1 //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements utilities for interfacing with tensorflow C APIs. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "llvm/Config/config.h" 14 #if defined(LLVM_HAVE_TF_API) 15 16 #include "llvm/Analysis/Utils/TFUtils.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ManagedStatic.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #include "tensorflow/c/c_api.h" 23 #include "tensorflow/c/c_api_experimental.h" 24 25 #include <cassert> 26 27 using namespace llvm; 28 29 namespace { 30 31 using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>; 32 using TFSessionOptionsPtr = 33 std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>; 34 using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>; 35 36 struct TFInitializer { 37 TFInitializer() { 38 assert(!IsInitialized && "TFInitialized should be called only once"); 39 int Argc = 1; 40 const char *Name = ""; 41 const char **NamePtr = &Name; 42 TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr)); 43 IsInitialized = true; 44 } 45 bool IsInitialized = false; 46 }; 47 48 llvm::ManagedStatic<TFInitializer> TFLibInitializer; 49 50 bool ensureInitTF() { return TFLibInitializer->IsInitialized; } 51 52 TFGraphPtr createTFGraph() { 53 return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph); 54 } 55 56 TFStatusPtr createTFStatus() { 57 return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus); 58 } 59 60 TFSessionOptionsPtr createTFSessionOptions() { 61 return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions); 62 } 63 } // namespace 64 65 namespace llvm { 66 class EvaluationResultImpl { 67 public: 68 EvaluationResultImpl(size_t OutputSize) 69 : OutputSize(OutputSize), Output(OutputSize){}; 70 71 ~EvaluationResultImpl() { 72 for (auto *P : Output) 73 if (P) 74 TF_DeleteTensor(P); 75 } 76 77 EvaluationResultImpl(const EvaluationResultImpl &) = delete; 78 EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; 79 std::vector<TF_Tensor *> &getOutput() { return Output; } 80 81 private: 82 const size_t OutputSize; 83 std::vector<TF_Tensor *> Output; 84 }; 85 86 class TFModelEvaluatorImpl { 87 public: 88 TFModelEvaluatorImpl(StringRef SavedModelPath, 89 const std::vector<std::string> &InputNames, 90 const std::vector<std::string> &OutputNames, 91 const char *Tags); 92 93 bool isValid() const { return IsValid; } 94 size_t OutputSize() const { return OutputFeed.size(); } 95 96 void evaluate(TF_Tensor **Output, TF_Status *Status) { 97 TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), 98 Input.size(), OutputFeed.data(), Output, OutputFeed.size(), 99 nullptr, 0, nullptr, Status); 100 } 101 102 void initInput(size_t Index, TF_DataType Type, 103 const std::vector<int64_t> &Dimensions); 104 const std::vector<TF_Tensor *> &getInput() const { return Input; } 105 106 ~TFModelEvaluatorImpl(); 107 108 private: 109 /// The objects necessary for carrying out an evaluation of the SavedModel. 110 /// They are expensive to set up, and we maintain them accross all the 111 /// evaluations of the model. 112 TF_Session *Session = nullptr; 113 TFGraphPtr Graph; 114 TFSessionOptionsPtr Options; 115 116 /// The specification of the input nodes. 117 std::vector<TF_Output> InputFeed; 118 119 /// The input tensors. They must match by index of the corresponding InputFeed 120 /// value. We set up the tensors once and just mutate theirs scalars before 121 /// each evaluation. The input tensors keep their value after an evaluation. 122 std::vector<TF_Tensor *> Input; 123 124 /// The specification of the output nodes. When evaluating, the tensors in the 125 /// output tensor vector must match by index the corresponding element in the 126 /// OutputFeed. 127 std::vector<TF_Output> OutputFeed; 128 129 void invalidate() { IsValid = false; } 130 131 bool IsValid = true; 132 133 /// Reusable utility for ensuring we can bind the requested Name to a node in 134 /// the SavedModel Graph. 135 bool checkReportAndInvalidate(const TF_Output &Output, StringRef Name); 136 }; 137 } // namespace llvm 138 139 TFModelEvaluatorImpl::TFModelEvaluatorImpl( 140 StringRef SavedModelPath, const std::vector<std::string> &InputNames, 141 const std::vector<std::string> &OutputNames, const char *Tags) 142 : Graph(createTFGraph()), Options(createTFSessionOptions()), 143 InputFeed(InputNames.size()), Input(InputNames.size()), 144 OutputFeed(OutputNames.size()) { 145 if (!ensureInitTF()) { 146 errs() << "Tensorflow should have been initialized"; 147 return; 148 } 149 auto Status = createTFStatus(); 150 151 Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr, 152 SavedModelPath.str().c_str(), &Tags, 1, 153 Graph.get(), nullptr, Status.get()); 154 if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { 155 errs() << TF_Message(Status.get()); 156 invalidate(); 157 } 158 for (size_t I = 0; I < InputNames.size(); ++I) { 159 InputFeed[I] = { 160 TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0}; 161 if (!checkReportAndInvalidate(InputFeed[I], InputNames[I])) 162 return; 163 } 164 for (size_t I = 0; I < OutputNames.size(); ++I) { 165 OutputFeed[I] = { 166 TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0}; 167 if (!checkReportAndInvalidate(OutputFeed[I], OutputNames[I])) 168 return; 169 } 170 } 171 172 TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, 173 const std::vector<std::string> &InputNames, 174 const std::vector<std::string> &OutputNames, 175 const char *Tags) 176 : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputNames, OutputNames, 177 Tags)) { 178 if (!Impl->isValid()) 179 Impl.reset(); 180 } 181 182 TFModelEvaluatorImpl::~TFModelEvaluatorImpl() { 183 for (auto *T : Input) { 184 TF_DeleteTensor(T); 185 } 186 if (Session == nullptr) 187 return; 188 auto Status = createTFStatus(); 189 TF_DeleteSession(Session, Status.get()); 190 Session = nullptr; 191 if (TF_GetCode(Status.get()) != TF_Code::TF_OK) 192 errs() << "Could not delete TF session"; 193 } 194 195 bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TF_Output &Output, 196 StringRef Name) { 197 if (Output.oper) 198 return true; 199 errs() << "Could not find TF_Output named: " + Name; 200 IsValid = false; 201 return IsValid; 202 } 203 204 Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() { 205 if (!isValid()) 206 return None; 207 std::unique_ptr<EvaluationResultImpl> Ret = 208 std::make_unique<EvaluationResultImpl>(Impl->OutputSize()); 209 auto Status = createTFStatus(); 210 Impl->evaluate(Ret->getOutput().data(), Status.get()); 211 if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { 212 errs() << TF_Message(Status.get()); 213 Impl.reset(); 214 return None; 215 } 216 return EvaluationResult(std::move(Ret)); 217 } 218 219 void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type, 220 const std::vector<int64_t> &Dimensions) { 221 int64_t TotalSize = TF_DataTypeSize(Type); 222 for (auto &D : Dimensions) 223 TotalSize *= D; 224 225 Input[Index] = 226 TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize); 227 std::memset(TF_TensorData(Input[Index]), 0, TotalSize); 228 } 229 230 void *TFModelEvaluator::getUntypedInput(size_t Index) { 231 return TF_TensorData(Impl->getInput()[Index]); 232 } 233 234 TFModelEvaluator::EvaluationResult::EvaluationResult( 235 std::unique_ptr<EvaluationResultImpl> Impl) 236 : Impl(std::move(Impl)) {} 237 238 TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) 239 : Impl(std::move(Other.Impl)) {} 240 241 void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { 242 return TF_TensorData(Impl->getOutput()[Index]); 243 } 244 245 void TFModelEvaluator::initInput(size_t Index, int TypeIndex, 246 const std::vector<int64_t> &Dimensions) { 247 Impl->initInput(Index, static_cast<TF_DataType>(TypeIndex), Dimensions); 248 } 249 250 template <> int TFModelEvaluator::getModelTypeIndex<float>() { 251 return TF_FLOAT; 252 } 253 254 template <> int TFModelEvaluator::getModelTypeIndex<double>() { 255 return TF_DOUBLE; 256 } 257 258 template <> int TFModelEvaluator::getModelTypeIndex<int8_t>() { 259 return TF_INT8; 260 } 261 262 template <> int TFModelEvaluator::getModelTypeIndex<uint8_t>() { 263 return TF_UINT8; 264 } 265 266 template <> int TFModelEvaluator::getModelTypeIndex<int16_t>() { 267 return TF_INT16; 268 } 269 270 template <> int TFModelEvaluator::getModelTypeIndex<uint16_t>() { 271 return TF_UINT16; 272 } 273 274 template <> int TFModelEvaluator::getModelTypeIndex<int32_t>() { 275 return TF_INT32; 276 } 277 278 template <> int TFModelEvaluator::getModelTypeIndex<uint32_t>() { 279 return TF_UINT32; 280 } 281 282 template <> int TFModelEvaluator::getModelTypeIndex<int64_t>() { 283 return TF_INT64; 284 } 285 286 template <> int TFModelEvaluator::getModelTypeIndex<uint64_t>() { 287 return TF_UINT64; 288 } 289 290 TFModelEvaluator::EvaluationResult::~EvaluationResult() {} 291 TFModelEvaluator::~TFModelEvaluator() {} 292 #endif // defined(LLVM_HAVE_TF_API) 293