1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "llvm/Analysis/StackSafetyAnalysis.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 14 #include "llvm/IR/ConstantRange.h" 15 #include "llvm/IR/DerivedTypes.h" 16 #include "llvm/IR/GlobalValue.h" 17 #include "llvm/IR/InstIterator.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Support/Casting.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <memory> 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "stack-safety" 30 31 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations", 32 cl::init(20), cl::Hidden); 33 34 namespace { 35 36 /// Rewrite an SCEV expression for a memory access address to an expression that 37 /// represents offset from the given alloca. 38 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> { 39 const Value *AllocaPtr; 40 41 public: 42 AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr) 43 : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {} 44 45 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 46 // FIXME: look through one or several levels of definitions? 47 // This can be inttoptr(AllocaPtr) and SCEV would not unwrap 48 // it for us. 49 if (Expr->getValue() == AllocaPtr) 50 return SE.getZero(Expr->getType()); 51 return Expr; 52 } 53 }; 54 55 /// Describes use of address in as a function call argument. 56 struct PassAsArgInfo { 57 /// Function being called. 58 const GlobalValue *Callee = nullptr; 59 /// Index of argument which pass address. 60 size_t ParamNo = 0; 61 // Offset range of address from base address (alloca or calling function 62 // argument). 63 // Range should never set to empty-set, that is an invalid access range 64 // that can cause empty-set to be propagated with ConstantRange::add 65 ConstantRange Offset; 66 PassAsArgInfo(const GlobalValue *Callee, size_t ParamNo, ConstantRange Offset) 67 : Callee(Callee), ParamNo(ParamNo), Offset(Offset) {} 68 69 StringRef getName() const { return Callee->getName(); } 70 }; 71 72 raw_ostream &operator<<(raw_ostream &OS, const PassAsArgInfo &P) { 73 return OS << "@" << P.getName() << "(arg" << P.ParamNo << ", " << P.Offset 74 << ")"; 75 } 76 77 /// Describe uses of address (alloca or parameter) inside of the function. 78 struct UseInfo { 79 // Access range if the address (alloca or parameters). 80 // It is allowed to be empty-set when there are no known accesses. 81 ConstantRange Range; 82 83 // List of calls which pass address as an argument. 84 SmallVector<PassAsArgInfo, 4> Calls; 85 86 explicit UseInfo(unsigned PointerSize) : Range{PointerSize, false} {} 87 88 void updateRange(const ConstantRange &R) { 89 assert(!R.isUpperSignWrapped()); 90 Range = Range.unionWith(R); 91 assert(!Range.isUpperSignWrapped()); 92 } 93 }; 94 95 raw_ostream &operator<<(raw_ostream &OS, const UseInfo &U) { 96 OS << U.Range; 97 for (auto &Call : U.Calls) 98 OS << ", " << Call; 99 return OS; 100 } 101 102 /// Calculate the allocation size of a given alloca. Returns 0 if the 103 /// size can not be statically determined. 104 uint64_t getStaticAllocaAllocationSize(const AllocaInst *AI) { 105 const DataLayout &DL = AI->getModule()->getDataLayout(); 106 TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType()); 107 if (TS.isScalable()) 108 return 0; 109 uint64_t Size = TS.getFixedSize(); 110 if (AI->isArrayAllocation()) { 111 auto C = dyn_cast<ConstantInt>(AI->getArraySize()); 112 if (!C) 113 return 0; 114 Size *= C->getZExtValue(); 115 } 116 return Size; 117 } 118 119 /// Describes uses of allocas and parameters inside of a single function. 120 struct FunctionInfo { 121 SmallVector<UseInfo, 4> Allocas; 122 SmallVector<UseInfo, 4> Params; 123 const GlobalValue *GV = nullptr; 124 // TODO: describe return value as depending on one or more of its arguments. 125 126 // StackSafetyDataFlowAnalysis counter stored here for faster access. 127 int UpdateCount = 0; 128 129 FunctionInfo() = default; 130 FunctionInfo(const Function *F) : GV(F){}; 131 explicit FunctionInfo(const GlobalAlias *A); 132 133 bool IsDSOLocal() const { return GV->isDSOLocal(); }; 134 135 bool IsInterposable() const { return GV->isInterposable(); }; 136 137 StringRef getName() const { return GV->getName(); } 138 139 void print(raw_ostream &O, StringRef Name, const Function *F) const { 140 // TODO: Consider different printout format after 141 // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then. 142 O << " @" << Name << (IsDSOLocal() ? "" : " dso_preemptable") 143 << (IsInterposable() ? " interposable" : "") << "\n"; 144 145 O << " args uses:\n"; 146 size_t Pos = 0; 147 for (auto &P : Params) { 148 StringRef Name = "<N/A>"; 149 if (F) 150 Name = F->getArg(Pos)->getName(); 151 O << " " << Name << "[]: " << P << "\n"; 152 ++Pos; 153 } 154 155 O << " allocas uses:\n"; 156 if (F) { 157 size_t Pos = 0; 158 for (auto &I : instructions(F)) { 159 if (auto AI = dyn_cast<AllocaInst>(&I)) { 160 auto &AS = Allocas[Pos]; 161 O << " " << AI->getName() << "[" 162 << getStaticAllocaAllocationSize(AI) << "]: " << AS << "\n"; 163 ++Pos; 164 } 165 } 166 } else { 167 assert(Allocas.empty()); 168 } 169 } 170 }; 171 172 FunctionInfo::FunctionInfo(const GlobalAlias *A) : GV(A) { 173 unsigned PointerSize = A->getParent()->getDataLayout().getPointerSizeInBits(); 174 const GlobalObject *Aliasee = A->getBaseObject(); 175 const FunctionType *Type = cast<FunctionType>(Aliasee->getValueType()); 176 // 'Forward' all parameters to this alias to the aliasee 177 for (unsigned ArgNo = 0; ArgNo < Type->getNumParams(); ArgNo++) { 178 Params.emplace_back(PointerSize); 179 UseInfo &US = Params.back(); 180 US.Calls.emplace_back(Aliasee, ArgNo, ConstantRange(APInt(PointerSize, 0))); 181 } 182 } 183 184 } // namespace 185 186 struct StackSafetyInfo::InfoTy { 187 FunctionInfo Info; 188 }; 189 190 StackSafetyInfo makeSSI(FunctionInfo Info) { 191 return StackSafetyInfo(StackSafetyInfo::InfoTy{std::move(Info)}); 192 } 193 194 namespace { 195 196 // Check if we should bailout for such ranges. 197 bool isUnsafe(const ConstantRange &R) { 198 return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped(); 199 } 200 201 class StackSafetyLocalAnalysis { 202 Function &F; 203 const DataLayout &DL; 204 ScalarEvolution &SE; 205 unsigned PointerSize = 0; 206 207 const ConstantRange UnknownRange; 208 209 ConstantRange offsetFrom(Value *Addr, Value *Base); 210 ConstantRange getAccessRange(Value *Addr, Value *Base, 211 ConstantRange SizeRange); 212 ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size); 213 ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U, 214 Value *Base); 215 216 bool analyzeAllUses(Value *Ptr, UseInfo &AS); 217 218 ConstantRange getRange(uint64_t Lower, uint64_t Upper) const { 219 return ConstantRange(APInt(PointerSize, Lower), APInt(PointerSize, Upper)); 220 } 221 222 public: 223 StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE) 224 : F(F), DL(F.getParent()->getDataLayout()), SE(SE), 225 PointerSize(DL.getPointerSizeInBits()), 226 UnknownRange(PointerSize, true) {} 227 228 // Run the transformation on the associated function. 229 FunctionInfo run(); 230 }; 231 232 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) { 233 if (!SE.isSCEVable(Addr->getType())) 234 return UnknownRange; 235 236 AllocaOffsetRewriter Rewriter(SE, Base); 237 const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr)); 238 ConstantRange Offset = SE.getSignedRange(Expr); 239 if (isUnsafe(Offset)) 240 return UnknownRange; 241 return Offset.sextOrTrunc(PointerSize); 242 } 243 244 ConstantRange 245 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 246 ConstantRange SizeRange) { 247 // Zero-size loads and stores do not access memory. 248 if (SizeRange.isEmptySet()) 249 return ConstantRange::getEmpty(PointerSize); 250 assert(!isUnsafe(SizeRange)); 251 252 ConstantRange Offsets = offsetFrom(Addr, Base); 253 if (isUnsafe(Offsets)) 254 return UnknownRange; 255 256 if (Offsets.signedAddMayOverflow(SizeRange) != 257 ConstantRange::OverflowResult::NeverOverflows) 258 return UnknownRange; 259 Offsets = Offsets.add(SizeRange); 260 if (isUnsafe(Offsets)) 261 return UnknownRange; 262 return Offsets; 263 } 264 265 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 266 TypeSize Size) { 267 if (Size.isScalable()) 268 return UnknownRange; 269 return getAccessRange(Addr, Base, getRange(0, Size.getFixedSize())); 270 } 271 272 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange( 273 const MemIntrinsic *MI, const Use &U, Value *Base) { 274 if (auto MTI = dyn_cast<MemTransferInst>(MI)) { 275 if (MTI->getRawSource() != U && MTI->getRawDest() != U) 276 return ConstantRange::getEmpty(PointerSize); 277 } else { 278 if (MI->getRawDest() != U) 279 return ConstantRange::getEmpty(PointerSize); 280 } 281 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 282 if (!SE.isSCEVable(MI->getLength()->getType())) 283 return UnknownRange; 284 285 const SCEV *Expr = 286 SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy); 287 ConstantRange Sizes = SE.getSignedRange(Expr); 288 assert(!isUnsafe(Sizes)); 289 if (Sizes.getUpper().isNegative()) 290 return UnknownRange; 291 Sizes = Sizes.sextOrTrunc(PointerSize); 292 ConstantRange SizeRange(APInt::getNullValue(PointerSize), 293 Sizes.getUpper() - 1); 294 return getAccessRange(U, Base, SizeRange); 295 } 296 297 /// The function analyzes all local uses of Ptr (alloca or argument) and 298 /// calculates local access range and all function calls where it was used. 299 bool StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr, UseInfo &US) { 300 SmallPtrSet<const Value *, 16> Visited; 301 SmallVector<const Value *, 8> WorkList; 302 WorkList.push_back(Ptr); 303 304 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 305 while (!WorkList.empty()) { 306 const Value *V = WorkList.pop_back_val(); 307 for (const Use &UI : V->uses()) { 308 auto I = cast<const Instruction>(UI.getUser()); 309 assert(V == UI.get()); 310 311 switch (I->getOpcode()) { 312 case Instruction::Load: { 313 US.updateRange( 314 getAccessRange(UI, Ptr, DL.getTypeStoreSize(I->getType()))); 315 break; 316 } 317 318 case Instruction::VAArg: 319 // "va-arg" from a pointer is safe. 320 break; 321 case Instruction::Store: { 322 if (V == I->getOperand(0)) { 323 // Stored the pointer - conservatively assume it may be unsafe. 324 US.updateRange(UnknownRange); 325 return false; 326 } 327 US.updateRange(getAccessRange( 328 UI, Ptr, DL.getTypeStoreSize(I->getOperand(0)->getType()))); 329 break; 330 } 331 332 case Instruction::Ret: 333 // Information leak. 334 // FIXME: Process parameters correctly. This is a leak only if we return 335 // alloca. 336 US.updateRange(UnknownRange); 337 return false; 338 339 case Instruction::Call: 340 case Instruction::Invoke: { 341 const auto &CB = cast<CallBase>(*I); 342 343 if (I->isLifetimeStartOrEnd()) 344 break; 345 346 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 347 US.updateRange(getMemIntrinsicAccessRange(MI, UI, Ptr)); 348 break; 349 } 350 351 // FIXME: consult devirt? 352 // Do not follow aliases, otherwise we could inadvertently follow 353 // dso_preemptable aliases or aliases with interposable linkage. 354 const GlobalValue *Callee = 355 dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts()); 356 if (!Callee) { 357 US.updateRange(UnknownRange); 358 return false; 359 } 360 361 assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee)); 362 363 auto B = CB.arg_begin(), E = CB.arg_end(); 364 int Found = 0; 365 for (auto A = B; A != E; ++A) { 366 if (A->get() == V) { 367 ++Found; 368 ConstantRange Offset = offsetFrom(UI, Ptr); 369 US.Calls.emplace_back(Callee, A - B, Offset); 370 } 371 } 372 if (!Found) { 373 US.updateRange(UnknownRange); 374 return false; 375 } 376 377 break; 378 } 379 380 default: 381 if (Visited.insert(I).second) 382 WorkList.push_back(cast<const Instruction>(I)); 383 } 384 } 385 } 386 387 return true; 388 } 389 390 FunctionInfo StackSafetyLocalAnalysis::run() { 391 FunctionInfo Info(&F); 392 assert(!F.isDeclaration() && 393 "Can't run StackSafety on a function declaration"); 394 395 LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n"); 396 397 for (auto &I : instructions(F)) { 398 if (auto AI = dyn_cast<AllocaInst>(&I)) { 399 Info.Allocas.emplace_back(PointerSize); 400 UseInfo &AS = Info.Allocas.back(); 401 analyzeAllUses(AI, AS); 402 } 403 } 404 405 for (Argument &A : make_range(F.arg_begin(), F.arg_end())) { 406 Info.Params.emplace_back(PointerSize); 407 UseInfo &PS = Info.Params.back(); 408 analyzeAllUses(&A, PS); 409 } 410 411 LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F)); 412 LLVM_DEBUG(dbgs() << "[StackSafety] done\n"); 413 return Info; 414 } 415 416 class StackSafetyDataFlowAnalysis { 417 using FunctionMap = std::map<const GlobalValue *, FunctionInfo>; 418 419 FunctionMap Functions; 420 // Callee-to-Caller multimap. 421 DenseMap<const GlobalValue *, SmallVector<const GlobalValue *, 4>> Callers; 422 SetVector<const GlobalValue *> WorkList; 423 424 unsigned PointerSize = 0; 425 const ConstantRange UnknownRange; 426 427 ConstantRange getArgumentAccessRange(const GlobalValue *Callee, 428 unsigned ParamNo) const; 429 bool updateOneUse(UseInfo &US, bool UpdateToFullSet); 430 void updateOneNode(const GlobalValue *Callee, FunctionInfo &FS); 431 void updateOneNode(const GlobalValue *Callee) { 432 updateOneNode(Callee, Functions.find(Callee)->second); 433 } 434 void updateAllNodes() { 435 for (auto &F : Functions) 436 updateOneNode(F.first, F.second); 437 } 438 void runDataFlow(); 439 #ifndef NDEBUG 440 void verifyFixedPoint(); 441 #endif 442 443 public: 444 StackSafetyDataFlowAnalysis( 445 Module &M, std::function<const FunctionInfo &(Function &)> FI); 446 StackSafetyGlobalInfo run(); 447 }; 448 449 StackSafetyDataFlowAnalysis::StackSafetyDataFlowAnalysis( 450 Module &M, std::function<const FunctionInfo &(Function &)> FI) 451 : PointerSize(M.getDataLayout().getPointerSizeInBits()), 452 UnknownRange(PointerSize, true) { 453 // Without ThinLTO, run the local analysis for every function in the TU and 454 // then run the DFA. 455 for (auto &F : M.functions()) 456 if (!F.isDeclaration()) 457 Functions.emplace(&F, FI(F)); 458 for (auto &A : M.aliases()) 459 if (isa<Function>(A.getBaseObject())) 460 Functions.emplace(&A, FunctionInfo(&A)); 461 } 462 463 ConstantRange 464 StackSafetyDataFlowAnalysis::getArgumentAccessRange(const GlobalValue *Callee, 465 unsigned ParamNo) const { 466 auto IT = Functions.find(Callee); 467 // Unknown callee (outside of LTO domain or an indirect call). 468 if (IT == Functions.end()) 469 return UnknownRange; 470 const FunctionInfo &FS = IT->second; 471 // The definition of this symbol may not be the definition in this linkage 472 // unit. 473 if (!FS.IsDSOLocal() || FS.IsInterposable()) 474 return UnknownRange; 475 if (ParamNo >= FS.Params.size()) // possibly vararg 476 return UnknownRange; 477 return FS.Params[ParamNo].Range; 478 } 479 480 bool StackSafetyDataFlowAnalysis::updateOneUse(UseInfo &US, 481 bool UpdateToFullSet) { 482 bool Changed = false; 483 for (auto &CS : US.Calls) { 484 assert(!CS.Offset.isEmptySet() && 485 "Param range can't be empty-set, invalid offset range"); 486 487 ConstantRange CalleeRange = getArgumentAccessRange(CS.Callee, CS.ParamNo); 488 CalleeRange = CalleeRange.add(CS.Offset); 489 if (!US.Range.contains(CalleeRange)) { 490 Changed = true; 491 if (UpdateToFullSet) 492 US.Range = UnknownRange; 493 else 494 US.Range = US.Range.unionWith(CalleeRange); 495 } 496 } 497 return Changed; 498 } 499 500 void StackSafetyDataFlowAnalysis::updateOneNode(const GlobalValue *Callee, 501 FunctionInfo &FS) { 502 bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations; 503 bool Changed = false; 504 for (auto &AS : FS.Allocas) 505 Changed |= updateOneUse(AS, UpdateToFullSet); 506 for (auto &PS : FS.Params) 507 Changed |= updateOneUse(PS, UpdateToFullSet); 508 509 if (Changed) { 510 LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount 511 << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS 512 << "\n"); 513 // Callers of this function may need updating. 514 for (auto &CallerID : Callers[Callee]) 515 WorkList.insert(CallerID); 516 517 ++FS.UpdateCount; 518 } 519 } 520 521 void StackSafetyDataFlowAnalysis::runDataFlow() { 522 Callers.clear(); 523 WorkList.clear(); 524 525 SmallVector<const GlobalValue *, 16> Callees; 526 for (auto &F : Functions) { 527 Callees.clear(); 528 FunctionInfo &FS = F.second; 529 for (auto &AS : FS.Allocas) 530 for (auto &CS : AS.Calls) 531 Callees.push_back(CS.Callee); 532 for (auto &PS : FS.Params) 533 for (auto &CS : PS.Calls) 534 Callees.push_back(CS.Callee); 535 536 llvm::sort(Callees); 537 Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end()); 538 539 for (auto &Callee : Callees) 540 Callers[Callee].push_back(F.first); 541 } 542 543 updateAllNodes(); 544 545 while (!WorkList.empty()) { 546 const GlobalValue *Callee = WorkList.back(); 547 WorkList.pop_back(); 548 updateOneNode(Callee); 549 } 550 } 551 552 #ifndef NDEBUG 553 void StackSafetyDataFlowAnalysis::verifyFixedPoint() { 554 WorkList.clear(); 555 updateAllNodes(); 556 assert(WorkList.empty()); 557 } 558 #endif 559 560 StackSafetyGlobalInfo StackSafetyDataFlowAnalysis::run() { 561 runDataFlow(); 562 LLVM_DEBUG(verifyFixedPoint()); 563 564 StackSafetyGlobalInfo SSI; 565 for (auto &F : Functions) 566 SSI.emplace(F.first, makeSSI(F.second)); 567 return SSI; 568 } 569 570 bool setStackSafetyMetadata(Module &M, const StackSafetyGlobalInfo &SSGI) { 571 bool Changed = false; 572 unsigned Width = M.getDataLayout().getPointerSizeInBits(); 573 for (auto &F : M.functions()) { 574 if (F.isDeclaration() || F.hasOptNone()) 575 continue; 576 auto Iter = SSGI.find(&F); 577 if (Iter == SSGI.end()) 578 continue; 579 const FunctionInfo &Summary = Iter->second.getInfo().Info; 580 size_t Pos = 0; 581 for (auto &I : instructions(F)) { 582 if (auto AI = dyn_cast<AllocaInst>(&I)) { 583 auto &AS = Summary.Allocas[Pos]; 584 ConstantRange AllocaRange{ 585 APInt(Width, 0), APInt(Width, getStaticAllocaAllocationSize(AI))}; 586 if (AllocaRange.contains(AS.Range)) { 587 AI->setMetadata(M.getMDKindID("stack-safe"), 588 MDNode::get(M.getContext(), None)); 589 Changed = true; 590 } 591 ++Pos; 592 } 593 } 594 } 595 return Changed; 596 } 597 598 } // end anonymous namespace 599 600 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default; 601 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default; 602 603 StackSafetyInfo::StackSafetyInfo(InfoTy Info) 604 : Info(new InfoTy(std::move(Info))) {} 605 606 StackSafetyInfo::~StackSafetyInfo() = default; 607 608 void StackSafetyInfo::print(raw_ostream &O, const GlobalValue &F) const { 609 Info->Info.print(O, F.getName(), dyn_cast<Function>(&F)); 610 } 611 612 static void print(const StackSafetyGlobalInfo &SSI, raw_ostream &O, 613 const Module &M) { 614 size_t Count = 0; 615 for (auto &F : M.functions()) 616 if (!F.isDeclaration()) { 617 SSI.find(&F)->second.print(O, F); 618 O << "\n"; 619 ++Count; 620 } 621 for (auto &A : M.aliases()) { 622 SSI.find(&A)->second.print(O, A); 623 O << "\n"; 624 ++Count; 625 } 626 assert(Count == SSI.size() && "Unexpected functions in the result"); 627 } 628 629 AnalysisKey StackSafetyAnalysis::Key; 630 631 StackSafetyInfo StackSafetyAnalysis::run(Function &F, 632 FunctionAnalysisManager &AM) { 633 StackSafetyLocalAnalysis SSLA(F, AM.getResult<ScalarEvolutionAnalysis>(F)); 634 return makeSSI(SSLA.run()); 635 } 636 637 PreservedAnalyses StackSafetyPrinterPass::run(Function &F, 638 FunctionAnalysisManager &AM) { 639 OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n"; 640 AM.getResult<StackSafetyAnalysis>(F).print(OS, F); 641 return PreservedAnalyses::all(); 642 } 643 644 char StackSafetyInfoWrapperPass::ID = 0; 645 646 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) { 647 initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 648 } 649 650 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 651 AU.addRequired<ScalarEvolutionWrapperPass>(); 652 AU.setPreservesAll(); 653 } 654 655 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const { 656 SSI->print(O, *F); 657 } 658 659 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) { 660 StackSafetyLocalAnalysis SSLA( 661 F, getAnalysis<ScalarEvolutionWrapperPass>().getSE()); 662 SSI = makeSSI(SSLA.run()); 663 this->F = &F; 664 return false; 665 } 666 667 AnalysisKey StackSafetyGlobalAnalysis::Key; 668 669 StackSafetyGlobalInfo 670 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 671 FunctionAnalysisManager &FAM = 672 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 673 674 StackSafetyDataFlowAnalysis SSDFA( 675 M, [&FAM](Function &F) -> const FunctionInfo & { 676 return FAM.getResult<StackSafetyAnalysis>(F).getInfo().Info; 677 }); 678 return SSDFA.run(); 679 } 680 681 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M, 682 ModuleAnalysisManager &AM) { 683 OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n"; 684 print(AM.getResult<StackSafetyGlobalAnalysis>(M), OS, M); 685 return PreservedAnalyses::all(); 686 } 687 688 PreservedAnalyses 689 StackSafetyGlobalAnnotatorPass::run(Module &M, ModuleAnalysisManager &AM) { 690 auto &SSGI = AM.getResult<StackSafetyGlobalAnalysis>(M); 691 (void)setStackSafetyMetadata(M, SSGI); 692 return PreservedAnalyses::all(); 693 } 694 695 char StackSafetyGlobalInfoWrapperPass::ID = 0; 696 697 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass( 698 bool SetMetadata) 699 : ModulePass(ID), SetMetadata(SetMetadata) { 700 initializeStackSafetyGlobalInfoWrapperPassPass( 701 *PassRegistry::getPassRegistry()); 702 } 703 704 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O, 705 const Module *M) const { 706 ::print(SSGI, O, *M); 707 } 708 709 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage( 710 AnalysisUsage &AU) const { 711 AU.addRequired<StackSafetyInfoWrapperPass>(); 712 } 713 714 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) { 715 StackSafetyDataFlowAnalysis SSDFA( 716 M, [this](Function &F) -> const FunctionInfo & { 717 return getAnalysis<StackSafetyInfoWrapperPass>(F) 718 .getResult() 719 .getInfo() 720 .Info; 721 }); 722 SSGI = SSDFA.run(); 723 return SetMetadata ? setStackSafetyMetadata(M, SSGI) : false; 724 } 725 726 ModulePass *llvm::createStackSafetyGlobalInfoWrapperPass(bool SetMetadata) { 727 return new StackSafetyGlobalInfoWrapperPass(SetMetadata); 728 } 729 730 static const char LocalPassArg[] = "stack-safety-local"; 731 static const char LocalPassName[] = "Stack Safety Local Analysis"; 732 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 733 false, true) 734 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 735 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 736 false, true) 737 738 static const char GlobalPassName[] = "Stack Safety Analysis"; 739 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 740 GlobalPassName, false, false) 741 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 742 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 743 GlobalPassName, false, false) 744