitableToHoist(I); 212 } 213 214 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 215 return TTIImpl->isTypeLegal(Ty); 216 } 217 218 unsigned TargetTransformInfo::getJumpBufAlignment() const { 219 return TTIImpl->getJumpBufAlignment(); 220 } 221 222 unsigned TargetTransformInfo::getJumpBufSize() const { 223 return TTIImpl->getJumpBufSize(); 224 } 225 226 bool TargetTransformInfo::shouldBuildLookupTables() const { 227 return TTIImpl->shouldBuildLookupTables(); 228 } 229 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 230 return TTIImpl->shouldBuildLookupTablesForConstant(C); 231 } 232 233 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 234 return TTIImpl->useColdCCForColdCall(F); 235 } 236 237 unsigned TargetTransformInfo:: 238 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 239 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 240 } 241 242 unsigned TargetTransformInfo:: 243 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 244 unsigned VF) const { 245 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 246 } 247 248 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 249 return TTIImpl->supportsEfficientVectorElementLoadStore(); 250 } 251 252 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 253 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 254 } 255 256 const TargetTransformInfo::MemCmpExpansionOptions * 257 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 258 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 259 } 260 261 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 262 return TTIImpl->enableInterleavedAccessVectorization(); 263 } 264 265 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 266 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 267 } 268 269 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 270 unsigned BitWidth, 271 unsigned AddressSpace, 272 unsigned Alignment, 273 bool *Fast) const { 274 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 275 Alignment, Fast); 276 } 277 278 TargetTransformInfo::PopcntSupportKind 279 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 280 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 281 } 282 283 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 284 return TTIImpl->haveFastSqrt(Ty); 285 } 286 287 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 288 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 289 } 290 291 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 292 int Cost = TTIImpl->getFPOpCost(Ty); 293 assert(Cost >= 0 && "TTI should not produce negative costs!"); 294 return Cost; 295 } 296 297 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 298 const APInt &Imm, 299 Type *Ty) const { 300 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 301 assert(Cost >= 0 && "TTI should not produce negative costs!"); 302 return Cost; 303 } 304 305 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 306 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 307 assert(Cost >= 0 && "TTI should not produce negative costs!"); 308 return Cost; 309 } 310 311 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 312 const APInt &Imm, Type *Ty) const { 313 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 314 assert(Cost >= 0 && "TTI should not produce negative costs!"); 315 return Cost; 316 } 317 318 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 319 const APInt &Imm, Type *Ty) const { 320 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 321 assert(Cost >= 0 && "TTI should not produce negative costs!"); 322 return Cost; 323 } 324 325 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 326 return TTIImpl->getNumberOfRegisters(Vector); 327 } 328 329 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 330 return TTIImpl->getRegisterBitWidth(Vector); 331 } 332 333 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 334 return TTIImpl->getMinVectorRegisterBitWidth(); 335 } 336 337 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 338 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 339 return TTIImpl->shouldConsiderAddressTypePromotion( 340 I, AllowPromotionWithoutCommonHeader); 341 } 342 343 unsigned TargetTransformInfo::getCacheLineSize() const { 344 return TTIImpl->getCacheLineSize(); 345 } 346 347 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 348 const { 349 return TTIImpl->getCacheSize(Level); 350 } 351 352 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 353 CacheLevel Level) const { 354 return TTIImpl->getCacheAssociativity(Level); 355 } 356 357 unsigned TargetTransformInfo::getPrefetchDistance() const { 358 return TTIImpl->getPrefetchDistance(); 359 } 360 361 unsigned TargetTransformInfo::getMinPrefetchStride() const { 362 return TTIImpl->getMinPrefetchStride(); 363 } 364 365 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 366 return TTIImpl->getMaxPrefetchIterationsAhead(); 367 } 368 369 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 370 return TTIImpl->getMaxInterleaveFactor(VF); 371 } 372 373 int TargetTransformInfo::getArithmeticInstrCost( 374 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 375 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 376 OperandValueProperties Opd2PropInfo, 377 ArrayRef<const Value *> Args) const { 378 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 379 Opd1PropInfo, Opd2PropInfo, Args); 380 assert(Cost >= 0 && "TTI should not produce negative costs!"); 381 return Cost; 382 } 383 384 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 385 Type *SubTp) const { 386 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 387 assert(Cost >= 0 && "TTI should not produce negative costs!"); 388 return Cost; 389 } 390 391 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 392 Type *Src, const Instruction *I) const { 393 assert ((I == nullptr || I->getOpcode() == Opcode) && 394 "Opcode should reflect passed instruction."); 395 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 396 assert(Cost >= 0 && "TTI should not produce negative costs!"); 397 return Cost; 398 } 399 400 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 401 VectorType *VecTy, 402 unsigned Index) const { 403 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 404 assert(Cost >= 0 && "TTI should not produce negative costs!"); 405 return Cost; 406 } 407 408 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 409 int Cost = TTIImpl->getCFInstrCost(Opcode); 410 assert(Cost >= 0 && "TTI should not produce negative costs!"); 411 return Cost; 412 } 413 414 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 415 Type *CondTy, const Instruction *I) const { 416 assert ((I == nullptr || I->getOpcode() == Opcode) && 417 "Opcode should reflect passed instruction."); 418 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 419 assert(Cost >= 0 && "TTI should not produce negative costs!"); 420 return Cost; 421 } 422 423 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 424 unsigned Index) const { 425 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 426 assert(Cost >= 0 && "TTI should not produce negative costs!"); 427 return Cost; 428 } 429 430 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 431 unsigned Alignment, 432 unsigned AddressSpace, 433 const Instruction *I) const { 434 assert ((I == nullptr || I->getOpcode() == Opcode) && 435 "Opcode should reflect passed instruction."); 436 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 437 assert(Cost >= 0 && "TTI should not produce negative costs!"); 438 return Cost; 439 } 440 441 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 442 unsigned Alignment, 443 unsigned AddressSpace) const { 444 int Cost = 445 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 446 assert(Cost >= 0 && "TTI should not produce negative costs!"); 447 return Cost; 448 } 449 450 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 451 Value *Ptr, bool VariableMask, 452 unsigned Alignment) const { 453 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 454 Alignment); 455 assert(Cost >= 0 && "TTI should not produce negative costs!"); 456 return Cost; 457 } 458 459 int TargetTransformInfo::getInterleavedMemoryOpCost( 460 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 461 unsigned Alignment, unsigned AddressSpace) const { 462 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 463 Alignment, AddressSpace); 464 assert(Cost >= 0 && "TTI should not produce negative costs!"); 465 return Cost; 466 } 467 468 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 469 ArrayRef<Type *> Tys, FastMathFlags FMF, 470 unsigned ScalarizationCostPassed) const { 471 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 472 ScalarizationCostPassed); 473 assert(Cost >= 0 && "TTI should not produce negative costs!"); 474 return Cost; 475 } 476 477 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 478 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 479 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 480 assert(Cost >= 0 && "TTI should not produce negative costs!"); 481 return Cost; 482 } 483 484 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 485 ArrayRef<Type *> Tys) const { 486 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 487 assert(Cost >= 0 && "TTI should not produce negative costs!"); 488 return Cost; 489 } 490 491 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 492 return TTIImpl->getNumberOfParts(Tp); 493 } 494 495 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 496 ScalarEvolution *SE, 497 const SCEV *Ptr) const { 498 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 499 assert(Cost >= 0 && "TTI should not produce negative costs!"); 500 return Cost; 501 } 502 503 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 504 bool IsPairwiseForm) const { 505 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 506 assert(Cost >= 0 && "TTI should not produce negative costs!"); 507 return Cost; 508 } 509 510 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 511 bool IsPairwiseForm, 512 bool IsUnsigned) const { 513 int Cost = 514 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 515 assert(Cost >= 0 && "TTI should not produce negative costs!"); 516 return Cost; 517 } 518 519 unsigned 520 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 521 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 522 } 523 524 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 525 MemIntrinsicInfo &Info) const { 526 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 527 } 528 529 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 530 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 531 } 532 533 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 534 IntrinsicInst *Inst, Type *ExpectedType) const { 535 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 536 } 537 538 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 539 Value *Length, 540 unsigned SrcAlign, 541 unsigned DestAlign) const { 542 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 543 DestAlign); 544 } 545 546 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 547 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 548 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 549 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 550 SrcAlign, DestAlign); 551 } 552 553 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 554 const Function *Callee) const { 555 return TTIImpl->areInlineCompatible(Caller, Callee); 556 } 557 558 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 559 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 560 } 561 562 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 563 return TTIImpl->isLegalToVectorizeLoad(LI); 564 } 565 566 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 567 return TTIImpl->isLegalToVectorizeStore(SI); 568 } 569 570 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 571 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 572 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 573 AddrSpace); 574 } 575 576 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 577 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 578 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 579 AddrSpace); 580 } 581 582 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 583 unsigned LoadSize, 584 unsigned ChainSizeInBytes, 585 VectorType *VecTy) const { 586 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 587 } 588 589 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 590 unsigned StoreSize, 591 unsigned ChainSizeInBytes, 592 VectorType *VecTy) const { 593 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 594 } 595 596 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 597 Type *Ty, ReductionFlags Flags) const { 598 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 599 } 600 601 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 602 return TTIImpl->shouldExpandReduction(II); 603 } 604 605 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 606 return TTIImpl->getInstructionLatency(I); 607 } 608 609 static bool isReverseVectorMask(ArrayRef<int> Mask) { 610 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 611 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 612 return false; 613 return true; 614 } 615 616 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 617 bool Vec0 = false; 618 bool Vec1 = false; 619 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 620 if (Mask[i] >= 0) { 621 if ((unsigned)Mask[i] >= NumVecElts) 622 Vec1 = true; 623 else 624 Vec0 = true; 625 } 626 } 627 return !(Vec0 && Vec1); 628 } 629 630 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 631 for (unsigned i = 0; i < Mask.size(); ++i) 632 if (Mask[i] > 0) 633 return false; 634 return true; 635 } 636 637 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 638 bool isAlternate = true; 639 unsigned MaskSize = Mask.size(); 640 641 // Example: shufflevector A, B, <0,5,2,7> 642 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 643 if (Mask[i] < 0) 644 continue; 645 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 646 } 647 648 if (isAlternate) 649 return true; 650 651 isAlternate = true; 652 // Example: shufflevector A, B, <4,1,6,3> 653 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 654 if (Mask[i] < 0) 655 continue; 656 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 657 } 658 659 return isAlternate; 660 } 661 662 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 663 TargetTransformInfo::OperandValueKind OpInfo = 664 TargetTransformInfo::OK_AnyValue; 665 666 // Check for a splat of a constant or for a non uniform vector of constants. 667 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 668 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 669 if (cast<Constant>(V)->getSplatValue() != nullptr) 670 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 671 } 672 673 // Check for a splat of a uniform value. This is not loop aware, so return 674 // true only for the obviously uniform cases (argument, globalvalue) 675 const Value *Splat = getSplatValue(V); 676 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 677 OpInfo = TargetTransformInfo::OK_UniformValue; 678 679 return OpInfo; 680 } 681 682 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 683 unsigned Level) { 684 // We don't need a shuffle if we just want to have element 0 in position 0 of 685 // the vector. 686 if (!SI && Level == 0 && IsLeft) 687 return true; 688 else if (!SI) 689 return false; 690 691 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 692 693 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 694 // we look at the left or right side. 695 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 696 Mask[i] = val; 697 698 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 699 return Mask == ActualMask; 700 } 701 702 namespace { 703 /// Kind of the reduction data. 704 enum ReductionKind { 705 RK_None, /// Not a reduction. 706 RK_Arithmetic, /// Binary reduction data. 707 RK_MinMax, /// Min/max reduction data. 708 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 709 }; 710 /// Contains opcode + LHS/RHS parts of the reduction operations. 711 struct ReductionData { 712 ReductionData() = delete; 713 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 714 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 715 assert(Kind != RK_None && "expected binary or min/max reduction only."); 716 } 717 unsigned Opcode = 0; 718 Value *LHS = nullptr; 719 Value *RHS = nullptr; 720 ReductionKind Kind = RK_None; 721 bool hasSameData(ReductionData &RD) const { 722 return Kind == RD.Kind && Opcode == RD.Opcode; 723 } 724 }; 725 } // namespace 726 727 static Optional<ReductionData> getReductionData(Instruction *I) { 728 Value *L, *R; 729 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 730 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 731 if (auto *SI = dyn_cast<SelectInst>(I)) { 732 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 733 m_SMax(m_Value(L), m_Value(R)).match(SI) || 734 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 735 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 736 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 737 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 738 auto *CI = cast<CmpInst>(SI->getCondition()); 739 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 740 } 741 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 742 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 743 auto *CI = cast<CmpInst>(SI->getCondition()); 744 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 745 } 746 } 747 return llvm::None; 748 } 749 750 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 751 unsigned Level, 752 unsigned NumLevels) { 753 // Match one level of pairwise operations. 754 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 755 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 756 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 757 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 758 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 759 if (!I) 760 return RK_None; 761 762 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 763 764 Optional<ReductionData> RD = getReductionData(I); 765 if (!RD) 766 return RK_None; 767 768 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 769 if (!LS && Level) 770 return RK_None; 771 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 772 if (!RS && Level) 773 return RK_None; 774 775 // On level 0 we can omit one shufflevector instruction. 776 if (!Level && !RS && !LS) 777 return RK_None; 778 779 // Shuffle inputs must match. 780 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 781 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 782 Value *NextLevelOp = nullptr; 783 if (NextLevelOpR && NextLevelOpL) { 784 // If we have two shuffles their operands must match. 785 if (NextLevelOpL != NextLevelOpR) 786 return RK_None; 787 788 NextLevelOp = NextLevelOpL; 789 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 790 // On the first level we can omit the shufflevector <0, undef,...>. So the 791 // input to the other shufflevector <1, undef> must match with one of the 792 // inputs to the current binary operation. 793 // Example: 794 // %NextLevelOpL = shufflevector %R, <1, undef ...> 795 // %BinOp = fadd %NextLevelOpL, %R 796 if (NextLevelOpL && NextLevelOpL != RD->RHS) 797 return RK_None; 798 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 799 return RK_None; 800 801 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 802 } else 803 return RK_None; 804 805 // Check that the next levels binary operation exists and matches with the 806 // current one. 807 if (Level + 1 != NumLevels) { 808 Optional<ReductionData> NextLevelRD = 809 getReductionData(cast<Instruction>(NextLevelOp)); 810 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 811 return RK_None; 812 } 813 814 // Shuffle mask for pairwise operation must match. 815 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 816 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 817 return RK_None; 818 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 819 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 820 return RK_None; 821 } else { 822 return RK_None; 823 } 824 825 if (++Level == NumLevels) 826 return RD->Kind; 827 828 // Match next level. 829 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 830 NumLevels); 831 } 832 833 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 834 unsigned &Opcode, Type *&Ty) { 835 if (!EnableReduxCost) 836 return RK_None; 837 838 // Need to extract the first element. 839 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 840 unsigned Idx = ~0u; 841 if (CI) 842 Idx = CI->getZExtValue(); 843 if (Idx != 0) 844 return RK_None; 845 846 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 847 if (!RdxStart) 848 return RK_None; 849 Optional<ReductionData> RD = getReductionData(RdxStart); 850 if (!RD) 851 return RK_None; 852 853 Type *VecTy = RdxStart->getType(); 854 unsigned NumVecElems = VecTy->getVectorNumElements(); 855 if (!isPowerOf2_32(NumVecElems)) 856 return RK_None; 857 858 // We look for a sequence of shuffle,shuffle,add triples like the following 859 // that builds a pairwise reduction tree. 860 // 861 // (X0, X1, X2, X3) 862 // (X0 + X1, X2 + X3, undef, undef) 863 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 864 // 865 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 866 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 867 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 868 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 869 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 870 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 871 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 872 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 873 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 874 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 875 // %r = extractelement <4 x float> %bin.rdx8, i32 0 876 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 877 RK_None) 878 return RK_None; 879 880 Opcode = RD->Opcode; 881 Ty = VecTy; 882 883 return RD->Kind; 884 } 885 886 static std::pair<Value *, ShuffleVectorInst *> 887 getShuffleAndOtherOprd(Value *L, Value *R) { 888 ShuffleVectorInst *S = nullptr; 889 890 if ((S = dyn_cast<ShuffleVectorInst>(L))) 891 return std::make_pair(R, S); 892 893 S = dyn_cast<ShuffleVectorInst>(R); 894 return std::make_pair(L, S); 895 } 896 897 static ReductionKind 898 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 899 unsigned &Opcode, Type *&Ty) { 900 if (!EnableReduxCost) 901 return RK_None; 902 903 // Need to extract the first element. 904 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 905 unsigned Idx = ~0u; 906 if (CI) 907 Idx = CI->getZExtValue(); 908 if (Idx != 0) 909 return RK_None; 910 911 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 912 if (!RdxStart) 913 return RK_None; 914 Optional<ReductionData> RD = getReductionData(RdxStart); 915 if (!RD) 916 return RK_None; 917 918 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 919 unsigned NumVecElems = VecTy->getVectorNumElements(); 920 if (!isPowerOf2_32(NumVecElems)) 921 return RK_None; 922 923 // We look for a sequence of shuffles and adds like the following matching one 924 // fadd, shuffle vector pair at a time. 925 // 926 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 927 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 928 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 929 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 930 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 931 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 932 // %r = extractelement <4 x float> %bin.rdx8, i32 0 933 934 unsigned MaskStart = 1; 935 Instruction *RdxOp = RdxStart; 936 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 937 unsigned NumVecElemsRemain = NumVecElems; 938 while (NumVecElemsRemain - 1) { 939 // Check for the right reduction operation. 940 if (!RdxOp) 941 return RK_None; 942 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 943 if (!RDLevel || !RDLevel->hasSameData(*RD)) 944 return RK_None; 945 946 Value *NextRdxOp; 947 ShuffleVectorInst *Shuffle; 948 std::tie(NextRdxOp, Shuffle) = 949 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 950 951 // Check the current reduction operation and the shuffle use the same value. 952 if (Shuffle == nullptr) 953 return RK_None; 954 if (Shuffle->getOperand(0) != NextRdxOp) 955 return RK_None; 956 957 // Check that shuffle masks matches. 958 for (unsigned j = 0; j != MaskStart; ++j) 959 ShuffleMask[j] = MaskStart + j; 960 // Fill the rest of the mask with -1 for undef. 961 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 962 963 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 964 if (ShuffleMask != Mask) 965 return RK_None; 966 967 RdxOp = dyn_cast<Instruction>(NextRdxOp); 968 NumVecElemsRemain /= 2; 969 MaskStart *= 2; 970 } 971 972 Opcode = RD->Opcode; 973 Ty = VecTy; 974 return RD->Kind; 975 } 976 977 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 978 switch (I->getOpcode()) { 979 case Instruction::GetElementPtr: 980 return getUserCost(I); 981 982 case Instruction::Ret: 983 case Instruction::PHI: 984 case Instruction::Br: { 985 return getCFInstrCost(I->getOpcode()); 986 } 987 case Instruction::Add: 988 case Instruction::FAdd: 989 case Instruction::Sub: 990 case Instruction::FSub: 991 case Instruction::Mul: 992 case Instruction::FMul: 993 case Instruction::UDiv: 994 case Instruction::SDiv: 995 case Instruction::FDiv: 996 case Instruction::URem: 997 case Instruction::SRem: 998 case Instruction::FRem: 999 case Instruction::Shl: 1000 case Instruction::LShr: 1001 case Instruction::AShr: 1002 case Instruction::And: 1003 case Instruction::Or: 1004 case Instruction::Xor: { 1005 TargetTransformInfo::OperandValueKind Op1VK = 1006 getOperandInfo(I->getOperand(0)); 1007 TargetTransformInfo::OperandValueKind Op2VK = 1008 getOperandInfo(I->getOperand(1)); 1009 SmallVector<const Value*, 2> Operands(I->operand_values()); 1010 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1011 Op2VK, TargetTransformInfo::OP_None, 1012 TargetTransformInfo::OP_None, 1013 Operands); 1014 } 1015 case Instruction::Select: { 1016 const SelectInst *SI = cast<SelectInst>(I); 1017 Type *CondTy = SI->getCondition()->getType(); 1018 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1019 } 1020 case Instruction::ICmp: 1021 case Instruction::FCmp: { 1022 Type *ValTy = I->getOperand(0)->getType(); 1023 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1024 } 1025 case Instruction::Store: { 1026 const StoreInst *SI = cast<StoreInst>(I); 1027 Type *ValTy = SI->getValueOperand()->getType(); 1028 return getMemoryOpCost(I->getOpcode(), ValTy, 1029 SI->getAlignment(), 1030 SI->getPointerAddressSpace(), I); 1031 } 1032 case Instruction::Load: { 1033 const LoadInst *LI = cast<LoadInst>(I); 1034 return getMemoryOpCost(I->getOpcode(), I->getType(), 1035 LI->getAlignment(), 1036 LI->getPointerAddressSpace(), I); 1037 } 1038 case Instruction::ZExt: 1039 case Instruction::SExt: 1040 case Instruction::FPToUI: 1041 case Instruction::FPToSI: 1042 case Instruction::FPExt: 1043 case Instruction::PtrToInt: 1044 case Instruction::IntToPtr: 1045 case Instruction::SIToFP: 1046 case Instruction::UIToFP: 1047 case Instruction::Trunc: 1048 case Instruction::FPTrunc: 1049 case Instruction::BitCast: 1050 case Instruction::AddrSpaceCast: { 1051 Type *SrcTy = I->getOperand(0)->getType(); 1052 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1053 } 1054 case Instruction::ExtractElement: { 1055 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1056 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1057 unsigned Idx = -1; 1058 if (CI) 1059 Idx = CI->getZExtValue(); 1060 1061 // Try to match a reduction sequence (series of shufflevector and vector 1062 // adds followed by a extractelement). 1063 unsigned ReduxOpCode; 1064 Type *ReduxType; 1065 1066 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1067 case RK_Arithmetic: 1068 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1069 /*IsPairwiseForm=*/false); 1070 case RK_MinMax: 1071 return getMinMaxReductionCost( 1072 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1073 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1074 case RK_UnsignedMinMax: 1075 return getMinMaxReductionCost( 1076 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1077 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1078 case RK_None: 1079 break; 1080 } 1081 1082 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1083 case RK_Arithmetic: 1084 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1085 /*IsPairwiseForm=*/true); 1086 case RK_MinMax: 1087 return getMinMaxReductionCost( 1088 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1089 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1090 case RK_UnsignedMinMax: 1091 return getMinMaxReductionCost( 1092 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1093 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1094 case RK_None: 1095 break; 1096 } 1097 1098 return getVectorInstrCost(I->getOpcode(), 1099 EEI->getOperand(0)->getType(), Idx); 1100 } 1101 case Instruction::InsertElement: { 1102 const InsertElementInst * IE = cast<InsertElementInst>(I); 1103 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1104 unsigned Idx = -1; 1105 if (CI) 1106 Idx = CI->getZExtValue(); 1107 return getVectorInstrCost(I->getOpcode(), 1108 IE->getType(), Idx); 1109 } 1110 case Instruction::ShuffleVector: { 1111 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1112 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1113 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1114 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1115 1116 if (NumVecElems == Mask.size()) { 1117 if (isReverseVectorMask(Mask)) 1118 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1119 0, nullptr); 1120 if (isAlternateVectorMask(Mask)) 1121 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1122 VecTypOp0, 0, nullptr); 1123 1124 if (isZeroEltBroadcastVectorMask(Mask)) 1125 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1126 VecTypOp0, 0, nullptr); 1127 1128 if (isSingleSourceVectorMask(Mask)) 1129 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1130 VecTypOp0, 0, nullptr); 1131 1132 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1133 VecTypOp0, 0, nullptr); 1134 } 1135 1136 return -1; 1137 } 1138 case Instruction::Call: 1139 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1140 SmallVector<Value *, 4> Args(II->arg_operands()); 1141 1142 FastMathFlags FMF; 1143 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1144 FMF = FPMO->getFastMathFlags(); 1145 1146 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1147 Args, FMF); 1148 } 1149 return -1; 1150 default: 1151 // We don't have any information on this instruction. 1152 return -1; 1153 } 1154 } 1155 1156 TargetTransformInfo::Concept::~Concept() {} 1157 1158 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1159 1160 TargetIRAnalysis::TargetIRAnalysis( 1161 std::function<Result(const Function &)> TTICallback) 1162 : TTICallback(std::move(TTICallback)) {} 1163 1164 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1165 FunctionAnalysisManager &) { 1166 return TTICallback(F); 1167 } 1168 1169 AnalysisKey TargetIRAnalysis::Key; 1170 1171 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1172 return Result(F.getParent()->getDataLayout()); 1173 } 1174 1175 // Register the basic pass. 1176 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1177 "Target Transform Information", false, true) 1178 char TargetTransformInfoWrapperPass::ID = 0; 1179 1180 void TargetTransformInfoWrapperPass::anchor() {} 1181 1182 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1183 : ImmutablePass(ID) { 1184 initializeTargetTransformInfoWrapperPassPass( 1185 *PassRegistry::getPassRegistry()); 1186 } 1187 1188 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1189 TargetIRAnalysis TIRA) 1190 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1191 initializeTargetTransformInfoWrapperPassPass( 1192 *PassRegistry::getPassRegistry()); 1193 } 1194 1195 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1196 FunctionAnalysisManager DummyFAM; 1197 TTI = TIRA.run(F, DummyFAM); 1198 return *TTI; 1199 } 1200 1201 ImmutablePass * 1202 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1203 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1204 } 1205