1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/TargetTransformInfo.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/Analysis/LoopIterator.h" 12 #include "llvm/Analysis/TargetTransformInfoImpl.h" 13 #include "llvm/IR/CFG.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/Operator.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <utility> 25 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "tti" 30 31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 32 cl::Hidden, 33 cl::desc("Recognize reduction patterns.")); 34 35 namespace { 36 /// No-op implementation of the TTI interface using the utility base 37 /// classes. 38 /// 39 /// This is used when no target specific information is available. 40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 41 explicit NoTTIImpl(const DataLayout &DL) 42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 43 }; 44 } // namespace 45 46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) { 47 // If the loop has irreducible control flow, it can not be converted to 48 // Hardware loop. 49 LoopBlocksRPO RPOT(L); 50 RPOT.perform(&LI); 51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 52 return false; 53 return true; 54 } 55 56 IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) : 57 II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) { 58 59 FunctionType *FTy = I.getCalledFunction()->getFunctionType(); 60 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 61 Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end()); 62 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 63 FMF = FPMO->getFastMathFlags(); 64 } 65 66 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, CallInst &CI, 67 unsigned Factor) : 68 RetTy(CI.getType()), IID(Id), VF(Factor) { 69 70 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 71 FMF = FPMO->getFastMathFlags(); 72 73 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 74 FunctionType *FTy = 75 CI.getCalledFunction()->getFunctionType(); 76 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 77 } 78 79 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, CallInst &CI, 80 unsigned Factor, 81 unsigned ScalarCost) : 82 RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) { 83 84 if (auto *FPMO = dyn_cast<FPMathOperator>(&CI)) 85 FMF = FPMO->getFastMathFlags(); 86 87 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end()); 88 FunctionType *FTy = 89 CI.getCalledFunction()->getFunctionType(); 90 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end()); 91 } 92 93 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 94 ArrayRef<Type *> Tys, 95 FastMathFlags Flags) : 96 RetTy(RTy), IID(Id), FMF(Flags) { 97 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 98 } 99 100 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 101 ArrayRef<Type *> Tys, 102 FastMathFlags Flags, 103 unsigned ScalarCost) : 104 RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 105 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 106 } 107 108 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 109 ArrayRef<Type *> Tys, 110 FastMathFlags Flags, 111 unsigned ScalarCost, 112 const IntrinsicInst *I) : 113 II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) { 114 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 115 } 116 117 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 118 ArrayRef<Type *> Tys) : 119 RetTy(RTy), IID(Id) { 120 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end()); 121 } 122 123 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty, 124 ArrayRef<Value *> Args) : 125 RetTy(Ty), IID(Id) { 126 127 Arguments.insert(Arguments.begin(), Args.begin(), Args.end()); 128 ParamTys.reserve(Arguments.size()); 129 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) 130 ParamTys.push_back(Arguments[Idx]->getType()); 131 } 132 133 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE, 134 LoopInfo &LI, DominatorTree &DT, 135 bool ForceNestedLoop, 136 bool ForceHardwareLoopPHI) { 137 SmallVector<BasicBlock *, 4> ExitingBlocks; 138 L->getExitingBlocks(ExitingBlocks); 139 140 for (BasicBlock *BB : ExitingBlocks) { 141 // If we pass the updated counter back through a phi, we need to know 142 // which latch the updated value will be coming from. 143 if (!L->isLoopLatch(BB)) { 144 if (ForceHardwareLoopPHI || CounterInReg) 145 continue; 146 } 147 148 const SCEV *EC = SE.getExitCount(L, BB); 149 if (isa<SCEVCouldNotCompute>(EC)) 150 continue; 151 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 152 if (ConstEC->getValue()->isZero()) 153 continue; 154 } else if (!SE.isLoopInvariant(EC, L)) 155 continue; 156 157 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth()) 158 continue; 159 160 // If this exiting block is contained in a nested loop, it is not eligible 161 // for insertion of the branch-and-decrement since the inner loop would 162 // end up messing up the value in the CTR. 163 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop) 164 continue; 165 166 // We now have a loop-invariant count of loop iterations (which is not the 167 // constant zero) for which we know that this loop will not exit via this 168 // existing block. 169 170 // We need to make sure that this block will run on every loop iteration. 171 // For this to be true, we must dominate all blocks with backedges. Such 172 // blocks are in-loop predecessors to the header block. 173 bool NotAlways = false; 174 for (BasicBlock *Pred : predecessors(L->getHeader())) { 175 if (!L->contains(Pred)) 176 continue; 177 178 if (!DT.dominates(BB, Pred)) { 179 NotAlways = true; 180 break; 181 } 182 } 183 184 if (NotAlways) 185 continue; 186 187 // Make sure this blocks ends with a conditional branch. 188 Instruction *TI = BB->getTerminator(); 189 if (!TI) 190 continue; 191 192 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 193 if (!BI->isConditional()) 194 continue; 195 196 ExitBranch = BI; 197 } else 198 continue; 199 200 // Note that this block may not be the loop latch block, even if the loop 201 // has a latch block. 202 ExitBlock = BB; 203 ExitCount = EC; 204 break; 205 } 206 207 if (!ExitBlock) 208 return false; 209 return true; 210 } 211 212 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 213 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 214 215 TargetTransformInfo::~TargetTransformInfo() {} 216 217 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 218 : TTIImpl(std::move(Arg.TTIImpl)) {} 219 220 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 221 TTIImpl = std::move(RHS.TTIImpl); 222 return *this; 223 } 224 225 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 226 return TTIImpl->getInliningThresholdMultiplier(); 227 } 228 229 int TargetTransformInfo::getInlinerVectorBonusPercent() const { 230 return TTIImpl->getInlinerVectorBonusPercent(); 231 } 232 233 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 234 ArrayRef<const Value *> Operands, 235 TTI::TargetCostKind CostKind) const { 236 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind); 237 } 238 239 int TargetTransformInfo::getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 240 ArrayRef<const Value *> Arguments, 241 const User *U, 242 TTI::TargetCostKind CostKind) const { 243 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U, CostKind); 244 assert(Cost >= 0 && "TTI should not produce negative costs!"); 245 return Cost; 246 } 247 248 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters( 249 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, 250 BlockFrequencyInfo *BFI) const { 251 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 252 } 253 254 int TargetTransformInfo::getUserCost(const User *U, 255 ArrayRef<const Value *> Operands, 256 enum TargetCostKind CostKind) const { 257 int Cost = TTIImpl->getUserCost(U, Operands, CostKind); 258 assert(Cost >= 0 && "TTI should not produce negative costs!"); 259 return Cost; 260 } 261 262 bool TargetTransformInfo::hasBranchDivergence() const { 263 return TTIImpl->hasBranchDivergence(); 264 } 265 266 bool TargetTransformInfo::useGPUDivergenceAnalysis() const { 267 return TTIImpl->useGPUDivergenceAnalysis(); 268 } 269 270 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 271 return TTIImpl->isSourceOfDivergence(V); 272 } 273 274 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 275 return TTIImpl->isAlwaysUniform(V); 276 } 277 278 unsigned TargetTransformInfo::getFlatAddressSpace() const { 279 return TTIImpl->getFlatAddressSpace(); 280 } 281 282 bool TargetTransformInfo::collectFlatAddressOperands( 283 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const { 284 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID); 285 } 286 287 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 288 Value *OldV, 289 Value *NewV) const { 290 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 291 } 292 293 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 294 return TTIImpl->isLoweredToCall(F); 295 } 296 297 bool TargetTransformInfo::isHardwareLoopProfitable( 298 Loop *L, ScalarEvolution &SE, AssumptionCache &AC, 299 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const { 300 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 301 } 302 303 bool TargetTransformInfo::preferPredicateOverEpilogue( 304 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 305 TargetLibraryInfo *TLI, DominatorTree *DT, 306 const LoopAccessInfo *LAI) const { 307 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); 308 } 309 310 void TargetTransformInfo::getUnrollingPreferences( 311 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 312 return TTIImpl->getUnrollingPreferences(L, SE, UP); 313 } 314 315 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 316 return TTIImpl->isLegalAddImmediate(Imm); 317 } 318 319 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 320 return TTIImpl->isLegalICmpImmediate(Imm); 321 } 322 323 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 324 int64_t BaseOffset, 325 bool HasBaseReg, int64_t Scale, 326 unsigned AddrSpace, 327 Instruction *I) const { 328 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 329 Scale, AddrSpace, I); 330 } 331 332 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 333 return TTIImpl->isLSRCostLess(C1, C2); 334 } 335 336 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const { 337 return TTIImpl->isProfitableLSRChainElement(I); 338 } 339 340 bool TargetTransformInfo::canMacroFuseCmp() const { 341 return TTIImpl->canMacroFuseCmp(); 342 } 343 344 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI, 345 ScalarEvolution *SE, LoopInfo *LI, 346 DominatorTree *DT, AssumptionCache *AC, 347 TargetLibraryInfo *LibInfo) const { 348 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 349 } 350 351 bool TargetTransformInfo::shouldFavorPostInc() const { 352 return TTIImpl->shouldFavorPostInc(); 353 } 354 355 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const { 356 return TTIImpl->shouldFavorBackedgeIndex(L); 357 } 358 359 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType, 360 Align Alignment) const { 361 return TTIImpl->isLegalMaskedStore(DataType, Alignment); 362 } 363 364 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType, 365 Align Alignment) const { 366 return TTIImpl->isLegalMaskedLoad(DataType, Alignment); 367 } 368 369 bool TargetTransformInfo::isLegalNTStore(Type *DataType, 370 Align Alignment) const { 371 return TTIImpl->isLegalNTStore(DataType, Alignment); 372 } 373 374 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const { 375 return TTIImpl->isLegalNTLoad(DataType, Alignment); 376 } 377 378 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType, 379 Align Alignment) const { 380 return TTIImpl->isLegalMaskedGather(DataType, Alignment); 381 } 382 383 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType, 384 Align Alignment) const { 385 return TTIImpl->isLegalMaskedScatter(DataType, Alignment); 386 } 387 388 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const { 389 return TTIImpl->isLegalMaskedCompressStore(DataType); 390 } 391 392 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const { 393 return TTIImpl->isLegalMaskedExpandLoad(DataType); 394 } 395 396 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 397 return TTIImpl->hasDivRemOp(DataType, IsSigned); 398 } 399 400 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 401 unsigned AddrSpace) const { 402 return TTIImpl->hasVolatileVariant(I, AddrSpace); 403 } 404 405 bool TargetTransformInfo::prefersVectorizedAddressing() const { 406 return TTIImpl->prefersVectorizedAddressing(); 407 } 408 409 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 410 int64_t BaseOffset, 411 bool HasBaseReg, int64_t Scale, 412 unsigned AddrSpace) const { 413 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 414 Scale, AddrSpace); 415 assert(Cost >= 0 && "TTI should not produce negative costs!"); 416 return Cost; 417 } 418 419 bool TargetTransformInfo::LSRWithInstrQueries() const { 420 return TTIImpl->LSRWithInstrQueries(); 421 } 422 423 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 424 return TTIImpl->isTruncateFree(Ty1, Ty2); 425 } 426 427 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 428 return TTIImpl->isProfitableToHoist(I); 429 } 430 431 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 432 433 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 434 return TTIImpl->isTypeLegal(Ty); 435 } 436 437 bool TargetTransformInfo::shouldBuildLookupTables() const { 438 return TTIImpl->shouldBuildLookupTables(); 439 } 440 bool TargetTransformInfo::shouldBuildLookupTablesForConstant( 441 Constant *C) const { 442 return TTIImpl->shouldBuildLookupTablesForConstant(C); 443 } 444 445 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 446 return TTIImpl->useColdCCForColdCall(F); 447 } 448 449 unsigned 450 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty, 451 const APInt &DemandedElts, 452 bool Insert, bool Extract) const { 453 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); 454 } 455 456 unsigned TargetTransformInfo::getOperandsScalarizationOverhead( 457 ArrayRef<const Value *> Args, unsigned VF) const { 458 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 459 } 460 461 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 462 return TTIImpl->supportsEfficientVectorElementLoadStore(); 463 } 464 465 bool TargetTransformInfo::enableAggressiveInterleaving( 466 bool LoopHasReductions) const { 467 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 468 } 469 470 TargetTransformInfo::MemCmpExpansionOptions 471 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 472 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp); 473 } 474 475 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 476 return TTIImpl->enableInterleavedAccessVectorization(); 477 } 478 479 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const { 480 return TTIImpl->enableMaskedInterleavedAccessVectorization(); 481 } 482 483 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 484 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 485 } 486 487 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 488 unsigned BitWidth, 489 unsigned AddressSpace, 490 unsigned Alignment, 491 bool *Fast) const { 492 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, 493 AddressSpace, Alignment, Fast); 494 } 495 496 TargetTransformInfo::PopcntSupportKind 497 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 498 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 499 } 500 501 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 502 return TTIImpl->haveFastSqrt(Ty); 503 } 504 505 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 506 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 507 } 508 509 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 510 int Cost = TTIImpl->getFPOpCost(Ty); 511 assert(Cost >= 0 && "TTI should not produce negative costs!"); 512 return Cost; 513 } 514 515 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 516 const APInt &Imm, 517 Type *Ty) const { 518 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 519 assert(Cost >= 0 && "TTI should not produce negative costs!"); 520 return Cost; 521 } 522 523 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty, 524 TTI::TargetCostKind CostKind) const { 525 int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind); 526 assert(Cost >= 0 && "TTI should not produce negative costs!"); 527 return Cost; 528 } 529 530 int 531 TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx, 532 const APInt &Imm, Type *Ty, 533 TTI::TargetCostKind CostKind) const { 534 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 535 assert(Cost >= 0 && "TTI should not produce negative costs!"); 536 return Cost; 537 } 538 539 int 540 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 541 const APInt &Imm, Type *Ty, 542 TTI::TargetCostKind CostKind) const { 543 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 544 assert(Cost >= 0 && "TTI should not produce negative costs!"); 545 return Cost; 546 } 547 548 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const { 549 return TTIImpl->getNumberOfRegisters(ClassID); 550 } 551 552 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, 553 Type *Ty) const { 554 return TTIImpl->getRegisterClassForType(Vector, Ty); 555 } 556 557 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const { 558 return TTIImpl->getRegisterClassName(ClassID); 559 } 560 561 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 562 return TTIImpl->getRegisterBitWidth(Vector); 563 } 564 565 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 566 return TTIImpl->getMinVectorRegisterBitWidth(); 567 } 568 569 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 570 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 571 } 572 573 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 574 return TTIImpl->getMinimumVF(ElemWidth); 575 } 576 577 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 578 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 579 return TTIImpl->shouldConsiderAddressTypePromotion( 580 I, AllowPromotionWithoutCommonHeader); 581 } 582 583 unsigned TargetTransformInfo::getCacheLineSize() const { 584 return TTIImpl->getCacheLineSize(); 585 } 586 587 llvm::Optional<unsigned> 588 TargetTransformInfo::getCacheSize(CacheLevel Level) const { 589 return TTIImpl->getCacheSize(Level); 590 } 591 592 llvm::Optional<unsigned> 593 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const { 594 return TTIImpl->getCacheAssociativity(Level); 595 } 596 597 unsigned TargetTransformInfo::getPrefetchDistance() const { 598 return TTIImpl->getPrefetchDistance(); 599 } 600 601 unsigned TargetTransformInfo::getMinPrefetchStride( 602 unsigned NumMemAccesses, unsigned NumStridedMemAccesses, 603 unsigned NumPrefetches, bool HasCall) const { 604 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 605 NumPrefetches, HasCall); 606 } 607 608 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 609 return TTIImpl->getMaxPrefetchIterationsAhead(); 610 } 611 612 bool TargetTransformInfo::enableWritePrefetching() const { 613 return TTIImpl->enableWritePrefetching(); 614 } 615 616 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 617 return TTIImpl->getMaxInterleaveFactor(VF); 618 } 619 620 TargetTransformInfo::OperandValueKind 621 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) { 622 OperandValueKind OpInfo = OK_AnyValue; 623 OpProps = OP_None; 624 625 if (auto *CI = dyn_cast<ConstantInt>(V)) { 626 if (CI->getValue().isPowerOf2()) 627 OpProps = OP_PowerOf2; 628 return OK_UniformConstantValue; 629 } 630 631 // A broadcast shuffle creates a uniform value. 632 // TODO: Add support for non-zero index broadcasts. 633 // TODO: Add support for different source vector width. 634 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V)) 635 if (ShuffleInst->isZeroEltSplat()) 636 OpInfo = OK_UniformValue; 637 638 const Value *Splat = getSplatValue(V); 639 640 // Check for a splat of a constant or for a non uniform vector of constants 641 // and check if the constant(s) are all powers of two. 642 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 643 OpInfo = OK_NonUniformConstantValue; 644 if (Splat) { 645 OpInfo = OK_UniformConstantValue; 646 if (auto *CI = dyn_cast<ConstantInt>(Splat)) 647 if (CI->getValue().isPowerOf2()) 648 OpProps = OP_PowerOf2; 649 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) { 650 OpProps = OP_PowerOf2; 651 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 652 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) 653 if (CI->getValue().isPowerOf2()) 654 continue; 655 OpProps = OP_None; 656 break; 657 } 658 } 659 } 660 661 // Check for a splat of a uniform value. This is not loop aware, so return 662 // true only for the obviously uniform cases (argument, globalvalue) 663 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 664 OpInfo = OK_UniformValue; 665 666 return OpInfo; 667 } 668 669 int TargetTransformInfo::getArithmeticInstrCost( 670 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 671 OperandValueKind Opd1Info, 672 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 673 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 674 const Instruction *CxtI) const { 675 int Cost = TTIImpl->getArithmeticInstrCost( 676 Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, 677 Args, CxtI); 678 assert(Cost >= 0 && "TTI should not produce negative costs!"); 679 return Cost; 680 } 681 682 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty, 683 int Index, VectorType *SubTp) const { 684 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 685 assert(Cost >= 0 && "TTI should not produce negative costs!"); 686 return Cost; 687 } 688 689 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 690 TTI::TargetCostKind CostKind, 691 const Instruction *I) const { 692 assert((I == nullptr || I->getOpcode() == Opcode) && 693 "Opcode should reflect passed instruction."); 694 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CostKind, I); 695 assert(Cost >= 0 && "TTI should not produce negative costs!"); 696 return Cost; 697 } 698 699 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 700 VectorType *VecTy, 701 unsigned Index) const { 702 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 703 assert(Cost >= 0 && "TTI should not produce negative costs!"); 704 return Cost; 705 } 706 707 int TargetTransformInfo::getCFInstrCost(unsigned Opcode, 708 TTI::TargetCostKind CostKind) const { 709 int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind); 710 assert(Cost >= 0 && "TTI should not produce negative costs!"); 711 return Cost; 712 } 713 714 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 715 Type *CondTy, 716 TTI::TargetCostKind CostKind, 717 const Instruction *I) const { 718 assert((I == nullptr || I->getOpcode() == Opcode) && 719 "Opcode should reflect passed instruction."); 720 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 721 assert(Cost >= 0 && "TTI should not produce negative costs!"); 722 return Cost; 723 } 724 725 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 726 unsigned Index) const { 727 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 728 assert(Cost >= 0 && "TTI should not produce negative costs!"); 729 return Cost; 730 } 731 732 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 733 Align Alignment, unsigned AddressSpace, 734 TTI::TargetCostKind CostKind, 735 const Instruction *I) const { 736 assert((I == nullptr || I->getOpcode() == Opcode) && 737 "Opcode should reflect passed instruction."); 738 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 739 CostKind, I); 740 assert(Cost >= 0 && "TTI should not produce negative costs!"); 741 return Cost; 742 } 743 744 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 745 unsigned Alignment, 746 unsigned AddressSpace, 747 TTI::TargetCostKind CostKind) const { 748 int Cost = 749 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 750 CostKind); 751 assert(Cost >= 0 && "TTI should not produce negative costs!"); 752 return Cost; 753 } 754 755 int TargetTransformInfo::getGatherScatterOpCost( 756 unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, 757 unsigned Alignment, TTI::TargetCostKind CostKind, 758 const Instruction *I) const { 759 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 760 Alignment, CostKind, I); 761 assert(Cost >= 0 && "TTI should not produce negative costs!"); 762 return Cost; 763 } 764 765 int TargetTransformInfo::getInterleavedMemoryOpCost( 766 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 767 unsigned Alignment, unsigned AddressSpace, 768 TTI::TargetCostKind CostKind, 769 bool UseMaskForCond, bool UseMaskForGaps) const { 770 int Cost = TTIImpl->getInterleavedMemoryOpCost( 771 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, 772 UseMaskForCond, UseMaskForGaps); 773 assert(Cost >= 0 && "TTI should not produce negative costs!"); 774 return Cost; 775 } 776 777 int 778 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 779 TTI::TargetCostKind CostKind) const { 780 int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind); 781 assert(Cost >= 0 && "TTI should not produce negative costs!"); 782 return Cost; 783 } 784 785 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 786 ArrayRef<Type *> Tys, 787 TTI::TargetCostKind CostKind) const { 788 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind); 789 assert(Cost >= 0 && "TTI should not produce negative costs!"); 790 return Cost; 791 } 792 793 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 794 return TTIImpl->getNumberOfParts(Tp); 795 } 796 797 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 798 ScalarEvolution *SE, 799 const SCEV *Ptr) const { 800 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 801 assert(Cost >= 0 && "TTI should not produce negative costs!"); 802 return Cost; 803 } 804 805 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const { 806 int Cost = TTIImpl->getMemcpyCost(I); 807 assert(Cost >= 0 && "TTI should not produce negative costs!"); 808 return Cost; 809 } 810 811 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, 812 VectorType *Ty, 813 bool IsPairwiseForm, 814 TTI::TargetCostKind CostKind) const { 815 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, 816 CostKind); 817 assert(Cost >= 0 && "TTI should not produce negative costs!"); 818 return Cost; 819 } 820 821 int TargetTransformInfo::getMinMaxReductionCost( 822 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, 823 TTI::TargetCostKind CostKind) const { 824 int Cost = 825 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, 826 CostKind); 827 assert(Cost >= 0 && "TTI should not produce negative costs!"); 828 return Cost; 829 } 830 831 unsigned 832 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 833 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 834 } 835 836 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 837 MemIntrinsicInfo &Info) const { 838 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 839 } 840 841 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 842 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 843 } 844 845 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 846 IntrinsicInst *Inst, Type *ExpectedType) const { 847 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 848 } 849 850 Type *TargetTransformInfo::getMemcpyLoopLoweringType( 851 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 852 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { 853 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 854 DestAddrSpace, SrcAlign, DestAlign); 855 } 856 857 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 858 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 859 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 860 unsigned SrcAlign, unsigned DestAlign) const { 861 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 862 SrcAddrSpace, DestAddrSpace, 863 SrcAlign, DestAlign); 864 } 865 866 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 867 const Function *Callee) const { 868 return TTIImpl->areInlineCompatible(Caller, Callee); 869 } 870 871 bool TargetTransformInfo::areFunctionArgsABICompatible( 872 const Function *Caller, const Function *Callee, 873 SmallPtrSetImpl<Argument *> &Args) const { 874 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args); 875 } 876 877 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 878 Type *Ty) const { 879 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 880 } 881 882 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 883 Type *Ty) const { 884 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 885 } 886 887 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 888 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 889 } 890 891 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 892 return TTIImpl->isLegalToVectorizeLoad(LI); 893 } 894 895 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 896 return TTIImpl->isLegalToVectorizeStore(SI); 897 } 898 899 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 900 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 901 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 902 AddrSpace); 903 } 904 905 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 906 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 907 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 908 AddrSpace); 909 } 910 911 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 912 unsigned LoadSize, 913 unsigned ChainSizeInBytes, 914 VectorType *VecTy) const { 915 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 916 } 917 918 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 919 unsigned StoreSize, 920 unsigned ChainSizeInBytes, 921 VectorType *VecTy) const { 922 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 923 } 924 925 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, 926 ReductionFlags Flags) const { 927 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 928 } 929 930 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 931 return TTIImpl->shouldExpandReduction(II); 932 } 933 934 unsigned TargetTransformInfo::getGISelRematGlobalCost() const { 935 return TTIImpl->getGISelRematGlobalCost(); 936 } 937 938 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 939 return TTIImpl->getInstructionLatency(I); 940 } 941 942 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 943 unsigned Level) { 944 // We don't need a shuffle if we just want to have element 0 in position 0 of 945 // the vector. 946 if (!SI && Level == 0 && IsLeft) 947 return true; 948 else if (!SI) 949 return false; 950 951 SmallVector<int, 32> Mask(SI->getType()->getNumElements(), -1); 952 953 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 954 // we look at the left or right side. 955 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 956 Mask[i] = val; 957 958 ArrayRef<int> ActualMask = SI->getShuffleMask(); 959 return Mask == ActualMask; 960 } 961 962 namespace { 963 /// Kind of the reduction data. 964 enum ReductionKind { 965 RK_None, /// Not a reduction. 966 RK_Arithmetic, /// Binary reduction data. 967 RK_MinMax, /// Min/max reduction data. 968 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 969 }; 970 /// Contains opcode + LHS/RHS parts of the reduction operations. 971 struct ReductionData { 972 ReductionData() = delete; 973 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 974 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 975 assert(Kind != RK_None && "expected binary or min/max reduction only."); 976 } 977 unsigned Opcode = 0; 978 Value *LHS = nullptr; 979 Value *RHS = nullptr; 980 ReductionKind Kind = RK_None; 981 bool hasSameData(ReductionData &RD) const { 982 return Kind == RD.Kind && Opcode == RD.Opcode; 983 } 984 }; 985 } // namespace 986 987 static Optional<ReductionData> getReductionData(Instruction *I) { 988 Value *L, *R; 989 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 990 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 991 if (auto *SI = dyn_cast<SelectInst>(I)) { 992 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 993 m_SMax(m_Value(L), m_Value(R)).match(SI) || 994 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 995 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 996 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 997 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 998 auto *CI = cast<CmpInst>(SI->getCondition()); 999 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 1000 } 1001 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 1002 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 1003 auto *CI = cast<CmpInst>(SI->getCondition()); 1004 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 1005 } 1006 } 1007 return llvm::None; 1008 } 1009 1010 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 1011 unsigned Level, 1012 unsigned NumLevels) { 1013 // Match one level of pairwise operations. 1014 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1015 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1016 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1017 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1018 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1019 if (!I) 1020 return RK_None; 1021 1022 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 1023 1024 Optional<ReductionData> RD = getReductionData(I); 1025 if (!RD) 1026 return RK_None; 1027 1028 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 1029 if (!LS && Level) 1030 return RK_None; 1031 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 1032 if (!RS && Level) 1033 return RK_None; 1034 1035 // On level 0 we can omit one shufflevector instruction. 1036 if (!Level && !RS && !LS) 1037 return RK_None; 1038 1039 // Shuffle inputs must match. 1040 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 1041 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 1042 Value *NextLevelOp = nullptr; 1043 if (NextLevelOpR && NextLevelOpL) { 1044 // If we have two shuffles their operands must match. 1045 if (NextLevelOpL != NextLevelOpR) 1046 return RK_None; 1047 1048 NextLevelOp = NextLevelOpL; 1049 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 1050 // On the first level we can omit the shufflevector <0, undef,...>. So the 1051 // input to the other shufflevector <1, undef> must match with one of the 1052 // inputs to the current binary operation. 1053 // Example: 1054 // %NextLevelOpL = shufflevector %R, <1, undef ...> 1055 // %BinOp = fadd %NextLevelOpL, %R 1056 if (NextLevelOpL && NextLevelOpL != RD->RHS) 1057 return RK_None; 1058 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 1059 return RK_None; 1060 1061 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 1062 } else 1063 return RK_None; 1064 1065 // Check that the next levels binary operation exists and matches with the 1066 // current one. 1067 if (Level + 1 != NumLevels) { 1068 Optional<ReductionData> NextLevelRD = 1069 getReductionData(cast<Instruction>(NextLevelOp)); 1070 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 1071 return RK_None; 1072 } 1073 1074 // Shuffle mask for pairwise operation must match. 1075 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 1076 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 1077 return RK_None; 1078 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 1079 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 1080 return RK_None; 1081 } else { 1082 return RK_None; 1083 } 1084 1085 if (++Level == NumLevels) 1086 return RD->Kind; 1087 1088 // Match next level. 1089 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 1090 NumLevels); 1091 } 1092 1093 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 1094 unsigned &Opcode, 1095 VectorType *&Ty) { 1096 if (!EnableReduxCost) 1097 return RK_None; 1098 1099 // Need to extract the first element. 1100 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1101 unsigned Idx = ~0u; 1102 if (CI) 1103 Idx = CI->getZExtValue(); 1104 if (Idx != 0) 1105 return RK_None; 1106 1107 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1108 if (!RdxStart) 1109 return RK_None; 1110 Optional<ReductionData> RD = getReductionData(RdxStart); 1111 if (!RD) 1112 return RK_None; 1113 1114 auto *VecTy = cast<VectorType>(RdxStart->getType()); 1115 unsigned NumVecElems = VecTy->getNumElements(); 1116 if (!isPowerOf2_32(NumVecElems)) 1117 return RK_None; 1118 1119 // We look for a sequence of shuffle,shuffle,add triples like the following 1120 // that builds a pairwise reduction tree. 1121 // 1122 // (X0, X1, X2, X3) 1123 // (X0 + X1, X2 + X3, undef, undef) 1124 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 1125 // 1126 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 1127 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 1128 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 1129 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 1130 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 1131 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1132 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 1133 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 1134 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1135 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 1136 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1137 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 1138 RK_None) 1139 return RK_None; 1140 1141 Opcode = RD->Opcode; 1142 Ty = VecTy; 1143 1144 return RD->Kind; 1145 } 1146 1147 static std::pair<Value *, ShuffleVectorInst *> 1148 getShuffleAndOtherOprd(Value *L, Value *R) { 1149 ShuffleVectorInst *S = nullptr; 1150 1151 if ((S = dyn_cast<ShuffleVectorInst>(L))) 1152 return std::make_pair(R, S); 1153 1154 S = dyn_cast<ShuffleVectorInst>(R); 1155 return std::make_pair(L, S); 1156 } 1157 1158 static ReductionKind 1159 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 1160 unsigned &Opcode, VectorType *&Ty) { 1161 if (!EnableReduxCost) 1162 return RK_None; 1163 1164 // Need to extract the first element. 1165 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 1166 unsigned Idx = ~0u; 1167 if (CI) 1168 Idx = CI->getZExtValue(); 1169 if (Idx != 0) 1170 return RK_None; 1171 1172 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 1173 if (!RdxStart) 1174 return RK_None; 1175 Optional<ReductionData> RD = getReductionData(RdxStart); 1176 if (!RD) 1177 return RK_None; 1178 1179 auto *VecTy = cast<VectorType>(ReduxRoot->getOperand(0)->getType()); 1180 unsigned NumVecElems = VecTy->getNumElements(); 1181 if (!isPowerOf2_32(NumVecElems)) 1182 return RK_None; 1183 1184 // We look for a sequence of shuffles and adds like the following matching one 1185 // fadd, shuffle vector pair at a time. 1186 // 1187 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 1188 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 1189 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 1190 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 1191 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 1192 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 1193 // %r = extractelement <4 x float> %bin.rdx8, i32 0 1194 1195 unsigned MaskStart = 1; 1196 Instruction *RdxOp = RdxStart; 1197 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 1198 unsigned NumVecElemsRemain = NumVecElems; 1199 while (NumVecElemsRemain - 1) { 1200 // Check for the right reduction operation. 1201 if (!RdxOp) 1202 return RK_None; 1203 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 1204 if (!RDLevel || !RDLevel->hasSameData(*RD)) 1205 return RK_None; 1206 1207 Value *NextRdxOp; 1208 ShuffleVectorInst *Shuffle; 1209 std::tie(NextRdxOp, Shuffle) = 1210 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 1211 1212 // Check the current reduction operation and the shuffle use the same value. 1213 if (Shuffle == nullptr) 1214 return RK_None; 1215 if (Shuffle->getOperand(0) != NextRdxOp) 1216 return RK_None; 1217 1218 // Check that shuffle masks matches. 1219 for (unsigned j = 0; j != MaskStart; ++j) 1220 ShuffleMask[j] = MaskStart + j; 1221 // Fill the rest of the mask with -1 for undef. 1222 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 1223 1224 ArrayRef<int> Mask = Shuffle->getShuffleMask(); 1225 if (ShuffleMask != Mask) 1226 return RK_None; 1227 1228 RdxOp = dyn_cast<Instruction>(NextRdxOp); 1229 NumVecElemsRemain /= 2; 1230 MaskStart *= 2; 1231 } 1232 1233 Opcode = RD->Opcode; 1234 Ty = VecTy; 1235 return RD->Kind; 1236 } 1237 1238 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1239 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1240 1241 switch (I->getOpcode()) { 1242 case Instruction::GetElementPtr: 1243 return getUserCost(I, CostKind); 1244 1245 case Instruction::Ret: 1246 case Instruction::PHI: 1247 case Instruction::Br: { 1248 return getCFInstrCost(I->getOpcode(), CostKind); 1249 } 1250 case Instruction::Add: 1251 case Instruction::FAdd: 1252 case Instruction::Sub: 1253 case Instruction::FSub: 1254 case Instruction::Mul: 1255 case Instruction::FMul: 1256 case Instruction::UDiv: 1257 case Instruction::SDiv: 1258 case Instruction::FDiv: 1259 case Instruction::URem: 1260 case Instruction::SRem: 1261 case Instruction::FRem: 1262 case Instruction::Shl: 1263 case Instruction::LShr: 1264 case Instruction::AShr: 1265 case Instruction::And: 1266 case Instruction::Or: 1267 case Instruction::Xor: { 1268 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1269 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1270 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1271 Op2VK = getOperandInfo(I->getOperand(1), Op2VP); 1272 SmallVector<const Value *, 2> Operands(I->operand_values()); 1273 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1274 Op1VK, Op2VK, 1275 Op1VP, Op2VP, Operands, I); 1276 } 1277 case Instruction::FNeg: { 1278 TargetTransformInfo::OperandValueKind Op1VK, Op2VK; 1279 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP; 1280 Op1VK = getOperandInfo(I->getOperand(0), Op1VP); 1281 Op2VK = OK_AnyValue; 1282 Op2VP = OP_None; 1283 SmallVector<const Value *, 2> Operands(I->operand_values()); 1284 return getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind, 1285 Op1VK, Op2VK, 1286 Op1VP, Op2VP, Operands, I); 1287 } 1288 case Instruction::Select: { 1289 const SelectInst *SI = cast<SelectInst>(I); 1290 Type *CondTy = SI->getCondition()->getType(); 1291 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, 1292 CostKind, I); 1293 } 1294 case Instruction::ICmp: 1295 case Instruction::FCmp: { 1296 Type *ValTy = I->getOperand(0)->getType(); 1297 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), 1298 CostKind, I); 1299 } 1300 case Instruction::Store: { 1301 const StoreInst *SI = cast<StoreInst>(I); 1302 Type *ValTy = SI->getValueOperand()->getType(); 1303 return getMemoryOpCost(I->getOpcode(), ValTy, SI->getAlign(), 1304 SI->getPointerAddressSpace(), CostKind, I); 1305 } 1306 case Instruction::Load: { 1307 const LoadInst *LI = cast<LoadInst>(I); 1308 return getMemoryOpCost(I->getOpcode(), I->getType(), LI->getAlign(), 1309 LI->getPointerAddressSpace(), CostKind, I); 1310 } 1311 case Instruction::ZExt: 1312 case Instruction::SExt: 1313 case Instruction::FPToUI: 1314 case Instruction::FPToSI: 1315 case Instruction::FPExt: 1316 case Instruction::PtrToInt: 1317 case Instruction::IntToPtr: 1318 case Instruction::SIToFP: 1319 case Instruction::UIToFP: 1320 case Instruction::Trunc: 1321 case Instruction::FPTrunc: 1322 case Instruction::BitCast: 1323 case Instruction::AddrSpaceCast: { 1324 Type *SrcTy = I->getOperand(0)->getType(); 1325 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, CostKind, I); 1326 } 1327 case Instruction::ExtractElement: { 1328 const ExtractElementInst *EEI = cast<ExtractElementInst>(I); 1329 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1330 unsigned Idx = -1; 1331 if (CI) 1332 Idx = CI->getZExtValue(); 1333 1334 // Try to match a reduction sequence (series of shufflevector and vector 1335 // adds followed by a extractelement). 1336 unsigned ReduxOpCode; 1337 VectorType *ReduxType; 1338 1339 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1340 case RK_Arithmetic: 1341 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1342 /*IsPairwiseForm=*/false, 1343 CostKind); 1344 case RK_MinMax: 1345 return getMinMaxReductionCost( 1346 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1347 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1348 case RK_UnsignedMinMax: 1349 return getMinMaxReductionCost( 1350 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1351 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1352 case RK_None: 1353 break; 1354 } 1355 1356 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1357 case RK_Arithmetic: 1358 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1359 /*IsPairwiseForm=*/true, CostKind); 1360 case RK_MinMax: 1361 return getMinMaxReductionCost( 1362 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1363 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1364 case RK_UnsignedMinMax: 1365 return getMinMaxReductionCost( 1366 ReduxType, cast<VectorType>(CmpInst::makeCmpResultType(ReduxType)), 1367 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1368 case RK_None: 1369 break; 1370 } 1371 1372 return getVectorInstrCost(I->getOpcode(), EEI->getOperand(0)->getType(), 1373 Idx); 1374 } 1375 case Instruction::InsertElement: { 1376 const InsertElementInst *IE = cast<InsertElementInst>(I); 1377 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1378 unsigned Idx = -1; 1379 if (CI) 1380 Idx = CI->getZExtValue(); 1381 return getVectorInstrCost(I->getOpcode(), IE->getType(), Idx); 1382 } 1383 case Instruction::ExtractValue: 1384 return 0; // Model all ExtractValue nodes as free. 1385 case Instruction::ShuffleVector: { 1386 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1387 auto *Ty = cast<VectorType>(Shuffle->getType()); 1388 auto *SrcTy = cast<VectorType>(Shuffle->getOperand(0)->getType()); 1389 1390 // TODO: Identify and add costs for insert subvector, etc. 1391 int SubIndex; 1392 if (Shuffle->isExtractSubvectorMask(SubIndex)) 1393 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty); 1394 1395 if (Shuffle->changesLength()) 1396 return -1; 1397 1398 if (Shuffle->isIdentity()) 1399 return 0; 1400 1401 if (Shuffle->isReverse()) 1402 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr); 1403 1404 if (Shuffle->isSelect()) 1405 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr); 1406 1407 if (Shuffle->isTranspose()) 1408 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr); 1409 1410 if (Shuffle->isZeroEltSplat()) 1411 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr); 1412 1413 if (Shuffle->isSingleSource()) 1414 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr); 1415 1416 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr); 1417 } 1418 case Instruction::Call: 1419 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1420 IntrinsicCostAttributes CostAttrs(*II); 1421 return getIntrinsicInstrCost(CostAttrs, CostKind); 1422 } 1423 return -1; 1424 default: 1425 // We don't have any information on this instruction. 1426 return -1; 1427 } 1428 } 1429 1430 TargetTransformInfo::Concept::~Concept() {} 1431 1432 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1433 1434 TargetIRAnalysis::TargetIRAnalysis( 1435 std::function<Result(const Function &)> TTICallback) 1436 : TTICallback(std::move(TTICallback)) {} 1437 1438 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1439 FunctionAnalysisManager &) { 1440 return TTICallback(F); 1441 } 1442 1443 AnalysisKey TargetIRAnalysis::Key; 1444 1445 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1446 return Result(F.getParent()->getDataLayout()); 1447 } 1448 1449 // Register the basic pass. 1450 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1451 "Target Transform Information", false, true) 1452 char TargetTransformInfoWrapperPass::ID = 0; 1453 1454 void TargetTransformInfoWrapperPass::anchor() {} 1455 1456 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1457 : ImmutablePass(ID) { 1458 initializeTargetTransformInfoWrapperPassPass( 1459 *PassRegistry::getPassRegistry()); 1460 } 1461 1462 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1463 TargetIRAnalysis TIRA) 1464 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1465 initializeTargetTransformInfoWrapperPassPass( 1466 *PassRegistry::getPassRegistry()); 1467 } 1468 1469 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1470 FunctionAnalysisManager DummyFAM; 1471 TTI = TIRA.run(F, DummyFAM); 1472 return *TTI; 1473 } 1474 1475 ImmutablePass * 1476 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1477 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1478 } 1479