1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   return Flags;
2394 }
2395 
2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2397   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2398 }
2399 
2400 /// Get a canonical add expression, or something simpler if possible.
2401 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2402                                         SCEV::NoWrapFlags OrigFlags,
2403                                         unsigned Depth) {
2404   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2405          "only nuw or nsw allowed");
2406   assert(!Ops.empty() && "Cannot get empty add!");
2407   if (Ops.size() == 1) return Ops[0];
2408 #ifndef NDEBUG
2409   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2410   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2411     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2412            "SCEVAddExpr operand types don't match!");
2413   unsigned NumPtrs = count_if(
2414       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2415   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2416 #endif
2417 
2418   // Sort by complexity, this groups all similar expression types together.
2419   GroupByComplexity(Ops, &LI, DT);
2420 
2421   // If there are any constants, fold them together.
2422   unsigned Idx = 0;
2423   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2424     ++Idx;
2425     assert(Idx < Ops.size());
2426     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2427       // We found two constants, fold them together!
2428       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2429       if (Ops.size() == 2) return Ops[0];
2430       Ops.erase(Ops.begin()+1);  // Erase the folded element
2431       LHSC = cast<SCEVConstant>(Ops[0]);
2432     }
2433 
2434     // If we are left with a constant zero being added, strip it off.
2435     if (LHSC->getValue()->isZero()) {
2436       Ops.erase(Ops.begin());
2437       --Idx;
2438     }
2439 
2440     if (Ops.size() == 1) return Ops[0];
2441   }
2442 
2443   // Delay expensive flag strengthening until necessary.
2444   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2445     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2446   };
2447 
2448   // Limit recursion calls depth.
2449   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2450     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2451 
2452   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2453     // Don't strengthen flags if we have no new information.
2454     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2455     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2456       Add->setNoWrapFlags(ComputeFlags(Ops));
2457     return S;
2458   }
2459 
2460   // Okay, check to see if the same value occurs in the operand list more than
2461   // once.  If so, merge them together into an multiply expression.  Since we
2462   // sorted the list, these values are required to be adjacent.
2463   Type *Ty = Ops[0]->getType();
2464   bool FoundMatch = false;
2465   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2466     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2467       // Scan ahead to count how many equal operands there are.
2468       unsigned Count = 2;
2469       while (i+Count != e && Ops[i+Count] == Ops[i])
2470         ++Count;
2471       // Merge the values into a multiply.
2472       const SCEV *Scale = getConstant(Ty, Count);
2473       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2474       if (Ops.size() == Count)
2475         return Mul;
2476       Ops[i] = Mul;
2477       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2478       --i; e -= Count - 1;
2479       FoundMatch = true;
2480     }
2481   if (FoundMatch)
2482     return getAddExpr(Ops, OrigFlags, Depth + 1);
2483 
2484   // Check for truncates. If all the operands are truncated from the same
2485   // type, see if factoring out the truncate would permit the result to be
2486   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2487   // if the contents of the resulting outer trunc fold to something simple.
2488   auto FindTruncSrcType = [&]() -> Type * {
2489     // We're ultimately looking to fold an addrec of truncs and muls of only
2490     // constants and truncs, so if we find any other types of SCEV
2491     // as operands of the addrec then we bail and return nullptr here.
2492     // Otherwise, we return the type of the operand of a trunc that we find.
2493     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2494       return T->getOperand()->getType();
2495     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2496       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2497       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2498         return T->getOperand()->getType();
2499     }
2500     return nullptr;
2501   };
2502   if (auto *SrcType = FindTruncSrcType()) {
2503     SmallVector<const SCEV *, 8> LargeOps;
2504     bool Ok = true;
2505     // Check all the operands to see if they can be represented in the
2506     // source type of the truncate.
2507     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2508       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2509         if (T->getOperand()->getType() != SrcType) {
2510           Ok = false;
2511           break;
2512         }
2513         LargeOps.push_back(T->getOperand());
2514       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2515         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2516       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2517         SmallVector<const SCEV *, 8> LargeMulOps;
2518         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2519           if (const SCEVTruncateExpr *T =
2520                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2521             if (T->getOperand()->getType() != SrcType) {
2522               Ok = false;
2523               break;
2524             }
2525             LargeMulOps.push_back(T->getOperand());
2526           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2527             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2528           } else {
2529             Ok = false;
2530             break;
2531           }
2532         }
2533         if (Ok)
2534           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2535       } else {
2536         Ok = false;
2537         break;
2538       }
2539     }
2540     if (Ok) {
2541       // Evaluate the expression in the larger type.
2542       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2543       // If it folds to something simple, use it. Otherwise, don't.
2544       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2545         return getTruncateExpr(Fold, Ty);
2546     }
2547   }
2548 
2549   if (Ops.size() == 2) {
2550     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2551     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2552     // C1).
2553     const SCEV *A = Ops[0];
2554     const SCEV *B = Ops[1];
2555     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2556     auto *C = dyn_cast<SCEVConstant>(A);
2557     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2558       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2559       auto C2 = C->getAPInt();
2560       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2561 
2562       APInt ConstAdd = C1 + C2;
2563       auto AddFlags = AddExpr->getNoWrapFlags();
2564       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2565       if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNUW) ==
2566               SCEV::FlagNUW &&
2567           ConstAdd.ule(C1)) {
2568         PreservedFlags =
2569             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2570       }
2571 
2572       // Adding a constant with the same sign and small magnitude is NSW, if the
2573       // original AddExpr was NSW.
2574       if (ScalarEvolution::maskFlags(AddFlags, SCEV::FlagNSW) ==
2575               SCEV::FlagNSW &&
2576           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2577           ConstAdd.abs().ule(C1.abs())) {
2578         PreservedFlags =
2579             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2580       }
2581 
2582       if (PreservedFlags != SCEV::FlagAnyWrap) {
2583         SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(),
2584                                             AddExpr->op_end());
2585         NewOps[0] = getConstant(ConstAdd);
2586         return getAddExpr(NewOps, PreservedFlags);
2587       }
2588     }
2589   }
2590 
2591   // Skip past any other cast SCEVs.
2592   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2593     ++Idx;
2594 
2595   // If there are add operands they would be next.
2596   if (Idx < Ops.size()) {
2597     bool DeletedAdd = false;
2598     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2599     // common NUW flag for expression after inlining. Other flags cannot be
2600     // preserved, because they may depend on the original order of operations.
2601     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2602     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2603       if (Ops.size() > AddOpsInlineThreshold ||
2604           Add->getNumOperands() > AddOpsInlineThreshold)
2605         break;
2606       // If we have an add, expand the add operands onto the end of the operands
2607       // list.
2608       Ops.erase(Ops.begin()+Idx);
2609       Ops.append(Add->op_begin(), Add->op_end());
2610       DeletedAdd = true;
2611       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2612     }
2613 
2614     // If we deleted at least one add, we added operands to the end of the list,
2615     // and they are not necessarily sorted.  Recurse to resort and resimplify
2616     // any operands we just acquired.
2617     if (DeletedAdd)
2618       return getAddExpr(Ops, CommonFlags, Depth + 1);
2619   }
2620 
2621   // Skip over the add expression until we get to a multiply.
2622   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2623     ++Idx;
2624 
2625   // Check to see if there are any folding opportunities present with
2626   // operands multiplied by constant values.
2627   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2628     uint64_t BitWidth = getTypeSizeInBits(Ty);
2629     DenseMap<const SCEV *, APInt> M;
2630     SmallVector<const SCEV *, 8> NewOps;
2631     APInt AccumulatedConstant(BitWidth, 0);
2632     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2633                                      Ops.data(), Ops.size(),
2634                                      APInt(BitWidth, 1), *this)) {
2635       struct APIntCompare {
2636         bool operator()(const APInt &LHS, const APInt &RHS) const {
2637           return LHS.ult(RHS);
2638         }
2639       };
2640 
2641       // Some interesting folding opportunity is present, so its worthwhile to
2642       // re-generate the operands list. Group the operands by constant scale,
2643       // to avoid multiplying by the same constant scale multiple times.
2644       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2645       for (const SCEV *NewOp : NewOps)
2646         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2647       // Re-generate the operands list.
2648       Ops.clear();
2649       if (AccumulatedConstant != 0)
2650         Ops.push_back(getConstant(AccumulatedConstant));
2651       for (auto &MulOp : MulOpLists) {
2652         if (MulOp.first == 1) {
2653           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2654         } else if (MulOp.first != 0) {
2655           Ops.push_back(getMulExpr(
2656               getConstant(MulOp.first),
2657               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2658               SCEV::FlagAnyWrap, Depth + 1));
2659         }
2660       }
2661       if (Ops.empty())
2662         return getZero(Ty);
2663       if (Ops.size() == 1)
2664         return Ops[0];
2665       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2666     }
2667   }
2668 
2669   // If we are adding something to a multiply expression, make sure the
2670   // something is not already an operand of the multiply.  If so, merge it into
2671   // the multiply.
2672   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2673     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2674     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2675       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2676       if (isa<SCEVConstant>(MulOpSCEV))
2677         continue;
2678       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2679         if (MulOpSCEV == Ops[AddOp]) {
2680           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2681           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2682           if (Mul->getNumOperands() != 2) {
2683             // If the multiply has more than two operands, we must get the
2684             // Y*Z term.
2685             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2686                                                 Mul->op_begin()+MulOp);
2687             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2688             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2689           }
2690           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2691           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2692           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2693                                             SCEV::FlagAnyWrap, Depth + 1);
2694           if (Ops.size() == 2) return OuterMul;
2695           if (AddOp < Idx) {
2696             Ops.erase(Ops.begin()+AddOp);
2697             Ops.erase(Ops.begin()+Idx-1);
2698           } else {
2699             Ops.erase(Ops.begin()+Idx);
2700             Ops.erase(Ops.begin()+AddOp-1);
2701           }
2702           Ops.push_back(OuterMul);
2703           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2704         }
2705 
2706       // Check this multiply against other multiplies being added together.
2707       for (unsigned OtherMulIdx = Idx+1;
2708            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2709            ++OtherMulIdx) {
2710         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2711         // If MulOp occurs in OtherMul, we can fold the two multiplies
2712         // together.
2713         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2714              OMulOp != e; ++OMulOp)
2715           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2716             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2717             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2718             if (Mul->getNumOperands() != 2) {
2719               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2720                                                   Mul->op_begin()+MulOp);
2721               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2722               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2723             }
2724             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2725             if (OtherMul->getNumOperands() != 2) {
2726               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2727                                                   OtherMul->op_begin()+OMulOp);
2728               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2729               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2730             }
2731             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2732             const SCEV *InnerMulSum =
2733                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2734             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2735                                               SCEV::FlagAnyWrap, Depth + 1);
2736             if (Ops.size() == 2) return OuterMul;
2737             Ops.erase(Ops.begin()+Idx);
2738             Ops.erase(Ops.begin()+OtherMulIdx-1);
2739             Ops.push_back(OuterMul);
2740             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2741           }
2742       }
2743     }
2744   }
2745 
2746   // If there are any add recurrences in the operands list, see if any other
2747   // added values are loop invariant.  If so, we can fold them into the
2748   // recurrence.
2749   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2750     ++Idx;
2751 
2752   // Scan over all recurrences, trying to fold loop invariants into them.
2753   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2754     // Scan all of the other operands to this add and add them to the vector if
2755     // they are loop invariant w.r.t. the recurrence.
2756     SmallVector<const SCEV *, 8> LIOps;
2757     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2758     const Loop *AddRecLoop = AddRec->getLoop();
2759     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2760       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2761         LIOps.push_back(Ops[i]);
2762         Ops.erase(Ops.begin()+i);
2763         --i; --e;
2764       }
2765 
2766     // If we found some loop invariants, fold them into the recurrence.
2767     if (!LIOps.empty()) {
2768       // Compute nowrap flags for the addition of the loop-invariant ops and
2769       // the addrec. Temporarily push it as an operand for that purpose.
2770       LIOps.push_back(AddRec);
2771       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2772       LIOps.pop_back();
2773 
2774       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2775       LIOps.push_back(AddRec->getStart());
2776 
2777       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2778       // This follows from the fact that the no-wrap flags on the outer add
2779       // expression are applicable on the 0th iteration, when the add recurrence
2780       // will be equal to its start value.
2781       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2782 
2783       // Build the new addrec. Propagate the NUW and NSW flags if both the
2784       // outer add and the inner addrec are guaranteed to have no overflow.
2785       // Always propagate NW.
2786       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2787       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2788 
2789       // If all of the other operands were loop invariant, we are done.
2790       if (Ops.size() == 1) return NewRec;
2791 
2792       // Otherwise, add the folded AddRec by the non-invariant parts.
2793       for (unsigned i = 0;; ++i)
2794         if (Ops[i] == AddRec) {
2795           Ops[i] = NewRec;
2796           break;
2797         }
2798       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2799     }
2800 
2801     // Okay, if there weren't any loop invariants to be folded, check to see if
2802     // there are multiple AddRec's with the same loop induction variable being
2803     // added together.  If so, we can fold them.
2804     for (unsigned OtherIdx = Idx+1;
2805          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2806          ++OtherIdx) {
2807       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2808       // so that the 1st found AddRecExpr is dominated by all others.
2809       assert(DT.dominates(
2810            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2811            AddRec->getLoop()->getHeader()) &&
2812         "AddRecExprs are not sorted in reverse dominance order?");
2813       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2814         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2815         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2816         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2817              ++OtherIdx) {
2818           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2819           if (OtherAddRec->getLoop() == AddRecLoop) {
2820             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2821                  i != e; ++i) {
2822               if (i >= AddRecOps.size()) {
2823                 AddRecOps.append(OtherAddRec->op_begin()+i,
2824                                  OtherAddRec->op_end());
2825                 break;
2826               }
2827               SmallVector<const SCEV *, 2> TwoOps = {
2828                   AddRecOps[i], OtherAddRec->getOperand(i)};
2829               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2830             }
2831             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2832           }
2833         }
2834         // Step size has changed, so we cannot guarantee no self-wraparound.
2835         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2836         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2837       }
2838     }
2839 
2840     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2841     // next one.
2842   }
2843 
2844   // Okay, it looks like we really DO need an add expr.  Check to see if we
2845   // already have one, otherwise create a new one.
2846   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2847 }
2848 
2849 const SCEV *
2850 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2851                                     SCEV::NoWrapFlags Flags) {
2852   FoldingSetNodeID ID;
2853   ID.AddInteger(scAddExpr);
2854   for (const SCEV *Op : Ops)
2855     ID.AddPointer(Op);
2856   void *IP = nullptr;
2857   SCEVAddExpr *S =
2858       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2859   if (!S) {
2860     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2861     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2862     S = new (SCEVAllocator)
2863         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2864     UniqueSCEVs.InsertNode(S, IP);
2865     addToLoopUseLists(S);
2866   }
2867   S->setNoWrapFlags(Flags);
2868   return S;
2869 }
2870 
2871 const SCEV *
2872 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2873                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2874   FoldingSetNodeID ID;
2875   ID.AddInteger(scAddRecExpr);
2876   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2877     ID.AddPointer(Ops[i]);
2878   ID.AddPointer(L);
2879   void *IP = nullptr;
2880   SCEVAddRecExpr *S =
2881       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2882   if (!S) {
2883     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2884     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2885     S = new (SCEVAllocator)
2886         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2887     UniqueSCEVs.InsertNode(S, IP);
2888     addToLoopUseLists(S);
2889   }
2890   setNoWrapFlags(S, Flags);
2891   return S;
2892 }
2893 
2894 const SCEV *
2895 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2896                                     SCEV::NoWrapFlags Flags) {
2897   FoldingSetNodeID ID;
2898   ID.AddInteger(scMulExpr);
2899   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2900     ID.AddPointer(Ops[i]);
2901   void *IP = nullptr;
2902   SCEVMulExpr *S =
2903     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2904   if (!S) {
2905     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2906     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2907     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2908                                         O, Ops.size());
2909     UniqueSCEVs.InsertNode(S, IP);
2910     addToLoopUseLists(S);
2911   }
2912   S->setNoWrapFlags(Flags);
2913   return S;
2914 }
2915 
2916 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2917   uint64_t k = i*j;
2918   if (j > 1 && k / j != i) Overflow = true;
2919   return k;
2920 }
2921 
2922 /// Compute the result of "n choose k", the binomial coefficient.  If an
2923 /// intermediate computation overflows, Overflow will be set and the return will
2924 /// be garbage. Overflow is not cleared on absence of overflow.
2925 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2926   // We use the multiplicative formula:
2927   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2928   // At each iteration, we take the n-th term of the numeral and divide by the
2929   // (k-n)th term of the denominator.  This division will always produce an
2930   // integral result, and helps reduce the chance of overflow in the
2931   // intermediate computations. However, we can still overflow even when the
2932   // final result would fit.
2933 
2934   if (n == 0 || n == k) return 1;
2935   if (k > n) return 0;
2936 
2937   if (k > n/2)
2938     k = n-k;
2939 
2940   uint64_t r = 1;
2941   for (uint64_t i = 1; i <= k; ++i) {
2942     r = umul_ov(r, n-(i-1), Overflow);
2943     r /= i;
2944   }
2945   return r;
2946 }
2947 
2948 /// Determine if any of the operands in this SCEV are a constant or if
2949 /// any of the add or multiply expressions in this SCEV contain a constant.
2950 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2951   struct FindConstantInAddMulChain {
2952     bool FoundConstant = false;
2953 
2954     bool follow(const SCEV *S) {
2955       FoundConstant |= isa<SCEVConstant>(S);
2956       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2957     }
2958 
2959     bool isDone() const {
2960       return FoundConstant;
2961     }
2962   };
2963 
2964   FindConstantInAddMulChain F;
2965   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2966   ST.visitAll(StartExpr);
2967   return F.FoundConstant;
2968 }
2969 
2970 /// Get a canonical multiply expression, or something simpler if possible.
2971 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2972                                         SCEV::NoWrapFlags OrigFlags,
2973                                         unsigned Depth) {
2974   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2975          "only nuw or nsw allowed");
2976   assert(!Ops.empty() && "Cannot get empty mul!");
2977   if (Ops.size() == 1) return Ops[0];
2978 #ifndef NDEBUG
2979   Type *ETy = Ops[0]->getType();
2980   assert(!ETy->isPointerTy());
2981   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2982     assert(Ops[i]->getType() == ETy &&
2983            "SCEVMulExpr operand types don't match!");
2984 #endif
2985 
2986   // Sort by complexity, this groups all similar expression types together.
2987   GroupByComplexity(Ops, &LI, DT);
2988 
2989   // If there are any constants, fold them together.
2990   unsigned Idx = 0;
2991   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2992     ++Idx;
2993     assert(Idx < Ops.size());
2994     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2995       // We found two constants, fold them together!
2996       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2997       if (Ops.size() == 2) return Ops[0];
2998       Ops.erase(Ops.begin()+1);  // Erase the folded element
2999       LHSC = cast<SCEVConstant>(Ops[0]);
3000     }
3001 
3002     // If we have a multiply of zero, it will always be zero.
3003     if (LHSC->getValue()->isZero())
3004       return LHSC;
3005 
3006     // If we are left with a constant one being multiplied, strip it off.
3007     if (LHSC->getValue()->isOne()) {
3008       Ops.erase(Ops.begin());
3009       --Idx;
3010     }
3011 
3012     if (Ops.size() == 1)
3013       return Ops[0];
3014   }
3015 
3016   // Delay expensive flag strengthening until necessary.
3017   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3018     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3019   };
3020 
3021   // Limit recursion calls depth.
3022   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3023     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3024 
3025   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
3026     // Don't strengthen flags if we have no new information.
3027     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3028     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3029       Mul->setNoWrapFlags(ComputeFlags(Ops));
3030     return S;
3031   }
3032 
3033   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3034     if (Ops.size() == 2) {
3035       // C1*(C2+V) -> C1*C2 + C1*V
3036       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3037         // If any of Add's ops are Adds or Muls with a constant, apply this
3038         // transformation as well.
3039         //
3040         // TODO: There are some cases where this transformation is not
3041         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3042         // this transformation should be narrowed down.
3043         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3044           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3045                                        SCEV::FlagAnyWrap, Depth + 1),
3046                             getMulExpr(LHSC, Add->getOperand(1),
3047                                        SCEV::FlagAnyWrap, Depth + 1),
3048                             SCEV::FlagAnyWrap, Depth + 1);
3049 
3050       if (Ops[0]->isAllOnesValue()) {
3051         // If we have a mul by -1 of an add, try distributing the -1 among the
3052         // add operands.
3053         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3054           SmallVector<const SCEV *, 4> NewOps;
3055           bool AnyFolded = false;
3056           for (const SCEV *AddOp : Add->operands()) {
3057             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3058                                          Depth + 1);
3059             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3060             NewOps.push_back(Mul);
3061           }
3062           if (AnyFolded)
3063             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3064         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3065           // Negation preserves a recurrence's no self-wrap property.
3066           SmallVector<const SCEV *, 4> Operands;
3067           for (const SCEV *AddRecOp : AddRec->operands())
3068             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3069                                           Depth + 1));
3070 
3071           return getAddRecExpr(Operands, AddRec->getLoop(),
3072                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3073         }
3074       }
3075     }
3076   }
3077 
3078   // Skip over the add expression until we get to a multiply.
3079   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3080     ++Idx;
3081 
3082   // If there are mul operands inline them all into this expression.
3083   if (Idx < Ops.size()) {
3084     bool DeletedMul = false;
3085     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3086       if (Ops.size() > MulOpsInlineThreshold)
3087         break;
3088       // If we have an mul, expand the mul operands onto the end of the
3089       // operands list.
3090       Ops.erase(Ops.begin()+Idx);
3091       Ops.append(Mul->op_begin(), Mul->op_end());
3092       DeletedMul = true;
3093     }
3094 
3095     // If we deleted at least one mul, we added operands to the end of the
3096     // list, and they are not necessarily sorted.  Recurse to resort and
3097     // resimplify any operands we just acquired.
3098     if (DeletedMul)
3099       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3100   }
3101 
3102   // If there are any add recurrences in the operands list, see if any other
3103   // added values are loop invariant.  If so, we can fold them into the
3104   // recurrence.
3105   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3106     ++Idx;
3107 
3108   // Scan over all recurrences, trying to fold loop invariants into them.
3109   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3110     // Scan all of the other operands to this mul and add them to the vector
3111     // if they are loop invariant w.r.t. the recurrence.
3112     SmallVector<const SCEV *, 8> LIOps;
3113     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3114     const Loop *AddRecLoop = AddRec->getLoop();
3115     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3116       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3117         LIOps.push_back(Ops[i]);
3118         Ops.erase(Ops.begin()+i);
3119         --i; --e;
3120       }
3121 
3122     // If we found some loop invariants, fold them into the recurrence.
3123     if (!LIOps.empty()) {
3124       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3125       SmallVector<const SCEV *, 4> NewOps;
3126       NewOps.reserve(AddRec->getNumOperands());
3127       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3128       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3129         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3130                                     SCEV::FlagAnyWrap, Depth + 1));
3131 
3132       // Build the new addrec. Propagate the NUW and NSW flags if both the
3133       // outer mul and the inner addrec are guaranteed to have no overflow.
3134       //
3135       // No self-wrap cannot be guaranteed after changing the step size, but
3136       // will be inferred if either NUW or NSW is true.
3137       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3138       const SCEV *NewRec = getAddRecExpr(
3139           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3140 
3141       // If all of the other operands were loop invariant, we are done.
3142       if (Ops.size() == 1) return NewRec;
3143 
3144       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3145       for (unsigned i = 0;; ++i)
3146         if (Ops[i] == AddRec) {
3147           Ops[i] = NewRec;
3148           break;
3149         }
3150       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3151     }
3152 
3153     // Okay, if there weren't any loop invariants to be folded, check to see
3154     // if there are multiple AddRec's with the same loop induction variable
3155     // being multiplied together.  If so, we can fold them.
3156 
3157     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3158     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3159     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3160     //   ]]],+,...up to x=2n}.
3161     // Note that the arguments to choose() are always integers with values
3162     // known at compile time, never SCEV objects.
3163     //
3164     // The implementation avoids pointless extra computations when the two
3165     // addrec's are of different length (mathematically, it's equivalent to
3166     // an infinite stream of zeros on the right).
3167     bool OpsModified = false;
3168     for (unsigned OtherIdx = Idx+1;
3169          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3170          ++OtherIdx) {
3171       const SCEVAddRecExpr *OtherAddRec =
3172         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3173       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3174         continue;
3175 
3176       // Limit max number of arguments to avoid creation of unreasonably big
3177       // SCEVAddRecs with very complex operands.
3178       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3179           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3180         continue;
3181 
3182       bool Overflow = false;
3183       Type *Ty = AddRec->getType();
3184       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3185       SmallVector<const SCEV*, 7> AddRecOps;
3186       for (int x = 0, xe = AddRec->getNumOperands() +
3187              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3188         SmallVector <const SCEV *, 7> SumOps;
3189         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3190           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3191           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3192                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3193                z < ze && !Overflow; ++z) {
3194             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3195             uint64_t Coeff;
3196             if (LargerThan64Bits)
3197               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3198             else
3199               Coeff = Coeff1*Coeff2;
3200             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3201             const SCEV *Term1 = AddRec->getOperand(y-z);
3202             const SCEV *Term2 = OtherAddRec->getOperand(z);
3203             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3204                                         SCEV::FlagAnyWrap, Depth + 1));
3205           }
3206         }
3207         if (SumOps.empty())
3208           SumOps.push_back(getZero(Ty));
3209         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3210       }
3211       if (!Overflow) {
3212         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3213                                               SCEV::FlagAnyWrap);
3214         if (Ops.size() == 2) return NewAddRec;
3215         Ops[Idx] = NewAddRec;
3216         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3217         OpsModified = true;
3218         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3219         if (!AddRec)
3220           break;
3221       }
3222     }
3223     if (OpsModified)
3224       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3225 
3226     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3227     // next one.
3228   }
3229 
3230   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3231   // already have one, otherwise create a new one.
3232   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3233 }
3234 
3235 /// Represents an unsigned remainder expression based on unsigned division.
3236 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3237                                          const SCEV *RHS) {
3238   assert(getEffectiveSCEVType(LHS->getType()) ==
3239          getEffectiveSCEVType(RHS->getType()) &&
3240          "SCEVURemExpr operand types don't match!");
3241 
3242   // Short-circuit easy cases
3243   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3244     // If constant is one, the result is trivial
3245     if (RHSC->getValue()->isOne())
3246       return getZero(LHS->getType()); // X urem 1 --> 0
3247 
3248     // If constant is a power of two, fold into a zext(trunc(LHS)).
3249     if (RHSC->getAPInt().isPowerOf2()) {
3250       Type *FullTy = LHS->getType();
3251       Type *TruncTy =
3252           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3253       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3254     }
3255   }
3256 
3257   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3258   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3259   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3260   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3261 }
3262 
3263 /// Get a canonical unsigned division expression, or something simpler if
3264 /// possible.
3265 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3266                                          const SCEV *RHS) {
3267   assert(!LHS->getType()->isPointerTy() &&
3268          "SCEVUDivExpr operand can't be pointer!");
3269   assert(LHS->getType() == RHS->getType() &&
3270          "SCEVUDivExpr operand types don't match!");
3271 
3272   FoldingSetNodeID ID;
3273   ID.AddInteger(scUDivExpr);
3274   ID.AddPointer(LHS);
3275   ID.AddPointer(RHS);
3276   void *IP = nullptr;
3277   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3278     return S;
3279 
3280   // 0 udiv Y == 0
3281   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3282     if (LHSC->getValue()->isZero())
3283       return LHS;
3284 
3285   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3286     if (RHSC->getValue()->isOne())
3287       return LHS;                               // X udiv 1 --> x
3288     // If the denominator is zero, the result of the udiv is undefined. Don't
3289     // try to analyze it, because the resolution chosen here may differ from
3290     // the resolution chosen in other parts of the compiler.
3291     if (!RHSC->getValue()->isZero()) {
3292       // Determine if the division can be folded into the operands of
3293       // its operands.
3294       // TODO: Generalize this to non-constants by using known-bits information.
3295       Type *Ty = LHS->getType();
3296       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3297       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3298       // For non-power-of-two values, effectively round the value up to the
3299       // nearest power of two.
3300       if (!RHSC->getAPInt().isPowerOf2())
3301         ++MaxShiftAmt;
3302       IntegerType *ExtTy =
3303         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3304       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3305         if (const SCEVConstant *Step =
3306             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3307           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3308           const APInt &StepInt = Step->getAPInt();
3309           const APInt &DivInt = RHSC->getAPInt();
3310           if (!StepInt.urem(DivInt) &&
3311               getZeroExtendExpr(AR, ExtTy) ==
3312               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3313                             getZeroExtendExpr(Step, ExtTy),
3314                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3315             SmallVector<const SCEV *, 4> Operands;
3316             for (const SCEV *Op : AR->operands())
3317               Operands.push_back(getUDivExpr(Op, RHS));
3318             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3319           }
3320           /// Get a canonical UDivExpr for a recurrence.
3321           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3322           // We can currently only fold X%N if X is constant.
3323           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3324           if (StartC && !DivInt.urem(StepInt) &&
3325               getZeroExtendExpr(AR, ExtTy) ==
3326               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3327                             getZeroExtendExpr(Step, ExtTy),
3328                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3329             const APInt &StartInt = StartC->getAPInt();
3330             const APInt &StartRem = StartInt.urem(StepInt);
3331             if (StartRem != 0) {
3332               const SCEV *NewLHS =
3333                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3334                                 AR->getLoop(), SCEV::FlagNW);
3335               if (LHS != NewLHS) {
3336                 LHS = NewLHS;
3337 
3338                 // Reset the ID to include the new LHS, and check if it is
3339                 // already cached.
3340                 ID.clear();
3341                 ID.AddInteger(scUDivExpr);
3342                 ID.AddPointer(LHS);
3343                 ID.AddPointer(RHS);
3344                 IP = nullptr;
3345                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3346                   return S;
3347               }
3348             }
3349           }
3350         }
3351       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3352       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3353         SmallVector<const SCEV *, 4> Operands;
3354         for (const SCEV *Op : M->operands())
3355           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3356         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3357           // Find an operand that's safely divisible.
3358           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3359             const SCEV *Op = M->getOperand(i);
3360             const SCEV *Div = getUDivExpr(Op, RHSC);
3361             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3362               Operands = SmallVector<const SCEV *, 4>(M->operands());
3363               Operands[i] = Div;
3364               return getMulExpr(Operands);
3365             }
3366           }
3367       }
3368 
3369       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3370       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3371         if (auto *DivisorConstant =
3372                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3373           bool Overflow = false;
3374           APInt NewRHS =
3375               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3376           if (Overflow) {
3377             return getConstant(RHSC->getType(), 0, false);
3378           }
3379           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3380         }
3381       }
3382 
3383       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3384       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3385         SmallVector<const SCEV *, 4> Operands;
3386         for (const SCEV *Op : A->operands())
3387           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3388         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3389           Operands.clear();
3390           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3391             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3392             if (isa<SCEVUDivExpr>(Op) ||
3393                 getMulExpr(Op, RHS) != A->getOperand(i))
3394               break;
3395             Operands.push_back(Op);
3396           }
3397           if (Operands.size() == A->getNumOperands())
3398             return getAddExpr(Operands);
3399         }
3400       }
3401 
3402       // Fold if both operands are constant.
3403       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3404         Constant *LHSCV = LHSC->getValue();
3405         Constant *RHSCV = RHSC->getValue();
3406         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3407                                                                    RHSCV)));
3408       }
3409     }
3410   }
3411 
3412   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3413   // changes). Make sure we get a new one.
3414   IP = nullptr;
3415   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3416   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3417                                              LHS, RHS);
3418   UniqueSCEVs.InsertNode(S, IP);
3419   addToLoopUseLists(S);
3420   return S;
3421 }
3422 
3423 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3424   APInt A = C1->getAPInt().abs();
3425   APInt B = C2->getAPInt().abs();
3426   uint32_t ABW = A.getBitWidth();
3427   uint32_t BBW = B.getBitWidth();
3428 
3429   if (ABW > BBW)
3430     B = B.zext(ABW);
3431   else if (ABW < BBW)
3432     A = A.zext(BBW);
3433 
3434   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3435 }
3436 
3437 /// Get a canonical unsigned division expression, or something simpler if
3438 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3439 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3440 /// it's not exact because the udiv may be clearing bits.
3441 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3442                                               const SCEV *RHS) {
3443   // TODO: we could try to find factors in all sorts of things, but for now we
3444   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3445   // end of this file for inspiration.
3446 
3447   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3448   if (!Mul || !Mul->hasNoUnsignedWrap())
3449     return getUDivExpr(LHS, RHS);
3450 
3451   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3452     // If the mulexpr multiplies by a constant, then that constant must be the
3453     // first element of the mulexpr.
3454     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3455       if (LHSCst == RHSCst) {
3456         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3457         return getMulExpr(Operands);
3458       }
3459 
3460       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3461       // that there's a factor provided by one of the other terms. We need to
3462       // check.
3463       APInt Factor = gcd(LHSCst, RHSCst);
3464       if (!Factor.isIntN(1)) {
3465         LHSCst =
3466             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3467         RHSCst =
3468             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3469         SmallVector<const SCEV *, 2> Operands;
3470         Operands.push_back(LHSCst);
3471         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3472         LHS = getMulExpr(Operands);
3473         RHS = RHSCst;
3474         Mul = dyn_cast<SCEVMulExpr>(LHS);
3475         if (!Mul)
3476           return getUDivExactExpr(LHS, RHS);
3477       }
3478     }
3479   }
3480 
3481   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3482     if (Mul->getOperand(i) == RHS) {
3483       SmallVector<const SCEV *, 2> Operands;
3484       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3485       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3486       return getMulExpr(Operands);
3487     }
3488   }
3489 
3490   return getUDivExpr(LHS, RHS);
3491 }
3492 
3493 /// Get an add recurrence expression for the specified loop.  Simplify the
3494 /// expression as much as possible.
3495 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3496                                            const Loop *L,
3497                                            SCEV::NoWrapFlags Flags) {
3498   SmallVector<const SCEV *, 4> Operands;
3499   Operands.push_back(Start);
3500   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3501     if (StepChrec->getLoop() == L) {
3502       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3503       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3504     }
3505 
3506   Operands.push_back(Step);
3507   return getAddRecExpr(Operands, L, Flags);
3508 }
3509 
3510 /// Get an add recurrence expression for the specified loop.  Simplify the
3511 /// expression as much as possible.
3512 const SCEV *
3513 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3514                                const Loop *L, SCEV::NoWrapFlags Flags) {
3515   if (Operands.size() == 1) return Operands[0];
3516 #ifndef NDEBUG
3517   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3518   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3519     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3520            "SCEVAddRecExpr operand types don't match!");
3521     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3522   }
3523   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3524     assert(isLoopInvariant(Operands[i], L) &&
3525            "SCEVAddRecExpr operand is not loop-invariant!");
3526 #endif
3527 
3528   if (Operands.back()->isZero()) {
3529     Operands.pop_back();
3530     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3531   }
3532 
3533   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3534   // use that information to infer NUW and NSW flags. However, computing a
3535   // BE count requires calling getAddRecExpr, so we may not yet have a
3536   // meaningful BE count at this point (and if we don't, we'd be stuck
3537   // with a SCEVCouldNotCompute as the cached BE count).
3538 
3539   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3540 
3541   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3542   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3543     const Loop *NestedLoop = NestedAR->getLoop();
3544     if (L->contains(NestedLoop)
3545             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3546             : (!NestedLoop->contains(L) &&
3547                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3548       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3549       Operands[0] = NestedAR->getStart();
3550       // AddRecs require their operands be loop-invariant with respect to their
3551       // loops. Don't perform this transformation if it would break this
3552       // requirement.
3553       bool AllInvariant = all_of(
3554           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3555 
3556       if (AllInvariant) {
3557         // Create a recurrence for the outer loop with the same step size.
3558         //
3559         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3560         // inner recurrence has the same property.
3561         SCEV::NoWrapFlags OuterFlags =
3562           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3563 
3564         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3565         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3566           return isLoopInvariant(Op, NestedLoop);
3567         });
3568 
3569         if (AllInvariant) {
3570           // Ok, both add recurrences are valid after the transformation.
3571           //
3572           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3573           // the outer recurrence has the same property.
3574           SCEV::NoWrapFlags InnerFlags =
3575             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3576           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3577         }
3578       }
3579       // Reset Operands to its original state.
3580       Operands[0] = NestedAR;
3581     }
3582   }
3583 
3584   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3585   // already have one, otherwise create a new one.
3586   return getOrCreateAddRecExpr(Operands, L, Flags);
3587 }
3588 
3589 const SCEV *
3590 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3591                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3592   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3593   // getSCEV(Base)->getType() has the same address space as Base->getType()
3594   // because SCEV::getType() preserves the address space.
3595   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3596   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3597   // instruction to its SCEV, because the Instruction may be guarded by control
3598   // flow and the no-overflow bits may not be valid for the expression in any
3599   // context. This can be fixed similarly to how these flags are handled for
3600   // adds.
3601   SCEV::NoWrapFlags OffsetWrap =
3602       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3603 
3604   Type *CurTy = GEP->getType();
3605   bool FirstIter = true;
3606   SmallVector<const SCEV *, 4> Offsets;
3607   for (const SCEV *IndexExpr : IndexExprs) {
3608     // Compute the (potentially symbolic) offset in bytes for this index.
3609     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3610       // For a struct, add the member offset.
3611       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3612       unsigned FieldNo = Index->getZExtValue();
3613       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3614       Offsets.push_back(FieldOffset);
3615 
3616       // Update CurTy to the type of the field at Index.
3617       CurTy = STy->getTypeAtIndex(Index);
3618     } else {
3619       // Update CurTy to its element type.
3620       if (FirstIter) {
3621         assert(isa<PointerType>(CurTy) &&
3622                "The first index of a GEP indexes a pointer");
3623         CurTy = GEP->getSourceElementType();
3624         FirstIter = false;
3625       } else {
3626         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3627       }
3628       // For an array, add the element offset, explicitly scaled.
3629       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3630       // Getelementptr indices are signed.
3631       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3632 
3633       // Multiply the index by the element size to compute the element offset.
3634       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3635       Offsets.push_back(LocalOffset);
3636     }
3637   }
3638 
3639   // Handle degenerate case of GEP without offsets.
3640   if (Offsets.empty())
3641     return BaseExpr;
3642 
3643   // Add the offsets together, assuming nsw if inbounds.
3644   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3645   // Add the base address and the offset. We cannot use the nsw flag, as the
3646   // base address is unsigned. However, if we know that the offset is
3647   // non-negative, we can use nuw.
3648   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3649                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3650   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3651   assert(BaseExpr->getType() == GEPExpr->getType() &&
3652          "GEP should not change type mid-flight.");
3653   return GEPExpr;
3654 }
3655 
3656 std::tuple<SCEV *, FoldingSetNodeID, void *>
3657 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3658                                          ArrayRef<const SCEV *> Ops) {
3659   FoldingSetNodeID ID;
3660   void *IP = nullptr;
3661   ID.AddInteger(SCEVType);
3662   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3663     ID.AddPointer(Ops[i]);
3664   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3665       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3666 }
3667 
3668 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3669   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3670   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3671 }
3672 
3673 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3674                                            SmallVectorImpl<const SCEV *> &Ops) {
3675   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3676   if (Ops.size() == 1) return Ops[0];
3677 #ifndef NDEBUG
3678   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3679   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3680     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3681            "Operand types don't match!");
3682     assert(Ops[0]->getType()->isPointerTy() ==
3683                Ops[i]->getType()->isPointerTy() &&
3684            "min/max should be consistently pointerish");
3685   }
3686 #endif
3687 
3688   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3689   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3690 
3691   // Sort by complexity, this groups all similar expression types together.
3692   GroupByComplexity(Ops, &LI, DT);
3693 
3694   // Check if we have created the same expression before.
3695   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3696     return S;
3697   }
3698 
3699   // If there are any constants, fold them together.
3700   unsigned Idx = 0;
3701   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3702     ++Idx;
3703     assert(Idx < Ops.size());
3704     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3705       if (Kind == scSMaxExpr)
3706         return APIntOps::smax(LHS, RHS);
3707       else if (Kind == scSMinExpr)
3708         return APIntOps::smin(LHS, RHS);
3709       else if (Kind == scUMaxExpr)
3710         return APIntOps::umax(LHS, RHS);
3711       else if (Kind == scUMinExpr)
3712         return APIntOps::umin(LHS, RHS);
3713       llvm_unreachable("Unknown SCEV min/max opcode");
3714     };
3715 
3716     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3717       // We found two constants, fold them together!
3718       ConstantInt *Fold = ConstantInt::get(
3719           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3720       Ops[0] = getConstant(Fold);
3721       Ops.erase(Ops.begin()+1);  // Erase the folded element
3722       if (Ops.size() == 1) return Ops[0];
3723       LHSC = cast<SCEVConstant>(Ops[0]);
3724     }
3725 
3726     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3727     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3728 
3729     if (IsMax ? IsMinV : IsMaxV) {
3730       // If we are left with a constant minimum(/maximum)-int, strip it off.
3731       Ops.erase(Ops.begin());
3732       --Idx;
3733     } else if (IsMax ? IsMaxV : IsMinV) {
3734       // If we have a max(/min) with a constant maximum(/minimum)-int,
3735       // it will always be the extremum.
3736       return LHSC;
3737     }
3738 
3739     if (Ops.size() == 1) return Ops[0];
3740   }
3741 
3742   // Find the first operation of the same kind
3743   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3744     ++Idx;
3745 
3746   // Check to see if one of the operands is of the same kind. If so, expand its
3747   // operands onto our operand list, and recurse to simplify.
3748   if (Idx < Ops.size()) {
3749     bool DeletedAny = false;
3750     while (Ops[Idx]->getSCEVType() == Kind) {
3751       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3752       Ops.erase(Ops.begin()+Idx);
3753       Ops.append(SMME->op_begin(), SMME->op_end());
3754       DeletedAny = true;
3755     }
3756 
3757     if (DeletedAny)
3758       return getMinMaxExpr(Kind, Ops);
3759   }
3760 
3761   // Okay, check to see if the same value occurs in the operand list twice.  If
3762   // so, delete one.  Since we sorted the list, these values are required to
3763   // be adjacent.
3764   llvm::CmpInst::Predicate GEPred =
3765       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3766   llvm::CmpInst::Predicate LEPred =
3767       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3768   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3769   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3770   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3771     if (Ops[i] == Ops[i + 1] ||
3772         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3773       //  X op Y op Y  -->  X op Y
3774       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3775       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3776       --i;
3777       --e;
3778     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3779                                                Ops[i + 1])) {
3780       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3781       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3782       --i;
3783       --e;
3784     }
3785   }
3786 
3787   if (Ops.size() == 1) return Ops[0];
3788 
3789   assert(!Ops.empty() && "Reduced smax down to nothing!");
3790 
3791   // Okay, it looks like we really DO need an expr.  Check to see if we
3792   // already have one, otherwise create a new one.
3793   const SCEV *ExistingSCEV;
3794   FoldingSetNodeID ID;
3795   void *IP;
3796   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3797   if (ExistingSCEV)
3798     return ExistingSCEV;
3799   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3800   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3801   SCEV *S = new (SCEVAllocator)
3802       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3803 
3804   UniqueSCEVs.InsertNode(S, IP);
3805   addToLoopUseLists(S);
3806   return S;
3807 }
3808 
3809 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3810   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3811   return getSMaxExpr(Ops);
3812 }
3813 
3814 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3815   return getMinMaxExpr(scSMaxExpr, Ops);
3816 }
3817 
3818 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3819   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3820   return getUMaxExpr(Ops);
3821 }
3822 
3823 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3824   return getMinMaxExpr(scUMaxExpr, Ops);
3825 }
3826 
3827 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3828                                          const SCEV *RHS) {
3829   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3830   return getSMinExpr(Ops);
3831 }
3832 
3833 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3834   return getMinMaxExpr(scSMinExpr, Ops);
3835 }
3836 
3837 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3838                                          const SCEV *RHS) {
3839   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3840   return getUMinExpr(Ops);
3841 }
3842 
3843 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3844   return getMinMaxExpr(scUMinExpr, Ops);
3845 }
3846 
3847 const SCEV *
3848 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3849                                              ScalableVectorType *ScalableTy) {
3850   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3851   Constant *One = ConstantInt::get(IntTy, 1);
3852   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3853   // Note that the expression we created is the final expression, we don't
3854   // want to simplify it any further Also, if we call a normal getSCEV(),
3855   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3856   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3857 }
3858 
3859 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3860   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3861     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3862   // We can bypass creating a target-independent constant expression and then
3863   // folding it back into a ConstantInt. This is just a compile-time
3864   // optimization.
3865   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3866 }
3867 
3868 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3869   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3870     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3871   // We can bypass creating a target-independent constant expression and then
3872   // folding it back into a ConstantInt. This is just a compile-time
3873   // optimization.
3874   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3875 }
3876 
3877 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3878                                              StructType *STy,
3879                                              unsigned FieldNo) {
3880   // We can bypass creating a target-independent constant expression and then
3881   // folding it back into a ConstantInt. This is just a compile-time
3882   // optimization.
3883   return getConstant(
3884       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3885 }
3886 
3887 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3888   // Don't attempt to do anything other than create a SCEVUnknown object
3889   // here.  createSCEV only calls getUnknown after checking for all other
3890   // interesting possibilities, and any other code that calls getUnknown
3891   // is doing so in order to hide a value from SCEV canonicalization.
3892 
3893   FoldingSetNodeID ID;
3894   ID.AddInteger(scUnknown);
3895   ID.AddPointer(V);
3896   void *IP = nullptr;
3897   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3898     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3899            "Stale SCEVUnknown in uniquing map!");
3900     return S;
3901   }
3902   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3903                                             FirstUnknown);
3904   FirstUnknown = cast<SCEVUnknown>(S);
3905   UniqueSCEVs.InsertNode(S, IP);
3906   return S;
3907 }
3908 
3909 //===----------------------------------------------------------------------===//
3910 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3911 //
3912 
3913 /// Test if values of the given type are analyzable within the SCEV
3914 /// framework. This primarily includes integer types, and it can optionally
3915 /// include pointer types if the ScalarEvolution class has access to
3916 /// target-specific information.
3917 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3918   // Integers and pointers are always SCEVable.
3919   return Ty->isIntOrPtrTy();
3920 }
3921 
3922 /// Return the size in bits of the specified type, for which isSCEVable must
3923 /// return true.
3924 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3925   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3926   if (Ty->isPointerTy())
3927     return getDataLayout().getIndexTypeSizeInBits(Ty);
3928   return getDataLayout().getTypeSizeInBits(Ty);
3929 }
3930 
3931 /// Return a type with the same bitwidth as the given type and which represents
3932 /// how SCEV will treat the given type, for which isSCEVable must return
3933 /// true. For pointer types, this is the pointer index sized integer type.
3934 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3935   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3936 
3937   if (Ty->isIntegerTy())
3938     return Ty;
3939 
3940   // The only other support type is pointer.
3941   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3942   return getDataLayout().getIndexType(Ty);
3943 }
3944 
3945 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3946   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3947 }
3948 
3949 const SCEV *ScalarEvolution::getCouldNotCompute() {
3950   return CouldNotCompute.get();
3951 }
3952 
3953 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3954   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3955     auto *SU = dyn_cast<SCEVUnknown>(S);
3956     return SU && SU->getValue() == nullptr;
3957   });
3958 
3959   return !ContainsNulls;
3960 }
3961 
3962 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3963   HasRecMapType::iterator I = HasRecMap.find(S);
3964   if (I != HasRecMap.end())
3965     return I->second;
3966 
3967   bool FoundAddRec =
3968       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3969   HasRecMap.insert({S, FoundAddRec});
3970   return FoundAddRec;
3971 }
3972 
3973 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3974 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3975 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3976 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3977   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3978   if (!Add)
3979     return {S, nullptr};
3980 
3981   if (Add->getNumOperands() != 2)
3982     return {S, nullptr};
3983 
3984   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3985   if (!ConstOp)
3986     return {S, nullptr};
3987 
3988   return {Add->getOperand(1), ConstOp->getValue()};
3989 }
3990 
3991 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3992 /// by the value and offset from any ValueOffsetPair in the set.
3993 ScalarEvolution::ValueOffsetPairSetVector *
3994 ScalarEvolution::getSCEVValues(const SCEV *S) {
3995   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3996   if (SI == ExprValueMap.end())
3997     return nullptr;
3998 #ifndef NDEBUG
3999   if (VerifySCEVMap) {
4000     // Check there is no dangling Value in the set returned.
4001     for (const auto &VE : SI->second)
4002       assert(ValueExprMap.count(VE.first));
4003   }
4004 #endif
4005   return &SI->second;
4006 }
4007 
4008 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4009 /// cannot be used separately. eraseValueFromMap should be used to remove
4010 /// V from ValueExprMap and ExprValueMap at the same time.
4011 void ScalarEvolution::eraseValueFromMap(Value *V) {
4012   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4013   if (I != ValueExprMap.end()) {
4014     const SCEV *S = I->second;
4015     // Remove {V, 0} from the set of ExprValueMap[S]
4016     if (auto *SV = getSCEVValues(S))
4017       SV->remove({V, nullptr});
4018 
4019     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4020     const SCEV *Stripped;
4021     ConstantInt *Offset;
4022     std::tie(Stripped, Offset) = splitAddExpr(S);
4023     if (Offset != nullptr) {
4024       if (auto *SV = getSCEVValues(Stripped))
4025         SV->remove({V, Offset});
4026     }
4027     ValueExprMap.erase(V);
4028   }
4029 }
4030 
4031 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4032 /// TODO: In reality it is better to check the poison recursively
4033 /// but this is better than nothing.
4034 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4035   if (auto *I = dyn_cast<Instruction>(V)) {
4036     if (isa<OverflowingBinaryOperator>(I)) {
4037       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4038         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4039           return true;
4040         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4041           return true;
4042       }
4043     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4044       return true;
4045   }
4046   return false;
4047 }
4048 
4049 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4050 /// create a new one.
4051 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4052   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4053 
4054   const SCEV *S = getExistingSCEV(V);
4055   if (S == nullptr) {
4056     S = createSCEV(V);
4057     // During PHI resolution, it is possible to create two SCEVs for the same
4058     // V, so it is needed to double check whether V->S is inserted into
4059     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4060     std::pair<ValueExprMapType::iterator, bool> Pair =
4061         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4062     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4063       ExprValueMap[S].insert({V, nullptr});
4064 
4065       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4066       // ExprValueMap.
4067       const SCEV *Stripped = S;
4068       ConstantInt *Offset = nullptr;
4069       std::tie(Stripped, Offset) = splitAddExpr(S);
4070       // If stripped is SCEVUnknown, don't bother to save
4071       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4072       // increase the complexity of the expansion code.
4073       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4074       // because it may generate add/sub instead of GEP in SCEV expansion.
4075       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4076           !isa<GetElementPtrInst>(V))
4077         ExprValueMap[Stripped].insert({V, Offset});
4078     }
4079   }
4080   return S;
4081 }
4082 
4083 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4084   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4085 
4086   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4087   if (I != ValueExprMap.end()) {
4088     const SCEV *S = I->second;
4089     if (checkValidity(S))
4090       return S;
4091     eraseValueFromMap(V);
4092     forgetMemoizedResults(S);
4093   }
4094   return nullptr;
4095 }
4096 
4097 /// Return a SCEV corresponding to -V = -1*V
4098 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4099                                              SCEV::NoWrapFlags Flags) {
4100   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4101     return getConstant(
4102                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4103 
4104   Type *Ty = V->getType();
4105   Ty = getEffectiveSCEVType(Ty);
4106   return getMulExpr(V, getMinusOne(Ty), Flags);
4107 }
4108 
4109 /// If Expr computes ~A, return A else return nullptr
4110 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4111   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4112   if (!Add || Add->getNumOperands() != 2 ||
4113       !Add->getOperand(0)->isAllOnesValue())
4114     return nullptr;
4115 
4116   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4117   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4118       !AddRHS->getOperand(0)->isAllOnesValue())
4119     return nullptr;
4120 
4121   return AddRHS->getOperand(1);
4122 }
4123 
4124 /// Return a SCEV corresponding to ~V = -1-V
4125 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4126   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4127     return getConstant(
4128                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4129 
4130   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4131   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4132     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4133       SmallVector<const SCEV *, 2> MatchedOperands;
4134       for (const SCEV *Operand : MME->operands()) {
4135         const SCEV *Matched = MatchNotExpr(Operand);
4136         if (!Matched)
4137           return (const SCEV *)nullptr;
4138         MatchedOperands.push_back(Matched);
4139       }
4140       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4141                            MatchedOperands);
4142     };
4143     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4144       return Replaced;
4145   }
4146 
4147   Type *Ty = V->getType();
4148   Ty = getEffectiveSCEVType(Ty);
4149   return getMinusSCEV(getMinusOne(Ty), V);
4150 }
4151 
4152 /// Compute an expression equivalent to S - getPointerBase(S).
4153 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) {
4154   assert(P->getType()->isPointerTy());
4155 
4156   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4157     // The base of an AddRec is the first operand.
4158     SmallVector<const SCEV *> Ops{AddRec->operands()};
4159     Ops[0] = removePointerBase(SE, Ops[0]);
4160     // Don't try to transfer nowrap flags for now. We could in some cases
4161     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4162     return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4163   }
4164   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4165     // The base of an Add is the pointer operand.
4166     SmallVector<const SCEV *> Ops{Add->operands()};
4167     const SCEV **PtrOp = nullptr;
4168     for (const SCEV *&AddOp : Ops) {
4169       if (AddOp->getType()->isPointerTy()) {
4170         // If we find an Add with multiple pointer operands, treat it as a
4171         // pointer base to be consistent with getPointerBase.  Eventually
4172         // we should be able to assert this is impossible.
4173         if (PtrOp)
4174           return SE->getZero(P->getType());
4175         PtrOp = &AddOp;
4176       }
4177     }
4178     *PtrOp = removePointerBase(SE, *PtrOp);
4179     // Don't try to transfer nowrap flags for now. We could in some cases
4180     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4181     return SE->getAddExpr(Ops);
4182   }
4183   // Any other expression must be a pointer base.
4184   return SE->getZero(P->getType());
4185 }
4186 
4187 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4188                                           SCEV::NoWrapFlags Flags,
4189                                           unsigned Depth) {
4190   // Fast path: X - X --> 0.
4191   if (LHS == RHS)
4192     return getZero(LHS->getType());
4193 
4194   // If we subtract two pointers with different pointer bases, bail.
4195   // Eventually, we're going to add an assertion to getMulExpr that we
4196   // can't multiply by a pointer.
4197   if (RHS->getType()->isPointerTy()) {
4198     if (!LHS->getType()->isPointerTy() ||
4199         getPointerBase(LHS) != getPointerBase(RHS))
4200       return getCouldNotCompute();
4201     LHS = removePointerBase(this, LHS);
4202     RHS = removePointerBase(this, RHS);
4203   }
4204 
4205   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4206   // makes it so that we cannot make much use of NUW.
4207   auto AddFlags = SCEV::FlagAnyWrap;
4208   const bool RHSIsNotMinSigned =
4209       !getSignedRangeMin(RHS).isMinSignedValue();
4210   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4211     // Let M be the minimum representable signed value. Then (-1)*RHS
4212     // signed-wraps if and only if RHS is M. That can happen even for
4213     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4214     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4215     // (-1)*RHS, we need to prove that RHS != M.
4216     //
4217     // If LHS is non-negative and we know that LHS - RHS does not
4218     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4219     // either by proving that RHS > M or that LHS >= 0.
4220     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4221       AddFlags = SCEV::FlagNSW;
4222     }
4223   }
4224 
4225   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4226   // RHS is NSW and LHS >= 0.
4227   //
4228   // The difficulty here is that the NSW flag may have been proven
4229   // relative to a loop that is to be found in a recurrence in LHS and
4230   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4231   // larger scope than intended.
4232   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4233 
4234   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4235 }
4236 
4237 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4238                                                      unsigned Depth) {
4239   Type *SrcTy = V->getType();
4240   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4241          "Cannot truncate or zero extend with non-integer arguments!");
4242   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4243     return V;  // No conversion
4244   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4245     return getTruncateExpr(V, Ty, Depth);
4246   return getZeroExtendExpr(V, Ty, Depth);
4247 }
4248 
4249 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4250                                                      unsigned Depth) {
4251   Type *SrcTy = V->getType();
4252   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4253          "Cannot truncate or zero extend with non-integer arguments!");
4254   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4255     return V;  // No conversion
4256   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4257     return getTruncateExpr(V, Ty, Depth);
4258   return getSignExtendExpr(V, Ty, Depth);
4259 }
4260 
4261 const SCEV *
4262 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4263   Type *SrcTy = V->getType();
4264   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4265          "Cannot noop or zero extend with non-integer arguments!");
4266   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4267          "getNoopOrZeroExtend cannot truncate!");
4268   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4269     return V;  // No conversion
4270   return getZeroExtendExpr(V, Ty);
4271 }
4272 
4273 const SCEV *
4274 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4275   Type *SrcTy = V->getType();
4276   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4277          "Cannot noop or sign extend with non-integer arguments!");
4278   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4279          "getNoopOrSignExtend cannot truncate!");
4280   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4281     return V;  // No conversion
4282   return getSignExtendExpr(V, Ty);
4283 }
4284 
4285 const SCEV *
4286 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4287   Type *SrcTy = V->getType();
4288   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4289          "Cannot noop or any extend with non-integer arguments!");
4290   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4291          "getNoopOrAnyExtend cannot truncate!");
4292   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4293     return V;  // No conversion
4294   return getAnyExtendExpr(V, Ty);
4295 }
4296 
4297 const SCEV *
4298 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4299   Type *SrcTy = V->getType();
4300   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4301          "Cannot truncate or noop with non-integer arguments!");
4302   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4303          "getTruncateOrNoop cannot extend!");
4304   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4305     return V;  // No conversion
4306   return getTruncateExpr(V, Ty);
4307 }
4308 
4309 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4310                                                         const SCEV *RHS) {
4311   const SCEV *PromotedLHS = LHS;
4312   const SCEV *PromotedRHS = RHS;
4313 
4314   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4315     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4316   else
4317     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4318 
4319   return getUMaxExpr(PromotedLHS, PromotedRHS);
4320 }
4321 
4322 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4323                                                         const SCEV *RHS) {
4324   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4325   return getUMinFromMismatchedTypes(Ops);
4326 }
4327 
4328 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4329     SmallVectorImpl<const SCEV *> &Ops) {
4330   assert(!Ops.empty() && "At least one operand must be!");
4331   // Trivial case.
4332   if (Ops.size() == 1)
4333     return Ops[0];
4334 
4335   // Find the max type first.
4336   Type *MaxType = nullptr;
4337   for (auto *S : Ops)
4338     if (MaxType)
4339       MaxType = getWiderType(MaxType, S->getType());
4340     else
4341       MaxType = S->getType();
4342   assert(MaxType && "Failed to find maximum type!");
4343 
4344   // Extend all ops to max type.
4345   SmallVector<const SCEV *, 2> PromotedOps;
4346   for (auto *S : Ops)
4347     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4348 
4349   // Generate umin.
4350   return getUMinExpr(PromotedOps);
4351 }
4352 
4353 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4354   // A pointer operand may evaluate to a nonpointer expression, such as null.
4355   if (!V->getType()->isPointerTy())
4356     return V;
4357 
4358   while (true) {
4359     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4360       V = AddRec->getStart();
4361     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4362       const SCEV *PtrOp = nullptr;
4363       for (const SCEV *AddOp : Add->operands()) {
4364         if (AddOp->getType()->isPointerTy()) {
4365           // Cannot find the base of an expression with multiple pointer ops.
4366           if (PtrOp)
4367             return V;
4368           PtrOp = AddOp;
4369         }
4370       }
4371       if (!PtrOp) // All operands were non-pointer.
4372         return V;
4373       V = PtrOp;
4374     } else // Not something we can look further into.
4375       return V;
4376   }
4377 }
4378 
4379 /// Push users of the given Instruction onto the given Worklist.
4380 static void
4381 PushDefUseChildren(Instruction *I,
4382                    SmallVectorImpl<Instruction *> &Worklist) {
4383   // Push the def-use children onto the Worklist stack.
4384   for (User *U : I->users())
4385     Worklist.push_back(cast<Instruction>(U));
4386 }
4387 
4388 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4389   SmallVector<Instruction *, 16> Worklist;
4390   PushDefUseChildren(PN, Worklist);
4391 
4392   SmallPtrSet<Instruction *, 8> Visited;
4393   Visited.insert(PN);
4394   while (!Worklist.empty()) {
4395     Instruction *I = Worklist.pop_back_val();
4396     if (!Visited.insert(I).second)
4397       continue;
4398 
4399     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4400     if (It != ValueExprMap.end()) {
4401       const SCEV *Old = It->second;
4402 
4403       // Short-circuit the def-use traversal if the symbolic name
4404       // ceases to appear in expressions.
4405       if (Old != SymName && !hasOperand(Old, SymName))
4406         continue;
4407 
4408       // SCEVUnknown for a PHI either means that it has an unrecognized
4409       // structure, it's a PHI that's in the progress of being computed
4410       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4411       // additional loop trip count information isn't going to change anything.
4412       // In the second case, createNodeForPHI will perform the necessary
4413       // updates on its own when it gets to that point. In the third, we do
4414       // want to forget the SCEVUnknown.
4415       if (!isa<PHINode>(I) ||
4416           !isa<SCEVUnknown>(Old) ||
4417           (I != PN && Old == SymName)) {
4418         eraseValueFromMap(It->first);
4419         forgetMemoizedResults(Old);
4420       }
4421     }
4422 
4423     PushDefUseChildren(I, Worklist);
4424   }
4425 }
4426 
4427 namespace {
4428 
4429 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4430 /// expression in case its Loop is L. If it is not L then
4431 /// if IgnoreOtherLoops is true then use AddRec itself
4432 /// otherwise rewrite cannot be done.
4433 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4434 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4435 public:
4436   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4437                              bool IgnoreOtherLoops = true) {
4438     SCEVInitRewriter Rewriter(L, SE);
4439     const SCEV *Result = Rewriter.visit(S);
4440     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4441       return SE.getCouldNotCompute();
4442     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4443                ? SE.getCouldNotCompute()
4444                : Result;
4445   }
4446 
4447   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4448     if (!SE.isLoopInvariant(Expr, L))
4449       SeenLoopVariantSCEVUnknown = true;
4450     return Expr;
4451   }
4452 
4453   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4454     // Only re-write AddRecExprs for this loop.
4455     if (Expr->getLoop() == L)
4456       return Expr->getStart();
4457     SeenOtherLoops = true;
4458     return Expr;
4459   }
4460 
4461   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4462 
4463   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4464 
4465 private:
4466   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4467       : SCEVRewriteVisitor(SE), L(L) {}
4468 
4469   const Loop *L;
4470   bool SeenLoopVariantSCEVUnknown = false;
4471   bool SeenOtherLoops = false;
4472 };
4473 
4474 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4475 /// increment expression in case its Loop is L. If it is not L then
4476 /// use AddRec itself.
4477 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4478 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4479 public:
4480   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4481     SCEVPostIncRewriter Rewriter(L, SE);
4482     const SCEV *Result = Rewriter.visit(S);
4483     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4484         ? SE.getCouldNotCompute()
4485         : Result;
4486   }
4487 
4488   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4489     if (!SE.isLoopInvariant(Expr, L))
4490       SeenLoopVariantSCEVUnknown = true;
4491     return Expr;
4492   }
4493 
4494   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4495     // Only re-write AddRecExprs for this loop.
4496     if (Expr->getLoop() == L)
4497       return Expr->getPostIncExpr(SE);
4498     SeenOtherLoops = true;
4499     return Expr;
4500   }
4501 
4502   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4503 
4504   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4505 
4506 private:
4507   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4508       : SCEVRewriteVisitor(SE), L(L) {}
4509 
4510   const Loop *L;
4511   bool SeenLoopVariantSCEVUnknown = false;
4512   bool SeenOtherLoops = false;
4513 };
4514 
4515 /// This class evaluates the compare condition by matching it against the
4516 /// condition of loop latch. If there is a match we assume a true value
4517 /// for the condition while building SCEV nodes.
4518 class SCEVBackedgeConditionFolder
4519     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4520 public:
4521   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4522                              ScalarEvolution &SE) {
4523     bool IsPosBECond = false;
4524     Value *BECond = nullptr;
4525     if (BasicBlock *Latch = L->getLoopLatch()) {
4526       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4527       if (BI && BI->isConditional()) {
4528         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4529                "Both outgoing branches should not target same header!");
4530         BECond = BI->getCondition();
4531         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4532       } else {
4533         return S;
4534       }
4535     }
4536     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4537     return Rewriter.visit(S);
4538   }
4539 
4540   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4541     const SCEV *Result = Expr;
4542     bool InvariantF = SE.isLoopInvariant(Expr, L);
4543 
4544     if (!InvariantF) {
4545       Instruction *I = cast<Instruction>(Expr->getValue());
4546       switch (I->getOpcode()) {
4547       case Instruction::Select: {
4548         SelectInst *SI = cast<SelectInst>(I);
4549         Optional<const SCEV *> Res =
4550             compareWithBackedgeCondition(SI->getCondition());
4551         if (Res.hasValue()) {
4552           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4553           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4554         }
4555         break;
4556       }
4557       default: {
4558         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4559         if (Res.hasValue())
4560           Result = Res.getValue();
4561         break;
4562       }
4563       }
4564     }
4565     return Result;
4566   }
4567 
4568 private:
4569   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4570                                        bool IsPosBECond, ScalarEvolution &SE)
4571       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4572         IsPositiveBECond(IsPosBECond) {}
4573 
4574   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4575 
4576   const Loop *L;
4577   /// Loop back condition.
4578   Value *BackedgeCond = nullptr;
4579   /// Set to true if loop back is on positive branch condition.
4580   bool IsPositiveBECond;
4581 };
4582 
4583 Optional<const SCEV *>
4584 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4585 
4586   // If value matches the backedge condition for loop latch,
4587   // then return a constant evolution node based on loopback
4588   // branch taken.
4589   if (BackedgeCond == IC)
4590     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4591                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4592   return None;
4593 }
4594 
4595 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4596 public:
4597   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4598                              ScalarEvolution &SE) {
4599     SCEVShiftRewriter Rewriter(L, SE);
4600     const SCEV *Result = Rewriter.visit(S);
4601     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4602   }
4603 
4604   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4605     // Only allow AddRecExprs for this loop.
4606     if (!SE.isLoopInvariant(Expr, L))
4607       Valid = false;
4608     return Expr;
4609   }
4610 
4611   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4612     if (Expr->getLoop() == L && Expr->isAffine())
4613       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4614     Valid = false;
4615     return Expr;
4616   }
4617 
4618   bool isValid() { return Valid; }
4619 
4620 private:
4621   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4622       : SCEVRewriteVisitor(SE), L(L) {}
4623 
4624   const Loop *L;
4625   bool Valid = true;
4626 };
4627 
4628 } // end anonymous namespace
4629 
4630 SCEV::NoWrapFlags
4631 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4632   if (!AR->isAffine())
4633     return SCEV::FlagAnyWrap;
4634 
4635   using OBO = OverflowingBinaryOperator;
4636 
4637   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4638 
4639   if (!AR->hasNoSignedWrap()) {
4640     ConstantRange AddRecRange = getSignedRange(AR);
4641     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4642 
4643     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4644         Instruction::Add, IncRange, OBO::NoSignedWrap);
4645     if (NSWRegion.contains(AddRecRange))
4646       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4647   }
4648 
4649   if (!AR->hasNoUnsignedWrap()) {
4650     ConstantRange AddRecRange = getUnsignedRange(AR);
4651     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4652 
4653     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4654         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4655     if (NUWRegion.contains(AddRecRange))
4656       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4657   }
4658 
4659   return Result;
4660 }
4661 
4662 SCEV::NoWrapFlags
4663 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4664   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4665 
4666   if (AR->hasNoSignedWrap())
4667     return Result;
4668 
4669   if (!AR->isAffine())
4670     return Result;
4671 
4672   const SCEV *Step = AR->getStepRecurrence(*this);
4673   const Loop *L = AR->getLoop();
4674 
4675   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4676   // Note that this serves two purposes: It filters out loops that are
4677   // simply not analyzable, and it covers the case where this code is
4678   // being called from within backedge-taken count analysis, such that
4679   // attempting to ask for the backedge-taken count would likely result
4680   // in infinite recursion. In the later case, the analysis code will
4681   // cope with a conservative value, and it will take care to purge
4682   // that value once it has finished.
4683   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4684 
4685   // Normally, in the cases we can prove no-overflow via a
4686   // backedge guarding condition, we can also compute a backedge
4687   // taken count for the loop.  The exceptions are assumptions and
4688   // guards present in the loop -- SCEV is not great at exploiting
4689   // these to compute max backedge taken counts, but can still use
4690   // these to prove lack of overflow.  Use this fact to avoid
4691   // doing extra work that may not pay off.
4692 
4693   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4694       AC.assumptions().empty())
4695     return Result;
4696 
4697   // If the backedge is guarded by a comparison with the pre-inc  value the
4698   // addrec is safe. Also, if the entry is guarded by a comparison with the
4699   // start value and the backedge is guarded by a comparison with the post-inc
4700   // value, the addrec is safe.
4701   ICmpInst::Predicate Pred;
4702   const SCEV *OverflowLimit =
4703     getSignedOverflowLimitForStep(Step, &Pred, this);
4704   if (OverflowLimit &&
4705       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4706        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4707     Result = setFlags(Result, SCEV::FlagNSW);
4708   }
4709   return Result;
4710 }
4711 SCEV::NoWrapFlags
4712 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4713   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4714 
4715   if (AR->hasNoUnsignedWrap())
4716     return Result;
4717 
4718   if (!AR->isAffine())
4719     return Result;
4720 
4721   const SCEV *Step = AR->getStepRecurrence(*this);
4722   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4723   const Loop *L = AR->getLoop();
4724 
4725   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4726   // Note that this serves two purposes: It filters out loops that are
4727   // simply not analyzable, and it covers the case where this code is
4728   // being called from within backedge-taken count analysis, such that
4729   // attempting to ask for the backedge-taken count would likely result
4730   // in infinite recursion. In the later case, the analysis code will
4731   // cope with a conservative value, and it will take care to purge
4732   // that value once it has finished.
4733   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4734 
4735   // Normally, in the cases we can prove no-overflow via a
4736   // backedge guarding condition, we can also compute a backedge
4737   // taken count for the loop.  The exceptions are assumptions and
4738   // guards present in the loop -- SCEV is not great at exploiting
4739   // these to compute max backedge taken counts, but can still use
4740   // these to prove lack of overflow.  Use this fact to avoid
4741   // doing extra work that may not pay off.
4742 
4743   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4744       AC.assumptions().empty())
4745     return Result;
4746 
4747   // If the backedge is guarded by a comparison with the pre-inc  value the
4748   // addrec is safe. Also, if the entry is guarded by a comparison with the
4749   // start value and the backedge is guarded by a comparison with the post-inc
4750   // value, the addrec is safe.
4751   if (isKnownPositive(Step)) {
4752     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4753                                 getUnsignedRangeMax(Step));
4754     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4755         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4756       Result = setFlags(Result, SCEV::FlagNUW);
4757     }
4758   }
4759 
4760   return Result;
4761 }
4762 
4763 namespace {
4764 
4765 /// Represents an abstract binary operation.  This may exist as a
4766 /// normal instruction or constant expression, or may have been
4767 /// derived from an expression tree.
4768 struct BinaryOp {
4769   unsigned Opcode;
4770   Value *LHS;
4771   Value *RHS;
4772   bool IsNSW = false;
4773   bool IsNUW = false;
4774 
4775   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4776   /// constant expression.
4777   Operator *Op = nullptr;
4778 
4779   explicit BinaryOp(Operator *Op)
4780       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4781         Op(Op) {
4782     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4783       IsNSW = OBO->hasNoSignedWrap();
4784       IsNUW = OBO->hasNoUnsignedWrap();
4785     }
4786   }
4787 
4788   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4789                     bool IsNUW = false)
4790       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4791 };
4792 
4793 } // end anonymous namespace
4794 
4795 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4796 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4797   auto *Op = dyn_cast<Operator>(V);
4798   if (!Op)
4799     return None;
4800 
4801   // Implementation detail: all the cleverness here should happen without
4802   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4803   // SCEV expressions when possible, and we should not break that.
4804 
4805   switch (Op->getOpcode()) {
4806   case Instruction::Add:
4807   case Instruction::Sub:
4808   case Instruction::Mul:
4809   case Instruction::UDiv:
4810   case Instruction::URem:
4811   case Instruction::And:
4812   case Instruction::Or:
4813   case Instruction::AShr:
4814   case Instruction::Shl:
4815     return BinaryOp(Op);
4816 
4817   case Instruction::Xor:
4818     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4819       // If the RHS of the xor is a signmask, then this is just an add.
4820       // Instcombine turns add of signmask into xor as a strength reduction step.
4821       if (RHSC->getValue().isSignMask())
4822         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4823     return BinaryOp(Op);
4824 
4825   case Instruction::LShr:
4826     // Turn logical shift right of a constant into a unsigned divide.
4827     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4828       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4829 
4830       // If the shift count is not less than the bitwidth, the result of
4831       // the shift is undefined. Don't try to analyze it, because the
4832       // resolution chosen here may differ from the resolution chosen in
4833       // other parts of the compiler.
4834       if (SA->getValue().ult(BitWidth)) {
4835         Constant *X =
4836             ConstantInt::get(SA->getContext(),
4837                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4838         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4839       }
4840     }
4841     return BinaryOp(Op);
4842 
4843   case Instruction::ExtractValue: {
4844     auto *EVI = cast<ExtractValueInst>(Op);
4845     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4846       break;
4847 
4848     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4849     if (!WO)
4850       break;
4851 
4852     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4853     bool Signed = WO->isSigned();
4854     // TODO: Should add nuw/nsw flags for mul as well.
4855     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4856       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4857 
4858     // Now that we know that all uses of the arithmetic-result component of
4859     // CI are guarded by the overflow check, we can go ahead and pretend
4860     // that the arithmetic is non-overflowing.
4861     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4862                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4863   }
4864 
4865   default:
4866     break;
4867   }
4868 
4869   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4870   // semantics as a Sub, return a binary sub expression.
4871   if (auto *II = dyn_cast<IntrinsicInst>(V))
4872     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4873       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4874 
4875   return None;
4876 }
4877 
4878 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4879 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4880 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4881 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4882 /// follows one of the following patterns:
4883 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4884 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4885 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4886 /// we return the type of the truncation operation, and indicate whether the
4887 /// truncated type should be treated as signed/unsigned by setting
4888 /// \p Signed to true/false, respectively.
4889 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4890                                bool &Signed, ScalarEvolution &SE) {
4891   // The case where Op == SymbolicPHI (that is, with no type conversions on
4892   // the way) is handled by the regular add recurrence creating logic and
4893   // would have already been triggered in createAddRecForPHI. Reaching it here
4894   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4895   // because one of the other operands of the SCEVAddExpr updating this PHI is
4896   // not invariant).
4897   //
4898   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4899   // this case predicates that allow us to prove that Op == SymbolicPHI will
4900   // be added.
4901   if (Op == SymbolicPHI)
4902     return nullptr;
4903 
4904   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4905   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4906   if (SourceBits != NewBits)
4907     return nullptr;
4908 
4909   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4910   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4911   if (!SExt && !ZExt)
4912     return nullptr;
4913   const SCEVTruncateExpr *Trunc =
4914       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4915            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4916   if (!Trunc)
4917     return nullptr;
4918   const SCEV *X = Trunc->getOperand();
4919   if (X != SymbolicPHI)
4920     return nullptr;
4921   Signed = SExt != nullptr;
4922   return Trunc->getType();
4923 }
4924 
4925 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4926   if (!PN->getType()->isIntegerTy())
4927     return nullptr;
4928   const Loop *L = LI.getLoopFor(PN->getParent());
4929   if (!L || L->getHeader() != PN->getParent())
4930     return nullptr;
4931   return L;
4932 }
4933 
4934 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4935 // computation that updates the phi follows the following pattern:
4936 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4937 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4938 // If so, try to see if it can be rewritten as an AddRecExpr under some
4939 // Predicates. If successful, return them as a pair. Also cache the results
4940 // of the analysis.
4941 //
4942 // Example usage scenario:
4943 //    Say the Rewriter is called for the following SCEV:
4944 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4945 //    where:
4946 //         %X = phi i64 (%Start, %BEValue)
4947 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4948 //    and call this function with %SymbolicPHI = %X.
4949 //
4950 //    The analysis will find that the value coming around the backedge has
4951 //    the following SCEV:
4952 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4953 //    Upon concluding that this matches the desired pattern, the function
4954 //    will return the pair {NewAddRec, SmallPredsVec} where:
4955 //         NewAddRec = {%Start,+,%Step}
4956 //         SmallPredsVec = {P1, P2, P3} as follows:
4957 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4958 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4959 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4960 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4961 //    under the predicates {P1,P2,P3}.
4962 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4963 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4964 //
4965 // TODO's:
4966 //
4967 // 1) Extend the Induction descriptor to also support inductions that involve
4968 //    casts: When needed (namely, when we are called in the context of the
4969 //    vectorizer induction analysis), a Set of cast instructions will be
4970 //    populated by this method, and provided back to isInductionPHI. This is
4971 //    needed to allow the vectorizer to properly record them to be ignored by
4972 //    the cost model and to avoid vectorizing them (otherwise these casts,
4973 //    which are redundant under the runtime overflow checks, will be
4974 //    vectorized, which can be costly).
4975 //
4976 // 2) Support additional induction/PHISCEV patterns: We also want to support
4977 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4978 //    after the induction update operation (the induction increment):
4979 //
4980 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4981 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4982 //
4983 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4984 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4985 //
4986 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4987 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4988 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4989   SmallVector<const SCEVPredicate *, 3> Predicates;
4990 
4991   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4992   // return an AddRec expression under some predicate.
4993 
4994   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4995   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4996   assert(L && "Expecting an integer loop header phi");
4997 
4998   // The loop may have multiple entrances or multiple exits; we can analyze
4999   // this phi as an addrec if it has a unique entry value and a unique
5000   // backedge value.
5001   Value *BEValueV = nullptr, *StartValueV = nullptr;
5002   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5003     Value *V = PN->getIncomingValue(i);
5004     if (L->contains(PN->getIncomingBlock(i))) {
5005       if (!BEValueV) {
5006         BEValueV = V;
5007       } else if (BEValueV != V) {
5008         BEValueV = nullptr;
5009         break;
5010       }
5011     } else if (!StartValueV) {
5012       StartValueV = V;
5013     } else if (StartValueV != V) {
5014       StartValueV = nullptr;
5015       break;
5016     }
5017   }
5018   if (!BEValueV || !StartValueV)
5019     return None;
5020 
5021   const SCEV *BEValue = getSCEV(BEValueV);
5022 
5023   // If the value coming around the backedge is an add with the symbolic
5024   // value we just inserted, possibly with casts that we can ignore under
5025   // an appropriate runtime guard, then we found a simple induction variable!
5026   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5027   if (!Add)
5028     return None;
5029 
5030   // If there is a single occurrence of the symbolic value, possibly
5031   // casted, replace it with a recurrence.
5032   unsigned FoundIndex = Add->getNumOperands();
5033   Type *TruncTy = nullptr;
5034   bool Signed;
5035   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5036     if ((TruncTy =
5037              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5038       if (FoundIndex == e) {
5039         FoundIndex = i;
5040         break;
5041       }
5042 
5043   if (FoundIndex == Add->getNumOperands())
5044     return None;
5045 
5046   // Create an add with everything but the specified operand.
5047   SmallVector<const SCEV *, 8> Ops;
5048   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5049     if (i != FoundIndex)
5050       Ops.push_back(Add->getOperand(i));
5051   const SCEV *Accum = getAddExpr(Ops);
5052 
5053   // The runtime checks will not be valid if the step amount is
5054   // varying inside the loop.
5055   if (!isLoopInvariant(Accum, L))
5056     return None;
5057 
5058   // *** Part2: Create the predicates
5059 
5060   // Analysis was successful: we have a phi-with-cast pattern for which we
5061   // can return an AddRec expression under the following predicates:
5062   //
5063   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5064   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5065   // P2: An Equal predicate that guarantees that
5066   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5067   // P3: An Equal predicate that guarantees that
5068   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5069   //
5070   // As we next prove, the above predicates guarantee that:
5071   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5072   //
5073   //
5074   // More formally, we want to prove that:
5075   //     Expr(i+1) = Start + (i+1) * Accum
5076   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5077   //
5078   // Given that:
5079   // 1) Expr(0) = Start
5080   // 2) Expr(1) = Start + Accum
5081   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5082   // 3) Induction hypothesis (step i):
5083   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5084   //
5085   // Proof:
5086   //  Expr(i+1) =
5087   //   = Start + (i+1)*Accum
5088   //   = (Start + i*Accum) + Accum
5089   //   = Expr(i) + Accum
5090   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5091   //                                                             :: from step i
5092   //
5093   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5094   //
5095   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5096   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5097   //     + Accum                                                     :: from P3
5098   //
5099   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5100   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5101   //
5102   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5103   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5104   //
5105   // By induction, the same applies to all iterations 1<=i<n:
5106   //
5107 
5108   // Create a truncated addrec for which we will add a no overflow check (P1).
5109   const SCEV *StartVal = getSCEV(StartValueV);
5110   const SCEV *PHISCEV =
5111       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5112                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5113 
5114   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5115   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5116   // will be constant.
5117   //
5118   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5119   // add P1.
5120   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5121     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5122         Signed ? SCEVWrapPredicate::IncrementNSSW
5123                : SCEVWrapPredicate::IncrementNUSW;
5124     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5125     Predicates.push_back(AddRecPred);
5126   }
5127 
5128   // Create the Equal Predicates P2,P3:
5129 
5130   // It is possible that the predicates P2 and/or P3 are computable at
5131   // compile time due to StartVal and/or Accum being constants.
5132   // If either one is, then we can check that now and escape if either P2
5133   // or P3 is false.
5134 
5135   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5136   // for each of StartVal and Accum
5137   auto getExtendedExpr = [&](const SCEV *Expr,
5138                              bool CreateSignExtend) -> const SCEV * {
5139     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5140     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5141     const SCEV *ExtendedExpr =
5142         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5143                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5144     return ExtendedExpr;
5145   };
5146 
5147   // Given:
5148   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5149   //               = getExtendedExpr(Expr)
5150   // Determine whether the predicate P: Expr == ExtendedExpr
5151   // is known to be false at compile time
5152   auto PredIsKnownFalse = [&](const SCEV *Expr,
5153                               const SCEV *ExtendedExpr) -> bool {
5154     return Expr != ExtendedExpr &&
5155            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5156   };
5157 
5158   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5159   if (PredIsKnownFalse(StartVal, StartExtended)) {
5160     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5161     return None;
5162   }
5163 
5164   // The Step is always Signed (because the overflow checks are either
5165   // NSSW or NUSW)
5166   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5167   if (PredIsKnownFalse(Accum, AccumExtended)) {
5168     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5169     return None;
5170   }
5171 
5172   auto AppendPredicate = [&](const SCEV *Expr,
5173                              const SCEV *ExtendedExpr) -> void {
5174     if (Expr != ExtendedExpr &&
5175         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5176       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5177       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5178       Predicates.push_back(Pred);
5179     }
5180   };
5181 
5182   AppendPredicate(StartVal, StartExtended);
5183   AppendPredicate(Accum, AccumExtended);
5184 
5185   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5186   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5187   // into NewAR if it will also add the runtime overflow checks specified in
5188   // Predicates.
5189   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5190 
5191   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5192       std::make_pair(NewAR, Predicates);
5193   // Remember the result of the analysis for this SCEV at this locayyytion.
5194   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5195   return PredRewrite;
5196 }
5197 
5198 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5199 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5200   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5201   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5202   if (!L)
5203     return None;
5204 
5205   // Check to see if we already analyzed this PHI.
5206   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5207   if (I != PredicatedSCEVRewrites.end()) {
5208     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5209         I->second;
5210     // Analysis was done before and failed to create an AddRec:
5211     if (Rewrite.first == SymbolicPHI)
5212       return None;
5213     // Analysis was done before and succeeded to create an AddRec under
5214     // a predicate:
5215     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5216     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5217     return Rewrite;
5218   }
5219 
5220   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5221     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5222 
5223   // Record in the cache that the analysis failed
5224   if (!Rewrite) {
5225     SmallVector<const SCEVPredicate *, 3> Predicates;
5226     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5227     return None;
5228   }
5229 
5230   return Rewrite;
5231 }
5232 
5233 // FIXME: This utility is currently required because the Rewriter currently
5234 // does not rewrite this expression:
5235 // {0, +, (sext ix (trunc iy to ix) to iy)}
5236 // into {0, +, %step},
5237 // even when the following Equal predicate exists:
5238 // "%step == (sext ix (trunc iy to ix) to iy)".
5239 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5240     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5241   if (AR1 == AR2)
5242     return true;
5243 
5244   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5245     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5246         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5247       return false;
5248     return true;
5249   };
5250 
5251   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5252       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5253     return false;
5254   return true;
5255 }
5256 
5257 /// A helper function for createAddRecFromPHI to handle simple cases.
5258 ///
5259 /// This function tries to find an AddRec expression for the simplest (yet most
5260 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5261 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5262 /// technique for finding the AddRec expression.
5263 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5264                                                       Value *BEValueV,
5265                                                       Value *StartValueV) {
5266   const Loop *L = LI.getLoopFor(PN->getParent());
5267   assert(L && L->getHeader() == PN->getParent());
5268   assert(BEValueV && StartValueV);
5269 
5270   auto BO = MatchBinaryOp(BEValueV, DT);
5271   if (!BO)
5272     return nullptr;
5273 
5274   if (BO->Opcode != Instruction::Add)
5275     return nullptr;
5276 
5277   const SCEV *Accum = nullptr;
5278   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5279     Accum = getSCEV(BO->RHS);
5280   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5281     Accum = getSCEV(BO->LHS);
5282 
5283   if (!Accum)
5284     return nullptr;
5285 
5286   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5287   if (BO->IsNUW)
5288     Flags = setFlags(Flags, SCEV::FlagNUW);
5289   if (BO->IsNSW)
5290     Flags = setFlags(Flags, SCEV::FlagNSW);
5291 
5292   const SCEV *StartVal = getSCEV(StartValueV);
5293   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5294 
5295   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5296 
5297   // We can add Flags to the post-inc expression only if we
5298   // know that it is *undefined behavior* for BEValueV to
5299   // overflow.
5300   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5301     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5302       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5303 
5304   return PHISCEV;
5305 }
5306 
5307 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5308   const Loop *L = LI.getLoopFor(PN->getParent());
5309   if (!L || L->getHeader() != PN->getParent())
5310     return nullptr;
5311 
5312   // The loop may have multiple entrances or multiple exits; we can analyze
5313   // this phi as an addrec if it has a unique entry value and a unique
5314   // backedge value.
5315   Value *BEValueV = nullptr, *StartValueV = nullptr;
5316   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5317     Value *V = PN->getIncomingValue(i);
5318     if (L->contains(PN->getIncomingBlock(i))) {
5319       if (!BEValueV) {
5320         BEValueV = V;
5321       } else if (BEValueV != V) {
5322         BEValueV = nullptr;
5323         break;
5324       }
5325     } else if (!StartValueV) {
5326       StartValueV = V;
5327     } else if (StartValueV != V) {
5328       StartValueV = nullptr;
5329       break;
5330     }
5331   }
5332   if (!BEValueV || !StartValueV)
5333     return nullptr;
5334 
5335   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5336          "PHI node already processed?");
5337 
5338   // First, try to find AddRec expression without creating a fictituos symbolic
5339   // value for PN.
5340   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5341     return S;
5342 
5343   // Handle PHI node value symbolically.
5344   const SCEV *SymbolicName = getUnknown(PN);
5345   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5346 
5347   // Using this symbolic name for the PHI, analyze the value coming around
5348   // the back-edge.
5349   const SCEV *BEValue = getSCEV(BEValueV);
5350 
5351   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5352   // has a special value for the first iteration of the loop.
5353 
5354   // If the value coming around the backedge is an add with the symbolic
5355   // value we just inserted, then we found a simple induction variable!
5356   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5357     // If there is a single occurrence of the symbolic value, replace it
5358     // with a recurrence.
5359     unsigned FoundIndex = Add->getNumOperands();
5360     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5361       if (Add->getOperand(i) == SymbolicName)
5362         if (FoundIndex == e) {
5363           FoundIndex = i;
5364           break;
5365         }
5366 
5367     if (FoundIndex != Add->getNumOperands()) {
5368       // Create an add with everything but the specified operand.
5369       SmallVector<const SCEV *, 8> Ops;
5370       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5371         if (i != FoundIndex)
5372           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5373                                                              L, *this));
5374       const SCEV *Accum = getAddExpr(Ops);
5375 
5376       // This is not a valid addrec if the step amount is varying each
5377       // loop iteration, but is not itself an addrec in this loop.
5378       if (isLoopInvariant(Accum, L) ||
5379           (isa<SCEVAddRecExpr>(Accum) &&
5380            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5381         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5382 
5383         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5384           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5385             if (BO->IsNUW)
5386               Flags = setFlags(Flags, SCEV::FlagNUW);
5387             if (BO->IsNSW)
5388               Flags = setFlags(Flags, SCEV::FlagNSW);
5389           }
5390         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5391           // If the increment is an inbounds GEP, then we know the address
5392           // space cannot be wrapped around. We cannot make any guarantee
5393           // about signed or unsigned overflow because pointers are
5394           // unsigned but we may have a negative index from the base
5395           // pointer. We can guarantee that no unsigned wrap occurs if the
5396           // indices form a positive value.
5397           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5398             Flags = setFlags(Flags, SCEV::FlagNW);
5399 
5400             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5401             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5402               Flags = setFlags(Flags, SCEV::FlagNUW);
5403           }
5404 
5405           // We cannot transfer nuw and nsw flags from subtraction
5406           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5407           // for instance.
5408         }
5409 
5410         const SCEV *StartVal = getSCEV(StartValueV);
5411         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5412 
5413         // Okay, for the entire analysis of this edge we assumed the PHI
5414         // to be symbolic.  We now need to go back and purge all of the
5415         // entries for the scalars that use the symbolic expression.
5416         forgetSymbolicName(PN, SymbolicName);
5417         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5418 
5419         // We can add Flags to the post-inc expression only if we
5420         // know that it is *undefined behavior* for BEValueV to
5421         // overflow.
5422         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5423           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5424             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5425 
5426         return PHISCEV;
5427       }
5428     }
5429   } else {
5430     // Otherwise, this could be a loop like this:
5431     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5432     // In this case, j = {1,+,1}  and BEValue is j.
5433     // Because the other in-value of i (0) fits the evolution of BEValue
5434     // i really is an addrec evolution.
5435     //
5436     // We can generalize this saying that i is the shifted value of BEValue
5437     // by one iteration:
5438     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5439     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5440     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5441     if (Shifted != getCouldNotCompute() &&
5442         Start != getCouldNotCompute()) {
5443       const SCEV *StartVal = getSCEV(StartValueV);
5444       if (Start == StartVal) {
5445         // Okay, for the entire analysis of this edge we assumed the PHI
5446         // to be symbolic.  We now need to go back and purge all of the
5447         // entries for the scalars that use the symbolic expression.
5448         forgetSymbolicName(PN, SymbolicName);
5449         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5450         return Shifted;
5451       }
5452     }
5453   }
5454 
5455   // Remove the temporary PHI node SCEV that has been inserted while intending
5456   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5457   // as it will prevent later (possibly simpler) SCEV expressions to be added
5458   // to the ValueExprMap.
5459   eraseValueFromMap(PN);
5460 
5461   return nullptr;
5462 }
5463 
5464 // Checks if the SCEV S is available at BB.  S is considered available at BB
5465 // if S can be materialized at BB without introducing a fault.
5466 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5467                                BasicBlock *BB) {
5468   struct CheckAvailable {
5469     bool TraversalDone = false;
5470     bool Available = true;
5471 
5472     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5473     BasicBlock *BB = nullptr;
5474     DominatorTree &DT;
5475 
5476     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5477       : L(L), BB(BB), DT(DT) {}
5478 
5479     bool setUnavailable() {
5480       TraversalDone = true;
5481       Available = false;
5482       return false;
5483     }
5484 
5485     bool follow(const SCEV *S) {
5486       switch (S->getSCEVType()) {
5487       case scConstant:
5488       case scPtrToInt:
5489       case scTruncate:
5490       case scZeroExtend:
5491       case scSignExtend:
5492       case scAddExpr:
5493       case scMulExpr:
5494       case scUMaxExpr:
5495       case scSMaxExpr:
5496       case scUMinExpr:
5497       case scSMinExpr:
5498         // These expressions are available if their operand(s) is/are.
5499         return true;
5500 
5501       case scAddRecExpr: {
5502         // We allow add recurrences that are on the loop BB is in, or some
5503         // outer loop.  This guarantees availability because the value of the
5504         // add recurrence at BB is simply the "current" value of the induction
5505         // variable.  We can relax this in the future; for instance an add
5506         // recurrence on a sibling dominating loop is also available at BB.
5507         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5508         if (L && (ARLoop == L || ARLoop->contains(L)))
5509           return true;
5510 
5511         return setUnavailable();
5512       }
5513 
5514       case scUnknown: {
5515         // For SCEVUnknown, we check for simple dominance.
5516         const auto *SU = cast<SCEVUnknown>(S);
5517         Value *V = SU->getValue();
5518 
5519         if (isa<Argument>(V))
5520           return false;
5521 
5522         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5523           return false;
5524 
5525         return setUnavailable();
5526       }
5527 
5528       case scUDivExpr:
5529       case scCouldNotCompute:
5530         // We do not try to smart about these at all.
5531         return setUnavailable();
5532       }
5533       llvm_unreachable("Unknown SCEV kind!");
5534     }
5535 
5536     bool isDone() { return TraversalDone; }
5537   };
5538 
5539   CheckAvailable CA(L, BB, DT);
5540   SCEVTraversal<CheckAvailable> ST(CA);
5541 
5542   ST.visitAll(S);
5543   return CA.Available;
5544 }
5545 
5546 // Try to match a control flow sequence that branches out at BI and merges back
5547 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5548 // match.
5549 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5550                           Value *&C, Value *&LHS, Value *&RHS) {
5551   C = BI->getCondition();
5552 
5553   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5554   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5555 
5556   if (!LeftEdge.isSingleEdge())
5557     return false;
5558 
5559   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5560 
5561   Use &LeftUse = Merge->getOperandUse(0);
5562   Use &RightUse = Merge->getOperandUse(1);
5563 
5564   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5565     LHS = LeftUse;
5566     RHS = RightUse;
5567     return true;
5568   }
5569 
5570   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5571     LHS = RightUse;
5572     RHS = LeftUse;
5573     return true;
5574   }
5575 
5576   return false;
5577 }
5578 
5579 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5580   auto IsReachable =
5581       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5582   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5583     const Loop *L = LI.getLoopFor(PN->getParent());
5584 
5585     // We don't want to break LCSSA, even in a SCEV expression tree.
5586     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5587       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5588         return nullptr;
5589 
5590     // Try to match
5591     //
5592     //  br %cond, label %left, label %right
5593     // left:
5594     //  br label %merge
5595     // right:
5596     //  br label %merge
5597     // merge:
5598     //  V = phi [ %x, %left ], [ %y, %right ]
5599     //
5600     // as "select %cond, %x, %y"
5601 
5602     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5603     assert(IDom && "At least the entry block should dominate PN");
5604 
5605     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5606     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5607 
5608     if (BI && BI->isConditional() &&
5609         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5610         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5611         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5612       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5613   }
5614 
5615   return nullptr;
5616 }
5617 
5618 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5619   if (const SCEV *S = createAddRecFromPHI(PN))
5620     return S;
5621 
5622   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5623     return S;
5624 
5625   // If the PHI has a single incoming value, follow that value, unless the
5626   // PHI's incoming blocks are in a different loop, in which case doing so
5627   // risks breaking LCSSA form. Instcombine would normally zap these, but
5628   // it doesn't have DominatorTree information, so it may miss cases.
5629   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5630     if (LI.replacementPreservesLCSSAForm(PN, V))
5631       return getSCEV(V);
5632 
5633   // If it's not a loop phi, we can't handle it yet.
5634   return getUnknown(PN);
5635 }
5636 
5637 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5638                                                       Value *Cond,
5639                                                       Value *TrueVal,
5640                                                       Value *FalseVal) {
5641   // Handle "constant" branch or select. This can occur for instance when a
5642   // loop pass transforms an inner loop and moves on to process the outer loop.
5643   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5644     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5645 
5646   // Try to match some simple smax or umax patterns.
5647   auto *ICI = dyn_cast<ICmpInst>(Cond);
5648   if (!ICI)
5649     return getUnknown(I);
5650 
5651   Value *LHS = ICI->getOperand(0);
5652   Value *RHS = ICI->getOperand(1);
5653 
5654   switch (ICI->getPredicate()) {
5655   case ICmpInst::ICMP_SLT:
5656   case ICmpInst::ICMP_SLE:
5657   case ICmpInst::ICMP_ULT:
5658   case ICmpInst::ICMP_ULE:
5659     std::swap(LHS, RHS);
5660     LLVM_FALLTHROUGH;
5661   case ICmpInst::ICMP_SGT:
5662   case ICmpInst::ICMP_SGE:
5663   case ICmpInst::ICMP_UGT:
5664   case ICmpInst::ICMP_UGE:
5665     // a > b ? a+x : b+x  ->  max(a, b)+x
5666     // a > b ? b+x : a+x  ->  min(a, b)+x
5667     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5668       bool Signed = ICI->isSigned();
5669       const SCEV *LA = getSCEV(TrueVal);
5670       const SCEV *RA = getSCEV(FalseVal);
5671       const SCEV *LS = getSCEV(LHS);
5672       const SCEV *RS = getSCEV(RHS);
5673       if (LA->getType()->isPointerTy()) {
5674         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5675         // Need to make sure we can't produce weird expressions involving
5676         // negated pointers.
5677         if (LA == LS && RA == RS)
5678           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5679         if (LA == RS && RA == LS)
5680           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5681       }
5682       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5683         if (Op->getType()->isPointerTy()) {
5684           Op = getLosslessPtrToIntExpr(Op);
5685           if (isa<SCEVCouldNotCompute>(Op))
5686             return Op;
5687         }
5688         if (Signed)
5689           Op = getNoopOrSignExtend(Op, I->getType());
5690         else
5691           Op = getNoopOrZeroExtend(Op, I->getType());
5692         return Op;
5693       };
5694       LS = CoerceOperand(LS);
5695       RS = CoerceOperand(RS);
5696       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5697         break;
5698       const SCEV *LDiff = getMinusSCEV(LA, LS);
5699       const SCEV *RDiff = getMinusSCEV(RA, RS);
5700       if (LDiff == RDiff)
5701         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5702                           LDiff);
5703       LDiff = getMinusSCEV(LA, RS);
5704       RDiff = getMinusSCEV(RA, LS);
5705       if (LDiff == RDiff)
5706         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5707                           LDiff);
5708     }
5709     break;
5710   case ICmpInst::ICMP_NE:
5711     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5712     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5713         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5714       const SCEV *One = getOne(I->getType());
5715       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5716       const SCEV *LA = getSCEV(TrueVal);
5717       const SCEV *RA = getSCEV(FalseVal);
5718       const SCEV *LDiff = getMinusSCEV(LA, LS);
5719       const SCEV *RDiff = getMinusSCEV(RA, One);
5720       if (LDiff == RDiff)
5721         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5722     }
5723     break;
5724   case ICmpInst::ICMP_EQ:
5725     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5726     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5727         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5728       const SCEV *One = getOne(I->getType());
5729       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5730       const SCEV *LA = getSCEV(TrueVal);
5731       const SCEV *RA = getSCEV(FalseVal);
5732       const SCEV *LDiff = getMinusSCEV(LA, One);
5733       const SCEV *RDiff = getMinusSCEV(RA, LS);
5734       if (LDiff == RDiff)
5735         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5736     }
5737     break;
5738   default:
5739     break;
5740   }
5741 
5742   return getUnknown(I);
5743 }
5744 
5745 /// Expand GEP instructions into add and multiply operations. This allows them
5746 /// to be analyzed by regular SCEV code.
5747 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5748   // Don't attempt to analyze GEPs over unsized objects.
5749   if (!GEP->getSourceElementType()->isSized())
5750     return getUnknown(GEP);
5751 
5752   SmallVector<const SCEV *, 4> IndexExprs;
5753   for (Value *Index : GEP->indices())
5754     IndexExprs.push_back(getSCEV(Index));
5755   return getGEPExpr(GEP, IndexExprs);
5756 }
5757 
5758 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5759   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5760     return C->getAPInt().countTrailingZeros();
5761 
5762   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5763     return GetMinTrailingZeros(I->getOperand());
5764 
5765   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5766     return std::min(GetMinTrailingZeros(T->getOperand()),
5767                     (uint32_t)getTypeSizeInBits(T->getType()));
5768 
5769   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5770     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5771     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5772                ? getTypeSizeInBits(E->getType())
5773                : OpRes;
5774   }
5775 
5776   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5777     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5778     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5779                ? getTypeSizeInBits(E->getType())
5780                : OpRes;
5781   }
5782 
5783   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5784     // The result is the min of all operands results.
5785     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5786     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5787       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5788     return MinOpRes;
5789   }
5790 
5791   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5792     // The result is the sum of all operands results.
5793     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5794     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5795     for (unsigned i = 1, e = M->getNumOperands();
5796          SumOpRes != BitWidth && i != e; ++i)
5797       SumOpRes =
5798           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5799     return SumOpRes;
5800   }
5801 
5802   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5803     // The result is the min of all operands results.
5804     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5805     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5806       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5807     return MinOpRes;
5808   }
5809 
5810   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5811     // The result is the min of all operands results.
5812     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5813     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5814       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5815     return MinOpRes;
5816   }
5817 
5818   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5819     // The result is the min of all operands results.
5820     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5821     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5822       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5823     return MinOpRes;
5824   }
5825 
5826   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5827     // For a SCEVUnknown, ask ValueTracking.
5828     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5829     return Known.countMinTrailingZeros();
5830   }
5831 
5832   // SCEVUDivExpr
5833   return 0;
5834 }
5835 
5836 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5837   auto I = MinTrailingZerosCache.find(S);
5838   if (I != MinTrailingZerosCache.end())
5839     return I->second;
5840 
5841   uint32_t Result = GetMinTrailingZerosImpl(S);
5842   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5843   assert(InsertPair.second && "Should insert a new key");
5844   return InsertPair.first->second;
5845 }
5846 
5847 /// Helper method to assign a range to V from metadata present in the IR.
5848 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5849   if (Instruction *I = dyn_cast<Instruction>(V))
5850     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5851       return getConstantRangeFromMetadata(*MD);
5852 
5853   return None;
5854 }
5855 
5856 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5857                                      SCEV::NoWrapFlags Flags) {
5858   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5859     AddRec->setNoWrapFlags(Flags);
5860     UnsignedRanges.erase(AddRec);
5861     SignedRanges.erase(AddRec);
5862   }
5863 }
5864 
5865 ConstantRange ScalarEvolution::
5866 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5867   const DataLayout &DL = getDataLayout();
5868 
5869   unsigned BitWidth = getTypeSizeInBits(U->getType());
5870   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5871 
5872   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5873   // use information about the trip count to improve our available range.  Note
5874   // that the trip count independent cases are already handled by known bits.
5875   // WARNING: The definition of recurrence used here is subtly different than
5876   // the one used by AddRec (and thus most of this file).  Step is allowed to
5877   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5878   // and other addrecs in the same loop (for non-affine addrecs).  The code
5879   // below intentionally handles the case where step is not loop invariant.
5880   auto *P = dyn_cast<PHINode>(U->getValue());
5881   if (!P)
5882     return FullSet;
5883 
5884   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5885   // even the values that are not available in these blocks may come from them,
5886   // and this leads to false-positive recurrence test.
5887   for (auto *Pred : predecessors(P->getParent()))
5888     if (!DT.isReachableFromEntry(Pred))
5889       return FullSet;
5890 
5891   BinaryOperator *BO;
5892   Value *Start, *Step;
5893   if (!matchSimpleRecurrence(P, BO, Start, Step))
5894     return FullSet;
5895 
5896   // If we found a recurrence in reachable code, we must be in a loop. Note
5897   // that BO might be in some subloop of L, and that's completely okay.
5898   auto *L = LI.getLoopFor(P->getParent());
5899   assert(L && L->getHeader() == P->getParent());
5900   if (!L->contains(BO->getParent()))
5901     // NOTE: This bailout should be an assert instead.  However, asserting
5902     // the condition here exposes a case where LoopFusion is querying SCEV
5903     // with malformed loop information during the midst of the transform.
5904     // There doesn't appear to be an obvious fix, so for the moment bailout
5905     // until the caller issue can be fixed.  PR49566 tracks the bug.
5906     return FullSet;
5907 
5908   // TODO: Extend to other opcodes such as mul, and div
5909   switch (BO->getOpcode()) {
5910   default:
5911     return FullSet;
5912   case Instruction::AShr:
5913   case Instruction::LShr:
5914   case Instruction::Shl:
5915     break;
5916   };
5917 
5918   if (BO->getOperand(0) != P)
5919     // TODO: Handle the power function forms some day.
5920     return FullSet;
5921 
5922   unsigned TC = getSmallConstantMaxTripCount(L);
5923   if (!TC || TC >= BitWidth)
5924     return FullSet;
5925 
5926   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5927   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5928   assert(KnownStart.getBitWidth() == BitWidth &&
5929          KnownStep.getBitWidth() == BitWidth);
5930 
5931   // Compute total shift amount, being careful of overflow and bitwidths.
5932   auto MaxShiftAmt = KnownStep.getMaxValue();
5933   APInt TCAP(BitWidth, TC-1);
5934   bool Overflow = false;
5935   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5936   if (Overflow)
5937     return FullSet;
5938 
5939   switch (BO->getOpcode()) {
5940   default:
5941     llvm_unreachable("filtered out above");
5942   case Instruction::AShr: {
5943     // For each ashr, three cases:
5944     //   shift = 0 => unchanged value
5945     //   saturation => 0 or -1
5946     //   other => a value closer to zero (of the same sign)
5947     // Thus, the end value is closer to zero than the start.
5948     auto KnownEnd = KnownBits::ashr(KnownStart,
5949                                     KnownBits::makeConstant(TotalShift));
5950     if (KnownStart.isNonNegative())
5951       // Analogous to lshr (simply not yet canonicalized)
5952       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5953                                         KnownStart.getMaxValue() + 1);
5954     if (KnownStart.isNegative())
5955       // End >=u Start && End <=s Start
5956       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5957                                         KnownEnd.getMaxValue() + 1);
5958     break;
5959   }
5960   case Instruction::LShr: {
5961     // For each lshr, three cases:
5962     //   shift = 0 => unchanged value
5963     //   saturation => 0
5964     //   other => a smaller positive number
5965     // Thus, the low end of the unsigned range is the last value produced.
5966     auto KnownEnd = KnownBits::lshr(KnownStart,
5967                                     KnownBits::makeConstant(TotalShift));
5968     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5969                                       KnownStart.getMaxValue() + 1);
5970   }
5971   case Instruction::Shl: {
5972     // Iff no bits are shifted out, value increases on every shift.
5973     auto KnownEnd = KnownBits::shl(KnownStart,
5974                                    KnownBits::makeConstant(TotalShift));
5975     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5976       return ConstantRange(KnownStart.getMinValue(),
5977                            KnownEnd.getMaxValue() + 1);
5978     break;
5979   }
5980   };
5981   return FullSet;
5982 }
5983 
5984 /// Determine the range for a particular SCEV.  If SignHint is
5985 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5986 /// with a "cleaner" unsigned (resp. signed) representation.
5987 const ConstantRange &
5988 ScalarEvolution::getRangeRef(const SCEV *S,
5989                              ScalarEvolution::RangeSignHint SignHint) {
5990   DenseMap<const SCEV *, ConstantRange> &Cache =
5991       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5992                                                        : SignedRanges;
5993   ConstantRange::PreferredRangeType RangeType =
5994       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5995           ? ConstantRange::Unsigned : ConstantRange::Signed;
5996 
5997   // See if we've computed this range already.
5998   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5999   if (I != Cache.end())
6000     return I->second;
6001 
6002   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6003     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6004 
6005   unsigned BitWidth = getTypeSizeInBits(S->getType());
6006   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6007   using OBO = OverflowingBinaryOperator;
6008 
6009   // If the value has known zeros, the maximum value will have those known zeros
6010   // as well.
6011   uint32_t TZ = GetMinTrailingZeros(S);
6012   if (TZ != 0) {
6013     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6014       ConservativeResult =
6015           ConstantRange(APInt::getMinValue(BitWidth),
6016                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6017     else
6018       ConservativeResult = ConstantRange(
6019           APInt::getSignedMinValue(BitWidth),
6020           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6021   }
6022 
6023   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6024     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6025     unsigned WrapType = OBO::AnyWrap;
6026     if (Add->hasNoSignedWrap())
6027       WrapType |= OBO::NoSignedWrap;
6028     if (Add->hasNoUnsignedWrap())
6029       WrapType |= OBO::NoUnsignedWrap;
6030     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6031       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6032                           WrapType, RangeType);
6033     return setRange(Add, SignHint,
6034                     ConservativeResult.intersectWith(X, RangeType));
6035   }
6036 
6037   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6038     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6039     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6040       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6041     return setRange(Mul, SignHint,
6042                     ConservativeResult.intersectWith(X, RangeType));
6043   }
6044 
6045   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6046     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6047     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6048       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6049     return setRange(SMax, SignHint,
6050                     ConservativeResult.intersectWith(X, RangeType));
6051   }
6052 
6053   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6054     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6055     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6056       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6057     return setRange(UMax, SignHint,
6058                     ConservativeResult.intersectWith(X, RangeType));
6059   }
6060 
6061   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6062     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6063     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6064       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6065     return setRange(SMin, SignHint,
6066                     ConservativeResult.intersectWith(X, RangeType));
6067   }
6068 
6069   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6070     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6071     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6072       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6073     return setRange(UMin, SignHint,
6074                     ConservativeResult.intersectWith(X, RangeType));
6075   }
6076 
6077   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6078     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6079     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6080     return setRange(UDiv, SignHint,
6081                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6082   }
6083 
6084   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6085     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6086     return setRange(ZExt, SignHint,
6087                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6088                                                      RangeType));
6089   }
6090 
6091   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6092     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6093     return setRange(SExt, SignHint,
6094                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6095                                                      RangeType));
6096   }
6097 
6098   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6099     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6100     return setRange(PtrToInt, SignHint, X);
6101   }
6102 
6103   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6104     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6105     return setRange(Trunc, SignHint,
6106                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6107                                                      RangeType));
6108   }
6109 
6110   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6111     // If there's no unsigned wrap, the value will never be less than its
6112     // initial value.
6113     if (AddRec->hasNoUnsignedWrap()) {
6114       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6115       if (!UnsignedMinValue.isNullValue())
6116         ConservativeResult = ConservativeResult.intersectWith(
6117             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6118     }
6119 
6120     // If there's no signed wrap, and all the operands except initial value have
6121     // the same sign or zero, the value won't ever be:
6122     // 1: smaller than initial value if operands are non negative,
6123     // 2: bigger than initial value if operands are non positive.
6124     // For both cases, value can not cross signed min/max boundary.
6125     if (AddRec->hasNoSignedWrap()) {
6126       bool AllNonNeg = true;
6127       bool AllNonPos = true;
6128       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6129         if (!isKnownNonNegative(AddRec->getOperand(i)))
6130           AllNonNeg = false;
6131         if (!isKnownNonPositive(AddRec->getOperand(i)))
6132           AllNonPos = false;
6133       }
6134       if (AllNonNeg)
6135         ConservativeResult = ConservativeResult.intersectWith(
6136             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6137                                        APInt::getSignedMinValue(BitWidth)),
6138             RangeType);
6139       else if (AllNonPos)
6140         ConservativeResult = ConservativeResult.intersectWith(
6141             ConstantRange::getNonEmpty(
6142                 APInt::getSignedMinValue(BitWidth),
6143                 getSignedRangeMax(AddRec->getStart()) + 1),
6144             RangeType);
6145     }
6146 
6147     // TODO: non-affine addrec
6148     if (AddRec->isAffine()) {
6149       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6150       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6151           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6152         auto RangeFromAffine = getRangeForAffineAR(
6153             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6154             BitWidth);
6155         ConservativeResult =
6156             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6157 
6158         auto RangeFromFactoring = getRangeViaFactoring(
6159             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6160             BitWidth);
6161         ConservativeResult =
6162             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6163       }
6164 
6165       // Now try symbolic BE count and more powerful methods.
6166       if (UseExpensiveRangeSharpening) {
6167         const SCEV *SymbolicMaxBECount =
6168             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6169         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6170             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6171             AddRec->hasNoSelfWrap()) {
6172           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6173               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6174           ConservativeResult =
6175               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6176         }
6177       }
6178     }
6179 
6180     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6181   }
6182 
6183   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6184 
6185     // Check if the IR explicitly contains !range metadata.
6186     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6187     if (MDRange.hasValue())
6188       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6189                                                             RangeType);
6190 
6191     // Use facts about recurrences in the underlying IR.  Note that add
6192     // recurrences are AddRecExprs and thus don't hit this path.  This
6193     // primarily handles shift recurrences.
6194     auto CR = getRangeForUnknownRecurrence(U);
6195     ConservativeResult = ConservativeResult.intersectWith(CR);
6196 
6197     // See if ValueTracking can give us a useful range.
6198     const DataLayout &DL = getDataLayout();
6199     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6200     if (Known.getBitWidth() != BitWidth)
6201       Known = Known.zextOrTrunc(BitWidth);
6202 
6203     // ValueTracking may be able to compute a tighter result for the number of
6204     // sign bits than for the value of those sign bits.
6205     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6206     if (U->getType()->isPointerTy()) {
6207       // If the pointer size is larger than the index size type, this can cause
6208       // NS to be larger than BitWidth. So compensate for this.
6209       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6210       int ptrIdxDiff = ptrSize - BitWidth;
6211       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6212         NS -= ptrIdxDiff;
6213     }
6214 
6215     if (NS > 1) {
6216       // If we know any of the sign bits, we know all of the sign bits.
6217       if (!Known.Zero.getHiBits(NS).isNullValue())
6218         Known.Zero.setHighBits(NS);
6219       if (!Known.One.getHiBits(NS).isNullValue())
6220         Known.One.setHighBits(NS);
6221     }
6222 
6223     if (Known.getMinValue() != Known.getMaxValue() + 1)
6224       ConservativeResult = ConservativeResult.intersectWith(
6225           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6226           RangeType);
6227     if (NS > 1)
6228       ConservativeResult = ConservativeResult.intersectWith(
6229           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6230                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6231           RangeType);
6232 
6233     // A range of Phi is a subset of union of all ranges of its input.
6234     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6235       // Make sure that we do not run over cycled Phis.
6236       if (PendingPhiRanges.insert(Phi).second) {
6237         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6238         for (auto &Op : Phi->operands()) {
6239           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6240           RangeFromOps = RangeFromOps.unionWith(OpRange);
6241           // No point to continue if we already have a full set.
6242           if (RangeFromOps.isFullSet())
6243             break;
6244         }
6245         ConservativeResult =
6246             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6247         bool Erased = PendingPhiRanges.erase(Phi);
6248         assert(Erased && "Failed to erase Phi properly?");
6249         (void) Erased;
6250       }
6251     }
6252 
6253     return setRange(U, SignHint, std::move(ConservativeResult));
6254   }
6255 
6256   return setRange(S, SignHint, std::move(ConservativeResult));
6257 }
6258 
6259 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6260 // values that the expression can take. Initially, the expression has a value
6261 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6262 // argument defines if we treat Step as signed or unsigned.
6263 static ConstantRange getRangeForAffineARHelper(APInt Step,
6264                                                const ConstantRange &StartRange,
6265                                                const APInt &MaxBECount,
6266                                                unsigned BitWidth, bool Signed) {
6267   // If either Step or MaxBECount is 0, then the expression won't change, and we
6268   // just need to return the initial range.
6269   if (Step == 0 || MaxBECount == 0)
6270     return StartRange;
6271 
6272   // If we don't know anything about the initial value (i.e. StartRange is
6273   // FullRange), then we don't know anything about the final range either.
6274   // Return FullRange.
6275   if (StartRange.isFullSet())
6276     return ConstantRange::getFull(BitWidth);
6277 
6278   // If Step is signed and negative, then we use its absolute value, but we also
6279   // note that we're moving in the opposite direction.
6280   bool Descending = Signed && Step.isNegative();
6281 
6282   if (Signed)
6283     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6284     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6285     // This equations hold true due to the well-defined wrap-around behavior of
6286     // APInt.
6287     Step = Step.abs();
6288 
6289   // Check if Offset is more than full span of BitWidth. If it is, the
6290   // expression is guaranteed to overflow.
6291   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6292     return ConstantRange::getFull(BitWidth);
6293 
6294   // Offset is by how much the expression can change. Checks above guarantee no
6295   // overflow here.
6296   APInt Offset = Step * MaxBECount;
6297 
6298   // Minimum value of the final range will match the minimal value of StartRange
6299   // if the expression is increasing and will be decreased by Offset otherwise.
6300   // Maximum value of the final range will match the maximal value of StartRange
6301   // if the expression is decreasing and will be increased by Offset otherwise.
6302   APInt StartLower = StartRange.getLower();
6303   APInt StartUpper = StartRange.getUpper() - 1;
6304   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6305                                    : (StartUpper + std::move(Offset));
6306 
6307   // It's possible that the new minimum/maximum value will fall into the initial
6308   // range (due to wrap around). This means that the expression can take any
6309   // value in this bitwidth, and we have to return full range.
6310   if (StartRange.contains(MovedBoundary))
6311     return ConstantRange::getFull(BitWidth);
6312 
6313   APInt NewLower =
6314       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6315   APInt NewUpper =
6316       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6317   NewUpper += 1;
6318 
6319   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6320   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6321 }
6322 
6323 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6324                                                    const SCEV *Step,
6325                                                    const SCEV *MaxBECount,
6326                                                    unsigned BitWidth) {
6327   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6328          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6329          "Precondition!");
6330 
6331   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6332   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6333 
6334   // First, consider step signed.
6335   ConstantRange StartSRange = getSignedRange(Start);
6336   ConstantRange StepSRange = getSignedRange(Step);
6337 
6338   // If Step can be both positive and negative, we need to find ranges for the
6339   // maximum absolute step values in both directions and union them.
6340   ConstantRange SR =
6341       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6342                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6343   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6344                                               StartSRange, MaxBECountValue,
6345                                               BitWidth, /* Signed = */ true));
6346 
6347   // Next, consider step unsigned.
6348   ConstantRange UR = getRangeForAffineARHelper(
6349       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6350       MaxBECountValue, BitWidth, /* Signed = */ false);
6351 
6352   // Finally, intersect signed and unsigned ranges.
6353   return SR.intersectWith(UR, ConstantRange::Smallest);
6354 }
6355 
6356 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6357     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6358     ScalarEvolution::RangeSignHint SignHint) {
6359   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6360   assert(AddRec->hasNoSelfWrap() &&
6361          "This only works for non-self-wrapping AddRecs!");
6362   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6363   const SCEV *Step = AddRec->getStepRecurrence(*this);
6364   // Only deal with constant step to save compile time.
6365   if (!isa<SCEVConstant>(Step))
6366     return ConstantRange::getFull(BitWidth);
6367   // Let's make sure that we can prove that we do not self-wrap during
6368   // MaxBECount iterations. We need this because MaxBECount is a maximum
6369   // iteration count estimate, and we might infer nw from some exit for which we
6370   // do not know max exit count (or any other side reasoning).
6371   // TODO: Turn into assert at some point.
6372   if (getTypeSizeInBits(MaxBECount->getType()) >
6373       getTypeSizeInBits(AddRec->getType()))
6374     return ConstantRange::getFull(BitWidth);
6375   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6376   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6377   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6378   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6379   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6380                                          MaxItersWithoutWrap))
6381     return ConstantRange::getFull(BitWidth);
6382 
6383   ICmpInst::Predicate LEPred =
6384       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6385   ICmpInst::Predicate GEPred =
6386       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6387   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6388 
6389   // We know that there is no self-wrap. Let's take Start and End values and
6390   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6391   // the iteration. They either lie inside the range [Min(Start, End),
6392   // Max(Start, End)] or outside it:
6393   //
6394   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6395   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6396   //
6397   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6398   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6399   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6400   // Start <= End and step is positive, or Start >= End and step is negative.
6401   const SCEV *Start = AddRec->getStart();
6402   ConstantRange StartRange = getRangeRef(Start, SignHint);
6403   ConstantRange EndRange = getRangeRef(End, SignHint);
6404   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6405   // If they already cover full iteration space, we will know nothing useful
6406   // even if we prove what we want to prove.
6407   if (RangeBetween.isFullSet())
6408     return RangeBetween;
6409   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6410   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6411                                : RangeBetween.isWrappedSet();
6412   if (IsWrappedSet)
6413     return ConstantRange::getFull(BitWidth);
6414 
6415   if (isKnownPositive(Step) &&
6416       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6417     return RangeBetween;
6418   else if (isKnownNegative(Step) &&
6419            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6420     return RangeBetween;
6421   return ConstantRange::getFull(BitWidth);
6422 }
6423 
6424 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6425                                                     const SCEV *Step,
6426                                                     const SCEV *MaxBECount,
6427                                                     unsigned BitWidth) {
6428   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6429   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6430 
6431   struct SelectPattern {
6432     Value *Condition = nullptr;
6433     APInt TrueValue;
6434     APInt FalseValue;
6435 
6436     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6437                            const SCEV *S) {
6438       Optional<unsigned> CastOp;
6439       APInt Offset(BitWidth, 0);
6440 
6441       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6442              "Should be!");
6443 
6444       // Peel off a constant offset:
6445       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6446         // In the future we could consider being smarter here and handle
6447         // {Start+Step,+,Step} too.
6448         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6449           return;
6450 
6451         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6452         S = SA->getOperand(1);
6453       }
6454 
6455       // Peel off a cast operation
6456       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6457         CastOp = SCast->getSCEVType();
6458         S = SCast->getOperand();
6459       }
6460 
6461       using namespace llvm::PatternMatch;
6462 
6463       auto *SU = dyn_cast<SCEVUnknown>(S);
6464       const APInt *TrueVal, *FalseVal;
6465       if (!SU ||
6466           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6467                                           m_APInt(FalseVal)))) {
6468         Condition = nullptr;
6469         return;
6470       }
6471 
6472       TrueValue = *TrueVal;
6473       FalseValue = *FalseVal;
6474 
6475       // Re-apply the cast we peeled off earlier
6476       if (CastOp.hasValue())
6477         switch (*CastOp) {
6478         default:
6479           llvm_unreachable("Unknown SCEV cast type!");
6480 
6481         case scTruncate:
6482           TrueValue = TrueValue.trunc(BitWidth);
6483           FalseValue = FalseValue.trunc(BitWidth);
6484           break;
6485         case scZeroExtend:
6486           TrueValue = TrueValue.zext(BitWidth);
6487           FalseValue = FalseValue.zext(BitWidth);
6488           break;
6489         case scSignExtend:
6490           TrueValue = TrueValue.sext(BitWidth);
6491           FalseValue = FalseValue.sext(BitWidth);
6492           break;
6493         }
6494 
6495       // Re-apply the constant offset we peeled off earlier
6496       TrueValue += Offset;
6497       FalseValue += Offset;
6498     }
6499 
6500     bool isRecognized() { return Condition != nullptr; }
6501   };
6502 
6503   SelectPattern StartPattern(*this, BitWidth, Start);
6504   if (!StartPattern.isRecognized())
6505     return ConstantRange::getFull(BitWidth);
6506 
6507   SelectPattern StepPattern(*this, BitWidth, Step);
6508   if (!StepPattern.isRecognized())
6509     return ConstantRange::getFull(BitWidth);
6510 
6511   if (StartPattern.Condition != StepPattern.Condition) {
6512     // We don't handle this case today; but we could, by considering four
6513     // possibilities below instead of two. I'm not sure if there are cases where
6514     // that will help over what getRange already does, though.
6515     return ConstantRange::getFull(BitWidth);
6516   }
6517 
6518   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6519   // construct arbitrary general SCEV expressions here.  This function is called
6520   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6521   // say) can end up caching a suboptimal value.
6522 
6523   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6524   // C2352 and C2512 (otherwise it isn't needed).
6525 
6526   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6527   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6528   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6529   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6530 
6531   ConstantRange TrueRange =
6532       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6533   ConstantRange FalseRange =
6534       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6535 
6536   return TrueRange.unionWith(FalseRange);
6537 }
6538 
6539 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6540   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6541   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6542 
6543   // Return early if there are no flags to propagate to the SCEV.
6544   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6545   if (BinOp->hasNoUnsignedWrap())
6546     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6547   if (BinOp->hasNoSignedWrap())
6548     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6549   if (Flags == SCEV::FlagAnyWrap)
6550     return SCEV::FlagAnyWrap;
6551 
6552   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6553 }
6554 
6555 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6556   // Here we check that I is in the header of the innermost loop containing I,
6557   // since we only deal with instructions in the loop header. The actual loop we
6558   // need to check later will come from an add recurrence, but getting that
6559   // requires computing the SCEV of the operands, which can be expensive. This
6560   // check we can do cheaply to rule out some cases early.
6561   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6562   if (InnermostContainingLoop == nullptr ||
6563       InnermostContainingLoop->getHeader() != I->getParent())
6564     return false;
6565 
6566   // Only proceed if we can prove that I does not yield poison.
6567   if (!programUndefinedIfPoison(I))
6568     return false;
6569 
6570   // At this point we know that if I is executed, then it does not wrap
6571   // according to at least one of NSW or NUW. If I is not executed, then we do
6572   // not know if the calculation that I represents would wrap. Multiple
6573   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6574   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6575   // derived from other instructions that map to the same SCEV. We cannot make
6576   // that guarantee for cases where I is not executed. So we need to find the
6577   // loop that I is considered in relation to and prove that I is executed for
6578   // every iteration of that loop. That implies that the value that I
6579   // calculates does not wrap anywhere in the loop, so then we can apply the
6580   // flags to the SCEV.
6581   //
6582   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6583   // from different loops, so that we know which loop to prove that I is
6584   // executed in.
6585   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6586     // I could be an extractvalue from a call to an overflow intrinsic.
6587     // TODO: We can do better here in some cases.
6588     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6589       return false;
6590     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6591     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6592       bool AllOtherOpsLoopInvariant = true;
6593       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6594            ++OtherOpIndex) {
6595         if (OtherOpIndex != OpIndex) {
6596           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6597           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6598             AllOtherOpsLoopInvariant = false;
6599             break;
6600           }
6601         }
6602       }
6603       if (AllOtherOpsLoopInvariant &&
6604           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6605         return true;
6606     }
6607   }
6608   return false;
6609 }
6610 
6611 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6612   // If we know that \c I can never be poison period, then that's enough.
6613   if (isSCEVExprNeverPoison(I))
6614     return true;
6615 
6616   // For an add recurrence specifically, we assume that infinite loops without
6617   // side effects are undefined behavior, and then reason as follows:
6618   //
6619   // If the add recurrence is poison in any iteration, it is poison on all
6620   // future iterations (since incrementing poison yields poison). If the result
6621   // of the add recurrence is fed into the loop latch condition and the loop
6622   // does not contain any throws or exiting blocks other than the latch, we now
6623   // have the ability to "choose" whether the backedge is taken or not (by
6624   // choosing a sufficiently evil value for the poison feeding into the branch)
6625   // for every iteration including and after the one in which \p I first became
6626   // poison.  There are two possibilities (let's call the iteration in which \p
6627   // I first became poison as K):
6628   //
6629   //  1. In the set of iterations including and after K, the loop body executes
6630   //     no side effects.  In this case executing the backege an infinte number
6631   //     of times will yield undefined behavior.
6632   //
6633   //  2. In the set of iterations including and after K, the loop body executes
6634   //     at least one side effect.  In this case, that specific instance of side
6635   //     effect is control dependent on poison, which also yields undefined
6636   //     behavior.
6637 
6638   auto *ExitingBB = L->getExitingBlock();
6639   auto *LatchBB = L->getLoopLatch();
6640   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6641     return false;
6642 
6643   SmallPtrSet<const Instruction *, 16> Pushed;
6644   SmallVector<const Instruction *, 8> PoisonStack;
6645 
6646   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6647   // things that are known to be poison under that assumption go on the
6648   // PoisonStack.
6649   Pushed.insert(I);
6650   PoisonStack.push_back(I);
6651 
6652   bool LatchControlDependentOnPoison = false;
6653   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6654     const Instruction *Poison = PoisonStack.pop_back_val();
6655 
6656     for (auto *PoisonUser : Poison->users()) {
6657       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6658         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6659           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6660       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6661         assert(BI->isConditional() && "Only possibility!");
6662         if (BI->getParent() == LatchBB) {
6663           LatchControlDependentOnPoison = true;
6664           break;
6665         }
6666       }
6667     }
6668   }
6669 
6670   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6671 }
6672 
6673 ScalarEvolution::LoopProperties
6674 ScalarEvolution::getLoopProperties(const Loop *L) {
6675   using LoopProperties = ScalarEvolution::LoopProperties;
6676 
6677   auto Itr = LoopPropertiesCache.find(L);
6678   if (Itr == LoopPropertiesCache.end()) {
6679     auto HasSideEffects = [](Instruction *I) {
6680       if (auto *SI = dyn_cast<StoreInst>(I))
6681         return !SI->isSimple();
6682 
6683       return I->mayThrow() || I->mayWriteToMemory();
6684     };
6685 
6686     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6687                          /*HasNoSideEffects*/ true};
6688 
6689     for (auto *BB : L->getBlocks())
6690       for (auto &I : *BB) {
6691         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6692           LP.HasNoAbnormalExits = false;
6693         if (HasSideEffects(&I))
6694           LP.HasNoSideEffects = false;
6695         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6696           break; // We're already as pessimistic as we can get.
6697       }
6698 
6699     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6700     assert(InsertPair.second && "We just checked!");
6701     Itr = InsertPair.first;
6702   }
6703 
6704   return Itr->second;
6705 }
6706 
6707 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6708   // A mustprogress loop without side effects must be finite.
6709   // TODO: The check used here is very conservative.  It's only *specific*
6710   // side effects which are well defined in infinite loops.
6711   return isMustProgress(L) && loopHasNoSideEffects(L);
6712 }
6713 
6714 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6715   if (!isSCEVable(V->getType()))
6716     return getUnknown(V);
6717 
6718   if (Instruction *I = dyn_cast<Instruction>(V)) {
6719     // Don't attempt to analyze instructions in blocks that aren't
6720     // reachable. Such instructions don't matter, and they aren't required
6721     // to obey basic rules for definitions dominating uses which this
6722     // analysis depends on.
6723     if (!DT.isReachableFromEntry(I->getParent()))
6724       return getUnknown(UndefValue::get(V->getType()));
6725   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6726     return getConstant(CI);
6727   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6728     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6729   else if (!isa<ConstantExpr>(V))
6730     return getUnknown(V);
6731 
6732   Operator *U = cast<Operator>(V);
6733   if (auto BO = MatchBinaryOp(U, DT)) {
6734     switch (BO->Opcode) {
6735     case Instruction::Add: {
6736       // The simple thing to do would be to just call getSCEV on both operands
6737       // and call getAddExpr with the result. However if we're looking at a
6738       // bunch of things all added together, this can be quite inefficient,
6739       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6740       // Instead, gather up all the operands and make a single getAddExpr call.
6741       // LLVM IR canonical form means we need only traverse the left operands.
6742       SmallVector<const SCEV *, 4> AddOps;
6743       do {
6744         if (BO->Op) {
6745           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6746             AddOps.push_back(OpSCEV);
6747             break;
6748           }
6749 
6750           // If a NUW or NSW flag can be applied to the SCEV for this
6751           // addition, then compute the SCEV for this addition by itself
6752           // with a separate call to getAddExpr. We need to do that
6753           // instead of pushing the operands of the addition onto AddOps,
6754           // since the flags are only known to apply to this particular
6755           // addition - they may not apply to other additions that can be
6756           // formed with operands from AddOps.
6757           const SCEV *RHS = getSCEV(BO->RHS);
6758           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6759           if (Flags != SCEV::FlagAnyWrap) {
6760             const SCEV *LHS = getSCEV(BO->LHS);
6761             if (BO->Opcode == Instruction::Sub)
6762               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6763             else
6764               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6765             break;
6766           }
6767         }
6768 
6769         if (BO->Opcode == Instruction::Sub)
6770           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6771         else
6772           AddOps.push_back(getSCEV(BO->RHS));
6773 
6774         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6775         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6776                        NewBO->Opcode != Instruction::Sub)) {
6777           AddOps.push_back(getSCEV(BO->LHS));
6778           break;
6779         }
6780         BO = NewBO;
6781       } while (true);
6782 
6783       return getAddExpr(AddOps);
6784     }
6785 
6786     case Instruction::Mul: {
6787       SmallVector<const SCEV *, 4> MulOps;
6788       do {
6789         if (BO->Op) {
6790           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6791             MulOps.push_back(OpSCEV);
6792             break;
6793           }
6794 
6795           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6796           if (Flags != SCEV::FlagAnyWrap) {
6797             MulOps.push_back(
6798                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6799             break;
6800           }
6801         }
6802 
6803         MulOps.push_back(getSCEV(BO->RHS));
6804         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6805         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6806           MulOps.push_back(getSCEV(BO->LHS));
6807           break;
6808         }
6809         BO = NewBO;
6810       } while (true);
6811 
6812       return getMulExpr(MulOps);
6813     }
6814     case Instruction::UDiv:
6815       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6816     case Instruction::URem:
6817       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6818     case Instruction::Sub: {
6819       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6820       if (BO->Op)
6821         Flags = getNoWrapFlagsFromUB(BO->Op);
6822       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6823     }
6824     case Instruction::And:
6825       // For an expression like x&255 that merely masks off the high bits,
6826       // use zext(trunc(x)) as the SCEV expression.
6827       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6828         if (CI->isZero())
6829           return getSCEV(BO->RHS);
6830         if (CI->isMinusOne())
6831           return getSCEV(BO->LHS);
6832         const APInt &A = CI->getValue();
6833 
6834         // Instcombine's ShrinkDemandedConstant may strip bits out of
6835         // constants, obscuring what would otherwise be a low-bits mask.
6836         // Use computeKnownBits to compute what ShrinkDemandedConstant
6837         // knew about to reconstruct a low-bits mask value.
6838         unsigned LZ = A.countLeadingZeros();
6839         unsigned TZ = A.countTrailingZeros();
6840         unsigned BitWidth = A.getBitWidth();
6841         KnownBits Known(BitWidth);
6842         computeKnownBits(BO->LHS, Known, getDataLayout(),
6843                          0, &AC, nullptr, &DT);
6844 
6845         APInt EffectiveMask =
6846             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6847         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6848           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6849           const SCEV *LHS = getSCEV(BO->LHS);
6850           const SCEV *ShiftedLHS = nullptr;
6851           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6852             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6853               // For an expression like (x * 8) & 8, simplify the multiply.
6854               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6855               unsigned GCD = std::min(MulZeros, TZ);
6856               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6857               SmallVector<const SCEV*, 4> MulOps;
6858               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6859               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6860               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6861               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6862             }
6863           }
6864           if (!ShiftedLHS)
6865             ShiftedLHS = getUDivExpr(LHS, MulCount);
6866           return getMulExpr(
6867               getZeroExtendExpr(
6868                   getTruncateExpr(ShiftedLHS,
6869                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6870                   BO->LHS->getType()),
6871               MulCount);
6872         }
6873       }
6874       break;
6875 
6876     case Instruction::Or:
6877       // If the RHS of the Or is a constant, we may have something like:
6878       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6879       // optimizations will transparently handle this case.
6880       //
6881       // In order for this transformation to be safe, the LHS must be of the
6882       // form X*(2^n) and the Or constant must be less than 2^n.
6883       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6884         const SCEV *LHS = getSCEV(BO->LHS);
6885         const APInt &CIVal = CI->getValue();
6886         if (GetMinTrailingZeros(LHS) >=
6887             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6888           // Build a plain add SCEV.
6889           return getAddExpr(LHS, getSCEV(CI),
6890                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6891         }
6892       }
6893       break;
6894 
6895     case Instruction::Xor:
6896       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6897         // If the RHS of xor is -1, then this is a not operation.
6898         if (CI->isMinusOne())
6899           return getNotSCEV(getSCEV(BO->LHS));
6900 
6901         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6902         // This is a variant of the check for xor with -1, and it handles
6903         // the case where instcombine has trimmed non-demanded bits out
6904         // of an xor with -1.
6905         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6906           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6907             if (LBO->getOpcode() == Instruction::And &&
6908                 LCI->getValue() == CI->getValue())
6909               if (const SCEVZeroExtendExpr *Z =
6910                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6911                 Type *UTy = BO->LHS->getType();
6912                 const SCEV *Z0 = Z->getOperand();
6913                 Type *Z0Ty = Z0->getType();
6914                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6915 
6916                 // If C is a low-bits mask, the zero extend is serving to
6917                 // mask off the high bits. Complement the operand and
6918                 // re-apply the zext.
6919                 if (CI->getValue().isMask(Z0TySize))
6920                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6921 
6922                 // If C is a single bit, it may be in the sign-bit position
6923                 // before the zero-extend. In this case, represent the xor
6924                 // using an add, which is equivalent, and re-apply the zext.
6925                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6926                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6927                     Trunc.isSignMask())
6928                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6929                                            UTy);
6930               }
6931       }
6932       break;
6933 
6934     case Instruction::Shl:
6935       // Turn shift left of a constant amount into a multiply.
6936       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6937         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6938 
6939         // If the shift count is not less than the bitwidth, the result of
6940         // the shift is undefined. Don't try to analyze it, because the
6941         // resolution chosen here may differ from the resolution chosen in
6942         // other parts of the compiler.
6943         if (SA->getValue().uge(BitWidth))
6944           break;
6945 
6946         // We can safely preserve the nuw flag in all cases. It's also safe to
6947         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6948         // requires special handling. It can be preserved as long as we're not
6949         // left shifting by bitwidth - 1.
6950         auto Flags = SCEV::FlagAnyWrap;
6951         if (BO->Op) {
6952           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6953           if ((MulFlags & SCEV::FlagNSW) &&
6954               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6955             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6956           if (MulFlags & SCEV::FlagNUW)
6957             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6958         }
6959 
6960         Constant *X = ConstantInt::get(
6961             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6962         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6963       }
6964       break;
6965 
6966     case Instruction::AShr: {
6967       // AShr X, C, where C is a constant.
6968       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6969       if (!CI)
6970         break;
6971 
6972       Type *OuterTy = BO->LHS->getType();
6973       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6974       // If the shift count is not less than the bitwidth, the result of
6975       // the shift is undefined. Don't try to analyze it, because the
6976       // resolution chosen here may differ from the resolution chosen in
6977       // other parts of the compiler.
6978       if (CI->getValue().uge(BitWidth))
6979         break;
6980 
6981       if (CI->isZero())
6982         return getSCEV(BO->LHS); // shift by zero --> noop
6983 
6984       uint64_t AShrAmt = CI->getZExtValue();
6985       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6986 
6987       Operator *L = dyn_cast<Operator>(BO->LHS);
6988       if (L && L->getOpcode() == Instruction::Shl) {
6989         // X = Shl A, n
6990         // Y = AShr X, m
6991         // Both n and m are constant.
6992 
6993         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6994         if (L->getOperand(1) == BO->RHS)
6995           // For a two-shift sext-inreg, i.e. n = m,
6996           // use sext(trunc(x)) as the SCEV expression.
6997           return getSignExtendExpr(
6998               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6999 
7000         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7001         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7002           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7003           if (ShlAmt > AShrAmt) {
7004             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7005             // expression. We already checked that ShlAmt < BitWidth, so
7006             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7007             // ShlAmt - AShrAmt < Amt.
7008             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7009                                             ShlAmt - AShrAmt);
7010             return getSignExtendExpr(
7011                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7012                 getConstant(Mul)), OuterTy);
7013           }
7014         }
7015       }
7016       break;
7017     }
7018     }
7019   }
7020 
7021   switch (U->getOpcode()) {
7022   case Instruction::Trunc:
7023     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7024 
7025   case Instruction::ZExt:
7026     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7027 
7028   case Instruction::SExt:
7029     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7030       // The NSW flag of a subtract does not always survive the conversion to
7031       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7032       // more likely to preserve NSW and allow later AddRec optimisations.
7033       //
7034       // NOTE: This is effectively duplicating this logic from getSignExtend:
7035       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7036       // but by that point the NSW information has potentially been lost.
7037       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7038         Type *Ty = U->getType();
7039         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7040         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7041         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7042       }
7043     }
7044     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7045 
7046   case Instruction::BitCast:
7047     // BitCasts are no-op casts so we just eliminate the cast.
7048     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7049       return getSCEV(U->getOperand(0));
7050     break;
7051 
7052   case Instruction::PtrToInt: {
7053     // Pointer to integer cast is straight-forward, so do model it.
7054     const SCEV *Op = getSCEV(U->getOperand(0));
7055     Type *DstIntTy = U->getType();
7056     // But only if effective SCEV (integer) type is wide enough to represent
7057     // all possible pointer values.
7058     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7059     if (isa<SCEVCouldNotCompute>(IntOp))
7060       return getUnknown(V);
7061     return IntOp;
7062   }
7063   case Instruction::IntToPtr:
7064     // Just don't deal with inttoptr casts.
7065     return getUnknown(V);
7066 
7067   case Instruction::SDiv:
7068     // If both operands are non-negative, this is just an udiv.
7069     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7070         isKnownNonNegative(getSCEV(U->getOperand(1))))
7071       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7072     break;
7073 
7074   case Instruction::SRem:
7075     // If both operands are non-negative, this is just an urem.
7076     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7077         isKnownNonNegative(getSCEV(U->getOperand(1))))
7078       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7079     break;
7080 
7081   case Instruction::GetElementPtr:
7082     return createNodeForGEP(cast<GEPOperator>(U));
7083 
7084   case Instruction::PHI:
7085     return createNodeForPHI(cast<PHINode>(U));
7086 
7087   case Instruction::Select:
7088     // U can also be a select constant expr, which let fall through.  Since
7089     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7090     // constant expressions cannot have instructions as operands, we'd have
7091     // returned getUnknown for a select constant expressions anyway.
7092     if (isa<Instruction>(U))
7093       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7094                                       U->getOperand(1), U->getOperand(2));
7095     break;
7096 
7097   case Instruction::Call:
7098   case Instruction::Invoke:
7099     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7100       return getSCEV(RV);
7101 
7102     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7103       switch (II->getIntrinsicID()) {
7104       case Intrinsic::abs:
7105         return getAbsExpr(
7106             getSCEV(II->getArgOperand(0)),
7107             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7108       case Intrinsic::umax:
7109         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7110                            getSCEV(II->getArgOperand(1)));
7111       case Intrinsic::umin:
7112         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7113                            getSCEV(II->getArgOperand(1)));
7114       case Intrinsic::smax:
7115         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7116                            getSCEV(II->getArgOperand(1)));
7117       case Intrinsic::smin:
7118         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7119                            getSCEV(II->getArgOperand(1)));
7120       case Intrinsic::usub_sat: {
7121         const SCEV *X = getSCEV(II->getArgOperand(0));
7122         const SCEV *Y = getSCEV(II->getArgOperand(1));
7123         const SCEV *ClampedY = getUMinExpr(X, Y);
7124         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7125       }
7126       case Intrinsic::uadd_sat: {
7127         const SCEV *X = getSCEV(II->getArgOperand(0));
7128         const SCEV *Y = getSCEV(II->getArgOperand(1));
7129         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7130         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7131       }
7132       case Intrinsic::start_loop_iterations:
7133         // A start_loop_iterations is just equivalent to the first operand for
7134         // SCEV purposes.
7135         return getSCEV(II->getArgOperand(0));
7136       default:
7137         break;
7138       }
7139     }
7140     break;
7141   }
7142 
7143   return getUnknown(V);
7144 }
7145 
7146 //===----------------------------------------------------------------------===//
7147 //                   Iteration Count Computation Code
7148 //
7149 
7150 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7151   // Get the trip count from the BE count by adding 1.  Overflow, results
7152   // in zero which means "unknown".
7153   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7154 }
7155 
7156 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7157   if (!ExitCount)
7158     return 0;
7159 
7160   ConstantInt *ExitConst = ExitCount->getValue();
7161 
7162   // Guard against huge trip counts.
7163   if (ExitConst->getValue().getActiveBits() > 32)
7164     return 0;
7165 
7166   // In case of integer overflow, this returns 0, which is correct.
7167   return ((unsigned)ExitConst->getZExtValue()) + 1;
7168 }
7169 
7170 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7171   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7172   return getConstantTripCount(ExitCount);
7173 }
7174 
7175 unsigned
7176 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7177                                            const BasicBlock *ExitingBlock) {
7178   assert(ExitingBlock && "Must pass a non-null exiting block!");
7179   assert(L->isLoopExiting(ExitingBlock) &&
7180          "Exiting block must actually branch out of the loop!");
7181   const SCEVConstant *ExitCount =
7182       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7183   return getConstantTripCount(ExitCount);
7184 }
7185 
7186 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7187   const auto *MaxExitCount =
7188       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7189   return getConstantTripCount(MaxExitCount);
7190 }
7191 
7192 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7193   SmallVector<BasicBlock *, 8> ExitingBlocks;
7194   L->getExitingBlocks(ExitingBlocks);
7195 
7196   Optional<unsigned> Res = None;
7197   for (auto *ExitingBB : ExitingBlocks) {
7198     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7199     if (!Res)
7200       Res = Multiple;
7201     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7202   }
7203   return Res.getValueOr(1);
7204 }
7205 
7206 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7207                                                        const SCEV *ExitCount) {
7208   if (ExitCount == getCouldNotCompute())
7209     return 1;
7210 
7211   // Get the trip count
7212   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7213 
7214   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7215   if (!TC)
7216     // Attempt to factor more general cases. Returns the greatest power of
7217     // two divisor. If overflow happens, the trip count expression is still
7218     // divisible by the greatest power of 2 divisor returned.
7219     return 1U << std::min((uint32_t)31,
7220                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7221 
7222   ConstantInt *Result = TC->getValue();
7223 
7224   // Guard against huge trip counts (this requires checking
7225   // for zero to handle the case where the trip count == -1 and the
7226   // addition wraps).
7227   if (!Result || Result->getValue().getActiveBits() > 32 ||
7228       Result->getValue().getActiveBits() == 0)
7229     return 1;
7230 
7231   return (unsigned)Result->getZExtValue();
7232 }
7233 
7234 /// Returns the largest constant divisor of the trip count of this loop as a
7235 /// normal unsigned value, if possible. This means that the actual trip count is
7236 /// always a multiple of the returned value (don't forget the trip count could
7237 /// very well be zero as well!).
7238 ///
7239 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7240 /// multiple of a constant (which is also the case if the trip count is simply
7241 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7242 /// if the trip count is very large (>= 2^32).
7243 ///
7244 /// As explained in the comments for getSmallConstantTripCount, this assumes
7245 /// that control exits the loop via ExitingBlock.
7246 unsigned
7247 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7248                                               const BasicBlock *ExitingBlock) {
7249   assert(ExitingBlock && "Must pass a non-null exiting block!");
7250   assert(L->isLoopExiting(ExitingBlock) &&
7251          "Exiting block must actually branch out of the loop!");
7252   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7253   return getSmallConstantTripMultiple(L, ExitCount);
7254 }
7255 
7256 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7257                                           const BasicBlock *ExitingBlock,
7258                                           ExitCountKind Kind) {
7259   switch (Kind) {
7260   case Exact:
7261   case SymbolicMaximum:
7262     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7263   case ConstantMaximum:
7264     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7265   };
7266   llvm_unreachable("Invalid ExitCountKind!");
7267 }
7268 
7269 const SCEV *
7270 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7271                                                  SCEVUnionPredicate &Preds) {
7272   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7273 }
7274 
7275 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7276                                                    ExitCountKind Kind) {
7277   switch (Kind) {
7278   case Exact:
7279     return getBackedgeTakenInfo(L).getExact(L, this);
7280   case ConstantMaximum:
7281     return getBackedgeTakenInfo(L).getConstantMax(this);
7282   case SymbolicMaximum:
7283     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7284   };
7285   llvm_unreachable("Invalid ExitCountKind!");
7286 }
7287 
7288 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7289   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7290 }
7291 
7292 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7293 static void
7294 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7295   BasicBlock *Header = L->getHeader();
7296 
7297   // Push all Loop-header PHIs onto the Worklist stack.
7298   for (PHINode &PN : Header->phis())
7299     Worklist.push_back(&PN);
7300 }
7301 
7302 const ScalarEvolution::BackedgeTakenInfo &
7303 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7304   auto &BTI = getBackedgeTakenInfo(L);
7305   if (BTI.hasFullInfo())
7306     return BTI;
7307 
7308   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7309 
7310   if (!Pair.second)
7311     return Pair.first->second;
7312 
7313   BackedgeTakenInfo Result =
7314       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7315 
7316   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7317 }
7318 
7319 ScalarEvolution::BackedgeTakenInfo &
7320 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7321   // Initially insert an invalid entry for this loop. If the insertion
7322   // succeeds, proceed to actually compute a backedge-taken count and
7323   // update the value. The temporary CouldNotCompute value tells SCEV
7324   // code elsewhere that it shouldn't attempt to request a new
7325   // backedge-taken count, which could result in infinite recursion.
7326   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7327       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7328   if (!Pair.second)
7329     return Pair.first->second;
7330 
7331   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7332   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7333   // must be cleared in this scope.
7334   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7335 
7336   // In product build, there are no usage of statistic.
7337   (void)NumTripCountsComputed;
7338   (void)NumTripCountsNotComputed;
7339 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7340   const SCEV *BEExact = Result.getExact(L, this);
7341   if (BEExact != getCouldNotCompute()) {
7342     assert(isLoopInvariant(BEExact, L) &&
7343            isLoopInvariant(Result.getConstantMax(this), L) &&
7344            "Computed backedge-taken count isn't loop invariant for loop!");
7345     ++NumTripCountsComputed;
7346   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7347              isa<PHINode>(L->getHeader()->begin())) {
7348     // Only count loops that have phi nodes as not being computable.
7349     ++NumTripCountsNotComputed;
7350   }
7351 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7352 
7353   // Now that we know more about the trip count for this loop, forget any
7354   // existing SCEV values for PHI nodes in this loop since they are only
7355   // conservative estimates made without the benefit of trip count
7356   // information. This is similar to the code in forgetLoop, except that
7357   // it handles SCEVUnknown PHI nodes specially.
7358   if (Result.hasAnyInfo()) {
7359     SmallVector<Instruction *, 16> Worklist;
7360     PushLoopPHIs(L, Worklist);
7361 
7362     SmallPtrSet<Instruction *, 8> Discovered;
7363     while (!Worklist.empty()) {
7364       Instruction *I = Worklist.pop_back_val();
7365 
7366       ValueExprMapType::iterator It =
7367         ValueExprMap.find_as(static_cast<Value *>(I));
7368       if (It != ValueExprMap.end()) {
7369         const SCEV *Old = It->second;
7370 
7371         // SCEVUnknown for a PHI either means that it has an unrecognized
7372         // structure, or it's a PHI that's in the progress of being computed
7373         // by createNodeForPHI.  In the former case, additional loop trip
7374         // count information isn't going to change anything. In the later
7375         // case, createNodeForPHI will perform the necessary updates on its
7376         // own when it gets to that point.
7377         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7378           eraseValueFromMap(It->first);
7379           forgetMemoizedResults(Old);
7380         }
7381         if (PHINode *PN = dyn_cast<PHINode>(I))
7382           ConstantEvolutionLoopExitValue.erase(PN);
7383       }
7384 
7385       // Since we don't need to invalidate anything for correctness and we're
7386       // only invalidating to make SCEV's results more precise, we get to stop
7387       // early to avoid invalidating too much.  This is especially important in
7388       // cases like:
7389       //
7390       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7391       // loop0:
7392       //   %pn0 = phi
7393       //   ...
7394       // loop1:
7395       //   %pn1 = phi
7396       //   ...
7397       //
7398       // where both loop0 and loop1's backedge taken count uses the SCEV
7399       // expression for %v.  If we don't have the early stop below then in cases
7400       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7401       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7402       // count for loop1, effectively nullifying SCEV's trip count cache.
7403       for (auto *U : I->users())
7404         if (auto *I = dyn_cast<Instruction>(U)) {
7405           auto *LoopForUser = LI.getLoopFor(I->getParent());
7406           if (LoopForUser && L->contains(LoopForUser) &&
7407               Discovered.insert(I).second)
7408             Worklist.push_back(I);
7409         }
7410     }
7411   }
7412 
7413   // Re-lookup the insert position, since the call to
7414   // computeBackedgeTakenCount above could result in a
7415   // recusive call to getBackedgeTakenInfo (on a different
7416   // loop), which would invalidate the iterator computed
7417   // earlier.
7418   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7419 }
7420 
7421 void ScalarEvolution::forgetAllLoops() {
7422   // This method is intended to forget all info about loops. It should
7423   // invalidate caches as if the following happened:
7424   // - The trip counts of all loops have changed arbitrarily
7425   // - Every llvm::Value has been updated in place to produce a different
7426   // result.
7427   BackedgeTakenCounts.clear();
7428   PredicatedBackedgeTakenCounts.clear();
7429   LoopPropertiesCache.clear();
7430   ConstantEvolutionLoopExitValue.clear();
7431   ValueExprMap.clear();
7432   ValuesAtScopes.clear();
7433   LoopDispositions.clear();
7434   BlockDispositions.clear();
7435   UnsignedRanges.clear();
7436   SignedRanges.clear();
7437   ExprValueMap.clear();
7438   HasRecMap.clear();
7439   MinTrailingZerosCache.clear();
7440   PredicatedSCEVRewrites.clear();
7441 }
7442 
7443 void ScalarEvolution::forgetLoop(const Loop *L) {
7444   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7445   SmallVector<Instruction *, 32> Worklist;
7446   SmallPtrSet<Instruction *, 16> Visited;
7447 
7448   // Iterate over all the loops and sub-loops to drop SCEV information.
7449   while (!LoopWorklist.empty()) {
7450     auto *CurrL = LoopWorklist.pop_back_val();
7451 
7452     // Drop any stored trip count value.
7453     BackedgeTakenCounts.erase(CurrL);
7454     PredicatedBackedgeTakenCounts.erase(CurrL);
7455 
7456     // Drop information about predicated SCEV rewrites for this loop.
7457     for (auto I = PredicatedSCEVRewrites.begin();
7458          I != PredicatedSCEVRewrites.end();) {
7459       std::pair<const SCEV *, const Loop *> Entry = I->first;
7460       if (Entry.second == CurrL)
7461         PredicatedSCEVRewrites.erase(I++);
7462       else
7463         ++I;
7464     }
7465 
7466     auto LoopUsersItr = LoopUsers.find(CurrL);
7467     if (LoopUsersItr != LoopUsers.end()) {
7468       for (auto *S : LoopUsersItr->second)
7469         forgetMemoizedResults(S);
7470       LoopUsers.erase(LoopUsersItr);
7471     }
7472 
7473     // Drop information about expressions based on loop-header PHIs.
7474     PushLoopPHIs(CurrL, Worklist);
7475 
7476     while (!Worklist.empty()) {
7477       Instruction *I = Worklist.pop_back_val();
7478       if (!Visited.insert(I).second)
7479         continue;
7480 
7481       ValueExprMapType::iterator It =
7482           ValueExprMap.find_as(static_cast<Value *>(I));
7483       if (It != ValueExprMap.end()) {
7484         eraseValueFromMap(It->first);
7485         forgetMemoizedResults(It->second);
7486         if (PHINode *PN = dyn_cast<PHINode>(I))
7487           ConstantEvolutionLoopExitValue.erase(PN);
7488       }
7489 
7490       PushDefUseChildren(I, Worklist);
7491     }
7492 
7493     LoopPropertiesCache.erase(CurrL);
7494     // Forget all contained loops too, to avoid dangling entries in the
7495     // ValuesAtScopes map.
7496     LoopWorklist.append(CurrL->begin(), CurrL->end());
7497   }
7498 }
7499 
7500 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7501   while (Loop *Parent = L->getParentLoop())
7502     L = Parent;
7503   forgetLoop(L);
7504 }
7505 
7506 void ScalarEvolution::forgetValue(Value *V) {
7507   Instruction *I = dyn_cast<Instruction>(V);
7508   if (!I) return;
7509 
7510   // Drop information about expressions based on loop-header PHIs.
7511   SmallVector<Instruction *, 16> Worklist;
7512   Worklist.push_back(I);
7513 
7514   SmallPtrSet<Instruction *, 8> Visited;
7515   while (!Worklist.empty()) {
7516     I = Worklist.pop_back_val();
7517     if (!Visited.insert(I).second)
7518       continue;
7519 
7520     ValueExprMapType::iterator It =
7521       ValueExprMap.find_as(static_cast<Value *>(I));
7522     if (It != ValueExprMap.end()) {
7523       eraseValueFromMap(It->first);
7524       forgetMemoizedResults(It->second);
7525       if (PHINode *PN = dyn_cast<PHINode>(I))
7526         ConstantEvolutionLoopExitValue.erase(PN);
7527     }
7528 
7529     PushDefUseChildren(I, Worklist);
7530   }
7531 }
7532 
7533 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7534   LoopDispositions.clear();
7535 }
7536 
7537 /// Get the exact loop backedge taken count considering all loop exits. A
7538 /// computable result can only be returned for loops with all exiting blocks
7539 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7540 /// is never skipped. This is a valid assumption as long as the loop exits via
7541 /// that test. For precise results, it is the caller's responsibility to specify
7542 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7543 const SCEV *
7544 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7545                                              SCEVUnionPredicate *Preds) const {
7546   // If any exits were not computable, the loop is not computable.
7547   if (!isComplete() || ExitNotTaken.empty())
7548     return SE->getCouldNotCompute();
7549 
7550   const BasicBlock *Latch = L->getLoopLatch();
7551   // All exiting blocks we have collected must dominate the only backedge.
7552   if (!Latch)
7553     return SE->getCouldNotCompute();
7554 
7555   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7556   // count is simply a minimum out of all these calculated exit counts.
7557   SmallVector<const SCEV *, 2> Ops;
7558   for (auto &ENT : ExitNotTaken) {
7559     const SCEV *BECount = ENT.ExactNotTaken;
7560     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7561     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7562            "We should only have known counts for exiting blocks that dominate "
7563            "latch!");
7564 
7565     Ops.push_back(BECount);
7566 
7567     if (Preds && !ENT.hasAlwaysTruePredicate())
7568       Preds->add(ENT.Predicate.get());
7569 
7570     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7571            "Predicate should be always true!");
7572   }
7573 
7574   return SE->getUMinFromMismatchedTypes(Ops);
7575 }
7576 
7577 /// Get the exact not taken count for this loop exit.
7578 const SCEV *
7579 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7580                                              ScalarEvolution *SE) const {
7581   for (auto &ENT : ExitNotTaken)
7582     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7583       return ENT.ExactNotTaken;
7584 
7585   return SE->getCouldNotCompute();
7586 }
7587 
7588 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7589     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7590   for (auto &ENT : ExitNotTaken)
7591     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7592       return ENT.MaxNotTaken;
7593 
7594   return SE->getCouldNotCompute();
7595 }
7596 
7597 /// getConstantMax - Get the constant max backedge taken count for the loop.
7598 const SCEV *
7599 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7600   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7601     return !ENT.hasAlwaysTruePredicate();
7602   };
7603 
7604   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7605     return SE->getCouldNotCompute();
7606 
7607   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7608           isa<SCEVConstant>(getConstantMax())) &&
7609          "No point in having a non-constant max backedge taken count!");
7610   return getConstantMax();
7611 }
7612 
7613 const SCEV *
7614 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7615                                                    ScalarEvolution *SE) {
7616   if (!SymbolicMax)
7617     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7618   return SymbolicMax;
7619 }
7620 
7621 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7622     ScalarEvolution *SE) const {
7623   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7624     return !ENT.hasAlwaysTruePredicate();
7625   };
7626   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7627 }
7628 
7629 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7630   return Operands.contains(S);
7631 }
7632 
7633 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7634     : ExitLimit(E, E, false, None) {
7635 }
7636 
7637 ScalarEvolution::ExitLimit::ExitLimit(
7638     const SCEV *E, const SCEV *M, bool MaxOrZero,
7639     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7640     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7641   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7642           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7643          "Exact is not allowed to be less precise than Max");
7644   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7645           isa<SCEVConstant>(MaxNotTaken)) &&
7646          "No point in having a non-constant max backedge taken count!");
7647   for (auto *PredSet : PredSetList)
7648     for (auto *P : *PredSet)
7649       addPredicate(P);
7650   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7651          "Backedge count should be int");
7652   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7653          "Max backedge count should be int");
7654 }
7655 
7656 ScalarEvolution::ExitLimit::ExitLimit(
7657     const SCEV *E, const SCEV *M, bool MaxOrZero,
7658     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7659     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7660 }
7661 
7662 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7663                                       bool MaxOrZero)
7664     : ExitLimit(E, M, MaxOrZero, None) {
7665 }
7666 
7667 class SCEVRecordOperands {
7668   SmallPtrSetImpl<const SCEV *> &Operands;
7669 
7670 public:
7671   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7672     : Operands(Operands) {}
7673   bool follow(const SCEV *S) {
7674     Operands.insert(S);
7675     return true;
7676   }
7677   bool isDone() { return false; }
7678 };
7679 
7680 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7681 /// computable exit into a persistent ExitNotTakenInfo array.
7682 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7683     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7684     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7685     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7686   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7687 
7688   ExitNotTaken.reserve(ExitCounts.size());
7689   std::transform(
7690       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7691       [&](const EdgeExitInfo &EEI) {
7692         BasicBlock *ExitBB = EEI.first;
7693         const ExitLimit &EL = EEI.second;
7694         if (EL.Predicates.empty())
7695           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7696                                   nullptr);
7697 
7698         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7699         for (auto *Pred : EL.Predicates)
7700           Predicate->add(Pred);
7701 
7702         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7703                                 std::move(Predicate));
7704       });
7705   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7706           isa<SCEVConstant>(ConstantMax)) &&
7707          "No point in having a non-constant max backedge taken count!");
7708 
7709   SCEVRecordOperands RecordOperands(Operands);
7710   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7711   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7712     ST.visitAll(ConstantMax);
7713   for (auto &ENT : ExitNotTaken)
7714     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7715       ST.visitAll(ENT.ExactNotTaken);
7716 }
7717 
7718 /// Compute the number of times the backedge of the specified loop will execute.
7719 ScalarEvolution::BackedgeTakenInfo
7720 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7721                                            bool AllowPredicates) {
7722   SmallVector<BasicBlock *, 8> ExitingBlocks;
7723   L->getExitingBlocks(ExitingBlocks);
7724 
7725   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7726 
7727   SmallVector<EdgeExitInfo, 4> ExitCounts;
7728   bool CouldComputeBECount = true;
7729   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7730   const SCEV *MustExitMaxBECount = nullptr;
7731   const SCEV *MayExitMaxBECount = nullptr;
7732   bool MustExitMaxOrZero = false;
7733 
7734   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7735   // and compute maxBECount.
7736   // Do a union of all the predicates here.
7737   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7738     BasicBlock *ExitBB = ExitingBlocks[i];
7739 
7740     // We canonicalize untaken exits to br (constant), ignore them so that
7741     // proving an exit untaken doesn't negatively impact our ability to reason
7742     // about the loop as whole.
7743     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7744       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7745         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7746         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7747           continue;
7748       }
7749 
7750     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7751 
7752     assert((AllowPredicates || EL.Predicates.empty()) &&
7753            "Predicated exit limit when predicates are not allowed!");
7754 
7755     // 1. For each exit that can be computed, add an entry to ExitCounts.
7756     // CouldComputeBECount is true only if all exits can be computed.
7757     if (EL.ExactNotTaken == getCouldNotCompute())
7758       // We couldn't compute an exact value for this exit, so
7759       // we won't be able to compute an exact value for the loop.
7760       CouldComputeBECount = false;
7761     else
7762       ExitCounts.emplace_back(ExitBB, EL);
7763 
7764     // 2. Derive the loop's MaxBECount from each exit's max number of
7765     // non-exiting iterations. Partition the loop exits into two kinds:
7766     // LoopMustExits and LoopMayExits.
7767     //
7768     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7769     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7770     // MaxBECount is the minimum EL.MaxNotTaken of computable
7771     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7772     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7773     // computable EL.MaxNotTaken.
7774     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7775         DT.dominates(ExitBB, Latch)) {
7776       if (!MustExitMaxBECount) {
7777         MustExitMaxBECount = EL.MaxNotTaken;
7778         MustExitMaxOrZero = EL.MaxOrZero;
7779       } else {
7780         MustExitMaxBECount =
7781             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7782       }
7783     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7784       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7785         MayExitMaxBECount = EL.MaxNotTaken;
7786       else {
7787         MayExitMaxBECount =
7788             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7789       }
7790     }
7791   }
7792   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7793     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7794   // The loop backedge will be taken the maximum or zero times if there's
7795   // a single exit that must be taken the maximum or zero times.
7796   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7797   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7798                            MaxBECount, MaxOrZero);
7799 }
7800 
7801 ScalarEvolution::ExitLimit
7802 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7803                                       bool AllowPredicates) {
7804   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7805   // If our exiting block does not dominate the latch, then its connection with
7806   // loop's exit limit may be far from trivial.
7807   const BasicBlock *Latch = L->getLoopLatch();
7808   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7809     return getCouldNotCompute();
7810 
7811   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7812   Instruction *Term = ExitingBlock->getTerminator();
7813   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7814     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7815     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7816     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7817            "It should have one successor in loop and one exit block!");
7818     // Proceed to the next level to examine the exit condition expression.
7819     return computeExitLimitFromCond(
7820         L, BI->getCondition(), ExitIfTrue,
7821         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7822   }
7823 
7824   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7825     // For switch, make sure that there is a single exit from the loop.
7826     BasicBlock *Exit = nullptr;
7827     for (auto *SBB : successors(ExitingBlock))
7828       if (!L->contains(SBB)) {
7829         if (Exit) // Multiple exit successors.
7830           return getCouldNotCompute();
7831         Exit = SBB;
7832       }
7833     assert(Exit && "Exiting block must have at least one exit");
7834     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7835                                                 /*ControlsExit=*/IsOnlyExit);
7836   }
7837 
7838   return getCouldNotCompute();
7839 }
7840 
7841 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7842     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7843     bool ControlsExit, bool AllowPredicates) {
7844   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7845   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7846                                         ControlsExit, AllowPredicates);
7847 }
7848 
7849 Optional<ScalarEvolution::ExitLimit>
7850 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7851                                       bool ExitIfTrue, bool ControlsExit,
7852                                       bool AllowPredicates) {
7853   (void)this->L;
7854   (void)this->ExitIfTrue;
7855   (void)this->AllowPredicates;
7856 
7857   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7858          this->AllowPredicates == AllowPredicates &&
7859          "Variance in assumed invariant key components!");
7860   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7861   if (Itr == TripCountMap.end())
7862     return None;
7863   return Itr->second;
7864 }
7865 
7866 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7867                                              bool ExitIfTrue,
7868                                              bool ControlsExit,
7869                                              bool AllowPredicates,
7870                                              const ExitLimit &EL) {
7871   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7872          this->AllowPredicates == AllowPredicates &&
7873          "Variance in assumed invariant key components!");
7874 
7875   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7876   assert(InsertResult.second && "Expected successful insertion!");
7877   (void)InsertResult;
7878   (void)ExitIfTrue;
7879 }
7880 
7881 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7882     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7883     bool ControlsExit, bool AllowPredicates) {
7884 
7885   if (auto MaybeEL =
7886           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7887     return *MaybeEL;
7888 
7889   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7890                                               ControlsExit, AllowPredicates);
7891   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7892   return EL;
7893 }
7894 
7895 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7896     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7897     bool ControlsExit, bool AllowPredicates) {
7898   // Handle BinOp conditions (And, Or).
7899   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7900           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7901     return *LimitFromBinOp;
7902 
7903   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7904   // Proceed to the next level to examine the icmp.
7905   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7906     ExitLimit EL =
7907         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7908     if (EL.hasFullInfo() || !AllowPredicates)
7909       return EL;
7910 
7911     // Try again, but use SCEV predicates this time.
7912     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7913                                     /*AllowPredicates=*/true);
7914   }
7915 
7916   // Check for a constant condition. These are normally stripped out by
7917   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7918   // preserve the CFG and is temporarily leaving constant conditions
7919   // in place.
7920   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7921     if (ExitIfTrue == !CI->getZExtValue())
7922       // The backedge is always taken.
7923       return getCouldNotCompute();
7924     else
7925       // The backedge is never taken.
7926       return getZero(CI->getType());
7927   }
7928 
7929   // If it's not an integer or pointer comparison then compute it the hard way.
7930   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7931 }
7932 
7933 Optional<ScalarEvolution::ExitLimit>
7934 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7935     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7936     bool ControlsExit, bool AllowPredicates) {
7937   // Check if the controlling expression for this loop is an And or Or.
7938   Value *Op0, *Op1;
7939   bool IsAnd = false;
7940   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7941     IsAnd = true;
7942   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7943     IsAnd = false;
7944   else
7945     return None;
7946 
7947   // EitherMayExit is true in these two cases:
7948   //   br (and Op0 Op1), loop, exit
7949   //   br (or  Op0 Op1), exit, loop
7950   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7951   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7952                                                  ControlsExit && !EitherMayExit,
7953                                                  AllowPredicates);
7954   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7955                                                  ControlsExit && !EitherMayExit,
7956                                                  AllowPredicates);
7957 
7958   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7959   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7960   if (isa<ConstantInt>(Op1))
7961     return Op1 == NeutralElement ? EL0 : EL1;
7962   if (isa<ConstantInt>(Op0))
7963     return Op0 == NeutralElement ? EL1 : EL0;
7964 
7965   const SCEV *BECount = getCouldNotCompute();
7966   const SCEV *MaxBECount = getCouldNotCompute();
7967   if (EitherMayExit) {
7968     // Both conditions must be same for the loop to continue executing.
7969     // Choose the less conservative count.
7970     // If ExitCond is a short-circuit form (select), using
7971     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7972     // To see the detailed examples, please see
7973     // test/Analysis/ScalarEvolution/exit-count-select.ll
7974     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7975     if (!PoisonSafe)
7976       // Even if ExitCond is select, we can safely derive BECount using both
7977       // EL0 and EL1 in these cases:
7978       // (1) EL0.ExactNotTaken is non-zero
7979       // (2) EL1.ExactNotTaken is non-poison
7980       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7981       //     it cannot be umin(0, ..))
7982       // The PoisonSafe assignment below is simplified and the assertion after
7983       // BECount calculation fully guarantees the condition (3).
7984       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7985                    isa<SCEVConstant>(EL1.ExactNotTaken);
7986     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7987         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7988       BECount =
7989           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7990 
7991       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7992       // it should have been simplified to zero (see the condition (3) above)
7993       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7994              BECount->isZero());
7995     }
7996     if (EL0.MaxNotTaken == getCouldNotCompute())
7997       MaxBECount = EL1.MaxNotTaken;
7998     else if (EL1.MaxNotTaken == getCouldNotCompute())
7999       MaxBECount = EL0.MaxNotTaken;
8000     else
8001       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8002   } else {
8003     // Both conditions must be same at the same time for the loop to exit.
8004     // For now, be conservative.
8005     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8006       BECount = EL0.ExactNotTaken;
8007   }
8008 
8009   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8010   // to be more aggressive when computing BECount than when computing
8011   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8012   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8013   // to not.
8014   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8015       !isa<SCEVCouldNotCompute>(BECount))
8016     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8017 
8018   return ExitLimit(BECount, MaxBECount, false,
8019                    { &EL0.Predicates, &EL1.Predicates });
8020 }
8021 
8022 ScalarEvolution::ExitLimit
8023 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8024                                           ICmpInst *ExitCond,
8025                                           bool ExitIfTrue,
8026                                           bool ControlsExit,
8027                                           bool AllowPredicates) {
8028   // If the condition was exit on true, convert the condition to exit on false
8029   ICmpInst::Predicate Pred;
8030   if (!ExitIfTrue)
8031     Pred = ExitCond->getPredicate();
8032   else
8033     Pred = ExitCond->getInversePredicate();
8034   const ICmpInst::Predicate OriginalPred = Pred;
8035 
8036   // Handle common loops like: for (X = "string"; *X; ++X)
8037   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8038     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8039       ExitLimit ItCnt =
8040         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8041       if (ItCnt.hasAnyInfo())
8042         return ItCnt;
8043     }
8044 
8045   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8046   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8047 
8048   // Try to evaluate any dependencies out of the loop.
8049   LHS = getSCEVAtScope(LHS, L);
8050   RHS = getSCEVAtScope(RHS, L);
8051 
8052   // At this point, we would like to compute how many iterations of the
8053   // loop the predicate will return true for these inputs.
8054   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8055     // If there is a loop-invariant, force it into the RHS.
8056     std::swap(LHS, RHS);
8057     Pred = ICmpInst::getSwappedPredicate(Pred);
8058   }
8059 
8060   // Simplify the operands before analyzing them.
8061   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8062 
8063   // If we have a comparison of a chrec against a constant, try to use value
8064   // ranges to answer this query.
8065   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8066     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8067       if (AddRec->getLoop() == L) {
8068         // Form the constant range.
8069         ConstantRange CompRange =
8070             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8071 
8072         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8073         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8074       }
8075 
8076   switch (Pred) {
8077   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8078     // Convert to: while (X-Y != 0)
8079     if (LHS->getType()->isPointerTy()) {
8080       LHS = getLosslessPtrToIntExpr(LHS);
8081       if (isa<SCEVCouldNotCompute>(LHS))
8082         return LHS;
8083     }
8084     if (RHS->getType()->isPointerTy()) {
8085       RHS = getLosslessPtrToIntExpr(RHS);
8086       if (isa<SCEVCouldNotCompute>(RHS))
8087         return RHS;
8088     }
8089     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8090                                 AllowPredicates);
8091     if (EL.hasAnyInfo()) return EL;
8092     break;
8093   }
8094   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8095     // Convert to: while (X-Y == 0)
8096     if (LHS->getType()->isPointerTy()) {
8097       LHS = getLosslessPtrToIntExpr(LHS);
8098       if (isa<SCEVCouldNotCompute>(LHS))
8099         return LHS;
8100     }
8101     if (RHS->getType()->isPointerTy()) {
8102       RHS = getLosslessPtrToIntExpr(RHS);
8103       if (isa<SCEVCouldNotCompute>(RHS))
8104         return RHS;
8105     }
8106     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8107     if (EL.hasAnyInfo()) return EL;
8108     break;
8109   }
8110   case ICmpInst::ICMP_SLT:
8111   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8112     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8113     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8114                                     AllowPredicates);
8115     if (EL.hasAnyInfo()) return EL;
8116     break;
8117   }
8118   case ICmpInst::ICMP_SGT:
8119   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8120     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8121     ExitLimit EL =
8122         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8123                             AllowPredicates);
8124     if (EL.hasAnyInfo()) return EL;
8125     break;
8126   }
8127   default:
8128     break;
8129   }
8130 
8131   auto *ExhaustiveCount =
8132       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8133 
8134   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8135     return ExhaustiveCount;
8136 
8137   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8138                                       ExitCond->getOperand(1), L, OriginalPred);
8139 }
8140 
8141 ScalarEvolution::ExitLimit
8142 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8143                                                       SwitchInst *Switch,
8144                                                       BasicBlock *ExitingBlock,
8145                                                       bool ControlsExit) {
8146   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8147 
8148   // Give up if the exit is the default dest of a switch.
8149   if (Switch->getDefaultDest() == ExitingBlock)
8150     return getCouldNotCompute();
8151 
8152   assert(L->contains(Switch->getDefaultDest()) &&
8153          "Default case must not exit the loop!");
8154   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8155   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8156 
8157   // while (X != Y) --> while (X-Y != 0)
8158   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8159   if (EL.hasAnyInfo())
8160     return EL;
8161 
8162   return getCouldNotCompute();
8163 }
8164 
8165 static ConstantInt *
8166 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8167                                 ScalarEvolution &SE) {
8168   const SCEV *InVal = SE.getConstant(C);
8169   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8170   assert(isa<SCEVConstant>(Val) &&
8171          "Evaluation of SCEV at constant didn't fold correctly?");
8172   return cast<SCEVConstant>(Val)->getValue();
8173 }
8174 
8175 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8176 /// compute the backedge execution count.
8177 ScalarEvolution::ExitLimit
8178 ScalarEvolution::computeLoadConstantCompareExitLimit(
8179   LoadInst *LI,
8180   Constant *RHS,
8181   const Loop *L,
8182   ICmpInst::Predicate predicate) {
8183   if (LI->isVolatile()) return getCouldNotCompute();
8184 
8185   // Check to see if the loaded pointer is a getelementptr of a global.
8186   // TODO: Use SCEV instead of manually grubbing with GEPs.
8187   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8188   if (!GEP) return getCouldNotCompute();
8189 
8190   // Make sure that it is really a constant global we are gepping, with an
8191   // initializer, and make sure the first IDX is really 0.
8192   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8193   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8194       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8195       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8196     return getCouldNotCompute();
8197 
8198   // Okay, we allow one non-constant index into the GEP instruction.
8199   Value *VarIdx = nullptr;
8200   std::vector<Constant*> Indexes;
8201   unsigned VarIdxNum = 0;
8202   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8203     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8204       Indexes.push_back(CI);
8205     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8206       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8207       VarIdx = GEP->getOperand(i);
8208       VarIdxNum = i-2;
8209       Indexes.push_back(nullptr);
8210     }
8211 
8212   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8213   if (!VarIdx)
8214     return getCouldNotCompute();
8215 
8216   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8217   // Check to see if X is a loop variant variable value now.
8218   const SCEV *Idx = getSCEV(VarIdx);
8219   Idx = getSCEVAtScope(Idx, L);
8220 
8221   // We can only recognize very limited forms of loop index expressions, in
8222   // particular, only affine AddRec's like {C1,+,C2}<L>.
8223   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8224   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8225       isLoopInvariant(IdxExpr, L) ||
8226       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8227       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8228     return getCouldNotCompute();
8229 
8230   unsigned MaxSteps = MaxBruteForceIterations;
8231   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8232     ConstantInt *ItCst = ConstantInt::get(
8233                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8234     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8235 
8236     // Form the GEP offset.
8237     Indexes[VarIdxNum] = Val;
8238 
8239     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8240                                                          Indexes);
8241     if (!Result) break;  // Cannot compute!
8242 
8243     // Evaluate the condition for this iteration.
8244     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8245     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8246     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8247       ++NumArrayLenItCounts;
8248       return getConstant(ItCst);   // Found terminating iteration!
8249     }
8250   }
8251   return getCouldNotCompute();
8252 }
8253 
8254 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8255     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8256   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8257   if (!RHS)
8258     return getCouldNotCompute();
8259 
8260   const BasicBlock *Latch = L->getLoopLatch();
8261   if (!Latch)
8262     return getCouldNotCompute();
8263 
8264   const BasicBlock *Predecessor = L->getLoopPredecessor();
8265   if (!Predecessor)
8266     return getCouldNotCompute();
8267 
8268   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8269   // Return LHS in OutLHS and shift_opt in OutOpCode.
8270   auto MatchPositiveShift =
8271       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8272 
8273     using namespace PatternMatch;
8274 
8275     ConstantInt *ShiftAmt;
8276     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8277       OutOpCode = Instruction::LShr;
8278     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8279       OutOpCode = Instruction::AShr;
8280     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8281       OutOpCode = Instruction::Shl;
8282     else
8283       return false;
8284 
8285     return ShiftAmt->getValue().isStrictlyPositive();
8286   };
8287 
8288   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8289   //
8290   // loop:
8291   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8292   //   %iv.shifted = lshr i32 %iv, <positive constant>
8293   //
8294   // Return true on a successful match.  Return the corresponding PHI node (%iv
8295   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8296   auto MatchShiftRecurrence =
8297       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8298     Optional<Instruction::BinaryOps> PostShiftOpCode;
8299 
8300     {
8301       Instruction::BinaryOps OpC;
8302       Value *V;
8303 
8304       // If we encounter a shift instruction, "peel off" the shift operation,
8305       // and remember that we did so.  Later when we inspect %iv's backedge
8306       // value, we will make sure that the backedge value uses the same
8307       // operation.
8308       //
8309       // Note: the peeled shift operation does not have to be the same
8310       // instruction as the one feeding into the PHI's backedge value.  We only
8311       // really care about it being the same *kind* of shift instruction --
8312       // that's all that is required for our later inferences to hold.
8313       if (MatchPositiveShift(LHS, V, OpC)) {
8314         PostShiftOpCode = OpC;
8315         LHS = V;
8316       }
8317     }
8318 
8319     PNOut = dyn_cast<PHINode>(LHS);
8320     if (!PNOut || PNOut->getParent() != L->getHeader())
8321       return false;
8322 
8323     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8324     Value *OpLHS;
8325 
8326     return
8327         // The backedge value for the PHI node must be a shift by a positive
8328         // amount
8329         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8330 
8331         // of the PHI node itself
8332         OpLHS == PNOut &&
8333 
8334         // and the kind of shift should be match the kind of shift we peeled
8335         // off, if any.
8336         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8337   };
8338 
8339   PHINode *PN;
8340   Instruction::BinaryOps OpCode;
8341   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8342     return getCouldNotCompute();
8343 
8344   const DataLayout &DL = getDataLayout();
8345 
8346   // The key rationale for this optimization is that for some kinds of shift
8347   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8348   // within a finite number of iterations.  If the condition guarding the
8349   // backedge (in the sense that the backedge is taken if the condition is true)
8350   // is false for the value the shift recurrence stabilizes to, then we know
8351   // that the backedge is taken only a finite number of times.
8352 
8353   ConstantInt *StableValue = nullptr;
8354   switch (OpCode) {
8355   default:
8356     llvm_unreachable("Impossible case!");
8357 
8358   case Instruction::AShr: {
8359     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8360     // bitwidth(K) iterations.
8361     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8362     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8363                                        Predecessor->getTerminator(), &DT);
8364     auto *Ty = cast<IntegerType>(RHS->getType());
8365     if (Known.isNonNegative())
8366       StableValue = ConstantInt::get(Ty, 0);
8367     else if (Known.isNegative())
8368       StableValue = ConstantInt::get(Ty, -1, true);
8369     else
8370       return getCouldNotCompute();
8371 
8372     break;
8373   }
8374   case Instruction::LShr:
8375   case Instruction::Shl:
8376     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8377     // stabilize to 0 in at most bitwidth(K) iterations.
8378     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8379     break;
8380   }
8381 
8382   auto *Result =
8383       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8384   assert(Result->getType()->isIntegerTy(1) &&
8385          "Otherwise cannot be an operand to a branch instruction");
8386 
8387   if (Result->isZeroValue()) {
8388     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8389     const SCEV *UpperBound =
8390         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8391     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8392   }
8393 
8394   return getCouldNotCompute();
8395 }
8396 
8397 /// Return true if we can constant fold an instruction of the specified type,
8398 /// assuming that all operands were constants.
8399 static bool CanConstantFold(const Instruction *I) {
8400   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8401       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8402       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8403     return true;
8404 
8405   if (const CallInst *CI = dyn_cast<CallInst>(I))
8406     if (const Function *F = CI->getCalledFunction())
8407       return canConstantFoldCallTo(CI, F);
8408   return false;
8409 }
8410 
8411 /// Determine whether this instruction can constant evolve within this loop
8412 /// assuming its operands can all constant evolve.
8413 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8414   // An instruction outside of the loop can't be derived from a loop PHI.
8415   if (!L->contains(I)) return false;
8416 
8417   if (isa<PHINode>(I)) {
8418     // We don't currently keep track of the control flow needed to evaluate
8419     // PHIs, so we cannot handle PHIs inside of loops.
8420     return L->getHeader() == I->getParent();
8421   }
8422 
8423   // If we won't be able to constant fold this expression even if the operands
8424   // are constants, bail early.
8425   return CanConstantFold(I);
8426 }
8427 
8428 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8429 /// recursing through each instruction operand until reaching a loop header phi.
8430 static PHINode *
8431 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8432                                DenseMap<Instruction *, PHINode *> &PHIMap,
8433                                unsigned Depth) {
8434   if (Depth > MaxConstantEvolvingDepth)
8435     return nullptr;
8436 
8437   // Otherwise, we can evaluate this instruction if all of its operands are
8438   // constant or derived from a PHI node themselves.
8439   PHINode *PHI = nullptr;
8440   for (Value *Op : UseInst->operands()) {
8441     if (isa<Constant>(Op)) continue;
8442 
8443     Instruction *OpInst = dyn_cast<Instruction>(Op);
8444     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8445 
8446     PHINode *P = dyn_cast<PHINode>(OpInst);
8447     if (!P)
8448       // If this operand is already visited, reuse the prior result.
8449       // We may have P != PHI if this is the deepest point at which the
8450       // inconsistent paths meet.
8451       P = PHIMap.lookup(OpInst);
8452     if (!P) {
8453       // Recurse and memoize the results, whether a phi is found or not.
8454       // This recursive call invalidates pointers into PHIMap.
8455       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8456       PHIMap[OpInst] = P;
8457     }
8458     if (!P)
8459       return nullptr;  // Not evolving from PHI
8460     if (PHI && PHI != P)
8461       return nullptr;  // Evolving from multiple different PHIs.
8462     PHI = P;
8463   }
8464   // This is a expression evolving from a constant PHI!
8465   return PHI;
8466 }
8467 
8468 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8469 /// in the loop that V is derived from.  We allow arbitrary operations along the
8470 /// way, but the operands of an operation must either be constants or a value
8471 /// derived from a constant PHI.  If this expression does not fit with these
8472 /// constraints, return null.
8473 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8474   Instruction *I = dyn_cast<Instruction>(V);
8475   if (!I || !canConstantEvolve(I, L)) return nullptr;
8476 
8477   if (PHINode *PN = dyn_cast<PHINode>(I))
8478     return PN;
8479 
8480   // Record non-constant instructions contained by the loop.
8481   DenseMap<Instruction *, PHINode *> PHIMap;
8482   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8483 }
8484 
8485 /// EvaluateExpression - Given an expression that passes the
8486 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8487 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8488 /// reason, return null.
8489 static Constant *EvaluateExpression(Value *V, const Loop *L,
8490                                     DenseMap<Instruction *, Constant *> &Vals,
8491                                     const DataLayout &DL,
8492                                     const TargetLibraryInfo *TLI) {
8493   // Convenient constant check, but redundant for recursive calls.
8494   if (Constant *C = dyn_cast<Constant>(V)) return C;
8495   Instruction *I = dyn_cast<Instruction>(V);
8496   if (!I) return nullptr;
8497 
8498   if (Constant *C = Vals.lookup(I)) return C;
8499 
8500   // An instruction inside the loop depends on a value outside the loop that we
8501   // weren't given a mapping for, or a value such as a call inside the loop.
8502   if (!canConstantEvolve(I, L)) return nullptr;
8503 
8504   // An unmapped PHI can be due to a branch or another loop inside this loop,
8505   // or due to this not being the initial iteration through a loop where we
8506   // couldn't compute the evolution of this particular PHI last time.
8507   if (isa<PHINode>(I)) return nullptr;
8508 
8509   std::vector<Constant*> Operands(I->getNumOperands());
8510 
8511   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8512     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8513     if (!Operand) {
8514       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8515       if (!Operands[i]) return nullptr;
8516       continue;
8517     }
8518     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8519     Vals[Operand] = C;
8520     if (!C) return nullptr;
8521     Operands[i] = C;
8522   }
8523 
8524   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8525     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8526                                            Operands[1], DL, TLI);
8527   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8528     if (!LI->isVolatile())
8529       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8530   }
8531   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8532 }
8533 
8534 
8535 // If every incoming value to PN except the one for BB is a specific Constant,
8536 // return that, else return nullptr.
8537 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8538   Constant *IncomingVal = nullptr;
8539 
8540   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8541     if (PN->getIncomingBlock(i) == BB)
8542       continue;
8543 
8544     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8545     if (!CurrentVal)
8546       return nullptr;
8547 
8548     if (IncomingVal != CurrentVal) {
8549       if (IncomingVal)
8550         return nullptr;
8551       IncomingVal = CurrentVal;
8552     }
8553   }
8554 
8555   return IncomingVal;
8556 }
8557 
8558 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8559 /// in the header of its containing loop, we know the loop executes a
8560 /// constant number of times, and the PHI node is just a recurrence
8561 /// involving constants, fold it.
8562 Constant *
8563 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8564                                                    const APInt &BEs,
8565                                                    const Loop *L) {
8566   auto I = ConstantEvolutionLoopExitValue.find(PN);
8567   if (I != ConstantEvolutionLoopExitValue.end())
8568     return I->second;
8569 
8570   if (BEs.ugt(MaxBruteForceIterations))
8571     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8572 
8573   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8574 
8575   DenseMap<Instruction *, Constant *> CurrentIterVals;
8576   BasicBlock *Header = L->getHeader();
8577   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8578 
8579   BasicBlock *Latch = L->getLoopLatch();
8580   if (!Latch)
8581     return nullptr;
8582 
8583   for (PHINode &PHI : Header->phis()) {
8584     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8585       CurrentIterVals[&PHI] = StartCST;
8586   }
8587   if (!CurrentIterVals.count(PN))
8588     return RetVal = nullptr;
8589 
8590   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8591 
8592   // Execute the loop symbolically to determine the exit value.
8593   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8594          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8595 
8596   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8597   unsigned IterationNum = 0;
8598   const DataLayout &DL = getDataLayout();
8599   for (; ; ++IterationNum) {
8600     if (IterationNum == NumIterations)
8601       return RetVal = CurrentIterVals[PN];  // Got exit value!
8602 
8603     // Compute the value of the PHIs for the next iteration.
8604     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8605     DenseMap<Instruction *, Constant *> NextIterVals;
8606     Constant *NextPHI =
8607         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8608     if (!NextPHI)
8609       return nullptr;        // Couldn't evaluate!
8610     NextIterVals[PN] = NextPHI;
8611 
8612     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8613 
8614     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8615     // cease to be able to evaluate one of them or if they stop evolving,
8616     // because that doesn't necessarily prevent us from computing PN.
8617     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8618     for (const auto &I : CurrentIterVals) {
8619       PHINode *PHI = dyn_cast<PHINode>(I.first);
8620       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8621       PHIsToCompute.emplace_back(PHI, I.second);
8622     }
8623     // We use two distinct loops because EvaluateExpression may invalidate any
8624     // iterators into CurrentIterVals.
8625     for (const auto &I : PHIsToCompute) {
8626       PHINode *PHI = I.first;
8627       Constant *&NextPHI = NextIterVals[PHI];
8628       if (!NextPHI) {   // Not already computed.
8629         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8630         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8631       }
8632       if (NextPHI != I.second)
8633         StoppedEvolving = false;
8634     }
8635 
8636     // If all entries in CurrentIterVals == NextIterVals then we can stop
8637     // iterating, the loop can't continue to change.
8638     if (StoppedEvolving)
8639       return RetVal = CurrentIterVals[PN];
8640 
8641     CurrentIterVals.swap(NextIterVals);
8642   }
8643 }
8644 
8645 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8646                                                           Value *Cond,
8647                                                           bool ExitWhen) {
8648   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8649   if (!PN) return getCouldNotCompute();
8650 
8651   // If the loop is canonicalized, the PHI will have exactly two entries.
8652   // That's the only form we support here.
8653   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8654 
8655   DenseMap<Instruction *, Constant *> CurrentIterVals;
8656   BasicBlock *Header = L->getHeader();
8657   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8658 
8659   BasicBlock *Latch = L->getLoopLatch();
8660   assert(Latch && "Should follow from NumIncomingValues == 2!");
8661 
8662   for (PHINode &PHI : Header->phis()) {
8663     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8664       CurrentIterVals[&PHI] = StartCST;
8665   }
8666   if (!CurrentIterVals.count(PN))
8667     return getCouldNotCompute();
8668 
8669   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8670   // the loop symbolically to determine when the condition gets a value of
8671   // "ExitWhen".
8672   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8673   const DataLayout &DL = getDataLayout();
8674   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8675     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8676         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8677 
8678     // Couldn't symbolically evaluate.
8679     if (!CondVal) return getCouldNotCompute();
8680 
8681     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8682       ++NumBruteForceTripCountsComputed;
8683       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8684     }
8685 
8686     // Update all the PHI nodes for the next iteration.
8687     DenseMap<Instruction *, Constant *> NextIterVals;
8688 
8689     // Create a list of which PHIs we need to compute. We want to do this before
8690     // calling EvaluateExpression on them because that may invalidate iterators
8691     // into CurrentIterVals.
8692     SmallVector<PHINode *, 8> PHIsToCompute;
8693     for (const auto &I : CurrentIterVals) {
8694       PHINode *PHI = dyn_cast<PHINode>(I.first);
8695       if (!PHI || PHI->getParent() != Header) continue;
8696       PHIsToCompute.push_back(PHI);
8697     }
8698     for (PHINode *PHI : PHIsToCompute) {
8699       Constant *&NextPHI = NextIterVals[PHI];
8700       if (NextPHI) continue;    // Already computed!
8701 
8702       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8703       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8704     }
8705     CurrentIterVals.swap(NextIterVals);
8706   }
8707 
8708   // Too many iterations were needed to evaluate.
8709   return getCouldNotCompute();
8710 }
8711 
8712 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8713   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8714       ValuesAtScopes[V];
8715   // Check to see if we've folded this expression at this loop before.
8716   for (auto &LS : Values)
8717     if (LS.first == L)
8718       return LS.second ? LS.second : V;
8719 
8720   Values.emplace_back(L, nullptr);
8721 
8722   // Otherwise compute it.
8723   const SCEV *C = computeSCEVAtScope(V, L);
8724   for (auto &LS : reverse(ValuesAtScopes[V]))
8725     if (LS.first == L) {
8726       LS.second = C;
8727       break;
8728     }
8729   return C;
8730 }
8731 
8732 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8733 /// will return Constants for objects which aren't represented by a
8734 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8735 /// Returns NULL if the SCEV isn't representable as a Constant.
8736 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8737   switch (V->getSCEVType()) {
8738   case scCouldNotCompute:
8739   case scAddRecExpr:
8740     return nullptr;
8741   case scConstant:
8742     return cast<SCEVConstant>(V)->getValue();
8743   case scUnknown:
8744     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8745   case scSignExtend: {
8746     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8747     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8748       return ConstantExpr::getSExt(CastOp, SS->getType());
8749     return nullptr;
8750   }
8751   case scZeroExtend: {
8752     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8753     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8754       return ConstantExpr::getZExt(CastOp, SZ->getType());
8755     return nullptr;
8756   }
8757   case scPtrToInt: {
8758     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8759     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8760       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8761 
8762     return nullptr;
8763   }
8764   case scTruncate: {
8765     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8766     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8767       return ConstantExpr::getTrunc(CastOp, ST->getType());
8768     return nullptr;
8769   }
8770   case scAddExpr: {
8771     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8772     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8773       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8774         unsigned AS = PTy->getAddressSpace();
8775         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8776         C = ConstantExpr::getBitCast(C, DestPtrTy);
8777       }
8778       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8779         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8780         if (!C2)
8781           return nullptr;
8782 
8783         // First pointer!
8784         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8785           unsigned AS = C2->getType()->getPointerAddressSpace();
8786           std::swap(C, C2);
8787           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8788           // The offsets have been converted to bytes.  We can add bytes to an
8789           // i8* by GEP with the byte count in the first index.
8790           C = ConstantExpr::getBitCast(C, DestPtrTy);
8791         }
8792 
8793         // Don't bother trying to sum two pointers. We probably can't
8794         // statically compute a load that results from it anyway.
8795         if (C2->getType()->isPointerTy())
8796           return nullptr;
8797 
8798         if (C->getType()->isPointerTy()) {
8799           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8800                                              C, C2);
8801         } else {
8802           C = ConstantExpr::getAdd(C, C2);
8803         }
8804       }
8805       return C;
8806     }
8807     return nullptr;
8808   }
8809   case scMulExpr: {
8810     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8811     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8812       // Don't bother with pointers at all.
8813       if (C->getType()->isPointerTy())
8814         return nullptr;
8815       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8816         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8817         if (!C2 || C2->getType()->isPointerTy())
8818           return nullptr;
8819         C = ConstantExpr::getMul(C, C2);
8820       }
8821       return C;
8822     }
8823     return nullptr;
8824   }
8825   case scUDivExpr: {
8826     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8827     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8828       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8829         if (LHS->getType() == RHS->getType())
8830           return ConstantExpr::getUDiv(LHS, RHS);
8831     return nullptr;
8832   }
8833   case scSMaxExpr:
8834   case scUMaxExpr:
8835   case scSMinExpr:
8836   case scUMinExpr:
8837     return nullptr; // TODO: smax, umax, smin, umax.
8838   }
8839   llvm_unreachable("Unknown SCEV kind!");
8840 }
8841 
8842 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8843   if (isa<SCEVConstant>(V)) return V;
8844 
8845   // If this instruction is evolved from a constant-evolving PHI, compute the
8846   // exit value from the loop without using SCEVs.
8847   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8848     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8849       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8850         const Loop *CurrLoop = this->LI[I->getParent()];
8851         // Looking for loop exit value.
8852         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8853             PN->getParent() == CurrLoop->getHeader()) {
8854           // Okay, there is no closed form solution for the PHI node.  Check
8855           // to see if the loop that contains it has a known backedge-taken
8856           // count.  If so, we may be able to force computation of the exit
8857           // value.
8858           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8859           // This trivial case can show up in some degenerate cases where
8860           // the incoming IR has not yet been fully simplified.
8861           if (BackedgeTakenCount->isZero()) {
8862             Value *InitValue = nullptr;
8863             bool MultipleInitValues = false;
8864             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8865               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8866                 if (!InitValue)
8867                   InitValue = PN->getIncomingValue(i);
8868                 else if (InitValue != PN->getIncomingValue(i)) {
8869                   MultipleInitValues = true;
8870                   break;
8871                 }
8872               }
8873             }
8874             if (!MultipleInitValues && InitValue)
8875               return getSCEV(InitValue);
8876           }
8877           // Do we have a loop invariant value flowing around the backedge
8878           // for a loop which must execute the backedge?
8879           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8880               isKnownPositive(BackedgeTakenCount) &&
8881               PN->getNumIncomingValues() == 2) {
8882 
8883             unsigned InLoopPred =
8884                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8885             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8886             if (CurrLoop->isLoopInvariant(BackedgeVal))
8887               return getSCEV(BackedgeVal);
8888           }
8889           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8890             // Okay, we know how many times the containing loop executes.  If
8891             // this is a constant evolving PHI node, get the final value at
8892             // the specified iteration number.
8893             Constant *RV = getConstantEvolutionLoopExitValue(
8894                 PN, BTCC->getAPInt(), CurrLoop);
8895             if (RV) return getSCEV(RV);
8896           }
8897         }
8898 
8899         // If there is a single-input Phi, evaluate it at our scope. If we can
8900         // prove that this replacement does not break LCSSA form, use new value.
8901         if (PN->getNumOperands() == 1) {
8902           const SCEV *Input = getSCEV(PN->getOperand(0));
8903           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8904           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8905           // for the simplest case just support constants.
8906           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8907         }
8908       }
8909 
8910       // Okay, this is an expression that we cannot symbolically evaluate
8911       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8912       // the arguments into constants, and if so, try to constant propagate the
8913       // result.  This is particularly useful for computing loop exit values.
8914       if (CanConstantFold(I)) {
8915         SmallVector<Constant *, 4> Operands;
8916         bool MadeImprovement = false;
8917         for (Value *Op : I->operands()) {
8918           if (Constant *C = dyn_cast<Constant>(Op)) {
8919             Operands.push_back(C);
8920             continue;
8921           }
8922 
8923           // If any of the operands is non-constant and if they are
8924           // non-integer and non-pointer, don't even try to analyze them
8925           // with scev techniques.
8926           if (!isSCEVable(Op->getType()))
8927             return V;
8928 
8929           const SCEV *OrigV = getSCEV(Op);
8930           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8931           MadeImprovement |= OrigV != OpV;
8932 
8933           Constant *C = BuildConstantFromSCEV(OpV);
8934           if (!C) return V;
8935           if (C->getType() != Op->getType())
8936             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8937                                                               Op->getType(),
8938                                                               false),
8939                                       C, Op->getType());
8940           Operands.push_back(C);
8941         }
8942 
8943         // Check to see if getSCEVAtScope actually made an improvement.
8944         if (MadeImprovement) {
8945           Constant *C = nullptr;
8946           const DataLayout &DL = getDataLayout();
8947           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8948             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8949                                                 Operands[1], DL, &TLI);
8950           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8951             if (!Load->isVolatile())
8952               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8953                                                DL);
8954           } else
8955             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8956           if (!C) return V;
8957           return getSCEV(C);
8958         }
8959       }
8960     }
8961 
8962     // This is some other type of SCEVUnknown, just return it.
8963     return V;
8964   }
8965 
8966   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8967     // Avoid performing the look-up in the common case where the specified
8968     // expression has no loop-variant portions.
8969     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8970       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8971       if (OpAtScope != Comm->getOperand(i)) {
8972         // Okay, at least one of these operands is loop variant but might be
8973         // foldable.  Build a new instance of the folded commutative expression.
8974         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8975                                             Comm->op_begin()+i);
8976         NewOps.push_back(OpAtScope);
8977 
8978         for (++i; i != e; ++i) {
8979           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8980           NewOps.push_back(OpAtScope);
8981         }
8982         if (isa<SCEVAddExpr>(Comm))
8983           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8984         if (isa<SCEVMulExpr>(Comm))
8985           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8986         if (isa<SCEVMinMaxExpr>(Comm))
8987           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8988         llvm_unreachable("Unknown commutative SCEV type!");
8989       }
8990     }
8991     // If we got here, all operands are loop invariant.
8992     return Comm;
8993   }
8994 
8995   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8996     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8997     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8998     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8999       return Div;   // must be loop invariant
9000     return getUDivExpr(LHS, RHS);
9001   }
9002 
9003   // If this is a loop recurrence for a loop that does not contain L, then we
9004   // are dealing with the final value computed by the loop.
9005   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9006     // First, attempt to evaluate each operand.
9007     // Avoid performing the look-up in the common case where the specified
9008     // expression has no loop-variant portions.
9009     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9010       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9011       if (OpAtScope == AddRec->getOperand(i))
9012         continue;
9013 
9014       // Okay, at least one of these operands is loop variant but might be
9015       // foldable.  Build a new instance of the folded commutative expression.
9016       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9017                                           AddRec->op_begin()+i);
9018       NewOps.push_back(OpAtScope);
9019       for (++i; i != e; ++i)
9020         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9021 
9022       const SCEV *FoldedRec =
9023         getAddRecExpr(NewOps, AddRec->getLoop(),
9024                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9025       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9026       // The addrec may be folded to a nonrecurrence, for example, if the
9027       // induction variable is multiplied by zero after constant folding. Go
9028       // ahead and return the folded value.
9029       if (!AddRec)
9030         return FoldedRec;
9031       break;
9032     }
9033 
9034     // If the scope is outside the addrec's loop, evaluate it by using the
9035     // loop exit value of the addrec.
9036     if (!AddRec->getLoop()->contains(L)) {
9037       // To evaluate this recurrence, we need to know how many times the AddRec
9038       // loop iterates.  Compute this now.
9039       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9040       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9041 
9042       // Then, evaluate the AddRec.
9043       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9044     }
9045 
9046     return AddRec;
9047   }
9048 
9049   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9050     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9051     if (Op == Cast->getOperand())
9052       return Cast;  // must be loop invariant
9053     return getZeroExtendExpr(Op, Cast->getType());
9054   }
9055 
9056   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9057     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9058     if (Op == Cast->getOperand())
9059       return Cast;  // must be loop invariant
9060     return getSignExtendExpr(Op, Cast->getType());
9061   }
9062 
9063   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9064     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9065     if (Op == Cast->getOperand())
9066       return Cast;  // must be loop invariant
9067     return getTruncateExpr(Op, Cast->getType());
9068   }
9069 
9070   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9071     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9072     if (Op == Cast->getOperand())
9073       return Cast; // must be loop invariant
9074     return getPtrToIntExpr(Op, Cast->getType());
9075   }
9076 
9077   llvm_unreachable("Unknown SCEV type!");
9078 }
9079 
9080 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9081   return getSCEVAtScope(getSCEV(V), L);
9082 }
9083 
9084 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9085   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9086     return stripInjectiveFunctions(ZExt->getOperand());
9087   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9088     return stripInjectiveFunctions(SExt->getOperand());
9089   return S;
9090 }
9091 
9092 /// Finds the minimum unsigned root of the following equation:
9093 ///
9094 ///     A * X = B (mod N)
9095 ///
9096 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9097 /// A and B isn't important.
9098 ///
9099 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9100 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9101                                                ScalarEvolution &SE) {
9102   uint32_t BW = A.getBitWidth();
9103   assert(BW == SE.getTypeSizeInBits(B->getType()));
9104   assert(A != 0 && "A must be non-zero.");
9105 
9106   // 1. D = gcd(A, N)
9107   //
9108   // The gcd of A and N may have only one prime factor: 2. The number of
9109   // trailing zeros in A is its multiplicity
9110   uint32_t Mult2 = A.countTrailingZeros();
9111   // D = 2^Mult2
9112 
9113   // 2. Check if B is divisible by D.
9114   //
9115   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9116   // is not less than multiplicity of this prime factor for D.
9117   if (SE.GetMinTrailingZeros(B) < Mult2)
9118     return SE.getCouldNotCompute();
9119 
9120   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9121   // modulo (N / D).
9122   //
9123   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9124   // (N / D) in general. The inverse itself always fits into BW bits, though,
9125   // so we immediately truncate it.
9126   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9127   APInt Mod(BW + 1, 0);
9128   Mod.setBit(BW - Mult2);  // Mod = N / D
9129   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9130 
9131   // 4. Compute the minimum unsigned root of the equation:
9132   // I * (B / D) mod (N / D)
9133   // To simplify the computation, we factor out the divide by D:
9134   // (I * B mod N) / D
9135   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9136   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9137 }
9138 
9139 /// For a given quadratic addrec, generate coefficients of the corresponding
9140 /// quadratic equation, multiplied by a common value to ensure that they are
9141 /// integers.
9142 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9143 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9144 /// were multiplied by, and BitWidth is the bit width of the original addrec
9145 /// coefficients.
9146 /// This function returns None if the addrec coefficients are not compile-
9147 /// time constants.
9148 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9149 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9150   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9151   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9152   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9153   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9154   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9155                     << *AddRec << '\n');
9156 
9157   // We currently can only solve this if the coefficients are constants.
9158   if (!LC || !MC || !NC) {
9159     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9160     return None;
9161   }
9162 
9163   APInt L = LC->getAPInt();
9164   APInt M = MC->getAPInt();
9165   APInt N = NC->getAPInt();
9166   assert(!N.isNullValue() && "This is not a quadratic addrec");
9167 
9168   unsigned BitWidth = LC->getAPInt().getBitWidth();
9169   unsigned NewWidth = BitWidth + 1;
9170   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9171                     << BitWidth << '\n');
9172   // The sign-extension (as opposed to a zero-extension) here matches the
9173   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9174   N = N.sext(NewWidth);
9175   M = M.sext(NewWidth);
9176   L = L.sext(NewWidth);
9177 
9178   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9179   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9180   //   L+M, L+2M+N, L+3M+3N, ...
9181   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9182   //
9183   // The equation Acc = 0 is then
9184   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9185   // In a quadratic form it becomes:
9186   //   N n^2 + (2M-N) n + 2L = 0.
9187 
9188   APInt A = N;
9189   APInt B = 2 * M - A;
9190   APInt C = 2 * L;
9191   APInt T = APInt(NewWidth, 2);
9192   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9193                     << "x + " << C << ", coeff bw: " << NewWidth
9194                     << ", multiplied by " << T << '\n');
9195   return std::make_tuple(A, B, C, T, BitWidth);
9196 }
9197 
9198 /// Helper function to compare optional APInts:
9199 /// (a) if X and Y both exist, return min(X, Y),
9200 /// (b) if neither X nor Y exist, return None,
9201 /// (c) if exactly one of X and Y exists, return that value.
9202 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9203   if (X.hasValue() && Y.hasValue()) {
9204     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9205     APInt XW = X->sextOrSelf(W);
9206     APInt YW = Y->sextOrSelf(W);
9207     return XW.slt(YW) ? *X : *Y;
9208   }
9209   if (!X.hasValue() && !Y.hasValue())
9210     return None;
9211   return X.hasValue() ? *X : *Y;
9212 }
9213 
9214 /// Helper function to truncate an optional APInt to a given BitWidth.
9215 /// When solving addrec-related equations, it is preferable to return a value
9216 /// that has the same bit width as the original addrec's coefficients. If the
9217 /// solution fits in the original bit width, truncate it (except for i1).
9218 /// Returning a value of a different bit width may inhibit some optimizations.
9219 ///
9220 /// In general, a solution to a quadratic equation generated from an addrec
9221 /// may require BW+1 bits, where BW is the bit width of the addrec's
9222 /// coefficients. The reason is that the coefficients of the quadratic
9223 /// equation are BW+1 bits wide (to avoid truncation when converting from
9224 /// the addrec to the equation).
9225 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9226   if (!X.hasValue())
9227     return None;
9228   unsigned W = X->getBitWidth();
9229   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9230     return X->trunc(BitWidth);
9231   return X;
9232 }
9233 
9234 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9235 /// iterations. The values L, M, N are assumed to be signed, and they
9236 /// should all have the same bit widths.
9237 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9238 /// where BW is the bit width of the addrec's coefficients.
9239 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9240 /// returned as such, otherwise the bit width of the returned value may
9241 /// be greater than BW.
9242 ///
9243 /// This function returns None if
9244 /// (a) the addrec coefficients are not constant, or
9245 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9246 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9247 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9248 static Optional<APInt>
9249 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9250   APInt A, B, C, M;
9251   unsigned BitWidth;
9252   auto T = GetQuadraticEquation(AddRec);
9253   if (!T.hasValue())
9254     return None;
9255 
9256   std::tie(A, B, C, M, BitWidth) = *T;
9257   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9258   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9259   if (!X.hasValue())
9260     return None;
9261 
9262   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9263   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9264   if (!V->isZero())
9265     return None;
9266 
9267   return TruncIfPossible(X, BitWidth);
9268 }
9269 
9270 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9271 /// iterations. The values M, N are assumed to be signed, and they
9272 /// should all have the same bit widths.
9273 /// Find the least n such that c(n) does not belong to the given range,
9274 /// while c(n-1) does.
9275 ///
9276 /// This function returns None if
9277 /// (a) the addrec coefficients are not constant, or
9278 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9279 ///     bounds of the range.
9280 static Optional<APInt>
9281 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9282                           const ConstantRange &Range, ScalarEvolution &SE) {
9283   assert(AddRec->getOperand(0)->isZero() &&
9284          "Starting value of addrec should be 0");
9285   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9286                     << Range << ", addrec " << *AddRec << '\n');
9287   // This case is handled in getNumIterationsInRange. Here we can assume that
9288   // we start in the range.
9289   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9290          "Addrec's initial value should be in range");
9291 
9292   APInt A, B, C, M;
9293   unsigned BitWidth;
9294   auto T = GetQuadraticEquation(AddRec);
9295   if (!T.hasValue())
9296     return None;
9297 
9298   // Be careful about the return value: there can be two reasons for not
9299   // returning an actual number. First, if no solutions to the equations
9300   // were found, and second, if the solutions don't leave the given range.
9301   // The first case means that the actual solution is "unknown", the second
9302   // means that it's known, but not valid. If the solution is unknown, we
9303   // cannot make any conclusions.
9304   // Return a pair: the optional solution and a flag indicating if the
9305   // solution was found.
9306   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9307     // Solve for signed overflow and unsigned overflow, pick the lower
9308     // solution.
9309     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9310                       << Bound << " (before multiplying by " << M << ")\n");
9311     Bound *= M; // The quadratic equation multiplier.
9312 
9313     Optional<APInt> SO = None;
9314     if (BitWidth > 1) {
9315       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9316                            "signed overflow\n");
9317       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9318     }
9319     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9320                          "unsigned overflow\n");
9321     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9322                                                               BitWidth+1);
9323 
9324     auto LeavesRange = [&] (const APInt &X) {
9325       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9326       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9327       if (Range.contains(V0->getValue()))
9328         return false;
9329       // X should be at least 1, so X-1 is non-negative.
9330       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9331       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9332       if (Range.contains(V1->getValue()))
9333         return true;
9334       return false;
9335     };
9336 
9337     // If SolveQuadraticEquationWrap returns None, it means that there can
9338     // be a solution, but the function failed to find it. We cannot treat it
9339     // as "no solution".
9340     if (!SO.hasValue() || !UO.hasValue())
9341       return { None, false };
9342 
9343     // Check the smaller value first to see if it leaves the range.
9344     // At this point, both SO and UO must have values.
9345     Optional<APInt> Min = MinOptional(SO, UO);
9346     if (LeavesRange(*Min))
9347       return { Min, true };
9348     Optional<APInt> Max = Min == SO ? UO : SO;
9349     if (LeavesRange(*Max))
9350       return { Max, true };
9351 
9352     // Solutions were found, but were eliminated, hence the "true".
9353     return { None, true };
9354   };
9355 
9356   std::tie(A, B, C, M, BitWidth) = *T;
9357   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9358   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9359   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9360   auto SL = SolveForBoundary(Lower);
9361   auto SU = SolveForBoundary(Upper);
9362   // If any of the solutions was unknown, no meaninigful conclusions can
9363   // be made.
9364   if (!SL.second || !SU.second)
9365     return None;
9366 
9367   // Claim: The correct solution is not some value between Min and Max.
9368   //
9369   // Justification: Assuming that Min and Max are different values, one of
9370   // them is when the first signed overflow happens, the other is when the
9371   // first unsigned overflow happens. Crossing the range boundary is only
9372   // possible via an overflow (treating 0 as a special case of it, modeling
9373   // an overflow as crossing k*2^W for some k).
9374   //
9375   // The interesting case here is when Min was eliminated as an invalid
9376   // solution, but Max was not. The argument is that if there was another
9377   // overflow between Min and Max, it would also have been eliminated if
9378   // it was considered.
9379   //
9380   // For a given boundary, it is possible to have two overflows of the same
9381   // type (signed/unsigned) without having the other type in between: this
9382   // can happen when the vertex of the parabola is between the iterations
9383   // corresponding to the overflows. This is only possible when the two
9384   // overflows cross k*2^W for the same k. In such case, if the second one
9385   // left the range (and was the first one to do so), the first overflow
9386   // would have to enter the range, which would mean that either we had left
9387   // the range before or that we started outside of it. Both of these cases
9388   // are contradictions.
9389   //
9390   // Claim: In the case where SolveForBoundary returns None, the correct
9391   // solution is not some value between the Max for this boundary and the
9392   // Min of the other boundary.
9393   //
9394   // Justification: Assume that we had such Max_A and Min_B corresponding
9395   // to range boundaries A and B and such that Max_A < Min_B. If there was
9396   // a solution between Max_A and Min_B, it would have to be caused by an
9397   // overflow corresponding to either A or B. It cannot correspond to B,
9398   // since Min_B is the first occurrence of such an overflow. If it
9399   // corresponded to A, it would have to be either a signed or an unsigned
9400   // overflow that is larger than both eliminated overflows for A. But
9401   // between the eliminated overflows and this overflow, the values would
9402   // cover the entire value space, thus crossing the other boundary, which
9403   // is a contradiction.
9404 
9405   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9406 }
9407 
9408 ScalarEvolution::ExitLimit
9409 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9410                               bool AllowPredicates) {
9411 
9412   // This is only used for loops with a "x != y" exit test. The exit condition
9413   // is now expressed as a single expression, V = x-y. So the exit test is
9414   // effectively V != 0.  We know and take advantage of the fact that this
9415   // expression only being used in a comparison by zero context.
9416 
9417   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9418   // If the value is a constant
9419   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9420     // If the value is already zero, the branch will execute zero times.
9421     if (C->getValue()->isZero()) return C;
9422     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9423   }
9424 
9425   const SCEVAddRecExpr *AddRec =
9426       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9427 
9428   if (!AddRec && AllowPredicates)
9429     // Try to make this an AddRec using runtime tests, in the first X
9430     // iterations of this loop, where X is the SCEV expression found by the
9431     // algorithm below.
9432     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9433 
9434   if (!AddRec || AddRec->getLoop() != L)
9435     return getCouldNotCompute();
9436 
9437   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9438   // the quadratic equation to solve it.
9439   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9440     // We can only use this value if the chrec ends up with an exact zero
9441     // value at this index.  When solving for "X*X != 5", for example, we
9442     // should not accept a root of 2.
9443     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9444       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9445       return ExitLimit(R, R, false, Predicates);
9446     }
9447     return getCouldNotCompute();
9448   }
9449 
9450   // Otherwise we can only handle this if it is affine.
9451   if (!AddRec->isAffine())
9452     return getCouldNotCompute();
9453 
9454   // If this is an affine expression, the execution count of this branch is
9455   // the minimum unsigned root of the following equation:
9456   //
9457   //     Start + Step*N = 0 (mod 2^BW)
9458   //
9459   // equivalent to:
9460   //
9461   //             Step*N = -Start (mod 2^BW)
9462   //
9463   // where BW is the common bit width of Start and Step.
9464 
9465   // Get the initial value for the loop.
9466   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9467   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9468 
9469   // For now we handle only constant steps.
9470   //
9471   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9472   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9473   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9474   // We have not yet seen any such cases.
9475   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9476   if (!StepC || StepC->getValue()->isZero())
9477     return getCouldNotCompute();
9478 
9479   // For positive steps (counting up until unsigned overflow):
9480   //   N = -Start/Step (as unsigned)
9481   // For negative steps (counting down to zero):
9482   //   N = Start/-Step
9483   // First compute the unsigned distance from zero in the direction of Step.
9484   bool CountDown = StepC->getAPInt().isNegative();
9485   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9486 
9487   // Handle unitary steps, which cannot wraparound.
9488   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9489   //   N = Distance (as unsigned)
9490   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9491     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9492     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9493     if (MaxBECountBase.ult(MaxBECount))
9494       MaxBECount = MaxBECountBase;
9495 
9496     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9497     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9498     // case, and see if we can improve the bound.
9499     //
9500     // Explicitly handling this here is necessary because getUnsignedRange
9501     // isn't context-sensitive; it doesn't know that we only care about the
9502     // range inside the loop.
9503     const SCEV *Zero = getZero(Distance->getType());
9504     const SCEV *One = getOne(Distance->getType());
9505     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9506     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9507       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9508       // as "unsigned_max(Distance + 1) - 1".
9509       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9510       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9511     }
9512     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9513   }
9514 
9515   // If the condition controls loop exit (the loop exits only if the expression
9516   // is true) and the addition is no-wrap we can use unsigned divide to
9517   // compute the backedge count.  In this case, the step may not divide the
9518   // distance, but we don't care because if the condition is "missed" the loop
9519   // will have undefined behavior due to wrapping.
9520   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9521       loopHasNoAbnormalExits(AddRec->getLoop())) {
9522     const SCEV *Exact =
9523         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9524     const SCEV *Max = getCouldNotCompute();
9525     if (Exact != getCouldNotCompute()) {
9526       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9527       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9528       if (BaseMaxInt.ult(MaxInt))
9529         Max = getConstant(BaseMaxInt);
9530       else
9531         Max = getConstant(MaxInt);
9532     }
9533     return ExitLimit(Exact, Max, false, Predicates);
9534   }
9535 
9536   // Solve the general equation.
9537   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9538                                                getNegativeSCEV(Start), *this);
9539   const SCEV *M = E == getCouldNotCompute()
9540                       ? E
9541                       : getConstant(getUnsignedRangeMax(E));
9542   return ExitLimit(E, M, false, Predicates);
9543 }
9544 
9545 ScalarEvolution::ExitLimit
9546 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9547   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9548   // handle them yet except for the trivial case.  This could be expanded in the
9549   // future as needed.
9550 
9551   // If the value is a constant, check to see if it is known to be non-zero
9552   // already.  If so, the backedge will execute zero times.
9553   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9554     if (!C->getValue()->isZero())
9555       return getZero(C->getType());
9556     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9557   }
9558 
9559   // We could implement others, but I really doubt anyone writes loops like
9560   // this, and if they did, they would already be constant folded.
9561   return getCouldNotCompute();
9562 }
9563 
9564 std::pair<const BasicBlock *, const BasicBlock *>
9565 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9566     const {
9567   // If the block has a unique predecessor, then there is no path from the
9568   // predecessor to the block that does not go through the direct edge
9569   // from the predecessor to the block.
9570   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9571     return {Pred, BB};
9572 
9573   // A loop's header is defined to be a block that dominates the loop.
9574   // If the header has a unique predecessor outside the loop, it must be
9575   // a block that has exactly one successor that can reach the loop.
9576   if (const Loop *L = LI.getLoopFor(BB))
9577     return {L->getLoopPredecessor(), L->getHeader()};
9578 
9579   return {nullptr, nullptr};
9580 }
9581 
9582 /// SCEV structural equivalence is usually sufficient for testing whether two
9583 /// expressions are equal, however for the purposes of looking for a condition
9584 /// guarding a loop, it can be useful to be a little more general, since a
9585 /// front-end may have replicated the controlling expression.
9586 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9587   // Quick check to see if they are the same SCEV.
9588   if (A == B) return true;
9589 
9590   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9591     // Not all instructions that are "identical" compute the same value.  For
9592     // instance, two distinct alloca instructions allocating the same type are
9593     // identical and do not read memory; but compute distinct values.
9594     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9595   };
9596 
9597   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9598   // two different instructions with the same value. Check for this case.
9599   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9600     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9601       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9602         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9603           if (ComputesEqualValues(AI, BI))
9604             return true;
9605 
9606   // Otherwise assume they may have a different value.
9607   return false;
9608 }
9609 
9610 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9611                                            const SCEV *&LHS, const SCEV *&RHS,
9612                                            unsigned Depth) {
9613   bool Changed = false;
9614   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9615   // '0 != 0'.
9616   auto TrivialCase = [&](bool TriviallyTrue) {
9617     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9618     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9619     return true;
9620   };
9621   // If we hit the max recursion limit bail out.
9622   if (Depth >= 3)
9623     return false;
9624 
9625   // Canonicalize a constant to the right side.
9626   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9627     // Check for both operands constant.
9628     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9629       if (ConstantExpr::getICmp(Pred,
9630                                 LHSC->getValue(),
9631                                 RHSC->getValue())->isNullValue())
9632         return TrivialCase(false);
9633       else
9634         return TrivialCase(true);
9635     }
9636     // Otherwise swap the operands to put the constant on the right.
9637     std::swap(LHS, RHS);
9638     Pred = ICmpInst::getSwappedPredicate(Pred);
9639     Changed = true;
9640   }
9641 
9642   // If we're comparing an addrec with a value which is loop-invariant in the
9643   // addrec's loop, put the addrec on the left. Also make a dominance check,
9644   // as both operands could be addrecs loop-invariant in each other's loop.
9645   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9646     const Loop *L = AR->getLoop();
9647     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9648       std::swap(LHS, RHS);
9649       Pred = ICmpInst::getSwappedPredicate(Pred);
9650       Changed = true;
9651     }
9652   }
9653 
9654   // If there's a constant operand, canonicalize comparisons with boundary
9655   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9656   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9657     const APInt &RA = RC->getAPInt();
9658 
9659     bool SimplifiedByConstantRange = false;
9660 
9661     if (!ICmpInst::isEquality(Pred)) {
9662       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9663       if (ExactCR.isFullSet())
9664         return TrivialCase(true);
9665       else if (ExactCR.isEmptySet())
9666         return TrivialCase(false);
9667 
9668       APInt NewRHS;
9669       CmpInst::Predicate NewPred;
9670       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9671           ICmpInst::isEquality(NewPred)) {
9672         // We were able to convert an inequality to an equality.
9673         Pred = NewPred;
9674         RHS = getConstant(NewRHS);
9675         Changed = SimplifiedByConstantRange = true;
9676       }
9677     }
9678 
9679     if (!SimplifiedByConstantRange) {
9680       switch (Pred) {
9681       default:
9682         break;
9683       case ICmpInst::ICMP_EQ:
9684       case ICmpInst::ICMP_NE:
9685         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9686         if (!RA)
9687           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9688             if (const SCEVMulExpr *ME =
9689                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9690               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9691                   ME->getOperand(0)->isAllOnesValue()) {
9692                 RHS = AE->getOperand(1);
9693                 LHS = ME->getOperand(1);
9694                 Changed = true;
9695               }
9696         break;
9697 
9698 
9699         // The "Should have been caught earlier!" messages refer to the fact
9700         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9701         // should have fired on the corresponding cases, and canonicalized the
9702         // check to trivial case.
9703 
9704       case ICmpInst::ICMP_UGE:
9705         assert(!RA.isMinValue() && "Should have been caught earlier!");
9706         Pred = ICmpInst::ICMP_UGT;
9707         RHS = getConstant(RA - 1);
9708         Changed = true;
9709         break;
9710       case ICmpInst::ICMP_ULE:
9711         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9712         Pred = ICmpInst::ICMP_ULT;
9713         RHS = getConstant(RA + 1);
9714         Changed = true;
9715         break;
9716       case ICmpInst::ICMP_SGE:
9717         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9718         Pred = ICmpInst::ICMP_SGT;
9719         RHS = getConstant(RA - 1);
9720         Changed = true;
9721         break;
9722       case ICmpInst::ICMP_SLE:
9723         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9724         Pred = ICmpInst::ICMP_SLT;
9725         RHS = getConstant(RA + 1);
9726         Changed = true;
9727         break;
9728       }
9729     }
9730   }
9731 
9732   // Check for obvious equality.
9733   if (HasSameValue(LHS, RHS)) {
9734     if (ICmpInst::isTrueWhenEqual(Pred))
9735       return TrivialCase(true);
9736     if (ICmpInst::isFalseWhenEqual(Pred))
9737       return TrivialCase(false);
9738   }
9739 
9740   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9741   // adding or subtracting 1 from one of the operands.
9742   switch (Pred) {
9743   case ICmpInst::ICMP_SLE:
9744     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9745       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9746                        SCEV::FlagNSW);
9747       Pred = ICmpInst::ICMP_SLT;
9748       Changed = true;
9749     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9750       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9751                        SCEV::FlagNSW);
9752       Pred = ICmpInst::ICMP_SLT;
9753       Changed = true;
9754     }
9755     break;
9756   case ICmpInst::ICMP_SGE:
9757     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9758       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9759                        SCEV::FlagNSW);
9760       Pred = ICmpInst::ICMP_SGT;
9761       Changed = true;
9762     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9763       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9764                        SCEV::FlagNSW);
9765       Pred = ICmpInst::ICMP_SGT;
9766       Changed = true;
9767     }
9768     break;
9769   case ICmpInst::ICMP_ULE:
9770     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9771       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9772                        SCEV::FlagNUW);
9773       Pred = ICmpInst::ICMP_ULT;
9774       Changed = true;
9775     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9776       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9777       Pred = ICmpInst::ICMP_ULT;
9778       Changed = true;
9779     }
9780     break;
9781   case ICmpInst::ICMP_UGE:
9782     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9783       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9784       Pred = ICmpInst::ICMP_UGT;
9785       Changed = true;
9786     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9787       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9788                        SCEV::FlagNUW);
9789       Pred = ICmpInst::ICMP_UGT;
9790       Changed = true;
9791     }
9792     break;
9793   default:
9794     break;
9795   }
9796 
9797   // TODO: More simplifications are possible here.
9798 
9799   // Recursively simplify until we either hit a recursion limit or nothing
9800   // changes.
9801   if (Changed)
9802     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9803 
9804   return Changed;
9805 }
9806 
9807 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9808   return getSignedRangeMax(S).isNegative();
9809 }
9810 
9811 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9812   return getSignedRangeMin(S).isStrictlyPositive();
9813 }
9814 
9815 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9816   return !getSignedRangeMin(S).isNegative();
9817 }
9818 
9819 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9820   return !getSignedRangeMax(S).isStrictlyPositive();
9821 }
9822 
9823 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9824   return getUnsignedRangeMin(S) != 0;
9825 }
9826 
9827 std::pair<const SCEV *, const SCEV *>
9828 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9829   // Compute SCEV on entry of loop L.
9830   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9831   if (Start == getCouldNotCompute())
9832     return { Start, Start };
9833   // Compute post increment SCEV for loop L.
9834   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9835   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9836   return { Start, PostInc };
9837 }
9838 
9839 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9840                                           const SCEV *LHS, const SCEV *RHS) {
9841   // First collect all loops.
9842   SmallPtrSet<const Loop *, 8> LoopsUsed;
9843   getUsedLoops(LHS, LoopsUsed);
9844   getUsedLoops(RHS, LoopsUsed);
9845 
9846   if (LoopsUsed.empty())
9847     return false;
9848 
9849   // Domination relationship must be a linear order on collected loops.
9850 #ifndef NDEBUG
9851   for (auto *L1 : LoopsUsed)
9852     for (auto *L2 : LoopsUsed)
9853       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9854               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9855              "Domination relationship is not a linear order");
9856 #endif
9857 
9858   const Loop *MDL =
9859       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9860                         [&](const Loop *L1, const Loop *L2) {
9861          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9862        });
9863 
9864   // Get init and post increment value for LHS.
9865   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9866   // if LHS contains unknown non-invariant SCEV then bail out.
9867   if (SplitLHS.first == getCouldNotCompute())
9868     return false;
9869   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9870   // Get init and post increment value for RHS.
9871   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9872   // if RHS contains unknown non-invariant SCEV then bail out.
9873   if (SplitRHS.first == getCouldNotCompute())
9874     return false;
9875   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9876   // It is possible that init SCEV contains an invariant load but it does
9877   // not dominate MDL and is not available at MDL loop entry, so we should
9878   // check it here.
9879   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9880       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9881     return false;
9882 
9883   // It seems backedge guard check is faster than entry one so in some cases
9884   // it can speed up whole estimation by short circuit
9885   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9886                                      SplitRHS.second) &&
9887          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9888 }
9889 
9890 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9891                                        const SCEV *LHS, const SCEV *RHS) {
9892   // Canonicalize the inputs first.
9893   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9894 
9895   if (isKnownViaInduction(Pred, LHS, RHS))
9896     return true;
9897 
9898   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9899     return true;
9900 
9901   // Otherwise see what can be done with some simple reasoning.
9902   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9903 }
9904 
9905 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9906                                                   const SCEV *LHS,
9907                                                   const SCEV *RHS) {
9908   if (isKnownPredicate(Pred, LHS, RHS))
9909     return true;
9910   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9911     return false;
9912   return None;
9913 }
9914 
9915 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9916                                          const SCEV *LHS, const SCEV *RHS,
9917                                          const Instruction *Context) {
9918   // TODO: Analyze guards and assumes from Context's block.
9919   return isKnownPredicate(Pred, LHS, RHS) ||
9920          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9921 }
9922 
9923 Optional<bool>
9924 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9925                                      const SCEV *RHS,
9926                                      const Instruction *Context) {
9927   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9928   if (KnownWithoutContext)
9929     return KnownWithoutContext;
9930 
9931   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9932     return true;
9933   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9934                                           ICmpInst::getInversePredicate(Pred),
9935                                           LHS, RHS))
9936     return false;
9937   return None;
9938 }
9939 
9940 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9941                                               const SCEVAddRecExpr *LHS,
9942                                               const SCEV *RHS) {
9943   const Loop *L = LHS->getLoop();
9944   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9945          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9946 }
9947 
9948 Optional<ScalarEvolution::MonotonicPredicateType>
9949 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9950                                            ICmpInst::Predicate Pred) {
9951   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9952 
9953 #ifndef NDEBUG
9954   // Verify an invariant: inverting the predicate should turn a monotonically
9955   // increasing change to a monotonically decreasing one, and vice versa.
9956   if (Result) {
9957     auto ResultSwapped =
9958         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9959 
9960     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9961     assert(ResultSwapped.getValue() != Result.getValue() &&
9962            "monotonicity should flip as we flip the predicate");
9963   }
9964 #endif
9965 
9966   return Result;
9967 }
9968 
9969 Optional<ScalarEvolution::MonotonicPredicateType>
9970 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9971                                                ICmpInst::Predicate Pred) {
9972   // A zero step value for LHS means the induction variable is essentially a
9973   // loop invariant value. We don't really depend on the predicate actually
9974   // flipping from false to true (for increasing predicates, and the other way
9975   // around for decreasing predicates), all we care about is that *if* the
9976   // predicate changes then it only changes from false to true.
9977   //
9978   // A zero step value in itself is not very useful, but there may be places
9979   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9980   // as general as possible.
9981 
9982   // Only handle LE/LT/GE/GT predicates.
9983   if (!ICmpInst::isRelational(Pred))
9984     return None;
9985 
9986   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9987   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9988          "Should be greater or less!");
9989 
9990   // Check that AR does not wrap.
9991   if (ICmpInst::isUnsigned(Pred)) {
9992     if (!LHS->hasNoUnsignedWrap())
9993       return None;
9994     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9995   } else {
9996     assert(ICmpInst::isSigned(Pred) &&
9997            "Relational predicate is either signed or unsigned!");
9998     if (!LHS->hasNoSignedWrap())
9999       return None;
10000 
10001     const SCEV *Step = LHS->getStepRecurrence(*this);
10002 
10003     if (isKnownNonNegative(Step))
10004       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10005 
10006     if (isKnownNonPositive(Step))
10007       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10008 
10009     return None;
10010   }
10011 }
10012 
10013 Optional<ScalarEvolution::LoopInvariantPredicate>
10014 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10015                                            const SCEV *LHS, const SCEV *RHS,
10016                                            const Loop *L) {
10017 
10018   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10019   if (!isLoopInvariant(RHS, L)) {
10020     if (!isLoopInvariant(LHS, L))
10021       return None;
10022 
10023     std::swap(LHS, RHS);
10024     Pred = ICmpInst::getSwappedPredicate(Pred);
10025   }
10026 
10027   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10028   if (!ArLHS || ArLHS->getLoop() != L)
10029     return None;
10030 
10031   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10032   if (!MonotonicType)
10033     return None;
10034   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10035   // true as the loop iterates, and the backedge is control dependent on
10036   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10037   //
10038   //   * if the predicate was false in the first iteration then the predicate
10039   //     is never evaluated again, since the loop exits without taking the
10040   //     backedge.
10041   //   * if the predicate was true in the first iteration then it will
10042   //     continue to be true for all future iterations since it is
10043   //     monotonically increasing.
10044   //
10045   // For both the above possibilities, we can replace the loop varying
10046   // predicate with its value on the first iteration of the loop (which is
10047   // loop invariant).
10048   //
10049   // A similar reasoning applies for a monotonically decreasing predicate, by
10050   // replacing true with false and false with true in the above two bullets.
10051   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10052   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10053 
10054   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10055     return None;
10056 
10057   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10058 }
10059 
10060 Optional<ScalarEvolution::LoopInvariantPredicate>
10061 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10062     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10063     const Instruction *Context, const SCEV *MaxIter) {
10064   // Try to prove the following set of facts:
10065   // - The predicate is monotonic in the iteration space.
10066   // - If the check does not fail on the 1st iteration:
10067   //   - No overflow will happen during first MaxIter iterations;
10068   //   - It will not fail on the MaxIter'th iteration.
10069   // If the check does fail on the 1st iteration, we leave the loop and no
10070   // other checks matter.
10071 
10072   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10073   if (!isLoopInvariant(RHS, L)) {
10074     if (!isLoopInvariant(LHS, L))
10075       return None;
10076 
10077     std::swap(LHS, RHS);
10078     Pred = ICmpInst::getSwappedPredicate(Pred);
10079   }
10080 
10081   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10082   if (!AR || AR->getLoop() != L)
10083     return None;
10084 
10085   // The predicate must be relational (i.e. <, <=, >=, >).
10086   if (!ICmpInst::isRelational(Pred))
10087     return None;
10088 
10089   // TODO: Support steps other than +/- 1.
10090   const SCEV *Step = AR->getStepRecurrence(*this);
10091   auto *One = getOne(Step->getType());
10092   auto *MinusOne = getNegativeSCEV(One);
10093   if (Step != One && Step != MinusOne)
10094     return None;
10095 
10096   // Type mismatch here means that MaxIter is potentially larger than max
10097   // unsigned value in start type, which mean we cannot prove no wrap for the
10098   // indvar.
10099   if (AR->getType() != MaxIter->getType())
10100     return None;
10101 
10102   // Value of IV on suggested last iteration.
10103   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10104   // Does it still meet the requirement?
10105   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10106     return None;
10107   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10108   // not exceed max unsigned value of this type), this effectively proves
10109   // that there is no wrap during the iteration. To prove that there is no
10110   // signed/unsigned wrap, we need to check that
10111   // Start <= Last for step = 1 or Start >= Last for step = -1.
10112   ICmpInst::Predicate NoOverflowPred =
10113       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10114   if (Step == MinusOne)
10115     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10116   const SCEV *Start = AR->getStart();
10117   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
10118     return None;
10119 
10120   // Everything is fine.
10121   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10122 }
10123 
10124 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10125     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10126   if (HasSameValue(LHS, RHS))
10127     return ICmpInst::isTrueWhenEqual(Pred);
10128 
10129   // This code is split out from isKnownPredicate because it is called from
10130   // within isLoopEntryGuardedByCond.
10131 
10132   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10133                          const ConstantRange &RangeRHS) {
10134     return RangeLHS.icmp(Pred, RangeRHS);
10135   };
10136 
10137   // The check at the top of the function catches the case where the values are
10138   // known to be equal.
10139   if (Pred == CmpInst::ICMP_EQ)
10140     return false;
10141 
10142   if (Pred == CmpInst::ICMP_NE) {
10143     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10144         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10145       return true;
10146     auto *Diff = getMinusSCEV(LHS, RHS);
10147     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10148   }
10149 
10150   if (CmpInst::isSigned(Pred))
10151     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10152 
10153   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10154 }
10155 
10156 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10157                                                     const SCEV *LHS,
10158                                                     const SCEV *RHS) {
10159   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10160   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10161   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10162   // OutC1 and OutC2.
10163   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10164                                       APInt &OutC1, APInt &OutC2,
10165                                       SCEV::NoWrapFlags ExpectedFlags) {
10166     const SCEV *XNonConstOp, *XConstOp;
10167     const SCEV *YNonConstOp, *YConstOp;
10168     SCEV::NoWrapFlags XFlagsPresent;
10169     SCEV::NoWrapFlags YFlagsPresent;
10170 
10171     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10172       XConstOp = getZero(X->getType());
10173       XNonConstOp = X;
10174       XFlagsPresent = ExpectedFlags;
10175     }
10176     if (!isa<SCEVConstant>(XConstOp) ||
10177         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10178       return false;
10179 
10180     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10181       YConstOp = getZero(Y->getType());
10182       YNonConstOp = Y;
10183       YFlagsPresent = ExpectedFlags;
10184     }
10185 
10186     if (!isa<SCEVConstant>(YConstOp) ||
10187         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10188       return false;
10189 
10190     if (YNonConstOp != XNonConstOp)
10191       return false;
10192 
10193     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10194     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10195 
10196     return true;
10197   };
10198 
10199   APInt C1;
10200   APInt C2;
10201 
10202   switch (Pred) {
10203   default:
10204     break;
10205 
10206   case ICmpInst::ICMP_SGE:
10207     std::swap(LHS, RHS);
10208     LLVM_FALLTHROUGH;
10209   case ICmpInst::ICMP_SLE:
10210     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10211     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10212       return true;
10213 
10214     break;
10215 
10216   case ICmpInst::ICMP_SGT:
10217     std::swap(LHS, RHS);
10218     LLVM_FALLTHROUGH;
10219   case ICmpInst::ICMP_SLT:
10220     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10221     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10222       return true;
10223 
10224     break;
10225 
10226   case ICmpInst::ICMP_UGE:
10227     std::swap(LHS, RHS);
10228     LLVM_FALLTHROUGH;
10229   case ICmpInst::ICMP_ULE:
10230     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10231     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10232       return true;
10233 
10234     break;
10235 
10236   case ICmpInst::ICMP_UGT:
10237     std::swap(LHS, RHS);
10238     LLVM_FALLTHROUGH;
10239   case ICmpInst::ICMP_ULT:
10240     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10241     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10242       return true;
10243     break;
10244   }
10245 
10246   return false;
10247 }
10248 
10249 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10250                                                    const SCEV *LHS,
10251                                                    const SCEV *RHS) {
10252   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10253     return false;
10254 
10255   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10256   // the stack can result in exponential time complexity.
10257   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10258 
10259   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10260   //
10261   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10262   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10263   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10264   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10265   // use isKnownPredicate later if needed.
10266   return isKnownNonNegative(RHS) &&
10267          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10268          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10269 }
10270 
10271 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10272                                         ICmpInst::Predicate Pred,
10273                                         const SCEV *LHS, const SCEV *RHS) {
10274   // No need to even try if we know the module has no guards.
10275   if (!HasGuards)
10276     return false;
10277 
10278   return any_of(*BB, [&](const Instruction &I) {
10279     using namespace llvm::PatternMatch;
10280 
10281     Value *Condition;
10282     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10283                          m_Value(Condition))) &&
10284            isImpliedCond(Pred, LHS, RHS, Condition, false);
10285   });
10286 }
10287 
10288 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10289 /// protected by a conditional between LHS and RHS.  This is used to
10290 /// to eliminate casts.
10291 bool
10292 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10293                                              ICmpInst::Predicate Pred,
10294                                              const SCEV *LHS, const SCEV *RHS) {
10295   // Interpret a null as meaning no loop, where there is obviously no guard
10296   // (interprocedural conditions notwithstanding).
10297   if (!L) return true;
10298 
10299   if (VerifyIR)
10300     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10301            "This cannot be done on broken IR!");
10302 
10303 
10304   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10305     return true;
10306 
10307   BasicBlock *Latch = L->getLoopLatch();
10308   if (!Latch)
10309     return false;
10310 
10311   BranchInst *LoopContinuePredicate =
10312     dyn_cast<BranchInst>(Latch->getTerminator());
10313   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10314       isImpliedCond(Pred, LHS, RHS,
10315                     LoopContinuePredicate->getCondition(),
10316                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10317     return true;
10318 
10319   // We don't want more than one activation of the following loops on the stack
10320   // -- that can lead to O(n!) time complexity.
10321   if (WalkingBEDominatingConds)
10322     return false;
10323 
10324   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10325 
10326   // See if we can exploit a trip count to prove the predicate.
10327   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10328   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10329   if (LatchBECount != getCouldNotCompute()) {
10330     // We know that Latch branches back to the loop header exactly
10331     // LatchBECount times.  This means the backdege condition at Latch is
10332     // equivalent to  "{0,+,1} u< LatchBECount".
10333     Type *Ty = LatchBECount->getType();
10334     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10335     const SCEV *LoopCounter =
10336       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10337     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10338                       LatchBECount))
10339       return true;
10340   }
10341 
10342   // Check conditions due to any @llvm.assume intrinsics.
10343   for (auto &AssumeVH : AC.assumptions()) {
10344     if (!AssumeVH)
10345       continue;
10346     auto *CI = cast<CallInst>(AssumeVH);
10347     if (!DT.dominates(CI, Latch->getTerminator()))
10348       continue;
10349 
10350     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10351       return true;
10352   }
10353 
10354   // If the loop is not reachable from the entry block, we risk running into an
10355   // infinite loop as we walk up into the dom tree.  These loops do not matter
10356   // anyway, so we just return a conservative answer when we see them.
10357   if (!DT.isReachableFromEntry(L->getHeader()))
10358     return false;
10359 
10360   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10361     return true;
10362 
10363   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10364        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10365     assert(DTN && "should reach the loop header before reaching the root!");
10366 
10367     BasicBlock *BB = DTN->getBlock();
10368     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10369       return true;
10370 
10371     BasicBlock *PBB = BB->getSinglePredecessor();
10372     if (!PBB)
10373       continue;
10374 
10375     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10376     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10377       continue;
10378 
10379     Value *Condition = ContinuePredicate->getCondition();
10380 
10381     // If we have an edge `E` within the loop body that dominates the only
10382     // latch, the condition guarding `E` also guards the backedge.  This
10383     // reasoning works only for loops with a single latch.
10384 
10385     BasicBlockEdge DominatingEdge(PBB, BB);
10386     if (DominatingEdge.isSingleEdge()) {
10387       // We're constructively (and conservatively) enumerating edges within the
10388       // loop body that dominate the latch.  The dominator tree better agree
10389       // with us on this:
10390       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10391 
10392       if (isImpliedCond(Pred, LHS, RHS, Condition,
10393                         BB != ContinuePredicate->getSuccessor(0)))
10394         return true;
10395     }
10396   }
10397 
10398   return false;
10399 }
10400 
10401 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10402                                                      ICmpInst::Predicate Pred,
10403                                                      const SCEV *LHS,
10404                                                      const SCEV *RHS) {
10405   if (VerifyIR)
10406     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10407            "This cannot be done on broken IR!");
10408 
10409   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10410   // the facts (a >= b && a != b) separately. A typical situation is when the
10411   // non-strict comparison is known from ranges and non-equality is known from
10412   // dominating predicates. If we are proving strict comparison, we always try
10413   // to prove non-equality and non-strict comparison separately.
10414   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10415   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10416   bool ProvedNonStrictComparison = false;
10417   bool ProvedNonEquality = false;
10418 
10419   auto SplitAndProve =
10420     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10421     if (!ProvedNonStrictComparison)
10422       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10423     if (!ProvedNonEquality)
10424       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10425     if (ProvedNonStrictComparison && ProvedNonEquality)
10426       return true;
10427     return false;
10428   };
10429 
10430   if (ProvingStrictComparison) {
10431     auto ProofFn = [&](ICmpInst::Predicate P) {
10432       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10433     };
10434     if (SplitAndProve(ProofFn))
10435       return true;
10436   }
10437 
10438   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10439   auto ProveViaGuard = [&](const BasicBlock *Block) {
10440     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10441       return true;
10442     if (ProvingStrictComparison) {
10443       auto ProofFn = [&](ICmpInst::Predicate P) {
10444         return isImpliedViaGuard(Block, P, LHS, RHS);
10445       };
10446       if (SplitAndProve(ProofFn))
10447         return true;
10448     }
10449     return false;
10450   };
10451 
10452   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10453   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10454     const Instruction *Context = &BB->front();
10455     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10456       return true;
10457     if (ProvingStrictComparison) {
10458       auto ProofFn = [&](ICmpInst::Predicate P) {
10459         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10460       };
10461       if (SplitAndProve(ProofFn))
10462         return true;
10463     }
10464     return false;
10465   };
10466 
10467   // Starting at the block's predecessor, climb up the predecessor chain, as long
10468   // as there are predecessors that can be found that have unique successors
10469   // leading to the original block.
10470   const Loop *ContainingLoop = LI.getLoopFor(BB);
10471   const BasicBlock *PredBB;
10472   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10473     PredBB = ContainingLoop->getLoopPredecessor();
10474   else
10475     PredBB = BB->getSinglePredecessor();
10476   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10477        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10478     if (ProveViaGuard(Pair.first))
10479       return true;
10480 
10481     const BranchInst *LoopEntryPredicate =
10482         dyn_cast<BranchInst>(Pair.first->getTerminator());
10483     if (!LoopEntryPredicate ||
10484         LoopEntryPredicate->isUnconditional())
10485       continue;
10486 
10487     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10488                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10489       return true;
10490   }
10491 
10492   // Check conditions due to any @llvm.assume intrinsics.
10493   for (auto &AssumeVH : AC.assumptions()) {
10494     if (!AssumeVH)
10495       continue;
10496     auto *CI = cast<CallInst>(AssumeVH);
10497     if (!DT.dominates(CI, BB))
10498       continue;
10499 
10500     if (ProveViaCond(CI->getArgOperand(0), false))
10501       return true;
10502   }
10503 
10504   return false;
10505 }
10506 
10507 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10508                                                ICmpInst::Predicate Pred,
10509                                                const SCEV *LHS,
10510                                                const SCEV *RHS) {
10511   // Interpret a null as meaning no loop, where there is obviously no guard
10512   // (interprocedural conditions notwithstanding).
10513   if (!L)
10514     return false;
10515 
10516   // Both LHS and RHS must be available at loop entry.
10517   assert(isAvailableAtLoopEntry(LHS, L) &&
10518          "LHS is not available at Loop Entry");
10519   assert(isAvailableAtLoopEntry(RHS, L) &&
10520          "RHS is not available at Loop Entry");
10521 
10522   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10523     return true;
10524 
10525   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10526 }
10527 
10528 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10529                                     const SCEV *RHS,
10530                                     const Value *FoundCondValue, bool Inverse,
10531                                     const Instruction *Context) {
10532   // False conditions implies anything. Do not bother analyzing it further.
10533   if (FoundCondValue ==
10534       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10535     return true;
10536 
10537   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10538     return false;
10539 
10540   auto ClearOnExit =
10541       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10542 
10543   // Recursively handle And and Or conditions.
10544   const Value *Op0, *Op1;
10545   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10546     if (!Inverse)
10547       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10548               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10549   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10550     if (Inverse)
10551       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10552               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10553   }
10554 
10555   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10556   if (!ICI) return false;
10557 
10558   // Now that we found a conditional branch that dominates the loop or controls
10559   // the loop latch. Check to see if it is the comparison we are looking for.
10560   ICmpInst::Predicate FoundPred;
10561   if (Inverse)
10562     FoundPred = ICI->getInversePredicate();
10563   else
10564     FoundPred = ICI->getPredicate();
10565 
10566   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10567   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10568 
10569   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10570 }
10571 
10572 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10573                                     const SCEV *RHS,
10574                                     ICmpInst::Predicate FoundPred,
10575                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10576                                     const Instruction *Context) {
10577   // Balance the types.
10578   if (getTypeSizeInBits(LHS->getType()) <
10579       getTypeSizeInBits(FoundLHS->getType())) {
10580     // For unsigned and equality predicates, try to prove that both found
10581     // operands fit into narrow unsigned range. If so, try to prove facts in
10582     // narrow types.
10583     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10584       auto *NarrowType = LHS->getType();
10585       auto *WideType = FoundLHS->getType();
10586       auto BitWidth = getTypeSizeInBits(NarrowType);
10587       const SCEV *MaxValue = getZeroExtendExpr(
10588           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10589       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10590           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10591         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10592         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10593         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10594                                        TruncFoundRHS, Context))
10595           return true;
10596       }
10597     }
10598 
10599     if (LHS->getType()->isPointerTy())
10600       return false;
10601     if (CmpInst::isSigned(Pred)) {
10602       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10603       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10604     } else {
10605       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10606       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10607     }
10608   } else if (getTypeSizeInBits(LHS->getType()) >
10609       getTypeSizeInBits(FoundLHS->getType())) {
10610     if (FoundLHS->getType()->isPointerTy())
10611       return false;
10612     if (CmpInst::isSigned(FoundPred)) {
10613       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10614       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10615     } else {
10616       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10617       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10618     }
10619   }
10620   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10621                                     FoundRHS, Context);
10622 }
10623 
10624 bool ScalarEvolution::isImpliedCondBalancedTypes(
10625     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10626     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10627     const Instruction *Context) {
10628   assert(getTypeSizeInBits(LHS->getType()) ==
10629              getTypeSizeInBits(FoundLHS->getType()) &&
10630          "Types should be balanced!");
10631   // Canonicalize the query to match the way instcombine will have
10632   // canonicalized the comparison.
10633   if (SimplifyICmpOperands(Pred, LHS, RHS))
10634     if (LHS == RHS)
10635       return CmpInst::isTrueWhenEqual(Pred);
10636   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10637     if (FoundLHS == FoundRHS)
10638       return CmpInst::isFalseWhenEqual(FoundPred);
10639 
10640   // Check to see if we can make the LHS or RHS match.
10641   if (LHS == FoundRHS || RHS == FoundLHS) {
10642     if (isa<SCEVConstant>(RHS)) {
10643       std::swap(FoundLHS, FoundRHS);
10644       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10645     } else {
10646       std::swap(LHS, RHS);
10647       Pred = ICmpInst::getSwappedPredicate(Pred);
10648     }
10649   }
10650 
10651   // Check whether the found predicate is the same as the desired predicate.
10652   if (FoundPred == Pred)
10653     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10654 
10655   // Check whether swapping the found predicate makes it the same as the
10656   // desired predicate.
10657   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10658     // We can write the implication
10659     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10660     // using one of the following ways:
10661     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10662     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10663     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10664     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10665     // Forms 1. and 2. require swapping the operands of one condition. Don't
10666     // do this if it would break canonical constant/addrec ordering.
10667     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10668       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10669                                    Context);
10670     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10671       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10672 
10673     // Don't try to getNotSCEV pointers.
10674     if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy())
10675       return false;
10676 
10677     // There's no clear preference between forms 3. and 4., try both.
10678     return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10679                                  FoundLHS, FoundRHS, Context) ||
10680            isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10681                                  getNotSCEV(FoundRHS), Context);
10682   }
10683 
10684   // Unsigned comparison is the same as signed comparison when both the operands
10685   // are non-negative.
10686   if (CmpInst::isUnsigned(FoundPred) &&
10687       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10688       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10689     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10690 
10691   // Check if we can make progress by sharpening ranges.
10692   if (FoundPred == ICmpInst::ICMP_NE &&
10693       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10694 
10695     const SCEVConstant *C = nullptr;
10696     const SCEV *V = nullptr;
10697 
10698     if (isa<SCEVConstant>(FoundLHS)) {
10699       C = cast<SCEVConstant>(FoundLHS);
10700       V = FoundRHS;
10701     } else {
10702       C = cast<SCEVConstant>(FoundRHS);
10703       V = FoundLHS;
10704     }
10705 
10706     // The guarding predicate tells us that C != V. If the known range
10707     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10708     // range we consider has to correspond to same signedness as the
10709     // predicate we're interested in folding.
10710 
10711     APInt Min = ICmpInst::isSigned(Pred) ?
10712         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10713 
10714     if (Min == C->getAPInt()) {
10715       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10716       // This is true even if (Min + 1) wraps around -- in case of
10717       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10718 
10719       APInt SharperMin = Min + 1;
10720 
10721       switch (Pred) {
10722         case ICmpInst::ICMP_SGE:
10723         case ICmpInst::ICMP_UGE:
10724           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10725           // RHS, we're done.
10726           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10727                                     Context))
10728             return true;
10729           LLVM_FALLTHROUGH;
10730 
10731         case ICmpInst::ICMP_SGT:
10732         case ICmpInst::ICMP_UGT:
10733           // We know from the range information that (V `Pred` Min ||
10734           // V == Min).  We know from the guarding condition that !(V
10735           // == Min).  This gives us
10736           //
10737           //       V `Pred` Min || V == Min && !(V == Min)
10738           //   =>  V `Pred` Min
10739           //
10740           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10741 
10742           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10743                                     Context))
10744             return true;
10745           break;
10746 
10747         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10748         case ICmpInst::ICMP_SLE:
10749         case ICmpInst::ICMP_ULE:
10750           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10751                                     LHS, V, getConstant(SharperMin), Context))
10752             return true;
10753           LLVM_FALLTHROUGH;
10754 
10755         case ICmpInst::ICMP_SLT:
10756         case ICmpInst::ICMP_ULT:
10757           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10758                                     LHS, V, getConstant(Min), Context))
10759             return true;
10760           break;
10761 
10762         default:
10763           // No change
10764           break;
10765       }
10766     }
10767   }
10768 
10769   // Check whether the actual condition is beyond sufficient.
10770   if (FoundPred == ICmpInst::ICMP_EQ)
10771     if (ICmpInst::isTrueWhenEqual(Pred))
10772       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10773         return true;
10774   if (Pred == ICmpInst::ICMP_NE)
10775     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10776       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10777                                 Context))
10778         return true;
10779 
10780   // Otherwise assume the worst.
10781   return false;
10782 }
10783 
10784 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10785                                      const SCEV *&L, const SCEV *&R,
10786                                      SCEV::NoWrapFlags &Flags) {
10787   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10788   if (!AE || AE->getNumOperands() != 2)
10789     return false;
10790 
10791   L = AE->getOperand(0);
10792   R = AE->getOperand(1);
10793   Flags = AE->getNoWrapFlags();
10794   return true;
10795 }
10796 
10797 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10798                                                            const SCEV *Less) {
10799   // We avoid subtracting expressions here because this function is usually
10800   // fairly deep in the call stack (i.e. is called many times).
10801 
10802   // X - X = 0.
10803   if (More == Less)
10804     return APInt(getTypeSizeInBits(More->getType()), 0);
10805 
10806   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10807     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10808     const auto *MAR = cast<SCEVAddRecExpr>(More);
10809 
10810     if (LAR->getLoop() != MAR->getLoop())
10811       return None;
10812 
10813     // We look at affine expressions only; not for correctness but to keep
10814     // getStepRecurrence cheap.
10815     if (!LAR->isAffine() || !MAR->isAffine())
10816       return None;
10817 
10818     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10819       return None;
10820 
10821     Less = LAR->getStart();
10822     More = MAR->getStart();
10823 
10824     // fall through
10825   }
10826 
10827   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10828     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10829     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10830     return M - L;
10831   }
10832 
10833   SCEV::NoWrapFlags Flags;
10834   const SCEV *LLess = nullptr, *RLess = nullptr;
10835   const SCEV *LMore = nullptr, *RMore = nullptr;
10836   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10837   // Compare (X + C1) vs X.
10838   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10839     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10840       if (RLess == More)
10841         return -(C1->getAPInt());
10842 
10843   // Compare X vs (X + C2).
10844   if (splitBinaryAdd(More, LMore, RMore, Flags))
10845     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10846       if (RMore == Less)
10847         return C2->getAPInt();
10848 
10849   // Compare (X + C1) vs (X + C2).
10850   if (C1 && C2 && RLess == RMore)
10851     return C2->getAPInt() - C1->getAPInt();
10852 
10853   return None;
10854 }
10855 
10856 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10857     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10858     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10859   // Try to recognize the following pattern:
10860   //
10861   //   FoundRHS = ...
10862   // ...
10863   // loop:
10864   //   FoundLHS = {Start,+,W}
10865   // context_bb: // Basic block from the same loop
10866   //   known(Pred, FoundLHS, FoundRHS)
10867   //
10868   // If some predicate is known in the context of a loop, it is also known on
10869   // each iteration of this loop, including the first iteration. Therefore, in
10870   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10871   // prove the original pred using this fact.
10872   if (!Context)
10873     return false;
10874   const BasicBlock *ContextBB = Context->getParent();
10875   // Make sure AR varies in the context block.
10876   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10877     const Loop *L = AR->getLoop();
10878     // Make sure that context belongs to the loop and executes on 1st iteration
10879     // (if it ever executes at all).
10880     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10881       return false;
10882     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10883       return false;
10884     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10885   }
10886 
10887   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10888     const Loop *L = AR->getLoop();
10889     // Make sure that context belongs to the loop and executes on 1st iteration
10890     // (if it ever executes at all).
10891     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10892       return false;
10893     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10894       return false;
10895     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10896   }
10897 
10898   return false;
10899 }
10900 
10901 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10902     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10903     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10904   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10905     return false;
10906 
10907   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10908   if (!AddRecLHS)
10909     return false;
10910 
10911   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10912   if (!AddRecFoundLHS)
10913     return false;
10914 
10915   // We'd like to let SCEV reason about control dependencies, so we constrain
10916   // both the inequalities to be about add recurrences on the same loop.  This
10917   // way we can use isLoopEntryGuardedByCond later.
10918 
10919   const Loop *L = AddRecFoundLHS->getLoop();
10920   if (L != AddRecLHS->getLoop())
10921     return false;
10922 
10923   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10924   //
10925   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10926   //                                                                  ... (2)
10927   //
10928   // Informal proof for (2), assuming (1) [*]:
10929   //
10930   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10931   //
10932   // Then
10933   //
10934   //       FoundLHS s< FoundRHS s< INT_MIN - C
10935   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10936   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10937   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10938   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10939   // <=>  FoundLHS + C s< FoundRHS + C
10940   //
10941   // [*]: (1) can be proved by ruling out overflow.
10942   //
10943   // [**]: This can be proved by analyzing all the four possibilities:
10944   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10945   //    (A s>= 0, B s>= 0).
10946   //
10947   // Note:
10948   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10949   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10950   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10951   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10952   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10953   // C)".
10954 
10955   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10956   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10957   if (!LDiff || !RDiff || *LDiff != *RDiff)
10958     return false;
10959 
10960   if (LDiff->isMinValue())
10961     return true;
10962 
10963   APInt FoundRHSLimit;
10964 
10965   if (Pred == CmpInst::ICMP_ULT) {
10966     FoundRHSLimit = -(*RDiff);
10967   } else {
10968     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10969     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10970   }
10971 
10972   // Try to prove (1) or (2), as needed.
10973   return isAvailableAtLoopEntry(FoundRHS, L) &&
10974          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10975                                   getConstant(FoundRHSLimit));
10976 }
10977 
10978 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10979                                         const SCEV *LHS, const SCEV *RHS,
10980                                         const SCEV *FoundLHS,
10981                                         const SCEV *FoundRHS, unsigned Depth) {
10982   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10983 
10984   auto ClearOnExit = make_scope_exit([&]() {
10985     if (LPhi) {
10986       bool Erased = PendingMerges.erase(LPhi);
10987       assert(Erased && "Failed to erase LPhi!");
10988       (void)Erased;
10989     }
10990     if (RPhi) {
10991       bool Erased = PendingMerges.erase(RPhi);
10992       assert(Erased && "Failed to erase RPhi!");
10993       (void)Erased;
10994     }
10995   });
10996 
10997   // Find respective Phis and check that they are not being pending.
10998   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10999     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11000       if (!PendingMerges.insert(Phi).second)
11001         return false;
11002       LPhi = Phi;
11003     }
11004   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11005     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11006       // If we detect a loop of Phi nodes being processed by this method, for
11007       // example:
11008       //
11009       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11010       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11011       //
11012       // we don't want to deal with a case that complex, so return conservative
11013       // answer false.
11014       if (!PendingMerges.insert(Phi).second)
11015         return false;
11016       RPhi = Phi;
11017     }
11018 
11019   // If none of LHS, RHS is a Phi, nothing to do here.
11020   if (!LPhi && !RPhi)
11021     return false;
11022 
11023   // If there is a SCEVUnknown Phi we are interested in, make it left.
11024   if (!LPhi) {
11025     std::swap(LHS, RHS);
11026     std::swap(FoundLHS, FoundRHS);
11027     std::swap(LPhi, RPhi);
11028     Pred = ICmpInst::getSwappedPredicate(Pred);
11029   }
11030 
11031   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11032   const BasicBlock *LBB = LPhi->getParent();
11033   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11034 
11035   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11036     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11037            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11038            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11039   };
11040 
11041   if (RPhi && RPhi->getParent() == LBB) {
11042     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11043     // If we compare two Phis from the same block, and for each entry block
11044     // the predicate is true for incoming values from this block, then the
11045     // predicate is also true for the Phis.
11046     for (const BasicBlock *IncBB : predecessors(LBB)) {
11047       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11048       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11049       if (!ProvedEasily(L, R))
11050         return false;
11051     }
11052   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11053     // Case two: RHS is also a Phi from the same basic block, and it is an
11054     // AddRec. It means that there is a loop which has both AddRec and Unknown
11055     // PHIs, for it we can compare incoming values of AddRec from above the loop
11056     // and latch with their respective incoming values of LPhi.
11057     // TODO: Generalize to handle loops with many inputs in a header.
11058     if (LPhi->getNumIncomingValues() != 2) return false;
11059 
11060     auto *RLoop = RAR->getLoop();
11061     auto *Predecessor = RLoop->getLoopPredecessor();
11062     assert(Predecessor && "Loop with AddRec with no predecessor?");
11063     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11064     if (!ProvedEasily(L1, RAR->getStart()))
11065       return false;
11066     auto *Latch = RLoop->getLoopLatch();
11067     assert(Latch && "Loop with AddRec with no latch?");
11068     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11069     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11070       return false;
11071   } else {
11072     // In all other cases go over inputs of LHS and compare each of them to RHS,
11073     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11074     // At this point RHS is either a non-Phi, or it is a Phi from some block
11075     // different from LBB.
11076     for (const BasicBlock *IncBB : predecessors(LBB)) {
11077       // Check that RHS is available in this block.
11078       if (!dominates(RHS, IncBB))
11079         return false;
11080       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11081       // Make sure L does not refer to a value from a potentially previous
11082       // iteration of a loop.
11083       if (!properlyDominates(L, IncBB))
11084         return false;
11085       if (!ProvedEasily(L, RHS))
11086         return false;
11087     }
11088   }
11089   return true;
11090 }
11091 
11092 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11093                                             const SCEV *LHS, const SCEV *RHS,
11094                                             const SCEV *FoundLHS,
11095                                             const SCEV *FoundRHS,
11096                                             const Instruction *Context) {
11097   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11098     return true;
11099 
11100   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11101     return true;
11102 
11103   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11104                                           Context))
11105     return true;
11106 
11107   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11108                                      FoundLHS, FoundRHS);
11109 }
11110 
11111 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11112 template <typename MinMaxExprType>
11113 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11114                                  const SCEV *Candidate) {
11115   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11116   if (!MinMaxExpr)
11117     return false;
11118 
11119   return is_contained(MinMaxExpr->operands(), Candidate);
11120 }
11121 
11122 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11123                                            ICmpInst::Predicate Pred,
11124                                            const SCEV *LHS, const SCEV *RHS) {
11125   // If both sides are affine addrecs for the same loop, with equal
11126   // steps, and we know the recurrences don't wrap, then we only
11127   // need to check the predicate on the starting values.
11128 
11129   if (!ICmpInst::isRelational(Pred))
11130     return false;
11131 
11132   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11133   if (!LAR)
11134     return false;
11135   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11136   if (!RAR)
11137     return false;
11138   if (LAR->getLoop() != RAR->getLoop())
11139     return false;
11140   if (!LAR->isAffine() || !RAR->isAffine())
11141     return false;
11142 
11143   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11144     return false;
11145 
11146   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11147                          SCEV::FlagNSW : SCEV::FlagNUW;
11148   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11149     return false;
11150 
11151   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11152 }
11153 
11154 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11155 /// expression?
11156 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11157                                         ICmpInst::Predicate Pred,
11158                                         const SCEV *LHS, const SCEV *RHS) {
11159   switch (Pred) {
11160   default:
11161     return false;
11162 
11163   case ICmpInst::ICMP_SGE:
11164     std::swap(LHS, RHS);
11165     LLVM_FALLTHROUGH;
11166   case ICmpInst::ICMP_SLE:
11167     return
11168         // min(A, ...) <= A
11169         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11170         // A <= max(A, ...)
11171         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11172 
11173   case ICmpInst::ICMP_UGE:
11174     std::swap(LHS, RHS);
11175     LLVM_FALLTHROUGH;
11176   case ICmpInst::ICMP_ULE:
11177     return
11178         // min(A, ...) <= A
11179         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11180         // A <= max(A, ...)
11181         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11182   }
11183 
11184   llvm_unreachable("covered switch fell through?!");
11185 }
11186 
11187 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11188                                              const SCEV *LHS, const SCEV *RHS,
11189                                              const SCEV *FoundLHS,
11190                                              const SCEV *FoundRHS,
11191                                              unsigned Depth) {
11192   assert(getTypeSizeInBits(LHS->getType()) ==
11193              getTypeSizeInBits(RHS->getType()) &&
11194          "LHS and RHS have different sizes?");
11195   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11196              getTypeSizeInBits(FoundRHS->getType()) &&
11197          "FoundLHS and FoundRHS have different sizes?");
11198   // We want to avoid hurting the compile time with analysis of too big trees.
11199   if (Depth > MaxSCEVOperationsImplicationDepth)
11200     return false;
11201 
11202   // We only want to work with GT comparison so far.
11203   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11204     Pred = CmpInst::getSwappedPredicate(Pred);
11205     std::swap(LHS, RHS);
11206     std::swap(FoundLHS, FoundRHS);
11207   }
11208 
11209   // For unsigned, try to reduce it to corresponding signed comparison.
11210   if (Pred == ICmpInst::ICMP_UGT)
11211     // We can replace unsigned predicate with its signed counterpart if all
11212     // involved values are non-negative.
11213     // TODO: We could have better support for unsigned.
11214     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11215       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11216       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11217       // use this fact to prove that LHS and RHS are non-negative.
11218       const SCEV *MinusOne = getMinusOne(LHS->getType());
11219       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11220                                 FoundRHS) &&
11221           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11222                                 FoundRHS))
11223         Pred = ICmpInst::ICMP_SGT;
11224     }
11225 
11226   if (Pred != ICmpInst::ICMP_SGT)
11227     return false;
11228 
11229   auto GetOpFromSExt = [&](const SCEV *S) {
11230     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11231       return Ext->getOperand();
11232     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11233     // the constant in some cases.
11234     return S;
11235   };
11236 
11237   // Acquire values from extensions.
11238   auto *OrigLHS = LHS;
11239   auto *OrigFoundLHS = FoundLHS;
11240   LHS = GetOpFromSExt(LHS);
11241   FoundLHS = GetOpFromSExt(FoundLHS);
11242 
11243   // Is the SGT predicate can be proved trivially or using the found context.
11244   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11245     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11246            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11247                                   FoundRHS, Depth + 1);
11248   };
11249 
11250   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11251     // We want to avoid creation of any new non-constant SCEV. Since we are
11252     // going to compare the operands to RHS, we should be certain that we don't
11253     // need any size extensions for this. So let's decline all cases when the
11254     // sizes of types of LHS and RHS do not match.
11255     // TODO: Maybe try to get RHS from sext to catch more cases?
11256     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11257       return false;
11258 
11259     // Should not overflow.
11260     if (!LHSAddExpr->hasNoSignedWrap())
11261       return false;
11262 
11263     auto *LL = LHSAddExpr->getOperand(0);
11264     auto *LR = LHSAddExpr->getOperand(1);
11265     auto *MinusOne = getMinusOne(RHS->getType());
11266 
11267     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11268     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11269       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11270     };
11271     // Try to prove the following rule:
11272     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11273     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11274     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11275       return true;
11276   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11277     Value *LL, *LR;
11278     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11279 
11280     using namespace llvm::PatternMatch;
11281 
11282     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11283       // Rules for division.
11284       // We are going to perform some comparisons with Denominator and its
11285       // derivative expressions. In general case, creating a SCEV for it may
11286       // lead to a complex analysis of the entire graph, and in particular it
11287       // can request trip count recalculation for the same loop. This would
11288       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11289       // this, we only want to create SCEVs that are constants in this section.
11290       // So we bail if Denominator is not a constant.
11291       if (!isa<ConstantInt>(LR))
11292         return false;
11293 
11294       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11295 
11296       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11297       // then a SCEV for the numerator already exists and matches with FoundLHS.
11298       auto *Numerator = getExistingSCEV(LL);
11299       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11300         return false;
11301 
11302       // Make sure that the numerator matches with FoundLHS and the denominator
11303       // is positive.
11304       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11305         return false;
11306 
11307       auto *DTy = Denominator->getType();
11308       auto *FRHSTy = FoundRHS->getType();
11309       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11310         // One of types is a pointer and another one is not. We cannot extend
11311         // them properly to a wider type, so let us just reject this case.
11312         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11313         // to avoid this check.
11314         return false;
11315 
11316       // Given that:
11317       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11318       auto *WTy = getWiderType(DTy, FRHSTy);
11319       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11320       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11321 
11322       // Try to prove the following rule:
11323       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11324       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11325       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11326       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11327       if (isKnownNonPositive(RHS) &&
11328           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11329         return true;
11330 
11331       // Try to prove the following rule:
11332       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11333       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11334       // If we divide it by Denominator > 2, then:
11335       // 1. If FoundLHS is negative, then the result is 0.
11336       // 2. If FoundLHS is non-negative, then the result is non-negative.
11337       // Anyways, the result is non-negative.
11338       auto *MinusOne = getMinusOne(WTy);
11339       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11340       if (isKnownNegative(RHS) &&
11341           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11342         return true;
11343     }
11344   }
11345 
11346   // If our expression contained SCEVUnknown Phis, and we split it down and now
11347   // need to prove something for them, try to prove the predicate for every
11348   // possible incoming values of those Phis.
11349   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11350     return true;
11351 
11352   return false;
11353 }
11354 
11355 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11356                                         const SCEV *LHS, const SCEV *RHS) {
11357   // zext x u<= sext x, sext x s<= zext x
11358   switch (Pred) {
11359   case ICmpInst::ICMP_SGE:
11360     std::swap(LHS, RHS);
11361     LLVM_FALLTHROUGH;
11362   case ICmpInst::ICMP_SLE: {
11363     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11364     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11365     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11366     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11367       return true;
11368     break;
11369   }
11370   case ICmpInst::ICMP_UGE:
11371     std::swap(LHS, RHS);
11372     LLVM_FALLTHROUGH;
11373   case ICmpInst::ICMP_ULE: {
11374     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11375     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11376     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11377     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11378       return true;
11379     break;
11380   }
11381   default:
11382     break;
11383   };
11384   return false;
11385 }
11386 
11387 bool
11388 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11389                                            const SCEV *LHS, const SCEV *RHS) {
11390   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11391          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11392          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11393          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11394          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11395 }
11396 
11397 bool
11398 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11399                                              const SCEV *LHS, const SCEV *RHS,
11400                                              const SCEV *FoundLHS,
11401                                              const SCEV *FoundRHS) {
11402   switch (Pred) {
11403   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11404   case ICmpInst::ICMP_EQ:
11405   case ICmpInst::ICMP_NE:
11406     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11407       return true;
11408     break;
11409   case ICmpInst::ICMP_SLT:
11410   case ICmpInst::ICMP_SLE:
11411     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11412         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11413       return true;
11414     break;
11415   case ICmpInst::ICMP_SGT:
11416   case ICmpInst::ICMP_SGE:
11417     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11418         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11419       return true;
11420     break;
11421   case ICmpInst::ICMP_ULT:
11422   case ICmpInst::ICMP_ULE:
11423     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11424         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11425       return true;
11426     break;
11427   case ICmpInst::ICMP_UGT:
11428   case ICmpInst::ICMP_UGE:
11429     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11430         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11431       return true;
11432     break;
11433   }
11434 
11435   // Maybe it can be proved via operations?
11436   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11437     return true;
11438 
11439   return false;
11440 }
11441 
11442 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11443                                                      const SCEV *LHS,
11444                                                      const SCEV *RHS,
11445                                                      const SCEV *FoundLHS,
11446                                                      const SCEV *FoundRHS) {
11447   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11448     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11449     // reduce the compile time impact of this optimization.
11450     return false;
11451 
11452   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11453   if (!Addend)
11454     return false;
11455 
11456   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11457 
11458   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11459   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11460   ConstantRange FoundLHSRange =
11461       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11462 
11463   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11464   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11465 
11466   // We can also compute the range of values for `LHS` that satisfy the
11467   // consequent, "`LHS` `Pred` `RHS`":
11468   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11469   // The antecedent implies the consequent if every value of `LHS` that
11470   // satisfies the antecedent also satisfies the consequent.
11471   return LHSRange.icmp(Pred, ConstRHS);
11472 }
11473 
11474 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11475                                         bool IsSigned) {
11476   assert(isKnownPositive(Stride) && "Positive stride expected!");
11477 
11478   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11479   const SCEV *One = getOne(Stride->getType());
11480 
11481   if (IsSigned) {
11482     APInt MaxRHS = getSignedRangeMax(RHS);
11483     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11484     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11485 
11486     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11487     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11488   }
11489 
11490   APInt MaxRHS = getUnsignedRangeMax(RHS);
11491   APInt MaxValue = APInt::getMaxValue(BitWidth);
11492   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11493 
11494   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11495   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11496 }
11497 
11498 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11499                                         bool IsSigned) {
11500 
11501   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11502   const SCEV *One = getOne(Stride->getType());
11503 
11504   if (IsSigned) {
11505     APInt MinRHS = getSignedRangeMin(RHS);
11506     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11507     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11508 
11509     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11510     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11511   }
11512 
11513   APInt MinRHS = getUnsignedRangeMin(RHS);
11514   APInt MinValue = APInt::getMinValue(BitWidth);
11515   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11516 
11517   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11518   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11519 }
11520 
11521 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11522   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11523   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11524   // expression fixes the case of N=0.
11525   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11526   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11527   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11528 }
11529 
11530 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11531                                                     const SCEV *Stride,
11532                                                     const SCEV *End,
11533                                                     unsigned BitWidth,
11534                                                     bool IsSigned) {
11535   // The logic in this function assumes we can represent a positive stride.
11536   // If we can't, the backedge-taken count must be zero.
11537   if (IsSigned && BitWidth == 1)
11538     return getZero(Stride->getType());
11539 
11540   // Calculate the maximum backedge count based on the range of values
11541   // permitted by Start, End, and Stride.
11542   APInt MinStart =
11543       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11544 
11545   APInt MinStride =
11546       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11547 
11548   // We assume either the stride is positive, or the backedge-taken count
11549   // is zero. So force StrideForMaxBECount to be at least one.
11550   APInt One(BitWidth, 1);
11551   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11552                                        : APIntOps::umax(One, MinStride);
11553 
11554   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11555                             : APInt::getMaxValue(BitWidth);
11556   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11557 
11558   // Although End can be a MAX expression we estimate MaxEnd considering only
11559   // the case End = RHS of the loop termination condition. This is safe because
11560   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11561   // taken count.
11562   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11563                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11564 
11565   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11566   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11567                     : APIntOps::umax(MaxEnd, MinStart);
11568 
11569   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11570                          getConstant(StrideForMaxBECount) /* Step */);
11571 }
11572 
11573 ScalarEvolution::ExitLimit
11574 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11575                                   const Loop *L, bool IsSigned,
11576                                   bool ControlsExit, bool AllowPredicates) {
11577   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11578 
11579   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11580   bool PredicatedIV = false;
11581 
11582   if (!IV && AllowPredicates) {
11583     // Try to make this an AddRec using runtime tests, in the first X
11584     // iterations of this loop, where X is the SCEV expression found by the
11585     // algorithm below.
11586     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11587     PredicatedIV = true;
11588   }
11589 
11590   // Avoid weird loops
11591   if (!IV || IV->getLoop() != L || !IV->isAffine())
11592     return getCouldNotCompute();
11593 
11594   // A precondition of this method is that the condition being analyzed
11595   // reaches an exiting branch which dominates the latch.  Given that, we can
11596   // assume that an increment which violates the nowrap specification and
11597   // produces poison must cause undefined behavior when the resulting poison
11598   // value is branched upon and thus we can conclude that the backedge is
11599   // taken no more often than would be required to produce that poison value.
11600   // Note that a well defined loop can exit on the iteration which violates
11601   // the nowrap specification if there is another exit (either explicit or
11602   // implicit/exceptional) which causes the loop to execute before the
11603   // exiting instruction we're analyzing would trigger UB.
11604   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11605   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11606   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11607 
11608   const SCEV *Stride = IV->getStepRecurrence(*this);
11609 
11610   bool PositiveStride = isKnownPositive(Stride);
11611 
11612   // Avoid negative or zero stride values.
11613   if (!PositiveStride) {
11614     // We can compute the correct backedge taken count for loops with unknown
11615     // strides if we can prove that the loop is not an infinite loop with side
11616     // effects. Here's the loop structure we are trying to handle -
11617     //
11618     // i = start
11619     // do {
11620     //   A[i] = i;
11621     //   i += s;
11622     // } while (i < end);
11623     //
11624     // The backedge taken count for such loops is evaluated as -
11625     // (max(end, start + stride) - start - 1) /u stride
11626     //
11627     // The additional preconditions that we need to check to prove correctness
11628     // of the above formula is as follows -
11629     //
11630     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11631     //    NoWrap flag).
11632     // b) loop is single exit with no side effects.
11633     //
11634     //
11635     // Precondition a) implies that if the stride is negative, this is a single
11636     // trip loop. The backedge taken count formula reduces to zero in this case.
11637     //
11638     // Precondition b) implies that if rhs is invariant in L, then unknown
11639     // stride being zero means the backedge can't be taken without UB.
11640     //
11641     // The positive stride case is the same as isKnownPositive(Stride) returning
11642     // true (original behavior of the function).
11643     //
11644     // We want to make sure that the stride is truly unknown as there are edge
11645     // cases where ScalarEvolution propagates no wrap flags to the
11646     // post-increment/decrement IV even though the increment/decrement operation
11647     // itself is wrapping. The computed backedge taken count may be wrong in
11648     // such cases. This is prevented by checking that the stride is not known to
11649     // be either positive or non-positive. For example, no wrap flags are
11650     // propagated to the post-increment IV of this loop with a trip count of 2 -
11651     //
11652     // unsigned char i;
11653     // for(i=127; i<128; i+=129)
11654     //   A[i] = i;
11655     //
11656     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11657         !loopIsFiniteByAssumption(L))
11658       return getCouldNotCompute();
11659 
11660     if (!isKnownNonZero(Stride)) {
11661       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11662       // if it might eventually be greater than start and if so, on which
11663       // iteration.  We can't even produce a useful upper bound.
11664       if (!isLoopInvariant(RHS, L))
11665         return getCouldNotCompute();
11666 
11667       // We allow a potentially zero stride, but we need to divide by stride
11668       // below.  Since the loop can't be infinite and this check must control
11669       // the sole exit, we can infer the exit must be taken on the first
11670       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11671       // we know the numerator in the divides below must be zero, so we can
11672       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11673       // and produce the right result.
11674       // FIXME: Handle the case where Stride is poison?
11675       auto wouldZeroStrideBeUB = [&]() {
11676         // Proof by contradiction.  Suppose the stride were zero.  If we can
11677         // prove that the backedge *is* taken on the first iteration, then since
11678         // we know this condition controls the sole exit, we must have an
11679         // infinite loop.  We can't have a (well defined) infinite loop per
11680         // check just above.
11681         // Note: The (Start - Stride) term is used to get the start' term from
11682         // (start' + stride,+,stride). Remember that we only care about the
11683         // result of this expression when stride == 0 at runtime.
11684         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11685         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11686       };
11687       if (!wouldZeroStrideBeUB()) {
11688         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11689       }
11690     }
11691   } else if (!Stride->isOne() && !NoWrap) {
11692     auto isUBOnWrap = [&]() {
11693       // Can we prove this loop *must* be UB if overflow of IV occurs?
11694       // Reasoning goes as follows:
11695       // * Suppose the IV did self wrap.
11696       // * If Stride evenly divides the iteration space, then once wrap
11697       //   occurs, the loop must revisit the same values.
11698       // * We know that RHS is invariant, and that none of those values
11699       //   caused this exit to be taken previously.  Thus, this exit is
11700       //   dynamically dead.
11701       // * If this is the sole exit, then a dead exit implies the loop
11702       //   must be infinite if there are no abnormal exits.
11703       // * If the loop were infinite, then it must either not be mustprogress
11704       //   or have side effects. Otherwise, it must be UB.
11705       // * It can't (by assumption), be UB so we have contradicted our
11706       //   premise and can conclude the IV did not in fact self-wrap.
11707       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11708       // follows trivially from the fact that every (un)signed-wrapped, but
11709       // not self-wrapped value must be LT than the last value before
11710       // (un)signed wrap.  Since we know that last value didn't exit, nor
11711       // will any smaller one.
11712 
11713       if (!isLoopInvariant(RHS, L))
11714         return false;
11715 
11716       auto *StrideC = dyn_cast<SCEVConstant>(Stride);
11717       if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11718         return false;
11719 
11720       if (!ControlsExit || !loopHasNoAbnormalExits(L))
11721         return false;
11722 
11723       return loopIsFiniteByAssumption(L);
11724     };
11725 
11726     // Avoid proven overflow cases: this will ensure that the backedge taken
11727     // count will not generate any unsigned overflow. Relaxed no-overflow
11728     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11729     // undefined behaviors like the case of C language.
11730     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11731       return getCouldNotCompute();
11732   }
11733 
11734   // On all paths just preceeding, we established the following invariant:
11735   //   IV can be assumed not to overflow up to and including the exiting
11736   //   iteration.  We proved this in one of two ways:
11737   //   1) We can show overflow doesn't occur before the exiting iteration
11738   //      1a) canIVOverflowOnLT, and b) step of one
11739   //   2) We can show that if overflow occurs, the loop must execute UB
11740   //      before any possible exit.
11741   // Note that we have not yet proved RHS invariant (in general).
11742 
11743   const SCEV *Start = IV->getStart();
11744 
11745   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11746   // Use integer-typed versions for actual computation.
11747   const SCEV *OrigStart = Start;
11748   const SCEV *OrigRHS = RHS;
11749   if (Start->getType()->isPointerTy()) {
11750     Start = getLosslessPtrToIntExpr(Start);
11751     if (isa<SCEVCouldNotCompute>(Start))
11752       return Start;
11753   }
11754   if (RHS->getType()->isPointerTy()) {
11755     RHS = getLosslessPtrToIntExpr(RHS);
11756     if (isa<SCEVCouldNotCompute>(RHS))
11757       return RHS;
11758   }
11759 
11760   // When the RHS is not invariant, we do not know the end bound of the loop and
11761   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11762   // calculate the MaxBECount, given the start, stride and max value for the end
11763   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11764   // checked above).
11765   if (!isLoopInvariant(RHS, L)) {
11766     const SCEV *MaxBECount = computeMaxBECountForLT(
11767         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11768     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11769                      false /*MaxOrZero*/, Predicates);
11770   }
11771 
11772   // We use the expression (max(End,Start)-Start)/Stride to describe the
11773   // backedge count, as if the backedge is taken at least once max(End,Start)
11774   // is End and so the result is as above, and if not max(End,Start) is Start
11775   // so we get a backedge count of zero.
11776   const SCEV *BECount = nullptr;
11777   auto *StartMinusStride = getMinusSCEV(OrigStart, Stride);
11778   // Can we prove (max(RHS,Start) > Start - Stride?
11779   if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) &&
11780       isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) {
11781     // In this case, we can use a refined formula for computing backedge taken
11782     // count.  The general formula remains:
11783     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11784     // We want to use the alternate formula:
11785     //   "((End - 1) - (Start - Stride)) /u Stride"
11786     // Let's do a quick case analysis to show these are equivalent under
11787     // our precondition that max(RHS,Start) > Start - Stride.
11788     // * For RHS <= Start, the backedge-taken count must be zero.
11789     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11790     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11791     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11792     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11793     //     this to the stride of 1 case.
11794     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11795     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11796     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11797     //   "((RHS - (Start - Stride) - 1) /u Stride".
11798     //   Our preconditions trivially imply no overflow in that form.
11799     const SCEV *MinusOne = getMinusOne(Stride->getType());
11800     const SCEV *Numerator =
11801         getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride);
11802     if (!isa<SCEVCouldNotCompute>(Numerator)) {
11803       BECount = getUDivExpr(Numerator, Stride);
11804     }
11805   }
11806 
11807   const SCEV *BECountIfBackedgeTaken = nullptr;
11808   if (!BECount) {
11809     auto canProveRHSGreaterThanEqualStart = [&]() {
11810       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11811       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11812         return true;
11813 
11814       // (RHS > Start - 1) implies RHS >= Start.
11815       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11816       //   "Start - 1" doesn't overflow.
11817       // * For signed comparison, if Start - 1 does overflow, it's equal
11818       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11819       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11820       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11821       //
11822       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11823       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11824       auto *StartMinusOne = getAddExpr(OrigStart,
11825                                        getMinusOne(OrigStart->getType()));
11826       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11827     };
11828 
11829     // If we know that RHS >= Start in the context of loop, then we know that
11830     // max(RHS, Start) = RHS at this point.
11831     const SCEV *End;
11832     if (canProveRHSGreaterThanEqualStart()) {
11833       End = RHS;
11834     } else {
11835       // If RHS < Start, the backedge will be taken zero times.  So in
11836       // general, we can write the backedge-taken count as:
11837       //
11838       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11839       //
11840       // We convert it to the following to make it more convenient for SCEV:
11841       //
11842       //     ceil(max(RHS, Start) - Start) / Stride
11843       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11844 
11845       // See what would happen if we assume the backedge is taken. This is
11846       // used to compute MaxBECount.
11847       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11848     }
11849 
11850     // At this point, we know:
11851     //
11852     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11853     // 2. The index variable doesn't overflow.
11854     //
11855     // Therefore, we know N exists such that
11856     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11857     // doesn't overflow.
11858     //
11859     // Using this information, try to prove whether the addition in
11860     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11861     const SCEV *One = getOne(Stride->getType());
11862     bool MayAddOverflow = [&] {
11863       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11864         if (StrideC->getAPInt().isPowerOf2()) {
11865           // Suppose Stride is a power of two, and Start/End are unsigned
11866           // integers.  Let UMAX be the largest representable unsigned
11867           // integer.
11868           //
11869           // By the preconditions of this function, we know
11870           // "(Start + Stride * N) >= End", and this doesn't overflow.
11871           // As a formula:
11872           //
11873           //   End <= (Start + Stride * N) <= UMAX
11874           //
11875           // Subtracting Start from all the terms:
11876           //
11877           //   End - Start <= Stride * N <= UMAX - Start
11878           //
11879           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11880           //
11881           //   End - Start <= Stride * N <= UMAX
11882           //
11883           // Stride * N is a multiple of Stride. Therefore,
11884           //
11885           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11886           //
11887           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11888           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11889           //
11890           //   End - Start <= Stride * N <= UMAX - Stride - 1
11891           //
11892           // Dropping the middle term:
11893           //
11894           //   End - Start <= UMAX - Stride - 1
11895           //
11896           // Adding Stride - 1 to both sides:
11897           //
11898           //   (End - Start) + (Stride - 1) <= UMAX
11899           //
11900           // In other words, the addition doesn't have unsigned overflow.
11901           //
11902           // A similar proof works if we treat Start/End as signed values.
11903           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11904           // use signed max instead of unsigned max. Note that we're trying
11905           // to prove a lack of unsigned overflow in either case.
11906           return false;
11907         }
11908       }
11909       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11910         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11911         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11912         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11913         //
11914         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11915         return false;
11916       }
11917       return true;
11918     }();
11919 
11920     const SCEV *Delta = getMinusSCEV(End, Start);
11921     if (!MayAddOverflow) {
11922       // floor((D + (S - 1)) / S)
11923       // We prefer this formulation if it's legal because it's fewer operations.
11924       BECount =
11925           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11926     } else {
11927       BECount = getUDivCeilSCEV(Delta, Stride);
11928     }
11929   }
11930 
11931   const SCEV *MaxBECount;
11932   bool MaxOrZero = false;
11933   if (isa<SCEVConstant>(BECount)) {
11934     MaxBECount = BECount;
11935   } else if (BECountIfBackedgeTaken &&
11936              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11937     // If we know exactly how many times the backedge will be taken if it's
11938     // taken at least once, then the backedge count will either be that or
11939     // zero.
11940     MaxBECount = BECountIfBackedgeTaken;
11941     MaxOrZero = true;
11942   } else {
11943     MaxBECount = computeMaxBECountForLT(
11944         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11945   }
11946 
11947   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11948       !isa<SCEVCouldNotCompute>(BECount))
11949     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11950 
11951   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11952 }
11953 
11954 ScalarEvolution::ExitLimit
11955 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11956                                      const Loop *L, bool IsSigned,
11957                                      bool ControlsExit, bool AllowPredicates) {
11958   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11959   // We handle only IV > Invariant
11960   if (!isLoopInvariant(RHS, L))
11961     return getCouldNotCompute();
11962 
11963   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11964   if (!IV && AllowPredicates)
11965     // Try to make this an AddRec using runtime tests, in the first X
11966     // iterations of this loop, where X is the SCEV expression found by the
11967     // algorithm below.
11968     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11969 
11970   // Avoid weird loops
11971   if (!IV || IV->getLoop() != L || !IV->isAffine())
11972     return getCouldNotCompute();
11973 
11974   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11975   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11976   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11977 
11978   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11979 
11980   // Avoid negative or zero stride values
11981   if (!isKnownPositive(Stride))
11982     return getCouldNotCompute();
11983 
11984   // Avoid proven overflow cases: this will ensure that the backedge taken count
11985   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11986   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11987   // behaviors like the case of C language.
11988   if (!Stride->isOne() && !NoWrap)
11989     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
11990       return getCouldNotCompute();
11991 
11992   const SCEV *Start = IV->getStart();
11993   const SCEV *End = RHS;
11994   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11995     // If we know that Start >= RHS in the context of loop, then we know that
11996     // min(RHS, Start) = RHS at this point.
11997     if (isLoopEntryGuardedByCond(
11998             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11999       End = RHS;
12000     else
12001       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12002   }
12003 
12004   if (Start->getType()->isPointerTy()) {
12005     Start = getLosslessPtrToIntExpr(Start);
12006     if (isa<SCEVCouldNotCompute>(Start))
12007       return Start;
12008   }
12009   if (End->getType()->isPointerTy()) {
12010     End = getLosslessPtrToIntExpr(End);
12011     if (isa<SCEVCouldNotCompute>(End))
12012       return End;
12013   }
12014 
12015   // Compute ((Start - End) + (Stride - 1)) / Stride.
12016   // FIXME: This can overflow. Holding off on fixing this for now;
12017   // howManyGreaterThans will hopefully be gone soon.
12018   const SCEV *One = getOne(Stride->getType());
12019   const SCEV *BECount = getUDivExpr(
12020       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12021 
12022   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12023                             : getUnsignedRangeMax(Start);
12024 
12025   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12026                              : getUnsignedRangeMin(Stride);
12027 
12028   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12029   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12030                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12031 
12032   // Although End can be a MIN expression we estimate MinEnd considering only
12033   // the case End = RHS. This is safe because in the other case (Start - End)
12034   // is zero, leading to a zero maximum backedge taken count.
12035   APInt MinEnd =
12036     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12037              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12038 
12039   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12040                                ? BECount
12041                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12042                                                  getConstant(MinStride));
12043 
12044   if (isa<SCEVCouldNotCompute>(MaxBECount))
12045     MaxBECount = BECount;
12046 
12047   return ExitLimit(BECount, MaxBECount, false, Predicates);
12048 }
12049 
12050 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12051                                                     ScalarEvolution &SE) const {
12052   if (Range.isFullSet())  // Infinite loop.
12053     return SE.getCouldNotCompute();
12054 
12055   // If the start is a non-zero constant, shift the range to simplify things.
12056   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12057     if (!SC->getValue()->isZero()) {
12058       SmallVector<const SCEV *, 4> Operands(operands());
12059       Operands[0] = SE.getZero(SC->getType());
12060       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12061                                              getNoWrapFlags(FlagNW));
12062       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12063         return ShiftedAddRec->getNumIterationsInRange(
12064             Range.subtract(SC->getAPInt()), SE);
12065       // This is strange and shouldn't happen.
12066       return SE.getCouldNotCompute();
12067     }
12068 
12069   // The only time we can solve this is when we have all constant indices.
12070   // Otherwise, we cannot determine the overflow conditions.
12071   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12072     return SE.getCouldNotCompute();
12073 
12074   // Okay at this point we know that all elements of the chrec are constants and
12075   // that the start element is zero.
12076 
12077   // First check to see if the range contains zero.  If not, the first
12078   // iteration exits.
12079   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12080   if (!Range.contains(APInt(BitWidth, 0)))
12081     return SE.getZero(getType());
12082 
12083   if (isAffine()) {
12084     // If this is an affine expression then we have this situation:
12085     //   Solve {0,+,A} in Range  ===  Ax in Range
12086 
12087     // We know that zero is in the range.  If A is positive then we know that
12088     // the upper value of the range must be the first possible exit value.
12089     // If A is negative then the lower of the range is the last possible loop
12090     // value.  Also note that we already checked for a full range.
12091     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12092     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12093 
12094     // The exit value should be (End+A)/A.
12095     APInt ExitVal = (End + A).udiv(A);
12096     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12097 
12098     // Evaluate at the exit value.  If we really did fall out of the valid
12099     // range, then we computed our trip count, otherwise wrap around or other
12100     // things must have happened.
12101     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12102     if (Range.contains(Val->getValue()))
12103       return SE.getCouldNotCompute();  // Something strange happened
12104 
12105     // Ensure that the previous value is in the range.  This is a sanity check.
12106     assert(Range.contains(
12107            EvaluateConstantChrecAtConstant(this,
12108            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12109            "Linear scev computation is off in a bad way!");
12110     return SE.getConstant(ExitValue);
12111   }
12112 
12113   if (isQuadratic()) {
12114     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12115       return SE.getConstant(S.getValue());
12116   }
12117 
12118   return SE.getCouldNotCompute();
12119 }
12120 
12121 const SCEVAddRecExpr *
12122 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12123   assert(getNumOperands() > 1 && "AddRec with zero step?");
12124   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12125   // but in this case we cannot guarantee that the value returned will be an
12126   // AddRec because SCEV does not have a fixed point where it stops
12127   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12128   // may happen if we reach arithmetic depth limit while simplifying. So we
12129   // construct the returned value explicitly.
12130   SmallVector<const SCEV *, 3> Ops;
12131   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12132   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12133   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12134     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12135   // We know that the last operand is not a constant zero (otherwise it would
12136   // have been popped out earlier). This guarantees us that if the result has
12137   // the same last operand, then it will also not be popped out, meaning that
12138   // the returned value will be an AddRec.
12139   const SCEV *Last = getOperand(getNumOperands() - 1);
12140   assert(!Last->isZero() && "Recurrency with zero step?");
12141   Ops.push_back(Last);
12142   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12143                                                SCEV::FlagAnyWrap));
12144 }
12145 
12146 // Return true when S contains at least an undef value.
12147 static inline bool containsUndefs(const SCEV *S) {
12148   return SCEVExprContains(S, [](const SCEV *S) {
12149     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12150       return isa<UndefValue>(SU->getValue());
12151     return false;
12152   });
12153 }
12154 
12155 namespace {
12156 
12157 // Collect all steps of SCEV expressions.
12158 struct SCEVCollectStrides {
12159   ScalarEvolution &SE;
12160   SmallVectorImpl<const SCEV *> &Strides;
12161 
12162   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
12163       : SE(SE), Strides(S) {}
12164 
12165   bool follow(const SCEV *S) {
12166     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
12167       Strides.push_back(AR->getStepRecurrence(SE));
12168     return true;
12169   }
12170 
12171   bool isDone() const { return false; }
12172 };
12173 
12174 // Collect all SCEVUnknown and SCEVMulExpr expressions.
12175 struct SCEVCollectTerms {
12176   SmallVectorImpl<const SCEV *> &Terms;
12177 
12178   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
12179 
12180   bool follow(const SCEV *S) {
12181     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
12182         isa<SCEVSignExtendExpr>(S)) {
12183       if (!containsUndefs(S))
12184         Terms.push_back(S);
12185 
12186       // Stop recursion: once we collected a term, do not walk its operands.
12187       return false;
12188     }
12189 
12190     // Keep looking.
12191     return true;
12192   }
12193 
12194   bool isDone() const { return false; }
12195 };
12196 
12197 // Check if a SCEV contains an AddRecExpr.
12198 struct SCEVHasAddRec {
12199   bool &ContainsAddRec;
12200 
12201   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
12202     ContainsAddRec = false;
12203   }
12204 
12205   bool follow(const SCEV *S) {
12206     if (isa<SCEVAddRecExpr>(S)) {
12207       ContainsAddRec = true;
12208 
12209       // Stop recursion: once we collected a term, do not walk its operands.
12210       return false;
12211     }
12212 
12213     // Keep looking.
12214     return true;
12215   }
12216 
12217   bool isDone() const { return false; }
12218 };
12219 
12220 // Find factors that are multiplied with an expression that (possibly as a
12221 // subexpression) contains an AddRecExpr. In the expression:
12222 //
12223 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
12224 //
12225 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
12226 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
12227 // parameters as they form a product with an induction variable.
12228 //
12229 // This collector expects all array size parameters to be in the same MulExpr.
12230 // It might be necessary to later add support for collecting parameters that are
12231 // spread over different nested MulExpr.
12232 struct SCEVCollectAddRecMultiplies {
12233   SmallVectorImpl<const SCEV *> &Terms;
12234   ScalarEvolution &SE;
12235 
12236   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
12237       : Terms(T), SE(SE) {}
12238 
12239   bool follow(const SCEV *S) {
12240     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
12241       bool HasAddRec = false;
12242       SmallVector<const SCEV *, 0> Operands;
12243       for (auto Op : Mul->operands()) {
12244         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
12245         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
12246           Operands.push_back(Op);
12247         } else if (Unknown) {
12248           HasAddRec = true;
12249         } else {
12250           bool ContainsAddRec = false;
12251           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
12252           visitAll(Op, ContiansAddRec);
12253           HasAddRec |= ContainsAddRec;
12254         }
12255       }
12256       if (Operands.size() == 0)
12257         return true;
12258 
12259       if (!HasAddRec)
12260         return false;
12261 
12262       Terms.push_back(SE.getMulExpr(Operands));
12263       // Stop recursion: once we collected a term, do not walk its operands.
12264       return false;
12265     }
12266 
12267     // Keep looking.
12268     return true;
12269   }
12270 
12271   bool isDone() const { return false; }
12272 };
12273 
12274 } // end anonymous namespace
12275 
12276 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
12277 /// two places:
12278 ///   1) The strides of AddRec expressions.
12279 ///   2) Unknowns that are multiplied with AddRec expressions.
12280 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
12281     SmallVectorImpl<const SCEV *> &Terms) {
12282   SmallVector<const SCEV *, 4> Strides;
12283   SCEVCollectStrides StrideCollector(*this, Strides);
12284   visitAll(Expr, StrideCollector);
12285 
12286   LLVM_DEBUG({
12287     dbgs() << "Strides:\n";
12288     for (const SCEV *S : Strides)
12289       dbgs() << *S << "\n";
12290   });
12291 
12292   for (const SCEV *S : Strides) {
12293     SCEVCollectTerms TermCollector(Terms);
12294     visitAll(S, TermCollector);
12295   }
12296 
12297   LLVM_DEBUG({
12298     dbgs() << "Terms:\n";
12299     for (const SCEV *T : Terms)
12300       dbgs() << *T << "\n";
12301   });
12302 
12303   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
12304   visitAll(Expr, MulCollector);
12305 }
12306 
12307 static bool findArrayDimensionsRec(ScalarEvolution &SE,
12308                                    SmallVectorImpl<const SCEV *> &Terms,
12309                                    SmallVectorImpl<const SCEV *> &Sizes) {
12310   int Last = Terms.size() - 1;
12311   const SCEV *Step = Terms[Last];
12312 
12313   // End of recursion.
12314   if (Last == 0) {
12315     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
12316       SmallVector<const SCEV *, 2> Qs;
12317       for (const SCEV *Op : M->operands())
12318         if (!isa<SCEVConstant>(Op))
12319           Qs.push_back(Op);
12320 
12321       Step = SE.getMulExpr(Qs);
12322     }
12323 
12324     Sizes.push_back(Step);
12325     return true;
12326   }
12327 
12328   for (const SCEV *&Term : Terms) {
12329     // Normalize the terms before the next call to findArrayDimensionsRec.
12330     const SCEV *Q, *R;
12331     SCEVDivision::divide(SE, Term, Step, &Q, &R);
12332 
12333     // Bail out when GCD does not evenly divide one of the terms.
12334     if (!R->isZero())
12335       return false;
12336 
12337     Term = Q;
12338   }
12339 
12340   // Remove all SCEVConstants.
12341   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
12342 
12343   if (Terms.size() > 0)
12344     if (!findArrayDimensionsRec(SE, Terms, Sizes))
12345       return false;
12346 
12347   Sizes.push_back(Step);
12348   return true;
12349 }
12350 
12351 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
12352 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
12353   for (const SCEV *T : Terms)
12354     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
12355       return true;
12356 
12357   return false;
12358 }
12359 
12360 // Return the number of product terms in S.
12361 static inline int numberOfTerms(const SCEV *S) {
12362   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
12363     return Expr->getNumOperands();
12364   return 1;
12365 }
12366 
12367 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
12368   if (isa<SCEVConstant>(T))
12369     return nullptr;
12370 
12371   if (isa<SCEVUnknown>(T))
12372     return T;
12373 
12374   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
12375     SmallVector<const SCEV *, 2> Factors;
12376     for (const SCEV *Op : M->operands())
12377       if (!isa<SCEVConstant>(Op))
12378         Factors.push_back(Op);
12379 
12380     return SE.getMulExpr(Factors);
12381   }
12382 
12383   return T;
12384 }
12385 
12386 /// Return the size of an element read or written by Inst.
12387 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12388   Type *Ty;
12389   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12390     Ty = Store->getValueOperand()->getType();
12391   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12392     Ty = Load->getType();
12393   else
12394     return nullptr;
12395 
12396   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12397   return getSizeOfExpr(ETy, Ty);
12398 }
12399 
12400 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
12401                                           SmallVectorImpl<const SCEV *> &Sizes,
12402                                           const SCEV *ElementSize) {
12403   if (Terms.size() < 1 || !ElementSize)
12404     return;
12405 
12406   // Early return when Terms do not contain parameters: we do not delinearize
12407   // non parametric SCEVs.
12408   if (!containsParameters(Terms))
12409     return;
12410 
12411   LLVM_DEBUG({
12412     dbgs() << "Terms:\n";
12413     for (const SCEV *T : Terms)
12414       dbgs() << *T << "\n";
12415   });
12416 
12417   // Remove duplicates.
12418   array_pod_sort(Terms.begin(), Terms.end());
12419   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
12420 
12421   // Put larger terms first.
12422   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
12423     return numberOfTerms(LHS) > numberOfTerms(RHS);
12424   });
12425 
12426   // Try to divide all terms by the element size. If term is not divisible by
12427   // element size, proceed with the original term.
12428   for (const SCEV *&Term : Terms) {
12429     const SCEV *Q, *R;
12430     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
12431     if (!Q->isZero())
12432       Term = Q;
12433   }
12434 
12435   SmallVector<const SCEV *, 4> NewTerms;
12436 
12437   // Remove constant factors.
12438   for (const SCEV *T : Terms)
12439     if (const SCEV *NewT = removeConstantFactors(*this, T))
12440       NewTerms.push_back(NewT);
12441 
12442   LLVM_DEBUG({
12443     dbgs() << "Terms after sorting:\n";
12444     for (const SCEV *T : NewTerms)
12445       dbgs() << *T << "\n";
12446   });
12447 
12448   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
12449     Sizes.clear();
12450     return;
12451   }
12452 
12453   // The last element to be pushed into Sizes is the size of an element.
12454   Sizes.push_back(ElementSize);
12455 
12456   LLVM_DEBUG({
12457     dbgs() << "Sizes:\n";
12458     for (const SCEV *S : Sizes)
12459       dbgs() << *S << "\n";
12460   });
12461 }
12462 
12463 void ScalarEvolution::computeAccessFunctions(
12464     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
12465     SmallVectorImpl<const SCEV *> &Sizes) {
12466   // Early exit in case this SCEV is not an affine multivariate function.
12467   if (Sizes.empty())
12468     return;
12469 
12470   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
12471     if (!AR->isAffine())
12472       return;
12473 
12474   const SCEV *Res = Expr;
12475   int Last = Sizes.size() - 1;
12476   for (int i = Last; i >= 0; i--) {
12477     const SCEV *Q, *R;
12478     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
12479 
12480     LLVM_DEBUG({
12481       dbgs() << "Res: " << *Res << "\n";
12482       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
12483       dbgs() << "Res divided by Sizes[i]:\n";
12484       dbgs() << "Quotient: " << *Q << "\n";
12485       dbgs() << "Remainder: " << *R << "\n";
12486     });
12487 
12488     Res = Q;
12489 
12490     // Do not record the last subscript corresponding to the size of elements in
12491     // the array.
12492     if (i == Last) {
12493 
12494       // Bail out if the remainder is too complex.
12495       if (isa<SCEVAddRecExpr>(R)) {
12496         Subscripts.clear();
12497         Sizes.clear();
12498         return;
12499       }
12500 
12501       continue;
12502     }
12503 
12504     // Record the access function for the current subscript.
12505     Subscripts.push_back(R);
12506   }
12507 
12508   // Also push in last position the remainder of the last division: it will be
12509   // the access function of the innermost dimension.
12510   Subscripts.push_back(Res);
12511 
12512   std::reverse(Subscripts.begin(), Subscripts.end());
12513 
12514   LLVM_DEBUG({
12515     dbgs() << "Subscripts:\n";
12516     for (const SCEV *S : Subscripts)
12517       dbgs() << *S << "\n";
12518   });
12519 }
12520 
12521 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
12522 /// sizes of an array access. Returns the remainder of the delinearization that
12523 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
12524 /// the multiples of SCEV coefficients: that is a pattern matching of sub
12525 /// expressions in the stride and base of a SCEV corresponding to the
12526 /// computation of a GCD (greatest common divisor) of base and stride.  When
12527 /// SCEV->delinearize fails, it returns the SCEV unchanged.
12528 ///
12529 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
12530 ///
12531 ///  void foo(long n, long m, long o, double A[n][m][o]) {
12532 ///
12533 ///    for (long i = 0; i < n; i++)
12534 ///      for (long j = 0; j < m; j++)
12535 ///        for (long k = 0; k < o; k++)
12536 ///          A[i][j][k] = 1.0;
12537 ///  }
12538 ///
12539 /// the delinearization input is the following AddRec SCEV:
12540 ///
12541 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12542 ///
12543 /// From this SCEV, we are able to say that the base offset of the access is %A
12544 /// because it appears as an offset that does not divide any of the strides in
12545 /// the loops:
12546 ///
12547 ///  CHECK: Base offset: %A
12548 ///
12549 /// and then SCEV->delinearize determines the size of some of the dimensions of
12550 /// the array as these are the multiples by which the strides are happening:
12551 ///
12552 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12553 ///
12554 /// Note that the outermost dimension remains of UnknownSize because there are
12555 /// no strides that would help identifying the size of the last dimension: when
12556 /// the array has been statically allocated, one could compute the size of that
12557 /// dimension by dividing the overall size of the array by the size of the known
12558 /// dimensions: %m * %o * 8.
12559 ///
12560 /// Finally delinearize provides the access functions for the array reference
12561 /// that does correspond to A[i][j][k] of the above C testcase:
12562 ///
12563 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12564 ///
12565 /// The testcases are checking the output of a function pass:
12566 /// DelinearizationPass that walks through all loads and stores of a function
12567 /// asking for the SCEV of the memory access with respect to all enclosing
12568 /// loops, calling SCEV->delinearize on that and printing the results.
12569 void ScalarEvolution::delinearize(const SCEV *Expr,
12570                                  SmallVectorImpl<const SCEV *> &Subscripts,
12571                                  SmallVectorImpl<const SCEV *> &Sizes,
12572                                  const SCEV *ElementSize) {
12573   // First step: collect parametric terms.
12574   SmallVector<const SCEV *, 4> Terms;
12575   collectParametricTerms(Expr, Terms);
12576 
12577   if (Terms.empty())
12578     return;
12579 
12580   // Second step: find subscript sizes.
12581   findArrayDimensions(Terms, Sizes, ElementSize);
12582 
12583   if (Sizes.empty())
12584     return;
12585 
12586   // Third step: compute the access functions for each subscript.
12587   computeAccessFunctions(Expr, Subscripts, Sizes);
12588 
12589   if (Subscripts.empty())
12590     return;
12591 
12592   LLVM_DEBUG({
12593     dbgs() << "succeeded to delinearize " << *Expr << "\n";
12594     dbgs() << "ArrayDecl[UnknownSize]";
12595     for (const SCEV *S : Sizes)
12596       dbgs() << "[" << *S << "]";
12597 
12598     dbgs() << "\nArrayRef";
12599     for (const SCEV *S : Subscripts)
12600       dbgs() << "[" << *S << "]";
12601     dbgs() << "\n";
12602   });
12603 }
12604 
12605 bool ScalarEvolution::getIndexExpressionsFromGEP(
12606     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12607     SmallVectorImpl<int> &Sizes) {
12608   assert(Subscripts.empty() && Sizes.empty() &&
12609          "Expected output lists to be empty on entry to this function.");
12610   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12611   Type *Ty = nullptr;
12612   bool DroppedFirstDim = false;
12613   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12614     const SCEV *Expr = getSCEV(GEP->getOperand(i));
12615     if (i == 1) {
12616       Ty = GEP->getSourceElementType();
12617       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12618         if (Const->getValue()->isZero()) {
12619           DroppedFirstDim = true;
12620           continue;
12621         }
12622       Subscripts.push_back(Expr);
12623       continue;
12624     }
12625 
12626     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12627     if (!ArrayTy) {
12628       Subscripts.clear();
12629       Sizes.clear();
12630       return false;
12631     }
12632 
12633     Subscripts.push_back(Expr);
12634     if (!(DroppedFirstDim && i == 2))
12635       Sizes.push_back(ArrayTy->getNumElements());
12636 
12637     Ty = ArrayTy->getElementType();
12638   }
12639   return !Subscripts.empty();
12640 }
12641 
12642 //===----------------------------------------------------------------------===//
12643 //                   SCEVCallbackVH Class Implementation
12644 //===----------------------------------------------------------------------===//
12645 
12646 void ScalarEvolution::SCEVCallbackVH::deleted() {
12647   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12648   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12649     SE->ConstantEvolutionLoopExitValue.erase(PN);
12650   SE->eraseValueFromMap(getValPtr());
12651   // this now dangles!
12652 }
12653 
12654 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12655   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12656 
12657   // Forget all the expressions associated with users of the old value,
12658   // so that future queries will recompute the expressions using the new
12659   // value.
12660   Value *Old = getValPtr();
12661   SmallVector<User *, 16> Worklist(Old->users());
12662   SmallPtrSet<User *, 8> Visited;
12663   while (!Worklist.empty()) {
12664     User *U = Worklist.pop_back_val();
12665     // Deleting the Old value will cause this to dangle. Postpone
12666     // that until everything else is done.
12667     if (U == Old)
12668       continue;
12669     if (!Visited.insert(U).second)
12670       continue;
12671     if (PHINode *PN = dyn_cast<PHINode>(U))
12672       SE->ConstantEvolutionLoopExitValue.erase(PN);
12673     SE->eraseValueFromMap(U);
12674     llvm::append_range(Worklist, U->users());
12675   }
12676   // Delete the Old value.
12677   if (PHINode *PN = dyn_cast<PHINode>(Old))
12678     SE->ConstantEvolutionLoopExitValue.erase(PN);
12679   SE->eraseValueFromMap(Old);
12680   // this now dangles!
12681 }
12682 
12683 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12684   : CallbackVH(V), SE(se) {}
12685 
12686 //===----------------------------------------------------------------------===//
12687 //                   ScalarEvolution Class Implementation
12688 //===----------------------------------------------------------------------===//
12689 
12690 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12691                                  AssumptionCache &AC, DominatorTree &DT,
12692                                  LoopInfo &LI)
12693     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12694       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12695       LoopDispositions(64), BlockDispositions(64) {
12696   // To use guards for proving predicates, we need to scan every instruction in
12697   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12698   // time if the IR does not actually contain any calls to
12699   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12700   //
12701   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12702   // to _add_ guards to the module when there weren't any before, and wants
12703   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12704   // efficient in lieu of being smart in that rather obscure case.
12705 
12706   auto *GuardDecl = F.getParent()->getFunction(
12707       Intrinsic::getName(Intrinsic::experimental_guard));
12708   HasGuards = GuardDecl && !GuardDecl->use_empty();
12709 }
12710 
12711 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12712     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12713       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12714       ValueExprMap(std::move(Arg.ValueExprMap)),
12715       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12716       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12717       PendingMerges(std::move(Arg.PendingMerges)),
12718       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12719       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12720       PredicatedBackedgeTakenCounts(
12721           std::move(Arg.PredicatedBackedgeTakenCounts)),
12722       ConstantEvolutionLoopExitValue(
12723           std::move(Arg.ConstantEvolutionLoopExitValue)),
12724       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12725       LoopDispositions(std::move(Arg.LoopDispositions)),
12726       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12727       BlockDispositions(std::move(Arg.BlockDispositions)),
12728       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12729       SignedRanges(std::move(Arg.SignedRanges)),
12730       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12731       UniquePreds(std::move(Arg.UniquePreds)),
12732       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12733       LoopUsers(std::move(Arg.LoopUsers)),
12734       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12735       FirstUnknown(Arg.FirstUnknown) {
12736   Arg.FirstUnknown = nullptr;
12737 }
12738 
12739 ScalarEvolution::~ScalarEvolution() {
12740   // Iterate through all the SCEVUnknown instances and call their
12741   // destructors, so that they release their references to their values.
12742   for (SCEVUnknown *U = FirstUnknown; U;) {
12743     SCEVUnknown *Tmp = U;
12744     U = U->Next;
12745     Tmp->~SCEVUnknown();
12746   }
12747   FirstUnknown = nullptr;
12748 
12749   ExprValueMap.clear();
12750   ValueExprMap.clear();
12751   HasRecMap.clear();
12752   BackedgeTakenCounts.clear();
12753   PredicatedBackedgeTakenCounts.clear();
12754 
12755   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12756   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12757   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12758   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12759   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12760 }
12761 
12762 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12763   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12764 }
12765 
12766 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12767                           const Loop *L) {
12768   // Print all inner loops first
12769   for (Loop *I : *L)
12770     PrintLoopInfo(OS, SE, I);
12771 
12772   OS << "Loop ";
12773   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12774   OS << ": ";
12775 
12776   SmallVector<BasicBlock *, 8> ExitingBlocks;
12777   L->getExitingBlocks(ExitingBlocks);
12778   if (ExitingBlocks.size() != 1)
12779     OS << "<multiple exits> ";
12780 
12781   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12782     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12783   else
12784     OS << "Unpredictable backedge-taken count.\n";
12785 
12786   if (ExitingBlocks.size() > 1)
12787     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12788       OS << "  exit count for " << ExitingBlock->getName() << ": "
12789          << *SE->getExitCount(L, ExitingBlock) << "\n";
12790     }
12791 
12792   OS << "Loop ";
12793   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12794   OS << ": ";
12795 
12796   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12797     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12798     if (SE->isBackedgeTakenCountMaxOrZero(L))
12799       OS << ", actual taken count either this or zero.";
12800   } else {
12801     OS << "Unpredictable max backedge-taken count. ";
12802   }
12803 
12804   OS << "\n"
12805         "Loop ";
12806   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12807   OS << ": ";
12808 
12809   SCEVUnionPredicate Pred;
12810   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12811   if (!isa<SCEVCouldNotCompute>(PBT)) {
12812     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12813     OS << " Predicates:\n";
12814     Pred.print(OS, 4);
12815   } else {
12816     OS << "Unpredictable predicated backedge-taken count. ";
12817   }
12818   OS << "\n";
12819 
12820   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12821     OS << "Loop ";
12822     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12823     OS << ": ";
12824     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12825   }
12826 }
12827 
12828 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12829   switch (LD) {
12830   case ScalarEvolution::LoopVariant:
12831     return "Variant";
12832   case ScalarEvolution::LoopInvariant:
12833     return "Invariant";
12834   case ScalarEvolution::LoopComputable:
12835     return "Computable";
12836   }
12837   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12838 }
12839 
12840 void ScalarEvolution::print(raw_ostream &OS) const {
12841   // ScalarEvolution's implementation of the print method is to print
12842   // out SCEV values of all instructions that are interesting. Doing
12843   // this potentially causes it to create new SCEV objects though,
12844   // which technically conflicts with the const qualifier. This isn't
12845   // observable from outside the class though, so casting away the
12846   // const isn't dangerous.
12847   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12848 
12849   if (ClassifyExpressions) {
12850     OS << "Classifying expressions for: ";
12851     F.printAsOperand(OS, /*PrintType=*/false);
12852     OS << "\n";
12853     for (Instruction &I : instructions(F))
12854       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12855         OS << I << '\n';
12856         OS << "  -->  ";
12857         const SCEV *SV = SE.getSCEV(&I);
12858         SV->print(OS);
12859         if (!isa<SCEVCouldNotCompute>(SV)) {
12860           OS << " U: ";
12861           SE.getUnsignedRange(SV).print(OS);
12862           OS << " S: ";
12863           SE.getSignedRange(SV).print(OS);
12864         }
12865 
12866         const Loop *L = LI.getLoopFor(I.getParent());
12867 
12868         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12869         if (AtUse != SV) {
12870           OS << "  -->  ";
12871           AtUse->print(OS);
12872           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12873             OS << " U: ";
12874             SE.getUnsignedRange(AtUse).print(OS);
12875             OS << " S: ";
12876             SE.getSignedRange(AtUse).print(OS);
12877           }
12878         }
12879 
12880         if (L) {
12881           OS << "\t\t" "Exits: ";
12882           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12883           if (!SE.isLoopInvariant(ExitValue, L)) {
12884             OS << "<<Unknown>>";
12885           } else {
12886             OS << *ExitValue;
12887           }
12888 
12889           bool First = true;
12890           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12891             if (First) {
12892               OS << "\t\t" "LoopDispositions: { ";
12893               First = false;
12894             } else {
12895               OS << ", ";
12896             }
12897 
12898             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12899             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12900           }
12901 
12902           for (auto *InnerL : depth_first(L)) {
12903             if (InnerL == L)
12904               continue;
12905             if (First) {
12906               OS << "\t\t" "LoopDispositions: { ";
12907               First = false;
12908             } else {
12909               OS << ", ";
12910             }
12911 
12912             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12913             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12914           }
12915 
12916           OS << " }";
12917         }
12918 
12919         OS << "\n";
12920       }
12921   }
12922 
12923   OS << "Determining loop execution counts for: ";
12924   F.printAsOperand(OS, /*PrintType=*/false);
12925   OS << "\n";
12926   for (Loop *I : LI)
12927     PrintLoopInfo(OS, &SE, I);
12928 }
12929 
12930 ScalarEvolution::LoopDisposition
12931 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12932   auto &Values = LoopDispositions[S];
12933   for (auto &V : Values) {
12934     if (V.getPointer() == L)
12935       return V.getInt();
12936   }
12937   Values.emplace_back(L, LoopVariant);
12938   LoopDisposition D = computeLoopDisposition(S, L);
12939   auto &Values2 = LoopDispositions[S];
12940   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12941     if (V.getPointer() == L) {
12942       V.setInt(D);
12943       break;
12944     }
12945   }
12946   return D;
12947 }
12948 
12949 ScalarEvolution::LoopDisposition
12950 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12951   switch (S->getSCEVType()) {
12952   case scConstant:
12953     return LoopInvariant;
12954   case scPtrToInt:
12955   case scTruncate:
12956   case scZeroExtend:
12957   case scSignExtend:
12958     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12959   case scAddRecExpr: {
12960     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12961 
12962     // If L is the addrec's loop, it's computable.
12963     if (AR->getLoop() == L)
12964       return LoopComputable;
12965 
12966     // Add recurrences are never invariant in the function-body (null loop).
12967     if (!L)
12968       return LoopVariant;
12969 
12970     // Everything that is not defined at loop entry is variant.
12971     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12972       return LoopVariant;
12973     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12974            " dominate the contained loop's header?");
12975 
12976     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12977     if (AR->getLoop()->contains(L))
12978       return LoopInvariant;
12979 
12980     // This recurrence is variant w.r.t. L if any of its operands
12981     // are variant.
12982     for (auto *Op : AR->operands())
12983       if (!isLoopInvariant(Op, L))
12984         return LoopVariant;
12985 
12986     // Otherwise it's loop-invariant.
12987     return LoopInvariant;
12988   }
12989   case scAddExpr:
12990   case scMulExpr:
12991   case scUMaxExpr:
12992   case scSMaxExpr:
12993   case scUMinExpr:
12994   case scSMinExpr: {
12995     bool HasVarying = false;
12996     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12997       LoopDisposition D = getLoopDisposition(Op, L);
12998       if (D == LoopVariant)
12999         return LoopVariant;
13000       if (D == LoopComputable)
13001         HasVarying = true;
13002     }
13003     return HasVarying ? LoopComputable : LoopInvariant;
13004   }
13005   case scUDivExpr: {
13006     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13007     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13008     if (LD == LoopVariant)
13009       return LoopVariant;
13010     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13011     if (RD == LoopVariant)
13012       return LoopVariant;
13013     return (LD == LoopInvariant && RD == LoopInvariant) ?
13014            LoopInvariant : LoopComputable;
13015   }
13016   case scUnknown:
13017     // All non-instruction values are loop invariant.  All instructions are loop
13018     // invariant if they are not contained in the specified loop.
13019     // Instructions are never considered invariant in the function body
13020     // (null loop) because they are defined within the "loop".
13021     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13022       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13023     return LoopInvariant;
13024   case scCouldNotCompute:
13025     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13026   }
13027   llvm_unreachable("Unknown SCEV kind!");
13028 }
13029 
13030 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13031   return getLoopDisposition(S, L) == LoopInvariant;
13032 }
13033 
13034 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13035   return getLoopDisposition(S, L) == LoopComputable;
13036 }
13037 
13038 ScalarEvolution::BlockDisposition
13039 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13040   auto &Values = BlockDispositions[S];
13041   for (auto &V : Values) {
13042     if (V.getPointer() == BB)
13043       return V.getInt();
13044   }
13045   Values.emplace_back(BB, DoesNotDominateBlock);
13046   BlockDisposition D = computeBlockDisposition(S, BB);
13047   auto &Values2 = BlockDispositions[S];
13048   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
13049     if (V.getPointer() == BB) {
13050       V.setInt(D);
13051       break;
13052     }
13053   }
13054   return D;
13055 }
13056 
13057 ScalarEvolution::BlockDisposition
13058 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13059   switch (S->getSCEVType()) {
13060   case scConstant:
13061     return ProperlyDominatesBlock;
13062   case scPtrToInt:
13063   case scTruncate:
13064   case scZeroExtend:
13065   case scSignExtend:
13066     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13067   case scAddRecExpr: {
13068     // This uses a "dominates" query instead of "properly dominates" query
13069     // to test for proper dominance too, because the instruction which
13070     // produces the addrec's value is a PHI, and a PHI effectively properly
13071     // dominates its entire containing block.
13072     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13073     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13074       return DoesNotDominateBlock;
13075 
13076     // Fall through into SCEVNAryExpr handling.
13077     LLVM_FALLTHROUGH;
13078   }
13079   case scAddExpr:
13080   case scMulExpr:
13081   case scUMaxExpr:
13082   case scSMaxExpr:
13083   case scUMinExpr:
13084   case scSMinExpr: {
13085     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13086     bool Proper = true;
13087     for (const SCEV *NAryOp : NAry->operands()) {
13088       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13089       if (D == DoesNotDominateBlock)
13090         return DoesNotDominateBlock;
13091       if (D == DominatesBlock)
13092         Proper = false;
13093     }
13094     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13095   }
13096   case scUDivExpr: {
13097     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13098     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13099     BlockDisposition LD = getBlockDisposition(LHS, BB);
13100     if (LD == DoesNotDominateBlock)
13101       return DoesNotDominateBlock;
13102     BlockDisposition RD = getBlockDisposition(RHS, BB);
13103     if (RD == DoesNotDominateBlock)
13104       return DoesNotDominateBlock;
13105     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13106       ProperlyDominatesBlock : DominatesBlock;
13107   }
13108   case scUnknown:
13109     if (Instruction *I =
13110           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13111       if (I->getParent() == BB)
13112         return DominatesBlock;
13113       if (DT.properlyDominates(I->getParent(), BB))
13114         return ProperlyDominatesBlock;
13115       return DoesNotDominateBlock;
13116     }
13117     return ProperlyDominatesBlock;
13118   case scCouldNotCompute:
13119     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13120   }
13121   llvm_unreachable("Unknown SCEV kind!");
13122 }
13123 
13124 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13125   return getBlockDisposition(S, BB) >= DominatesBlock;
13126 }
13127 
13128 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13129   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13130 }
13131 
13132 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13133   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13134 }
13135 
13136 void
13137 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
13138   ValuesAtScopes.erase(S);
13139   LoopDispositions.erase(S);
13140   BlockDispositions.erase(S);
13141   UnsignedRanges.erase(S);
13142   SignedRanges.erase(S);
13143   ExprValueMap.erase(S);
13144   HasRecMap.erase(S);
13145   MinTrailingZerosCache.erase(S);
13146 
13147   for (auto I = PredicatedSCEVRewrites.begin();
13148        I != PredicatedSCEVRewrites.end();) {
13149     std::pair<const SCEV *, const Loop *> Entry = I->first;
13150     if (Entry.first == S)
13151       PredicatedSCEVRewrites.erase(I++);
13152     else
13153       ++I;
13154   }
13155 
13156   auto RemoveSCEVFromBackedgeMap =
13157       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
13158         for (auto I = Map.begin(), E = Map.end(); I != E;) {
13159           BackedgeTakenInfo &BEInfo = I->second;
13160           if (BEInfo.hasOperand(S))
13161             Map.erase(I++);
13162           else
13163             ++I;
13164         }
13165       };
13166 
13167   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
13168   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
13169 }
13170 
13171 void
13172 ScalarEvolution::getUsedLoops(const SCEV *S,
13173                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13174   struct FindUsedLoops {
13175     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13176         : LoopsUsed(LoopsUsed) {}
13177     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13178     bool follow(const SCEV *S) {
13179       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13180         LoopsUsed.insert(AR->getLoop());
13181       return true;
13182     }
13183 
13184     bool isDone() const { return false; }
13185   };
13186 
13187   FindUsedLoops F(LoopsUsed);
13188   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13189 }
13190 
13191 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
13192   SmallPtrSet<const Loop *, 8> LoopsUsed;
13193   getUsedLoops(S, LoopsUsed);
13194   for (auto *L : LoopsUsed)
13195     LoopUsers[L].push_back(S);
13196 }
13197 
13198 void ScalarEvolution::verify() const {
13199   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13200   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13201 
13202   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13203 
13204   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13205   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13206     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13207 
13208     const SCEV *visitConstant(const SCEVConstant *Constant) {
13209       return SE.getConstant(Constant->getAPInt());
13210     }
13211 
13212     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13213       return SE.getUnknown(Expr->getValue());
13214     }
13215 
13216     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13217       return SE.getCouldNotCompute();
13218     }
13219   };
13220 
13221   SCEVMapper SCM(SE2);
13222 
13223   while (!LoopStack.empty()) {
13224     auto *L = LoopStack.pop_back_val();
13225     llvm::append_range(LoopStack, *L);
13226 
13227     auto *CurBECount = SCM.visit(
13228         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13229     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13230 
13231     if (CurBECount == SE2.getCouldNotCompute() ||
13232         NewBECount == SE2.getCouldNotCompute()) {
13233       // NB! This situation is legal, but is very suspicious -- whatever pass
13234       // change the loop to make a trip count go from could not compute to
13235       // computable or vice-versa *should have* invalidated SCEV.  However, we
13236       // choose not to assert here (for now) since we don't want false
13237       // positives.
13238       continue;
13239     }
13240 
13241     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13242       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13243       // not propagate undef aggressively).  This means we can (and do) fail
13244       // verification in cases where a transform makes the trip count of a loop
13245       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13246       // both cases the loop iterates "undef" times, but SCEV thinks we
13247       // increased the trip count of the loop by 1 incorrectly.
13248       continue;
13249     }
13250 
13251     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13252         SE.getTypeSizeInBits(NewBECount->getType()))
13253       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13254     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13255              SE.getTypeSizeInBits(NewBECount->getType()))
13256       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13257 
13258     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13259 
13260     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13261     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13262       dbgs() << "Trip Count for " << *L << " Changed!\n";
13263       dbgs() << "Old: " << *CurBECount << "\n";
13264       dbgs() << "New: " << *NewBECount << "\n";
13265       dbgs() << "Delta: " << *Delta << "\n";
13266       std::abort();
13267     }
13268   }
13269 
13270   // Collect all valid loops currently in LoopInfo.
13271   SmallPtrSet<Loop *, 32> ValidLoops;
13272   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13273   while (!Worklist.empty()) {
13274     Loop *L = Worklist.pop_back_val();
13275     if (ValidLoops.contains(L))
13276       continue;
13277     ValidLoops.insert(L);
13278     Worklist.append(L->begin(), L->end());
13279   }
13280   // Check for SCEV expressions referencing invalid/deleted loops.
13281   for (auto &KV : ValueExprMap) {
13282     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
13283     if (!AR)
13284       continue;
13285     assert(ValidLoops.contains(AR->getLoop()) &&
13286            "AddRec references invalid loop");
13287   }
13288 }
13289 
13290 bool ScalarEvolution::invalidate(
13291     Function &F, const PreservedAnalyses &PA,
13292     FunctionAnalysisManager::Invalidator &Inv) {
13293   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13294   // of its dependencies is invalidated.
13295   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13296   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13297          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13298          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13299          Inv.invalidate<LoopAnalysis>(F, PA);
13300 }
13301 
13302 AnalysisKey ScalarEvolutionAnalysis::Key;
13303 
13304 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13305                                              FunctionAnalysisManager &AM) {
13306   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13307                          AM.getResult<AssumptionAnalysis>(F),
13308                          AM.getResult<DominatorTreeAnalysis>(F),
13309                          AM.getResult<LoopAnalysis>(F));
13310 }
13311 
13312 PreservedAnalyses
13313 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13314   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13315   return PreservedAnalyses::all();
13316 }
13317 
13318 PreservedAnalyses
13319 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13320   // For compatibility with opt's -analyze feature under legacy pass manager
13321   // which was not ported to NPM. This keeps tests using
13322   // update_analyze_test_checks.py working.
13323   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13324      << F.getName() << "':\n";
13325   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13326   return PreservedAnalyses::all();
13327 }
13328 
13329 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13330                       "Scalar Evolution Analysis", false, true)
13331 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13332 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13333 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13334 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13335 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13336                     "Scalar Evolution Analysis", false, true)
13337 
13338 char ScalarEvolutionWrapperPass::ID = 0;
13339 
13340 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13341   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13342 }
13343 
13344 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13345   SE.reset(new ScalarEvolution(
13346       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13347       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13348       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13349       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13350   return false;
13351 }
13352 
13353 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13354 
13355 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13356   SE->print(OS);
13357 }
13358 
13359 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13360   if (!VerifySCEV)
13361     return;
13362 
13363   SE->verify();
13364 }
13365 
13366 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13367   AU.setPreservesAll();
13368   AU.addRequiredTransitive<AssumptionCacheTracker>();
13369   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13370   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13371   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13372 }
13373 
13374 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13375                                                         const SCEV *RHS) {
13376   FoldingSetNodeID ID;
13377   assert(LHS->getType() == RHS->getType() &&
13378          "Type mismatch between LHS and RHS");
13379   // Unique this node based on the arguments
13380   ID.AddInteger(SCEVPredicate::P_Equal);
13381   ID.AddPointer(LHS);
13382   ID.AddPointer(RHS);
13383   void *IP = nullptr;
13384   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13385     return S;
13386   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13387       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13388   UniquePreds.InsertNode(Eq, IP);
13389   return Eq;
13390 }
13391 
13392 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13393     const SCEVAddRecExpr *AR,
13394     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13395   FoldingSetNodeID ID;
13396   // Unique this node based on the arguments
13397   ID.AddInteger(SCEVPredicate::P_Wrap);
13398   ID.AddPointer(AR);
13399   ID.AddInteger(AddedFlags);
13400   void *IP = nullptr;
13401   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13402     return S;
13403   auto *OF = new (SCEVAllocator)
13404       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13405   UniquePreds.InsertNode(OF, IP);
13406   return OF;
13407 }
13408 
13409 namespace {
13410 
13411 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13412 public:
13413 
13414   /// Rewrites \p S in the context of a loop L and the SCEV predication
13415   /// infrastructure.
13416   ///
13417   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13418   /// equivalences present in \p Pred.
13419   ///
13420   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13421   /// \p NewPreds such that the result will be an AddRecExpr.
13422   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13423                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13424                              SCEVUnionPredicate *Pred) {
13425     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13426     return Rewriter.visit(S);
13427   }
13428 
13429   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13430     if (Pred) {
13431       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13432       for (auto *Pred : ExprPreds)
13433         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13434           if (IPred->getLHS() == Expr)
13435             return IPred->getRHS();
13436     }
13437     return convertToAddRecWithPreds(Expr);
13438   }
13439 
13440   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13441     const SCEV *Operand = visit(Expr->getOperand());
13442     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13443     if (AR && AR->getLoop() == L && AR->isAffine()) {
13444       // This couldn't be folded because the operand didn't have the nuw
13445       // flag. Add the nusw flag as an assumption that we could make.
13446       const SCEV *Step = AR->getStepRecurrence(SE);
13447       Type *Ty = Expr->getType();
13448       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13449         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13450                                 SE.getSignExtendExpr(Step, Ty), L,
13451                                 AR->getNoWrapFlags());
13452     }
13453     return SE.getZeroExtendExpr(Operand, Expr->getType());
13454   }
13455 
13456   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13457     const SCEV *Operand = visit(Expr->getOperand());
13458     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13459     if (AR && AR->getLoop() == L && AR->isAffine()) {
13460       // This couldn't be folded because the operand didn't have the nsw
13461       // flag. Add the nssw flag as an assumption that we could make.
13462       const SCEV *Step = AR->getStepRecurrence(SE);
13463       Type *Ty = Expr->getType();
13464       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13465         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13466                                 SE.getSignExtendExpr(Step, Ty), L,
13467                                 AR->getNoWrapFlags());
13468     }
13469     return SE.getSignExtendExpr(Operand, Expr->getType());
13470   }
13471 
13472 private:
13473   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13474                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13475                         SCEVUnionPredicate *Pred)
13476       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13477 
13478   bool addOverflowAssumption(const SCEVPredicate *P) {
13479     if (!NewPreds) {
13480       // Check if we've already made this assumption.
13481       return Pred && Pred->implies(P);
13482     }
13483     NewPreds->insert(P);
13484     return true;
13485   }
13486 
13487   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13488                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13489     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13490     return addOverflowAssumption(A);
13491   }
13492 
13493   // If \p Expr represents a PHINode, we try to see if it can be represented
13494   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13495   // to add this predicate as a runtime overflow check, we return the AddRec.
13496   // If \p Expr does not meet these conditions (is not a PHI node, or we
13497   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13498   // return \p Expr.
13499   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13500     if (!isa<PHINode>(Expr->getValue()))
13501       return Expr;
13502     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13503     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13504     if (!PredicatedRewrite)
13505       return Expr;
13506     for (auto *P : PredicatedRewrite->second){
13507       // Wrap predicates from outer loops are not supported.
13508       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13509         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13510         if (L != AR->getLoop())
13511           return Expr;
13512       }
13513       if (!addOverflowAssumption(P))
13514         return Expr;
13515     }
13516     return PredicatedRewrite->first;
13517   }
13518 
13519   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13520   SCEVUnionPredicate *Pred;
13521   const Loop *L;
13522 };
13523 
13524 } // end anonymous namespace
13525 
13526 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13527                                                    SCEVUnionPredicate &Preds) {
13528   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13529 }
13530 
13531 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13532     const SCEV *S, const Loop *L,
13533     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13534   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13535   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13536   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13537 
13538   if (!AddRec)
13539     return nullptr;
13540 
13541   // Since the transformation was successful, we can now transfer the SCEV
13542   // predicates.
13543   for (auto *P : TransformPreds)
13544     Preds.insert(P);
13545 
13546   return AddRec;
13547 }
13548 
13549 /// SCEV predicates
13550 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13551                              SCEVPredicateKind Kind)
13552     : FastID(ID), Kind(Kind) {}
13553 
13554 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13555                                        const SCEV *LHS, const SCEV *RHS)
13556     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13557   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13558   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13559 }
13560 
13561 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13562   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13563 
13564   if (!Op)
13565     return false;
13566 
13567   return Op->LHS == LHS && Op->RHS == RHS;
13568 }
13569 
13570 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13571 
13572 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13573 
13574 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13575   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13576 }
13577 
13578 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13579                                      const SCEVAddRecExpr *AR,
13580                                      IncrementWrapFlags Flags)
13581     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13582 
13583 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13584 
13585 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13586   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13587 
13588   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13589 }
13590 
13591 bool SCEVWrapPredicate::isAlwaysTrue() const {
13592   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13593   IncrementWrapFlags IFlags = Flags;
13594 
13595   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13596     IFlags = clearFlags(IFlags, IncrementNSSW);
13597 
13598   return IFlags == IncrementAnyWrap;
13599 }
13600 
13601 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13602   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13603   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13604     OS << "<nusw>";
13605   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13606     OS << "<nssw>";
13607   OS << "\n";
13608 }
13609 
13610 SCEVWrapPredicate::IncrementWrapFlags
13611 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13612                                    ScalarEvolution &SE) {
13613   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13614   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13615 
13616   // We can safely transfer the NSW flag as NSSW.
13617   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13618     ImpliedFlags = IncrementNSSW;
13619 
13620   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13621     // If the increment is positive, the SCEV NUW flag will also imply the
13622     // WrapPredicate NUSW flag.
13623     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13624       if (Step->getValue()->getValue().isNonNegative())
13625         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13626   }
13627 
13628   return ImpliedFlags;
13629 }
13630 
13631 /// Union predicates don't get cached so create a dummy set ID for it.
13632 SCEVUnionPredicate::SCEVUnionPredicate()
13633     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13634 
13635 bool SCEVUnionPredicate::isAlwaysTrue() const {
13636   return all_of(Preds,
13637                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13638 }
13639 
13640 ArrayRef<const SCEVPredicate *>
13641 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13642   auto I = SCEVToPreds.find(Expr);
13643   if (I == SCEVToPreds.end())
13644     return ArrayRef<const SCEVPredicate *>();
13645   return I->second;
13646 }
13647 
13648 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13649   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13650     return all_of(Set->Preds,
13651                   [this](const SCEVPredicate *I) { return this->implies(I); });
13652 
13653   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13654   if (ScevPredsIt == SCEVToPreds.end())
13655     return false;
13656   auto &SCEVPreds = ScevPredsIt->second;
13657 
13658   return any_of(SCEVPreds,
13659                 [N](const SCEVPredicate *I) { return I->implies(N); });
13660 }
13661 
13662 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13663 
13664 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13665   for (auto Pred : Preds)
13666     Pred->print(OS, Depth);
13667 }
13668 
13669 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13670   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13671     for (auto Pred : Set->Preds)
13672       add(Pred);
13673     return;
13674   }
13675 
13676   if (implies(N))
13677     return;
13678 
13679   const SCEV *Key = N->getExpr();
13680   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13681                 " associated expression!");
13682 
13683   SCEVToPreds[Key].push_back(N);
13684   Preds.push_back(N);
13685 }
13686 
13687 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13688                                                      Loop &L)
13689     : SE(SE), L(L) {}
13690 
13691 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13692   const SCEV *Expr = SE.getSCEV(V);
13693   RewriteEntry &Entry = RewriteMap[Expr];
13694 
13695   // If we already have an entry and the version matches, return it.
13696   if (Entry.second && Generation == Entry.first)
13697     return Entry.second;
13698 
13699   // We found an entry but it's stale. Rewrite the stale entry
13700   // according to the current predicate.
13701   if (Entry.second)
13702     Expr = Entry.second;
13703 
13704   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13705   Entry = {Generation, NewSCEV};
13706 
13707   return NewSCEV;
13708 }
13709 
13710 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13711   if (!BackedgeCount) {
13712     SCEVUnionPredicate BackedgePred;
13713     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13714     addPredicate(BackedgePred);
13715   }
13716   return BackedgeCount;
13717 }
13718 
13719 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13720   if (Preds.implies(&Pred))
13721     return;
13722   Preds.add(&Pred);
13723   updateGeneration();
13724 }
13725 
13726 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13727   return Preds;
13728 }
13729 
13730 void PredicatedScalarEvolution::updateGeneration() {
13731   // If the generation number wrapped recompute everything.
13732   if (++Generation == 0) {
13733     for (auto &II : RewriteMap) {
13734       const SCEV *Rewritten = II.second.second;
13735       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13736     }
13737   }
13738 }
13739 
13740 void PredicatedScalarEvolution::setNoOverflow(
13741     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13742   const SCEV *Expr = getSCEV(V);
13743   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13744 
13745   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13746 
13747   // Clear the statically implied flags.
13748   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13749   addPredicate(*SE.getWrapPredicate(AR, Flags));
13750 
13751   auto II = FlagsMap.insert({V, Flags});
13752   if (!II.second)
13753     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13754 }
13755 
13756 bool PredicatedScalarEvolution::hasNoOverflow(
13757     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13758   const SCEV *Expr = getSCEV(V);
13759   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13760 
13761   Flags = SCEVWrapPredicate::clearFlags(
13762       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13763 
13764   auto II = FlagsMap.find(V);
13765 
13766   if (II != FlagsMap.end())
13767     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13768 
13769   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13770 }
13771 
13772 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13773   const SCEV *Expr = this->getSCEV(V);
13774   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13775   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13776 
13777   if (!New)
13778     return nullptr;
13779 
13780   for (auto *P : NewPreds)
13781     Preds.add(P);
13782 
13783   updateGeneration();
13784   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13785   return New;
13786 }
13787 
13788 PredicatedScalarEvolution::PredicatedScalarEvolution(
13789     const PredicatedScalarEvolution &Init)
13790     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13791       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13792   for (auto I : Init.FlagsMap)
13793     FlagsMap.insert(I);
13794 }
13795 
13796 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13797   // For each block.
13798   for (auto *BB : L.getBlocks())
13799     for (auto &I : *BB) {
13800       if (!SE.isSCEVable(I.getType()))
13801         continue;
13802 
13803       auto *Expr = SE.getSCEV(&I);
13804       auto II = RewriteMap.find(Expr);
13805 
13806       if (II == RewriteMap.end())
13807         continue;
13808 
13809       // Don't print things that are not interesting.
13810       if (II->second.second == Expr)
13811         continue;
13812 
13813       OS.indent(Depth) << "[PSE]" << I << ":\n";
13814       OS.indent(Depth + 2) << *Expr << "\n";
13815       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13816     }
13817 }
13818 
13819 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13820 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13821 // for URem with constant power-of-2 second operands.
13822 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13823 // 4, A / B becomes X / 8).
13824 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13825                                 const SCEV *&RHS) {
13826   // Try to match 'zext (trunc A to iB) to iY', which is used
13827   // for URem with constant power-of-2 second operands. Make sure the size of
13828   // the operand A matches the size of the whole expressions.
13829   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13830     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13831       LHS = Trunc->getOperand();
13832       // Bail out if the type of the LHS is larger than the type of the
13833       // expression for now.
13834       if (getTypeSizeInBits(LHS->getType()) >
13835           getTypeSizeInBits(Expr->getType()))
13836         return false;
13837       if (LHS->getType() != Expr->getType())
13838         LHS = getZeroExtendExpr(LHS, Expr->getType());
13839       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13840                         << getTypeSizeInBits(Trunc->getType()));
13841       return true;
13842     }
13843   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13844   if (Add == nullptr || Add->getNumOperands() != 2)
13845     return false;
13846 
13847   const SCEV *A = Add->getOperand(1);
13848   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13849 
13850   if (Mul == nullptr)
13851     return false;
13852 
13853   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13854     // (SomeExpr + (-(SomeExpr / B) * B)).
13855     if (Expr == getURemExpr(A, B)) {
13856       LHS = A;
13857       RHS = B;
13858       return true;
13859     }
13860     return false;
13861   };
13862 
13863   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13864   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13865     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13866            MatchURemWithDivisor(Mul->getOperand(2));
13867 
13868   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13869   if (Mul->getNumOperands() == 2)
13870     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13871            MatchURemWithDivisor(Mul->getOperand(0)) ||
13872            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13873            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13874   return false;
13875 }
13876 
13877 const SCEV *
13878 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13879   SmallVector<BasicBlock*, 16> ExitingBlocks;
13880   L->getExitingBlocks(ExitingBlocks);
13881 
13882   // Form an expression for the maximum exit count possible for this loop. We
13883   // merge the max and exact information to approximate a version of
13884   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13885   SmallVector<const SCEV*, 4> ExitCounts;
13886   for (BasicBlock *ExitingBB : ExitingBlocks) {
13887     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13888     if (isa<SCEVCouldNotCompute>(ExitCount))
13889       ExitCount = getExitCount(L, ExitingBB,
13890                                   ScalarEvolution::ConstantMaximum);
13891     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13892       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13893              "We should only have known counts for exiting blocks that "
13894              "dominate latch!");
13895       ExitCounts.push_back(ExitCount);
13896     }
13897   }
13898   if (ExitCounts.empty())
13899     return getCouldNotCompute();
13900   return getUMinFromMismatchedTypes(ExitCounts);
13901 }
13902 
13903 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13904 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13905 /// we cannot guarantee that the replacement is loop invariant in the loop of
13906 /// the AddRec.
13907 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13908   ValueToSCEVMapTy &Map;
13909 
13910 public:
13911   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13912       : SCEVRewriteVisitor(SE), Map(M) {}
13913 
13914   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13915 
13916   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13917     auto I = Map.find(Expr->getValue());
13918     if (I == Map.end())
13919       return Expr;
13920     return I->second;
13921   }
13922 };
13923 
13924 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13925   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13926                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13927     // If we have LHS == 0, check if LHS is computing a property of some unknown
13928     // SCEV %v which we can rewrite %v to express explicitly.
13929     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13930     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13931         RHSC->getValue()->isNullValue()) {
13932       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13933       // explicitly express that.
13934       const SCEV *URemLHS = nullptr;
13935       const SCEV *URemRHS = nullptr;
13936       if (matchURem(LHS, URemLHS, URemRHS)) {
13937         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13938           Value *V = LHSUnknown->getValue();
13939           auto Multiple =
13940               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13941                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13942           RewriteMap[V] = Multiple;
13943           return;
13944         }
13945       }
13946     }
13947 
13948     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13949       std::swap(LHS, RHS);
13950       Predicate = CmpInst::getSwappedPredicate(Predicate);
13951     }
13952 
13953     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13954     // create this form when combining two checks of the form (X u< C2 + C1) and
13955     // (X >=u C1).
13956     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13957       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13958       if (!AddExpr || AddExpr->getNumOperands() != 2)
13959         return false;
13960 
13961       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13962       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13963       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13964       if (!C1 || !C2 || !LHSUnknown)
13965         return false;
13966 
13967       auto ExactRegion =
13968           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13969               .sub(C1->getAPInt());
13970 
13971       // Bail out, unless we have a non-wrapping, monotonic range.
13972       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13973         return false;
13974       auto I = RewriteMap.find(LHSUnknown->getValue());
13975       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13976       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13977           getConstant(ExactRegion.getUnsignedMin()),
13978           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13979       return true;
13980     };
13981     if (MatchRangeCheckIdiom())
13982       return;
13983 
13984     // For now, limit to conditions that provide information about unknown
13985     // expressions. RHS also cannot contain add recurrences.
13986     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13987     if (!LHSUnknown || containsAddRecurrence(RHS))
13988       return;
13989 
13990     // Check whether LHS has already been rewritten. In that case we want to
13991     // chain further rewrites onto the already rewritten value.
13992     auto I = RewriteMap.find(LHSUnknown->getValue());
13993     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13994     const SCEV *RewrittenRHS = nullptr;
13995     switch (Predicate) {
13996     case CmpInst::ICMP_ULT:
13997       RewrittenRHS =
13998           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13999       break;
14000     case CmpInst::ICMP_SLT:
14001       RewrittenRHS =
14002           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14003       break;
14004     case CmpInst::ICMP_ULE:
14005       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14006       break;
14007     case CmpInst::ICMP_SLE:
14008       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14009       break;
14010     case CmpInst::ICMP_UGT:
14011       RewrittenRHS =
14012           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14013       break;
14014     case CmpInst::ICMP_SGT:
14015       RewrittenRHS =
14016           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14017       break;
14018     case CmpInst::ICMP_UGE:
14019       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14020       break;
14021     case CmpInst::ICMP_SGE:
14022       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14023       break;
14024     case CmpInst::ICMP_EQ:
14025       if (isa<SCEVConstant>(RHS))
14026         RewrittenRHS = RHS;
14027       break;
14028     case CmpInst::ICMP_NE:
14029       if (isa<SCEVConstant>(RHS) &&
14030           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14031         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14032       break;
14033     default:
14034       break;
14035     }
14036 
14037     if (RewrittenRHS)
14038       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
14039   };
14040   // Starting at the loop predecessor, climb up the predecessor chain, as long
14041   // as there are predecessors that can be found that have unique successors
14042   // leading to the original header.
14043   // TODO: share this logic with isLoopEntryGuardedByCond.
14044   ValueToSCEVMapTy RewriteMap;
14045   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14046            L->getLoopPredecessor(), L->getHeader());
14047        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14048 
14049     const BranchInst *LoopEntryPredicate =
14050         dyn_cast<BranchInst>(Pair.first->getTerminator());
14051     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14052       continue;
14053 
14054     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
14055     SmallVector<Value *, 8> Worklist;
14056     SmallPtrSet<Value *, 8> Visited;
14057     Worklist.push_back(LoopEntryPredicate->getCondition());
14058     while (!Worklist.empty()) {
14059       Value *Cond = Worklist.pop_back_val();
14060       if (!Visited.insert(Cond).second)
14061         continue;
14062 
14063       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14064         auto Predicate =
14065             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14066         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14067                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14068         continue;
14069       }
14070 
14071       Value *L, *R;
14072       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14073                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14074         Worklist.push_back(L);
14075         Worklist.push_back(R);
14076       }
14077     }
14078   }
14079 
14080   // Also collect information from assumptions dominating the loop.
14081   for (auto &AssumeVH : AC.assumptions()) {
14082     if (!AssumeVH)
14083       continue;
14084     auto *AssumeI = cast<CallInst>(AssumeVH);
14085     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14086     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14087       continue;
14088     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14089                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14090   }
14091 
14092   if (RewriteMap.empty())
14093     return Expr;
14094   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14095   return Rewriter.visit(Expr);
14096 }
14097