1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/TargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfoImpl.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/Instruction.h" 15 #include "llvm/IR/Instructions.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/Module.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <utility> 23 24 using namespace llvm; 25 using namespace PatternMatch; 26 27 #define DEBUG_TYPE "tti" 28 29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false), 30 cl::Hidden, 31 cl::desc("Recognize reduction patterns.")); 32 33 namespace { 34 /// \brief No-op implementation of the TTI interface using the utility base 35 /// classes. 36 /// 37 /// This is used when no target specific information is available. 38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> { 39 explicit NoTTIImpl(const DataLayout &DL) 40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {} 41 }; 42 } 43 44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) 45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {} 46 47 TargetTransformInfo::~TargetTransformInfo() {} 48 49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) 50 : TTIImpl(std::move(Arg.TTIImpl)) {} 51 52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { 53 TTIImpl = std::move(RHS.TTIImpl); 54 return *this; 55 } 56 57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, 58 Type *OpTy) const { 59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); 60 assert(Cost >= 0 && "TTI should not produce negative costs!"); 61 return Cost; 62 } 63 64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { 65 int Cost = TTIImpl->getCallCost(FTy, NumArgs); 66 assert(Cost >= 0 && "TTI should not produce negative costs!"); 67 return Cost; 68 } 69 70 int TargetTransformInfo::getCallCost(const Function *F, 71 ArrayRef<const Value *> Arguments) const { 72 int Cost = TTIImpl->getCallCost(F, Arguments); 73 assert(Cost >= 0 && "TTI should not produce negative costs!"); 74 return Cost; 75 } 76 77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { 78 return TTIImpl->getInliningThresholdMultiplier(); 79 } 80 81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, 82 ArrayRef<const Value *> Operands) const { 83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); 84 } 85 86 int TargetTransformInfo::getExtCost(const Instruction *I, 87 const Value *Src) const { 88 return TTIImpl->getExtCost(I, Src); 89 } 90 91 int TargetTransformInfo::getIntrinsicCost( 92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const { 93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); 94 assert(Cost >= 0 && "TTI should not produce negative costs!"); 95 return Cost; 96 } 97 98 unsigned 99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 100 unsigned &JTSize) const { 101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); 102 } 103 104 int TargetTransformInfo::getUserCost(const User *U, 105 ArrayRef<const Value *> Operands) const { 106 int Cost = TTIImpl->getUserCost(U, Operands); 107 assert(Cost >= 0 && "TTI should not produce negative costs!"); 108 return Cost; 109 } 110 111 bool TargetTransformInfo::hasBranchDivergence() const { 112 return TTIImpl->hasBranchDivergence(); 113 } 114 115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { 116 return TTIImpl->isSourceOfDivergence(V); 117 } 118 119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const { 120 return TTIImpl->isAlwaysUniform(V); 121 } 122 123 unsigned TargetTransformInfo::getFlatAddressSpace() const { 124 return TTIImpl->getFlatAddressSpace(); 125 } 126 127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const { 128 return TTIImpl->isLoweredToCall(F); 129 } 130 131 void TargetTransformInfo::getUnrollingPreferences( 132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const { 133 return TTIImpl->getUnrollingPreferences(L, SE, UP); 134 } 135 136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { 137 return TTIImpl->isLegalAddImmediate(Imm); 138 } 139 140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { 141 return TTIImpl->isLegalICmpImmediate(Imm); 142 } 143 144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 145 int64_t BaseOffset, 146 bool HasBaseReg, 147 int64_t Scale, 148 unsigned AddrSpace, 149 Instruction *I) const { 150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 151 Scale, AddrSpace, I); 152 } 153 154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const { 155 return TTIImpl->isLSRCostLess(C1, C2); 156 } 157 158 bool TargetTransformInfo::canMacroFuseCmp() const { 159 return TTIImpl->canMacroFuseCmp(); 160 } 161 162 bool TargetTransformInfo::shouldFavorPostInc() const { 163 return TTIImpl->shouldFavorPostInc(); 164 } 165 166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { 167 return TTIImpl->isLegalMaskedStore(DataType); 168 } 169 170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { 171 return TTIImpl->isLegalMaskedLoad(DataType); 172 } 173 174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { 175 return TTIImpl->isLegalMaskedGather(DataType); 176 } 177 178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { 179 return TTIImpl->isLegalMaskedScatter(DataType); 180 } 181 182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const { 183 return TTIImpl->hasDivRemOp(DataType, IsSigned); 184 } 185 186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I, 187 unsigned AddrSpace) const { 188 return TTIImpl->hasVolatileVariant(I, AddrSpace); 189 } 190 191 bool TargetTransformInfo::prefersVectorizedAddressing() const { 192 return TTIImpl->prefersVectorizedAddressing(); 193 } 194 195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 196 int64_t BaseOffset, 197 bool HasBaseReg, 198 int64_t Scale, 199 unsigned AddrSpace) const { 200 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 201 Scale, AddrSpace); 202 assert(Cost >= 0 && "TTI should not produce negative costs!"); 203 return Cost; 204 } 205 206 bool TargetTransformInfo::LSRWithInstrQueries() const { 207 return TTIImpl->LSRWithInstrQueries(); 208 } 209 210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { 211 return TTIImpl->isTruncateFree(Ty1, Ty2); 212 } 213 214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { 215 return TTIImpl->isProfitableToHoist(I); 216 } 217 218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); } 219 220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const { 221 return TTIImpl->isTypeLegal(Ty); 222 } 223 224 unsigned TargetTransformInfo::getJumpBufAlignment() const { 225 return TTIImpl->getJumpBufAlignment(); 226 } 227 228 unsigned TargetTransformInfo::getJumpBufSize() const { 229 return TTIImpl->getJumpBufSize(); 230 } 231 232 bool TargetTransformInfo::shouldBuildLookupTables() const { 233 return TTIImpl->shouldBuildLookupTables(); 234 } 235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { 236 return TTIImpl->shouldBuildLookupTablesForConstant(C); 237 } 238 239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const { 240 return TTIImpl->useColdCCForColdCall(F); 241 } 242 243 unsigned TargetTransformInfo:: 244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { 245 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); 246 } 247 248 unsigned TargetTransformInfo:: 249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 250 unsigned VF) const { 251 return TTIImpl->getOperandsScalarizationOverhead(Args, VF); 252 } 253 254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { 255 return TTIImpl->supportsEfficientVectorElementLoadStore(); 256 } 257 258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { 259 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); 260 } 261 262 const TargetTransformInfo::MemCmpExpansionOptions * 263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const { 264 return TTIImpl->enableMemCmpExpansion(IsZeroCmp); 265 } 266 267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const { 268 return TTIImpl->enableInterleavedAccessVectorization(); 269 } 270 271 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { 272 return TTIImpl->isFPVectorizationPotentiallyUnsafe(); 273 } 274 275 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, 276 unsigned BitWidth, 277 unsigned AddressSpace, 278 unsigned Alignment, 279 bool *Fast) const { 280 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 281 Alignment, Fast); 282 } 283 284 TargetTransformInfo::PopcntSupportKind 285 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { 286 return TTIImpl->getPopcntSupport(IntTyWidthInBit); 287 } 288 289 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { 290 return TTIImpl->haveFastSqrt(Ty); 291 } 292 293 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { 294 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty); 295 } 296 297 int TargetTransformInfo::getFPOpCost(Type *Ty) const { 298 int Cost = TTIImpl->getFPOpCost(Ty); 299 assert(Cost >= 0 && "TTI should not produce negative costs!"); 300 return Cost; 301 } 302 303 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 304 const APInt &Imm, 305 Type *Ty) const { 306 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); 307 assert(Cost >= 0 && "TTI should not produce negative costs!"); 308 return Cost; 309 } 310 311 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { 312 int Cost = TTIImpl->getIntImmCost(Imm, Ty); 313 assert(Cost >= 0 && "TTI should not produce negative costs!"); 314 return Cost; 315 } 316 317 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, 318 const APInt &Imm, Type *Ty) const { 319 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); 320 assert(Cost >= 0 && "TTI should not produce negative costs!"); 321 return Cost; 322 } 323 324 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 325 const APInt &Imm, Type *Ty) const { 326 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); 327 assert(Cost >= 0 && "TTI should not produce negative costs!"); 328 return Cost; 329 } 330 331 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { 332 return TTIImpl->getNumberOfRegisters(Vector); 333 } 334 335 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { 336 return TTIImpl->getRegisterBitWidth(Vector); 337 } 338 339 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { 340 return TTIImpl->getMinVectorRegisterBitWidth(); 341 } 342 343 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const { 344 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize); 345 } 346 347 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const { 348 return TTIImpl->getMinimumVF(ElemWidth); 349 } 350 351 bool TargetTransformInfo::shouldConsiderAddressTypePromotion( 352 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { 353 return TTIImpl->shouldConsiderAddressTypePromotion( 354 I, AllowPromotionWithoutCommonHeader); 355 } 356 357 unsigned TargetTransformInfo::getCacheLineSize() const { 358 return TTIImpl->getCacheLineSize(); 359 } 360 361 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level) 362 const { 363 return TTIImpl->getCacheSize(Level); 364 } 365 366 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity( 367 CacheLevel Level) const { 368 return TTIImpl->getCacheAssociativity(Level); 369 } 370 371 unsigned TargetTransformInfo::getPrefetchDistance() const { 372 return TTIImpl->getPrefetchDistance(); 373 } 374 375 unsigned TargetTransformInfo::getMinPrefetchStride() const { 376 return TTIImpl->getMinPrefetchStride(); 377 } 378 379 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { 380 return TTIImpl->getMaxPrefetchIterationsAhead(); 381 } 382 383 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { 384 return TTIImpl->getMaxInterleaveFactor(VF); 385 } 386 387 int TargetTransformInfo::getArithmeticInstrCost( 388 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 389 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, 390 OperandValueProperties Opd2PropInfo, 391 ArrayRef<const Value *> Args) const { 392 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 393 Opd1PropInfo, Opd2PropInfo, Args); 394 assert(Cost >= 0 && "TTI should not produce negative costs!"); 395 return Cost; 396 } 397 398 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, 399 Type *SubTp) const { 400 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); 401 assert(Cost >= 0 && "TTI should not produce negative costs!"); 402 return Cost; 403 } 404 405 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, 406 Type *Src, const Instruction *I) const { 407 assert ((I == nullptr || I->getOpcode() == Opcode) && 408 "Opcode should reflect passed instruction."); 409 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); 410 assert(Cost >= 0 && "TTI should not produce negative costs!"); 411 return Cost; 412 } 413 414 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 415 VectorType *VecTy, 416 unsigned Index) const { 417 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 418 assert(Cost >= 0 && "TTI should not produce negative costs!"); 419 return Cost; 420 } 421 422 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { 423 int Cost = TTIImpl->getCFInstrCost(Opcode); 424 assert(Cost >= 0 && "TTI should not produce negative costs!"); 425 return Cost; 426 } 427 428 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 429 Type *CondTy, const Instruction *I) const { 430 assert ((I == nullptr || I->getOpcode() == Opcode) && 431 "Opcode should reflect passed instruction."); 432 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 433 assert(Cost >= 0 && "TTI should not produce negative costs!"); 434 return Cost; 435 } 436 437 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, 438 unsigned Index) const { 439 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); 440 assert(Cost >= 0 && "TTI should not produce negative costs!"); 441 return Cost; 442 } 443 444 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, 445 unsigned Alignment, 446 unsigned AddressSpace, 447 const Instruction *I) const { 448 assert ((I == nullptr || I->getOpcode() == Opcode) && 449 "Opcode should reflect passed instruction."); 450 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); 451 assert(Cost >= 0 && "TTI should not produce negative costs!"); 452 return Cost; 453 } 454 455 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 456 unsigned Alignment, 457 unsigned AddressSpace) const { 458 int Cost = 459 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 460 assert(Cost >= 0 && "TTI should not produce negative costs!"); 461 return Cost; 462 } 463 464 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 465 Value *Ptr, bool VariableMask, 466 unsigned Alignment) const { 467 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 468 Alignment); 469 assert(Cost >= 0 && "TTI should not produce negative costs!"); 470 return Cost; 471 } 472 473 int TargetTransformInfo::getInterleavedMemoryOpCost( 474 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 475 unsigned Alignment, unsigned AddressSpace) const { 476 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 477 Alignment, AddressSpace); 478 assert(Cost >= 0 && "TTI should not produce negative costs!"); 479 return Cost; 480 } 481 482 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 483 ArrayRef<Type *> Tys, FastMathFlags FMF, 484 unsigned ScalarizationCostPassed) const { 485 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 486 ScalarizationCostPassed); 487 assert(Cost >= 0 && "TTI should not produce negative costs!"); 488 return Cost; 489 } 490 491 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 492 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const { 493 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 494 assert(Cost >= 0 && "TTI should not produce negative costs!"); 495 return Cost; 496 } 497 498 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, 499 ArrayRef<Type *> Tys) const { 500 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); 501 assert(Cost >= 0 && "TTI should not produce negative costs!"); 502 return Cost; 503 } 504 505 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { 506 return TTIImpl->getNumberOfParts(Tp); 507 } 508 509 int TargetTransformInfo::getAddressComputationCost(Type *Tp, 510 ScalarEvolution *SE, 511 const SCEV *Ptr) const { 512 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); 513 assert(Cost >= 0 && "TTI should not produce negative costs!"); 514 return Cost; 515 } 516 517 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty, 518 bool IsPairwiseForm) const { 519 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); 520 assert(Cost >= 0 && "TTI should not produce negative costs!"); 521 return Cost; 522 } 523 524 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy, 525 bool IsPairwiseForm, 526 bool IsUnsigned) const { 527 int Cost = 528 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); 529 assert(Cost >= 0 && "TTI should not produce negative costs!"); 530 return Cost; 531 } 532 533 unsigned 534 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { 535 return TTIImpl->getCostOfKeepingLiveOverCall(Tys); 536 } 537 538 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, 539 MemIntrinsicInfo &Info) const { 540 return TTIImpl->getTgtMemIntrinsic(Inst, Info); 541 } 542 543 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const { 544 return TTIImpl->getAtomicMemIntrinsicMaxElementSize(); 545 } 546 547 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( 548 IntrinsicInst *Inst, Type *ExpectedType) const { 549 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 550 } 551 552 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context, 553 Value *Length, 554 unsigned SrcAlign, 555 unsigned DestAlign) const { 556 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign, 557 DestAlign); 558 } 559 560 void TargetTransformInfo::getMemcpyLoopResidualLoweringType( 561 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 562 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const { 563 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 564 SrcAlign, DestAlign); 565 } 566 567 bool TargetTransformInfo::areInlineCompatible(const Function *Caller, 568 const Function *Callee) const { 569 return TTIImpl->areInlineCompatible(Caller, Callee); 570 } 571 572 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode, 573 Type *Ty) const { 574 return TTIImpl->isIndexedLoadLegal(Mode, Ty); 575 } 576 577 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode, 578 Type *Ty) const { 579 return TTIImpl->isIndexedStoreLegal(Mode, Ty); 580 } 581 582 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { 583 return TTIImpl->getLoadStoreVecRegBitWidth(AS); 584 } 585 586 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { 587 return TTIImpl->isLegalToVectorizeLoad(LI); 588 } 589 590 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { 591 return TTIImpl->isLegalToVectorizeStore(SI); 592 } 593 594 bool TargetTransformInfo::isLegalToVectorizeLoadChain( 595 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 596 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 597 AddrSpace); 598 } 599 600 bool TargetTransformInfo::isLegalToVectorizeStoreChain( 601 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { 602 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 603 AddrSpace); 604 } 605 606 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, 607 unsigned LoadSize, 608 unsigned ChainSizeInBytes, 609 VectorType *VecTy) const { 610 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 611 } 612 613 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, 614 unsigned StoreSize, 615 unsigned ChainSizeInBytes, 616 VectorType *VecTy) const { 617 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 618 } 619 620 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, 621 Type *Ty, ReductionFlags Flags) const { 622 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); 623 } 624 625 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { 626 return TTIImpl->shouldExpandReduction(II); 627 } 628 629 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const { 630 return TTIImpl->getInstructionLatency(I); 631 } 632 633 static bool isReverseVectorMask(ArrayRef<int> Mask) { 634 for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i) 635 if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i)) 636 return false; 637 return true; 638 } 639 640 static bool isSingleSourceVectorMask(ArrayRef<int> Mask) { 641 bool Vec0 = false; 642 bool Vec1 = false; 643 for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) { 644 if (Mask[i] >= 0) { 645 if ((unsigned)Mask[i] >= NumVecElts) 646 Vec1 = true; 647 else 648 Vec0 = true; 649 } 650 } 651 return !(Vec0 && Vec1); 652 } 653 654 static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) { 655 for (unsigned i = 0; i < Mask.size(); ++i) 656 if (Mask[i] > 0) 657 return false; 658 return true; 659 } 660 661 static bool isAlternateVectorMask(ArrayRef<int> Mask) { 662 bool isAlternate = true; 663 unsigned MaskSize = Mask.size(); 664 665 // Example: shufflevector A, B, <0,5,2,7> 666 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 667 if (Mask[i] < 0) 668 continue; 669 isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i); 670 } 671 672 if (isAlternate) 673 return true; 674 675 isAlternate = true; 676 // Example: shufflevector A, B, <4,1,6,3> 677 for (unsigned i = 0; i < MaskSize && isAlternate; ++i) { 678 if (Mask[i] < 0) 679 continue; 680 isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i); 681 } 682 683 return isAlternate; 684 } 685 686 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) { 687 TargetTransformInfo::OperandValueKind OpInfo = 688 TargetTransformInfo::OK_AnyValue; 689 690 // Check for a splat of a constant or for a non uniform vector of constants. 691 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) { 692 OpInfo = TargetTransformInfo::OK_NonUniformConstantValue; 693 if (cast<Constant>(V)->getSplatValue() != nullptr) 694 OpInfo = TargetTransformInfo::OK_UniformConstantValue; 695 } 696 697 // Check for a splat of a uniform value. This is not loop aware, so return 698 // true only for the obviously uniform cases (argument, globalvalue) 699 const Value *Splat = getSplatValue(V); 700 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat))) 701 OpInfo = TargetTransformInfo::OK_UniformValue; 702 703 return OpInfo; 704 } 705 706 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft, 707 unsigned Level) { 708 // We don't need a shuffle if we just want to have element 0 in position 0 of 709 // the vector. 710 if (!SI && Level == 0 && IsLeft) 711 return true; 712 else if (!SI) 713 return false; 714 715 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1); 716 717 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether 718 // we look at the left or right side. 719 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2) 720 Mask[i] = val; 721 722 SmallVector<int, 16> ActualMask = SI->getShuffleMask(); 723 return Mask == ActualMask; 724 } 725 726 namespace { 727 /// Kind of the reduction data. 728 enum ReductionKind { 729 RK_None, /// Not a reduction. 730 RK_Arithmetic, /// Binary reduction data. 731 RK_MinMax, /// Min/max reduction data. 732 RK_UnsignedMinMax, /// Unsigned min/max reduction data. 733 }; 734 /// Contains opcode + LHS/RHS parts of the reduction operations. 735 struct ReductionData { 736 ReductionData() = delete; 737 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) 738 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 739 assert(Kind != RK_None && "expected binary or min/max reduction only."); 740 } 741 unsigned Opcode = 0; 742 Value *LHS = nullptr; 743 Value *RHS = nullptr; 744 ReductionKind Kind = RK_None; 745 bool hasSameData(ReductionData &RD) const { 746 return Kind == RD.Kind && Opcode == RD.Opcode; 747 } 748 }; 749 } // namespace 750 751 static Optional<ReductionData> getReductionData(Instruction *I) { 752 Value *L, *R; 753 if (m_BinOp(m_Value(L), m_Value(R)).match(I)) 754 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R); 755 if (auto *SI = dyn_cast<SelectInst>(I)) { 756 if (m_SMin(m_Value(L), m_Value(R)).match(SI) || 757 m_SMax(m_Value(L), m_Value(R)).match(SI) || 758 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) || 759 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) || 760 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) || 761 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) { 762 auto *CI = cast<CmpInst>(SI->getCondition()); 763 return ReductionData(RK_MinMax, CI->getOpcode(), L, R); 764 } 765 if (m_UMin(m_Value(L), m_Value(R)).match(SI) || 766 m_UMax(m_Value(L), m_Value(R)).match(SI)) { 767 auto *CI = cast<CmpInst>(SI->getCondition()); 768 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R); 769 } 770 } 771 return llvm::None; 772 } 773 774 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I, 775 unsigned Level, 776 unsigned NumLevels) { 777 // Match one level of pairwise operations. 778 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 779 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 780 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 781 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 782 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 783 if (!I) 784 return RK_None; 785 786 assert(I->getType()->isVectorTy() && "Expecting a vector type"); 787 788 Optional<ReductionData> RD = getReductionData(I); 789 if (!RD) 790 return RK_None; 791 792 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS); 793 if (!LS && Level) 794 return RK_None; 795 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS); 796 if (!RS && Level) 797 return RK_None; 798 799 // On level 0 we can omit one shufflevector instruction. 800 if (!Level && !RS && !LS) 801 return RK_None; 802 803 // Shuffle inputs must match. 804 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr; 805 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr; 806 Value *NextLevelOp = nullptr; 807 if (NextLevelOpR && NextLevelOpL) { 808 // If we have two shuffles their operands must match. 809 if (NextLevelOpL != NextLevelOpR) 810 return RK_None; 811 812 NextLevelOp = NextLevelOpL; 813 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) { 814 // On the first level we can omit the shufflevector <0, undef,...>. So the 815 // input to the other shufflevector <1, undef> must match with one of the 816 // inputs to the current binary operation. 817 // Example: 818 // %NextLevelOpL = shufflevector %R, <1, undef ...> 819 // %BinOp = fadd %NextLevelOpL, %R 820 if (NextLevelOpL && NextLevelOpL != RD->RHS) 821 return RK_None; 822 else if (NextLevelOpR && NextLevelOpR != RD->LHS) 823 return RK_None; 824 825 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS; 826 } else 827 return RK_None; 828 829 // Check that the next levels binary operation exists and matches with the 830 // current one. 831 if (Level + 1 != NumLevels) { 832 Optional<ReductionData> NextLevelRD = 833 getReductionData(cast<Instruction>(NextLevelOp)); 834 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD)) 835 return RK_None; 836 } 837 838 // Shuffle mask for pairwise operation must match. 839 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) { 840 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level)) 841 return RK_None; 842 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) { 843 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level)) 844 return RK_None; 845 } else { 846 return RK_None; 847 } 848 849 if (++Level == NumLevels) 850 return RD->Kind; 851 852 // Match next level. 853 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level, 854 NumLevels); 855 } 856 857 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot, 858 unsigned &Opcode, Type *&Ty) { 859 if (!EnableReduxCost) 860 return RK_None; 861 862 // Need to extract the first element. 863 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 864 unsigned Idx = ~0u; 865 if (CI) 866 Idx = CI->getZExtValue(); 867 if (Idx != 0) 868 return RK_None; 869 870 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 871 if (!RdxStart) 872 return RK_None; 873 Optional<ReductionData> RD = getReductionData(RdxStart); 874 if (!RD) 875 return RK_None; 876 877 Type *VecTy = RdxStart->getType(); 878 unsigned NumVecElems = VecTy->getVectorNumElements(); 879 if (!isPowerOf2_32(NumVecElems)) 880 return RK_None; 881 882 // We look for a sequence of shuffle,shuffle,add triples like the following 883 // that builds a pairwise reduction tree. 884 // 885 // (X0, X1, X2, X3) 886 // (X0 + X1, X2 + X3, undef, undef) 887 // ((X0 + X1) + (X2 + X3), undef, undef, undef) 888 // 889 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef, 890 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef> 891 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef, 892 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef> 893 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1 894 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 895 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef> 896 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef, 897 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 898 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1 899 // %r = extractelement <4 x float> %bin.rdx8, i32 0 900 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) == 901 RK_None) 902 return RK_None; 903 904 Opcode = RD->Opcode; 905 Ty = VecTy; 906 907 return RD->Kind; 908 } 909 910 static std::pair<Value *, ShuffleVectorInst *> 911 getShuffleAndOtherOprd(Value *L, Value *R) { 912 ShuffleVectorInst *S = nullptr; 913 914 if ((S = dyn_cast<ShuffleVectorInst>(L))) 915 return std::make_pair(R, S); 916 917 S = dyn_cast<ShuffleVectorInst>(R); 918 return std::make_pair(L, S); 919 } 920 921 static ReductionKind 922 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot, 923 unsigned &Opcode, Type *&Ty) { 924 if (!EnableReduxCost) 925 return RK_None; 926 927 // Need to extract the first element. 928 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1)); 929 unsigned Idx = ~0u; 930 if (CI) 931 Idx = CI->getZExtValue(); 932 if (Idx != 0) 933 return RK_None; 934 935 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0)); 936 if (!RdxStart) 937 return RK_None; 938 Optional<ReductionData> RD = getReductionData(RdxStart); 939 if (!RD) 940 return RK_None; 941 942 Type *VecTy = ReduxRoot->getOperand(0)->getType(); 943 unsigned NumVecElems = VecTy->getVectorNumElements(); 944 if (!isPowerOf2_32(NumVecElems)) 945 return RK_None; 946 947 // We look for a sequence of shuffles and adds like the following matching one 948 // fadd, shuffle vector pair at a time. 949 // 950 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef, 951 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef> 952 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf 953 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef, 954 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef> 955 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7 956 // %r = extractelement <4 x float> %bin.rdx8, i32 0 957 958 unsigned MaskStart = 1; 959 Instruction *RdxOp = RdxStart; 960 SmallVector<int, 32> ShuffleMask(NumVecElems, 0); 961 unsigned NumVecElemsRemain = NumVecElems; 962 while (NumVecElemsRemain - 1) { 963 // Check for the right reduction operation. 964 if (!RdxOp) 965 return RK_None; 966 Optional<ReductionData> RDLevel = getReductionData(RdxOp); 967 if (!RDLevel || !RDLevel->hasSameData(*RD)) 968 return RK_None; 969 970 Value *NextRdxOp; 971 ShuffleVectorInst *Shuffle; 972 std::tie(NextRdxOp, Shuffle) = 973 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS); 974 975 // Check the current reduction operation and the shuffle use the same value. 976 if (Shuffle == nullptr) 977 return RK_None; 978 if (Shuffle->getOperand(0) != NextRdxOp) 979 return RK_None; 980 981 // Check that shuffle masks matches. 982 for (unsigned j = 0; j != MaskStart; ++j) 983 ShuffleMask[j] = MaskStart + j; 984 // Fill the rest of the mask with -1 for undef. 985 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1); 986 987 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 988 if (ShuffleMask != Mask) 989 return RK_None; 990 991 RdxOp = dyn_cast<Instruction>(NextRdxOp); 992 NumVecElemsRemain /= 2; 993 MaskStart *= 2; 994 } 995 996 Opcode = RD->Opcode; 997 Ty = VecTy; 998 return RD->Kind; 999 } 1000 1001 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const { 1002 switch (I->getOpcode()) { 1003 case Instruction::GetElementPtr: 1004 return getUserCost(I); 1005 1006 case Instruction::Ret: 1007 case Instruction::PHI: 1008 case Instruction::Br: { 1009 return getCFInstrCost(I->getOpcode()); 1010 } 1011 case Instruction::Add: 1012 case Instruction::FAdd: 1013 case Instruction::Sub: 1014 case Instruction::FSub: 1015 case Instruction::Mul: 1016 case Instruction::FMul: 1017 case Instruction::UDiv: 1018 case Instruction::SDiv: 1019 case Instruction::FDiv: 1020 case Instruction::URem: 1021 case Instruction::SRem: 1022 case Instruction::FRem: 1023 case Instruction::Shl: 1024 case Instruction::LShr: 1025 case Instruction::AShr: 1026 case Instruction::And: 1027 case Instruction::Or: 1028 case Instruction::Xor: { 1029 TargetTransformInfo::OperandValueKind Op1VK = 1030 getOperandInfo(I->getOperand(0)); 1031 TargetTransformInfo::OperandValueKind Op2VK = 1032 getOperandInfo(I->getOperand(1)); 1033 SmallVector<const Value*, 2> Operands(I->operand_values()); 1034 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, 1035 Op2VK, TargetTransformInfo::OP_None, 1036 TargetTransformInfo::OP_None, 1037 Operands); 1038 } 1039 case Instruction::Select: { 1040 const SelectInst *SI = cast<SelectInst>(I); 1041 Type *CondTy = SI->getCondition()->getType(); 1042 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I); 1043 } 1044 case Instruction::ICmp: 1045 case Instruction::FCmp: { 1046 Type *ValTy = I->getOperand(0)->getType(); 1047 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I); 1048 } 1049 case Instruction::Store: { 1050 const StoreInst *SI = cast<StoreInst>(I); 1051 Type *ValTy = SI->getValueOperand()->getType(); 1052 return getMemoryOpCost(I->getOpcode(), ValTy, 1053 SI->getAlignment(), 1054 SI->getPointerAddressSpace(), I); 1055 } 1056 case Instruction::Load: { 1057 const LoadInst *LI = cast<LoadInst>(I); 1058 return getMemoryOpCost(I->getOpcode(), I->getType(), 1059 LI->getAlignment(), 1060 LI->getPointerAddressSpace(), I); 1061 } 1062 case Instruction::ZExt: 1063 case Instruction::SExt: 1064 case Instruction::FPToUI: 1065 case Instruction::FPToSI: 1066 case Instruction::FPExt: 1067 case Instruction::PtrToInt: 1068 case Instruction::IntToPtr: 1069 case Instruction::SIToFP: 1070 case Instruction::UIToFP: 1071 case Instruction::Trunc: 1072 case Instruction::FPTrunc: 1073 case Instruction::BitCast: 1074 case Instruction::AddrSpaceCast: { 1075 Type *SrcTy = I->getOperand(0)->getType(); 1076 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I); 1077 } 1078 case Instruction::ExtractElement: { 1079 const ExtractElementInst * EEI = cast<ExtractElementInst>(I); 1080 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1081 unsigned Idx = -1; 1082 if (CI) 1083 Idx = CI->getZExtValue(); 1084 1085 // Try to match a reduction sequence (series of shufflevector and vector 1086 // adds followed by a extractelement). 1087 unsigned ReduxOpCode; 1088 Type *ReduxType; 1089 1090 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { 1091 case RK_Arithmetic: 1092 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1093 /*IsPairwiseForm=*/false); 1094 case RK_MinMax: 1095 return getMinMaxReductionCost( 1096 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1097 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false); 1098 case RK_UnsignedMinMax: 1099 return getMinMaxReductionCost( 1100 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1101 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true); 1102 case RK_None: 1103 break; 1104 } 1105 1106 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { 1107 case RK_Arithmetic: 1108 return getArithmeticReductionCost(ReduxOpCode, ReduxType, 1109 /*IsPairwiseForm=*/true); 1110 case RK_MinMax: 1111 return getMinMaxReductionCost( 1112 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1113 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false); 1114 case RK_UnsignedMinMax: 1115 return getMinMaxReductionCost( 1116 ReduxType, CmpInst::makeCmpResultType(ReduxType), 1117 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true); 1118 case RK_None: 1119 break; 1120 } 1121 1122 return getVectorInstrCost(I->getOpcode(), 1123 EEI->getOperand(0)->getType(), Idx); 1124 } 1125 case Instruction::InsertElement: { 1126 const InsertElementInst * IE = cast<InsertElementInst>(I); 1127 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); 1128 unsigned Idx = -1; 1129 if (CI) 1130 Idx = CI->getZExtValue(); 1131 return getVectorInstrCost(I->getOpcode(), 1132 IE->getType(), Idx); 1133 } 1134 case Instruction::ShuffleVector: { 1135 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1136 Type *VecTypOp0 = Shuffle->getOperand(0)->getType(); 1137 unsigned NumVecElems = VecTypOp0->getVectorNumElements(); 1138 SmallVector<int, 16> Mask = Shuffle->getShuffleMask(); 1139 1140 if (NumVecElems == Mask.size()) { 1141 if (isReverseVectorMask(Mask)) 1142 return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 1143 0, nullptr); 1144 if (isAlternateVectorMask(Mask)) 1145 return getShuffleCost(TargetTransformInfo::SK_Alternate, 1146 VecTypOp0, 0, nullptr); 1147 1148 if (isZeroEltBroadcastVectorMask(Mask)) 1149 return getShuffleCost(TargetTransformInfo::SK_Broadcast, 1150 VecTypOp0, 0, nullptr); 1151 1152 if (isSingleSourceVectorMask(Mask)) 1153 return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 1154 VecTypOp0, 0, nullptr); 1155 1156 return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 1157 VecTypOp0, 0, nullptr); 1158 } 1159 1160 return -1; 1161 } 1162 case Instruction::Call: 1163 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1164 SmallVector<Value *, 4> Args(II->arg_operands()); 1165 1166 FastMathFlags FMF; 1167 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 1168 FMF = FPMO->getFastMathFlags(); 1169 1170 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), 1171 Args, FMF); 1172 } 1173 return -1; 1174 default: 1175 // We don't have any information on this instruction. 1176 return -1; 1177 } 1178 } 1179 1180 TargetTransformInfo::Concept::~Concept() {} 1181 1182 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} 1183 1184 TargetIRAnalysis::TargetIRAnalysis( 1185 std::function<Result(const Function &)> TTICallback) 1186 : TTICallback(std::move(TTICallback)) {} 1187 1188 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, 1189 FunctionAnalysisManager &) { 1190 return TTICallback(F); 1191 } 1192 1193 AnalysisKey TargetIRAnalysis::Key; 1194 1195 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { 1196 return Result(F.getParent()->getDataLayout()); 1197 } 1198 1199 // Register the basic pass. 1200 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", 1201 "Target Transform Information", false, true) 1202 char TargetTransformInfoWrapperPass::ID = 0; 1203 1204 void TargetTransformInfoWrapperPass::anchor() {} 1205 1206 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() 1207 : ImmutablePass(ID) { 1208 initializeTargetTransformInfoWrapperPassPass( 1209 *PassRegistry::getPassRegistry()); 1210 } 1211 1212 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( 1213 TargetIRAnalysis TIRA) 1214 : ImmutablePass(ID), TIRA(std::move(TIRA)) { 1215 initializeTargetTransformInfoWrapperPassPass( 1216 *PassRegistry::getPassRegistry()); 1217 } 1218 1219 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { 1220 FunctionAnalysisManager DummyFAM; 1221 TTI = TIRA.run(F, DummyFAM); 1222 return *TTI; 1223 } 1224 1225 ImmutablePass * 1226 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { 1227 return new TargetTransformInfoWrapperPass(std::move(TIRA)); 1228 } 1229