1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (getSCEVType()) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     default:
308       llvm_unreachable("There are no other nary expression types.");
309     }
310     OS << "(";
311     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
312          I != E; ++I) {
313       OS << **I;
314       if (std::next(I) != E)
315         OS << OpStr;
316     }
317     OS << ")";
318     switch (NAry->getSCEVType()) {
319     case scAddExpr:
320     case scMulExpr:
321       if (NAry->hasNoUnsignedWrap())
322         OS << "<nuw>";
323       if (NAry->hasNoSignedWrap())
324         OS << "<nsw>";
325       break;
326     default:
327       // Nothing to print for other nary expressions.
328       break;
329     }
330     return;
331   }
332   case scUDivExpr: {
333     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
334     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
335     return;
336   }
337   case scUnknown: {
338     const SCEVUnknown *U = cast<SCEVUnknown>(this);
339     Type *AllocTy;
340     if (U->isSizeOf(AllocTy)) {
341       OS << "sizeof(" << *AllocTy << ")";
342       return;
343     }
344     if (U->isAlignOf(AllocTy)) {
345       OS << "alignof(" << *AllocTy << ")";
346       return;
347     }
348 
349     Type *CTy;
350     Constant *FieldNo;
351     if (U->isOffsetOf(CTy, FieldNo)) {
352       OS << "offsetof(" << *CTy << ", ";
353       FieldNo->printAsOperand(OS, false);
354       OS << ")";
355       return;
356     }
357 
358     // Otherwise just print it normally.
359     U->getValue()->printAsOperand(OS, false);
360     return;
361   }
362   case scCouldNotCompute:
363     OS << "***COULDNOTCOMPUTE***";
364     return;
365   }
366   llvm_unreachable("Unknown SCEV kind!");
367 }
368 
369 Type *SCEV::getType() const {
370   switch (getSCEVType()) {
371   case scConstant:
372     return cast<SCEVConstant>(this)->getType();
373   case scTruncate:
374   case scZeroExtend:
375   case scSignExtend:
376     return cast<SCEVIntegralCastExpr>(this)->getType();
377   case scAddRecExpr:
378   case scMulExpr:
379   case scUMaxExpr:
380   case scSMaxExpr:
381   case scUMinExpr:
382   case scSMinExpr:
383     return cast<SCEVNAryExpr>(this)->getType();
384   case scAddExpr:
385     return cast<SCEVAddExpr>(this)->getType();
386   case scUDivExpr:
387     return cast<SCEVUDivExpr>(this)->getType();
388   case scUnknown:
389     return cast<SCEVUnknown>(this)->getType();
390   case scCouldNotCompute:
391     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
392   }
393   llvm_unreachable("Unknown SCEV kind!");
394 }
395 
396 bool SCEV::isZero() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isZero();
399   return false;
400 }
401 
402 bool SCEV::isOne() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isOne();
405   return false;
406 }
407 
408 bool SCEV::isAllOnesValue() const {
409   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
410     return SC->getValue()->isMinusOne();
411   return false;
412 }
413 
414 bool SCEV::isNonConstantNegative() const {
415   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
416   if (!Mul) return false;
417 
418   // If there is a constant factor, it will be first.
419   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
420   if (!SC) return false;
421 
422   // Return true if the value is negative, this matches things like (-42 * V).
423   return SC->getAPInt().isNegative();
424 }
425 
426 SCEVCouldNotCompute::SCEVCouldNotCompute() :
427   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
428 
429 bool SCEVCouldNotCompute::classof(const SCEV *S) {
430   return S->getSCEVType() == scCouldNotCompute;
431 }
432 
433 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
434   FoldingSetNodeID ID;
435   ID.AddInteger(scConstant);
436   ID.AddPointer(V);
437   void *IP = nullptr;
438   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
439   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
440   UniqueSCEVs.InsertNode(S, IP);
441   return S;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
445   return getConstant(ConstantInt::get(getContext(), Val));
446 }
447 
448 const SCEV *
449 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
450   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
451   return getConstant(ConstantInt::get(ITy, V, isSigned));
452 }
453 
454 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
455                                            SCEVTypes SCEVTy, const SCEV *op,
456                                            Type *ty)
457     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
458   Operands[0] = op;
459 }
460 
461 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
462                                    Type *ty)
463     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
464   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
465          "Cannot truncate non-integer value!");
466 }
467 
468 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
469                                        const SCEV *op, Type *ty)
470     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
471   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
472          "Cannot zero extend non-integer value!");
473 }
474 
475 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
476                                        const SCEV *op, Type *ty)
477     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
478   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
479          "Cannot sign extend non-integer value!");
480 }
481 
482 void SCEVUnknown::deleted() {
483   // Clear this SCEVUnknown from various maps.
484   SE->forgetMemoizedResults(this);
485 
486   // Remove this SCEVUnknown from the uniquing map.
487   SE->UniqueSCEVs.RemoveNode(this);
488 
489   // Release the value.
490   setValPtr(nullptr);
491 }
492 
493 void SCEVUnknown::allUsesReplacedWith(Value *New) {
494   // Remove this SCEVUnknown from the uniquing map.
495   SE->UniqueSCEVs.RemoveNode(this);
496 
497   // Update this SCEVUnknown to point to the new value. This is needed
498   // because there may still be outstanding SCEVs which still point to
499   // this SCEVUnknown.
500   setValPtr(New);
501 }
502 
503 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
504   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
505     if (VCE->getOpcode() == Instruction::PtrToInt)
506       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
507         if (CE->getOpcode() == Instruction::GetElementPtr &&
508             CE->getOperand(0)->isNullValue() &&
509             CE->getNumOperands() == 2)
510           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
511             if (CI->isOne()) {
512               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
513                                  ->getElementType();
514               return true;
515             }
516 
517   return false;
518 }
519 
520 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
521   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
522     if (VCE->getOpcode() == Instruction::PtrToInt)
523       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
524         if (CE->getOpcode() == Instruction::GetElementPtr &&
525             CE->getOperand(0)->isNullValue()) {
526           Type *Ty =
527             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
528           if (StructType *STy = dyn_cast<StructType>(Ty))
529             if (!STy->isPacked() &&
530                 CE->getNumOperands() == 3 &&
531                 CE->getOperand(1)->isNullValue()) {
532               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
533                 if (CI->isOne() &&
534                     STy->getNumElements() == 2 &&
535                     STy->getElementType(0)->isIntegerTy(1)) {
536                   AllocTy = STy->getElementType(1);
537                   return true;
538                 }
539             }
540         }
541 
542   return false;
543 }
544 
545 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
546   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
547     if (VCE->getOpcode() == Instruction::PtrToInt)
548       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
549         if (CE->getOpcode() == Instruction::GetElementPtr &&
550             CE->getNumOperands() == 3 &&
551             CE->getOperand(0)->isNullValue() &&
552             CE->getOperand(1)->isNullValue()) {
553           Type *Ty =
554             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
555           // Ignore vector types here so that ScalarEvolutionExpander doesn't
556           // emit getelementptrs that index into vectors.
557           if (Ty->isStructTy() || Ty->isArrayTy()) {
558             CTy = Ty;
559             FieldNo = CE->getOperand(2);
560             return true;
561           }
562         }
563 
564   return false;
565 }
566 
567 //===----------------------------------------------------------------------===//
568 //                               SCEV Utilities
569 //===----------------------------------------------------------------------===//
570 
571 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
572 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
573 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
574 /// have been previously deemed to be "equally complex" by this routine.  It is
575 /// intended to avoid exponential time complexity in cases like:
576 ///
577 ///   %a = f(%x, %y)
578 ///   %b = f(%a, %a)
579 ///   %c = f(%b, %b)
580 ///
581 ///   %d = f(%x, %y)
582 ///   %e = f(%d, %d)
583 ///   %f = f(%e, %e)
584 ///
585 ///   CompareValueComplexity(%f, %c)
586 ///
587 /// Since we do not continue running this routine on expression trees once we
588 /// have seen unequal values, there is no need to track them in the cache.
589 static int
590 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
591                        const LoopInfo *const LI, Value *LV, Value *RV,
592                        unsigned Depth) {
593   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
594     return 0;
595 
596   // Order pointer values after integer values. This helps SCEVExpander form
597   // GEPs.
598   bool LIsPointer = LV->getType()->isPointerTy(),
599        RIsPointer = RV->getType()->isPointerTy();
600   if (LIsPointer != RIsPointer)
601     return (int)LIsPointer - (int)RIsPointer;
602 
603   // Compare getValueID values.
604   unsigned LID = LV->getValueID(), RID = RV->getValueID();
605   if (LID != RID)
606     return (int)LID - (int)RID;
607 
608   // Sort arguments by their position.
609   if (const auto *LA = dyn_cast<Argument>(LV)) {
610     const auto *RA = cast<Argument>(RV);
611     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
612     return (int)LArgNo - (int)RArgNo;
613   }
614 
615   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
616     const auto *RGV = cast<GlobalValue>(RV);
617 
618     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
619       auto LT = GV->getLinkage();
620       return !(GlobalValue::isPrivateLinkage(LT) ||
621                GlobalValue::isInternalLinkage(LT));
622     };
623 
624     // Use the names to distinguish the two values, but only if the
625     // names are semantically important.
626     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
627       return LGV->getName().compare(RGV->getName());
628   }
629 
630   // For instructions, compare their loop depth, and their operand count.  This
631   // is pretty loose.
632   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
633     const auto *RInst = cast<Instruction>(RV);
634 
635     // Compare loop depths.
636     const BasicBlock *LParent = LInst->getParent(),
637                      *RParent = RInst->getParent();
638     if (LParent != RParent) {
639       unsigned LDepth = LI->getLoopDepth(LParent),
640                RDepth = LI->getLoopDepth(RParent);
641       if (LDepth != RDepth)
642         return (int)LDepth - (int)RDepth;
643     }
644 
645     // Compare the number of operands.
646     unsigned LNumOps = LInst->getNumOperands(),
647              RNumOps = RInst->getNumOperands();
648     if (LNumOps != RNumOps)
649       return (int)LNumOps - (int)RNumOps;
650 
651     for (unsigned Idx : seq(0u, LNumOps)) {
652       int Result =
653           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
654                                  RInst->getOperand(Idx), Depth + 1);
655       if (Result != 0)
656         return Result;
657     }
658   }
659 
660   EqCacheValue.unionSets(LV, RV);
661   return 0;
662 }
663 
664 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
665 // than RHS, respectively. A three-way result allows recursive comparisons to be
666 // more efficient.
667 static int CompareSCEVComplexity(
668     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
669     EquivalenceClasses<const Value *> &EqCacheValue,
670     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
671     DominatorTree &DT, unsigned Depth = 0) {
672   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
673   if (LHS == RHS)
674     return 0;
675 
676   // Primarily, sort the SCEVs by their getSCEVType().
677   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
678   if (LType != RType)
679     return (int)LType - (int)RType;
680 
681   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
682     return 0;
683   // Aside from the getSCEVType() ordering, the particular ordering
684   // isn't very important except that it's beneficial to be consistent,
685   // so that (a + b) and (b + a) don't end up as different expressions.
686   switch (LType) {
687   case scUnknown: {
688     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
689     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
690 
691     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
692                                    RU->getValue(), Depth + 1);
693     if (X == 0)
694       EqCacheSCEV.unionSets(LHS, RHS);
695     return X;
696   }
697 
698   case scConstant: {
699     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
700     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
701 
702     // Compare constant values.
703     const APInt &LA = LC->getAPInt();
704     const APInt &RA = RC->getAPInt();
705     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
706     if (LBitWidth != RBitWidth)
707       return (int)LBitWidth - (int)RBitWidth;
708     return LA.ult(RA) ? -1 : 1;
709   }
710 
711   case scAddRecExpr: {
712     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
713     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
714 
715     // There is always a dominance between two recs that are used by one SCEV,
716     // so we can safely sort recs by loop header dominance. We require such
717     // order in getAddExpr.
718     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
719     if (LLoop != RLoop) {
720       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
721       assert(LHead != RHead && "Two loops share the same header?");
722       if (DT.dominates(LHead, RHead))
723         return 1;
724       else
725         assert(DT.dominates(RHead, LHead) &&
726                "No dominance between recurrences used by one SCEV?");
727       return -1;
728     }
729 
730     // Addrec complexity grows with operand count.
731     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
732     if (LNumOps != RNumOps)
733       return (int)LNumOps - (int)RNumOps;
734 
735     // Lexicographically compare.
736     for (unsigned i = 0; i != LNumOps; ++i) {
737       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
738                                     LA->getOperand(i), RA->getOperand(i), DT,
739                                     Depth + 1);
740       if (X != 0)
741         return X;
742     }
743     EqCacheSCEV.unionSets(LHS, RHS);
744     return 0;
745   }
746 
747   case scAddExpr:
748   case scMulExpr:
749   case scSMaxExpr:
750   case scUMaxExpr:
751   case scSMinExpr:
752   case scUMinExpr: {
753     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
754     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
755 
756     // Lexicographically compare n-ary expressions.
757     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
758     if (LNumOps != RNumOps)
759       return (int)LNumOps - (int)RNumOps;
760 
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                     LC->getOperand(i), RC->getOperand(i), DT,
764                                     Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scUDivExpr: {
773     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
774     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
775 
776     // Lexicographically compare udiv expressions.
777     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
778                                   RC->getLHS(), DT, Depth + 1);
779     if (X != 0)
780       return X;
781     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
782                               RC->getRHS(), DT, Depth + 1);
783     if (X == 0)
784       EqCacheSCEV.unionSets(LHS, RHS);
785     return X;
786   }
787 
788   case scTruncate:
789   case scZeroExtend:
790   case scSignExtend: {
791     const SCEVIntegralCastExpr *LC = cast<SCEVIntegralCastExpr>(LHS);
792     const SCEVIntegralCastExpr *RC = cast<SCEVIntegralCastExpr>(RHS);
793 
794     // Compare cast expressions by operand.
795     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
796                                   LC->getOperand(), RC->getOperand(), DT,
797                                   Depth + 1);
798     if (X == 0)
799       EqCacheSCEV.unionSets(LHS, RHS);
800     return X;
801   }
802 
803   case scCouldNotCompute:
804     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
805   }
806   llvm_unreachable("Unknown SCEV kind!");
807 }
808 
809 /// Given a list of SCEV objects, order them by their complexity, and group
810 /// objects of the same complexity together by value.  When this routine is
811 /// finished, we know that any duplicates in the vector are consecutive and that
812 /// complexity is monotonically increasing.
813 ///
814 /// Note that we go take special precautions to ensure that we get deterministic
815 /// results from this routine.  In other words, we don't want the results of
816 /// this to depend on where the addresses of various SCEV objects happened to
817 /// land in memory.
818 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
819                               LoopInfo *LI, DominatorTree &DT) {
820   if (Ops.size() < 2) return;  // Noop
821 
822   EquivalenceClasses<const SCEV *> EqCacheSCEV;
823   EquivalenceClasses<const Value *> EqCacheValue;
824   if (Ops.size() == 2) {
825     // This is the common case, which also happens to be trivially simple.
826     // Special case it.
827     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
828     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
829       std::swap(LHS, RHS);
830     return;
831   }
832 
833   // Do the rough sort by complexity.
834   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
835     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
836            0;
837   });
838 
839   // Now that we are sorted by complexity, group elements of the same
840   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
841   // be extremely short in practice.  Note that we take this approach because we
842   // do not want to depend on the addresses of the objects we are grouping.
843   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
844     const SCEV *S = Ops[i];
845     unsigned Complexity = S->getSCEVType();
846 
847     // If there are any objects of the same complexity and same value as this
848     // one, group them.
849     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
850       if (Ops[j] == S) { // Found a duplicate.
851         // Move it to immediately after i'th element.
852         std::swap(Ops[i+1], Ops[j]);
853         ++i;   // no need to rescan it.
854         if (i == e-2) return;  // Done!
855       }
856     }
857   }
858 }
859 
860 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
861 /// least HugeExprThreshold nodes).
862 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
863   return any_of(Ops, [](const SCEV *S) {
864     return S->getExpressionSize() >= HugeExprThreshold;
865   });
866 }
867 
868 //===----------------------------------------------------------------------===//
869 //                      Simple SCEV method implementations
870 //===----------------------------------------------------------------------===//
871 
872 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
873 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
874                                        ScalarEvolution &SE,
875                                        Type *ResultTy) {
876   // Handle the simplest case efficiently.
877   if (K == 1)
878     return SE.getTruncateOrZeroExtend(It, ResultTy);
879 
880   // We are using the following formula for BC(It, K):
881   //
882   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
883   //
884   // Suppose, W is the bitwidth of the return value.  We must be prepared for
885   // overflow.  Hence, we must assure that the result of our computation is
886   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
887   // safe in modular arithmetic.
888   //
889   // However, this code doesn't use exactly that formula; the formula it uses
890   // is something like the following, where T is the number of factors of 2 in
891   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
892   // exponentiation:
893   //
894   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
895   //
896   // This formula is trivially equivalent to the previous formula.  However,
897   // this formula can be implemented much more efficiently.  The trick is that
898   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
899   // arithmetic.  To do exact division in modular arithmetic, all we have
900   // to do is multiply by the inverse.  Therefore, this step can be done at
901   // width W.
902   //
903   // The next issue is how to safely do the division by 2^T.  The way this
904   // is done is by doing the multiplication step at a width of at least W + T
905   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
906   // when we perform the division by 2^T (which is equivalent to a right shift
907   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
908   // truncated out after the division by 2^T.
909   //
910   // In comparison to just directly using the first formula, this technique
911   // is much more efficient; using the first formula requires W * K bits,
912   // but this formula less than W + K bits. Also, the first formula requires
913   // a division step, whereas this formula only requires multiplies and shifts.
914   //
915   // It doesn't matter whether the subtraction step is done in the calculation
916   // width or the input iteration count's width; if the subtraction overflows,
917   // the result must be zero anyway.  We prefer here to do it in the width of
918   // the induction variable because it helps a lot for certain cases; CodeGen
919   // isn't smart enough to ignore the overflow, which leads to much less
920   // efficient code if the width of the subtraction is wider than the native
921   // register width.
922   //
923   // (It's possible to not widen at all by pulling out factors of 2 before
924   // the multiplication; for example, K=2 can be calculated as
925   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
926   // extra arithmetic, so it's not an obvious win, and it gets
927   // much more complicated for K > 3.)
928 
929   // Protection from insane SCEVs; this bound is conservative,
930   // but it probably doesn't matter.
931   if (K > 1000)
932     return SE.getCouldNotCompute();
933 
934   unsigned W = SE.getTypeSizeInBits(ResultTy);
935 
936   // Calculate K! / 2^T and T; we divide out the factors of two before
937   // multiplying for calculating K! / 2^T to avoid overflow.
938   // Other overflow doesn't matter because we only care about the bottom
939   // W bits of the result.
940   APInt OddFactorial(W, 1);
941   unsigned T = 1;
942   for (unsigned i = 3; i <= K; ++i) {
943     APInt Mult(W, i);
944     unsigned TwoFactors = Mult.countTrailingZeros();
945     T += TwoFactors;
946     Mult.lshrInPlace(TwoFactors);
947     OddFactorial *= Mult;
948   }
949 
950   // We need at least W + T bits for the multiplication step
951   unsigned CalculationBits = W + T;
952 
953   // Calculate 2^T, at width T+W.
954   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
955 
956   // Calculate the multiplicative inverse of K! / 2^T;
957   // this multiplication factor will perform the exact division by
958   // K! / 2^T.
959   APInt Mod = APInt::getSignedMinValue(W+1);
960   APInt MultiplyFactor = OddFactorial.zext(W+1);
961   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
962   MultiplyFactor = MultiplyFactor.trunc(W);
963 
964   // Calculate the product, at width T+W
965   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
966                                                       CalculationBits);
967   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
968   for (unsigned i = 1; i != K; ++i) {
969     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
970     Dividend = SE.getMulExpr(Dividend,
971                              SE.getTruncateOrZeroExtend(S, CalculationTy));
972   }
973 
974   // Divide by 2^T
975   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
976 
977   // Truncate the result, and divide by K! / 2^T.
978 
979   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
980                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
981 }
982 
983 /// Return the value of this chain of recurrences at the specified iteration
984 /// number.  We can evaluate this recurrence by multiplying each element in the
985 /// chain by the binomial coefficient corresponding to it.  In other words, we
986 /// can evaluate {A,+,B,+,C,+,D} as:
987 ///
988 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
989 ///
990 /// where BC(It, k) stands for binomial coefficient.
991 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
992                                                 ScalarEvolution &SE) const {
993   const SCEV *Result = getStart();
994   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
995     // The computation is correct in the face of overflow provided that the
996     // multiplication is performed _after_ the evaluation of the binomial
997     // coefficient.
998     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
999     if (isa<SCEVCouldNotCompute>(Coeff))
1000       return Coeff;
1001 
1002     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1003   }
1004   return Result;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 //                    SCEV Expression folder implementations
1009 //===----------------------------------------------------------------------===//
1010 
1011 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1012                                              unsigned Depth) {
1013   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1014          "This is not a truncating conversion!");
1015   assert(isSCEVable(Ty) &&
1016          "This is not a conversion to a SCEVable type!");
1017   Ty = getEffectiveSCEVType(Ty);
1018 
1019   FoldingSetNodeID ID;
1020   ID.AddInteger(scTruncate);
1021   ID.AddPointer(Op);
1022   ID.AddPointer(Ty);
1023   void *IP = nullptr;
1024   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1025 
1026   // Fold if the operand is constant.
1027   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1028     return getConstant(
1029       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1030 
1031   // trunc(trunc(x)) --> trunc(x)
1032   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1033     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1034 
1035   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1036   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1037     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1038 
1039   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1040   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1041     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1042 
1043   if (Depth > MaxCastDepth) {
1044     SCEV *S =
1045         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1046     UniqueSCEVs.InsertNode(S, IP);
1047     addToLoopUseLists(S);
1048     return S;
1049   }
1050 
1051   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1052   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1053   // if after transforming we have at most one truncate, not counting truncates
1054   // that replace other casts.
1055   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1056     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1057     SmallVector<const SCEV *, 4> Operands;
1058     unsigned numTruncs = 0;
1059     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1060          ++i) {
1061       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1062       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1063           isa<SCEVTruncateExpr>(S))
1064         numTruncs++;
1065       Operands.push_back(S);
1066     }
1067     if (numTruncs < 2) {
1068       if (isa<SCEVAddExpr>(Op))
1069         return getAddExpr(Operands);
1070       else if (isa<SCEVMulExpr>(Op))
1071         return getMulExpr(Operands);
1072       else
1073         llvm_unreachable("Unexpected SCEV type for Op.");
1074     }
1075     // Although we checked in the beginning that ID is not in the cache, it is
1076     // possible that during recursion and different modification ID was inserted
1077     // into the cache. So if we find it, just return it.
1078     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1079       return S;
1080   }
1081 
1082   // If the input value is a chrec scev, truncate the chrec's operands.
1083   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1084     SmallVector<const SCEV *, 4> Operands;
1085     for (const SCEV *Op : AddRec->operands())
1086       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1087     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1088   }
1089 
1090   // The cast wasn't folded; create an explicit cast node. We can reuse
1091   // the existing insert position since if we get here, we won't have
1092   // made any changes which would invalidate it.
1093   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1094                                                  Op, Ty);
1095   UniqueSCEVs.InsertNode(S, IP);
1096   addToLoopUseLists(S);
1097   return S;
1098 }
1099 
1100 // Get the limit of a recurrence such that incrementing by Step cannot cause
1101 // signed overflow as long as the value of the recurrence within the
1102 // loop does not exceed this limit before incrementing.
1103 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1104                                                  ICmpInst::Predicate *Pred,
1105                                                  ScalarEvolution *SE) {
1106   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1107   if (SE->isKnownPositive(Step)) {
1108     *Pred = ICmpInst::ICMP_SLT;
1109     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1110                            SE->getSignedRangeMax(Step));
1111   }
1112   if (SE->isKnownNegative(Step)) {
1113     *Pred = ICmpInst::ICMP_SGT;
1114     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1115                            SE->getSignedRangeMin(Step));
1116   }
1117   return nullptr;
1118 }
1119 
1120 // Get the limit of a recurrence such that incrementing by Step cannot cause
1121 // unsigned overflow as long as the value of the recurrence within the loop does
1122 // not exceed this limit before incrementing.
1123 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1124                                                    ICmpInst::Predicate *Pred,
1125                                                    ScalarEvolution *SE) {
1126   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1127   *Pred = ICmpInst::ICMP_ULT;
1128 
1129   return SE->getConstant(APInt::getMinValue(BitWidth) -
1130                          SE->getUnsignedRangeMax(Step));
1131 }
1132 
1133 namespace {
1134 
1135 struct ExtendOpTraitsBase {
1136   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1137                                                           unsigned);
1138 };
1139 
1140 // Used to make code generic over signed and unsigned overflow.
1141 template <typename ExtendOp> struct ExtendOpTraits {
1142   // Members present:
1143   //
1144   // static const SCEV::NoWrapFlags WrapType;
1145   //
1146   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1147   //
1148   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1149   //                                           ICmpInst::Predicate *Pred,
1150   //                                           ScalarEvolution *SE);
1151 };
1152 
1153 template <>
1154 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1155   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1156 
1157   static const GetExtendExprTy GetExtendExpr;
1158 
1159   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1160                                              ICmpInst::Predicate *Pred,
1161                                              ScalarEvolution *SE) {
1162     return getSignedOverflowLimitForStep(Step, Pred, SE);
1163   }
1164 };
1165 
1166 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1167     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1168 
1169 template <>
1170 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1171   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1172 
1173   static const GetExtendExprTy GetExtendExpr;
1174 
1175   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1176                                              ICmpInst::Predicate *Pred,
1177                                              ScalarEvolution *SE) {
1178     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1179   }
1180 };
1181 
1182 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1183     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1184 
1185 } // end anonymous namespace
1186 
1187 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1188 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1189 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1190 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1191 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1192 // expression "Step + sext/zext(PreIncAR)" is congruent with
1193 // "sext/zext(PostIncAR)"
1194 template <typename ExtendOpTy>
1195 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1196                                         ScalarEvolution *SE, unsigned Depth) {
1197   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1198   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1199 
1200   const Loop *L = AR->getLoop();
1201   const SCEV *Start = AR->getStart();
1202   const SCEV *Step = AR->getStepRecurrence(*SE);
1203 
1204   // Check for a simple looking step prior to loop entry.
1205   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1206   if (!SA)
1207     return nullptr;
1208 
1209   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1210   // subtraction is expensive. For this purpose, perform a quick and dirty
1211   // difference, by checking for Step in the operand list.
1212   SmallVector<const SCEV *, 4> DiffOps;
1213   for (const SCEV *Op : SA->operands())
1214     if (Op != Step)
1215       DiffOps.push_back(Op);
1216 
1217   if (DiffOps.size() == SA->getNumOperands())
1218     return nullptr;
1219 
1220   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1221   // `Step`:
1222 
1223   // 1. NSW/NUW flags on the step increment.
1224   auto PreStartFlags =
1225     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1226   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1227   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1228       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1229 
1230   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1231   // "S+X does not sign/unsign-overflow".
1232   //
1233 
1234   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1235   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1236       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1237     return PreStart;
1238 
1239   // 2. Direct overflow check on the step operation's expression.
1240   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1241   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1242   const SCEV *OperandExtendedStart =
1243       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1244                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1245   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1246     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1247       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1248       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1249       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1250       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1251     }
1252     return PreStart;
1253   }
1254 
1255   // 3. Loop precondition.
1256   ICmpInst::Predicate Pred;
1257   const SCEV *OverflowLimit =
1258       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1259 
1260   if (OverflowLimit &&
1261       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1262     return PreStart;
1263 
1264   return nullptr;
1265 }
1266 
1267 // Get the normalized zero or sign extended expression for this AddRec's Start.
1268 template <typename ExtendOpTy>
1269 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1270                                         ScalarEvolution *SE,
1271                                         unsigned Depth) {
1272   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1273 
1274   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1275   if (!PreStart)
1276     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1277 
1278   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1279                                              Depth),
1280                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1281 }
1282 
1283 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1284 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1285 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1286 //
1287 // Formally:
1288 //
1289 //     {S,+,X} == {S-T,+,X} + T
1290 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1291 //
1292 // If ({S-T,+,X} + T) does not overflow  ... (1)
1293 //
1294 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1295 //
1296 // If {S-T,+,X} does not overflow  ... (2)
1297 //
1298 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1299 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1300 //
1301 // If (S-T)+T does not overflow  ... (3)
1302 //
1303 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1304 //      == {Ext(S),+,Ext(X)} == LHS
1305 //
1306 // Thus, if (1), (2) and (3) are true for some T, then
1307 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1308 //
1309 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1310 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1311 // to check for (1) and (2).
1312 //
1313 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1314 // is `Delta` (defined below).
1315 template <typename ExtendOpTy>
1316 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1317                                                 const SCEV *Step,
1318                                                 const Loop *L) {
1319   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1320 
1321   // We restrict `Start` to a constant to prevent SCEV from spending too much
1322   // time here.  It is correct (but more expensive) to continue with a
1323   // non-constant `Start` and do a general SCEV subtraction to compute
1324   // `PreStart` below.
1325   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1326   if (!StartC)
1327     return false;
1328 
1329   APInt StartAI = StartC->getAPInt();
1330 
1331   for (unsigned Delta : {-2, -1, 1, 2}) {
1332     const SCEV *PreStart = getConstant(StartAI - Delta);
1333 
1334     FoldingSetNodeID ID;
1335     ID.AddInteger(scAddRecExpr);
1336     ID.AddPointer(PreStart);
1337     ID.AddPointer(Step);
1338     ID.AddPointer(L);
1339     void *IP = nullptr;
1340     const auto *PreAR =
1341       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1342 
1343     // Give up if we don't already have the add recurrence we need because
1344     // actually constructing an add recurrence is relatively expensive.
1345     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1346       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1347       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1348       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1349           DeltaS, &Pred, this);
1350       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1351         return true;
1352     }
1353   }
1354 
1355   return false;
1356 }
1357 
1358 // Finds an integer D for an expression (C + x + y + ...) such that the top
1359 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1360 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1361 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1362 // the (C + x + y + ...) expression is \p WholeAddExpr.
1363 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1364                                             const SCEVConstant *ConstantTerm,
1365                                             const SCEVAddExpr *WholeAddExpr) {
1366   const APInt &C = ConstantTerm->getAPInt();
1367   const unsigned BitWidth = C.getBitWidth();
1368   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1369   uint32_t TZ = BitWidth;
1370   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1371     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1372   if (TZ) {
1373     // Set D to be as many least significant bits of C as possible while still
1374     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1375     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1376   }
1377   return APInt(BitWidth, 0);
1378 }
1379 
1380 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1381 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1382 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1383 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1384 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1385                                             const APInt &ConstantStart,
1386                                             const SCEV *Step) {
1387   const unsigned BitWidth = ConstantStart.getBitWidth();
1388   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1389   if (TZ)
1390     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1391                          : ConstantStart;
1392   return APInt(BitWidth, 0);
1393 }
1394 
1395 const SCEV *
1396 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1397   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1398          "This is not an extending conversion!");
1399   assert(isSCEVable(Ty) &&
1400          "This is not a conversion to a SCEVable type!");
1401   Ty = getEffectiveSCEVType(Ty);
1402 
1403   // Fold if the operand is constant.
1404   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1405     return getConstant(
1406       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1407 
1408   // zext(zext(x)) --> zext(x)
1409   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1410     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1411 
1412   // Before doing any expensive analysis, check to see if we've already
1413   // computed a SCEV for this Op and Ty.
1414   FoldingSetNodeID ID;
1415   ID.AddInteger(scZeroExtend);
1416   ID.AddPointer(Op);
1417   ID.AddPointer(Ty);
1418   void *IP = nullptr;
1419   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1420   if (Depth > MaxCastDepth) {
1421     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1422                                                      Op, Ty);
1423     UniqueSCEVs.InsertNode(S, IP);
1424     addToLoopUseLists(S);
1425     return S;
1426   }
1427 
1428   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1429   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1430     // It's possible the bits taken off by the truncate were all zero bits. If
1431     // so, we should be able to simplify this further.
1432     const SCEV *X = ST->getOperand();
1433     ConstantRange CR = getUnsignedRange(X);
1434     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1435     unsigned NewBits = getTypeSizeInBits(Ty);
1436     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1437             CR.zextOrTrunc(NewBits)))
1438       return getTruncateOrZeroExtend(X, Ty, Depth);
1439   }
1440 
1441   // If the input value is a chrec scev, and we can prove that the value
1442   // did not overflow the old, smaller, value, we can zero extend all of the
1443   // operands (often constants).  This allows analysis of something like
1444   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1445   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1446     if (AR->isAffine()) {
1447       const SCEV *Start = AR->getStart();
1448       const SCEV *Step = AR->getStepRecurrence(*this);
1449       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1450       const Loop *L = AR->getLoop();
1451 
1452       if (!AR->hasNoUnsignedWrap()) {
1453         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1454         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1455       }
1456 
1457       // If we have special knowledge that this addrec won't overflow,
1458       // we don't need to do any further analysis.
1459       if (AR->hasNoUnsignedWrap())
1460         return getAddRecExpr(
1461             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1462             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1463 
1464       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465       // Note that this serves two purposes: It filters out loops that are
1466       // simply not analyzable, and it covers the case where this code is
1467       // being called from within backedge-taken count analysis, such that
1468       // attempting to ask for the backedge-taken count would likely result
1469       // in infinite recursion. In the later case, the analysis code will
1470       // cope with a conservative value, and it will take care to purge
1471       // that value once it has finished.
1472       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1473       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1474         // Manually compute the final value for AR, checking for
1475         // overflow.
1476 
1477         // Check whether the backedge-taken count can be losslessly casted to
1478         // the addrec's type. The count is always unsigned.
1479         const SCEV *CastedMaxBECount =
1480             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1481         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1482             CastedMaxBECount, MaxBECount->getType(), Depth);
1483         if (MaxBECount == RecastedMaxBECount) {
1484           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1485           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1486           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1487                                         SCEV::FlagAnyWrap, Depth + 1);
1488           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1489                                                           SCEV::FlagAnyWrap,
1490                                                           Depth + 1),
1491                                                WideTy, Depth + 1);
1492           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1493           const SCEV *WideMaxBECount =
1494             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1495           const SCEV *OperandExtendedAdd =
1496             getAddExpr(WideStart,
1497                        getMulExpr(WideMaxBECount,
1498                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1499                                   SCEV::FlagAnyWrap, Depth + 1),
1500                        SCEV::FlagAnyWrap, Depth + 1);
1501           if (ZAdd == OperandExtendedAdd) {
1502             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1503             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1504             // Return the expression with the addrec on the outside.
1505             return getAddRecExpr(
1506                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1507                                                          Depth + 1),
1508                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1509                 AR->getNoWrapFlags());
1510           }
1511           // Similar to above, only this time treat the step value as signed.
1512           // This covers loops that count down.
1513           OperandExtendedAdd =
1514             getAddExpr(WideStart,
1515                        getMulExpr(WideMaxBECount,
1516                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1517                                   SCEV::FlagAnyWrap, Depth + 1),
1518                        SCEV::FlagAnyWrap, Depth + 1);
1519           if (ZAdd == OperandExtendedAdd) {
1520             // Cache knowledge of AR NW, which is propagated to this AddRec.
1521             // Negative step causes unsigned wrap, but it still can't self-wrap.
1522             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1523             // Return the expression with the addrec on the outside.
1524             return getAddRecExpr(
1525                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1526                                                          Depth + 1),
1527                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1528                 AR->getNoWrapFlags());
1529           }
1530         }
1531       }
1532 
1533       // Normally, in the cases we can prove no-overflow via a
1534       // backedge guarding condition, we can also compute a backedge
1535       // taken count for the loop.  The exceptions are assumptions and
1536       // guards present in the loop -- SCEV is not great at exploiting
1537       // these to compute max backedge taken counts, but can still use
1538       // these to prove lack of overflow.  Use this fact to avoid
1539       // doing extra work that may not pay off.
1540       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1541           !AC.assumptions().empty()) {
1542         // If the backedge is guarded by a comparison with the pre-inc
1543         // value the addrec is safe. Also, if the entry is guarded by
1544         // a comparison with the start value and the backedge is
1545         // guarded by a comparison with the post-inc value, the addrec
1546         // is safe.
1547         if (isKnownPositive(Step)) {
1548           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1549                                       getUnsignedRangeMax(Step));
1550           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1551               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1552             // Cache knowledge of AR NUW, which is propagated to this
1553             // AddRec.
1554             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1555             // Return the expression with the addrec on the outside.
1556             return getAddRecExpr(
1557                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1558                                                          Depth + 1),
1559                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1560                 AR->getNoWrapFlags());
1561           }
1562         } else if (isKnownNegative(Step)) {
1563           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1564                                       getSignedRangeMin(Step));
1565           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1566               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1567             // Cache knowledge of AR NW, which is propagated to this
1568             // AddRec.  Negative step causes unsigned wrap, but it
1569             // still can't self-wrap.
1570             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1571             // Return the expression with the addrec on the outside.
1572             return getAddRecExpr(
1573                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1574                                                          Depth + 1),
1575                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1576                 AR->getNoWrapFlags());
1577           }
1578         }
1579       }
1580 
1581       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1582       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1583       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1584       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1585         const APInt &C = SC->getAPInt();
1586         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1587         if (D != 0) {
1588           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1589           const SCEV *SResidual =
1590               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1591           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1592           return getAddExpr(SZExtD, SZExtR,
1593                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1594                             Depth + 1);
1595         }
1596       }
1597 
1598       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1599         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1600         return getAddRecExpr(
1601             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1602             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1603       }
1604     }
1605 
1606   // zext(A % B) --> zext(A) % zext(B)
1607   {
1608     const SCEV *LHS;
1609     const SCEV *RHS;
1610     if (matchURem(Op, LHS, RHS))
1611       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1612                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1613   }
1614 
1615   // zext(A / B) --> zext(A) / zext(B).
1616   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1617     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1618                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1619 
1620   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1621     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1622     if (SA->hasNoUnsignedWrap()) {
1623       // If the addition does not unsign overflow then we can, by definition,
1624       // commute the zero extension with the addition operation.
1625       SmallVector<const SCEV *, 4> Ops;
1626       for (const auto *Op : SA->operands())
1627         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1628       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1629     }
1630 
1631     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1632     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1633     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1634     //
1635     // Often address arithmetics contain expressions like
1636     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1637     // This transformation is useful while proving that such expressions are
1638     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1639     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1640       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1641       if (D != 0) {
1642         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1643         const SCEV *SResidual =
1644             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1645         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1646         return getAddExpr(SZExtD, SZExtR,
1647                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1648                           Depth + 1);
1649       }
1650     }
1651   }
1652 
1653   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1654     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1655     if (SM->hasNoUnsignedWrap()) {
1656       // If the multiply does not unsign overflow then we can, by definition,
1657       // commute the zero extension with the multiply operation.
1658       SmallVector<const SCEV *, 4> Ops;
1659       for (const auto *Op : SM->operands())
1660         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1661       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1662     }
1663 
1664     // zext(2^K * (trunc X to iN)) to iM ->
1665     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1666     //
1667     // Proof:
1668     //
1669     //     zext(2^K * (trunc X to iN)) to iM
1670     //   = zext((trunc X to iN) << K) to iM
1671     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1672     //     (because shl removes the top K bits)
1673     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1674     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1675     //
1676     if (SM->getNumOperands() == 2)
1677       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1678         if (MulLHS->getAPInt().isPowerOf2())
1679           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1680             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1681                                MulLHS->getAPInt().logBase2();
1682             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1683             return getMulExpr(
1684                 getZeroExtendExpr(MulLHS, Ty),
1685                 getZeroExtendExpr(
1686                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1687                 SCEV::FlagNUW, Depth + 1);
1688           }
1689   }
1690 
1691   // The cast wasn't folded; create an explicit cast node.
1692   // Recompute the insert position, as it may have been invalidated.
1693   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1694   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1695                                                    Op, Ty);
1696   UniqueSCEVs.InsertNode(S, IP);
1697   addToLoopUseLists(S);
1698   return S;
1699 }
1700 
1701 const SCEV *
1702 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1703   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1704          "This is not an extending conversion!");
1705   assert(isSCEVable(Ty) &&
1706          "This is not a conversion to a SCEVable type!");
1707   Ty = getEffectiveSCEVType(Ty);
1708 
1709   // Fold if the operand is constant.
1710   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1711     return getConstant(
1712       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1713 
1714   // sext(sext(x)) --> sext(x)
1715   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1716     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1717 
1718   // sext(zext(x)) --> zext(x)
1719   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1720     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1721 
1722   // Before doing any expensive analysis, check to see if we've already
1723   // computed a SCEV for this Op and Ty.
1724   FoldingSetNodeID ID;
1725   ID.AddInteger(scSignExtend);
1726   ID.AddPointer(Op);
1727   ID.AddPointer(Ty);
1728   void *IP = nullptr;
1729   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1730   // Limit recursion depth.
1731   if (Depth > MaxCastDepth) {
1732     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1733                                                      Op, Ty);
1734     UniqueSCEVs.InsertNode(S, IP);
1735     addToLoopUseLists(S);
1736     return S;
1737   }
1738 
1739   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1740   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1741     // It's possible the bits taken off by the truncate were all sign bits. If
1742     // so, we should be able to simplify this further.
1743     const SCEV *X = ST->getOperand();
1744     ConstantRange CR = getSignedRange(X);
1745     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1746     unsigned NewBits = getTypeSizeInBits(Ty);
1747     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1748             CR.sextOrTrunc(NewBits)))
1749       return getTruncateOrSignExtend(X, Ty, Depth);
1750   }
1751 
1752   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1753     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1754     if (SA->hasNoSignedWrap()) {
1755       // If the addition does not sign overflow then we can, by definition,
1756       // commute the sign extension with the addition operation.
1757       SmallVector<const SCEV *, 4> Ops;
1758       for (const auto *Op : SA->operands())
1759         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1760       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1761     }
1762 
1763     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1764     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1765     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1766     //
1767     // For instance, this will bring two seemingly different expressions:
1768     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1769     //         sext(6 + 20 * %x + 24 * %y)
1770     // to the same form:
1771     //     2 + sext(4 + 20 * %x + 24 * %y)
1772     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1773       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1774       if (D != 0) {
1775         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1776         const SCEV *SResidual =
1777             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1778         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1779         return getAddExpr(SSExtD, SSExtR,
1780                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1781                           Depth + 1);
1782       }
1783     }
1784   }
1785   // If the input value is a chrec scev, and we can prove that the value
1786   // did not overflow the old, smaller, value, we can sign extend all of the
1787   // operands (often constants).  This allows analysis of something like
1788   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1789   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1790     if (AR->isAffine()) {
1791       const SCEV *Start = AR->getStart();
1792       const SCEV *Step = AR->getStepRecurrence(*this);
1793       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1794       const Loop *L = AR->getLoop();
1795 
1796       if (!AR->hasNoSignedWrap()) {
1797         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1798         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1799       }
1800 
1801       // If we have special knowledge that this addrec won't overflow,
1802       // we don't need to do any further analysis.
1803       if (AR->hasNoSignedWrap())
1804         return getAddRecExpr(
1805             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1806             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1807 
1808       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1809       // Note that this serves two purposes: It filters out loops that are
1810       // simply not analyzable, and it covers the case where this code is
1811       // being called from within backedge-taken count analysis, such that
1812       // attempting to ask for the backedge-taken count would likely result
1813       // in infinite recursion. In the later case, the analysis code will
1814       // cope with a conservative value, and it will take care to purge
1815       // that value once it has finished.
1816       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1817       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1818         // Manually compute the final value for AR, checking for
1819         // overflow.
1820 
1821         // Check whether the backedge-taken count can be losslessly casted to
1822         // the addrec's type. The count is always unsigned.
1823         const SCEV *CastedMaxBECount =
1824             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1825         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1826             CastedMaxBECount, MaxBECount->getType(), Depth);
1827         if (MaxBECount == RecastedMaxBECount) {
1828           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1829           // Check whether Start+Step*MaxBECount has no signed overflow.
1830           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1831                                         SCEV::FlagAnyWrap, Depth + 1);
1832           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1833                                                           SCEV::FlagAnyWrap,
1834                                                           Depth + 1),
1835                                                WideTy, Depth + 1);
1836           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1837           const SCEV *WideMaxBECount =
1838             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1839           const SCEV *OperandExtendedAdd =
1840             getAddExpr(WideStart,
1841                        getMulExpr(WideMaxBECount,
1842                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1843                                   SCEV::FlagAnyWrap, Depth + 1),
1844                        SCEV::FlagAnyWrap, Depth + 1);
1845           if (SAdd == OperandExtendedAdd) {
1846             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1847             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1848             // Return the expression with the addrec on the outside.
1849             return getAddRecExpr(
1850                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1851                                                          Depth + 1),
1852                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1853                 AR->getNoWrapFlags());
1854           }
1855           // Similar to above, only this time treat the step value as unsigned.
1856           // This covers loops that count up with an unsigned step.
1857           OperandExtendedAdd =
1858             getAddExpr(WideStart,
1859                        getMulExpr(WideMaxBECount,
1860                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1861                                   SCEV::FlagAnyWrap, Depth + 1),
1862                        SCEV::FlagAnyWrap, Depth + 1);
1863           if (SAdd == OperandExtendedAdd) {
1864             // If AR wraps around then
1865             //
1866             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1867             // => SAdd != OperandExtendedAdd
1868             //
1869             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1870             // (SAdd == OperandExtendedAdd => AR is NW)
1871 
1872             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1873 
1874             // Return the expression with the addrec on the outside.
1875             return getAddRecExpr(
1876                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1877                                                          Depth + 1),
1878                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1879                 AR->getNoWrapFlags());
1880           }
1881         }
1882       }
1883 
1884       // Normally, in the cases we can prove no-overflow via a
1885       // backedge guarding condition, we can also compute a backedge
1886       // taken count for the loop.  The exceptions are assumptions and
1887       // guards present in the loop -- SCEV is not great at exploiting
1888       // these to compute max backedge taken counts, but can still use
1889       // these to prove lack of overflow.  Use this fact to avoid
1890       // doing extra work that may not pay off.
1891 
1892       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1893           !AC.assumptions().empty()) {
1894         // If the backedge is guarded by a comparison with the pre-inc
1895         // value the addrec is safe. Also, if the entry is guarded by
1896         // a comparison with the start value and the backedge is
1897         // guarded by a comparison with the post-inc value, the addrec
1898         // is safe.
1899         ICmpInst::Predicate Pred;
1900         const SCEV *OverflowLimit =
1901             getSignedOverflowLimitForStep(Step, &Pred, this);
1902         if (OverflowLimit &&
1903             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1904              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1905           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1906           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1907           return getAddRecExpr(
1908               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1909               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1910         }
1911       }
1912 
1913       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1914       // if D + (C - D + Step * n) could be proven to not signed wrap
1915       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1916       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1917         const APInt &C = SC->getAPInt();
1918         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1919         if (D != 0) {
1920           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1921           const SCEV *SResidual =
1922               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1923           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1924           return getAddExpr(SSExtD, SSExtR,
1925                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1926                             Depth + 1);
1927         }
1928       }
1929 
1930       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1931         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1932         return getAddRecExpr(
1933             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1934             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1935       }
1936     }
1937 
1938   // If the input value is provably positive and we could not simplify
1939   // away the sext build a zext instead.
1940   if (isKnownNonNegative(Op))
1941     return getZeroExtendExpr(Op, Ty, Depth + 1);
1942 
1943   // The cast wasn't folded; create an explicit cast node.
1944   // Recompute the insert position, as it may have been invalidated.
1945   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1946   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1947                                                    Op, Ty);
1948   UniqueSCEVs.InsertNode(S, IP);
1949   addToLoopUseLists(S);
1950   return S;
1951 }
1952 
1953 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1954 /// unspecified bits out to the given type.
1955 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1956                                               Type *Ty) {
1957   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1958          "This is not an extending conversion!");
1959   assert(isSCEVable(Ty) &&
1960          "This is not a conversion to a SCEVable type!");
1961   Ty = getEffectiveSCEVType(Ty);
1962 
1963   // Sign-extend negative constants.
1964   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1965     if (SC->getAPInt().isNegative())
1966       return getSignExtendExpr(Op, Ty);
1967 
1968   // Peel off a truncate cast.
1969   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1970     const SCEV *NewOp = T->getOperand();
1971     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1972       return getAnyExtendExpr(NewOp, Ty);
1973     return getTruncateOrNoop(NewOp, Ty);
1974   }
1975 
1976   // Next try a zext cast. If the cast is folded, use it.
1977   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1978   if (!isa<SCEVZeroExtendExpr>(ZExt))
1979     return ZExt;
1980 
1981   // Next try a sext cast. If the cast is folded, use it.
1982   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1983   if (!isa<SCEVSignExtendExpr>(SExt))
1984     return SExt;
1985 
1986   // Force the cast to be folded into the operands of an addrec.
1987   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1988     SmallVector<const SCEV *, 4> Ops;
1989     for (const SCEV *Op : AR->operands())
1990       Ops.push_back(getAnyExtendExpr(Op, Ty));
1991     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1992   }
1993 
1994   // If the expression is obviously signed, use the sext cast value.
1995   if (isa<SCEVSMaxExpr>(Op))
1996     return SExt;
1997 
1998   // Absent any other information, use the zext cast value.
1999   return ZExt;
2000 }
2001 
2002 /// Process the given Ops list, which is a list of operands to be added under
2003 /// the given scale, update the given map. This is a helper function for
2004 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2005 /// that would form an add expression like this:
2006 ///
2007 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2008 ///
2009 /// where A and B are constants, update the map with these values:
2010 ///
2011 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2012 ///
2013 /// and add 13 + A*B*29 to AccumulatedConstant.
2014 /// This will allow getAddRecExpr to produce this:
2015 ///
2016 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2017 ///
2018 /// This form often exposes folding opportunities that are hidden in
2019 /// the original operand list.
2020 ///
2021 /// Return true iff it appears that any interesting folding opportunities
2022 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2023 /// the common case where no interesting opportunities are present, and
2024 /// is also used as a check to avoid infinite recursion.
2025 static bool
2026 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2027                              SmallVectorImpl<const SCEV *> &NewOps,
2028                              APInt &AccumulatedConstant,
2029                              const SCEV *const *Ops, size_t NumOperands,
2030                              const APInt &Scale,
2031                              ScalarEvolution &SE) {
2032   bool Interesting = false;
2033 
2034   // Iterate over the add operands. They are sorted, with constants first.
2035   unsigned i = 0;
2036   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2037     ++i;
2038     // Pull a buried constant out to the outside.
2039     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2040       Interesting = true;
2041     AccumulatedConstant += Scale * C->getAPInt();
2042   }
2043 
2044   // Next comes everything else. We're especially interested in multiplies
2045   // here, but they're in the middle, so just visit the rest with one loop.
2046   for (; i != NumOperands; ++i) {
2047     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2048     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2049       APInt NewScale =
2050           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2051       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2052         // A multiplication of a constant with another add; recurse.
2053         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2054         Interesting |=
2055           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2056                                        Add->op_begin(), Add->getNumOperands(),
2057                                        NewScale, SE);
2058       } else {
2059         // A multiplication of a constant with some other value. Update
2060         // the map.
2061         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2062         const SCEV *Key = SE.getMulExpr(MulOps);
2063         auto Pair = M.insert({Key, NewScale});
2064         if (Pair.second) {
2065           NewOps.push_back(Pair.first->first);
2066         } else {
2067           Pair.first->second += NewScale;
2068           // The map already had an entry for this value, which may indicate
2069           // a folding opportunity.
2070           Interesting = true;
2071         }
2072       }
2073     } else {
2074       // An ordinary operand. Update the map.
2075       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2076           M.insert({Ops[i], Scale});
2077       if (Pair.second) {
2078         NewOps.push_back(Pair.first->first);
2079       } else {
2080         Pair.first->second += Scale;
2081         // The map already had an entry for this value, which may indicate
2082         // a folding opportunity.
2083         Interesting = true;
2084       }
2085     }
2086   }
2087 
2088   return Interesting;
2089 }
2090 
2091 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2092 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2093 // can't-overflow flags for the operation if possible.
2094 static SCEV::NoWrapFlags
2095 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2096                       const ArrayRef<const SCEV *> Ops,
2097                       SCEV::NoWrapFlags Flags) {
2098   using namespace std::placeholders;
2099 
2100   using OBO = OverflowingBinaryOperator;
2101 
2102   bool CanAnalyze =
2103       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2104   (void)CanAnalyze;
2105   assert(CanAnalyze && "don't call from other places!");
2106 
2107   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2108   SCEV::NoWrapFlags SignOrUnsignWrap =
2109       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2110 
2111   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2112   auto IsKnownNonNegative = [&](const SCEV *S) {
2113     return SE->isKnownNonNegative(S);
2114   };
2115 
2116   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2117     Flags =
2118         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2119 
2120   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2121 
2122   if (SignOrUnsignWrap != SignOrUnsignMask &&
2123       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2124       isa<SCEVConstant>(Ops[0])) {
2125 
2126     auto Opcode = [&] {
2127       switch (Type) {
2128       case scAddExpr:
2129         return Instruction::Add;
2130       case scMulExpr:
2131         return Instruction::Mul;
2132       default:
2133         llvm_unreachable("Unexpected SCEV op.");
2134       }
2135     }();
2136 
2137     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2138 
2139     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2140     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2141       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2142           Opcode, C, OBO::NoSignedWrap);
2143       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2144         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2145     }
2146 
2147     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2148     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2149       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2150           Opcode, C, OBO::NoUnsignedWrap);
2151       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2152         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2153     }
2154   }
2155 
2156   return Flags;
2157 }
2158 
2159 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2160   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2161 }
2162 
2163 /// Get a canonical add expression, or something simpler if possible.
2164 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2165                                         SCEV::NoWrapFlags Flags,
2166                                         unsigned Depth) {
2167   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2168          "only nuw or nsw allowed");
2169   assert(!Ops.empty() && "Cannot get empty add!");
2170   if (Ops.size() == 1) return Ops[0];
2171 #ifndef NDEBUG
2172   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2173   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2174     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2175            "SCEVAddExpr operand types don't match!");
2176 #endif
2177 
2178   // Sort by complexity, this groups all similar expression types together.
2179   GroupByComplexity(Ops, &LI, DT);
2180 
2181   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2182 
2183   // If there are any constants, fold them together.
2184   unsigned Idx = 0;
2185   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2186     ++Idx;
2187     assert(Idx < Ops.size());
2188     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2189       // We found two constants, fold them together!
2190       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2191       if (Ops.size() == 2) return Ops[0];
2192       Ops.erase(Ops.begin()+1);  // Erase the folded element
2193       LHSC = cast<SCEVConstant>(Ops[0]);
2194     }
2195 
2196     // If we are left with a constant zero being added, strip it off.
2197     if (LHSC->getValue()->isZero()) {
2198       Ops.erase(Ops.begin());
2199       --Idx;
2200     }
2201 
2202     if (Ops.size() == 1) return Ops[0];
2203   }
2204 
2205   // Limit recursion calls depth.
2206   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2207     return getOrCreateAddExpr(Ops, Flags);
2208 
2209   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2210     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2211     return S;
2212   }
2213 
2214   // Okay, check to see if the same value occurs in the operand list more than
2215   // once.  If so, merge them together into an multiply expression.  Since we
2216   // sorted the list, these values are required to be adjacent.
2217   Type *Ty = Ops[0]->getType();
2218   bool FoundMatch = false;
2219   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2220     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2221       // Scan ahead to count how many equal operands there are.
2222       unsigned Count = 2;
2223       while (i+Count != e && Ops[i+Count] == Ops[i])
2224         ++Count;
2225       // Merge the values into a multiply.
2226       const SCEV *Scale = getConstant(Ty, Count);
2227       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2228       if (Ops.size() == Count)
2229         return Mul;
2230       Ops[i] = Mul;
2231       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2232       --i; e -= Count - 1;
2233       FoundMatch = true;
2234     }
2235   if (FoundMatch)
2236     return getAddExpr(Ops, Flags, Depth + 1);
2237 
2238   // Check for truncates. If all the operands are truncated from the same
2239   // type, see if factoring out the truncate would permit the result to be
2240   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2241   // if the contents of the resulting outer trunc fold to something simple.
2242   auto FindTruncSrcType = [&]() -> Type * {
2243     // We're ultimately looking to fold an addrec of truncs and muls of only
2244     // constants and truncs, so if we find any other types of SCEV
2245     // as operands of the addrec then we bail and return nullptr here.
2246     // Otherwise, we return the type of the operand of a trunc that we find.
2247     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2248       return T->getOperand()->getType();
2249     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2250       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2251       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2252         return T->getOperand()->getType();
2253     }
2254     return nullptr;
2255   };
2256   if (auto *SrcType = FindTruncSrcType()) {
2257     SmallVector<const SCEV *, 8> LargeOps;
2258     bool Ok = true;
2259     // Check all the operands to see if they can be represented in the
2260     // source type of the truncate.
2261     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2262       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2263         if (T->getOperand()->getType() != SrcType) {
2264           Ok = false;
2265           break;
2266         }
2267         LargeOps.push_back(T->getOperand());
2268       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2269         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2270       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2271         SmallVector<const SCEV *, 8> LargeMulOps;
2272         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2273           if (const SCEVTruncateExpr *T =
2274                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2275             if (T->getOperand()->getType() != SrcType) {
2276               Ok = false;
2277               break;
2278             }
2279             LargeMulOps.push_back(T->getOperand());
2280           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2281             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2282           } else {
2283             Ok = false;
2284             break;
2285           }
2286         }
2287         if (Ok)
2288           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2289       } else {
2290         Ok = false;
2291         break;
2292       }
2293     }
2294     if (Ok) {
2295       // Evaluate the expression in the larger type.
2296       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2297       // If it folds to something simple, use it. Otherwise, don't.
2298       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2299         return getTruncateExpr(Fold, Ty);
2300     }
2301   }
2302 
2303   // Skip past any other cast SCEVs.
2304   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2305     ++Idx;
2306 
2307   // If there are add operands they would be next.
2308   if (Idx < Ops.size()) {
2309     bool DeletedAdd = false;
2310     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2311       if (Ops.size() > AddOpsInlineThreshold ||
2312           Add->getNumOperands() > AddOpsInlineThreshold)
2313         break;
2314       // If we have an add, expand the add operands onto the end of the operands
2315       // list.
2316       Ops.erase(Ops.begin()+Idx);
2317       Ops.append(Add->op_begin(), Add->op_end());
2318       DeletedAdd = true;
2319     }
2320 
2321     // If we deleted at least one add, we added operands to the end of the list,
2322     // and they are not necessarily sorted.  Recurse to resort and resimplify
2323     // any operands we just acquired.
2324     if (DeletedAdd)
2325       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2326   }
2327 
2328   // Skip over the add expression until we get to a multiply.
2329   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2330     ++Idx;
2331 
2332   // Check to see if there are any folding opportunities present with
2333   // operands multiplied by constant values.
2334   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2335     uint64_t BitWidth = getTypeSizeInBits(Ty);
2336     DenseMap<const SCEV *, APInt> M;
2337     SmallVector<const SCEV *, 8> NewOps;
2338     APInt AccumulatedConstant(BitWidth, 0);
2339     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2340                                      Ops.data(), Ops.size(),
2341                                      APInt(BitWidth, 1), *this)) {
2342       struct APIntCompare {
2343         bool operator()(const APInt &LHS, const APInt &RHS) const {
2344           return LHS.ult(RHS);
2345         }
2346       };
2347 
2348       // Some interesting folding opportunity is present, so its worthwhile to
2349       // re-generate the operands list. Group the operands by constant scale,
2350       // to avoid multiplying by the same constant scale multiple times.
2351       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2352       for (const SCEV *NewOp : NewOps)
2353         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2354       // Re-generate the operands list.
2355       Ops.clear();
2356       if (AccumulatedConstant != 0)
2357         Ops.push_back(getConstant(AccumulatedConstant));
2358       for (auto &MulOp : MulOpLists)
2359         if (MulOp.first != 0)
2360           Ops.push_back(getMulExpr(
2361               getConstant(MulOp.first),
2362               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2363               SCEV::FlagAnyWrap, Depth + 1));
2364       if (Ops.empty())
2365         return getZero(Ty);
2366       if (Ops.size() == 1)
2367         return Ops[0];
2368       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2369     }
2370   }
2371 
2372   // If we are adding something to a multiply expression, make sure the
2373   // something is not already an operand of the multiply.  If so, merge it into
2374   // the multiply.
2375   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2376     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2377     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2378       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2379       if (isa<SCEVConstant>(MulOpSCEV))
2380         continue;
2381       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2382         if (MulOpSCEV == Ops[AddOp]) {
2383           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2384           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2385           if (Mul->getNumOperands() != 2) {
2386             // If the multiply has more than two operands, we must get the
2387             // Y*Z term.
2388             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2389                                                 Mul->op_begin()+MulOp);
2390             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2391             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2392           }
2393           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2394           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2395           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2396                                             SCEV::FlagAnyWrap, Depth + 1);
2397           if (Ops.size() == 2) return OuterMul;
2398           if (AddOp < Idx) {
2399             Ops.erase(Ops.begin()+AddOp);
2400             Ops.erase(Ops.begin()+Idx-1);
2401           } else {
2402             Ops.erase(Ops.begin()+Idx);
2403             Ops.erase(Ops.begin()+AddOp-1);
2404           }
2405           Ops.push_back(OuterMul);
2406           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2407         }
2408 
2409       // Check this multiply against other multiplies being added together.
2410       for (unsigned OtherMulIdx = Idx+1;
2411            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2412            ++OtherMulIdx) {
2413         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2414         // If MulOp occurs in OtherMul, we can fold the two multiplies
2415         // together.
2416         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2417              OMulOp != e; ++OMulOp)
2418           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2419             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2420             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2421             if (Mul->getNumOperands() != 2) {
2422               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2423                                                   Mul->op_begin()+MulOp);
2424               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2425               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2426             }
2427             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2428             if (OtherMul->getNumOperands() != 2) {
2429               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2430                                                   OtherMul->op_begin()+OMulOp);
2431               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2432               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2433             }
2434             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2435             const SCEV *InnerMulSum =
2436                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2437             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2438                                               SCEV::FlagAnyWrap, Depth + 1);
2439             if (Ops.size() == 2) return OuterMul;
2440             Ops.erase(Ops.begin()+Idx);
2441             Ops.erase(Ops.begin()+OtherMulIdx-1);
2442             Ops.push_back(OuterMul);
2443             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2444           }
2445       }
2446     }
2447   }
2448 
2449   // If there are any add recurrences in the operands list, see if any other
2450   // added values are loop invariant.  If so, we can fold them into the
2451   // recurrence.
2452   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2453     ++Idx;
2454 
2455   // Scan over all recurrences, trying to fold loop invariants into them.
2456   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2457     // Scan all of the other operands to this add and add them to the vector if
2458     // they are loop invariant w.r.t. the recurrence.
2459     SmallVector<const SCEV *, 8> LIOps;
2460     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2461     const Loop *AddRecLoop = AddRec->getLoop();
2462     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2463       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2464         LIOps.push_back(Ops[i]);
2465         Ops.erase(Ops.begin()+i);
2466         --i; --e;
2467       }
2468 
2469     // If we found some loop invariants, fold them into the recurrence.
2470     if (!LIOps.empty()) {
2471       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2472       LIOps.push_back(AddRec->getStart());
2473 
2474       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2475                                              AddRec->op_end());
2476       // This follows from the fact that the no-wrap flags on the outer add
2477       // expression are applicable on the 0th iteration, when the add recurrence
2478       // will be equal to its start value.
2479       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2480 
2481       // Build the new addrec. Propagate the NUW and NSW flags if both the
2482       // outer add and the inner addrec are guaranteed to have no overflow.
2483       // Always propagate NW.
2484       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2485       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2486 
2487       // If all of the other operands were loop invariant, we are done.
2488       if (Ops.size() == 1) return NewRec;
2489 
2490       // Otherwise, add the folded AddRec by the non-invariant parts.
2491       for (unsigned i = 0;; ++i)
2492         if (Ops[i] == AddRec) {
2493           Ops[i] = NewRec;
2494           break;
2495         }
2496       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2497     }
2498 
2499     // Okay, if there weren't any loop invariants to be folded, check to see if
2500     // there are multiple AddRec's with the same loop induction variable being
2501     // added together.  If so, we can fold them.
2502     for (unsigned OtherIdx = Idx+1;
2503          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2504          ++OtherIdx) {
2505       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2506       // so that the 1st found AddRecExpr is dominated by all others.
2507       assert(DT.dominates(
2508            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2509            AddRec->getLoop()->getHeader()) &&
2510         "AddRecExprs are not sorted in reverse dominance order?");
2511       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2512         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2513         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2514                                                AddRec->op_end());
2515         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2516              ++OtherIdx) {
2517           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2518           if (OtherAddRec->getLoop() == AddRecLoop) {
2519             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2520                  i != e; ++i) {
2521               if (i >= AddRecOps.size()) {
2522                 AddRecOps.append(OtherAddRec->op_begin()+i,
2523                                  OtherAddRec->op_end());
2524                 break;
2525               }
2526               SmallVector<const SCEV *, 2> TwoOps = {
2527                   AddRecOps[i], OtherAddRec->getOperand(i)};
2528               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2529             }
2530             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2531           }
2532         }
2533         // Step size has changed, so we cannot guarantee no self-wraparound.
2534         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2535         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2536       }
2537     }
2538 
2539     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2540     // next one.
2541   }
2542 
2543   // Okay, it looks like we really DO need an add expr.  Check to see if we
2544   // already have one, otherwise create a new one.
2545   return getOrCreateAddExpr(Ops, Flags);
2546 }
2547 
2548 const SCEV *
2549 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2550                                     SCEV::NoWrapFlags Flags) {
2551   FoldingSetNodeID ID;
2552   ID.AddInteger(scAddExpr);
2553   for (const SCEV *Op : Ops)
2554     ID.AddPointer(Op);
2555   void *IP = nullptr;
2556   SCEVAddExpr *S =
2557       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2558   if (!S) {
2559     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2560     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2561     S = new (SCEVAllocator)
2562         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2563     UniqueSCEVs.InsertNode(S, IP);
2564     addToLoopUseLists(S);
2565   }
2566   S->setNoWrapFlags(Flags);
2567   return S;
2568 }
2569 
2570 const SCEV *
2571 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2572                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2573   FoldingSetNodeID ID;
2574   ID.AddInteger(scAddRecExpr);
2575   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2576     ID.AddPointer(Ops[i]);
2577   ID.AddPointer(L);
2578   void *IP = nullptr;
2579   SCEVAddRecExpr *S =
2580       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2581   if (!S) {
2582     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2583     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2584     S = new (SCEVAllocator)
2585         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2586     UniqueSCEVs.InsertNode(S, IP);
2587     addToLoopUseLists(S);
2588   }
2589   S->setNoWrapFlags(Flags);
2590   return S;
2591 }
2592 
2593 const SCEV *
2594 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2595                                     SCEV::NoWrapFlags Flags) {
2596   FoldingSetNodeID ID;
2597   ID.AddInteger(scMulExpr);
2598   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2599     ID.AddPointer(Ops[i]);
2600   void *IP = nullptr;
2601   SCEVMulExpr *S =
2602     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2603   if (!S) {
2604     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2605     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2606     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2607                                         O, Ops.size());
2608     UniqueSCEVs.InsertNode(S, IP);
2609     addToLoopUseLists(S);
2610   }
2611   S->setNoWrapFlags(Flags);
2612   return S;
2613 }
2614 
2615 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2616   uint64_t k = i*j;
2617   if (j > 1 && k / j != i) Overflow = true;
2618   return k;
2619 }
2620 
2621 /// Compute the result of "n choose k", the binomial coefficient.  If an
2622 /// intermediate computation overflows, Overflow will be set and the return will
2623 /// be garbage. Overflow is not cleared on absence of overflow.
2624 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2625   // We use the multiplicative formula:
2626   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2627   // At each iteration, we take the n-th term of the numeral and divide by the
2628   // (k-n)th term of the denominator.  This division will always produce an
2629   // integral result, and helps reduce the chance of overflow in the
2630   // intermediate computations. However, we can still overflow even when the
2631   // final result would fit.
2632 
2633   if (n == 0 || n == k) return 1;
2634   if (k > n) return 0;
2635 
2636   if (k > n/2)
2637     k = n-k;
2638 
2639   uint64_t r = 1;
2640   for (uint64_t i = 1; i <= k; ++i) {
2641     r = umul_ov(r, n-(i-1), Overflow);
2642     r /= i;
2643   }
2644   return r;
2645 }
2646 
2647 /// Determine if any of the operands in this SCEV are a constant or if
2648 /// any of the add or multiply expressions in this SCEV contain a constant.
2649 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2650   struct FindConstantInAddMulChain {
2651     bool FoundConstant = false;
2652 
2653     bool follow(const SCEV *S) {
2654       FoundConstant |= isa<SCEVConstant>(S);
2655       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2656     }
2657 
2658     bool isDone() const {
2659       return FoundConstant;
2660     }
2661   };
2662 
2663   FindConstantInAddMulChain F;
2664   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2665   ST.visitAll(StartExpr);
2666   return F.FoundConstant;
2667 }
2668 
2669 /// Get a canonical multiply expression, or something simpler if possible.
2670 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2671                                         SCEV::NoWrapFlags Flags,
2672                                         unsigned Depth) {
2673   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2674          "only nuw or nsw allowed");
2675   assert(!Ops.empty() && "Cannot get empty mul!");
2676   if (Ops.size() == 1) return Ops[0];
2677 #ifndef NDEBUG
2678   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2679   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2680     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2681            "SCEVMulExpr operand types don't match!");
2682 #endif
2683 
2684   // Sort by complexity, this groups all similar expression types together.
2685   GroupByComplexity(Ops, &LI, DT);
2686 
2687   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2688 
2689   // Limit recursion calls depth, but fold all-constant expressions.
2690   // `Ops` is sorted, so it's enough to check just last one.
2691   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2692       !isa<SCEVConstant>(Ops.back()))
2693     return getOrCreateMulExpr(Ops, Flags);
2694 
2695   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2696     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2697     return S;
2698   }
2699 
2700   // If there are any constants, fold them together.
2701   unsigned Idx = 0;
2702   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2703 
2704     if (Ops.size() == 2)
2705       // C1*(C2+V) -> C1*C2 + C1*V
2706       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2707         // If any of Add's ops are Adds or Muls with a constant, apply this
2708         // transformation as well.
2709         //
2710         // TODO: There are some cases where this transformation is not
2711         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2712         // this transformation should be narrowed down.
2713         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2714           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2715                                        SCEV::FlagAnyWrap, Depth + 1),
2716                             getMulExpr(LHSC, Add->getOperand(1),
2717                                        SCEV::FlagAnyWrap, Depth + 1),
2718                             SCEV::FlagAnyWrap, Depth + 1);
2719 
2720     ++Idx;
2721     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2722       // We found two constants, fold them together!
2723       ConstantInt *Fold =
2724           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2725       Ops[0] = getConstant(Fold);
2726       Ops.erase(Ops.begin()+1);  // Erase the folded element
2727       if (Ops.size() == 1) return Ops[0];
2728       LHSC = cast<SCEVConstant>(Ops[0]);
2729     }
2730 
2731     // If we are left with a constant one being multiplied, strip it off.
2732     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2733       Ops.erase(Ops.begin());
2734       --Idx;
2735     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2736       // If we have a multiply of zero, it will always be zero.
2737       return Ops[0];
2738     } else if (Ops[0]->isAllOnesValue()) {
2739       // If we have a mul by -1 of an add, try distributing the -1 among the
2740       // add operands.
2741       if (Ops.size() == 2) {
2742         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2743           SmallVector<const SCEV *, 4> NewOps;
2744           bool AnyFolded = false;
2745           for (const SCEV *AddOp : Add->operands()) {
2746             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2747                                          Depth + 1);
2748             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2749             NewOps.push_back(Mul);
2750           }
2751           if (AnyFolded)
2752             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2753         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2754           // Negation preserves a recurrence's no self-wrap property.
2755           SmallVector<const SCEV *, 4> Operands;
2756           for (const SCEV *AddRecOp : AddRec->operands())
2757             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2758                                           Depth + 1));
2759 
2760           return getAddRecExpr(Operands, AddRec->getLoop(),
2761                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2762         }
2763       }
2764     }
2765 
2766     if (Ops.size() == 1)
2767       return Ops[0];
2768   }
2769 
2770   // Skip over the add expression until we get to a multiply.
2771   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2772     ++Idx;
2773 
2774   // If there are mul operands inline them all into this expression.
2775   if (Idx < Ops.size()) {
2776     bool DeletedMul = false;
2777     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2778       if (Ops.size() > MulOpsInlineThreshold)
2779         break;
2780       // If we have an mul, expand the mul operands onto the end of the
2781       // operands list.
2782       Ops.erase(Ops.begin()+Idx);
2783       Ops.append(Mul->op_begin(), Mul->op_end());
2784       DeletedMul = true;
2785     }
2786 
2787     // If we deleted at least one mul, we added operands to the end of the
2788     // list, and they are not necessarily sorted.  Recurse to resort and
2789     // resimplify any operands we just acquired.
2790     if (DeletedMul)
2791       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2792   }
2793 
2794   // If there are any add recurrences in the operands list, see if any other
2795   // added values are loop invariant.  If so, we can fold them into the
2796   // recurrence.
2797   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2798     ++Idx;
2799 
2800   // Scan over all recurrences, trying to fold loop invariants into them.
2801   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2802     // Scan all of the other operands to this mul and add them to the vector
2803     // if they are loop invariant w.r.t. the recurrence.
2804     SmallVector<const SCEV *, 8> LIOps;
2805     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2806     const Loop *AddRecLoop = AddRec->getLoop();
2807     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2808       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2809         LIOps.push_back(Ops[i]);
2810         Ops.erase(Ops.begin()+i);
2811         --i; --e;
2812       }
2813 
2814     // If we found some loop invariants, fold them into the recurrence.
2815     if (!LIOps.empty()) {
2816       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2817       SmallVector<const SCEV *, 4> NewOps;
2818       NewOps.reserve(AddRec->getNumOperands());
2819       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2820       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2821         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2822                                     SCEV::FlagAnyWrap, Depth + 1));
2823 
2824       // Build the new addrec. Propagate the NUW and NSW flags if both the
2825       // outer mul and the inner addrec are guaranteed to have no overflow.
2826       //
2827       // No self-wrap cannot be guaranteed after changing the step size, but
2828       // will be inferred if either NUW or NSW is true.
2829       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2830       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2831 
2832       // If all of the other operands were loop invariant, we are done.
2833       if (Ops.size() == 1) return NewRec;
2834 
2835       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2836       for (unsigned i = 0;; ++i)
2837         if (Ops[i] == AddRec) {
2838           Ops[i] = NewRec;
2839           break;
2840         }
2841       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2842     }
2843 
2844     // Okay, if there weren't any loop invariants to be folded, check to see
2845     // if there are multiple AddRec's with the same loop induction variable
2846     // being multiplied together.  If so, we can fold them.
2847 
2848     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2849     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2850     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2851     //   ]]],+,...up to x=2n}.
2852     // Note that the arguments to choose() are always integers with values
2853     // known at compile time, never SCEV objects.
2854     //
2855     // The implementation avoids pointless extra computations when the two
2856     // addrec's are of different length (mathematically, it's equivalent to
2857     // an infinite stream of zeros on the right).
2858     bool OpsModified = false;
2859     for (unsigned OtherIdx = Idx+1;
2860          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2861          ++OtherIdx) {
2862       const SCEVAddRecExpr *OtherAddRec =
2863         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2864       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2865         continue;
2866 
2867       // Limit max number of arguments to avoid creation of unreasonably big
2868       // SCEVAddRecs with very complex operands.
2869       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2870           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2871         continue;
2872 
2873       bool Overflow = false;
2874       Type *Ty = AddRec->getType();
2875       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2876       SmallVector<const SCEV*, 7> AddRecOps;
2877       for (int x = 0, xe = AddRec->getNumOperands() +
2878              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2879         SmallVector <const SCEV *, 7> SumOps;
2880         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2881           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2882           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2883                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2884                z < ze && !Overflow; ++z) {
2885             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2886             uint64_t Coeff;
2887             if (LargerThan64Bits)
2888               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2889             else
2890               Coeff = Coeff1*Coeff2;
2891             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2892             const SCEV *Term1 = AddRec->getOperand(y-z);
2893             const SCEV *Term2 = OtherAddRec->getOperand(z);
2894             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2895                                         SCEV::FlagAnyWrap, Depth + 1));
2896           }
2897         }
2898         if (SumOps.empty())
2899           SumOps.push_back(getZero(Ty));
2900         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2901       }
2902       if (!Overflow) {
2903         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2904                                               SCEV::FlagAnyWrap);
2905         if (Ops.size() == 2) return NewAddRec;
2906         Ops[Idx] = NewAddRec;
2907         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2908         OpsModified = true;
2909         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2910         if (!AddRec)
2911           break;
2912       }
2913     }
2914     if (OpsModified)
2915       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2916 
2917     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2918     // next one.
2919   }
2920 
2921   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2922   // already have one, otherwise create a new one.
2923   return getOrCreateMulExpr(Ops, Flags);
2924 }
2925 
2926 /// Represents an unsigned remainder expression based on unsigned division.
2927 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2928                                          const SCEV *RHS) {
2929   assert(getEffectiveSCEVType(LHS->getType()) ==
2930          getEffectiveSCEVType(RHS->getType()) &&
2931          "SCEVURemExpr operand types don't match!");
2932 
2933   // Short-circuit easy cases
2934   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2935     // If constant is one, the result is trivial
2936     if (RHSC->getValue()->isOne())
2937       return getZero(LHS->getType()); // X urem 1 --> 0
2938 
2939     // If constant is a power of two, fold into a zext(trunc(LHS)).
2940     if (RHSC->getAPInt().isPowerOf2()) {
2941       Type *FullTy = LHS->getType();
2942       Type *TruncTy =
2943           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2944       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2945     }
2946   }
2947 
2948   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2949   const SCEV *UDiv = getUDivExpr(LHS, RHS);
2950   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2951   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2952 }
2953 
2954 /// Get a canonical unsigned division expression, or something simpler if
2955 /// possible.
2956 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2957                                          const SCEV *RHS) {
2958   assert(getEffectiveSCEVType(LHS->getType()) ==
2959          getEffectiveSCEVType(RHS->getType()) &&
2960          "SCEVUDivExpr operand types don't match!");
2961 
2962   FoldingSetNodeID ID;
2963   ID.AddInteger(scUDivExpr);
2964   ID.AddPointer(LHS);
2965   ID.AddPointer(RHS);
2966   void *IP = nullptr;
2967   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2968     return S;
2969 
2970   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2971     if (RHSC->getValue()->isOne())
2972       return LHS;                               // X udiv 1 --> x
2973     // If the denominator is zero, the result of the udiv is undefined. Don't
2974     // try to analyze it, because the resolution chosen here may differ from
2975     // the resolution chosen in other parts of the compiler.
2976     if (!RHSC->getValue()->isZero()) {
2977       // Determine if the division can be folded into the operands of
2978       // its operands.
2979       // TODO: Generalize this to non-constants by using known-bits information.
2980       Type *Ty = LHS->getType();
2981       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2982       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2983       // For non-power-of-two values, effectively round the value up to the
2984       // nearest power of two.
2985       if (!RHSC->getAPInt().isPowerOf2())
2986         ++MaxShiftAmt;
2987       IntegerType *ExtTy =
2988         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2989       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2990         if (const SCEVConstant *Step =
2991             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2992           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2993           const APInt &StepInt = Step->getAPInt();
2994           const APInt &DivInt = RHSC->getAPInt();
2995           if (!StepInt.urem(DivInt) &&
2996               getZeroExtendExpr(AR, ExtTy) ==
2997               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2998                             getZeroExtendExpr(Step, ExtTy),
2999                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3000             SmallVector<const SCEV *, 4> Operands;
3001             for (const SCEV *Op : AR->operands())
3002               Operands.push_back(getUDivExpr(Op, RHS));
3003             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3004           }
3005           /// Get a canonical UDivExpr for a recurrence.
3006           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3007           // We can currently only fold X%N if X is constant.
3008           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3009           if (StartC && !DivInt.urem(StepInt) &&
3010               getZeroExtendExpr(AR, ExtTy) ==
3011               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3012                             getZeroExtendExpr(Step, ExtTy),
3013                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3014             const APInt &StartInt = StartC->getAPInt();
3015             const APInt &StartRem = StartInt.urem(StepInt);
3016             if (StartRem != 0) {
3017               const SCEV *NewLHS =
3018                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3019                                 AR->getLoop(), SCEV::FlagNW);
3020               if (LHS != NewLHS) {
3021                 LHS = NewLHS;
3022 
3023                 // Reset the ID to include the new LHS, and check if it is
3024                 // already cached.
3025                 ID.clear();
3026                 ID.AddInteger(scUDivExpr);
3027                 ID.AddPointer(LHS);
3028                 ID.AddPointer(RHS);
3029                 IP = nullptr;
3030                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3031                   return S;
3032               }
3033             }
3034           }
3035         }
3036       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3037       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3038         SmallVector<const SCEV *, 4> Operands;
3039         for (const SCEV *Op : M->operands())
3040           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3041         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3042           // Find an operand that's safely divisible.
3043           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3044             const SCEV *Op = M->getOperand(i);
3045             const SCEV *Div = getUDivExpr(Op, RHSC);
3046             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3047               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3048                                                       M->op_end());
3049               Operands[i] = Div;
3050               return getMulExpr(Operands);
3051             }
3052           }
3053       }
3054 
3055       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3056       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3057         if (auto *DivisorConstant =
3058                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3059           bool Overflow = false;
3060           APInt NewRHS =
3061               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3062           if (Overflow) {
3063             return getConstant(RHSC->getType(), 0, false);
3064           }
3065           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3066         }
3067       }
3068 
3069       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3070       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3071         SmallVector<const SCEV *, 4> Operands;
3072         for (const SCEV *Op : A->operands())
3073           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3074         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3075           Operands.clear();
3076           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3077             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3078             if (isa<SCEVUDivExpr>(Op) ||
3079                 getMulExpr(Op, RHS) != A->getOperand(i))
3080               break;
3081             Operands.push_back(Op);
3082           }
3083           if (Operands.size() == A->getNumOperands())
3084             return getAddExpr(Operands);
3085         }
3086       }
3087 
3088       // Fold if both operands are constant.
3089       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3090         Constant *LHSCV = LHSC->getValue();
3091         Constant *RHSCV = RHSC->getValue();
3092         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3093                                                                    RHSCV)));
3094       }
3095     }
3096   }
3097 
3098   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3099   // changes). Make sure we get a new one.
3100   IP = nullptr;
3101   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3102   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3103                                              LHS, RHS);
3104   UniqueSCEVs.InsertNode(S, IP);
3105   addToLoopUseLists(S);
3106   return S;
3107 }
3108 
3109 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3110   APInt A = C1->getAPInt().abs();
3111   APInt B = C2->getAPInt().abs();
3112   uint32_t ABW = A.getBitWidth();
3113   uint32_t BBW = B.getBitWidth();
3114 
3115   if (ABW > BBW)
3116     B = B.zext(ABW);
3117   else if (ABW < BBW)
3118     A = A.zext(BBW);
3119 
3120   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3121 }
3122 
3123 /// Get a canonical unsigned division expression, or something simpler if
3124 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3125 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3126 /// it's not exact because the udiv may be clearing bits.
3127 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3128                                               const SCEV *RHS) {
3129   // TODO: we could try to find factors in all sorts of things, but for now we
3130   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3131   // end of this file for inspiration.
3132 
3133   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3134   if (!Mul || !Mul->hasNoUnsignedWrap())
3135     return getUDivExpr(LHS, RHS);
3136 
3137   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3138     // If the mulexpr multiplies by a constant, then that constant must be the
3139     // first element of the mulexpr.
3140     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3141       if (LHSCst == RHSCst) {
3142         SmallVector<const SCEV *, 2> Operands;
3143         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3144         return getMulExpr(Operands);
3145       }
3146 
3147       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3148       // that there's a factor provided by one of the other terms. We need to
3149       // check.
3150       APInt Factor = gcd(LHSCst, RHSCst);
3151       if (!Factor.isIntN(1)) {
3152         LHSCst =
3153             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3154         RHSCst =
3155             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3156         SmallVector<const SCEV *, 2> Operands;
3157         Operands.push_back(LHSCst);
3158         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3159         LHS = getMulExpr(Operands);
3160         RHS = RHSCst;
3161         Mul = dyn_cast<SCEVMulExpr>(LHS);
3162         if (!Mul)
3163           return getUDivExactExpr(LHS, RHS);
3164       }
3165     }
3166   }
3167 
3168   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3169     if (Mul->getOperand(i) == RHS) {
3170       SmallVector<const SCEV *, 2> Operands;
3171       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3172       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3173       return getMulExpr(Operands);
3174     }
3175   }
3176 
3177   return getUDivExpr(LHS, RHS);
3178 }
3179 
3180 /// Get an add recurrence expression for the specified loop.  Simplify the
3181 /// expression as much as possible.
3182 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3183                                            const Loop *L,
3184                                            SCEV::NoWrapFlags Flags) {
3185   SmallVector<const SCEV *, 4> Operands;
3186   Operands.push_back(Start);
3187   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3188     if (StepChrec->getLoop() == L) {
3189       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3190       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3191     }
3192 
3193   Operands.push_back(Step);
3194   return getAddRecExpr(Operands, L, Flags);
3195 }
3196 
3197 /// Get an add recurrence expression for the specified loop.  Simplify the
3198 /// expression as much as possible.
3199 const SCEV *
3200 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3201                                const Loop *L, SCEV::NoWrapFlags Flags) {
3202   if (Operands.size() == 1) return Operands[0];
3203 #ifndef NDEBUG
3204   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3205   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3206     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3207            "SCEVAddRecExpr operand types don't match!");
3208   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3209     assert(isLoopInvariant(Operands[i], L) &&
3210            "SCEVAddRecExpr operand is not loop-invariant!");
3211 #endif
3212 
3213   if (Operands.back()->isZero()) {
3214     Operands.pop_back();
3215     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3216   }
3217 
3218   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3219   // use that information to infer NUW and NSW flags. However, computing a
3220   // BE count requires calling getAddRecExpr, so we may not yet have a
3221   // meaningful BE count at this point (and if we don't, we'd be stuck
3222   // with a SCEVCouldNotCompute as the cached BE count).
3223 
3224   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3225 
3226   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3227   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3228     const Loop *NestedLoop = NestedAR->getLoop();
3229     if (L->contains(NestedLoop)
3230             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3231             : (!NestedLoop->contains(L) &&
3232                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3233       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3234                                                   NestedAR->op_end());
3235       Operands[0] = NestedAR->getStart();
3236       // AddRecs require their operands be loop-invariant with respect to their
3237       // loops. Don't perform this transformation if it would break this
3238       // requirement.
3239       bool AllInvariant = all_of(
3240           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3241 
3242       if (AllInvariant) {
3243         // Create a recurrence for the outer loop with the same step size.
3244         //
3245         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3246         // inner recurrence has the same property.
3247         SCEV::NoWrapFlags OuterFlags =
3248           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3249 
3250         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3251         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3252           return isLoopInvariant(Op, NestedLoop);
3253         });
3254 
3255         if (AllInvariant) {
3256           // Ok, both add recurrences are valid after the transformation.
3257           //
3258           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3259           // the outer recurrence has the same property.
3260           SCEV::NoWrapFlags InnerFlags =
3261             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3262           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3263         }
3264       }
3265       // Reset Operands to its original state.
3266       Operands[0] = NestedAR;
3267     }
3268   }
3269 
3270   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3271   // already have one, otherwise create a new one.
3272   return getOrCreateAddRecExpr(Operands, L, Flags);
3273 }
3274 
3275 const SCEV *
3276 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3277                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3278   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3279   // getSCEV(Base)->getType() has the same address space as Base->getType()
3280   // because SCEV::getType() preserves the address space.
3281   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3282   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3283   // instruction to its SCEV, because the Instruction may be guarded by control
3284   // flow and the no-overflow bits may not be valid for the expression in any
3285   // context. This can be fixed similarly to how these flags are handled for
3286   // adds.
3287   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3288                                              : SCEV::FlagAnyWrap;
3289 
3290   const SCEV *TotalOffset = getZero(IntIdxTy);
3291   Type *CurTy = GEP->getType();
3292   bool FirstIter = true;
3293   for (const SCEV *IndexExpr : IndexExprs) {
3294     // Compute the (potentially symbolic) offset in bytes for this index.
3295     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3296       // For a struct, add the member offset.
3297       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3298       unsigned FieldNo = Index->getZExtValue();
3299       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3300 
3301       // Add the field offset to the running total offset.
3302       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3303 
3304       // Update CurTy to the type of the field at Index.
3305       CurTy = STy->getTypeAtIndex(Index);
3306     } else {
3307       // Update CurTy to its element type.
3308       if (FirstIter) {
3309         assert(isa<PointerType>(CurTy) &&
3310                "The first index of a GEP indexes a pointer");
3311         CurTy = GEP->getSourceElementType();
3312         FirstIter = false;
3313       } else {
3314         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3315       }
3316       // For an array, add the element offset, explicitly scaled.
3317       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3318       // Getelementptr indices are signed.
3319       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3320 
3321       // Multiply the index by the element size to compute the element offset.
3322       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3323 
3324       // Add the element offset to the running total offset.
3325       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3326     }
3327   }
3328 
3329   // Add the total offset from all the GEP indices to the base.
3330   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3331 }
3332 
3333 std::tuple<SCEV *, FoldingSetNodeID, void *>
3334 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3335                                          ArrayRef<const SCEV *> Ops) {
3336   FoldingSetNodeID ID;
3337   void *IP = nullptr;
3338   ID.AddInteger(SCEVType);
3339   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3340     ID.AddPointer(Ops[i]);
3341   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3342       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3343 }
3344 
3345 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3346   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3347   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3348 }
3349 
3350 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3351   Type *Ty = Op->getType();
3352   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3353 }
3354 
3355 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3356                                            SmallVectorImpl<const SCEV *> &Ops) {
3357   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3358   if (Ops.size() == 1) return Ops[0];
3359 #ifndef NDEBUG
3360   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3361   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3362     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3363            "Operand types don't match!");
3364 #endif
3365 
3366   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3367   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3368 
3369   // Sort by complexity, this groups all similar expression types together.
3370   GroupByComplexity(Ops, &LI, DT);
3371 
3372   // Check if we have created the same expression before.
3373   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3374     return S;
3375   }
3376 
3377   // If there are any constants, fold them together.
3378   unsigned Idx = 0;
3379   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3380     ++Idx;
3381     assert(Idx < Ops.size());
3382     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3383       if (Kind == scSMaxExpr)
3384         return APIntOps::smax(LHS, RHS);
3385       else if (Kind == scSMinExpr)
3386         return APIntOps::smin(LHS, RHS);
3387       else if (Kind == scUMaxExpr)
3388         return APIntOps::umax(LHS, RHS);
3389       else if (Kind == scUMinExpr)
3390         return APIntOps::umin(LHS, RHS);
3391       llvm_unreachable("Unknown SCEV min/max opcode");
3392     };
3393 
3394     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3395       // We found two constants, fold them together!
3396       ConstantInt *Fold = ConstantInt::get(
3397           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3398       Ops[0] = getConstant(Fold);
3399       Ops.erase(Ops.begin()+1);  // Erase the folded element
3400       if (Ops.size() == 1) return Ops[0];
3401       LHSC = cast<SCEVConstant>(Ops[0]);
3402     }
3403 
3404     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3405     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3406 
3407     if (IsMax ? IsMinV : IsMaxV) {
3408       // If we are left with a constant minimum(/maximum)-int, strip it off.
3409       Ops.erase(Ops.begin());
3410       --Idx;
3411     } else if (IsMax ? IsMaxV : IsMinV) {
3412       // If we have a max(/min) with a constant maximum(/minimum)-int,
3413       // it will always be the extremum.
3414       return LHSC;
3415     }
3416 
3417     if (Ops.size() == 1) return Ops[0];
3418   }
3419 
3420   // Find the first operation of the same kind
3421   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3422     ++Idx;
3423 
3424   // Check to see if one of the operands is of the same kind. If so, expand its
3425   // operands onto our operand list, and recurse to simplify.
3426   if (Idx < Ops.size()) {
3427     bool DeletedAny = false;
3428     while (Ops[Idx]->getSCEVType() == Kind) {
3429       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3430       Ops.erase(Ops.begin()+Idx);
3431       Ops.append(SMME->op_begin(), SMME->op_end());
3432       DeletedAny = true;
3433     }
3434 
3435     if (DeletedAny)
3436       return getMinMaxExpr(Kind, Ops);
3437   }
3438 
3439   // Okay, check to see if the same value occurs in the operand list twice.  If
3440   // so, delete one.  Since we sorted the list, these values are required to
3441   // be adjacent.
3442   llvm::CmpInst::Predicate GEPred =
3443       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3444   llvm::CmpInst::Predicate LEPred =
3445       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3446   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3447   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3448   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3449     if (Ops[i] == Ops[i + 1] ||
3450         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3451       //  X op Y op Y  -->  X op Y
3452       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3453       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3454       --i;
3455       --e;
3456     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3457                                                Ops[i + 1])) {
3458       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3459       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3460       --i;
3461       --e;
3462     }
3463   }
3464 
3465   if (Ops.size() == 1) return Ops[0];
3466 
3467   assert(!Ops.empty() && "Reduced smax down to nothing!");
3468 
3469   // Okay, it looks like we really DO need an expr.  Check to see if we
3470   // already have one, otherwise create a new one.
3471   const SCEV *ExistingSCEV;
3472   FoldingSetNodeID ID;
3473   void *IP;
3474   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3475   if (ExistingSCEV)
3476     return ExistingSCEV;
3477   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3478   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3479   SCEV *S = new (SCEVAllocator)
3480       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3481 
3482   UniqueSCEVs.InsertNode(S, IP);
3483   addToLoopUseLists(S);
3484   return S;
3485 }
3486 
3487 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3488   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3489   return getSMaxExpr(Ops);
3490 }
3491 
3492 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3493   return getMinMaxExpr(scSMaxExpr, Ops);
3494 }
3495 
3496 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3497   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3498   return getUMaxExpr(Ops);
3499 }
3500 
3501 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3502   return getMinMaxExpr(scUMaxExpr, Ops);
3503 }
3504 
3505 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3506                                          const SCEV *RHS) {
3507   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3508   return getSMinExpr(Ops);
3509 }
3510 
3511 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3512   return getMinMaxExpr(scSMinExpr, Ops);
3513 }
3514 
3515 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3516                                          const SCEV *RHS) {
3517   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3518   return getUMinExpr(Ops);
3519 }
3520 
3521 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3522   return getMinMaxExpr(scUMinExpr, Ops);
3523 }
3524 
3525 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3526   // We can bypass creating a target-independent
3527   // constant expression and then folding it back into a ConstantInt.
3528   // This is just a compile-time optimization.
3529   if (isa<ScalableVectorType>(AllocTy)) {
3530     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3531     Constant *One = ConstantInt::get(IntTy, 1);
3532     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3533     return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3534   }
3535   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3536 }
3537 
3538 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3539                                              StructType *STy,
3540                                              unsigned FieldNo) {
3541   // We can bypass creating a target-independent
3542   // constant expression and then folding it back into a ConstantInt.
3543   // This is just a compile-time optimization.
3544   return getConstant(
3545       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3546 }
3547 
3548 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3549   // Don't attempt to do anything other than create a SCEVUnknown object
3550   // here.  createSCEV only calls getUnknown after checking for all other
3551   // interesting possibilities, and any other code that calls getUnknown
3552   // is doing so in order to hide a value from SCEV canonicalization.
3553 
3554   FoldingSetNodeID ID;
3555   ID.AddInteger(scUnknown);
3556   ID.AddPointer(V);
3557   void *IP = nullptr;
3558   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3559     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3560            "Stale SCEVUnknown in uniquing map!");
3561     return S;
3562   }
3563   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3564                                             FirstUnknown);
3565   FirstUnknown = cast<SCEVUnknown>(S);
3566   UniqueSCEVs.InsertNode(S, IP);
3567   return S;
3568 }
3569 
3570 //===----------------------------------------------------------------------===//
3571 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3572 //
3573 
3574 /// Test if values of the given type are analyzable within the SCEV
3575 /// framework. This primarily includes integer types, and it can optionally
3576 /// include pointer types if the ScalarEvolution class has access to
3577 /// target-specific information.
3578 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3579   // Integers and pointers are always SCEVable.
3580   return Ty->isIntOrPtrTy();
3581 }
3582 
3583 /// Return the size in bits of the specified type, for which isSCEVable must
3584 /// return true.
3585 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3586   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3587   if (Ty->isPointerTy())
3588     return getDataLayout().getIndexTypeSizeInBits(Ty);
3589   return getDataLayout().getTypeSizeInBits(Ty);
3590 }
3591 
3592 /// Return a type with the same bitwidth as the given type and which represents
3593 /// how SCEV will treat the given type, for which isSCEVable must return
3594 /// true. For pointer types, this is the pointer index sized integer type.
3595 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3596   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3597 
3598   if (Ty->isIntegerTy())
3599     return Ty;
3600 
3601   // The only other support type is pointer.
3602   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3603   return getDataLayout().getIndexType(Ty);
3604 }
3605 
3606 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3607   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3608 }
3609 
3610 const SCEV *ScalarEvolution::getCouldNotCompute() {
3611   return CouldNotCompute.get();
3612 }
3613 
3614 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3615   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3616     auto *SU = dyn_cast<SCEVUnknown>(S);
3617     return SU && SU->getValue() == nullptr;
3618   });
3619 
3620   return !ContainsNulls;
3621 }
3622 
3623 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3624   HasRecMapType::iterator I = HasRecMap.find(S);
3625   if (I != HasRecMap.end())
3626     return I->second;
3627 
3628   bool FoundAddRec =
3629       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3630   HasRecMap.insert({S, FoundAddRec});
3631   return FoundAddRec;
3632 }
3633 
3634 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3635 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3636 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3637 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3638   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3639   if (!Add)
3640     return {S, nullptr};
3641 
3642   if (Add->getNumOperands() != 2)
3643     return {S, nullptr};
3644 
3645   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3646   if (!ConstOp)
3647     return {S, nullptr};
3648 
3649   return {Add->getOperand(1), ConstOp->getValue()};
3650 }
3651 
3652 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3653 /// by the value and offset from any ValueOffsetPair in the set.
3654 SetVector<ScalarEvolution::ValueOffsetPair> *
3655 ScalarEvolution::getSCEVValues(const SCEV *S) {
3656   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3657   if (SI == ExprValueMap.end())
3658     return nullptr;
3659 #ifndef NDEBUG
3660   if (VerifySCEVMap) {
3661     // Check there is no dangling Value in the set returned.
3662     for (const auto &VE : SI->second)
3663       assert(ValueExprMap.count(VE.first));
3664   }
3665 #endif
3666   return &SI->second;
3667 }
3668 
3669 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3670 /// cannot be used separately. eraseValueFromMap should be used to remove
3671 /// V from ValueExprMap and ExprValueMap at the same time.
3672 void ScalarEvolution::eraseValueFromMap(Value *V) {
3673   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3674   if (I != ValueExprMap.end()) {
3675     const SCEV *S = I->second;
3676     // Remove {V, 0} from the set of ExprValueMap[S]
3677     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3678       SV->remove({V, nullptr});
3679 
3680     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3681     const SCEV *Stripped;
3682     ConstantInt *Offset;
3683     std::tie(Stripped, Offset) = splitAddExpr(S);
3684     if (Offset != nullptr) {
3685       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3686         SV->remove({V, Offset});
3687     }
3688     ValueExprMap.erase(V);
3689   }
3690 }
3691 
3692 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3693 /// TODO: In reality it is better to check the poison recursively
3694 /// but this is better than nothing.
3695 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3696   if (auto *I = dyn_cast<Instruction>(V)) {
3697     if (isa<OverflowingBinaryOperator>(I)) {
3698       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3699         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3700           return true;
3701         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3702           return true;
3703       }
3704     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3705       return true;
3706   }
3707   return false;
3708 }
3709 
3710 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3711 /// create a new one.
3712 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3713   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3714 
3715   const SCEV *S = getExistingSCEV(V);
3716   if (S == nullptr) {
3717     S = createSCEV(V);
3718     // During PHI resolution, it is possible to create two SCEVs for the same
3719     // V, so it is needed to double check whether V->S is inserted into
3720     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3721     std::pair<ValueExprMapType::iterator, bool> Pair =
3722         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3723     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3724       ExprValueMap[S].insert({V, nullptr});
3725 
3726       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3727       // ExprValueMap.
3728       const SCEV *Stripped = S;
3729       ConstantInt *Offset = nullptr;
3730       std::tie(Stripped, Offset) = splitAddExpr(S);
3731       // If stripped is SCEVUnknown, don't bother to save
3732       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3733       // increase the complexity of the expansion code.
3734       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3735       // because it may generate add/sub instead of GEP in SCEV expansion.
3736       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3737           !isa<GetElementPtrInst>(V))
3738         ExprValueMap[Stripped].insert({V, Offset});
3739     }
3740   }
3741   return S;
3742 }
3743 
3744 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3745   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3746 
3747   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3748   if (I != ValueExprMap.end()) {
3749     const SCEV *S = I->second;
3750     if (checkValidity(S))
3751       return S;
3752     eraseValueFromMap(V);
3753     forgetMemoizedResults(S);
3754   }
3755   return nullptr;
3756 }
3757 
3758 /// Return a SCEV corresponding to -V = -1*V
3759 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3760                                              SCEV::NoWrapFlags Flags) {
3761   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3762     return getConstant(
3763                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3764 
3765   Type *Ty = V->getType();
3766   Ty = getEffectiveSCEVType(Ty);
3767   return getMulExpr(V, getMinusOne(Ty), Flags);
3768 }
3769 
3770 /// If Expr computes ~A, return A else return nullptr
3771 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3772   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3773   if (!Add || Add->getNumOperands() != 2 ||
3774       !Add->getOperand(0)->isAllOnesValue())
3775     return nullptr;
3776 
3777   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3778   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3779       !AddRHS->getOperand(0)->isAllOnesValue())
3780     return nullptr;
3781 
3782   return AddRHS->getOperand(1);
3783 }
3784 
3785 /// Return a SCEV corresponding to ~V = -1-V
3786 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3787   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3788     return getConstant(
3789                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3790 
3791   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3792   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3793     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3794       SmallVector<const SCEV *, 2> MatchedOperands;
3795       for (const SCEV *Operand : MME->operands()) {
3796         const SCEV *Matched = MatchNotExpr(Operand);
3797         if (!Matched)
3798           return (const SCEV *)nullptr;
3799         MatchedOperands.push_back(Matched);
3800       }
3801       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3802                            MatchedOperands);
3803     };
3804     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3805       return Replaced;
3806   }
3807 
3808   Type *Ty = V->getType();
3809   Ty = getEffectiveSCEVType(Ty);
3810   return getMinusSCEV(getMinusOne(Ty), V);
3811 }
3812 
3813 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3814                                           SCEV::NoWrapFlags Flags,
3815                                           unsigned Depth) {
3816   // Fast path: X - X --> 0.
3817   if (LHS == RHS)
3818     return getZero(LHS->getType());
3819 
3820   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3821   // makes it so that we cannot make much use of NUW.
3822   auto AddFlags = SCEV::FlagAnyWrap;
3823   const bool RHSIsNotMinSigned =
3824       !getSignedRangeMin(RHS).isMinSignedValue();
3825   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3826     // Let M be the minimum representable signed value. Then (-1)*RHS
3827     // signed-wraps if and only if RHS is M. That can happen even for
3828     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3829     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3830     // (-1)*RHS, we need to prove that RHS != M.
3831     //
3832     // If LHS is non-negative and we know that LHS - RHS does not
3833     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3834     // either by proving that RHS > M or that LHS >= 0.
3835     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3836       AddFlags = SCEV::FlagNSW;
3837     }
3838   }
3839 
3840   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3841   // RHS is NSW and LHS >= 0.
3842   //
3843   // The difficulty here is that the NSW flag may have been proven
3844   // relative to a loop that is to be found in a recurrence in LHS and
3845   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3846   // larger scope than intended.
3847   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3848 
3849   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3850 }
3851 
3852 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3853                                                      unsigned Depth) {
3854   Type *SrcTy = V->getType();
3855   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3856          "Cannot truncate or zero extend with non-integer arguments!");
3857   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3858     return V;  // No conversion
3859   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3860     return getTruncateExpr(V, Ty, Depth);
3861   return getZeroExtendExpr(V, Ty, Depth);
3862 }
3863 
3864 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3865                                                      unsigned Depth) {
3866   Type *SrcTy = V->getType();
3867   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3868          "Cannot truncate or zero extend with non-integer arguments!");
3869   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3870     return V;  // No conversion
3871   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3872     return getTruncateExpr(V, Ty, Depth);
3873   return getSignExtendExpr(V, Ty, Depth);
3874 }
3875 
3876 const SCEV *
3877 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3878   Type *SrcTy = V->getType();
3879   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3880          "Cannot noop or zero extend with non-integer arguments!");
3881   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3882          "getNoopOrZeroExtend cannot truncate!");
3883   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3884     return V;  // No conversion
3885   return getZeroExtendExpr(V, Ty);
3886 }
3887 
3888 const SCEV *
3889 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3890   Type *SrcTy = V->getType();
3891   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3892          "Cannot noop or sign extend with non-integer arguments!");
3893   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3894          "getNoopOrSignExtend cannot truncate!");
3895   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3896     return V;  // No conversion
3897   return getSignExtendExpr(V, Ty);
3898 }
3899 
3900 const SCEV *
3901 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3902   Type *SrcTy = V->getType();
3903   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3904          "Cannot noop or any extend with non-integer arguments!");
3905   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3906          "getNoopOrAnyExtend cannot truncate!");
3907   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3908     return V;  // No conversion
3909   return getAnyExtendExpr(V, Ty);
3910 }
3911 
3912 const SCEV *
3913 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3914   Type *SrcTy = V->getType();
3915   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3916          "Cannot truncate or noop with non-integer arguments!");
3917   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3918          "getTruncateOrNoop cannot extend!");
3919   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3920     return V;  // No conversion
3921   return getTruncateExpr(V, Ty);
3922 }
3923 
3924 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3925                                                         const SCEV *RHS) {
3926   const SCEV *PromotedLHS = LHS;
3927   const SCEV *PromotedRHS = RHS;
3928 
3929   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3930     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3931   else
3932     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3933 
3934   return getUMaxExpr(PromotedLHS, PromotedRHS);
3935 }
3936 
3937 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3938                                                         const SCEV *RHS) {
3939   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3940   return getUMinFromMismatchedTypes(Ops);
3941 }
3942 
3943 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3944     SmallVectorImpl<const SCEV *> &Ops) {
3945   assert(!Ops.empty() && "At least one operand must be!");
3946   // Trivial case.
3947   if (Ops.size() == 1)
3948     return Ops[0];
3949 
3950   // Find the max type first.
3951   Type *MaxType = nullptr;
3952   for (auto *S : Ops)
3953     if (MaxType)
3954       MaxType = getWiderType(MaxType, S->getType());
3955     else
3956       MaxType = S->getType();
3957   assert(MaxType && "Failed to find maximum type!");
3958 
3959   // Extend all ops to max type.
3960   SmallVector<const SCEV *, 2> PromotedOps;
3961   for (auto *S : Ops)
3962     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3963 
3964   // Generate umin.
3965   return getUMinExpr(PromotedOps);
3966 }
3967 
3968 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3969   // A pointer operand may evaluate to a nonpointer expression, such as null.
3970   if (!V->getType()->isPointerTy())
3971     return V;
3972 
3973   while (true) {
3974     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
3975       V = Cast->getOperand();
3976     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3977       const SCEV *PtrOp = nullptr;
3978       for (const SCEV *NAryOp : NAry->operands()) {
3979         if (NAryOp->getType()->isPointerTy()) {
3980           // Cannot find the base of an expression with multiple pointer ops.
3981           if (PtrOp)
3982             return V;
3983           PtrOp = NAryOp;
3984         }
3985       }
3986       if (!PtrOp) // All operands were non-pointer.
3987         return V;
3988       V = PtrOp;
3989     } else // Not something we can look further into.
3990       return V;
3991   }
3992 }
3993 
3994 /// Push users of the given Instruction onto the given Worklist.
3995 static void
3996 PushDefUseChildren(Instruction *I,
3997                    SmallVectorImpl<Instruction *> &Worklist) {
3998   // Push the def-use children onto the Worklist stack.
3999   for (User *U : I->users())
4000     Worklist.push_back(cast<Instruction>(U));
4001 }
4002 
4003 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4004   SmallVector<Instruction *, 16> Worklist;
4005   PushDefUseChildren(PN, Worklist);
4006 
4007   SmallPtrSet<Instruction *, 8> Visited;
4008   Visited.insert(PN);
4009   while (!Worklist.empty()) {
4010     Instruction *I = Worklist.pop_back_val();
4011     if (!Visited.insert(I).second)
4012       continue;
4013 
4014     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4015     if (It != ValueExprMap.end()) {
4016       const SCEV *Old = It->second;
4017 
4018       // Short-circuit the def-use traversal if the symbolic name
4019       // ceases to appear in expressions.
4020       if (Old != SymName && !hasOperand(Old, SymName))
4021         continue;
4022 
4023       // SCEVUnknown for a PHI either means that it has an unrecognized
4024       // structure, it's a PHI that's in the progress of being computed
4025       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4026       // additional loop trip count information isn't going to change anything.
4027       // In the second case, createNodeForPHI will perform the necessary
4028       // updates on its own when it gets to that point. In the third, we do
4029       // want to forget the SCEVUnknown.
4030       if (!isa<PHINode>(I) ||
4031           !isa<SCEVUnknown>(Old) ||
4032           (I != PN && Old == SymName)) {
4033         eraseValueFromMap(It->first);
4034         forgetMemoizedResults(Old);
4035       }
4036     }
4037 
4038     PushDefUseChildren(I, Worklist);
4039   }
4040 }
4041 
4042 namespace {
4043 
4044 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4045 /// expression in case its Loop is L. If it is not L then
4046 /// if IgnoreOtherLoops is true then use AddRec itself
4047 /// otherwise rewrite cannot be done.
4048 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4049 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4050 public:
4051   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4052                              bool IgnoreOtherLoops = true) {
4053     SCEVInitRewriter Rewriter(L, SE);
4054     const SCEV *Result = Rewriter.visit(S);
4055     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4056       return SE.getCouldNotCompute();
4057     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4058                ? SE.getCouldNotCompute()
4059                : Result;
4060   }
4061 
4062   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4063     if (!SE.isLoopInvariant(Expr, L))
4064       SeenLoopVariantSCEVUnknown = true;
4065     return Expr;
4066   }
4067 
4068   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4069     // Only re-write AddRecExprs for this loop.
4070     if (Expr->getLoop() == L)
4071       return Expr->getStart();
4072     SeenOtherLoops = true;
4073     return Expr;
4074   }
4075 
4076   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4077 
4078   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4079 
4080 private:
4081   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4082       : SCEVRewriteVisitor(SE), L(L) {}
4083 
4084   const Loop *L;
4085   bool SeenLoopVariantSCEVUnknown = false;
4086   bool SeenOtherLoops = false;
4087 };
4088 
4089 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4090 /// increment expression in case its Loop is L. If it is not L then
4091 /// use AddRec itself.
4092 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4093 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4094 public:
4095   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4096     SCEVPostIncRewriter Rewriter(L, SE);
4097     const SCEV *Result = Rewriter.visit(S);
4098     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4099         ? SE.getCouldNotCompute()
4100         : Result;
4101   }
4102 
4103   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4104     if (!SE.isLoopInvariant(Expr, L))
4105       SeenLoopVariantSCEVUnknown = true;
4106     return Expr;
4107   }
4108 
4109   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4110     // Only re-write AddRecExprs for this loop.
4111     if (Expr->getLoop() == L)
4112       return Expr->getPostIncExpr(SE);
4113     SeenOtherLoops = true;
4114     return Expr;
4115   }
4116 
4117   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4118 
4119   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4120 
4121 private:
4122   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4123       : SCEVRewriteVisitor(SE), L(L) {}
4124 
4125   const Loop *L;
4126   bool SeenLoopVariantSCEVUnknown = false;
4127   bool SeenOtherLoops = false;
4128 };
4129 
4130 /// This class evaluates the compare condition by matching it against the
4131 /// condition of loop latch. If there is a match we assume a true value
4132 /// for the condition while building SCEV nodes.
4133 class SCEVBackedgeConditionFolder
4134     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4135 public:
4136   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4137                              ScalarEvolution &SE) {
4138     bool IsPosBECond = false;
4139     Value *BECond = nullptr;
4140     if (BasicBlock *Latch = L->getLoopLatch()) {
4141       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4142       if (BI && BI->isConditional()) {
4143         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4144                "Both outgoing branches should not target same header!");
4145         BECond = BI->getCondition();
4146         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4147       } else {
4148         return S;
4149       }
4150     }
4151     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4152     return Rewriter.visit(S);
4153   }
4154 
4155   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4156     const SCEV *Result = Expr;
4157     bool InvariantF = SE.isLoopInvariant(Expr, L);
4158 
4159     if (!InvariantF) {
4160       Instruction *I = cast<Instruction>(Expr->getValue());
4161       switch (I->getOpcode()) {
4162       case Instruction::Select: {
4163         SelectInst *SI = cast<SelectInst>(I);
4164         Optional<const SCEV *> Res =
4165             compareWithBackedgeCondition(SI->getCondition());
4166         if (Res.hasValue()) {
4167           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4168           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4169         }
4170         break;
4171       }
4172       default: {
4173         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4174         if (Res.hasValue())
4175           Result = Res.getValue();
4176         break;
4177       }
4178       }
4179     }
4180     return Result;
4181   }
4182 
4183 private:
4184   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4185                                        bool IsPosBECond, ScalarEvolution &SE)
4186       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4187         IsPositiveBECond(IsPosBECond) {}
4188 
4189   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4190 
4191   const Loop *L;
4192   /// Loop back condition.
4193   Value *BackedgeCond = nullptr;
4194   /// Set to true if loop back is on positive branch condition.
4195   bool IsPositiveBECond;
4196 };
4197 
4198 Optional<const SCEV *>
4199 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4200 
4201   // If value matches the backedge condition for loop latch,
4202   // then return a constant evolution node based on loopback
4203   // branch taken.
4204   if (BackedgeCond == IC)
4205     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4206                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4207   return None;
4208 }
4209 
4210 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4211 public:
4212   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4213                              ScalarEvolution &SE) {
4214     SCEVShiftRewriter Rewriter(L, SE);
4215     const SCEV *Result = Rewriter.visit(S);
4216     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4217   }
4218 
4219   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4220     // Only allow AddRecExprs for this loop.
4221     if (!SE.isLoopInvariant(Expr, L))
4222       Valid = false;
4223     return Expr;
4224   }
4225 
4226   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4227     if (Expr->getLoop() == L && Expr->isAffine())
4228       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4229     Valid = false;
4230     return Expr;
4231   }
4232 
4233   bool isValid() { return Valid; }
4234 
4235 private:
4236   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4237       : SCEVRewriteVisitor(SE), L(L) {}
4238 
4239   const Loop *L;
4240   bool Valid = true;
4241 };
4242 
4243 } // end anonymous namespace
4244 
4245 SCEV::NoWrapFlags
4246 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4247   if (!AR->isAffine())
4248     return SCEV::FlagAnyWrap;
4249 
4250   using OBO = OverflowingBinaryOperator;
4251 
4252   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4253 
4254   if (!AR->hasNoSignedWrap()) {
4255     ConstantRange AddRecRange = getSignedRange(AR);
4256     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4257 
4258     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4259         Instruction::Add, IncRange, OBO::NoSignedWrap);
4260     if (NSWRegion.contains(AddRecRange))
4261       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4262   }
4263 
4264   if (!AR->hasNoUnsignedWrap()) {
4265     ConstantRange AddRecRange = getUnsignedRange(AR);
4266     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4267 
4268     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4269         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4270     if (NUWRegion.contains(AddRecRange))
4271       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4272   }
4273 
4274   return Result;
4275 }
4276 
4277 namespace {
4278 
4279 /// Represents an abstract binary operation.  This may exist as a
4280 /// normal instruction or constant expression, or may have been
4281 /// derived from an expression tree.
4282 struct BinaryOp {
4283   unsigned Opcode;
4284   Value *LHS;
4285   Value *RHS;
4286   bool IsNSW = false;
4287   bool IsNUW = false;
4288   bool IsExact = false;
4289 
4290   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4291   /// constant expression.
4292   Operator *Op = nullptr;
4293 
4294   explicit BinaryOp(Operator *Op)
4295       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4296         Op(Op) {
4297     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4298       IsNSW = OBO->hasNoSignedWrap();
4299       IsNUW = OBO->hasNoUnsignedWrap();
4300     }
4301     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4302       IsExact = PEO->isExact();
4303   }
4304 
4305   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4306                     bool IsNUW = false, bool IsExact = false)
4307       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4308         IsExact(IsExact) {}
4309 };
4310 
4311 } // end anonymous namespace
4312 
4313 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4314 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4315   auto *Op = dyn_cast<Operator>(V);
4316   if (!Op)
4317     return None;
4318 
4319   // Implementation detail: all the cleverness here should happen without
4320   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4321   // SCEV expressions when possible, and we should not break that.
4322 
4323   switch (Op->getOpcode()) {
4324   case Instruction::Add:
4325   case Instruction::Sub:
4326   case Instruction::Mul:
4327   case Instruction::UDiv:
4328   case Instruction::URem:
4329   case Instruction::And:
4330   case Instruction::Or:
4331   case Instruction::AShr:
4332   case Instruction::Shl:
4333     return BinaryOp(Op);
4334 
4335   case Instruction::Xor:
4336     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4337       // If the RHS of the xor is a signmask, then this is just an add.
4338       // Instcombine turns add of signmask into xor as a strength reduction step.
4339       if (RHSC->getValue().isSignMask())
4340         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4341     return BinaryOp(Op);
4342 
4343   case Instruction::LShr:
4344     // Turn logical shift right of a constant into a unsigned divide.
4345     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4346       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4347 
4348       // If the shift count is not less than the bitwidth, the result of
4349       // the shift is undefined. Don't try to analyze it, because the
4350       // resolution chosen here may differ from the resolution chosen in
4351       // other parts of the compiler.
4352       if (SA->getValue().ult(BitWidth)) {
4353         Constant *X =
4354             ConstantInt::get(SA->getContext(),
4355                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4356         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4357       }
4358     }
4359     return BinaryOp(Op);
4360 
4361   case Instruction::ExtractValue: {
4362     auto *EVI = cast<ExtractValueInst>(Op);
4363     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4364       break;
4365 
4366     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4367     if (!WO)
4368       break;
4369 
4370     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4371     bool Signed = WO->isSigned();
4372     // TODO: Should add nuw/nsw flags for mul as well.
4373     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4374       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4375 
4376     // Now that we know that all uses of the arithmetic-result component of
4377     // CI are guarded by the overflow check, we can go ahead and pretend
4378     // that the arithmetic is non-overflowing.
4379     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4380                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4381   }
4382 
4383   default:
4384     break;
4385   }
4386 
4387   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4388   // semantics as a Sub, return a binary sub expression.
4389   if (auto *II = dyn_cast<IntrinsicInst>(V))
4390     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4391       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4392 
4393   return None;
4394 }
4395 
4396 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4397 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4398 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4399 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4400 /// follows one of the following patterns:
4401 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4402 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4403 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4404 /// we return the type of the truncation operation, and indicate whether the
4405 /// truncated type should be treated as signed/unsigned by setting
4406 /// \p Signed to true/false, respectively.
4407 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4408                                bool &Signed, ScalarEvolution &SE) {
4409   // The case where Op == SymbolicPHI (that is, with no type conversions on
4410   // the way) is handled by the regular add recurrence creating logic and
4411   // would have already been triggered in createAddRecForPHI. Reaching it here
4412   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4413   // because one of the other operands of the SCEVAddExpr updating this PHI is
4414   // not invariant).
4415   //
4416   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4417   // this case predicates that allow us to prove that Op == SymbolicPHI will
4418   // be added.
4419   if (Op == SymbolicPHI)
4420     return nullptr;
4421 
4422   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4423   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4424   if (SourceBits != NewBits)
4425     return nullptr;
4426 
4427   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4428   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4429   if (!SExt && !ZExt)
4430     return nullptr;
4431   const SCEVTruncateExpr *Trunc =
4432       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4433            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4434   if (!Trunc)
4435     return nullptr;
4436   const SCEV *X = Trunc->getOperand();
4437   if (X != SymbolicPHI)
4438     return nullptr;
4439   Signed = SExt != nullptr;
4440   return Trunc->getType();
4441 }
4442 
4443 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4444   if (!PN->getType()->isIntegerTy())
4445     return nullptr;
4446   const Loop *L = LI.getLoopFor(PN->getParent());
4447   if (!L || L->getHeader() != PN->getParent())
4448     return nullptr;
4449   return L;
4450 }
4451 
4452 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4453 // computation that updates the phi follows the following pattern:
4454 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4455 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4456 // If so, try to see if it can be rewritten as an AddRecExpr under some
4457 // Predicates. If successful, return them as a pair. Also cache the results
4458 // of the analysis.
4459 //
4460 // Example usage scenario:
4461 //    Say the Rewriter is called for the following SCEV:
4462 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4463 //    where:
4464 //         %X = phi i64 (%Start, %BEValue)
4465 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4466 //    and call this function with %SymbolicPHI = %X.
4467 //
4468 //    The analysis will find that the value coming around the backedge has
4469 //    the following SCEV:
4470 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4471 //    Upon concluding that this matches the desired pattern, the function
4472 //    will return the pair {NewAddRec, SmallPredsVec} where:
4473 //         NewAddRec = {%Start,+,%Step}
4474 //         SmallPredsVec = {P1, P2, P3} as follows:
4475 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4476 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4477 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4478 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4479 //    under the predicates {P1,P2,P3}.
4480 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4481 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4482 //
4483 // TODO's:
4484 //
4485 // 1) Extend the Induction descriptor to also support inductions that involve
4486 //    casts: When needed (namely, when we are called in the context of the
4487 //    vectorizer induction analysis), a Set of cast instructions will be
4488 //    populated by this method, and provided back to isInductionPHI. This is
4489 //    needed to allow the vectorizer to properly record them to be ignored by
4490 //    the cost model and to avoid vectorizing them (otherwise these casts,
4491 //    which are redundant under the runtime overflow checks, will be
4492 //    vectorized, which can be costly).
4493 //
4494 // 2) Support additional induction/PHISCEV patterns: We also want to support
4495 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4496 //    after the induction update operation (the induction increment):
4497 //
4498 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4499 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4500 //
4501 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4502 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4503 //
4504 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4505 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4506 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4507   SmallVector<const SCEVPredicate *, 3> Predicates;
4508 
4509   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4510   // return an AddRec expression under some predicate.
4511 
4512   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4513   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4514   assert(L && "Expecting an integer loop header phi");
4515 
4516   // The loop may have multiple entrances or multiple exits; we can analyze
4517   // this phi as an addrec if it has a unique entry value and a unique
4518   // backedge value.
4519   Value *BEValueV = nullptr, *StartValueV = nullptr;
4520   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4521     Value *V = PN->getIncomingValue(i);
4522     if (L->contains(PN->getIncomingBlock(i))) {
4523       if (!BEValueV) {
4524         BEValueV = V;
4525       } else if (BEValueV != V) {
4526         BEValueV = nullptr;
4527         break;
4528       }
4529     } else if (!StartValueV) {
4530       StartValueV = V;
4531     } else if (StartValueV != V) {
4532       StartValueV = nullptr;
4533       break;
4534     }
4535   }
4536   if (!BEValueV || !StartValueV)
4537     return None;
4538 
4539   const SCEV *BEValue = getSCEV(BEValueV);
4540 
4541   // If the value coming around the backedge is an add with the symbolic
4542   // value we just inserted, possibly with casts that we can ignore under
4543   // an appropriate runtime guard, then we found a simple induction variable!
4544   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4545   if (!Add)
4546     return None;
4547 
4548   // If there is a single occurrence of the symbolic value, possibly
4549   // casted, replace it with a recurrence.
4550   unsigned FoundIndex = Add->getNumOperands();
4551   Type *TruncTy = nullptr;
4552   bool Signed;
4553   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4554     if ((TruncTy =
4555              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4556       if (FoundIndex == e) {
4557         FoundIndex = i;
4558         break;
4559       }
4560 
4561   if (FoundIndex == Add->getNumOperands())
4562     return None;
4563 
4564   // Create an add with everything but the specified operand.
4565   SmallVector<const SCEV *, 8> Ops;
4566   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4567     if (i != FoundIndex)
4568       Ops.push_back(Add->getOperand(i));
4569   const SCEV *Accum = getAddExpr(Ops);
4570 
4571   // The runtime checks will not be valid if the step amount is
4572   // varying inside the loop.
4573   if (!isLoopInvariant(Accum, L))
4574     return None;
4575 
4576   // *** Part2: Create the predicates
4577 
4578   // Analysis was successful: we have a phi-with-cast pattern for which we
4579   // can return an AddRec expression under the following predicates:
4580   //
4581   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4582   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4583   // P2: An Equal predicate that guarantees that
4584   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4585   // P3: An Equal predicate that guarantees that
4586   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4587   //
4588   // As we next prove, the above predicates guarantee that:
4589   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4590   //
4591   //
4592   // More formally, we want to prove that:
4593   //     Expr(i+1) = Start + (i+1) * Accum
4594   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4595   //
4596   // Given that:
4597   // 1) Expr(0) = Start
4598   // 2) Expr(1) = Start + Accum
4599   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4600   // 3) Induction hypothesis (step i):
4601   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4602   //
4603   // Proof:
4604   //  Expr(i+1) =
4605   //   = Start + (i+1)*Accum
4606   //   = (Start + i*Accum) + Accum
4607   //   = Expr(i) + Accum
4608   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4609   //                                                             :: from step i
4610   //
4611   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4612   //
4613   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4614   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4615   //     + Accum                                                     :: from P3
4616   //
4617   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4618   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4619   //
4620   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4621   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4622   //
4623   // By induction, the same applies to all iterations 1<=i<n:
4624   //
4625 
4626   // Create a truncated addrec for which we will add a no overflow check (P1).
4627   const SCEV *StartVal = getSCEV(StartValueV);
4628   const SCEV *PHISCEV =
4629       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4630                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4631 
4632   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4633   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4634   // will be constant.
4635   //
4636   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4637   // add P1.
4638   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4639     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4640         Signed ? SCEVWrapPredicate::IncrementNSSW
4641                : SCEVWrapPredicate::IncrementNUSW;
4642     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4643     Predicates.push_back(AddRecPred);
4644   }
4645 
4646   // Create the Equal Predicates P2,P3:
4647 
4648   // It is possible that the predicates P2 and/or P3 are computable at
4649   // compile time due to StartVal and/or Accum being constants.
4650   // If either one is, then we can check that now and escape if either P2
4651   // or P3 is false.
4652 
4653   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4654   // for each of StartVal and Accum
4655   auto getExtendedExpr = [&](const SCEV *Expr,
4656                              bool CreateSignExtend) -> const SCEV * {
4657     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4658     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4659     const SCEV *ExtendedExpr =
4660         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4661                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4662     return ExtendedExpr;
4663   };
4664 
4665   // Given:
4666   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4667   //               = getExtendedExpr(Expr)
4668   // Determine whether the predicate P: Expr == ExtendedExpr
4669   // is known to be false at compile time
4670   auto PredIsKnownFalse = [&](const SCEV *Expr,
4671                               const SCEV *ExtendedExpr) -> bool {
4672     return Expr != ExtendedExpr &&
4673            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4674   };
4675 
4676   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4677   if (PredIsKnownFalse(StartVal, StartExtended)) {
4678     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4679     return None;
4680   }
4681 
4682   // The Step is always Signed (because the overflow checks are either
4683   // NSSW or NUSW)
4684   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4685   if (PredIsKnownFalse(Accum, AccumExtended)) {
4686     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4687     return None;
4688   }
4689 
4690   auto AppendPredicate = [&](const SCEV *Expr,
4691                              const SCEV *ExtendedExpr) -> void {
4692     if (Expr != ExtendedExpr &&
4693         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4694       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4695       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4696       Predicates.push_back(Pred);
4697     }
4698   };
4699 
4700   AppendPredicate(StartVal, StartExtended);
4701   AppendPredicate(Accum, AccumExtended);
4702 
4703   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4704   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4705   // into NewAR if it will also add the runtime overflow checks specified in
4706   // Predicates.
4707   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4708 
4709   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4710       std::make_pair(NewAR, Predicates);
4711   // Remember the result of the analysis for this SCEV at this locayyytion.
4712   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4713   return PredRewrite;
4714 }
4715 
4716 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4717 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4718   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4719   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4720   if (!L)
4721     return None;
4722 
4723   // Check to see if we already analyzed this PHI.
4724   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4725   if (I != PredicatedSCEVRewrites.end()) {
4726     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4727         I->second;
4728     // Analysis was done before and failed to create an AddRec:
4729     if (Rewrite.first == SymbolicPHI)
4730       return None;
4731     // Analysis was done before and succeeded to create an AddRec under
4732     // a predicate:
4733     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4734     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4735     return Rewrite;
4736   }
4737 
4738   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4739     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4740 
4741   // Record in the cache that the analysis failed
4742   if (!Rewrite) {
4743     SmallVector<const SCEVPredicate *, 3> Predicates;
4744     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4745     return None;
4746   }
4747 
4748   return Rewrite;
4749 }
4750 
4751 // FIXME: This utility is currently required because the Rewriter currently
4752 // does not rewrite this expression:
4753 // {0, +, (sext ix (trunc iy to ix) to iy)}
4754 // into {0, +, %step},
4755 // even when the following Equal predicate exists:
4756 // "%step == (sext ix (trunc iy to ix) to iy)".
4757 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4758     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4759   if (AR1 == AR2)
4760     return true;
4761 
4762   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4763     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4764         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4765       return false;
4766     return true;
4767   };
4768 
4769   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4770       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4771     return false;
4772   return true;
4773 }
4774 
4775 /// A helper function for createAddRecFromPHI to handle simple cases.
4776 ///
4777 /// This function tries to find an AddRec expression for the simplest (yet most
4778 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4779 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4780 /// technique for finding the AddRec expression.
4781 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4782                                                       Value *BEValueV,
4783                                                       Value *StartValueV) {
4784   const Loop *L = LI.getLoopFor(PN->getParent());
4785   assert(L && L->getHeader() == PN->getParent());
4786   assert(BEValueV && StartValueV);
4787 
4788   auto BO = MatchBinaryOp(BEValueV, DT);
4789   if (!BO)
4790     return nullptr;
4791 
4792   if (BO->Opcode != Instruction::Add)
4793     return nullptr;
4794 
4795   const SCEV *Accum = nullptr;
4796   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4797     Accum = getSCEV(BO->RHS);
4798   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4799     Accum = getSCEV(BO->LHS);
4800 
4801   if (!Accum)
4802     return nullptr;
4803 
4804   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4805   if (BO->IsNUW)
4806     Flags = setFlags(Flags, SCEV::FlagNUW);
4807   if (BO->IsNSW)
4808     Flags = setFlags(Flags, SCEV::FlagNSW);
4809 
4810   const SCEV *StartVal = getSCEV(StartValueV);
4811   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4812 
4813   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4814 
4815   // We can add Flags to the post-inc expression only if we
4816   // know that it is *undefined behavior* for BEValueV to
4817   // overflow.
4818   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4819     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4820       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4821 
4822   return PHISCEV;
4823 }
4824 
4825 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4826   const Loop *L = LI.getLoopFor(PN->getParent());
4827   if (!L || L->getHeader() != PN->getParent())
4828     return nullptr;
4829 
4830   // The loop may have multiple entrances or multiple exits; we can analyze
4831   // this phi as an addrec if it has a unique entry value and a unique
4832   // backedge value.
4833   Value *BEValueV = nullptr, *StartValueV = nullptr;
4834   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4835     Value *V = PN->getIncomingValue(i);
4836     if (L->contains(PN->getIncomingBlock(i))) {
4837       if (!BEValueV) {
4838         BEValueV = V;
4839       } else if (BEValueV != V) {
4840         BEValueV = nullptr;
4841         break;
4842       }
4843     } else if (!StartValueV) {
4844       StartValueV = V;
4845     } else if (StartValueV != V) {
4846       StartValueV = nullptr;
4847       break;
4848     }
4849   }
4850   if (!BEValueV || !StartValueV)
4851     return nullptr;
4852 
4853   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4854          "PHI node already processed?");
4855 
4856   // First, try to find AddRec expression without creating a fictituos symbolic
4857   // value for PN.
4858   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4859     return S;
4860 
4861   // Handle PHI node value symbolically.
4862   const SCEV *SymbolicName = getUnknown(PN);
4863   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4864 
4865   // Using this symbolic name for the PHI, analyze the value coming around
4866   // the back-edge.
4867   const SCEV *BEValue = getSCEV(BEValueV);
4868 
4869   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4870   // has a special value for the first iteration of the loop.
4871 
4872   // If the value coming around the backedge is an add with the symbolic
4873   // value we just inserted, then we found a simple induction variable!
4874   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4875     // If there is a single occurrence of the symbolic value, replace it
4876     // with a recurrence.
4877     unsigned FoundIndex = Add->getNumOperands();
4878     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4879       if (Add->getOperand(i) == SymbolicName)
4880         if (FoundIndex == e) {
4881           FoundIndex = i;
4882           break;
4883         }
4884 
4885     if (FoundIndex != Add->getNumOperands()) {
4886       // Create an add with everything but the specified operand.
4887       SmallVector<const SCEV *, 8> Ops;
4888       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4889         if (i != FoundIndex)
4890           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4891                                                              L, *this));
4892       const SCEV *Accum = getAddExpr(Ops);
4893 
4894       // This is not a valid addrec if the step amount is varying each
4895       // loop iteration, but is not itself an addrec in this loop.
4896       if (isLoopInvariant(Accum, L) ||
4897           (isa<SCEVAddRecExpr>(Accum) &&
4898            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4899         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4900 
4901         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4902           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4903             if (BO->IsNUW)
4904               Flags = setFlags(Flags, SCEV::FlagNUW);
4905             if (BO->IsNSW)
4906               Flags = setFlags(Flags, SCEV::FlagNSW);
4907           }
4908         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4909           // If the increment is an inbounds GEP, then we know the address
4910           // space cannot be wrapped around. We cannot make any guarantee
4911           // about signed or unsigned overflow because pointers are
4912           // unsigned but we may have a negative index from the base
4913           // pointer. We can guarantee that no unsigned wrap occurs if the
4914           // indices form a positive value.
4915           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4916             Flags = setFlags(Flags, SCEV::FlagNW);
4917 
4918             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4919             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4920               Flags = setFlags(Flags, SCEV::FlagNUW);
4921           }
4922 
4923           // We cannot transfer nuw and nsw flags from subtraction
4924           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4925           // for instance.
4926         }
4927 
4928         const SCEV *StartVal = getSCEV(StartValueV);
4929         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4930 
4931         // Okay, for the entire analysis of this edge we assumed the PHI
4932         // to be symbolic.  We now need to go back and purge all of the
4933         // entries for the scalars that use the symbolic expression.
4934         forgetSymbolicName(PN, SymbolicName);
4935         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4936 
4937         // We can add Flags to the post-inc expression only if we
4938         // know that it is *undefined behavior* for BEValueV to
4939         // overflow.
4940         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4941           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4942             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4943 
4944         return PHISCEV;
4945       }
4946     }
4947   } else {
4948     // Otherwise, this could be a loop like this:
4949     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4950     // In this case, j = {1,+,1}  and BEValue is j.
4951     // Because the other in-value of i (0) fits the evolution of BEValue
4952     // i really is an addrec evolution.
4953     //
4954     // We can generalize this saying that i is the shifted value of BEValue
4955     // by one iteration:
4956     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4957     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4958     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4959     if (Shifted != getCouldNotCompute() &&
4960         Start != getCouldNotCompute()) {
4961       const SCEV *StartVal = getSCEV(StartValueV);
4962       if (Start == StartVal) {
4963         // Okay, for the entire analysis of this edge we assumed the PHI
4964         // to be symbolic.  We now need to go back and purge all of the
4965         // entries for the scalars that use the symbolic expression.
4966         forgetSymbolicName(PN, SymbolicName);
4967         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4968         return Shifted;
4969       }
4970     }
4971   }
4972 
4973   // Remove the temporary PHI node SCEV that has been inserted while intending
4974   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4975   // as it will prevent later (possibly simpler) SCEV expressions to be added
4976   // to the ValueExprMap.
4977   eraseValueFromMap(PN);
4978 
4979   return nullptr;
4980 }
4981 
4982 // Checks if the SCEV S is available at BB.  S is considered available at BB
4983 // if S can be materialized at BB without introducing a fault.
4984 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4985                                BasicBlock *BB) {
4986   struct CheckAvailable {
4987     bool TraversalDone = false;
4988     bool Available = true;
4989 
4990     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4991     BasicBlock *BB = nullptr;
4992     DominatorTree &DT;
4993 
4994     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4995       : L(L), BB(BB), DT(DT) {}
4996 
4997     bool setUnavailable() {
4998       TraversalDone = true;
4999       Available = false;
5000       return false;
5001     }
5002 
5003     bool follow(const SCEV *S) {
5004       switch (S->getSCEVType()) {
5005       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5006       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5007       case scUMinExpr:
5008       case scSMinExpr:
5009         // These expressions are available if their operand(s) is/are.
5010         return true;
5011 
5012       case scAddRecExpr: {
5013         // We allow add recurrences that are on the loop BB is in, or some
5014         // outer loop.  This guarantees availability because the value of the
5015         // add recurrence at BB is simply the "current" value of the induction
5016         // variable.  We can relax this in the future; for instance an add
5017         // recurrence on a sibling dominating loop is also available at BB.
5018         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5019         if (L && (ARLoop == L || ARLoop->contains(L)))
5020           return true;
5021 
5022         return setUnavailable();
5023       }
5024 
5025       case scUnknown: {
5026         // For SCEVUnknown, we check for simple dominance.
5027         const auto *SU = cast<SCEVUnknown>(S);
5028         Value *V = SU->getValue();
5029 
5030         if (isa<Argument>(V))
5031           return false;
5032 
5033         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5034           return false;
5035 
5036         return setUnavailable();
5037       }
5038 
5039       case scUDivExpr:
5040       case scCouldNotCompute:
5041         // We do not try to smart about these at all.
5042         return setUnavailable();
5043       }
5044       llvm_unreachable("Unknown SCEV kind!");
5045     }
5046 
5047     bool isDone() { return TraversalDone; }
5048   };
5049 
5050   CheckAvailable CA(L, BB, DT);
5051   SCEVTraversal<CheckAvailable> ST(CA);
5052 
5053   ST.visitAll(S);
5054   return CA.Available;
5055 }
5056 
5057 // Try to match a control flow sequence that branches out at BI and merges back
5058 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5059 // match.
5060 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5061                           Value *&C, Value *&LHS, Value *&RHS) {
5062   C = BI->getCondition();
5063 
5064   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5065   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5066 
5067   if (!LeftEdge.isSingleEdge())
5068     return false;
5069 
5070   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5071 
5072   Use &LeftUse = Merge->getOperandUse(0);
5073   Use &RightUse = Merge->getOperandUse(1);
5074 
5075   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5076     LHS = LeftUse;
5077     RHS = RightUse;
5078     return true;
5079   }
5080 
5081   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5082     LHS = RightUse;
5083     RHS = LeftUse;
5084     return true;
5085   }
5086 
5087   return false;
5088 }
5089 
5090 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5091   auto IsReachable =
5092       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5093   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5094     const Loop *L = LI.getLoopFor(PN->getParent());
5095 
5096     // We don't want to break LCSSA, even in a SCEV expression tree.
5097     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5098       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5099         return nullptr;
5100 
5101     // Try to match
5102     //
5103     //  br %cond, label %left, label %right
5104     // left:
5105     //  br label %merge
5106     // right:
5107     //  br label %merge
5108     // merge:
5109     //  V = phi [ %x, %left ], [ %y, %right ]
5110     //
5111     // as "select %cond, %x, %y"
5112 
5113     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5114     assert(IDom && "At least the entry block should dominate PN");
5115 
5116     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5117     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5118 
5119     if (BI && BI->isConditional() &&
5120         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5121         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5122         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5123       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5124   }
5125 
5126   return nullptr;
5127 }
5128 
5129 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5130   if (const SCEV *S = createAddRecFromPHI(PN))
5131     return S;
5132 
5133   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5134     return S;
5135 
5136   // If the PHI has a single incoming value, follow that value, unless the
5137   // PHI's incoming blocks are in a different loop, in which case doing so
5138   // risks breaking LCSSA form. Instcombine would normally zap these, but
5139   // it doesn't have DominatorTree information, so it may miss cases.
5140   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5141     if (LI.replacementPreservesLCSSAForm(PN, V))
5142       return getSCEV(V);
5143 
5144   // If it's not a loop phi, we can't handle it yet.
5145   return getUnknown(PN);
5146 }
5147 
5148 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5149                                                       Value *Cond,
5150                                                       Value *TrueVal,
5151                                                       Value *FalseVal) {
5152   // Handle "constant" branch or select. This can occur for instance when a
5153   // loop pass transforms an inner loop and moves on to process the outer loop.
5154   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5155     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5156 
5157   // Try to match some simple smax or umax patterns.
5158   auto *ICI = dyn_cast<ICmpInst>(Cond);
5159   if (!ICI)
5160     return getUnknown(I);
5161 
5162   Value *LHS = ICI->getOperand(0);
5163   Value *RHS = ICI->getOperand(1);
5164 
5165   switch (ICI->getPredicate()) {
5166   case ICmpInst::ICMP_SLT:
5167   case ICmpInst::ICMP_SLE:
5168     std::swap(LHS, RHS);
5169     LLVM_FALLTHROUGH;
5170   case ICmpInst::ICMP_SGT:
5171   case ICmpInst::ICMP_SGE:
5172     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5173     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5174     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5175       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5176       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5177       const SCEV *LA = getSCEV(TrueVal);
5178       const SCEV *RA = getSCEV(FalseVal);
5179       const SCEV *LDiff = getMinusSCEV(LA, LS);
5180       const SCEV *RDiff = getMinusSCEV(RA, RS);
5181       if (LDiff == RDiff)
5182         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5183       LDiff = getMinusSCEV(LA, RS);
5184       RDiff = getMinusSCEV(RA, LS);
5185       if (LDiff == RDiff)
5186         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5187     }
5188     break;
5189   case ICmpInst::ICMP_ULT:
5190   case ICmpInst::ICMP_ULE:
5191     std::swap(LHS, RHS);
5192     LLVM_FALLTHROUGH;
5193   case ICmpInst::ICMP_UGT:
5194   case ICmpInst::ICMP_UGE:
5195     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5196     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5197     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5198       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5199       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5200       const SCEV *LA = getSCEV(TrueVal);
5201       const SCEV *RA = getSCEV(FalseVal);
5202       const SCEV *LDiff = getMinusSCEV(LA, LS);
5203       const SCEV *RDiff = getMinusSCEV(RA, RS);
5204       if (LDiff == RDiff)
5205         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5206       LDiff = getMinusSCEV(LA, RS);
5207       RDiff = getMinusSCEV(RA, LS);
5208       if (LDiff == RDiff)
5209         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5210     }
5211     break;
5212   case ICmpInst::ICMP_NE:
5213     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5214     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5215         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5216       const SCEV *One = getOne(I->getType());
5217       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5218       const SCEV *LA = getSCEV(TrueVal);
5219       const SCEV *RA = getSCEV(FalseVal);
5220       const SCEV *LDiff = getMinusSCEV(LA, LS);
5221       const SCEV *RDiff = getMinusSCEV(RA, One);
5222       if (LDiff == RDiff)
5223         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5224     }
5225     break;
5226   case ICmpInst::ICMP_EQ:
5227     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5228     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5229         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5230       const SCEV *One = getOne(I->getType());
5231       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5232       const SCEV *LA = getSCEV(TrueVal);
5233       const SCEV *RA = getSCEV(FalseVal);
5234       const SCEV *LDiff = getMinusSCEV(LA, One);
5235       const SCEV *RDiff = getMinusSCEV(RA, LS);
5236       if (LDiff == RDiff)
5237         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5238     }
5239     break;
5240   default:
5241     break;
5242   }
5243 
5244   return getUnknown(I);
5245 }
5246 
5247 /// Expand GEP instructions into add and multiply operations. This allows them
5248 /// to be analyzed by regular SCEV code.
5249 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5250   // Don't attempt to analyze GEPs over unsized objects.
5251   if (!GEP->getSourceElementType()->isSized())
5252     return getUnknown(GEP);
5253 
5254   SmallVector<const SCEV *, 4> IndexExprs;
5255   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5256     IndexExprs.push_back(getSCEV(*Index));
5257   return getGEPExpr(GEP, IndexExprs);
5258 }
5259 
5260 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5261   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5262     return C->getAPInt().countTrailingZeros();
5263 
5264   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5265     return std::min(GetMinTrailingZeros(T->getOperand()),
5266                     (uint32_t)getTypeSizeInBits(T->getType()));
5267 
5268   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5269     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5270     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5271                ? getTypeSizeInBits(E->getType())
5272                : OpRes;
5273   }
5274 
5275   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5276     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5277     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5278                ? getTypeSizeInBits(E->getType())
5279                : OpRes;
5280   }
5281 
5282   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5283     // The result is the min of all operands results.
5284     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5285     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5286       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5287     return MinOpRes;
5288   }
5289 
5290   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5291     // The result is the sum of all operands results.
5292     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5293     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5294     for (unsigned i = 1, e = M->getNumOperands();
5295          SumOpRes != BitWidth && i != e; ++i)
5296       SumOpRes =
5297           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5298     return SumOpRes;
5299   }
5300 
5301   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5302     // The result is the min of all operands results.
5303     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5304     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5305       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5306     return MinOpRes;
5307   }
5308 
5309   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5310     // The result is the min of all operands results.
5311     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5312     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5313       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5314     return MinOpRes;
5315   }
5316 
5317   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5318     // The result is the min of all operands results.
5319     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5320     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5321       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5322     return MinOpRes;
5323   }
5324 
5325   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5326     // For a SCEVUnknown, ask ValueTracking.
5327     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5328     return Known.countMinTrailingZeros();
5329   }
5330 
5331   // SCEVUDivExpr
5332   return 0;
5333 }
5334 
5335 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5336   auto I = MinTrailingZerosCache.find(S);
5337   if (I != MinTrailingZerosCache.end())
5338     return I->second;
5339 
5340   uint32_t Result = GetMinTrailingZerosImpl(S);
5341   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5342   assert(InsertPair.second && "Should insert a new key");
5343   return InsertPair.first->second;
5344 }
5345 
5346 /// Helper method to assign a range to V from metadata present in the IR.
5347 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5348   if (Instruction *I = dyn_cast<Instruction>(V))
5349     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5350       return getConstantRangeFromMetadata(*MD);
5351 
5352   return None;
5353 }
5354 
5355 /// Determine the range for a particular SCEV.  If SignHint is
5356 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5357 /// with a "cleaner" unsigned (resp. signed) representation.
5358 const ConstantRange &
5359 ScalarEvolution::getRangeRef(const SCEV *S,
5360                              ScalarEvolution::RangeSignHint SignHint) {
5361   DenseMap<const SCEV *, ConstantRange> &Cache =
5362       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5363                                                        : SignedRanges;
5364   ConstantRange::PreferredRangeType RangeType =
5365       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5366           ? ConstantRange::Unsigned : ConstantRange::Signed;
5367 
5368   // See if we've computed this range already.
5369   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5370   if (I != Cache.end())
5371     return I->second;
5372 
5373   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5374     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5375 
5376   unsigned BitWidth = getTypeSizeInBits(S->getType());
5377   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5378   using OBO = OverflowingBinaryOperator;
5379 
5380   // If the value has known zeros, the maximum value will have those known zeros
5381   // as well.
5382   uint32_t TZ = GetMinTrailingZeros(S);
5383   if (TZ != 0) {
5384     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5385       ConservativeResult =
5386           ConstantRange(APInt::getMinValue(BitWidth),
5387                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5388     else
5389       ConservativeResult = ConstantRange(
5390           APInt::getSignedMinValue(BitWidth),
5391           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5392   }
5393 
5394   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5395     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5396     unsigned WrapType = OBO::AnyWrap;
5397     if (Add->hasNoSignedWrap())
5398       WrapType |= OBO::NoSignedWrap;
5399     if (Add->hasNoUnsignedWrap())
5400       WrapType |= OBO::NoUnsignedWrap;
5401     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5402       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5403                           WrapType, RangeType);
5404     return setRange(Add, SignHint,
5405                     ConservativeResult.intersectWith(X, RangeType));
5406   }
5407 
5408   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5409     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5410     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5411       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5412     return setRange(Mul, SignHint,
5413                     ConservativeResult.intersectWith(X, RangeType));
5414   }
5415 
5416   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5417     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5418     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5419       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5420     return setRange(SMax, SignHint,
5421                     ConservativeResult.intersectWith(X, RangeType));
5422   }
5423 
5424   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5425     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5426     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5427       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5428     return setRange(UMax, SignHint,
5429                     ConservativeResult.intersectWith(X, RangeType));
5430   }
5431 
5432   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5433     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5434     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5435       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5436     return setRange(SMin, SignHint,
5437                     ConservativeResult.intersectWith(X, RangeType));
5438   }
5439 
5440   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5441     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5442     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5443       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5444     return setRange(UMin, SignHint,
5445                     ConservativeResult.intersectWith(X, RangeType));
5446   }
5447 
5448   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5449     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5450     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5451     return setRange(UDiv, SignHint,
5452                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5453   }
5454 
5455   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5456     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5457     return setRange(ZExt, SignHint,
5458                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5459                                                      RangeType));
5460   }
5461 
5462   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5463     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5464     return setRange(SExt, SignHint,
5465                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5466                                                      RangeType));
5467   }
5468 
5469   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5470     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5471     return setRange(Trunc, SignHint,
5472                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5473                                                      RangeType));
5474   }
5475 
5476   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5477     // If there's no unsigned wrap, the value will never be less than its
5478     // initial value.
5479     if (AddRec->hasNoUnsignedWrap()) {
5480       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5481       if (!UnsignedMinValue.isNullValue())
5482         ConservativeResult = ConservativeResult.intersectWith(
5483             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5484     }
5485 
5486     // If there's no signed wrap, and all the operands except initial value have
5487     // the same sign or zero, the value won't ever be:
5488     // 1: smaller than initial value if operands are non negative,
5489     // 2: bigger than initial value if operands are non positive.
5490     // For both cases, value can not cross signed min/max boundary.
5491     if (AddRec->hasNoSignedWrap()) {
5492       bool AllNonNeg = true;
5493       bool AllNonPos = true;
5494       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5495         if (!isKnownNonNegative(AddRec->getOperand(i)))
5496           AllNonNeg = false;
5497         if (!isKnownNonPositive(AddRec->getOperand(i)))
5498           AllNonPos = false;
5499       }
5500       if (AllNonNeg)
5501         ConservativeResult = ConservativeResult.intersectWith(
5502             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5503                                        APInt::getSignedMinValue(BitWidth)),
5504             RangeType);
5505       else if (AllNonPos)
5506         ConservativeResult = ConservativeResult.intersectWith(
5507             ConstantRange::getNonEmpty(
5508                 APInt::getSignedMinValue(BitWidth),
5509                 getSignedRangeMax(AddRec->getStart()) + 1),
5510             RangeType);
5511     }
5512 
5513     // TODO: non-affine addrec
5514     if (AddRec->isAffine()) {
5515       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5516       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5517           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5518         auto RangeFromAffine = getRangeForAffineAR(
5519             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5520             BitWidth);
5521         ConservativeResult =
5522             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5523 
5524         auto RangeFromFactoring = getRangeViaFactoring(
5525             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5526             BitWidth);
5527         ConservativeResult =
5528             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5529       }
5530     }
5531 
5532     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5533   }
5534 
5535   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5536     // Check if the IR explicitly contains !range metadata.
5537     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5538     if (MDRange.hasValue())
5539       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5540                                                             RangeType);
5541 
5542     // Split here to avoid paying the compile-time cost of calling both
5543     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5544     // if needed.
5545     const DataLayout &DL = getDataLayout();
5546     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5547       // For a SCEVUnknown, ask ValueTracking.
5548       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5549       if (Known.getBitWidth() != BitWidth)
5550         Known = Known.zextOrTrunc(BitWidth);
5551       // If Known does not result in full-set, intersect with it.
5552       if (Known.getMinValue() != Known.getMaxValue() + 1)
5553         ConservativeResult = ConservativeResult.intersectWith(
5554             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5555             RangeType);
5556     } else {
5557       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5558              "generalize as needed!");
5559       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5560       // If the pointer size is larger than the index size type, this can cause
5561       // NS to be larger than BitWidth. So compensate for this.
5562       if (U->getType()->isPointerTy()) {
5563         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5564         int ptrIdxDiff = ptrSize - BitWidth;
5565         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5566           NS -= ptrIdxDiff;
5567       }
5568 
5569       if (NS > 1)
5570         ConservativeResult = ConservativeResult.intersectWith(
5571             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5572                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5573             RangeType);
5574     }
5575 
5576     // A range of Phi is a subset of union of all ranges of its input.
5577     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5578       // Make sure that we do not run over cycled Phis.
5579       if (PendingPhiRanges.insert(Phi).second) {
5580         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5581         for (auto &Op : Phi->operands()) {
5582           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5583           RangeFromOps = RangeFromOps.unionWith(OpRange);
5584           // No point to continue if we already have a full set.
5585           if (RangeFromOps.isFullSet())
5586             break;
5587         }
5588         ConservativeResult =
5589             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5590         bool Erased = PendingPhiRanges.erase(Phi);
5591         assert(Erased && "Failed to erase Phi properly?");
5592         (void) Erased;
5593       }
5594     }
5595 
5596     return setRange(U, SignHint, std::move(ConservativeResult));
5597   }
5598 
5599   return setRange(S, SignHint, std::move(ConservativeResult));
5600 }
5601 
5602 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5603 // values that the expression can take. Initially, the expression has a value
5604 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5605 // argument defines if we treat Step as signed or unsigned.
5606 static ConstantRange getRangeForAffineARHelper(APInt Step,
5607                                                const ConstantRange &StartRange,
5608                                                const APInt &MaxBECount,
5609                                                unsigned BitWidth, bool Signed) {
5610   // If either Step or MaxBECount is 0, then the expression won't change, and we
5611   // just need to return the initial range.
5612   if (Step == 0 || MaxBECount == 0)
5613     return StartRange;
5614 
5615   // If we don't know anything about the initial value (i.e. StartRange is
5616   // FullRange), then we don't know anything about the final range either.
5617   // Return FullRange.
5618   if (StartRange.isFullSet())
5619     return ConstantRange::getFull(BitWidth);
5620 
5621   // If Step is signed and negative, then we use its absolute value, but we also
5622   // note that we're moving in the opposite direction.
5623   bool Descending = Signed && Step.isNegative();
5624 
5625   if (Signed)
5626     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5627     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5628     // This equations hold true due to the well-defined wrap-around behavior of
5629     // APInt.
5630     Step = Step.abs();
5631 
5632   // Check if Offset is more than full span of BitWidth. If it is, the
5633   // expression is guaranteed to overflow.
5634   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5635     return ConstantRange::getFull(BitWidth);
5636 
5637   // Offset is by how much the expression can change. Checks above guarantee no
5638   // overflow here.
5639   APInt Offset = Step * MaxBECount;
5640 
5641   // Minimum value of the final range will match the minimal value of StartRange
5642   // if the expression is increasing and will be decreased by Offset otherwise.
5643   // Maximum value of the final range will match the maximal value of StartRange
5644   // if the expression is decreasing and will be increased by Offset otherwise.
5645   APInt StartLower = StartRange.getLower();
5646   APInt StartUpper = StartRange.getUpper() - 1;
5647   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5648                                    : (StartUpper + std::move(Offset));
5649 
5650   // It's possible that the new minimum/maximum value will fall into the initial
5651   // range (due to wrap around). This means that the expression can take any
5652   // value in this bitwidth, and we have to return full range.
5653   if (StartRange.contains(MovedBoundary))
5654     return ConstantRange::getFull(BitWidth);
5655 
5656   APInt NewLower =
5657       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5658   APInt NewUpper =
5659       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5660   NewUpper += 1;
5661 
5662   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5663   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5664 }
5665 
5666 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5667                                                    const SCEV *Step,
5668                                                    const SCEV *MaxBECount,
5669                                                    unsigned BitWidth) {
5670   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5671          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5672          "Precondition!");
5673 
5674   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5675   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5676 
5677   // First, consider step signed.
5678   ConstantRange StartSRange = getSignedRange(Start);
5679   ConstantRange StepSRange = getSignedRange(Step);
5680 
5681   // If Step can be both positive and negative, we need to find ranges for the
5682   // maximum absolute step values in both directions and union them.
5683   ConstantRange SR =
5684       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5685                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5686   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5687                                               StartSRange, MaxBECountValue,
5688                                               BitWidth, /* Signed = */ true));
5689 
5690   // Next, consider step unsigned.
5691   ConstantRange UR = getRangeForAffineARHelper(
5692       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5693       MaxBECountValue, BitWidth, /* Signed = */ false);
5694 
5695   // Finally, intersect signed and unsigned ranges.
5696   return SR.intersectWith(UR, ConstantRange::Smallest);
5697 }
5698 
5699 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5700                                                     const SCEV *Step,
5701                                                     const SCEV *MaxBECount,
5702                                                     unsigned BitWidth) {
5703   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5704   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5705 
5706   struct SelectPattern {
5707     Value *Condition = nullptr;
5708     APInt TrueValue;
5709     APInt FalseValue;
5710 
5711     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5712                            const SCEV *S) {
5713       Optional<unsigned> CastOp;
5714       APInt Offset(BitWidth, 0);
5715 
5716       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5717              "Should be!");
5718 
5719       // Peel off a constant offset:
5720       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5721         // In the future we could consider being smarter here and handle
5722         // {Start+Step,+,Step} too.
5723         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5724           return;
5725 
5726         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5727         S = SA->getOperand(1);
5728       }
5729 
5730       // Peel off a cast operation
5731       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
5732         CastOp = SCast->getSCEVType();
5733         S = SCast->getOperand();
5734       }
5735 
5736       using namespace llvm::PatternMatch;
5737 
5738       auto *SU = dyn_cast<SCEVUnknown>(S);
5739       const APInt *TrueVal, *FalseVal;
5740       if (!SU ||
5741           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5742                                           m_APInt(FalseVal)))) {
5743         Condition = nullptr;
5744         return;
5745       }
5746 
5747       TrueValue = *TrueVal;
5748       FalseValue = *FalseVal;
5749 
5750       // Re-apply the cast we peeled off earlier
5751       if (CastOp.hasValue())
5752         switch (*CastOp) {
5753         default:
5754           llvm_unreachable("Unknown SCEV cast type!");
5755 
5756         case scTruncate:
5757           TrueValue = TrueValue.trunc(BitWidth);
5758           FalseValue = FalseValue.trunc(BitWidth);
5759           break;
5760         case scZeroExtend:
5761           TrueValue = TrueValue.zext(BitWidth);
5762           FalseValue = FalseValue.zext(BitWidth);
5763           break;
5764         case scSignExtend:
5765           TrueValue = TrueValue.sext(BitWidth);
5766           FalseValue = FalseValue.sext(BitWidth);
5767           break;
5768         }
5769 
5770       // Re-apply the constant offset we peeled off earlier
5771       TrueValue += Offset;
5772       FalseValue += Offset;
5773     }
5774 
5775     bool isRecognized() { return Condition != nullptr; }
5776   };
5777 
5778   SelectPattern StartPattern(*this, BitWidth, Start);
5779   if (!StartPattern.isRecognized())
5780     return ConstantRange::getFull(BitWidth);
5781 
5782   SelectPattern StepPattern(*this, BitWidth, Step);
5783   if (!StepPattern.isRecognized())
5784     return ConstantRange::getFull(BitWidth);
5785 
5786   if (StartPattern.Condition != StepPattern.Condition) {
5787     // We don't handle this case today; but we could, by considering four
5788     // possibilities below instead of two. I'm not sure if there are cases where
5789     // that will help over what getRange already does, though.
5790     return ConstantRange::getFull(BitWidth);
5791   }
5792 
5793   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5794   // construct arbitrary general SCEV expressions here.  This function is called
5795   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5796   // say) can end up caching a suboptimal value.
5797 
5798   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5799   // C2352 and C2512 (otherwise it isn't needed).
5800 
5801   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5802   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5803   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5804   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5805 
5806   ConstantRange TrueRange =
5807       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5808   ConstantRange FalseRange =
5809       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5810 
5811   return TrueRange.unionWith(FalseRange);
5812 }
5813 
5814 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5815   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5816   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5817 
5818   // Return early if there are no flags to propagate to the SCEV.
5819   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5820   if (BinOp->hasNoUnsignedWrap())
5821     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5822   if (BinOp->hasNoSignedWrap())
5823     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5824   if (Flags == SCEV::FlagAnyWrap)
5825     return SCEV::FlagAnyWrap;
5826 
5827   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5828 }
5829 
5830 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5831   // Here we check that I is in the header of the innermost loop containing I,
5832   // since we only deal with instructions in the loop header. The actual loop we
5833   // need to check later will come from an add recurrence, but getting that
5834   // requires computing the SCEV of the operands, which can be expensive. This
5835   // check we can do cheaply to rule out some cases early.
5836   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5837   if (InnermostContainingLoop == nullptr ||
5838       InnermostContainingLoop->getHeader() != I->getParent())
5839     return false;
5840 
5841   // Only proceed if we can prove that I does not yield poison.
5842   if (!programUndefinedIfPoison(I))
5843     return false;
5844 
5845   // At this point we know that if I is executed, then it does not wrap
5846   // according to at least one of NSW or NUW. If I is not executed, then we do
5847   // not know if the calculation that I represents would wrap. Multiple
5848   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5849   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5850   // derived from other instructions that map to the same SCEV. We cannot make
5851   // that guarantee for cases where I is not executed. So we need to find the
5852   // loop that I is considered in relation to and prove that I is executed for
5853   // every iteration of that loop. That implies that the value that I
5854   // calculates does not wrap anywhere in the loop, so then we can apply the
5855   // flags to the SCEV.
5856   //
5857   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5858   // from different loops, so that we know which loop to prove that I is
5859   // executed in.
5860   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5861     // I could be an extractvalue from a call to an overflow intrinsic.
5862     // TODO: We can do better here in some cases.
5863     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5864       return false;
5865     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5866     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5867       bool AllOtherOpsLoopInvariant = true;
5868       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5869            ++OtherOpIndex) {
5870         if (OtherOpIndex != OpIndex) {
5871           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5872           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5873             AllOtherOpsLoopInvariant = false;
5874             break;
5875           }
5876         }
5877       }
5878       if (AllOtherOpsLoopInvariant &&
5879           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5880         return true;
5881     }
5882   }
5883   return false;
5884 }
5885 
5886 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5887   // If we know that \c I can never be poison period, then that's enough.
5888   if (isSCEVExprNeverPoison(I))
5889     return true;
5890 
5891   // For an add recurrence specifically, we assume that infinite loops without
5892   // side effects are undefined behavior, and then reason as follows:
5893   //
5894   // If the add recurrence is poison in any iteration, it is poison on all
5895   // future iterations (since incrementing poison yields poison). If the result
5896   // of the add recurrence is fed into the loop latch condition and the loop
5897   // does not contain any throws or exiting blocks other than the latch, we now
5898   // have the ability to "choose" whether the backedge is taken or not (by
5899   // choosing a sufficiently evil value for the poison feeding into the branch)
5900   // for every iteration including and after the one in which \p I first became
5901   // poison.  There are two possibilities (let's call the iteration in which \p
5902   // I first became poison as K):
5903   //
5904   //  1. In the set of iterations including and after K, the loop body executes
5905   //     no side effects.  In this case executing the backege an infinte number
5906   //     of times will yield undefined behavior.
5907   //
5908   //  2. In the set of iterations including and after K, the loop body executes
5909   //     at least one side effect.  In this case, that specific instance of side
5910   //     effect is control dependent on poison, which also yields undefined
5911   //     behavior.
5912 
5913   auto *ExitingBB = L->getExitingBlock();
5914   auto *LatchBB = L->getLoopLatch();
5915   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5916     return false;
5917 
5918   SmallPtrSet<const Instruction *, 16> Pushed;
5919   SmallVector<const Instruction *, 8> PoisonStack;
5920 
5921   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5922   // things that are known to be poison under that assumption go on the
5923   // PoisonStack.
5924   Pushed.insert(I);
5925   PoisonStack.push_back(I);
5926 
5927   bool LatchControlDependentOnPoison = false;
5928   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5929     const Instruction *Poison = PoisonStack.pop_back_val();
5930 
5931     for (auto *PoisonUser : Poison->users()) {
5932       if (propagatesPoison(cast<Operator>(PoisonUser))) {
5933         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5934           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5935       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5936         assert(BI->isConditional() && "Only possibility!");
5937         if (BI->getParent() == LatchBB) {
5938           LatchControlDependentOnPoison = true;
5939           break;
5940         }
5941       }
5942     }
5943   }
5944 
5945   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5946 }
5947 
5948 ScalarEvolution::LoopProperties
5949 ScalarEvolution::getLoopProperties(const Loop *L) {
5950   using LoopProperties = ScalarEvolution::LoopProperties;
5951 
5952   auto Itr = LoopPropertiesCache.find(L);
5953   if (Itr == LoopPropertiesCache.end()) {
5954     auto HasSideEffects = [](Instruction *I) {
5955       if (auto *SI = dyn_cast<StoreInst>(I))
5956         return !SI->isSimple();
5957 
5958       return I->mayHaveSideEffects();
5959     };
5960 
5961     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5962                          /*HasNoSideEffects*/ true};
5963 
5964     for (auto *BB : L->getBlocks())
5965       for (auto &I : *BB) {
5966         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5967           LP.HasNoAbnormalExits = false;
5968         if (HasSideEffects(&I))
5969           LP.HasNoSideEffects = false;
5970         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5971           break; // We're already as pessimistic as we can get.
5972       }
5973 
5974     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5975     assert(InsertPair.second && "We just checked!");
5976     Itr = InsertPair.first;
5977   }
5978 
5979   return Itr->second;
5980 }
5981 
5982 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5983   if (!isSCEVable(V->getType()))
5984     return getUnknown(V);
5985 
5986   if (Instruction *I = dyn_cast<Instruction>(V)) {
5987     // Don't attempt to analyze instructions in blocks that aren't
5988     // reachable. Such instructions don't matter, and they aren't required
5989     // to obey basic rules for definitions dominating uses which this
5990     // analysis depends on.
5991     if (!DT.isReachableFromEntry(I->getParent()))
5992       return getUnknown(UndefValue::get(V->getType()));
5993   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5994     return getConstant(CI);
5995   else if (isa<ConstantPointerNull>(V))
5996     return getZero(V->getType());
5997   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5998     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5999   else if (!isa<ConstantExpr>(V))
6000     return getUnknown(V);
6001 
6002   Operator *U = cast<Operator>(V);
6003   if (auto BO = MatchBinaryOp(U, DT)) {
6004     switch (BO->Opcode) {
6005     case Instruction::Add: {
6006       // The simple thing to do would be to just call getSCEV on both operands
6007       // and call getAddExpr with the result. However if we're looking at a
6008       // bunch of things all added together, this can be quite inefficient,
6009       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6010       // Instead, gather up all the operands and make a single getAddExpr call.
6011       // LLVM IR canonical form means we need only traverse the left operands.
6012       SmallVector<const SCEV *, 4> AddOps;
6013       do {
6014         if (BO->Op) {
6015           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6016             AddOps.push_back(OpSCEV);
6017             break;
6018           }
6019 
6020           // If a NUW or NSW flag can be applied to the SCEV for this
6021           // addition, then compute the SCEV for this addition by itself
6022           // with a separate call to getAddExpr. We need to do that
6023           // instead of pushing the operands of the addition onto AddOps,
6024           // since the flags are only known to apply to this particular
6025           // addition - they may not apply to other additions that can be
6026           // formed with operands from AddOps.
6027           const SCEV *RHS = getSCEV(BO->RHS);
6028           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6029           if (Flags != SCEV::FlagAnyWrap) {
6030             const SCEV *LHS = getSCEV(BO->LHS);
6031             if (BO->Opcode == Instruction::Sub)
6032               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6033             else
6034               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6035             break;
6036           }
6037         }
6038 
6039         if (BO->Opcode == Instruction::Sub)
6040           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6041         else
6042           AddOps.push_back(getSCEV(BO->RHS));
6043 
6044         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6045         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6046                        NewBO->Opcode != Instruction::Sub)) {
6047           AddOps.push_back(getSCEV(BO->LHS));
6048           break;
6049         }
6050         BO = NewBO;
6051       } while (true);
6052 
6053       return getAddExpr(AddOps);
6054     }
6055 
6056     case Instruction::Mul: {
6057       SmallVector<const SCEV *, 4> MulOps;
6058       do {
6059         if (BO->Op) {
6060           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6061             MulOps.push_back(OpSCEV);
6062             break;
6063           }
6064 
6065           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6066           if (Flags != SCEV::FlagAnyWrap) {
6067             MulOps.push_back(
6068                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6069             break;
6070           }
6071         }
6072 
6073         MulOps.push_back(getSCEV(BO->RHS));
6074         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6075         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6076           MulOps.push_back(getSCEV(BO->LHS));
6077           break;
6078         }
6079         BO = NewBO;
6080       } while (true);
6081 
6082       return getMulExpr(MulOps);
6083     }
6084     case Instruction::UDiv:
6085       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6086     case Instruction::URem:
6087       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6088     case Instruction::Sub: {
6089       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6090       if (BO->Op)
6091         Flags = getNoWrapFlagsFromUB(BO->Op);
6092       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6093     }
6094     case Instruction::And:
6095       // For an expression like x&255 that merely masks off the high bits,
6096       // use zext(trunc(x)) as the SCEV expression.
6097       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6098         if (CI->isZero())
6099           return getSCEV(BO->RHS);
6100         if (CI->isMinusOne())
6101           return getSCEV(BO->LHS);
6102         const APInt &A = CI->getValue();
6103 
6104         // Instcombine's ShrinkDemandedConstant may strip bits out of
6105         // constants, obscuring what would otherwise be a low-bits mask.
6106         // Use computeKnownBits to compute what ShrinkDemandedConstant
6107         // knew about to reconstruct a low-bits mask value.
6108         unsigned LZ = A.countLeadingZeros();
6109         unsigned TZ = A.countTrailingZeros();
6110         unsigned BitWidth = A.getBitWidth();
6111         KnownBits Known(BitWidth);
6112         computeKnownBits(BO->LHS, Known, getDataLayout(),
6113                          0, &AC, nullptr, &DT);
6114 
6115         APInt EffectiveMask =
6116             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6117         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6118           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6119           const SCEV *LHS = getSCEV(BO->LHS);
6120           const SCEV *ShiftedLHS = nullptr;
6121           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6122             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6123               // For an expression like (x * 8) & 8, simplify the multiply.
6124               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6125               unsigned GCD = std::min(MulZeros, TZ);
6126               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6127               SmallVector<const SCEV*, 4> MulOps;
6128               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6129               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6130               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6131               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6132             }
6133           }
6134           if (!ShiftedLHS)
6135             ShiftedLHS = getUDivExpr(LHS, MulCount);
6136           return getMulExpr(
6137               getZeroExtendExpr(
6138                   getTruncateExpr(ShiftedLHS,
6139                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6140                   BO->LHS->getType()),
6141               MulCount);
6142         }
6143       }
6144       break;
6145 
6146     case Instruction::Or:
6147       // If the RHS of the Or is a constant, we may have something like:
6148       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6149       // optimizations will transparently handle this case.
6150       //
6151       // In order for this transformation to be safe, the LHS must be of the
6152       // form X*(2^n) and the Or constant must be less than 2^n.
6153       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6154         const SCEV *LHS = getSCEV(BO->LHS);
6155         const APInt &CIVal = CI->getValue();
6156         if (GetMinTrailingZeros(LHS) >=
6157             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6158           // Build a plain add SCEV.
6159           return getAddExpr(LHS, getSCEV(CI),
6160                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6161         }
6162       }
6163       break;
6164 
6165     case Instruction::Xor:
6166       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6167         // If the RHS of xor is -1, then this is a not operation.
6168         if (CI->isMinusOne())
6169           return getNotSCEV(getSCEV(BO->LHS));
6170 
6171         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6172         // This is a variant of the check for xor with -1, and it handles
6173         // the case where instcombine has trimmed non-demanded bits out
6174         // of an xor with -1.
6175         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6176           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6177             if (LBO->getOpcode() == Instruction::And &&
6178                 LCI->getValue() == CI->getValue())
6179               if (const SCEVZeroExtendExpr *Z =
6180                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6181                 Type *UTy = BO->LHS->getType();
6182                 const SCEV *Z0 = Z->getOperand();
6183                 Type *Z0Ty = Z0->getType();
6184                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6185 
6186                 // If C is a low-bits mask, the zero extend is serving to
6187                 // mask off the high bits. Complement the operand and
6188                 // re-apply the zext.
6189                 if (CI->getValue().isMask(Z0TySize))
6190                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6191 
6192                 // If C is a single bit, it may be in the sign-bit position
6193                 // before the zero-extend. In this case, represent the xor
6194                 // using an add, which is equivalent, and re-apply the zext.
6195                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6196                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6197                     Trunc.isSignMask())
6198                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6199                                            UTy);
6200               }
6201       }
6202       break;
6203 
6204     case Instruction::Shl:
6205       // Turn shift left of a constant amount into a multiply.
6206       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6207         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6208 
6209         // If the shift count is not less than the bitwidth, the result of
6210         // the shift is undefined. Don't try to analyze it, because the
6211         // resolution chosen here may differ from the resolution chosen in
6212         // other parts of the compiler.
6213         if (SA->getValue().uge(BitWidth))
6214           break;
6215 
6216         // We can safely preserve the nuw flag in all cases. It's also safe to
6217         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6218         // requires special handling. It can be preserved as long as we're not
6219         // left shifting by bitwidth - 1.
6220         auto Flags = SCEV::FlagAnyWrap;
6221         if (BO->Op) {
6222           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6223           if ((MulFlags & SCEV::FlagNSW) &&
6224               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6225             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6226           if (MulFlags & SCEV::FlagNUW)
6227             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6228         }
6229 
6230         Constant *X = ConstantInt::get(
6231             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6232         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6233       }
6234       break;
6235 
6236     case Instruction::AShr: {
6237       // AShr X, C, where C is a constant.
6238       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6239       if (!CI)
6240         break;
6241 
6242       Type *OuterTy = BO->LHS->getType();
6243       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6244       // If the shift count is not less than the bitwidth, the result of
6245       // the shift is undefined. Don't try to analyze it, because the
6246       // resolution chosen here may differ from the resolution chosen in
6247       // other parts of the compiler.
6248       if (CI->getValue().uge(BitWidth))
6249         break;
6250 
6251       if (CI->isZero())
6252         return getSCEV(BO->LHS); // shift by zero --> noop
6253 
6254       uint64_t AShrAmt = CI->getZExtValue();
6255       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6256 
6257       Operator *L = dyn_cast<Operator>(BO->LHS);
6258       if (L && L->getOpcode() == Instruction::Shl) {
6259         // X = Shl A, n
6260         // Y = AShr X, m
6261         // Both n and m are constant.
6262 
6263         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6264         if (L->getOperand(1) == BO->RHS)
6265           // For a two-shift sext-inreg, i.e. n = m,
6266           // use sext(trunc(x)) as the SCEV expression.
6267           return getSignExtendExpr(
6268               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6269 
6270         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6271         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6272           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6273           if (ShlAmt > AShrAmt) {
6274             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6275             // expression. We already checked that ShlAmt < BitWidth, so
6276             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6277             // ShlAmt - AShrAmt < Amt.
6278             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6279                                             ShlAmt - AShrAmt);
6280             return getSignExtendExpr(
6281                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6282                 getConstant(Mul)), OuterTy);
6283           }
6284         }
6285       }
6286       if (BO->IsExact) {
6287         // Given exact arithmetic in-bounds right-shift by a constant,
6288         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6289         const SCEV *X = getSCEV(BO->LHS);
6290         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6291         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6292         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6293         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6294       }
6295       break;
6296     }
6297     }
6298   }
6299 
6300   switch (U->getOpcode()) {
6301   case Instruction::Trunc:
6302     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6303 
6304   case Instruction::ZExt:
6305     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6306 
6307   case Instruction::SExt:
6308     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6309       // The NSW flag of a subtract does not always survive the conversion to
6310       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6311       // more likely to preserve NSW and allow later AddRec optimisations.
6312       //
6313       // NOTE: This is effectively duplicating this logic from getSignExtend:
6314       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6315       // but by that point the NSW information has potentially been lost.
6316       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6317         Type *Ty = U->getType();
6318         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6319         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6320         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6321       }
6322     }
6323     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6324 
6325   case Instruction::BitCast:
6326     // BitCasts are no-op casts so we just eliminate the cast.
6327     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6328       return getSCEV(U->getOperand(0));
6329     break;
6330 
6331   case Instruction::SDiv:
6332     // If both operands are non-negative, this is just an udiv.
6333     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6334         isKnownNonNegative(getSCEV(U->getOperand(1))))
6335       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6336     break;
6337 
6338   case Instruction::SRem:
6339     // If both operands are non-negative, this is just an urem.
6340     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6341         isKnownNonNegative(getSCEV(U->getOperand(1))))
6342       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6343     break;
6344 
6345   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6346   // lead to pointer expressions which cannot safely be expanded to GEPs,
6347   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6348   // simplifying integer expressions.
6349 
6350   case Instruction::GetElementPtr:
6351     return createNodeForGEP(cast<GEPOperator>(U));
6352 
6353   case Instruction::PHI:
6354     return createNodeForPHI(cast<PHINode>(U));
6355 
6356   case Instruction::Select:
6357     // U can also be a select constant expr, which let fall through.  Since
6358     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6359     // constant expressions cannot have instructions as operands, we'd have
6360     // returned getUnknown for a select constant expressions anyway.
6361     if (isa<Instruction>(U))
6362       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6363                                       U->getOperand(1), U->getOperand(2));
6364     break;
6365 
6366   case Instruction::Call:
6367   case Instruction::Invoke:
6368     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6369       return getSCEV(RV);
6370 
6371     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6372       switch (II->getIntrinsicID()) {
6373       case Intrinsic::abs:
6374         return getAbsExpr(
6375             getSCEV(II->getArgOperand(0)),
6376             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6377       case Intrinsic::umax:
6378         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6379                            getSCEV(II->getArgOperand(1)));
6380       case Intrinsic::umin:
6381         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6382                            getSCEV(II->getArgOperand(1)));
6383       case Intrinsic::smax:
6384         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6385                            getSCEV(II->getArgOperand(1)));
6386       case Intrinsic::smin:
6387         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6388                            getSCEV(II->getArgOperand(1)));
6389       case Intrinsic::usub_sat: {
6390         const SCEV *X = getSCEV(II->getArgOperand(0));
6391         const SCEV *Y = getSCEV(II->getArgOperand(1));
6392         const SCEV *ClampedY = getUMinExpr(X, Y);
6393         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6394       }
6395       case Intrinsic::uadd_sat: {
6396         const SCEV *X = getSCEV(II->getArgOperand(0));
6397         const SCEV *Y = getSCEV(II->getArgOperand(1));
6398         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6399         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6400       }
6401       default:
6402         break;
6403       }
6404     }
6405     break;
6406   }
6407 
6408   return getUnknown(V);
6409 }
6410 
6411 //===----------------------------------------------------------------------===//
6412 //                   Iteration Count Computation Code
6413 //
6414 
6415 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6416   if (!ExitCount)
6417     return 0;
6418 
6419   ConstantInt *ExitConst = ExitCount->getValue();
6420 
6421   // Guard against huge trip counts.
6422   if (ExitConst->getValue().getActiveBits() > 32)
6423     return 0;
6424 
6425   // In case of integer overflow, this returns 0, which is correct.
6426   return ((unsigned)ExitConst->getZExtValue()) + 1;
6427 }
6428 
6429 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6430   if (BasicBlock *ExitingBB = L->getExitingBlock())
6431     return getSmallConstantTripCount(L, ExitingBB);
6432 
6433   // No trip count information for multiple exits.
6434   return 0;
6435 }
6436 
6437 unsigned
6438 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6439                                            const BasicBlock *ExitingBlock) {
6440   assert(ExitingBlock && "Must pass a non-null exiting block!");
6441   assert(L->isLoopExiting(ExitingBlock) &&
6442          "Exiting block must actually branch out of the loop!");
6443   const SCEVConstant *ExitCount =
6444       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6445   return getConstantTripCount(ExitCount);
6446 }
6447 
6448 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6449   const auto *MaxExitCount =
6450       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6451   return getConstantTripCount(MaxExitCount);
6452 }
6453 
6454 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6455   if (BasicBlock *ExitingBB = L->getExitingBlock())
6456     return getSmallConstantTripMultiple(L, ExitingBB);
6457 
6458   // No trip multiple information for multiple exits.
6459   return 0;
6460 }
6461 
6462 /// Returns the largest constant divisor of the trip count of this loop as a
6463 /// normal unsigned value, if possible. This means that the actual trip count is
6464 /// always a multiple of the returned value (don't forget the trip count could
6465 /// very well be zero as well!).
6466 ///
6467 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6468 /// multiple of a constant (which is also the case if the trip count is simply
6469 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6470 /// if the trip count is very large (>= 2^32).
6471 ///
6472 /// As explained in the comments for getSmallConstantTripCount, this assumes
6473 /// that control exits the loop via ExitingBlock.
6474 unsigned
6475 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6476                                               const BasicBlock *ExitingBlock) {
6477   assert(ExitingBlock && "Must pass a non-null exiting block!");
6478   assert(L->isLoopExiting(ExitingBlock) &&
6479          "Exiting block must actually branch out of the loop!");
6480   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6481   if (ExitCount == getCouldNotCompute())
6482     return 1;
6483 
6484   // Get the trip count from the BE count by adding 1.
6485   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6486 
6487   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6488   if (!TC)
6489     // Attempt to factor more general cases. Returns the greatest power of
6490     // two divisor. If overflow happens, the trip count expression is still
6491     // divisible by the greatest power of 2 divisor returned.
6492     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6493 
6494   ConstantInt *Result = TC->getValue();
6495 
6496   // Guard against huge trip counts (this requires checking
6497   // for zero to handle the case where the trip count == -1 and the
6498   // addition wraps).
6499   if (!Result || Result->getValue().getActiveBits() > 32 ||
6500       Result->getValue().getActiveBits() == 0)
6501     return 1;
6502 
6503   return (unsigned)Result->getZExtValue();
6504 }
6505 
6506 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6507                                           const BasicBlock *ExitingBlock,
6508                                           ExitCountKind Kind) {
6509   switch (Kind) {
6510   case Exact:
6511     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6512   case ConstantMaximum:
6513     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6514   };
6515   llvm_unreachable("Invalid ExitCountKind!");
6516 }
6517 
6518 const SCEV *
6519 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6520                                                  SCEVUnionPredicate &Preds) {
6521   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6522 }
6523 
6524 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6525                                                    ExitCountKind Kind) {
6526   switch (Kind) {
6527   case Exact:
6528     return getBackedgeTakenInfo(L).getExact(L, this);
6529   case ConstantMaximum:
6530     return getBackedgeTakenInfo(L).getMax(this);
6531   };
6532   llvm_unreachable("Invalid ExitCountKind!");
6533 }
6534 
6535 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6536   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6537 }
6538 
6539 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6540 static void
6541 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6542   BasicBlock *Header = L->getHeader();
6543 
6544   // Push all Loop-header PHIs onto the Worklist stack.
6545   for (PHINode &PN : Header->phis())
6546     Worklist.push_back(&PN);
6547 }
6548 
6549 const ScalarEvolution::BackedgeTakenInfo &
6550 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6551   auto &BTI = getBackedgeTakenInfo(L);
6552   if (BTI.hasFullInfo())
6553     return BTI;
6554 
6555   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6556 
6557   if (!Pair.second)
6558     return Pair.first->second;
6559 
6560   BackedgeTakenInfo Result =
6561       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6562 
6563   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6564 }
6565 
6566 const ScalarEvolution::BackedgeTakenInfo &
6567 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6568   // Initially insert an invalid entry for this loop. If the insertion
6569   // succeeds, proceed to actually compute a backedge-taken count and
6570   // update the value. The temporary CouldNotCompute value tells SCEV
6571   // code elsewhere that it shouldn't attempt to request a new
6572   // backedge-taken count, which could result in infinite recursion.
6573   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6574       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6575   if (!Pair.second)
6576     return Pair.first->second;
6577 
6578   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6579   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6580   // must be cleared in this scope.
6581   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6582 
6583   // In product build, there are no usage of statistic.
6584   (void)NumTripCountsComputed;
6585   (void)NumTripCountsNotComputed;
6586 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6587   const SCEV *BEExact = Result.getExact(L, this);
6588   if (BEExact != getCouldNotCompute()) {
6589     assert(isLoopInvariant(BEExact, L) &&
6590            isLoopInvariant(Result.getMax(this), L) &&
6591            "Computed backedge-taken count isn't loop invariant for loop!");
6592     ++NumTripCountsComputed;
6593   }
6594   else if (Result.getMax(this) == getCouldNotCompute() &&
6595            isa<PHINode>(L->getHeader()->begin())) {
6596     // Only count loops that have phi nodes as not being computable.
6597     ++NumTripCountsNotComputed;
6598   }
6599 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6600 
6601   // Now that we know more about the trip count for this loop, forget any
6602   // existing SCEV values for PHI nodes in this loop since they are only
6603   // conservative estimates made without the benefit of trip count
6604   // information. This is similar to the code in forgetLoop, except that
6605   // it handles SCEVUnknown PHI nodes specially.
6606   if (Result.hasAnyInfo()) {
6607     SmallVector<Instruction *, 16> Worklist;
6608     PushLoopPHIs(L, Worklist);
6609 
6610     SmallPtrSet<Instruction *, 8> Discovered;
6611     while (!Worklist.empty()) {
6612       Instruction *I = Worklist.pop_back_val();
6613 
6614       ValueExprMapType::iterator It =
6615         ValueExprMap.find_as(static_cast<Value *>(I));
6616       if (It != ValueExprMap.end()) {
6617         const SCEV *Old = It->second;
6618 
6619         // SCEVUnknown for a PHI either means that it has an unrecognized
6620         // structure, or it's a PHI that's in the progress of being computed
6621         // by createNodeForPHI.  In the former case, additional loop trip
6622         // count information isn't going to change anything. In the later
6623         // case, createNodeForPHI will perform the necessary updates on its
6624         // own when it gets to that point.
6625         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6626           eraseValueFromMap(It->first);
6627           forgetMemoizedResults(Old);
6628         }
6629         if (PHINode *PN = dyn_cast<PHINode>(I))
6630           ConstantEvolutionLoopExitValue.erase(PN);
6631       }
6632 
6633       // Since we don't need to invalidate anything for correctness and we're
6634       // only invalidating to make SCEV's results more precise, we get to stop
6635       // early to avoid invalidating too much.  This is especially important in
6636       // cases like:
6637       //
6638       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6639       // loop0:
6640       //   %pn0 = phi
6641       //   ...
6642       // loop1:
6643       //   %pn1 = phi
6644       //   ...
6645       //
6646       // where both loop0 and loop1's backedge taken count uses the SCEV
6647       // expression for %v.  If we don't have the early stop below then in cases
6648       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6649       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6650       // count for loop1, effectively nullifying SCEV's trip count cache.
6651       for (auto *U : I->users())
6652         if (auto *I = dyn_cast<Instruction>(U)) {
6653           auto *LoopForUser = LI.getLoopFor(I->getParent());
6654           if (LoopForUser && L->contains(LoopForUser) &&
6655               Discovered.insert(I).second)
6656             Worklist.push_back(I);
6657         }
6658     }
6659   }
6660 
6661   // Re-lookup the insert position, since the call to
6662   // computeBackedgeTakenCount above could result in a
6663   // recusive call to getBackedgeTakenInfo (on a different
6664   // loop), which would invalidate the iterator computed
6665   // earlier.
6666   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6667 }
6668 
6669 void ScalarEvolution::forgetAllLoops() {
6670   // This method is intended to forget all info about loops. It should
6671   // invalidate caches as if the following happened:
6672   // - The trip counts of all loops have changed arbitrarily
6673   // - Every llvm::Value has been updated in place to produce a different
6674   // result.
6675   BackedgeTakenCounts.clear();
6676   PredicatedBackedgeTakenCounts.clear();
6677   LoopPropertiesCache.clear();
6678   ConstantEvolutionLoopExitValue.clear();
6679   ValueExprMap.clear();
6680   ValuesAtScopes.clear();
6681   LoopDispositions.clear();
6682   BlockDispositions.clear();
6683   UnsignedRanges.clear();
6684   SignedRanges.clear();
6685   ExprValueMap.clear();
6686   HasRecMap.clear();
6687   MinTrailingZerosCache.clear();
6688   PredicatedSCEVRewrites.clear();
6689 }
6690 
6691 void ScalarEvolution::forgetLoop(const Loop *L) {
6692   // Drop any stored trip count value.
6693   auto RemoveLoopFromBackedgeMap =
6694       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6695         auto BTCPos = Map.find(L);
6696         if (BTCPos != Map.end()) {
6697           BTCPos->second.clear();
6698           Map.erase(BTCPos);
6699         }
6700       };
6701 
6702   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6703   SmallVector<Instruction *, 32> Worklist;
6704   SmallPtrSet<Instruction *, 16> Visited;
6705 
6706   // Iterate over all the loops and sub-loops to drop SCEV information.
6707   while (!LoopWorklist.empty()) {
6708     auto *CurrL = LoopWorklist.pop_back_val();
6709 
6710     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6711     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6712 
6713     // Drop information about predicated SCEV rewrites for this loop.
6714     for (auto I = PredicatedSCEVRewrites.begin();
6715          I != PredicatedSCEVRewrites.end();) {
6716       std::pair<const SCEV *, const Loop *> Entry = I->first;
6717       if (Entry.second == CurrL)
6718         PredicatedSCEVRewrites.erase(I++);
6719       else
6720         ++I;
6721     }
6722 
6723     auto LoopUsersItr = LoopUsers.find(CurrL);
6724     if (LoopUsersItr != LoopUsers.end()) {
6725       for (auto *S : LoopUsersItr->second)
6726         forgetMemoizedResults(S);
6727       LoopUsers.erase(LoopUsersItr);
6728     }
6729 
6730     // Drop information about expressions based on loop-header PHIs.
6731     PushLoopPHIs(CurrL, Worklist);
6732 
6733     while (!Worklist.empty()) {
6734       Instruction *I = Worklist.pop_back_val();
6735       if (!Visited.insert(I).second)
6736         continue;
6737 
6738       ValueExprMapType::iterator It =
6739           ValueExprMap.find_as(static_cast<Value *>(I));
6740       if (It != ValueExprMap.end()) {
6741         eraseValueFromMap(It->first);
6742         forgetMemoizedResults(It->second);
6743         if (PHINode *PN = dyn_cast<PHINode>(I))
6744           ConstantEvolutionLoopExitValue.erase(PN);
6745       }
6746 
6747       PushDefUseChildren(I, Worklist);
6748     }
6749 
6750     LoopPropertiesCache.erase(CurrL);
6751     // Forget all contained loops too, to avoid dangling entries in the
6752     // ValuesAtScopes map.
6753     LoopWorklist.append(CurrL->begin(), CurrL->end());
6754   }
6755 }
6756 
6757 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6758   while (Loop *Parent = L->getParentLoop())
6759     L = Parent;
6760   forgetLoop(L);
6761 }
6762 
6763 void ScalarEvolution::forgetValue(Value *V) {
6764   Instruction *I = dyn_cast<Instruction>(V);
6765   if (!I) return;
6766 
6767   // Drop information about expressions based on loop-header PHIs.
6768   SmallVector<Instruction *, 16> Worklist;
6769   Worklist.push_back(I);
6770 
6771   SmallPtrSet<Instruction *, 8> Visited;
6772   while (!Worklist.empty()) {
6773     I = Worklist.pop_back_val();
6774     if (!Visited.insert(I).second)
6775       continue;
6776 
6777     ValueExprMapType::iterator It =
6778       ValueExprMap.find_as(static_cast<Value *>(I));
6779     if (It != ValueExprMap.end()) {
6780       eraseValueFromMap(It->first);
6781       forgetMemoizedResults(It->second);
6782       if (PHINode *PN = dyn_cast<PHINode>(I))
6783         ConstantEvolutionLoopExitValue.erase(PN);
6784     }
6785 
6786     PushDefUseChildren(I, Worklist);
6787   }
6788 }
6789 
6790 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6791   LoopDispositions.clear();
6792 }
6793 
6794 /// Get the exact loop backedge taken count considering all loop exits. A
6795 /// computable result can only be returned for loops with all exiting blocks
6796 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6797 /// is never skipped. This is a valid assumption as long as the loop exits via
6798 /// that test. For precise results, it is the caller's responsibility to specify
6799 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6800 const SCEV *
6801 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6802                                              SCEVUnionPredicate *Preds) const {
6803   // If any exits were not computable, the loop is not computable.
6804   if (!isComplete() || ExitNotTaken.empty())
6805     return SE->getCouldNotCompute();
6806 
6807   const BasicBlock *Latch = L->getLoopLatch();
6808   // All exiting blocks we have collected must dominate the only backedge.
6809   if (!Latch)
6810     return SE->getCouldNotCompute();
6811 
6812   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6813   // count is simply a minimum out of all these calculated exit counts.
6814   SmallVector<const SCEV *, 2> Ops;
6815   for (auto &ENT : ExitNotTaken) {
6816     const SCEV *BECount = ENT.ExactNotTaken;
6817     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6818     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6819            "We should only have known counts for exiting blocks that dominate "
6820            "latch!");
6821 
6822     Ops.push_back(BECount);
6823 
6824     if (Preds && !ENT.hasAlwaysTruePredicate())
6825       Preds->add(ENT.Predicate.get());
6826 
6827     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6828            "Predicate should be always true!");
6829   }
6830 
6831   return SE->getUMinFromMismatchedTypes(Ops);
6832 }
6833 
6834 /// Get the exact not taken count for this loop exit.
6835 const SCEV *
6836 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
6837                                              ScalarEvolution *SE) const {
6838   for (auto &ENT : ExitNotTaken)
6839     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6840       return ENT.ExactNotTaken;
6841 
6842   return SE->getCouldNotCompute();
6843 }
6844 
6845 const SCEV *
6846 ScalarEvolution::BackedgeTakenInfo::getMax(const BasicBlock *ExitingBlock,
6847                                            ScalarEvolution *SE) const {
6848   for (auto &ENT : ExitNotTaken)
6849     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6850       return ENT.MaxNotTaken;
6851 
6852   return SE->getCouldNotCompute();
6853 }
6854 
6855 /// getMax - Get the max backedge taken count for the loop.
6856 const SCEV *
6857 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6858   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6859     return !ENT.hasAlwaysTruePredicate();
6860   };
6861 
6862   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6863     return SE->getCouldNotCompute();
6864 
6865   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6866          "No point in having a non-constant max backedge taken count!");
6867   return getMax();
6868 }
6869 
6870 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6871   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6872     return !ENT.hasAlwaysTruePredicate();
6873   };
6874   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6875 }
6876 
6877 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6878                                                     ScalarEvolution *SE) const {
6879   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6880       SE->hasOperand(getMax(), S))
6881     return true;
6882 
6883   for (auto &ENT : ExitNotTaken)
6884     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6885         SE->hasOperand(ENT.ExactNotTaken, S))
6886       return true;
6887 
6888   return false;
6889 }
6890 
6891 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6892     : ExactNotTaken(E), MaxNotTaken(E) {
6893   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6894           isa<SCEVConstant>(MaxNotTaken)) &&
6895          "No point in having a non-constant max backedge taken count!");
6896 }
6897 
6898 ScalarEvolution::ExitLimit::ExitLimit(
6899     const SCEV *E, const SCEV *M, bool MaxOrZero,
6900     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6901     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6902   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6903           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6904          "Exact is not allowed to be less precise than Max");
6905   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6906           isa<SCEVConstant>(MaxNotTaken)) &&
6907          "No point in having a non-constant max backedge taken count!");
6908   for (auto *PredSet : PredSetList)
6909     for (auto *P : *PredSet)
6910       addPredicate(P);
6911 }
6912 
6913 ScalarEvolution::ExitLimit::ExitLimit(
6914     const SCEV *E, const SCEV *M, bool MaxOrZero,
6915     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6916     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6917   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6918           isa<SCEVConstant>(MaxNotTaken)) &&
6919          "No point in having a non-constant max backedge taken count!");
6920 }
6921 
6922 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6923                                       bool MaxOrZero)
6924     : ExitLimit(E, M, MaxOrZero, None) {
6925   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6926           isa<SCEVConstant>(MaxNotTaken)) &&
6927          "No point in having a non-constant max backedge taken count!");
6928 }
6929 
6930 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6931 /// computable exit into a persistent ExitNotTakenInfo array.
6932 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6933     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6934         ExitCounts,
6935     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6936     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6937   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6938 
6939   ExitNotTaken.reserve(ExitCounts.size());
6940   std::transform(
6941       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6942       [&](const EdgeExitInfo &EEI) {
6943         BasicBlock *ExitBB = EEI.first;
6944         const ExitLimit &EL = EEI.second;
6945         if (EL.Predicates.empty())
6946           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6947                                   nullptr);
6948 
6949         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6950         for (auto *Pred : EL.Predicates)
6951           Predicate->add(Pred);
6952 
6953         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6954                                 std::move(Predicate));
6955       });
6956   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6957          "No point in having a non-constant max backedge taken count!");
6958 }
6959 
6960 /// Invalidate this result and free the ExitNotTakenInfo array.
6961 void ScalarEvolution::BackedgeTakenInfo::clear() {
6962   ExitNotTaken.clear();
6963 }
6964 
6965 /// Compute the number of times the backedge of the specified loop will execute.
6966 ScalarEvolution::BackedgeTakenInfo
6967 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6968                                            bool AllowPredicates) {
6969   SmallVector<BasicBlock *, 8> ExitingBlocks;
6970   L->getExitingBlocks(ExitingBlocks);
6971 
6972   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6973 
6974   SmallVector<EdgeExitInfo, 4> ExitCounts;
6975   bool CouldComputeBECount = true;
6976   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6977   const SCEV *MustExitMaxBECount = nullptr;
6978   const SCEV *MayExitMaxBECount = nullptr;
6979   bool MustExitMaxOrZero = false;
6980 
6981   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6982   // and compute maxBECount.
6983   // Do a union of all the predicates here.
6984   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6985     BasicBlock *ExitBB = ExitingBlocks[i];
6986 
6987     // We canonicalize untaken exits to br (constant), ignore them so that
6988     // proving an exit untaken doesn't negatively impact our ability to reason
6989     // about the loop as whole.
6990     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6991       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6992         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6993         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6994           continue;
6995       }
6996 
6997     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6998 
6999     assert((AllowPredicates || EL.Predicates.empty()) &&
7000            "Predicated exit limit when predicates are not allowed!");
7001 
7002     // 1. For each exit that can be computed, add an entry to ExitCounts.
7003     // CouldComputeBECount is true only if all exits can be computed.
7004     if (EL.ExactNotTaken == getCouldNotCompute())
7005       // We couldn't compute an exact value for this exit, so
7006       // we won't be able to compute an exact value for the loop.
7007       CouldComputeBECount = false;
7008     else
7009       ExitCounts.emplace_back(ExitBB, EL);
7010 
7011     // 2. Derive the loop's MaxBECount from each exit's max number of
7012     // non-exiting iterations. Partition the loop exits into two kinds:
7013     // LoopMustExits and LoopMayExits.
7014     //
7015     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7016     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7017     // MaxBECount is the minimum EL.MaxNotTaken of computable
7018     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7019     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7020     // computable EL.MaxNotTaken.
7021     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7022         DT.dominates(ExitBB, Latch)) {
7023       if (!MustExitMaxBECount) {
7024         MustExitMaxBECount = EL.MaxNotTaken;
7025         MustExitMaxOrZero = EL.MaxOrZero;
7026       } else {
7027         MustExitMaxBECount =
7028             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7029       }
7030     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7031       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7032         MayExitMaxBECount = EL.MaxNotTaken;
7033       else {
7034         MayExitMaxBECount =
7035             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7036       }
7037     }
7038   }
7039   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7040     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7041   // The loop backedge will be taken the maximum or zero times if there's
7042   // a single exit that must be taken the maximum or zero times.
7043   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7044   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7045                            MaxBECount, MaxOrZero);
7046 }
7047 
7048 ScalarEvolution::ExitLimit
7049 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7050                                       bool AllowPredicates) {
7051   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7052   // If our exiting block does not dominate the latch, then its connection with
7053   // loop's exit limit may be far from trivial.
7054   const BasicBlock *Latch = L->getLoopLatch();
7055   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7056     return getCouldNotCompute();
7057 
7058   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7059   Instruction *Term = ExitingBlock->getTerminator();
7060   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7061     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7062     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7063     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7064            "It should have one successor in loop and one exit block!");
7065     // Proceed to the next level to examine the exit condition expression.
7066     return computeExitLimitFromCond(
7067         L, BI->getCondition(), ExitIfTrue,
7068         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7069   }
7070 
7071   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7072     // For switch, make sure that there is a single exit from the loop.
7073     BasicBlock *Exit = nullptr;
7074     for (auto *SBB : successors(ExitingBlock))
7075       if (!L->contains(SBB)) {
7076         if (Exit) // Multiple exit successors.
7077           return getCouldNotCompute();
7078         Exit = SBB;
7079       }
7080     assert(Exit && "Exiting block must have at least one exit");
7081     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7082                                                 /*ControlsExit=*/IsOnlyExit);
7083   }
7084 
7085   return getCouldNotCompute();
7086 }
7087 
7088 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7089     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7090     bool ControlsExit, bool AllowPredicates) {
7091   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7092   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7093                                         ControlsExit, AllowPredicates);
7094 }
7095 
7096 Optional<ScalarEvolution::ExitLimit>
7097 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7098                                       bool ExitIfTrue, bool ControlsExit,
7099                                       bool AllowPredicates) {
7100   (void)this->L;
7101   (void)this->ExitIfTrue;
7102   (void)this->AllowPredicates;
7103 
7104   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7105          this->AllowPredicates == AllowPredicates &&
7106          "Variance in assumed invariant key components!");
7107   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7108   if (Itr == TripCountMap.end())
7109     return None;
7110   return Itr->second;
7111 }
7112 
7113 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7114                                              bool ExitIfTrue,
7115                                              bool ControlsExit,
7116                                              bool AllowPredicates,
7117                                              const ExitLimit &EL) {
7118   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7119          this->AllowPredicates == AllowPredicates &&
7120          "Variance in assumed invariant key components!");
7121 
7122   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7123   assert(InsertResult.second && "Expected successful insertion!");
7124   (void)InsertResult;
7125   (void)ExitIfTrue;
7126 }
7127 
7128 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7129     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7130     bool ControlsExit, bool AllowPredicates) {
7131 
7132   if (auto MaybeEL =
7133           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7134     return *MaybeEL;
7135 
7136   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7137                                               ControlsExit, AllowPredicates);
7138   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7139   return EL;
7140 }
7141 
7142 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7143     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7144     bool ControlsExit, bool AllowPredicates) {
7145   // Check if the controlling expression for this loop is an And or Or.
7146   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7147     if (BO->getOpcode() == Instruction::And) {
7148       // Recurse on the operands of the and.
7149       bool EitherMayExit = !ExitIfTrue;
7150       ExitLimit EL0 = computeExitLimitFromCondCached(
7151           Cache, L, BO->getOperand(0), ExitIfTrue,
7152           ControlsExit && !EitherMayExit, AllowPredicates);
7153       ExitLimit EL1 = computeExitLimitFromCondCached(
7154           Cache, L, BO->getOperand(1), ExitIfTrue,
7155           ControlsExit && !EitherMayExit, AllowPredicates);
7156       // Be robust against unsimplified IR for the form "and i1 X, true"
7157       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7158         return CI->isOne() ? EL0 : EL1;
7159       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7160         return CI->isOne() ? EL1 : EL0;
7161       const SCEV *BECount = getCouldNotCompute();
7162       const SCEV *MaxBECount = getCouldNotCompute();
7163       if (EitherMayExit) {
7164         // Both conditions must be true for the loop to continue executing.
7165         // Choose the less conservative count.
7166         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7167             EL1.ExactNotTaken == getCouldNotCompute())
7168           BECount = getCouldNotCompute();
7169         else
7170           BECount =
7171               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7172         if (EL0.MaxNotTaken == getCouldNotCompute())
7173           MaxBECount = EL1.MaxNotTaken;
7174         else if (EL1.MaxNotTaken == getCouldNotCompute())
7175           MaxBECount = EL0.MaxNotTaken;
7176         else
7177           MaxBECount =
7178               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7179       } else {
7180         // Both conditions must be true at the same time for the loop to exit.
7181         // For now, be conservative.
7182         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7183           MaxBECount = EL0.MaxNotTaken;
7184         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7185           BECount = EL0.ExactNotTaken;
7186       }
7187 
7188       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7189       // to be more aggressive when computing BECount than when computing
7190       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7191       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7192       // to not.
7193       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7194           !isa<SCEVCouldNotCompute>(BECount))
7195         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7196 
7197       return ExitLimit(BECount, MaxBECount, false,
7198                        {&EL0.Predicates, &EL1.Predicates});
7199     }
7200     if (BO->getOpcode() == Instruction::Or) {
7201       // Recurse on the operands of the or.
7202       bool EitherMayExit = ExitIfTrue;
7203       ExitLimit EL0 = computeExitLimitFromCondCached(
7204           Cache, L, BO->getOperand(0), ExitIfTrue,
7205           ControlsExit && !EitherMayExit, AllowPredicates);
7206       ExitLimit EL1 = computeExitLimitFromCondCached(
7207           Cache, L, BO->getOperand(1), ExitIfTrue,
7208           ControlsExit && !EitherMayExit, AllowPredicates);
7209       // Be robust against unsimplified IR for the form "or i1 X, true"
7210       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7211         return CI->isZero() ? EL0 : EL1;
7212       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7213         return CI->isZero() ? EL1 : EL0;
7214       const SCEV *BECount = getCouldNotCompute();
7215       const SCEV *MaxBECount = getCouldNotCompute();
7216       if (EitherMayExit) {
7217         // Both conditions must be false for the loop to continue executing.
7218         // Choose the less conservative count.
7219         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7220             EL1.ExactNotTaken == getCouldNotCompute())
7221           BECount = getCouldNotCompute();
7222         else
7223           BECount =
7224               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7225         if (EL0.MaxNotTaken == getCouldNotCompute())
7226           MaxBECount = EL1.MaxNotTaken;
7227         else if (EL1.MaxNotTaken == getCouldNotCompute())
7228           MaxBECount = EL0.MaxNotTaken;
7229         else
7230           MaxBECount =
7231               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7232       } else {
7233         // Both conditions must be false at the same time for the loop to exit.
7234         // For now, be conservative.
7235         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7236           MaxBECount = EL0.MaxNotTaken;
7237         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7238           BECount = EL0.ExactNotTaken;
7239       }
7240       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7241       // to be more aggressive when computing BECount than when computing
7242       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7243       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7244       // to not.
7245       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7246           !isa<SCEVCouldNotCompute>(BECount))
7247         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7248 
7249       return ExitLimit(BECount, MaxBECount, false,
7250                        {&EL0.Predicates, &EL1.Predicates});
7251     }
7252   }
7253 
7254   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7255   // Proceed to the next level to examine the icmp.
7256   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7257     ExitLimit EL =
7258         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7259     if (EL.hasFullInfo() || !AllowPredicates)
7260       return EL;
7261 
7262     // Try again, but use SCEV predicates this time.
7263     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7264                                     /*AllowPredicates=*/true);
7265   }
7266 
7267   // Check for a constant condition. These are normally stripped out by
7268   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7269   // preserve the CFG and is temporarily leaving constant conditions
7270   // in place.
7271   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7272     if (ExitIfTrue == !CI->getZExtValue())
7273       // The backedge is always taken.
7274       return getCouldNotCompute();
7275     else
7276       // The backedge is never taken.
7277       return getZero(CI->getType());
7278   }
7279 
7280   // If it's not an integer or pointer comparison then compute it the hard way.
7281   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7282 }
7283 
7284 ScalarEvolution::ExitLimit
7285 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7286                                           ICmpInst *ExitCond,
7287                                           bool ExitIfTrue,
7288                                           bool ControlsExit,
7289                                           bool AllowPredicates) {
7290   // If the condition was exit on true, convert the condition to exit on false
7291   ICmpInst::Predicate Pred;
7292   if (!ExitIfTrue)
7293     Pred = ExitCond->getPredicate();
7294   else
7295     Pred = ExitCond->getInversePredicate();
7296   const ICmpInst::Predicate OriginalPred = Pred;
7297 
7298   // Handle common loops like: for (X = "string"; *X; ++X)
7299   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7300     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7301       ExitLimit ItCnt =
7302         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7303       if (ItCnt.hasAnyInfo())
7304         return ItCnt;
7305     }
7306 
7307   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7308   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7309 
7310   // Try to evaluate any dependencies out of the loop.
7311   LHS = getSCEVAtScope(LHS, L);
7312   RHS = getSCEVAtScope(RHS, L);
7313 
7314   // At this point, we would like to compute how many iterations of the
7315   // loop the predicate will return true for these inputs.
7316   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7317     // If there is a loop-invariant, force it into the RHS.
7318     std::swap(LHS, RHS);
7319     Pred = ICmpInst::getSwappedPredicate(Pred);
7320   }
7321 
7322   // Simplify the operands before analyzing them.
7323   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7324 
7325   // If we have a comparison of a chrec against a constant, try to use value
7326   // ranges to answer this query.
7327   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7328     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7329       if (AddRec->getLoop() == L) {
7330         // Form the constant range.
7331         ConstantRange CompRange =
7332             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7333 
7334         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7335         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7336       }
7337 
7338   switch (Pred) {
7339   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7340     // Convert to: while (X-Y != 0)
7341     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7342                                 AllowPredicates);
7343     if (EL.hasAnyInfo()) return EL;
7344     break;
7345   }
7346   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7347     // Convert to: while (X-Y == 0)
7348     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7349     if (EL.hasAnyInfo()) return EL;
7350     break;
7351   }
7352   case ICmpInst::ICMP_SLT:
7353   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7354     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7355     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7356                                     AllowPredicates);
7357     if (EL.hasAnyInfo()) return EL;
7358     break;
7359   }
7360   case ICmpInst::ICMP_SGT:
7361   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7362     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7363     ExitLimit EL =
7364         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7365                             AllowPredicates);
7366     if (EL.hasAnyInfo()) return EL;
7367     break;
7368   }
7369   default:
7370     break;
7371   }
7372 
7373   auto *ExhaustiveCount =
7374       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7375 
7376   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7377     return ExhaustiveCount;
7378 
7379   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7380                                       ExitCond->getOperand(1), L, OriginalPred);
7381 }
7382 
7383 ScalarEvolution::ExitLimit
7384 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7385                                                       SwitchInst *Switch,
7386                                                       BasicBlock *ExitingBlock,
7387                                                       bool ControlsExit) {
7388   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7389 
7390   // Give up if the exit is the default dest of a switch.
7391   if (Switch->getDefaultDest() == ExitingBlock)
7392     return getCouldNotCompute();
7393 
7394   assert(L->contains(Switch->getDefaultDest()) &&
7395          "Default case must not exit the loop!");
7396   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7397   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7398 
7399   // while (X != Y) --> while (X-Y != 0)
7400   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7401   if (EL.hasAnyInfo())
7402     return EL;
7403 
7404   return getCouldNotCompute();
7405 }
7406 
7407 static ConstantInt *
7408 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7409                                 ScalarEvolution &SE) {
7410   const SCEV *InVal = SE.getConstant(C);
7411   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7412   assert(isa<SCEVConstant>(Val) &&
7413          "Evaluation of SCEV at constant didn't fold correctly?");
7414   return cast<SCEVConstant>(Val)->getValue();
7415 }
7416 
7417 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7418 /// compute the backedge execution count.
7419 ScalarEvolution::ExitLimit
7420 ScalarEvolution::computeLoadConstantCompareExitLimit(
7421   LoadInst *LI,
7422   Constant *RHS,
7423   const Loop *L,
7424   ICmpInst::Predicate predicate) {
7425   if (LI->isVolatile()) return getCouldNotCompute();
7426 
7427   // Check to see if the loaded pointer is a getelementptr of a global.
7428   // TODO: Use SCEV instead of manually grubbing with GEPs.
7429   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7430   if (!GEP) return getCouldNotCompute();
7431 
7432   // Make sure that it is really a constant global we are gepping, with an
7433   // initializer, and make sure the first IDX is really 0.
7434   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7435   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7436       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7437       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7438     return getCouldNotCompute();
7439 
7440   // Okay, we allow one non-constant index into the GEP instruction.
7441   Value *VarIdx = nullptr;
7442   std::vector<Constant*> Indexes;
7443   unsigned VarIdxNum = 0;
7444   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7445     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7446       Indexes.push_back(CI);
7447     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7448       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7449       VarIdx = GEP->getOperand(i);
7450       VarIdxNum = i-2;
7451       Indexes.push_back(nullptr);
7452     }
7453 
7454   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7455   if (!VarIdx)
7456     return getCouldNotCompute();
7457 
7458   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7459   // Check to see if X is a loop variant variable value now.
7460   const SCEV *Idx = getSCEV(VarIdx);
7461   Idx = getSCEVAtScope(Idx, L);
7462 
7463   // We can only recognize very limited forms of loop index expressions, in
7464   // particular, only affine AddRec's like {C1,+,C2}.
7465   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7466   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7467       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7468       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7469     return getCouldNotCompute();
7470 
7471   unsigned MaxSteps = MaxBruteForceIterations;
7472   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7473     ConstantInt *ItCst = ConstantInt::get(
7474                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7475     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7476 
7477     // Form the GEP offset.
7478     Indexes[VarIdxNum] = Val;
7479 
7480     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7481                                                          Indexes);
7482     if (!Result) break;  // Cannot compute!
7483 
7484     // Evaluate the condition for this iteration.
7485     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7486     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7487     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7488       ++NumArrayLenItCounts;
7489       return getConstant(ItCst);   // Found terminating iteration!
7490     }
7491   }
7492   return getCouldNotCompute();
7493 }
7494 
7495 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7496     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7497   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7498   if (!RHS)
7499     return getCouldNotCompute();
7500 
7501   const BasicBlock *Latch = L->getLoopLatch();
7502   if (!Latch)
7503     return getCouldNotCompute();
7504 
7505   const BasicBlock *Predecessor = L->getLoopPredecessor();
7506   if (!Predecessor)
7507     return getCouldNotCompute();
7508 
7509   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7510   // Return LHS in OutLHS and shift_opt in OutOpCode.
7511   auto MatchPositiveShift =
7512       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7513 
7514     using namespace PatternMatch;
7515 
7516     ConstantInt *ShiftAmt;
7517     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7518       OutOpCode = Instruction::LShr;
7519     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7520       OutOpCode = Instruction::AShr;
7521     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7522       OutOpCode = Instruction::Shl;
7523     else
7524       return false;
7525 
7526     return ShiftAmt->getValue().isStrictlyPositive();
7527   };
7528 
7529   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7530   //
7531   // loop:
7532   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7533   //   %iv.shifted = lshr i32 %iv, <positive constant>
7534   //
7535   // Return true on a successful match.  Return the corresponding PHI node (%iv
7536   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7537   auto MatchShiftRecurrence =
7538       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7539     Optional<Instruction::BinaryOps> PostShiftOpCode;
7540 
7541     {
7542       Instruction::BinaryOps OpC;
7543       Value *V;
7544 
7545       // If we encounter a shift instruction, "peel off" the shift operation,
7546       // and remember that we did so.  Later when we inspect %iv's backedge
7547       // value, we will make sure that the backedge value uses the same
7548       // operation.
7549       //
7550       // Note: the peeled shift operation does not have to be the same
7551       // instruction as the one feeding into the PHI's backedge value.  We only
7552       // really care about it being the same *kind* of shift instruction --
7553       // that's all that is required for our later inferences to hold.
7554       if (MatchPositiveShift(LHS, V, OpC)) {
7555         PostShiftOpCode = OpC;
7556         LHS = V;
7557       }
7558     }
7559 
7560     PNOut = dyn_cast<PHINode>(LHS);
7561     if (!PNOut || PNOut->getParent() != L->getHeader())
7562       return false;
7563 
7564     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7565     Value *OpLHS;
7566 
7567     return
7568         // The backedge value for the PHI node must be a shift by a positive
7569         // amount
7570         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7571 
7572         // of the PHI node itself
7573         OpLHS == PNOut &&
7574 
7575         // and the kind of shift should be match the kind of shift we peeled
7576         // off, if any.
7577         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7578   };
7579 
7580   PHINode *PN;
7581   Instruction::BinaryOps OpCode;
7582   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7583     return getCouldNotCompute();
7584 
7585   const DataLayout &DL = getDataLayout();
7586 
7587   // The key rationale for this optimization is that for some kinds of shift
7588   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7589   // within a finite number of iterations.  If the condition guarding the
7590   // backedge (in the sense that the backedge is taken if the condition is true)
7591   // is false for the value the shift recurrence stabilizes to, then we know
7592   // that the backedge is taken only a finite number of times.
7593 
7594   ConstantInt *StableValue = nullptr;
7595   switch (OpCode) {
7596   default:
7597     llvm_unreachable("Impossible case!");
7598 
7599   case Instruction::AShr: {
7600     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7601     // bitwidth(K) iterations.
7602     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7603     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7604                                        Predecessor->getTerminator(), &DT);
7605     auto *Ty = cast<IntegerType>(RHS->getType());
7606     if (Known.isNonNegative())
7607       StableValue = ConstantInt::get(Ty, 0);
7608     else if (Known.isNegative())
7609       StableValue = ConstantInt::get(Ty, -1, true);
7610     else
7611       return getCouldNotCompute();
7612 
7613     break;
7614   }
7615   case Instruction::LShr:
7616   case Instruction::Shl:
7617     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7618     // stabilize to 0 in at most bitwidth(K) iterations.
7619     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7620     break;
7621   }
7622 
7623   auto *Result =
7624       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7625   assert(Result->getType()->isIntegerTy(1) &&
7626          "Otherwise cannot be an operand to a branch instruction");
7627 
7628   if (Result->isZeroValue()) {
7629     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7630     const SCEV *UpperBound =
7631         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7632     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7633   }
7634 
7635   return getCouldNotCompute();
7636 }
7637 
7638 /// Return true if we can constant fold an instruction of the specified type,
7639 /// assuming that all operands were constants.
7640 static bool CanConstantFold(const Instruction *I) {
7641   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7642       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7643       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7644     return true;
7645 
7646   if (const CallInst *CI = dyn_cast<CallInst>(I))
7647     if (const Function *F = CI->getCalledFunction())
7648       return canConstantFoldCallTo(CI, F);
7649   return false;
7650 }
7651 
7652 /// Determine whether this instruction can constant evolve within this loop
7653 /// assuming its operands can all constant evolve.
7654 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7655   // An instruction outside of the loop can't be derived from a loop PHI.
7656   if (!L->contains(I)) return false;
7657 
7658   if (isa<PHINode>(I)) {
7659     // We don't currently keep track of the control flow needed to evaluate
7660     // PHIs, so we cannot handle PHIs inside of loops.
7661     return L->getHeader() == I->getParent();
7662   }
7663 
7664   // If we won't be able to constant fold this expression even if the operands
7665   // are constants, bail early.
7666   return CanConstantFold(I);
7667 }
7668 
7669 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7670 /// recursing through each instruction operand until reaching a loop header phi.
7671 static PHINode *
7672 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7673                                DenseMap<Instruction *, PHINode *> &PHIMap,
7674                                unsigned Depth) {
7675   if (Depth > MaxConstantEvolvingDepth)
7676     return nullptr;
7677 
7678   // Otherwise, we can evaluate this instruction if all of its operands are
7679   // constant or derived from a PHI node themselves.
7680   PHINode *PHI = nullptr;
7681   for (Value *Op : UseInst->operands()) {
7682     if (isa<Constant>(Op)) continue;
7683 
7684     Instruction *OpInst = dyn_cast<Instruction>(Op);
7685     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7686 
7687     PHINode *P = dyn_cast<PHINode>(OpInst);
7688     if (!P)
7689       // If this operand is already visited, reuse the prior result.
7690       // We may have P != PHI if this is the deepest point at which the
7691       // inconsistent paths meet.
7692       P = PHIMap.lookup(OpInst);
7693     if (!P) {
7694       // Recurse and memoize the results, whether a phi is found or not.
7695       // This recursive call invalidates pointers into PHIMap.
7696       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7697       PHIMap[OpInst] = P;
7698     }
7699     if (!P)
7700       return nullptr;  // Not evolving from PHI
7701     if (PHI && PHI != P)
7702       return nullptr;  // Evolving from multiple different PHIs.
7703     PHI = P;
7704   }
7705   // This is a expression evolving from a constant PHI!
7706   return PHI;
7707 }
7708 
7709 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7710 /// in the loop that V is derived from.  We allow arbitrary operations along the
7711 /// way, but the operands of an operation must either be constants or a value
7712 /// derived from a constant PHI.  If this expression does not fit with these
7713 /// constraints, return null.
7714 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7715   Instruction *I = dyn_cast<Instruction>(V);
7716   if (!I || !canConstantEvolve(I, L)) return nullptr;
7717 
7718   if (PHINode *PN = dyn_cast<PHINode>(I))
7719     return PN;
7720 
7721   // Record non-constant instructions contained by the loop.
7722   DenseMap<Instruction *, PHINode *> PHIMap;
7723   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7724 }
7725 
7726 /// EvaluateExpression - Given an expression that passes the
7727 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7728 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7729 /// reason, return null.
7730 static Constant *EvaluateExpression(Value *V, const Loop *L,
7731                                     DenseMap<Instruction *, Constant *> &Vals,
7732                                     const DataLayout &DL,
7733                                     const TargetLibraryInfo *TLI) {
7734   // Convenient constant check, but redundant for recursive calls.
7735   if (Constant *C = dyn_cast<Constant>(V)) return C;
7736   Instruction *I = dyn_cast<Instruction>(V);
7737   if (!I) return nullptr;
7738 
7739   if (Constant *C = Vals.lookup(I)) return C;
7740 
7741   // An instruction inside the loop depends on a value outside the loop that we
7742   // weren't given a mapping for, or a value such as a call inside the loop.
7743   if (!canConstantEvolve(I, L)) return nullptr;
7744 
7745   // An unmapped PHI can be due to a branch or another loop inside this loop,
7746   // or due to this not being the initial iteration through a loop where we
7747   // couldn't compute the evolution of this particular PHI last time.
7748   if (isa<PHINode>(I)) return nullptr;
7749 
7750   std::vector<Constant*> Operands(I->getNumOperands());
7751 
7752   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7753     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7754     if (!Operand) {
7755       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7756       if (!Operands[i]) return nullptr;
7757       continue;
7758     }
7759     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7760     Vals[Operand] = C;
7761     if (!C) return nullptr;
7762     Operands[i] = C;
7763   }
7764 
7765   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7766     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7767                                            Operands[1], DL, TLI);
7768   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7769     if (!LI->isVolatile())
7770       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7771   }
7772   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7773 }
7774 
7775 
7776 // If every incoming value to PN except the one for BB is a specific Constant,
7777 // return that, else return nullptr.
7778 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7779   Constant *IncomingVal = nullptr;
7780 
7781   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7782     if (PN->getIncomingBlock(i) == BB)
7783       continue;
7784 
7785     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7786     if (!CurrentVal)
7787       return nullptr;
7788 
7789     if (IncomingVal != CurrentVal) {
7790       if (IncomingVal)
7791         return nullptr;
7792       IncomingVal = CurrentVal;
7793     }
7794   }
7795 
7796   return IncomingVal;
7797 }
7798 
7799 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7800 /// in the header of its containing loop, we know the loop executes a
7801 /// constant number of times, and the PHI node is just a recurrence
7802 /// involving constants, fold it.
7803 Constant *
7804 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7805                                                    const APInt &BEs,
7806                                                    const Loop *L) {
7807   auto I = ConstantEvolutionLoopExitValue.find(PN);
7808   if (I != ConstantEvolutionLoopExitValue.end())
7809     return I->second;
7810 
7811   if (BEs.ugt(MaxBruteForceIterations))
7812     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7813 
7814   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7815 
7816   DenseMap<Instruction *, Constant *> CurrentIterVals;
7817   BasicBlock *Header = L->getHeader();
7818   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7819 
7820   BasicBlock *Latch = L->getLoopLatch();
7821   if (!Latch)
7822     return nullptr;
7823 
7824   for (PHINode &PHI : Header->phis()) {
7825     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7826       CurrentIterVals[&PHI] = StartCST;
7827   }
7828   if (!CurrentIterVals.count(PN))
7829     return RetVal = nullptr;
7830 
7831   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7832 
7833   // Execute the loop symbolically to determine the exit value.
7834   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7835          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7836 
7837   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7838   unsigned IterationNum = 0;
7839   const DataLayout &DL = getDataLayout();
7840   for (; ; ++IterationNum) {
7841     if (IterationNum == NumIterations)
7842       return RetVal = CurrentIterVals[PN];  // Got exit value!
7843 
7844     // Compute the value of the PHIs for the next iteration.
7845     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7846     DenseMap<Instruction *, Constant *> NextIterVals;
7847     Constant *NextPHI =
7848         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7849     if (!NextPHI)
7850       return nullptr;        // Couldn't evaluate!
7851     NextIterVals[PN] = NextPHI;
7852 
7853     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7854 
7855     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7856     // cease to be able to evaluate one of them or if they stop evolving,
7857     // because that doesn't necessarily prevent us from computing PN.
7858     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7859     for (const auto &I : CurrentIterVals) {
7860       PHINode *PHI = dyn_cast<PHINode>(I.first);
7861       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7862       PHIsToCompute.emplace_back(PHI, I.second);
7863     }
7864     // We use two distinct loops because EvaluateExpression may invalidate any
7865     // iterators into CurrentIterVals.
7866     for (const auto &I : PHIsToCompute) {
7867       PHINode *PHI = I.first;
7868       Constant *&NextPHI = NextIterVals[PHI];
7869       if (!NextPHI) {   // Not already computed.
7870         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7871         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7872       }
7873       if (NextPHI != I.second)
7874         StoppedEvolving = false;
7875     }
7876 
7877     // If all entries in CurrentIterVals == NextIterVals then we can stop
7878     // iterating, the loop can't continue to change.
7879     if (StoppedEvolving)
7880       return RetVal = CurrentIterVals[PN];
7881 
7882     CurrentIterVals.swap(NextIterVals);
7883   }
7884 }
7885 
7886 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7887                                                           Value *Cond,
7888                                                           bool ExitWhen) {
7889   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7890   if (!PN) return getCouldNotCompute();
7891 
7892   // If the loop is canonicalized, the PHI will have exactly two entries.
7893   // That's the only form we support here.
7894   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7895 
7896   DenseMap<Instruction *, Constant *> CurrentIterVals;
7897   BasicBlock *Header = L->getHeader();
7898   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7899 
7900   BasicBlock *Latch = L->getLoopLatch();
7901   assert(Latch && "Should follow from NumIncomingValues == 2!");
7902 
7903   for (PHINode &PHI : Header->phis()) {
7904     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7905       CurrentIterVals[&PHI] = StartCST;
7906   }
7907   if (!CurrentIterVals.count(PN))
7908     return getCouldNotCompute();
7909 
7910   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7911   // the loop symbolically to determine when the condition gets a value of
7912   // "ExitWhen".
7913   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7914   const DataLayout &DL = getDataLayout();
7915   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7916     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7917         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7918 
7919     // Couldn't symbolically evaluate.
7920     if (!CondVal) return getCouldNotCompute();
7921 
7922     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7923       ++NumBruteForceTripCountsComputed;
7924       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7925     }
7926 
7927     // Update all the PHI nodes for the next iteration.
7928     DenseMap<Instruction *, Constant *> NextIterVals;
7929 
7930     // Create a list of which PHIs we need to compute. We want to do this before
7931     // calling EvaluateExpression on them because that may invalidate iterators
7932     // into CurrentIterVals.
7933     SmallVector<PHINode *, 8> PHIsToCompute;
7934     for (const auto &I : CurrentIterVals) {
7935       PHINode *PHI = dyn_cast<PHINode>(I.first);
7936       if (!PHI || PHI->getParent() != Header) continue;
7937       PHIsToCompute.push_back(PHI);
7938     }
7939     for (PHINode *PHI : PHIsToCompute) {
7940       Constant *&NextPHI = NextIterVals[PHI];
7941       if (NextPHI) continue;    // Already computed!
7942 
7943       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7944       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7945     }
7946     CurrentIterVals.swap(NextIterVals);
7947   }
7948 
7949   // Too many iterations were needed to evaluate.
7950   return getCouldNotCompute();
7951 }
7952 
7953 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7954   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7955       ValuesAtScopes[V];
7956   // Check to see if we've folded this expression at this loop before.
7957   for (auto &LS : Values)
7958     if (LS.first == L)
7959       return LS.second ? LS.second : V;
7960 
7961   Values.emplace_back(L, nullptr);
7962 
7963   // Otherwise compute it.
7964   const SCEV *C = computeSCEVAtScope(V, L);
7965   for (auto &LS : reverse(ValuesAtScopes[V]))
7966     if (LS.first == L) {
7967       LS.second = C;
7968       break;
7969     }
7970   return C;
7971 }
7972 
7973 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7974 /// will return Constants for objects which aren't represented by a
7975 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7976 /// Returns NULL if the SCEV isn't representable as a Constant.
7977 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7978   switch (V->getSCEVType()) {
7979   case scCouldNotCompute:
7980   case scAddRecExpr:
7981     return nullptr;
7982   case scConstant:
7983     return cast<SCEVConstant>(V)->getValue();
7984   case scUnknown:
7985     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7986   case scSignExtend: {
7987     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7988     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7989       return ConstantExpr::getSExt(CastOp, SS->getType());
7990     return nullptr;
7991   }
7992   case scZeroExtend: {
7993     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7994     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7995       return ConstantExpr::getZExt(CastOp, SZ->getType());
7996     return nullptr;
7997   }
7998   case scTruncate: {
7999     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8000     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8001       return ConstantExpr::getTrunc(CastOp, ST->getType());
8002     return nullptr;
8003   }
8004   case scAddExpr: {
8005     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8006     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8007       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8008         unsigned AS = PTy->getAddressSpace();
8009         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8010         C = ConstantExpr::getBitCast(C, DestPtrTy);
8011       }
8012       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8013         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8014         if (!C2)
8015           return nullptr;
8016 
8017         // First pointer!
8018         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8019           unsigned AS = C2->getType()->getPointerAddressSpace();
8020           std::swap(C, C2);
8021           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8022           // The offsets have been converted to bytes.  We can add bytes to an
8023           // i8* by GEP with the byte count in the first index.
8024           C = ConstantExpr::getBitCast(C, DestPtrTy);
8025         }
8026 
8027         // Don't bother trying to sum two pointers. We probably can't
8028         // statically compute a load that results from it anyway.
8029         if (C2->getType()->isPointerTy())
8030           return nullptr;
8031 
8032         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8033           if (PTy->getElementType()->isStructTy())
8034             C2 = ConstantExpr::getIntegerCast(
8035                 C2, Type::getInt32Ty(C->getContext()), true);
8036           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8037         } else
8038           C = ConstantExpr::getAdd(C, C2);
8039       }
8040       return C;
8041     }
8042     return nullptr;
8043   }
8044   case scMulExpr: {
8045     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8046     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8047       // Don't bother with pointers at all.
8048       if (C->getType()->isPointerTy())
8049         return nullptr;
8050       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8051         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8052         if (!C2 || C2->getType()->isPointerTy())
8053           return nullptr;
8054         C = ConstantExpr::getMul(C, C2);
8055       }
8056       return C;
8057     }
8058     return nullptr;
8059   }
8060   case scUDivExpr: {
8061     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8062     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8063       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8064         if (LHS->getType() == RHS->getType())
8065           return ConstantExpr::getUDiv(LHS, RHS);
8066     return nullptr;
8067   }
8068   case scSMaxExpr:
8069   case scUMaxExpr:
8070   case scSMinExpr:
8071   case scUMinExpr:
8072     return nullptr; // TODO: smax, umax, smin, umax.
8073   }
8074   llvm_unreachable("Unknown SCEV kind!");
8075 }
8076 
8077 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8078   if (isa<SCEVConstant>(V)) return V;
8079 
8080   // If this instruction is evolved from a constant-evolving PHI, compute the
8081   // exit value from the loop without using SCEVs.
8082   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8083     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8084       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8085         const Loop *CurrLoop = this->LI[I->getParent()];
8086         // Looking for loop exit value.
8087         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8088             PN->getParent() == CurrLoop->getHeader()) {
8089           // Okay, there is no closed form solution for the PHI node.  Check
8090           // to see if the loop that contains it has a known backedge-taken
8091           // count.  If so, we may be able to force computation of the exit
8092           // value.
8093           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8094           // This trivial case can show up in some degenerate cases where
8095           // the incoming IR has not yet been fully simplified.
8096           if (BackedgeTakenCount->isZero()) {
8097             Value *InitValue = nullptr;
8098             bool MultipleInitValues = false;
8099             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8100               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8101                 if (!InitValue)
8102                   InitValue = PN->getIncomingValue(i);
8103                 else if (InitValue != PN->getIncomingValue(i)) {
8104                   MultipleInitValues = true;
8105                   break;
8106                 }
8107               }
8108             }
8109             if (!MultipleInitValues && InitValue)
8110               return getSCEV(InitValue);
8111           }
8112           // Do we have a loop invariant value flowing around the backedge
8113           // for a loop which must execute the backedge?
8114           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8115               isKnownPositive(BackedgeTakenCount) &&
8116               PN->getNumIncomingValues() == 2) {
8117 
8118             unsigned InLoopPred =
8119                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8120             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8121             if (CurrLoop->isLoopInvariant(BackedgeVal))
8122               return getSCEV(BackedgeVal);
8123           }
8124           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8125             // Okay, we know how many times the containing loop executes.  If
8126             // this is a constant evolving PHI node, get the final value at
8127             // the specified iteration number.
8128             Constant *RV = getConstantEvolutionLoopExitValue(
8129                 PN, BTCC->getAPInt(), CurrLoop);
8130             if (RV) return getSCEV(RV);
8131           }
8132         }
8133 
8134         // If there is a single-input Phi, evaluate it at our scope. If we can
8135         // prove that this replacement does not break LCSSA form, use new value.
8136         if (PN->getNumOperands() == 1) {
8137           const SCEV *Input = getSCEV(PN->getOperand(0));
8138           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8139           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8140           // for the simplest case just support constants.
8141           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8142         }
8143       }
8144 
8145       // Okay, this is an expression that we cannot symbolically evaluate
8146       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8147       // the arguments into constants, and if so, try to constant propagate the
8148       // result.  This is particularly useful for computing loop exit values.
8149       if (CanConstantFold(I)) {
8150         SmallVector<Constant *, 4> Operands;
8151         bool MadeImprovement = false;
8152         for (Value *Op : I->operands()) {
8153           if (Constant *C = dyn_cast<Constant>(Op)) {
8154             Operands.push_back(C);
8155             continue;
8156           }
8157 
8158           // If any of the operands is non-constant and if they are
8159           // non-integer and non-pointer, don't even try to analyze them
8160           // with scev techniques.
8161           if (!isSCEVable(Op->getType()))
8162             return V;
8163 
8164           const SCEV *OrigV = getSCEV(Op);
8165           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8166           MadeImprovement |= OrigV != OpV;
8167 
8168           Constant *C = BuildConstantFromSCEV(OpV);
8169           if (!C) return V;
8170           if (C->getType() != Op->getType())
8171             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8172                                                               Op->getType(),
8173                                                               false),
8174                                       C, Op->getType());
8175           Operands.push_back(C);
8176         }
8177 
8178         // Check to see if getSCEVAtScope actually made an improvement.
8179         if (MadeImprovement) {
8180           Constant *C = nullptr;
8181           const DataLayout &DL = getDataLayout();
8182           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8183             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8184                                                 Operands[1], DL, &TLI);
8185           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8186             if (!Load->isVolatile())
8187               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8188                                                DL);
8189           } else
8190             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8191           if (!C) return V;
8192           return getSCEV(C);
8193         }
8194       }
8195     }
8196 
8197     // This is some other type of SCEVUnknown, just return it.
8198     return V;
8199   }
8200 
8201   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8202     // Avoid performing the look-up in the common case where the specified
8203     // expression has no loop-variant portions.
8204     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8205       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8206       if (OpAtScope != Comm->getOperand(i)) {
8207         // Okay, at least one of these operands is loop variant but might be
8208         // foldable.  Build a new instance of the folded commutative expression.
8209         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8210                                             Comm->op_begin()+i);
8211         NewOps.push_back(OpAtScope);
8212 
8213         for (++i; i != e; ++i) {
8214           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8215           NewOps.push_back(OpAtScope);
8216         }
8217         if (isa<SCEVAddExpr>(Comm))
8218           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8219         if (isa<SCEVMulExpr>(Comm))
8220           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8221         if (isa<SCEVMinMaxExpr>(Comm))
8222           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8223         llvm_unreachable("Unknown commutative SCEV type!");
8224       }
8225     }
8226     // If we got here, all operands are loop invariant.
8227     return Comm;
8228   }
8229 
8230   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8231     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8232     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8233     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8234       return Div;   // must be loop invariant
8235     return getUDivExpr(LHS, RHS);
8236   }
8237 
8238   // If this is a loop recurrence for a loop that does not contain L, then we
8239   // are dealing with the final value computed by the loop.
8240   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8241     // First, attempt to evaluate each operand.
8242     // Avoid performing the look-up in the common case where the specified
8243     // expression has no loop-variant portions.
8244     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8245       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8246       if (OpAtScope == AddRec->getOperand(i))
8247         continue;
8248 
8249       // Okay, at least one of these operands is loop variant but might be
8250       // foldable.  Build a new instance of the folded commutative expression.
8251       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8252                                           AddRec->op_begin()+i);
8253       NewOps.push_back(OpAtScope);
8254       for (++i; i != e; ++i)
8255         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8256 
8257       const SCEV *FoldedRec =
8258         getAddRecExpr(NewOps, AddRec->getLoop(),
8259                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8260       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8261       // The addrec may be folded to a nonrecurrence, for example, if the
8262       // induction variable is multiplied by zero after constant folding. Go
8263       // ahead and return the folded value.
8264       if (!AddRec)
8265         return FoldedRec;
8266       break;
8267     }
8268 
8269     // If the scope is outside the addrec's loop, evaluate it by using the
8270     // loop exit value of the addrec.
8271     if (!AddRec->getLoop()->contains(L)) {
8272       // To evaluate this recurrence, we need to know how many times the AddRec
8273       // loop iterates.  Compute this now.
8274       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8275       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8276 
8277       // Then, evaluate the AddRec.
8278       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8279     }
8280 
8281     return AddRec;
8282   }
8283 
8284   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8285     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8286     if (Op == Cast->getOperand())
8287       return Cast;  // must be loop invariant
8288     return getZeroExtendExpr(Op, Cast->getType());
8289   }
8290 
8291   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8292     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8293     if (Op == Cast->getOperand())
8294       return Cast;  // must be loop invariant
8295     return getSignExtendExpr(Op, Cast->getType());
8296   }
8297 
8298   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8299     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8300     if (Op == Cast->getOperand())
8301       return Cast;  // must be loop invariant
8302     return getTruncateExpr(Op, Cast->getType());
8303   }
8304 
8305   llvm_unreachable("Unknown SCEV type!");
8306 }
8307 
8308 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8309   return getSCEVAtScope(getSCEV(V), L);
8310 }
8311 
8312 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8313   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8314     return stripInjectiveFunctions(ZExt->getOperand());
8315   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8316     return stripInjectiveFunctions(SExt->getOperand());
8317   return S;
8318 }
8319 
8320 /// Finds the minimum unsigned root of the following equation:
8321 ///
8322 ///     A * X = B (mod N)
8323 ///
8324 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8325 /// A and B isn't important.
8326 ///
8327 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8328 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8329                                                ScalarEvolution &SE) {
8330   uint32_t BW = A.getBitWidth();
8331   assert(BW == SE.getTypeSizeInBits(B->getType()));
8332   assert(A != 0 && "A must be non-zero.");
8333 
8334   // 1. D = gcd(A, N)
8335   //
8336   // The gcd of A and N may have only one prime factor: 2. The number of
8337   // trailing zeros in A is its multiplicity
8338   uint32_t Mult2 = A.countTrailingZeros();
8339   // D = 2^Mult2
8340 
8341   // 2. Check if B is divisible by D.
8342   //
8343   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8344   // is not less than multiplicity of this prime factor for D.
8345   if (SE.GetMinTrailingZeros(B) < Mult2)
8346     return SE.getCouldNotCompute();
8347 
8348   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8349   // modulo (N / D).
8350   //
8351   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8352   // (N / D) in general. The inverse itself always fits into BW bits, though,
8353   // so we immediately truncate it.
8354   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8355   APInt Mod(BW + 1, 0);
8356   Mod.setBit(BW - Mult2);  // Mod = N / D
8357   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8358 
8359   // 4. Compute the minimum unsigned root of the equation:
8360   // I * (B / D) mod (N / D)
8361   // To simplify the computation, we factor out the divide by D:
8362   // (I * B mod N) / D
8363   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8364   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8365 }
8366 
8367 /// For a given quadratic addrec, generate coefficients of the corresponding
8368 /// quadratic equation, multiplied by a common value to ensure that they are
8369 /// integers.
8370 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8371 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8372 /// were multiplied by, and BitWidth is the bit width of the original addrec
8373 /// coefficients.
8374 /// This function returns None if the addrec coefficients are not compile-
8375 /// time constants.
8376 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8377 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8378   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8379   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8380   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8381   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8382   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8383                     << *AddRec << '\n');
8384 
8385   // We currently can only solve this if the coefficients are constants.
8386   if (!LC || !MC || !NC) {
8387     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8388     return None;
8389   }
8390 
8391   APInt L = LC->getAPInt();
8392   APInt M = MC->getAPInt();
8393   APInt N = NC->getAPInt();
8394   assert(!N.isNullValue() && "This is not a quadratic addrec");
8395 
8396   unsigned BitWidth = LC->getAPInt().getBitWidth();
8397   unsigned NewWidth = BitWidth + 1;
8398   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8399                     << BitWidth << '\n');
8400   // The sign-extension (as opposed to a zero-extension) here matches the
8401   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8402   N = N.sext(NewWidth);
8403   M = M.sext(NewWidth);
8404   L = L.sext(NewWidth);
8405 
8406   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8407   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8408   //   L+M, L+2M+N, L+3M+3N, ...
8409   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8410   //
8411   // The equation Acc = 0 is then
8412   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8413   // In a quadratic form it becomes:
8414   //   N n^2 + (2M-N) n + 2L = 0.
8415 
8416   APInt A = N;
8417   APInt B = 2 * M - A;
8418   APInt C = 2 * L;
8419   APInt T = APInt(NewWidth, 2);
8420   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8421                     << "x + " << C << ", coeff bw: " << NewWidth
8422                     << ", multiplied by " << T << '\n');
8423   return std::make_tuple(A, B, C, T, BitWidth);
8424 }
8425 
8426 /// Helper function to compare optional APInts:
8427 /// (a) if X and Y both exist, return min(X, Y),
8428 /// (b) if neither X nor Y exist, return None,
8429 /// (c) if exactly one of X and Y exists, return that value.
8430 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8431   if (X.hasValue() && Y.hasValue()) {
8432     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8433     APInt XW = X->sextOrSelf(W);
8434     APInt YW = Y->sextOrSelf(W);
8435     return XW.slt(YW) ? *X : *Y;
8436   }
8437   if (!X.hasValue() && !Y.hasValue())
8438     return None;
8439   return X.hasValue() ? *X : *Y;
8440 }
8441 
8442 /// Helper function to truncate an optional APInt to a given BitWidth.
8443 /// When solving addrec-related equations, it is preferable to return a value
8444 /// that has the same bit width as the original addrec's coefficients. If the
8445 /// solution fits in the original bit width, truncate it (except for i1).
8446 /// Returning a value of a different bit width may inhibit some optimizations.
8447 ///
8448 /// In general, a solution to a quadratic equation generated from an addrec
8449 /// may require BW+1 bits, where BW is the bit width of the addrec's
8450 /// coefficients. The reason is that the coefficients of the quadratic
8451 /// equation are BW+1 bits wide (to avoid truncation when converting from
8452 /// the addrec to the equation).
8453 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8454   if (!X.hasValue())
8455     return None;
8456   unsigned W = X->getBitWidth();
8457   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8458     return X->trunc(BitWidth);
8459   return X;
8460 }
8461 
8462 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8463 /// iterations. The values L, M, N are assumed to be signed, and they
8464 /// should all have the same bit widths.
8465 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8466 /// where BW is the bit width of the addrec's coefficients.
8467 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8468 /// returned as such, otherwise the bit width of the returned value may
8469 /// be greater than BW.
8470 ///
8471 /// This function returns None if
8472 /// (a) the addrec coefficients are not constant, or
8473 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8474 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8475 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8476 static Optional<APInt>
8477 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8478   APInt A, B, C, M;
8479   unsigned BitWidth;
8480   auto T = GetQuadraticEquation(AddRec);
8481   if (!T.hasValue())
8482     return None;
8483 
8484   std::tie(A, B, C, M, BitWidth) = *T;
8485   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8486   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8487   if (!X.hasValue())
8488     return None;
8489 
8490   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8491   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8492   if (!V->isZero())
8493     return None;
8494 
8495   return TruncIfPossible(X, BitWidth);
8496 }
8497 
8498 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8499 /// iterations. The values M, N are assumed to be signed, and they
8500 /// should all have the same bit widths.
8501 /// Find the least n such that c(n) does not belong to the given range,
8502 /// while c(n-1) does.
8503 ///
8504 /// This function returns None if
8505 /// (a) the addrec coefficients are not constant, or
8506 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8507 ///     bounds of the range.
8508 static Optional<APInt>
8509 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8510                           const ConstantRange &Range, ScalarEvolution &SE) {
8511   assert(AddRec->getOperand(0)->isZero() &&
8512          "Starting value of addrec should be 0");
8513   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8514                     << Range << ", addrec " << *AddRec << '\n');
8515   // This case is handled in getNumIterationsInRange. Here we can assume that
8516   // we start in the range.
8517   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8518          "Addrec's initial value should be in range");
8519 
8520   APInt A, B, C, M;
8521   unsigned BitWidth;
8522   auto T = GetQuadraticEquation(AddRec);
8523   if (!T.hasValue())
8524     return None;
8525 
8526   // Be careful about the return value: there can be two reasons for not
8527   // returning an actual number. First, if no solutions to the equations
8528   // were found, and second, if the solutions don't leave the given range.
8529   // The first case means that the actual solution is "unknown", the second
8530   // means that it's known, but not valid. If the solution is unknown, we
8531   // cannot make any conclusions.
8532   // Return a pair: the optional solution and a flag indicating if the
8533   // solution was found.
8534   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8535     // Solve for signed overflow and unsigned overflow, pick the lower
8536     // solution.
8537     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8538                       << Bound << " (before multiplying by " << M << ")\n");
8539     Bound *= M; // The quadratic equation multiplier.
8540 
8541     Optional<APInt> SO = None;
8542     if (BitWidth > 1) {
8543       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8544                            "signed overflow\n");
8545       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8546     }
8547     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8548                          "unsigned overflow\n");
8549     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8550                                                               BitWidth+1);
8551 
8552     auto LeavesRange = [&] (const APInt &X) {
8553       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8554       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8555       if (Range.contains(V0->getValue()))
8556         return false;
8557       // X should be at least 1, so X-1 is non-negative.
8558       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8559       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8560       if (Range.contains(V1->getValue()))
8561         return true;
8562       return false;
8563     };
8564 
8565     // If SolveQuadraticEquationWrap returns None, it means that there can
8566     // be a solution, but the function failed to find it. We cannot treat it
8567     // as "no solution".
8568     if (!SO.hasValue() || !UO.hasValue())
8569       return { None, false };
8570 
8571     // Check the smaller value first to see if it leaves the range.
8572     // At this point, both SO and UO must have values.
8573     Optional<APInt> Min = MinOptional(SO, UO);
8574     if (LeavesRange(*Min))
8575       return { Min, true };
8576     Optional<APInt> Max = Min == SO ? UO : SO;
8577     if (LeavesRange(*Max))
8578       return { Max, true };
8579 
8580     // Solutions were found, but were eliminated, hence the "true".
8581     return { None, true };
8582   };
8583 
8584   std::tie(A, B, C, M, BitWidth) = *T;
8585   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8586   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8587   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8588   auto SL = SolveForBoundary(Lower);
8589   auto SU = SolveForBoundary(Upper);
8590   // If any of the solutions was unknown, no meaninigful conclusions can
8591   // be made.
8592   if (!SL.second || !SU.second)
8593     return None;
8594 
8595   // Claim: The correct solution is not some value between Min and Max.
8596   //
8597   // Justification: Assuming that Min and Max are different values, one of
8598   // them is when the first signed overflow happens, the other is when the
8599   // first unsigned overflow happens. Crossing the range boundary is only
8600   // possible via an overflow (treating 0 as a special case of it, modeling
8601   // an overflow as crossing k*2^W for some k).
8602   //
8603   // The interesting case here is when Min was eliminated as an invalid
8604   // solution, but Max was not. The argument is that if there was another
8605   // overflow between Min and Max, it would also have been eliminated if
8606   // it was considered.
8607   //
8608   // For a given boundary, it is possible to have two overflows of the same
8609   // type (signed/unsigned) without having the other type in between: this
8610   // can happen when the vertex of the parabola is between the iterations
8611   // corresponding to the overflows. This is only possible when the two
8612   // overflows cross k*2^W for the same k. In such case, if the second one
8613   // left the range (and was the first one to do so), the first overflow
8614   // would have to enter the range, which would mean that either we had left
8615   // the range before or that we started outside of it. Both of these cases
8616   // are contradictions.
8617   //
8618   // Claim: In the case where SolveForBoundary returns None, the correct
8619   // solution is not some value between the Max for this boundary and the
8620   // Min of the other boundary.
8621   //
8622   // Justification: Assume that we had such Max_A and Min_B corresponding
8623   // to range boundaries A and B and such that Max_A < Min_B. If there was
8624   // a solution between Max_A and Min_B, it would have to be caused by an
8625   // overflow corresponding to either A or B. It cannot correspond to B,
8626   // since Min_B is the first occurrence of such an overflow. If it
8627   // corresponded to A, it would have to be either a signed or an unsigned
8628   // overflow that is larger than both eliminated overflows for A. But
8629   // between the eliminated overflows and this overflow, the values would
8630   // cover the entire value space, thus crossing the other boundary, which
8631   // is a contradiction.
8632 
8633   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8634 }
8635 
8636 ScalarEvolution::ExitLimit
8637 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8638                               bool AllowPredicates) {
8639 
8640   // This is only used for loops with a "x != y" exit test. The exit condition
8641   // is now expressed as a single expression, V = x-y. So the exit test is
8642   // effectively V != 0.  We know and take advantage of the fact that this
8643   // expression only being used in a comparison by zero context.
8644 
8645   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8646   // If the value is a constant
8647   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8648     // If the value is already zero, the branch will execute zero times.
8649     if (C->getValue()->isZero()) return C;
8650     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8651   }
8652 
8653   const SCEVAddRecExpr *AddRec =
8654       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8655 
8656   if (!AddRec && AllowPredicates)
8657     // Try to make this an AddRec using runtime tests, in the first X
8658     // iterations of this loop, where X is the SCEV expression found by the
8659     // algorithm below.
8660     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8661 
8662   if (!AddRec || AddRec->getLoop() != L)
8663     return getCouldNotCompute();
8664 
8665   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8666   // the quadratic equation to solve it.
8667   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8668     // We can only use this value if the chrec ends up with an exact zero
8669     // value at this index.  When solving for "X*X != 5", for example, we
8670     // should not accept a root of 2.
8671     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8672       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8673       return ExitLimit(R, R, false, Predicates);
8674     }
8675     return getCouldNotCompute();
8676   }
8677 
8678   // Otherwise we can only handle this if it is affine.
8679   if (!AddRec->isAffine())
8680     return getCouldNotCompute();
8681 
8682   // If this is an affine expression, the execution count of this branch is
8683   // the minimum unsigned root of the following equation:
8684   //
8685   //     Start + Step*N = 0 (mod 2^BW)
8686   //
8687   // equivalent to:
8688   //
8689   //             Step*N = -Start (mod 2^BW)
8690   //
8691   // where BW is the common bit width of Start and Step.
8692 
8693   // Get the initial value for the loop.
8694   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8695   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8696 
8697   // For now we handle only constant steps.
8698   //
8699   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8700   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8701   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8702   // We have not yet seen any such cases.
8703   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8704   if (!StepC || StepC->getValue()->isZero())
8705     return getCouldNotCompute();
8706 
8707   // For positive steps (counting up until unsigned overflow):
8708   //   N = -Start/Step (as unsigned)
8709   // For negative steps (counting down to zero):
8710   //   N = Start/-Step
8711   // First compute the unsigned distance from zero in the direction of Step.
8712   bool CountDown = StepC->getAPInt().isNegative();
8713   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8714 
8715   // Handle unitary steps, which cannot wraparound.
8716   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8717   //   N = Distance (as unsigned)
8718   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8719     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
8720     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
8721     if (MaxBECountBase.ult(MaxBECount))
8722       MaxBECount = MaxBECountBase;
8723 
8724     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8725     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8726     // case, and see if we can improve the bound.
8727     //
8728     // Explicitly handling this here is necessary because getUnsignedRange
8729     // isn't context-sensitive; it doesn't know that we only care about the
8730     // range inside the loop.
8731     const SCEV *Zero = getZero(Distance->getType());
8732     const SCEV *One = getOne(Distance->getType());
8733     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8734     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8735       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8736       // as "unsigned_max(Distance + 1) - 1".
8737       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8738       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8739     }
8740     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8741   }
8742 
8743   // If the condition controls loop exit (the loop exits only if the expression
8744   // is true) and the addition is no-wrap we can use unsigned divide to
8745   // compute the backedge count.  In this case, the step may not divide the
8746   // distance, but we don't care because if the condition is "missed" the loop
8747   // will have undefined behavior due to wrapping.
8748   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8749       loopHasNoAbnormalExits(AddRec->getLoop())) {
8750     const SCEV *Exact =
8751         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8752     const SCEV *Max =
8753         Exact == getCouldNotCompute()
8754             ? Exact
8755             : getConstant(getUnsignedRangeMax(Exact));
8756     return ExitLimit(Exact, Max, false, Predicates);
8757   }
8758 
8759   // Solve the general equation.
8760   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8761                                                getNegativeSCEV(Start), *this);
8762   const SCEV *M = E == getCouldNotCompute()
8763                       ? E
8764                       : getConstant(getUnsignedRangeMax(E));
8765   return ExitLimit(E, M, false, Predicates);
8766 }
8767 
8768 ScalarEvolution::ExitLimit
8769 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8770   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8771   // handle them yet except for the trivial case.  This could be expanded in the
8772   // future as needed.
8773 
8774   // If the value is a constant, check to see if it is known to be non-zero
8775   // already.  If so, the backedge will execute zero times.
8776   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8777     if (!C->getValue()->isZero())
8778       return getZero(C->getType());
8779     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8780   }
8781 
8782   // We could implement others, but I really doubt anyone writes loops like
8783   // this, and if they did, they would already be constant folded.
8784   return getCouldNotCompute();
8785 }
8786 
8787 std::pair<const BasicBlock *, const BasicBlock *>
8788 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
8789     const {
8790   // If the block has a unique predecessor, then there is no path from the
8791   // predecessor to the block that does not go through the direct edge
8792   // from the predecessor to the block.
8793   if (const BasicBlock *Pred = BB->getSinglePredecessor())
8794     return {Pred, BB};
8795 
8796   // A loop's header is defined to be a block that dominates the loop.
8797   // If the header has a unique predecessor outside the loop, it must be
8798   // a block that has exactly one successor that can reach the loop.
8799   if (const Loop *L = LI.getLoopFor(BB))
8800     return {L->getLoopPredecessor(), L->getHeader()};
8801 
8802   return {nullptr, nullptr};
8803 }
8804 
8805 /// SCEV structural equivalence is usually sufficient for testing whether two
8806 /// expressions are equal, however for the purposes of looking for a condition
8807 /// guarding a loop, it can be useful to be a little more general, since a
8808 /// front-end may have replicated the controlling expression.
8809 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8810   // Quick check to see if they are the same SCEV.
8811   if (A == B) return true;
8812 
8813   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8814     // Not all instructions that are "identical" compute the same value.  For
8815     // instance, two distinct alloca instructions allocating the same type are
8816     // identical and do not read memory; but compute distinct values.
8817     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8818   };
8819 
8820   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8821   // two different instructions with the same value. Check for this case.
8822   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8823     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8824       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8825         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8826           if (ComputesEqualValues(AI, BI))
8827             return true;
8828 
8829   // Otherwise assume they may have a different value.
8830   return false;
8831 }
8832 
8833 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8834                                            const SCEV *&LHS, const SCEV *&RHS,
8835                                            unsigned Depth) {
8836   bool Changed = false;
8837   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8838   // '0 != 0'.
8839   auto TrivialCase = [&](bool TriviallyTrue) {
8840     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8841     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8842     return true;
8843   };
8844   // If we hit the max recursion limit bail out.
8845   if (Depth >= 3)
8846     return false;
8847 
8848   // Canonicalize a constant to the right side.
8849   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8850     // Check for both operands constant.
8851     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8852       if (ConstantExpr::getICmp(Pred,
8853                                 LHSC->getValue(),
8854                                 RHSC->getValue())->isNullValue())
8855         return TrivialCase(false);
8856       else
8857         return TrivialCase(true);
8858     }
8859     // Otherwise swap the operands to put the constant on the right.
8860     std::swap(LHS, RHS);
8861     Pred = ICmpInst::getSwappedPredicate(Pred);
8862     Changed = true;
8863   }
8864 
8865   // If we're comparing an addrec with a value which is loop-invariant in the
8866   // addrec's loop, put the addrec on the left. Also make a dominance check,
8867   // as both operands could be addrecs loop-invariant in each other's loop.
8868   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8869     const Loop *L = AR->getLoop();
8870     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8871       std::swap(LHS, RHS);
8872       Pred = ICmpInst::getSwappedPredicate(Pred);
8873       Changed = true;
8874     }
8875   }
8876 
8877   // If there's a constant operand, canonicalize comparisons with boundary
8878   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8879   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8880     const APInt &RA = RC->getAPInt();
8881 
8882     bool SimplifiedByConstantRange = false;
8883 
8884     if (!ICmpInst::isEquality(Pred)) {
8885       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8886       if (ExactCR.isFullSet())
8887         return TrivialCase(true);
8888       else if (ExactCR.isEmptySet())
8889         return TrivialCase(false);
8890 
8891       APInt NewRHS;
8892       CmpInst::Predicate NewPred;
8893       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8894           ICmpInst::isEquality(NewPred)) {
8895         // We were able to convert an inequality to an equality.
8896         Pred = NewPred;
8897         RHS = getConstant(NewRHS);
8898         Changed = SimplifiedByConstantRange = true;
8899       }
8900     }
8901 
8902     if (!SimplifiedByConstantRange) {
8903       switch (Pred) {
8904       default:
8905         break;
8906       case ICmpInst::ICMP_EQ:
8907       case ICmpInst::ICMP_NE:
8908         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8909         if (!RA)
8910           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8911             if (const SCEVMulExpr *ME =
8912                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8913               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8914                   ME->getOperand(0)->isAllOnesValue()) {
8915                 RHS = AE->getOperand(1);
8916                 LHS = ME->getOperand(1);
8917                 Changed = true;
8918               }
8919         break;
8920 
8921 
8922         // The "Should have been caught earlier!" messages refer to the fact
8923         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8924         // should have fired on the corresponding cases, and canonicalized the
8925         // check to trivial case.
8926 
8927       case ICmpInst::ICMP_UGE:
8928         assert(!RA.isMinValue() && "Should have been caught earlier!");
8929         Pred = ICmpInst::ICMP_UGT;
8930         RHS = getConstant(RA - 1);
8931         Changed = true;
8932         break;
8933       case ICmpInst::ICMP_ULE:
8934         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8935         Pred = ICmpInst::ICMP_ULT;
8936         RHS = getConstant(RA + 1);
8937         Changed = true;
8938         break;
8939       case ICmpInst::ICMP_SGE:
8940         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8941         Pred = ICmpInst::ICMP_SGT;
8942         RHS = getConstant(RA - 1);
8943         Changed = true;
8944         break;
8945       case ICmpInst::ICMP_SLE:
8946         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8947         Pred = ICmpInst::ICMP_SLT;
8948         RHS = getConstant(RA + 1);
8949         Changed = true;
8950         break;
8951       }
8952     }
8953   }
8954 
8955   // Check for obvious equality.
8956   if (HasSameValue(LHS, RHS)) {
8957     if (ICmpInst::isTrueWhenEqual(Pred))
8958       return TrivialCase(true);
8959     if (ICmpInst::isFalseWhenEqual(Pred))
8960       return TrivialCase(false);
8961   }
8962 
8963   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8964   // adding or subtracting 1 from one of the operands.
8965   switch (Pred) {
8966   case ICmpInst::ICMP_SLE:
8967     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8968       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8969                        SCEV::FlagNSW);
8970       Pred = ICmpInst::ICMP_SLT;
8971       Changed = true;
8972     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8973       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8974                        SCEV::FlagNSW);
8975       Pred = ICmpInst::ICMP_SLT;
8976       Changed = true;
8977     }
8978     break;
8979   case ICmpInst::ICMP_SGE:
8980     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8981       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8982                        SCEV::FlagNSW);
8983       Pred = ICmpInst::ICMP_SGT;
8984       Changed = true;
8985     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8986       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8987                        SCEV::FlagNSW);
8988       Pred = ICmpInst::ICMP_SGT;
8989       Changed = true;
8990     }
8991     break;
8992   case ICmpInst::ICMP_ULE:
8993     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8994       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8995                        SCEV::FlagNUW);
8996       Pred = ICmpInst::ICMP_ULT;
8997       Changed = true;
8998     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8999       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9000       Pred = ICmpInst::ICMP_ULT;
9001       Changed = true;
9002     }
9003     break;
9004   case ICmpInst::ICMP_UGE:
9005     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9006       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9007       Pred = ICmpInst::ICMP_UGT;
9008       Changed = true;
9009     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9010       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9011                        SCEV::FlagNUW);
9012       Pred = ICmpInst::ICMP_UGT;
9013       Changed = true;
9014     }
9015     break;
9016   default:
9017     break;
9018   }
9019 
9020   // TODO: More simplifications are possible here.
9021 
9022   // Recursively simplify until we either hit a recursion limit or nothing
9023   // changes.
9024   if (Changed)
9025     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9026 
9027   return Changed;
9028 }
9029 
9030 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9031   return getSignedRangeMax(S).isNegative();
9032 }
9033 
9034 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9035   return getSignedRangeMin(S).isStrictlyPositive();
9036 }
9037 
9038 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9039   return !getSignedRangeMin(S).isNegative();
9040 }
9041 
9042 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9043   return !getSignedRangeMax(S).isStrictlyPositive();
9044 }
9045 
9046 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9047   return isKnownNegative(S) || isKnownPositive(S);
9048 }
9049 
9050 std::pair<const SCEV *, const SCEV *>
9051 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9052   // Compute SCEV on entry of loop L.
9053   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9054   if (Start == getCouldNotCompute())
9055     return { Start, Start };
9056   // Compute post increment SCEV for loop L.
9057   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9058   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9059   return { Start, PostInc };
9060 }
9061 
9062 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9063                                           const SCEV *LHS, const SCEV *RHS) {
9064   // First collect all loops.
9065   SmallPtrSet<const Loop *, 8> LoopsUsed;
9066   getUsedLoops(LHS, LoopsUsed);
9067   getUsedLoops(RHS, LoopsUsed);
9068 
9069   if (LoopsUsed.empty())
9070     return false;
9071 
9072   // Domination relationship must be a linear order on collected loops.
9073 #ifndef NDEBUG
9074   for (auto *L1 : LoopsUsed)
9075     for (auto *L2 : LoopsUsed)
9076       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9077               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9078              "Domination relationship is not a linear order");
9079 #endif
9080 
9081   const Loop *MDL =
9082       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9083                         [&](const Loop *L1, const Loop *L2) {
9084          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9085        });
9086 
9087   // Get init and post increment value for LHS.
9088   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9089   // if LHS contains unknown non-invariant SCEV then bail out.
9090   if (SplitLHS.first == getCouldNotCompute())
9091     return false;
9092   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9093   // Get init and post increment value for RHS.
9094   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9095   // if RHS contains unknown non-invariant SCEV then bail out.
9096   if (SplitRHS.first == getCouldNotCompute())
9097     return false;
9098   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9099   // It is possible that init SCEV contains an invariant load but it does
9100   // not dominate MDL and is not available at MDL loop entry, so we should
9101   // check it here.
9102   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9103       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9104     return false;
9105 
9106   // It seems backedge guard check is faster than entry one so in some cases
9107   // it can speed up whole estimation by short circuit
9108   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9109                                      SplitRHS.second) &&
9110          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9111 }
9112 
9113 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9114                                        const SCEV *LHS, const SCEV *RHS) {
9115   // Canonicalize the inputs first.
9116   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9117 
9118   if (isKnownViaInduction(Pred, LHS, RHS))
9119     return true;
9120 
9121   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9122     return true;
9123 
9124   // Otherwise see what can be done with some simple reasoning.
9125   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9126 }
9127 
9128 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9129                                          const SCEV *LHS, const SCEV *RHS,
9130                                          const Instruction *Context) {
9131   // TODO: Analyze guards and assumes from Context's block.
9132   return isKnownPredicate(Pred, LHS, RHS) ||
9133          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9134 }
9135 
9136 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9137                                               const SCEVAddRecExpr *LHS,
9138                                               const SCEV *RHS) {
9139   const Loop *L = LHS->getLoop();
9140   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9141          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9142 }
9143 
9144 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9145                                            ICmpInst::Predicate Pred,
9146                                            bool &Increasing) {
9147   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9148 
9149 #ifndef NDEBUG
9150   // Verify an invariant: inverting the predicate should turn a monotonically
9151   // increasing change to a monotonically decreasing one, and vice versa.
9152   bool IncreasingSwapped;
9153   bool ResultSwapped = isMonotonicPredicateImpl(
9154       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9155 
9156   assert(Result == ResultSwapped && "should be able to analyze both!");
9157   if (ResultSwapped)
9158     assert(Increasing == !IncreasingSwapped &&
9159            "monotonicity should flip as we flip the predicate");
9160 #endif
9161 
9162   return Result;
9163 }
9164 
9165 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9166                                                ICmpInst::Predicate Pred,
9167                                                bool &Increasing) {
9168 
9169   // A zero step value for LHS means the induction variable is essentially a
9170   // loop invariant value. We don't really depend on the predicate actually
9171   // flipping from false to true (for increasing predicates, and the other way
9172   // around for decreasing predicates), all we care about is that *if* the
9173   // predicate changes then it only changes from false to true.
9174   //
9175   // A zero step value in itself is not very useful, but there may be places
9176   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9177   // as general as possible.
9178 
9179   switch (Pred) {
9180   default:
9181     return false; // Conservative answer
9182 
9183   case ICmpInst::ICMP_UGT:
9184   case ICmpInst::ICMP_UGE:
9185   case ICmpInst::ICMP_ULT:
9186   case ICmpInst::ICMP_ULE:
9187     if (!LHS->hasNoUnsignedWrap())
9188       return false;
9189 
9190     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9191     return true;
9192 
9193   case ICmpInst::ICMP_SGT:
9194   case ICmpInst::ICMP_SGE:
9195   case ICmpInst::ICMP_SLT:
9196   case ICmpInst::ICMP_SLE: {
9197     if (!LHS->hasNoSignedWrap())
9198       return false;
9199 
9200     const SCEV *Step = LHS->getStepRecurrence(*this);
9201 
9202     if (isKnownNonNegative(Step)) {
9203       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9204       return true;
9205     }
9206 
9207     if (isKnownNonPositive(Step)) {
9208       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9209       return true;
9210     }
9211 
9212     return false;
9213   }
9214 
9215   }
9216 
9217   llvm_unreachable("switch has default clause!");
9218 }
9219 
9220 bool ScalarEvolution::isLoopInvariantPredicate(
9221     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9222     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9223     const SCEV *&InvariantRHS) {
9224 
9225   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9226   if (!isLoopInvariant(RHS, L)) {
9227     if (!isLoopInvariant(LHS, L))
9228       return false;
9229 
9230     std::swap(LHS, RHS);
9231     Pred = ICmpInst::getSwappedPredicate(Pred);
9232   }
9233 
9234   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9235   if (!ArLHS || ArLHS->getLoop() != L)
9236     return false;
9237 
9238   bool Increasing;
9239   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9240     return false;
9241 
9242   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9243   // true as the loop iterates, and the backedge is control dependent on
9244   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9245   //
9246   //   * if the predicate was false in the first iteration then the predicate
9247   //     is never evaluated again, since the loop exits without taking the
9248   //     backedge.
9249   //   * if the predicate was true in the first iteration then it will
9250   //     continue to be true for all future iterations since it is
9251   //     monotonically increasing.
9252   //
9253   // For both the above possibilities, we can replace the loop varying
9254   // predicate with its value on the first iteration of the loop (which is
9255   // loop invariant).
9256   //
9257   // A similar reasoning applies for a monotonically decreasing predicate, by
9258   // replacing true with false and false with true in the above two bullets.
9259 
9260   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9261 
9262   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9263     return false;
9264 
9265   InvariantPred = Pred;
9266   InvariantLHS = ArLHS->getStart();
9267   InvariantRHS = RHS;
9268   return true;
9269 }
9270 
9271 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9272     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9273   if (HasSameValue(LHS, RHS))
9274     return ICmpInst::isTrueWhenEqual(Pred);
9275 
9276   // This code is split out from isKnownPredicate because it is called from
9277   // within isLoopEntryGuardedByCond.
9278 
9279   auto CheckRanges =
9280       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9281     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9282         .contains(RangeLHS);
9283   };
9284 
9285   // The check at the top of the function catches the case where the values are
9286   // known to be equal.
9287   if (Pred == CmpInst::ICMP_EQ)
9288     return false;
9289 
9290   if (Pred == CmpInst::ICMP_NE)
9291     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9292            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9293            isKnownNonZero(getMinusSCEV(LHS, RHS));
9294 
9295   if (CmpInst::isSigned(Pred))
9296     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9297 
9298   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9299 }
9300 
9301 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9302                                                     const SCEV *LHS,
9303                                                     const SCEV *RHS) {
9304   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9305   // Return Y via OutY.
9306   auto MatchBinaryAddToConst =
9307       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9308              SCEV::NoWrapFlags ExpectedFlags) {
9309     const SCEV *NonConstOp, *ConstOp;
9310     SCEV::NoWrapFlags FlagsPresent;
9311 
9312     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9313         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9314       return false;
9315 
9316     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9317     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9318   };
9319 
9320   APInt C;
9321 
9322   switch (Pred) {
9323   default:
9324     break;
9325 
9326   case ICmpInst::ICMP_SGE:
9327     std::swap(LHS, RHS);
9328     LLVM_FALLTHROUGH;
9329   case ICmpInst::ICMP_SLE:
9330     // X s<= (X + C)<nsw> if C >= 0
9331     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9332       return true;
9333 
9334     // (X + C)<nsw> s<= X if C <= 0
9335     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9336         !C.isStrictlyPositive())
9337       return true;
9338     break;
9339 
9340   case ICmpInst::ICMP_SGT:
9341     std::swap(LHS, RHS);
9342     LLVM_FALLTHROUGH;
9343   case ICmpInst::ICMP_SLT:
9344     // X s< (X + C)<nsw> if C > 0
9345     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9346         C.isStrictlyPositive())
9347       return true;
9348 
9349     // (X + C)<nsw> s< X if C < 0
9350     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9351       return true;
9352     break;
9353 
9354   case ICmpInst::ICMP_UGE:
9355     std::swap(LHS, RHS);
9356     LLVM_FALLTHROUGH;
9357   case ICmpInst::ICMP_ULE:
9358     // X u<= (X + C)<nuw> for any C
9359     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9360       return true;
9361     break;
9362 
9363   case ICmpInst::ICMP_UGT:
9364     std::swap(LHS, RHS);
9365     LLVM_FALLTHROUGH;
9366   case ICmpInst::ICMP_ULT:
9367     // X u< (X + C)<nuw> if C != 0
9368     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9369       return true;
9370     break;
9371   }
9372 
9373   return false;
9374 }
9375 
9376 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9377                                                    const SCEV *LHS,
9378                                                    const SCEV *RHS) {
9379   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9380     return false;
9381 
9382   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9383   // the stack can result in exponential time complexity.
9384   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9385 
9386   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9387   //
9388   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9389   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9390   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9391   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9392   // use isKnownPredicate later if needed.
9393   return isKnownNonNegative(RHS) &&
9394          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9395          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9396 }
9397 
9398 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9399                                         ICmpInst::Predicate Pred,
9400                                         const SCEV *LHS, const SCEV *RHS) {
9401   // No need to even try if we know the module has no guards.
9402   if (!HasGuards)
9403     return false;
9404 
9405   return any_of(*BB, [&](const Instruction &I) {
9406     using namespace llvm::PatternMatch;
9407 
9408     Value *Condition;
9409     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9410                          m_Value(Condition))) &&
9411            isImpliedCond(Pred, LHS, RHS, Condition, false);
9412   });
9413 }
9414 
9415 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9416 /// protected by a conditional between LHS and RHS.  This is used to
9417 /// to eliminate casts.
9418 bool
9419 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9420                                              ICmpInst::Predicate Pred,
9421                                              const SCEV *LHS, const SCEV *RHS) {
9422   // Interpret a null as meaning no loop, where there is obviously no guard
9423   // (interprocedural conditions notwithstanding).
9424   if (!L) return true;
9425 
9426   if (VerifyIR)
9427     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9428            "This cannot be done on broken IR!");
9429 
9430 
9431   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9432     return true;
9433 
9434   BasicBlock *Latch = L->getLoopLatch();
9435   if (!Latch)
9436     return false;
9437 
9438   BranchInst *LoopContinuePredicate =
9439     dyn_cast<BranchInst>(Latch->getTerminator());
9440   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9441       isImpliedCond(Pred, LHS, RHS,
9442                     LoopContinuePredicate->getCondition(),
9443                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9444     return true;
9445 
9446   // We don't want more than one activation of the following loops on the stack
9447   // -- that can lead to O(n!) time complexity.
9448   if (WalkingBEDominatingConds)
9449     return false;
9450 
9451   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9452 
9453   // See if we can exploit a trip count to prove the predicate.
9454   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9455   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9456   if (LatchBECount != getCouldNotCompute()) {
9457     // We know that Latch branches back to the loop header exactly
9458     // LatchBECount times.  This means the backdege condition at Latch is
9459     // equivalent to  "{0,+,1} u< LatchBECount".
9460     Type *Ty = LatchBECount->getType();
9461     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9462     const SCEV *LoopCounter =
9463       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9464     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9465                       LatchBECount))
9466       return true;
9467   }
9468 
9469   // Check conditions due to any @llvm.assume intrinsics.
9470   for (auto &AssumeVH : AC.assumptions()) {
9471     if (!AssumeVH)
9472       continue;
9473     auto *CI = cast<CallInst>(AssumeVH);
9474     if (!DT.dominates(CI, Latch->getTerminator()))
9475       continue;
9476 
9477     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9478       return true;
9479   }
9480 
9481   // If the loop is not reachable from the entry block, we risk running into an
9482   // infinite loop as we walk up into the dom tree.  These loops do not matter
9483   // anyway, so we just return a conservative answer when we see them.
9484   if (!DT.isReachableFromEntry(L->getHeader()))
9485     return false;
9486 
9487   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9488     return true;
9489 
9490   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9491        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9492     assert(DTN && "should reach the loop header before reaching the root!");
9493 
9494     BasicBlock *BB = DTN->getBlock();
9495     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9496       return true;
9497 
9498     BasicBlock *PBB = BB->getSinglePredecessor();
9499     if (!PBB)
9500       continue;
9501 
9502     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9503     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9504       continue;
9505 
9506     Value *Condition = ContinuePredicate->getCondition();
9507 
9508     // If we have an edge `E` within the loop body that dominates the only
9509     // latch, the condition guarding `E` also guards the backedge.  This
9510     // reasoning works only for loops with a single latch.
9511 
9512     BasicBlockEdge DominatingEdge(PBB, BB);
9513     if (DominatingEdge.isSingleEdge()) {
9514       // We're constructively (and conservatively) enumerating edges within the
9515       // loop body that dominate the latch.  The dominator tree better agree
9516       // with us on this:
9517       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9518 
9519       if (isImpliedCond(Pred, LHS, RHS, Condition,
9520                         BB != ContinuePredicate->getSuccessor(0)))
9521         return true;
9522     }
9523   }
9524 
9525   return false;
9526 }
9527 
9528 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9529                                                      ICmpInst::Predicate Pred,
9530                                                      const SCEV *LHS,
9531                                                      const SCEV *RHS) {
9532   if (VerifyIR)
9533     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9534            "This cannot be done on broken IR!");
9535 
9536   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9537     return true;
9538 
9539   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9540   // the facts (a >= b && a != b) separately. A typical situation is when the
9541   // non-strict comparison is known from ranges and non-equality is known from
9542   // dominating predicates. If we are proving strict comparison, we always try
9543   // to prove non-equality and non-strict comparison separately.
9544   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9545   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9546   bool ProvedNonStrictComparison = false;
9547   bool ProvedNonEquality = false;
9548 
9549   if (ProvingStrictComparison) {
9550     ProvedNonStrictComparison =
9551         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9552     ProvedNonEquality =
9553         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9554     if (ProvedNonStrictComparison && ProvedNonEquality)
9555       return true;
9556   }
9557 
9558   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9559   auto ProveViaGuard = [&](const BasicBlock *Block) {
9560     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9561       return true;
9562     if (ProvingStrictComparison) {
9563       if (!ProvedNonStrictComparison)
9564         ProvedNonStrictComparison =
9565             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9566       if (!ProvedNonEquality)
9567         ProvedNonEquality =
9568             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9569       if (ProvedNonStrictComparison && ProvedNonEquality)
9570         return true;
9571     }
9572     return false;
9573   };
9574 
9575   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9576   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
9577     const Instruction *Context = &BB->front();
9578     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
9579       return true;
9580     if (ProvingStrictComparison) {
9581       if (!ProvedNonStrictComparison)
9582         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
9583                                                   Condition, Inverse, Context);
9584       if (!ProvedNonEquality)
9585         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
9586                                           Condition, Inverse, Context);
9587       if (ProvedNonStrictComparison && ProvedNonEquality)
9588         return true;
9589     }
9590     return false;
9591   };
9592 
9593   // Starting at the block's predecessor, climb up the predecessor chain, as long
9594   // as there are predecessors that can be found that have unique successors
9595   // leading to the original block.
9596   const Loop *ContainingLoop = LI.getLoopFor(BB);
9597   const BasicBlock *PredBB;
9598   if (ContainingLoop && ContainingLoop->getHeader() == BB)
9599     PredBB = ContainingLoop->getLoopPredecessor();
9600   else
9601     PredBB = BB->getSinglePredecessor();
9602   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
9603        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9604     if (ProveViaGuard(Pair.first))
9605       return true;
9606 
9607     const BranchInst *LoopEntryPredicate =
9608         dyn_cast<BranchInst>(Pair.first->getTerminator());
9609     if (!LoopEntryPredicate ||
9610         LoopEntryPredicate->isUnconditional())
9611       continue;
9612 
9613     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9614                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9615       return true;
9616   }
9617 
9618   // Check conditions due to any @llvm.assume intrinsics.
9619   for (auto &AssumeVH : AC.assumptions()) {
9620     if (!AssumeVH)
9621       continue;
9622     auto *CI = cast<CallInst>(AssumeVH);
9623     if (!DT.dominates(CI, BB))
9624       continue;
9625 
9626     if (ProveViaCond(CI->getArgOperand(0), false))
9627       return true;
9628   }
9629 
9630   return false;
9631 }
9632 
9633 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9634                                                ICmpInst::Predicate Pred,
9635                                                const SCEV *LHS,
9636                                                const SCEV *RHS) {
9637   // Interpret a null as meaning no loop, where there is obviously no guard
9638   // (interprocedural conditions notwithstanding).
9639   if (!L)
9640     return false;
9641 
9642   // Both LHS and RHS must be available at loop entry.
9643   assert(isAvailableAtLoopEntry(LHS, L) &&
9644          "LHS is not available at Loop Entry");
9645   assert(isAvailableAtLoopEntry(RHS, L) &&
9646          "RHS is not available at Loop Entry");
9647   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
9648 }
9649 
9650 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9651                                     const SCEV *RHS,
9652                                     const Value *FoundCondValue, bool Inverse,
9653                                     const Instruction *Context) {
9654   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9655     return false;
9656 
9657   auto ClearOnExit =
9658       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9659 
9660   // Recursively handle And and Or conditions.
9661   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9662     if (BO->getOpcode() == Instruction::And) {
9663       if (!Inverse)
9664         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
9665                              Context) ||
9666                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
9667                              Context);
9668     } else if (BO->getOpcode() == Instruction::Or) {
9669       if (Inverse)
9670         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
9671                              Context) ||
9672                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
9673                              Context);
9674     }
9675   }
9676 
9677   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9678   if (!ICI) return false;
9679 
9680   // Now that we found a conditional branch that dominates the loop or controls
9681   // the loop latch. Check to see if it is the comparison we are looking for.
9682   ICmpInst::Predicate FoundPred;
9683   if (Inverse)
9684     FoundPred = ICI->getInversePredicate();
9685   else
9686     FoundPred = ICI->getPredicate();
9687 
9688   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9689   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9690 
9691   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
9692 }
9693 
9694 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9695                                     const SCEV *RHS,
9696                                     ICmpInst::Predicate FoundPred,
9697                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
9698                                     const Instruction *Context) {
9699   // Balance the types.
9700   if (getTypeSizeInBits(LHS->getType()) <
9701       getTypeSizeInBits(FoundLHS->getType())) {
9702     if (CmpInst::isSigned(Pred)) {
9703       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9704       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9705     } else {
9706       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9707       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9708     }
9709   } else if (getTypeSizeInBits(LHS->getType()) >
9710       getTypeSizeInBits(FoundLHS->getType())) {
9711     if (CmpInst::isSigned(FoundPred)) {
9712       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9713       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9714     } else {
9715       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9716       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9717     }
9718   }
9719   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
9720                                     FoundRHS, Context);
9721 }
9722 
9723 bool ScalarEvolution::isImpliedCondBalancedTypes(
9724     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9725     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
9726     const Instruction *Context) {
9727   assert(getTypeSizeInBits(LHS->getType()) ==
9728              getTypeSizeInBits(FoundLHS->getType()) &&
9729          "Types should be balanced!");
9730   // Canonicalize the query to match the way instcombine will have
9731   // canonicalized the comparison.
9732   if (SimplifyICmpOperands(Pred, LHS, RHS))
9733     if (LHS == RHS)
9734       return CmpInst::isTrueWhenEqual(Pred);
9735   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9736     if (FoundLHS == FoundRHS)
9737       return CmpInst::isFalseWhenEqual(FoundPred);
9738 
9739   // Check to see if we can make the LHS or RHS match.
9740   if (LHS == FoundRHS || RHS == FoundLHS) {
9741     if (isa<SCEVConstant>(RHS)) {
9742       std::swap(FoundLHS, FoundRHS);
9743       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9744     } else {
9745       std::swap(LHS, RHS);
9746       Pred = ICmpInst::getSwappedPredicate(Pred);
9747     }
9748   }
9749 
9750   // Check whether the found predicate is the same as the desired predicate.
9751   if (FoundPred == Pred)
9752     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
9753 
9754   // Check whether swapping the found predicate makes it the same as the
9755   // desired predicate.
9756   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9757     if (isa<SCEVConstant>(RHS))
9758       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
9759     else
9760       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
9761                                    LHS, FoundLHS, FoundRHS, Context);
9762   }
9763 
9764   // Unsigned comparison is the same as signed comparison when both the operands
9765   // are non-negative.
9766   if (CmpInst::isUnsigned(FoundPred) &&
9767       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9768       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9769     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
9770 
9771   // Check if we can make progress by sharpening ranges.
9772   if (FoundPred == ICmpInst::ICMP_NE &&
9773       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9774 
9775     const SCEVConstant *C = nullptr;
9776     const SCEV *V = nullptr;
9777 
9778     if (isa<SCEVConstant>(FoundLHS)) {
9779       C = cast<SCEVConstant>(FoundLHS);
9780       V = FoundRHS;
9781     } else {
9782       C = cast<SCEVConstant>(FoundRHS);
9783       V = FoundLHS;
9784     }
9785 
9786     // The guarding predicate tells us that C != V. If the known range
9787     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9788     // range we consider has to correspond to same signedness as the
9789     // predicate we're interested in folding.
9790 
9791     APInt Min = ICmpInst::isSigned(Pred) ?
9792         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9793 
9794     if (Min == C->getAPInt()) {
9795       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9796       // This is true even if (Min + 1) wraps around -- in case of
9797       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9798 
9799       APInt SharperMin = Min + 1;
9800 
9801       switch (Pred) {
9802         case ICmpInst::ICMP_SGE:
9803         case ICmpInst::ICMP_UGE:
9804           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9805           // RHS, we're done.
9806           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
9807                                     Context))
9808             return true;
9809           LLVM_FALLTHROUGH;
9810 
9811         case ICmpInst::ICMP_SGT:
9812         case ICmpInst::ICMP_UGT:
9813           // We know from the range information that (V `Pred` Min ||
9814           // V == Min).  We know from the guarding condition that !(V
9815           // == Min).  This gives us
9816           //
9817           //       V `Pred` Min || V == Min && !(V == Min)
9818           //   =>  V `Pred` Min
9819           //
9820           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9821 
9822           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
9823                                     Context))
9824             return true;
9825           break;
9826 
9827         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
9828         case ICmpInst::ICMP_SLE:
9829         case ICmpInst::ICMP_ULE:
9830           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9831                                     LHS, V, getConstant(SharperMin), Context))
9832             return true;
9833           LLVM_FALLTHROUGH;
9834 
9835         case ICmpInst::ICMP_SLT:
9836         case ICmpInst::ICMP_ULT:
9837           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9838                                     LHS, V, getConstant(Min), Context))
9839             return true;
9840           break;
9841 
9842         default:
9843           // No change
9844           break;
9845       }
9846     }
9847   }
9848 
9849   // Check whether the actual condition is beyond sufficient.
9850   if (FoundPred == ICmpInst::ICMP_EQ)
9851     if (ICmpInst::isTrueWhenEqual(Pred))
9852       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
9853         return true;
9854   if (Pred == ICmpInst::ICMP_NE)
9855     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9856       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
9857                                 Context))
9858         return true;
9859 
9860   // Otherwise assume the worst.
9861   return false;
9862 }
9863 
9864 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9865                                      const SCEV *&L, const SCEV *&R,
9866                                      SCEV::NoWrapFlags &Flags) {
9867   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9868   if (!AE || AE->getNumOperands() != 2)
9869     return false;
9870 
9871   L = AE->getOperand(0);
9872   R = AE->getOperand(1);
9873   Flags = AE->getNoWrapFlags();
9874   return true;
9875 }
9876 
9877 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9878                                                            const SCEV *Less) {
9879   // We avoid subtracting expressions here because this function is usually
9880   // fairly deep in the call stack (i.e. is called many times).
9881 
9882   // X - X = 0.
9883   if (More == Less)
9884     return APInt(getTypeSizeInBits(More->getType()), 0);
9885 
9886   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9887     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9888     const auto *MAR = cast<SCEVAddRecExpr>(More);
9889 
9890     if (LAR->getLoop() != MAR->getLoop())
9891       return None;
9892 
9893     // We look at affine expressions only; not for correctness but to keep
9894     // getStepRecurrence cheap.
9895     if (!LAR->isAffine() || !MAR->isAffine())
9896       return None;
9897 
9898     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9899       return None;
9900 
9901     Less = LAR->getStart();
9902     More = MAR->getStart();
9903 
9904     // fall through
9905   }
9906 
9907   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9908     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9909     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9910     return M - L;
9911   }
9912 
9913   SCEV::NoWrapFlags Flags;
9914   const SCEV *LLess = nullptr, *RLess = nullptr;
9915   const SCEV *LMore = nullptr, *RMore = nullptr;
9916   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9917   // Compare (X + C1) vs X.
9918   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9919     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9920       if (RLess == More)
9921         return -(C1->getAPInt());
9922 
9923   // Compare X vs (X + C2).
9924   if (splitBinaryAdd(More, LMore, RMore, Flags))
9925     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9926       if (RMore == Less)
9927         return C2->getAPInt();
9928 
9929   // Compare (X + C1) vs (X + C2).
9930   if (C1 && C2 && RLess == RMore)
9931     return C2->getAPInt() - C1->getAPInt();
9932 
9933   return None;
9934 }
9935 
9936 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
9937     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9938     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
9939   // Try to recognize the following pattern:
9940   //
9941   //   FoundRHS = ...
9942   // ...
9943   // loop:
9944   //   FoundLHS = {Start,+,W}
9945   // context_bb: // Basic block from the same loop
9946   //   known(Pred, FoundLHS, FoundRHS)
9947   //
9948   // If some predicate is known in the context of a loop, it is also known on
9949   // each iteration of this loop, including the first iteration. Therefore, in
9950   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
9951   // prove the original pred using this fact.
9952   if (!Context)
9953     return false;
9954   const BasicBlock *ContextBB = Context->getParent();
9955   // Make sure AR varies in the context block.
9956   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
9957     const Loop *L = AR->getLoop();
9958     // Make sure that context belongs to the loop and executes on 1st iteration
9959     // (if it ever executes at all).
9960     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
9961       return false;
9962     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
9963       return false;
9964     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
9965   }
9966 
9967   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
9968     const Loop *L = AR->getLoop();
9969     // Make sure that context belongs to the loop and executes on 1st iteration
9970     // (if it ever executes at all).
9971     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
9972       return false;
9973     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
9974       return false;
9975     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
9976   }
9977 
9978   return false;
9979 }
9980 
9981 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9982     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9983     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9984   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9985     return false;
9986 
9987   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9988   if (!AddRecLHS)
9989     return false;
9990 
9991   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9992   if (!AddRecFoundLHS)
9993     return false;
9994 
9995   // We'd like to let SCEV reason about control dependencies, so we constrain
9996   // both the inequalities to be about add recurrences on the same loop.  This
9997   // way we can use isLoopEntryGuardedByCond later.
9998 
9999   const Loop *L = AddRecFoundLHS->getLoop();
10000   if (L != AddRecLHS->getLoop())
10001     return false;
10002 
10003   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10004   //
10005   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10006   //                                                                  ... (2)
10007   //
10008   // Informal proof for (2), assuming (1) [*]:
10009   //
10010   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10011   //
10012   // Then
10013   //
10014   //       FoundLHS s< FoundRHS s< INT_MIN - C
10015   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10016   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10017   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10018   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10019   // <=>  FoundLHS + C s< FoundRHS + C
10020   //
10021   // [*]: (1) can be proved by ruling out overflow.
10022   //
10023   // [**]: This can be proved by analyzing all the four possibilities:
10024   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10025   //    (A s>= 0, B s>= 0).
10026   //
10027   // Note:
10028   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10029   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10030   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10031   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10032   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10033   // C)".
10034 
10035   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10036   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10037   if (!LDiff || !RDiff || *LDiff != *RDiff)
10038     return false;
10039 
10040   if (LDiff->isMinValue())
10041     return true;
10042 
10043   APInt FoundRHSLimit;
10044 
10045   if (Pred == CmpInst::ICMP_ULT) {
10046     FoundRHSLimit = -(*RDiff);
10047   } else {
10048     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10049     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10050   }
10051 
10052   // Try to prove (1) or (2), as needed.
10053   return isAvailableAtLoopEntry(FoundRHS, L) &&
10054          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10055                                   getConstant(FoundRHSLimit));
10056 }
10057 
10058 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10059                                         const SCEV *LHS, const SCEV *RHS,
10060                                         const SCEV *FoundLHS,
10061                                         const SCEV *FoundRHS, unsigned Depth) {
10062   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10063 
10064   auto ClearOnExit = make_scope_exit([&]() {
10065     if (LPhi) {
10066       bool Erased = PendingMerges.erase(LPhi);
10067       assert(Erased && "Failed to erase LPhi!");
10068       (void)Erased;
10069     }
10070     if (RPhi) {
10071       bool Erased = PendingMerges.erase(RPhi);
10072       assert(Erased && "Failed to erase RPhi!");
10073       (void)Erased;
10074     }
10075   });
10076 
10077   // Find respective Phis and check that they are not being pending.
10078   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10079     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10080       if (!PendingMerges.insert(Phi).second)
10081         return false;
10082       LPhi = Phi;
10083     }
10084   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10085     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10086       // If we detect a loop of Phi nodes being processed by this method, for
10087       // example:
10088       //
10089       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10090       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10091       //
10092       // we don't want to deal with a case that complex, so return conservative
10093       // answer false.
10094       if (!PendingMerges.insert(Phi).second)
10095         return false;
10096       RPhi = Phi;
10097     }
10098 
10099   // If none of LHS, RHS is a Phi, nothing to do here.
10100   if (!LPhi && !RPhi)
10101     return false;
10102 
10103   // If there is a SCEVUnknown Phi we are interested in, make it left.
10104   if (!LPhi) {
10105     std::swap(LHS, RHS);
10106     std::swap(FoundLHS, FoundRHS);
10107     std::swap(LPhi, RPhi);
10108     Pred = ICmpInst::getSwappedPredicate(Pred);
10109   }
10110 
10111   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10112   const BasicBlock *LBB = LPhi->getParent();
10113   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10114 
10115   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10116     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10117            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10118            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10119   };
10120 
10121   if (RPhi && RPhi->getParent() == LBB) {
10122     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10123     // If we compare two Phis from the same block, and for each entry block
10124     // the predicate is true for incoming values from this block, then the
10125     // predicate is also true for the Phis.
10126     for (const BasicBlock *IncBB : predecessors(LBB)) {
10127       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10128       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10129       if (!ProvedEasily(L, R))
10130         return false;
10131     }
10132   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10133     // Case two: RHS is also a Phi from the same basic block, and it is an
10134     // AddRec. It means that there is a loop which has both AddRec and Unknown
10135     // PHIs, for it we can compare incoming values of AddRec from above the loop
10136     // and latch with their respective incoming values of LPhi.
10137     // TODO: Generalize to handle loops with many inputs in a header.
10138     if (LPhi->getNumIncomingValues() != 2) return false;
10139 
10140     auto *RLoop = RAR->getLoop();
10141     auto *Predecessor = RLoop->getLoopPredecessor();
10142     assert(Predecessor && "Loop with AddRec with no predecessor?");
10143     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10144     if (!ProvedEasily(L1, RAR->getStart()))
10145       return false;
10146     auto *Latch = RLoop->getLoopLatch();
10147     assert(Latch && "Loop with AddRec with no latch?");
10148     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10149     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10150       return false;
10151   } else {
10152     // In all other cases go over inputs of LHS and compare each of them to RHS,
10153     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10154     // At this point RHS is either a non-Phi, or it is a Phi from some block
10155     // different from LBB.
10156     for (const BasicBlock *IncBB : predecessors(LBB)) {
10157       // Check that RHS is available in this block.
10158       if (!dominates(RHS, IncBB))
10159         return false;
10160       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10161       if (!ProvedEasily(L, RHS))
10162         return false;
10163     }
10164   }
10165   return true;
10166 }
10167 
10168 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10169                                             const SCEV *LHS, const SCEV *RHS,
10170                                             const SCEV *FoundLHS,
10171                                             const SCEV *FoundRHS,
10172                                             const Instruction *Context) {
10173   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10174     return true;
10175 
10176   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10177     return true;
10178 
10179   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10180                                           Context))
10181     return true;
10182 
10183   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10184                                      FoundLHS, FoundRHS) ||
10185          // ~x < ~y --> x > y
10186          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10187                                      getNotSCEV(FoundRHS),
10188                                      getNotSCEV(FoundLHS));
10189 }
10190 
10191 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10192 template <typename MinMaxExprType>
10193 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10194                                  const SCEV *Candidate) {
10195   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10196   if (!MinMaxExpr)
10197     return false;
10198 
10199   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10200 }
10201 
10202 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10203                                            ICmpInst::Predicate Pred,
10204                                            const SCEV *LHS, const SCEV *RHS) {
10205   // If both sides are affine addrecs for the same loop, with equal
10206   // steps, and we know the recurrences don't wrap, then we only
10207   // need to check the predicate on the starting values.
10208 
10209   if (!ICmpInst::isRelational(Pred))
10210     return false;
10211 
10212   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10213   if (!LAR)
10214     return false;
10215   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10216   if (!RAR)
10217     return false;
10218   if (LAR->getLoop() != RAR->getLoop())
10219     return false;
10220   if (!LAR->isAffine() || !RAR->isAffine())
10221     return false;
10222 
10223   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10224     return false;
10225 
10226   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10227                          SCEV::FlagNSW : SCEV::FlagNUW;
10228   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10229     return false;
10230 
10231   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10232 }
10233 
10234 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10235 /// expression?
10236 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10237                                         ICmpInst::Predicate Pred,
10238                                         const SCEV *LHS, const SCEV *RHS) {
10239   switch (Pred) {
10240   default:
10241     return false;
10242 
10243   case ICmpInst::ICMP_SGE:
10244     std::swap(LHS, RHS);
10245     LLVM_FALLTHROUGH;
10246   case ICmpInst::ICMP_SLE:
10247     return
10248         // min(A, ...) <= A
10249         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10250         // A <= max(A, ...)
10251         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10252 
10253   case ICmpInst::ICMP_UGE:
10254     std::swap(LHS, RHS);
10255     LLVM_FALLTHROUGH;
10256   case ICmpInst::ICMP_ULE:
10257     return
10258         // min(A, ...) <= A
10259         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10260         // A <= max(A, ...)
10261         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10262   }
10263 
10264   llvm_unreachable("covered switch fell through?!");
10265 }
10266 
10267 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10268                                              const SCEV *LHS, const SCEV *RHS,
10269                                              const SCEV *FoundLHS,
10270                                              const SCEV *FoundRHS,
10271                                              unsigned Depth) {
10272   assert(getTypeSizeInBits(LHS->getType()) ==
10273              getTypeSizeInBits(RHS->getType()) &&
10274          "LHS and RHS have different sizes?");
10275   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10276              getTypeSizeInBits(FoundRHS->getType()) &&
10277          "FoundLHS and FoundRHS have different sizes?");
10278   // We want to avoid hurting the compile time with analysis of too big trees.
10279   if (Depth > MaxSCEVOperationsImplicationDepth)
10280     return false;
10281 
10282   // We only want to work with GT comparison so far.
10283   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10284     Pred = CmpInst::getSwappedPredicate(Pred);
10285     std::swap(LHS, RHS);
10286     std::swap(FoundLHS, FoundRHS);
10287   }
10288 
10289   // For unsigned, try to reduce it to corresponding signed comparison.
10290   if (Pred == ICmpInst::ICMP_UGT)
10291     // We can replace unsigned predicate with its signed counterpart if all
10292     // involved values are non-negative.
10293     // TODO: We could have better support for unsigned.
10294     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10295       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10296       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10297       // use this fact to prove that LHS and RHS are non-negative.
10298       const SCEV *MinusOne = getMinusOne(LHS->getType());
10299       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10300                                 FoundRHS) &&
10301           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10302                                 FoundRHS))
10303         Pred = ICmpInst::ICMP_SGT;
10304     }
10305 
10306   if (Pred != ICmpInst::ICMP_SGT)
10307     return false;
10308 
10309   auto GetOpFromSExt = [&](const SCEV *S) {
10310     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10311       return Ext->getOperand();
10312     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10313     // the constant in some cases.
10314     return S;
10315   };
10316 
10317   // Acquire values from extensions.
10318   auto *OrigLHS = LHS;
10319   auto *OrigFoundLHS = FoundLHS;
10320   LHS = GetOpFromSExt(LHS);
10321   FoundLHS = GetOpFromSExt(FoundLHS);
10322 
10323   // Is the SGT predicate can be proved trivially or using the found context.
10324   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10325     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10326            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10327                                   FoundRHS, Depth + 1);
10328   };
10329 
10330   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10331     // We want to avoid creation of any new non-constant SCEV. Since we are
10332     // going to compare the operands to RHS, we should be certain that we don't
10333     // need any size extensions for this. So let's decline all cases when the
10334     // sizes of types of LHS and RHS do not match.
10335     // TODO: Maybe try to get RHS from sext to catch more cases?
10336     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10337       return false;
10338 
10339     // Should not overflow.
10340     if (!LHSAddExpr->hasNoSignedWrap())
10341       return false;
10342 
10343     auto *LL = LHSAddExpr->getOperand(0);
10344     auto *LR = LHSAddExpr->getOperand(1);
10345     auto *MinusOne = getMinusOne(RHS->getType());
10346 
10347     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10348     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10349       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10350     };
10351     // Try to prove the following rule:
10352     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10353     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10354     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10355       return true;
10356   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10357     Value *LL, *LR;
10358     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10359 
10360     using namespace llvm::PatternMatch;
10361 
10362     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10363       // Rules for division.
10364       // We are going to perform some comparisons with Denominator and its
10365       // derivative expressions. In general case, creating a SCEV for it may
10366       // lead to a complex analysis of the entire graph, and in particular it
10367       // can request trip count recalculation for the same loop. This would
10368       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10369       // this, we only want to create SCEVs that are constants in this section.
10370       // So we bail if Denominator is not a constant.
10371       if (!isa<ConstantInt>(LR))
10372         return false;
10373 
10374       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10375 
10376       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10377       // then a SCEV for the numerator already exists and matches with FoundLHS.
10378       auto *Numerator = getExistingSCEV(LL);
10379       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10380         return false;
10381 
10382       // Make sure that the numerator matches with FoundLHS and the denominator
10383       // is positive.
10384       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10385         return false;
10386 
10387       auto *DTy = Denominator->getType();
10388       auto *FRHSTy = FoundRHS->getType();
10389       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10390         // One of types is a pointer and another one is not. We cannot extend
10391         // them properly to a wider type, so let us just reject this case.
10392         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10393         // to avoid this check.
10394         return false;
10395 
10396       // Given that:
10397       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10398       auto *WTy = getWiderType(DTy, FRHSTy);
10399       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10400       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10401 
10402       // Try to prove the following rule:
10403       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10404       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10405       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10406       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10407       if (isKnownNonPositive(RHS) &&
10408           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10409         return true;
10410 
10411       // Try to prove the following rule:
10412       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10413       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10414       // If we divide it by Denominator > 2, then:
10415       // 1. If FoundLHS is negative, then the result is 0.
10416       // 2. If FoundLHS is non-negative, then the result is non-negative.
10417       // Anyways, the result is non-negative.
10418       auto *MinusOne = getMinusOne(WTy);
10419       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10420       if (isKnownNegative(RHS) &&
10421           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10422         return true;
10423     }
10424   }
10425 
10426   // If our expression contained SCEVUnknown Phis, and we split it down and now
10427   // need to prove something for them, try to prove the predicate for every
10428   // possible incoming values of those Phis.
10429   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10430     return true;
10431 
10432   return false;
10433 }
10434 
10435 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10436                                         const SCEV *LHS, const SCEV *RHS) {
10437   // zext x u<= sext x, sext x s<= zext x
10438   switch (Pred) {
10439   case ICmpInst::ICMP_SGE:
10440     std::swap(LHS, RHS);
10441     LLVM_FALLTHROUGH;
10442   case ICmpInst::ICMP_SLE: {
10443     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10444     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10445     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10446     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10447       return true;
10448     break;
10449   }
10450   case ICmpInst::ICMP_UGE:
10451     std::swap(LHS, RHS);
10452     LLVM_FALLTHROUGH;
10453   case ICmpInst::ICMP_ULE: {
10454     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10455     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10456     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10457     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10458       return true;
10459     break;
10460   }
10461   default:
10462     break;
10463   };
10464   return false;
10465 }
10466 
10467 bool
10468 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10469                                            const SCEV *LHS, const SCEV *RHS) {
10470   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10471          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10472          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10473          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10474          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10475 }
10476 
10477 bool
10478 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10479                                              const SCEV *LHS, const SCEV *RHS,
10480                                              const SCEV *FoundLHS,
10481                                              const SCEV *FoundRHS) {
10482   switch (Pred) {
10483   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10484   case ICmpInst::ICMP_EQ:
10485   case ICmpInst::ICMP_NE:
10486     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10487       return true;
10488     break;
10489   case ICmpInst::ICMP_SLT:
10490   case ICmpInst::ICMP_SLE:
10491     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10492         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10493       return true;
10494     break;
10495   case ICmpInst::ICMP_SGT:
10496   case ICmpInst::ICMP_SGE:
10497     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10498         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10499       return true;
10500     break;
10501   case ICmpInst::ICMP_ULT:
10502   case ICmpInst::ICMP_ULE:
10503     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10504         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10505       return true;
10506     break;
10507   case ICmpInst::ICMP_UGT:
10508   case ICmpInst::ICMP_UGE:
10509     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10510         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10511       return true;
10512     break;
10513   }
10514 
10515   // Maybe it can be proved via operations?
10516   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10517     return true;
10518 
10519   return false;
10520 }
10521 
10522 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10523                                                      const SCEV *LHS,
10524                                                      const SCEV *RHS,
10525                                                      const SCEV *FoundLHS,
10526                                                      const SCEV *FoundRHS) {
10527   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10528     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10529     // reduce the compile time impact of this optimization.
10530     return false;
10531 
10532   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10533   if (!Addend)
10534     return false;
10535 
10536   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10537 
10538   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10539   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10540   ConstantRange FoundLHSRange =
10541       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10542 
10543   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10544   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10545 
10546   // We can also compute the range of values for `LHS` that satisfy the
10547   // consequent, "`LHS` `Pred` `RHS`":
10548   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10549   ConstantRange SatisfyingLHSRange =
10550       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10551 
10552   // The antecedent implies the consequent if every value of `LHS` that
10553   // satisfies the antecedent also satisfies the consequent.
10554   return SatisfyingLHSRange.contains(LHSRange);
10555 }
10556 
10557 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10558                                          bool IsSigned, bool NoWrap) {
10559   assert(isKnownPositive(Stride) && "Positive stride expected!");
10560 
10561   if (NoWrap) return false;
10562 
10563   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10564   const SCEV *One = getOne(Stride->getType());
10565 
10566   if (IsSigned) {
10567     APInt MaxRHS = getSignedRangeMax(RHS);
10568     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10569     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10570 
10571     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10572     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10573   }
10574 
10575   APInt MaxRHS = getUnsignedRangeMax(RHS);
10576   APInt MaxValue = APInt::getMaxValue(BitWidth);
10577   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10578 
10579   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10580   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10581 }
10582 
10583 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10584                                          bool IsSigned, bool NoWrap) {
10585   if (NoWrap) return false;
10586 
10587   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10588   const SCEV *One = getOne(Stride->getType());
10589 
10590   if (IsSigned) {
10591     APInt MinRHS = getSignedRangeMin(RHS);
10592     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10593     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10594 
10595     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10596     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10597   }
10598 
10599   APInt MinRHS = getUnsignedRangeMin(RHS);
10600   APInt MinValue = APInt::getMinValue(BitWidth);
10601   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10602 
10603   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10604   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10605 }
10606 
10607 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10608                                             bool Equality) {
10609   const SCEV *One = getOne(Step->getType());
10610   Delta = Equality ? getAddExpr(Delta, Step)
10611                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10612   return getUDivExpr(Delta, Step);
10613 }
10614 
10615 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10616                                                     const SCEV *Stride,
10617                                                     const SCEV *End,
10618                                                     unsigned BitWidth,
10619                                                     bool IsSigned) {
10620 
10621   assert(!isKnownNonPositive(Stride) &&
10622          "Stride is expected strictly positive!");
10623   // Calculate the maximum backedge count based on the range of values
10624   // permitted by Start, End, and Stride.
10625   const SCEV *MaxBECount;
10626   APInt MinStart =
10627       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10628 
10629   APInt StrideForMaxBECount =
10630       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10631 
10632   // We already know that the stride is positive, so we paper over conservatism
10633   // in our range computation by forcing StrideForMaxBECount to be at least one.
10634   // In theory this is unnecessary, but we expect MaxBECount to be a
10635   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10636   // is nothing to constant fold it to).
10637   APInt One(BitWidth, 1, IsSigned);
10638   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10639 
10640   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10641                             : APInt::getMaxValue(BitWidth);
10642   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10643 
10644   // Although End can be a MAX expression we estimate MaxEnd considering only
10645   // the case End = RHS of the loop termination condition. This is safe because
10646   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10647   // taken count.
10648   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10649                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10650 
10651   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10652                               getConstant(StrideForMaxBECount) /* Step */,
10653                               false /* Equality */);
10654 
10655   return MaxBECount;
10656 }
10657 
10658 ScalarEvolution::ExitLimit
10659 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10660                                   const Loop *L, bool IsSigned,
10661                                   bool ControlsExit, bool AllowPredicates) {
10662   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10663 
10664   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10665   bool PredicatedIV = false;
10666 
10667   if (!IV && AllowPredicates) {
10668     // Try to make this an AddRec using runtime tests, in the first X
10669     // iterations of this loop, where X is the SCEV expression found by the
10670     // algorithm below.
10671     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10672     PredicatedIV = true;
10673   }
10674 
10675   // Avoid weird loops
10676   if (!IV || IV->getLoop() != L || !IV->isAffine())
10677     return getCouldNotCompute();
10678 
10679   bool NoWrap = ControlsExit &&
10680                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10681 
10682   const SCEV *Stride = IV->getStepRecurrence(*this);
10683 
10684   bool PositiveStride = isKnownPositive(Stride);
10685 
10686   // Avoid negative or zero stride values.
10687   if (!PositiveStride) {
10688     // We can compute the correct backedge taken count for loops with unknown
10689     // strides if we can prove that the loop is not an infinite loop with side
10690     // effects. Here's the loop structure we are trying to handle -
10691     //
10692     // i = start
10693     // do {
10694     //   A[i] = i;
10695     //   i += s;
10696     // } while (i < end);
10697     //
10698     // The backedge taken count for such loops is evaluated as -
10699     // (max(end, start + stride) - start - 1) /u stride
10700     //
10701     // The additional preconditions that we need to check to prove correctness
10702     // of the above formula is as follows -
10703     //
10704     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10705     //    NoWrap flag).
10706     // b) loop is single exit with no side effects.
10707     //
10708     //
10709     // Precondition a) implies that if the stride is negative, this is a single
10710     // trip loop. The backedge taken count formula reduces to zero in this case.
10711     //
10712     // Precondition b) implies that the unknown stride cannot be zero otherwise
10713     // we have UB.
10714     //
10715     // The positive stride case is the same as isKnownPositive(Stride) returning
10716     // true (original behavior of the function).
10717     //
10718     // We want to make sure that the stride is truly unknown as there are edge
10719     // cases where ScalarEvolution propagates no wrap flags to the
10720     // post-increment/decrement IV even though the increment/decrement operation
10721     // itself is wrapping. The computed backedge taken count may be wrong in
10722     // such cases. This is prevented by checking that the stride is not known to
10723     // be either positive or non-positive. For example, no wrap flags are
10724     // propagated to the post-increment IV of this loop with a trip count of 2 -
10725     //
10726     // unsigned char i;
10727     // for(i=127; i<128; i+=129)
10728     //   A[i] = i;
10729     //
10730     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10731         !loopHasNoSideEffects(L))
10732       return getCouldNotCompute();
10733   } else if (!Stride->isOne() &&
10734              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10735     // Avoid proven overflow cases: this will ensure that the backedge taken
10736     // count will not generate any unsigned overflow. Relaxed no-overflow
10737     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10738     // undefined behaviors like the case of C language.
10739     return getCouldNotCompute();
10740 
10741   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10742                                       : ICmpInst::ICMP_ULT;
10743   const SCEV *Start = IV->getStart();
10744   const SCEV *End = RHS;
10745   // When the RHS is not invariant, we do not know the end bound of the loop and
10746   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10747   // calculate the MaxBECount, given the start, stride and max value for the end
10748   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10749   // checked above).
10750   if (!isLoopInvariant(RHS, L)) {
10751     const SCEV *MaxBECount = computeMaxBECountForLT(
10752         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10753     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10754                      false /*MaxOrZero*/, Predicates);
10755   }
10756   // If the backedge is taken at least once, then it will be taken
10757   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10758   // is the LHS value of the less-than comparison the first time it is evaluated
10759   // and End is the RHS.
10760   const SCEV *BECountIfBackedgeTaken =
10761     computeBECount(getMinusSCEV(End, Start), Stride, false);
10762   // If the loop entry is guarded by the result of the backedge test of the
10763   // first loop iteration, then we know the backedge will be taken at least
10764   // once and so the backedge taken count is as above. If not then we use the
10765   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10766   // as if the backedge is taken at least once max(End,Start) is End and so the
10767   // result is as above, and if not max(End,Start) is Start so we get a backedge
10768   // count of zero.
10769   const SCEV *BECount;
10770   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10771     BECount = BECountIfBackedgeTaken;
10772   else {
10773     // If we know that RHS >= Start in the context of loop, then we know that
10774     // max(RHS, Start) = RHS at this point.
10775     if (isLoopEntryGuardedByCond(
10776             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
10777       End = RHS;
10778     else
10779       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10780     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10781   }
10782 
10783   const SCEV *MaxBECount;
10784   bool MaxOrZero = false;
10785   if (isa<SCEVConstant>(BECount))
10786     MaxBECount = BECount;
10787   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10788     // If we know exactly how many times the backedge will be taken if it's
10789     // taken at least once, then the backedge count will either be that or
10790     // zero.
10791     MaxBECount = BECountIfBackedgeTaken;
10792     MaxOrZero = true;
10793   } else {
10794     MaxBECount = computeMaxBECountForLT(
10795         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10796   }
10797 
10798   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10799       !isa<SCEVCouldNotCompute>(BECount))
10800     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10801 
10802   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10803 }
10804 
10805 ScalarEvolution::ExitLimit
10806 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10807                                      const Loop *L, bool IsSigned,
10808                                      bool ControlsExit, bool AllowPredicates) {
10809   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10810   // We handle only IV > Invariant
10811   if (!isLoopInvariant(RHS, L))
10812     return getCouldNotCompute();
10813 
10814   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10815   if (!IV && AllowPredicates)
10816     // Try to make this an AddRec using runtime tests, in the first X
10817     // iterations of this loop, where X is the SCEV expression found by the
10818     // algorithm below.
10819     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10820 
10821   // Avoid weird loops
10822   if (!IV || IV->getLoop() != L || !IV->isAffine())
10823     return getCouldNotCompute();
10824 
10825   bool NoWrap = ControlsExit &&
10826                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10827 
10828   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10829 
10830   // Avoid negative or zero stride values
10831   if (!isKnownPositive(Stride))
10832     return getCouldNotCompute();
10833 
10834   // Avoid proven overflow cases: this will ensure that the backedge taken count
10835   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10836   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10837   // behaviors like the case of C language.
10838   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10839     return getCouldNotCompute();
10840 
10841   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10842                                       : ICmpInst::ICMP_UGT;
10843 
10844   const SCEV *Start = IV->getStart();
10845   const SCEV *End = RHS;
10846   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
10847     // If we know that Start >= RHS in the context of loop, then we know that
10848     // min(RHS, Start) = RHS at this point.
10849     if (isLoopEntryGuardedByCond(
10850             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
10851       End = RHS;
10852     else
10853       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10854   }
10855 
10856   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10857 
10858   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10859                             : getUnsignedRangeMax(Start);
10860 
10861   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10862                              : getUnsignedRangeMin(Stride);
10863 
10864   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10865   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10866                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10867 
10868   // Although End can be a MIN expression we estimate MinEnd considering only
10869   // the case End = RHS. This is safe because in the other case (Start - End)
10870   // is zero, leading to a zero maximum backedge taken count.
10871   APInt MinEnd =
10872     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10873              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10874 
10875   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10876                                ? BECount
10877                                : computeBECount(getConstant(MaxStart - MinEnd),
10878                                                 getConstant(MinStride), false);
10879 
10880   if (isa<SCEVCouldNotCompute>(MaxBECount))
10881     MaxBECount = BECount;
10882 
10883   return ExitLimit(BECount, MaxBECount, false, Predicates);
10884 }
10885 
10886 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10887                                                     ScalarEvolution &SE) const {
10888   if (Range.isFullSet())  // Infinite loop.
10889     return SE.getCouldNotCompute();
10890 
10891   // If the start is a non-zero constant, shift the range to simplify things.
10892   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10893     if (!SC->getValue()->isZero()) {
10894       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10895       Operands[0] = SE.getZero(SC->getType());
10896       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10897                                              getNoWrapFlags(FlagNW));
10898       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10899         return ShiftedAddRec->getNumIterationsInRange(
10900             Range.subtract(SC->getAPInt()), SE);
10901       // This is strange and shouldn't happen.
10902       return SE.getCouldNotCompute();
10903     }
10904 
10905   // The only time we can solve this is when we have all constant indices.
10906   // Otherwise, we cannot determine the overflow conditions.
10907   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10908     return SE.getCouldNotCompute();
10909 
10910   // Okay at this point we know that all elements of the chrec are constants and
10911   // that the start element is zero.
10912 
10913   // First check to see if the range contains zero.  If not, the first
10914   // iteration exits.
10915   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10916   if (!Range.contains(APInt(BitWidth, 0)))
10917     return SE.getZero(getType());
10918 
10919   if (isAffine()) {
10920     // If this is an affine expression then we have this situation:
10921     //   Solve {0,+,A} in Range  ===  Ax in Range
10922 
10923     // We know that zero is in the range.  If A is positive then we know that
10924     // the upper value of the range must be the first possible exit value.
10925     // If A is negative then the lower of the range is the last possible loop
10926     // value.  Also note that we already checked for a full range.
10927     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10928     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10929 
10930     // The exit value should be (End+A)/A.
10931     APInt ExitVal = (End + A).udiv(A);
10932     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10933 
10934     // Evaluate at the exit value.  If we really did fall out of the valid
10935     // range, then we computed our trip count, otherwise wrap around or other
10936     // things must have happened.
10937     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10938     if (Range.contains(Val->getValue()))
10939       return SE.getCouldNotCompute();  // Something strange happened
10940 
10941     // Ensure that the previous value is in the range.  This is a sanity check.
10942     assert(Range.contains(
10943            EvaluateConstantChrecAtConstant(this,
10944            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10945            "Linear scev computation is off in a bad way!");
10946     return SE.getConstant(ExitValue);
10947   }
10948 
10949   if (isQuadratic()) {
10950     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10951       return SE.getConstant(S.getValue());
10952   }
10953 
10954   return SE.getCouldNotCompute();
10955 }
10956 
10957 const SCEVAddRecExpr *
10958 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10959   assert(getNumOperands() > 1 && "AddRec with zero step?");
10960   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10961   // but in this case we cannot guarantee that the value returned will be an
10962   // AddRec because SCEV does not have a fixed point where it stops
10963   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10964   // may happen if we reach arithmetic depth limit while simplifying. So we
10965   // construct the returned value explicitly.
10966   SmallVector<const SCEV *, 3> Ops;
10967   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10968   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10969   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10970     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10971   // We know that the last operand is not a constant zero (otherwise it would
10972   // have been popped out earlier). This guarantees us that if the result has
10973   // the same last operand, then it will also not be popped out, meaning that
10974   // the returned value will be an AddRec.
10975   const SCEV *Last = getOperand(getNumOperands() - 1);
10976   assert(!Last->isZero() && "Recurrency with zero step?");
10977   Ops.push_back(Last);
10978   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10979                                                SCEV::FlagAnyWrap));
10980 }
10981 
10982 // Return true when S contains at least an undef value.
10983 static inline bool containsUndefs(const SCEV *S) {
10984   return SCEVExprContains(S, [](const SCEV *S) {
10985     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10986       return isa<UndefValue>(SU->getValue());
10987     return false;
10988   });
10989 }
10990 
10991 namespace {
10992 
10993 // Collect all steps of SCEV expressions.
10994 struct SCEVCollectStrides {
10995   ScalarEvolution &SE;
10996   SmallVectorImpl<const SCEV *> &Strides;
10997 
10998   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10999       : SE(SE), Strides(S) {}
11000 
11001   bool follow(const SCEV *S) {
11002     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11003       Strides.push_back(AR->getStepRecurrence(SE));
11004     return true;
11005   }
11006 
11007   bool isDone() const { return false; }
11008 };
11009 
11010 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11011 struct SCEVCollectTerms {
11012   SmallVectorImpl<const SCEV *> &Terms;
11013 
11014   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11015 
11016   bool follow(const SCEV *S) {
11017     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11018         isa<SCEVSignExtendExpr>(S)) {
11019       if (!containsUndefs(S))
11020         Terms.push_back(S);
11021 
11022       // Stop recursion: once we collected a term, do not walk its operands.
11023       return false;
11024     }
11025 
11026     // Keep looking.
11027     return true;
11028   }
11029 
11030   bool isDone() const { return false; }
11031 };
11032 
11033 // Check if a SCEV contains an AddRecExpr.
11034 struct SCEVHasAddRec {
11035   bool &ContainsAddRec;
11036 
11037   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11038     ContainsAddRec = false;
11039   }
11040 
11041   bool follow(const SCEV *S) {
11042     if (isa<SCEVAddRecExpr>(S)) {
11043       ContainsAddRec = true;
11044 
11045       // Stop recursion: once we collected a term, do not walk its operands.
11046       return false;
11047     }
11048 
11049     // Keep looking.
11050     return true;
11051   }
11052 
11053   bool isDone() const { return false; }
11054 };
11055 
11056 // Find factors that are multiplied with an expression that (possibly as a
11057 // subexpression) contains an AddRecExpr. In the expression:
11058 //
11059 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11060 //
11061 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11062 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11063 // parameters as they form a product with an induction variable.
11064 //
11065 // This collector expects all array size parameters to be in the same MulExpr.
11066 // It might be necessary to later add support for collecting parameters that are
11067 // spread over different nested MulExpr.
11068 struct SCEVCollectAddRecMultiplies {
11069   SmallVectorImpl<const SCEV *> &Terms;
11070   ScalarEvolution &SE;
11071 
11072   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11073       : Terms(T), SE(SE) {}
11074 
11075   bool follow(const SCEV *S) {
11076     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11077       bool HasAddRec = false;
11078       SmallVector<const SCEV *, 0> Operands;
11079       for (auto Op : Mul->operands()) {
11080         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11081         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11082           Operands.push_back(Op);
11083         } else if (Unknown) {
11084           HasAddRec = true;
11085         } else {
11086           bool ContainsAddRec = false;
11087           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11088           visitAll(Op, ContiansAddRec);
11089           HasAddRec |= ContainsAddRec;
11090         }
11091       }
11092       if (Operands.size() == 0)
11093         return true;
11094 
11095       if (!HasAddRec)
11096         return false;
11097 
11098       Terms.push_back(SE.getMulExpr(Operands));
11099       // Stop recursion: once we collected a term, do not walk its operands.
11100       return false;
11101     }
11102 
11103     // Keep looking.
11104     return true;
11105   }
11106 
11107   bool isDone() const { return false; }
11108 };
11109 
11110 } // end anonymous namespace
11111 
11112 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11113 /// two places:
11114 ///   1) The strides of AddRec expressions.
11115 ///   2) Unknowns that are multiplied with AddRec expressions.
11116 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11117     SmallVectorImpl<const SCEV *> &Terms) {
11118   SmallVector<const SCEV *, 4> Strides;
11119   SCEVCollectStrides StrideCollector(*this, Strides);
11120   visitAll(Expr, StrideCollector);
11121 
11122   LLVM_DEBUG({
11123     dbgs() << "Strides:\n";
11124     for (const SCEV *S : Strides)
11125       dbgs() << *S << "\n";
11126   });
11127 
11128   for (const SCEV *S : Strides) {
11129     SCEVCollectTerms TermCollector(Terms);
11130     visitAll(S, TermCollector);
11131   }
11132 
11133   LLVM_DEBUG({
11134     dbgs() << "Terms:\n";
11135     for (const SCEV *T : Terms)
11136       dbgs() << *T << "\n";
11137   });
11138 
11139   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11140   visitAll(Expr, MulCollector);
11141 }
11142 
11143 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11144                                    SmallVectorImpl<const SCEV *> &Terms,
11145                                    SmallVectorImpl<const SCEV *> &Sizes) {
11146   int Last = Terms.size() - 1;
11147   const SCEV *Step = Terms[Last];
11148 
11149   // End of recursion.
11150   if (Last == 0) {
11151     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11152       SmallVector<const SCEV *, 2> Qs;
11153       for (const SCEV *Op : M->operands())
11154         if (!isa<SCEVConstant>(Op))
11155           Qs.push_back(Op);
11156 
11157       Step = SE.getMulExpr(Qs);
11158     }
11159 
11160     Sizes.push_back(Step);
11161     return true;
11162   }
11163 
11164   for (const SCEV *&Term : Terms) {
11165     // Normalize the terms before the next call to findArrayDimensionsRec.
11166     const SCEV *Q, *R;
11167     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11168 
11169     // Bail out when GCD does not evenly divide one of the terms.
11170     if (!R->isZero())
11171       return false;
11172 
11173     Term = Q;
11174   }
11175 
11176   // Remove all SCEVConstants.
11177   Terms.erase(
11178       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11179       Terms.end());
11180 
11181   if (Terms.size() > 0)
11182     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11183       return false;
11184 
11185   Sizes.push_back(Step);
11186   return true;
11187 }
11188 
11189 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11190 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11191   for (const SCEV *T : Terms)
11192     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11193       return true;
11194 
11195   return false;
11196 }
11197 
11198 // Return the number of product terms in S.
11199 static inline int numberOfTerms(const SCEV *S) {
11200   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11201     return Expr->getNumOperands();
11202   return 1;
11203 }
11204 
11205 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11206   if (isa<SCEVConstant>(T))
11207     return nullptr;
11208 
11209   if (isa<SCEVUnknown>(T))
11210     return T;
11211 
11212   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11213     SmallVector<const SCEV *, 2> Factors;
11214     for (const SCEV *Op : M->operands())
11215       if (!isa<SCEVConstant>(Op))
11216         Factors.push_back(Op);
11217 
11218     return SE.getMulExpr(Factors);
11219   }
11220 
11221   return T;
11222 }
11223 
11224 /// Return the size of an element read or written by Inst.
11225 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11226   Type *Ty;
11227   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11228     Ty = Store->getValueOperand()->getType();
11229   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11230     Ty = Load->getType();
11231   else
11232     return nullptr;
11233 
11234   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11235   return getSizeOfExpr(ETy, Ty);
11236 }
11237 
11238 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11239                                           SmallVectorImpl<const SCEV *> &Sizes,
11240                                           const SCEV *ElementSize) {
11241   if (Terms.size() < 1 || !ElementSize)
11242     return;
11243 
11244   // Early return when Terms do not contain parameters: we do not delinearize
11245   // non parametric SCEVs.
11246   if (!containsParameters(Terms))
11247     return;
11248 
11249   LLVM_DEBUG({
11250     dbgs() << "Terms:\n";
11251     for (const SCEV *T : Terms)
11252       dbgs() << *T << "\n";
11253   });
11254 
11255   // Remove duplicates.
11256   array_pod_sort(Terms.begin(), Terms.end());
11257   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11258 
11259   // Put larger terms first.
11260   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11261     return numberOfTerms(LHS) > numberOfTerms(RHS);
11262   });
11263 
11264   // Try to divide all terms by the element size. If term is not divisible by
11265   // element size, proceed with the original term.
11266   for (const SCEV *&Term : Terms) {
11267     const SCEV *Q, *R;
11268     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11269     if (!Q->isZero())
11270       Term = Q;
11271   }
11272 
11273   SmallVector<const SCEV *, 4> NewTerms;
11274 
11275   // Remove constant factors.
11276   for (const SCEV *T : Terms)
11277     if (const SCEV *NewT = removeConstantFactors(*this, T))
11278       NewTerms.push_back(NewT);
11279 
11280   LLVM_DEBUG({
11281     dbgs() << "Terms after sorting:\n";
11282     for (const SCEV *T : NewTerms)
11283       dbgs() << *T << "\n";
11284   });
11285 
11286   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11287     Sizes.clear();
11288     return;
11289   }
11290 
11291   // The last element to be pushed into Sizes is the size of an element.
11292   Sizes.push_back(ElementSize);
11293 
11294   LLVM_DEBUG({
11295     dbgs() << "Sizes:\n";
11296     for (const SCEV *S : Sizes)
11297       dbgs() << *S << "\n";
11298   });
11299 }
11300 
11301 void ScalarEvolution::computeAccessFunctions(
11302     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11303     SmallVectorImpl<const SCEV *> &Sizes) {
11304   // Early exit in case this SCEV is not an affine multivariate function.
11305   if (Sizes.empty())
11306     return;
11307 
11308   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11309     if (!AR->isAffine())
11310       return;
11311 
11312   const SCEV *Res = Expr;
11313   int Last = Sizes.size() - 1;
11314   for (int i = Last; i >= 0; i--) {
11315     const SCEV *Q, *R;
11316     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11317 
11318     LLVM_DEBUG({
11319       dbgs() << "Res: " << *Res << "\n";
11320       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11321       dbgs() << "Res divided by Sizes[i]:\n";
11322       dbgs() << "Quotient: " << *Q << "\n";
11323       dbgs() << "Remainder: " << *R << "\n";
11324     });
11325 
11326     Res = Q;
11327 
11328     // Do not record the last subscript corresponding to the size of elements in
11329     // the array.
11330     if (i == Last) {
11331 
11332       // Bail out if the remainder is too complex.
11333       if (isa<SCEVAddRecExpr>(R)) {
11334         Subscripts.clear();
11335         Sizes.clear();
11336         return;
11337       }
11338 
11339       continue;
11340     }
11341 
11342     // Record the access function for the current subscript.
11343     Subscripts.push_back(R);
11344   }
11345 
11346   // Also push in last position the remainder of the last division: it will be
11347   // the access function of the innermost dimension.
11348   Subscripts.push_back(Res);
11349 
11350   std::reverse(Subscripts.begin(), Subscripts.end());
11351 
11352   LLVM_DEBUG({
11353     dbgs() << "Subscripts:\n";
11354     for (const SCEV *S : Subscripts)
11355       dbgs() << *S << "\n";
11356   });
11357 }
11358 
11359 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11360 /// sizes of an array access. Returns the remainder of the delinearization that
11361 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11362 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11363 /// expressions in the stride and base of a SCEV corresponding to the
11364 /// computation of a GCD (greatest common divisor) of base and stride.  When
11365 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11366 ///
11367 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11368 ///
11369 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11370 ///
11371 ///    for (long i = 0; i < n; i++)
11372 ///      for (long j = 0; j < m; j++)
11373 ///        for (long k = 0; k < o; k++)
11374 ///          A[i][j][k] = 1.0;
11375 ///  }
11376 ///
11377 /// the delinearization input is the following AddRec SCEV:
11378 ///
11379 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11380 ///
11381 /// From this SCEV, we are able to say that the base offset of the access is %A
11382 /// because it appears as an offset that does not divide any of the strides in
11383 /// the loops:
11384 ///
11385 ///  CHECK: Base offset: %A
11386 ///
11387 /// and then SCEV->delinearize determines the size of some of the dimensions of
11388 /// the array as these are the multiples by which the strides are happening:
11389 ///
11390 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11391 ///
11392 /// Note that the outermost dimension remains of UnknownSize because there are
11393 /// no strides that would help identifying the size of the last dimension: when
11394 /// the array has been statically allocated, one could compute the size of that
11395 /// dimension by dividing the overall size of the array by the size of the known
11396 /// dimensions: %m * %o * 8.
11397 ///
11398 /// Finally delinearize provides the access functions for the array reference
11399 /// that does correspond to A[i][j][k] of the above C testcase:
11400 ///
11401 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11402 ///
11403 /// The testcases are checking the output of a function pass:
11404 /// DelinearizationPass that walks through all loads and stores of a function
11405 /// asking for the SCEV of the memory access with respect to all enclosing
11406 /// loops, calling SCEV->delinearize on that and printing the results.
11407 void ScalarEvolution::delinearize(const SCEV *Expr,
11408                                  SmallVectorImpl<const SCEV *> &Subscripts,
11409                                  SmallVectorImpl<const SCEV *> &Sizes,
11410                                  const SCEV *ElementSize) {
11411   // First step: collect parametric terms.
11412   SmallVector<const SCEV *, 4> Terms;
11413   collectParametricTerms(Expr, Terms);
11414 
11415   if (Terms.empty())
11416     return;
11417 
11418   // Second step: find subscript sizes.
11419   findArrayDimensions(Terms, Sizes, ElementSize);
11420 
11421   if (Sizes.empty())
11422     return;
11423 
11424   // Third step: compute the access functions for each subscript.
11425   computeAccessFunctions(Expr, Subscripts, Sizes);
11426 
11427   if (Subscripts.empty())
11428     return;
11429 
11430   LLVM_DEBUG({
11431     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11432     dbgs() << "ArrayDecl[UnknownSize]";
11433     for (const SCEV *S : Sizes)
11434       dbgs() << "[" << *S << "]";
11435 
11436     dbgs() << "\nArrayRef";
11437     for (const SCEV *S : Subscripts)
11438       dbgs() << "[" << *S << "]";
11439     dbgs() << "\n";
11440   });
11441 }
11442 
11443 bool ScalarEvolution::getIndexExpressionsFromGEP(
11444     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11445     SmallVectorImpl<int> &Sizes) {
11446   assert(Subscripts.empty() && Sizes.empty() &&
11447          "Expected output lists to be empty on entry to this function.");
11448   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11449   Type *Ty = GEP->getPointerOperandType();
11450   bool DroppedFirstDim = false;
11451   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11452     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11453     if (i == 1) {
11454       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11455         Ty = PtrTy->getElementType();
11456       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11457         Ty = ArrayTy->getElementType();
11458       } else {
11459         Subscripts.clear();
11460         Sizes.clear();
11461         return false;
11462       }
11463       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11464         if (Const->getValue()->isZero()) {
11465           DroppedFirstDim = true;
11466           continue;
11467         }
11468       Subscripts.push_back(Expr);
11469       continue;
11470     }
11471 
11472     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11473     if (!ArrayTy) {
11474       Subscripts.clear();
11475       Sizes.clear();
11476       return false;
11477     }
11478 
11479     Subscripts.push_back(Expr);
11480     if (!(DroppedFirstDim && i == 2))
11481       Sizes.push_back(ArrayTy->getNumElements());
11482 
11483     Ty = ArrayTy->getElementType();
11484   }
11485   return !Subscripts.empty();
11486 }
11487 
11488 //===----------------------------------------------------------------------===//
11489 //                   SCEVCallbackVH Class Implementation
11490 //===----------------------------------------------------------------------===//
11491 
11492 void ScalarEvolution::SCEVCallbackVH::deleted() {
11493   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11494   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11495     SE->ConstantEvolutionLoopExitValue.erase(PN);
11496   SE->eraseValueFromMap(getValPtr());
11497   // this now dangles!
11498 }
11499 
11500 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11501   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11502 
11503   // Forget all the expressions associated with users of the old value,
11504   // so that future queries will recompute the expressions using the new
11505   // value.
11506   Value *Old = getValPtr();
11507   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11508   SmallPtrSet<User *, 8> Visited;
11509   while (!Worklist.empty()) {
11510     User *U = Worklist.pop_back_val();
11511     // Deleting the Old value will cause this to dangle. Postpone
11512     // that until everything else is done.
11513     if (U == Old)
11514       continue;
11515     if (!Visited.insert(U).second)
11516       continue;
11517     if (PHINode *PN = dyn_cast<PHINode>(U))
11518       SE->ConstantEvolutionLoopExitValue.erase(PN);
11519     SE->eraseValueFromMap(U);
11520     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11521   }
11522   // Delete the Old value.
11523   if (PHINode *PN = dyn_cast<PHINode>(Old))
11524     SE->ConstantEvolutionLoopExitValue.erase(PN);
11525   SE->eraseValueFromMap(Old);
11526   // this now dangles!
11527 }
11528 
11529 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11530   : CallbackVH(V), SE(se) {}
11531 
11532 //===----------------------------------------------------------------------===//
11533 //                   ScalarEvolution Class Implementation
11534 //===----------------------------------------------------------------------===//
11535 
11536 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11537                                  AssumptionCache &AC, DominatorTree &DT,
11538                                  LoopInfo &LI)
11539     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11540       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11541       LoopDispositions(64), BlockDispositions(64) {
11542   // To use guards for proving predicates, we need to scan every instruction in
11543   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11544   // time if the IR does not actually contain any calls to
11545   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11546   //
11547   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11548   // to _add_ guards to the module when there weren't any before, and wants
11549   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11550   // efficient in lieu of being smart in that rather obscure case.
11551 
11552   auto *GuardDecl = F.getParent()->getFunction(
11553       Intrinsic::getName(Intrinsic::experimental_guard));
11554   HasGuards = GuardDecl && !GuardDecl->use_empty();
11555 }
11556 
11557 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11558     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11559       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11560       ValueExprMap(std::move(Arg.ValueExprMap)),
11561       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11562       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11563       PendingMerges(std::move(Arg.PendingMerges)),
11564       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11565       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11566       PredicatedBackedgeTakenCounts(
11567           std::move(Arg.PredicatedBackedgeTakenCounts)),
11568       ConstantEvolutionLoopExitValue(
11569           std::move(Arg.ConstantEvolutionLoopExitValue)),
11570       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11571       LoopDispositions(std::move(Arg.LoopDispositions)),
11572       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11573       BlockDispositions(std::move(Arg.BlockDispositions)),
11574       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11575       SignedRanges(std::move(Arg.SignedRanges)),
11576       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11577       UniquePreds(std::move(Arg.UniquePreds)),
11578       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11579       LoopUsers(std::move(Arg.LoopUsers)),
11580       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11581       FirstUnknown(Arg.FirstUnknown) {
11582   Arg.FirstUnknown = nullptr;
11583 }
11584 
11585 ScalarEvolution::~ScalarEvolution() {
11586   // Iterate through all the SCEVUnknown instances and call their
11587   // destructors, so that they release their references to their values.
11588   for (SCEVUnknown *U = FirstUnknown; U;) {
11589     SCEVUnknown *Tmp = U;
11590     U = U->Next;
11591     Tmp->~SCEVUnknown();
11592   }
11593   FirstUnknown = nullptr;
11594 
11595   ExprValueMap.clear();
11596   ValueExprMap.clear();
11597   HasRecMap.clear();
11598 
11599   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11600   // that a loop had multiple computable exits.
11601   for (auto &BTCI : BackedgeTakenCounts)
11602     BTCI.second.clear();
11603   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11604     BTCI.second.clear();
11605 
11606   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11607   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11608   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11609   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11610   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11611 }
11612 
11613 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11614   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11615 }
11616 
11617 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11618                           const Loop *L) {
11619   // Print all inner loops first
11620   for (Loop *I : *L)
11621     PrintLoopInfo(OS, SE, I);
11622 
11623   OS << "Loop ";
11624   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11625   OS << ": ";
11626 
11627   SmallVector<BasicBlock *, 8> ExitingBlocks;
11628   L->getExitingBlocks(ExitingBlocks);
11629   if (ExitingBlocks.size() != 1)
11630     OS << "<multiple exits> ";
11631 
11632   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11633     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11634   else
11635     OS << "Unpredictable backedge-taken count.\n";
11636 
11637   if (ExitingBlocks.size() > 1)
11638     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11639       OS << "  exit count for " << ExitingBlock->getName() << ": "
11640          << *SE->getExitCount(L, ExitingBlock) << "\n";
11641     }
11642 
11643   OS << "Loop ";
11644   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11645   OS << ": ";
11646 
11647   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11648     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11649     if (SE->isBackedgeTakenCountMaxOrZero(L))
11650       OS << ", actual taken count either this or zero.";
11651   } else {
11652     OS << "Unpredictable max backedge-taken count. ";
11653   }
11654 
11655   OS << "\n"
11656         "Loop ";
11657   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11658   OS << ": ";
11659 
11660   SCEVUnionPredicate Pred;
11661   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11662   if (!isa<SCEVCouldNotCompute>(PBT)) {
11663     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11664     OS << " Predicates:\n";
11665     Pred.print(OS, 4);
11666   } else {
11667     OS << "Unpredictable predicated backedge-taken count. ";
11668   }
11669   OS << "\n";
11670 
11671   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11672     OS << "Loop ";
11673     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11674     OS << ": ";
11675     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11676   }
11677 }
11678 
11679 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11680   switch (LD) {
11681   case ScalarEvolution::LoopVariant:
11682     return "Variant";
11683   case ScalarEvolution::LoopInvariant:
11684     return "Invariant";
11685   case ScalarEvolution::LoopComputable:
11686     return "Computable";
11687   }
11688   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11689 }
11690 
11691 void ScalarEvolution::print(raw_ostream &OS) const {
11692   // ScalarEvolution's implementation of the print method is to print
11693   // out SCEV values of all instructions that are interesting. Doing
11694   // this potentially causes it to create new SCEV objects though,
11695   // which technically conflicts with the const qualifier. This isn't
11696   // observable from outside the class though, so casting away the
11697   // const isn't dangerous.
11698   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11699 
11700   if (ClassifyExpressions) {
11701     OS << "Classifying expressions for: ";
11702     F.printAsOperand(OS, /*PrintType=*/false);
11703     OS << "\n";
11704     for (Instruction &I : instructions(F))
11705       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11706         OS << I << '\n';
11707         OS << "  -->  ";
11708         const SCEV *SV = SE.getSCEV(&I);
11709         SV->print(OS);
11710         if (!isa<SCEVCouldNotCompute>(SV)) {
11711           OS << " U: ";
11712           SE.getUnsignedRange(SV).print(OS);
11713           OS << " S: ";
11714           SE.getSignedRange(SV).print(OS);
11715         }
11716 
11717         const Loop *L = LI.getLoopFor(I.getParent());
11718 
11719         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11720         if (AtUse != SV) {
11721           OS << "  -->  ";
11722           AtUse->print(OS);
11723           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11724             OS << " U: ";
11725             SE.getUnsignedRange(AtUse).print(OS);
11726             OS << " S: ";
11727             SE.getSignedRange(AtUse).print(OS);
11728           }
11729         }
11730 
11731         if (L) {
11732           OS << "\t\t" "Exits: ";
11733           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11734           if (!SE.isLoopInvariant(ExitValue, L)) {
11735             OS << "<<Unknown>>";
11736           } else {
11737             OS << *ExitValue;
11738           }
11739 
11740           bool First = true;
11741           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11742             if (First) {
11743               OS << "\t\t" "LoopDispositions: { ";
11744               First = false;
11745             } else {
11746               OS << ", ";
11747             }
11748 
11749             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11750             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11751           }
11752 
11753           for (auto *InnerL : depth_first(L)) {
11754             if (InnerL == L)
11755               continue;
11756             if (First) {
11757               OS << "\t\t" "LoopDispositions: { ";
11758               First = false;
11759             } else {
11760               OS << ", ";
11761             }
11762 
11763             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11764             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11765           }
11766 
11767           OS << " }";
11768         }
11769 
11770         OS << "\n";
11771       }
11772   }
11773 
11774   OS << "Determining loop execution counts for: ";
11775   F.printAsOperand(OS, /*PrintType=*/false);
11776   OS << "\n";
11777   for (Loop *I : LI)
11778     PrintLoopInfo(OS, &SE, I);
11779 }
11780 
11781 ScalarEvolution::LoopDisposition
11782 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11783   auto &Values = LoopDispositions[S];
11784   for (auto &V : Values) {
11785     if (V.getPointer() == L)
11786       return V.getInt();
11787   }
11788   Values.emplace_back(L, LoopVariant);
11789   LoopDisposition D = computeLoopDisposition(S, L);
11790   auto &Values2 = LoopDispositions[S];
11791   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11792     if (V.getPointer() == L) {
11793       V.setInt(D);
11794       break;
11795     }
11796   }
11797   return D;
11798 }
11799 
11800 ScalarEvolution::LoopDisposition
11801 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11802   switch (S->getSCEVType()) {
11803   case scConstant:
11804     return LoopInvariant;
11805   case scTruncate:
11806   case scZeroExtend:
11807   case scSignExtend:
11808     return getLoopDisposition(cast<SCEVIntegralCastExpr>(S)->getOperand(), L);
11809   case scAddRecExpr: {
11810     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11811 
11812     // If L is the addrec's loop, it's computable.
11813     if (AR->getLoop() == L)
11814       return LoopComputable;
11815 
11816     // Add recurrences are never invariant in the function-body (null loop).
11817     if (!L)
11818       return LoopVariant;
11819 
11820     // Everything that is not defined at loop entry is variant.
11821     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11822       return LoopVariant;
11823     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11824            " dominate the contained loop's header?");
11825 
11826     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11827     if (AR->getLoop()->contains(L))
11828       return LoopInvariant;
11829 
11830     // This recurrence is variant w.r.t. L if any of its operands
11831     // are variant.
11832     for (auto *Op : AR->operands())
11833       if (!isLoopInvariant(Op, L))
11834         return LoopVariant;
11835 
11836     // Otherwise it's loop-invariant.
11837     return LoopInvariant;
11838   }
11839   case scAddExpr:
11840   case scMulExpr:
11841   case scUMaxExpr:
11842   case scSMaxExpr:
11843   case scUMinExpr:
11844   case scSMinExpr: {
11845     bool HasVarying = false;
11846     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11847       LoopDisposition D = getLoopDisposition(Op, L);
11848       if (D == LoopVariant)
11849         return LoopVariant;
11850       if (D == LoopComputable)
11851         HasVarying = true;
11852     }
11853     return HasVarying ? LoopComputable : LoopInvariant;
11854   }
11855   case scUDivExpr: {
11856     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11857     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11858     if (LD == LoopVariant)
11859       return LoopVariant;
11860     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11861     if (RD == LoopVariant)
11862       return LoopVariant;
11863     return (LD == LoopInvariant && RD == LoopInvariant) ?
11864            LoopInvariant : LoopComputable;
11865   }
11866   case scUnknown:
11867     // All non-instruction values are loop invariant.  All instructions are loop
11868     // invariant if they are not contained in the specified loop.
11869     // Instructions are never considered invariant in the function body
11870     // (null loop) because they are defined within the "loop".
11871     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11872       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11873     return LoopInvariant;
11874   case scCouldNotCompute:
11875     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11876   }
11877   llvm_unreachable("Unknown SCEV kind!");
11878 }
11879 
11880 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11881   return getLoopDisposition(S, L) == LoopInvariant;
11882 }
11883 
11884 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11885   return getLoopDisposition(S, L) == LoopComputable;
11886 }
11887 
11888 ScalarEvolution::BlockDisposition
11889 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11890   auto &Values = BlockDispositions[S];
11891   for (auto &V : Values) {
11892     if (V.getPointer() == BB)
11893       return V.getInt();
11894   }
11895   Values.emplace_back(BB, DoesNotDominateBlock);
11896   BlockDisposition D = computeBlockDisposition(S, BB);
11897   auto &Values2 = BlockDispositions[S];
11898   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11899     if (V.getPointer() == BB) {
11900       V.setInt(D);
11901       break;
11902     }
11903   }
11904   return D;
11905 }
11906 
11907 ScalarEvolution::BlockDisposition
11908 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11909   switch (S->getSCEVType()) {
11910   case scConstant:
11911     return ProperlyDominatesBlock;
11912   case scTruncate:
11913   case scZeroExtend:
11914   case scSignExtend:
11915     return getBlockDisposition(cast<SCEVIntegralCastExpr>(S)->getOperand(), BB);
11916   case scAddRecExpr: {
11917     // This uses a "dominates" query instead of "properly dominates" query
11918     // to test for proper dominance too, because the instruction which
11919     // produces the addrec's value is a PHI, and a PHI effectively properly
11920     // dominates its entire containing block.
11921     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11922     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11923       return DoesNotDominateBlock;
11924 
11925     // Fall through into SCEVNAryExpr handling.
11926     LLVM_FALLTHROUGH;
11927   }
11928   case scAddExpr:
11929   case scMulExpr:
11930   case scUMaxExpr:
11931   case scSMaxExpr:
11932   case scUMinExpr:
11933   case scSMinExpr: {
11934     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11935     bool Proper = true;
11936     for (const SCEV *NAryOp : NAry->operands()) {
11937       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11938       if (D == DoesNotDominateBlock)
11939         return DoesNotDominateBlock;
11940       if (D == DominatesBlock)
11941         Proper = false;
11942     }
11943     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11944   }
11945   case scUDivExpr: {
11946     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11947     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11948     BlockDisposition LD = getBlockDisposition(LHS, BB);
11949     if (LD == DoesNotDominateBlock)
11950       return DoesNotDominateBlock;
11951     BlockDisposition RD = getBlockDisposition(RHS, BB);
11952     if (RD == DoesNotDominateBlock)
11953       return DoesNotDominateBlock;
11954     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11955       ProperlyDominatesBlock : DominatesBlock;
11956   }
11957   case scUnknown:
11958     if (Instruction *I =
11959           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11960       if (I->getParent() == BB)
11961         return DominatesBlock;
11962       if (DT.properlyDominates(I->getParent(), BB))
11963         return ProperlyDominatesBlock;
11964       return DoesNotDominateBlock;
11965     }
11966     return ProperlyDominatesBlock;
11967   case scCouldNotCompute:
11968     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11969   }
11970   llvm_unreachable("Unknown SCEV kind!");
11971 }
11972 
11973 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11974   return getBlockDisposition(S, BB) >= DominatesBlock;
11975 }
11976 
11977 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11978   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11979 }
11980 
11981 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11982   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11983 }
11984 
11985 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11986   auto IsS = [&](const SCEV *X) { return S == X; };
11987   auto ContainsS = [&](const SCEV *X) {
11988     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11989   };
11990   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11991 }
11992 
11993 void
11994 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11995   ValuesAtScopes.erase(S);
11996   LoopDispositions.erase(S);
11997   BlockDispositions.erase(S);
11998   UnsignedRanges.erase(S);
11999   SignedRanges.erase(S);
12000   ExprValueMap.erase(S);
12001   HasRecMap.erase(S);
12002   MinTrailingZerosCache.erase(S);
12003 
12004   for (auto I = PredicatedSCEVRewrites.begin();
12005        I != PredicatedSCEVRewrites.end();) {
12006     std::pair<const SCEV *, const Loop *> Entry = I->first;
12007     if (Entry.first == S)
12008       PredicatedSCEVRewrites.erase(I++);
12009     else
12010       ++I;
12011   }
12012 
12013   auto RemoveSCEVFromBackedgeMap =
12014       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12015         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12016           BackedgeTakenInfo &BEInfo = I->second;
12017           if (BEInfo.hasOperand(S, this)) {
12018             BEInfo.clear();
12019             Map.erase(I++);
12020           } else
12021             ++I;
12022         }
12023       };
12024 
12025   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12026   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12027 }
12028 
12029 void
12030 ScalarEvolution::getUsedLoops(const SCEV *S,
12031                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12032   struct FindUsedLoops {
12033     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12034         : LoopsUsed(LoopsUsed) {}
12035     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12036     bool follow(const SCEV *S) {
12037       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12038         LoopsUsed.insert(AR->getLoop());
12039       return true;
12040     }
12041 
12042     bool isDone() const { return false; }
12043   };
12044 
12045   FindUsedLoops F(LoopsUsed);
12046   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12047 }
12048 
12049 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12050   SmallPtrSet<const Loop *, 8> LoopsUsed;
12051   getUsedLoops(S, LoopsUsed);
12052   for (auto *L : LoopsUsed)
12053     LoopUsers[L].push_back(S);
12054 }
12055 
12056 void ScalarEvolution::verify() const {
12057   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12058   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12059 
12060   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12061 
12062   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12063   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12064     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12065 
12066     const SCEV *visitConstant(const SCEVConstant *Constant) {
12067       return SE.getConstant(Constant->getAPInt());
12068     }
12069 
12070     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12071       return SE.getUnknown(Expr->getValue());
12072     }
12073 
12074     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12075       return SE.getCouldNotCompute();
12076     }
12077   };
12078 
12079   SCEVMapper SCM(SE2);
12080 
12081   while (!LoopStack.empty()) {
12082     auto *L = LoopStack.pop_back_val();
12083     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12084 
12085     auto *CurBECount = SCM.visit(
12086         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12087     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12088 
12089     if (CurBECount == SE2.getCouldNotCompute() ||
12090         NewBECount == SE2.getCouldNotCompute()) {
12091       // NB! This situation is legal, but is very suspicious -- whatever pass
12092       // change the loop to make a trip count go from could not compute to
12093       // computable or vice-versa *should have* invalidated SCEV.  However, we
12094       // choose not to assert here (for now) since we don't want false
12095       // positives.
12096       continue;
12097     }
12098 
12099     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12100       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12101       // not propagate undef aggressively).  This means we can (and do) fail
12102       // verification in cases where a transform makes the trip count of a loop
12103       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12104       // both cases the loop iterates "undef" times, but SCEV thinks we
12105       // increased the trip count of the loop by 1 incorrectly.
12106       continue;
12107     }
12108 
12109     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12110         SE.getTypeSizeInBits(NewBECount->getType()))
12111       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12112     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12113              SE.getTypeSizeInBits(NewBECount->getType()))
12114       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12115 
12116     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12117 
12118     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12119     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12120       dbgs() << "Trip Count for " << *L << " Changed!\n";
12121       dbgs() << "Old: " << *CurBECount << "\n";
12122       dbgs() << "New: " << *NewBECount << "\n";
12123       dbgs() << "Delta: " << *Delta << "\n";
12124       std::abort();
12125     }
12126   }
12127 
12128   // Collect all valid loops currently in LoopInfo.
12129   SmallPtrSet<Loop *, 32> ValidLoops;
12130   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12131   while (!Worklist.empty()) {
12132     Loop *L = Worklist.pop_back_val();
12133     if (ValidLoops.contains(L))
12134       continue;
12135     ValidLoops.insert(L);
12136     Worklist.append(L->begin(), L->end());
12137   }
12138   // Check for SCEV expressions referencing invalid/deleted loops.
12139   for (auto &KV : ValueExprMap) {
12140     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12141     if (!AR)
12142       continue;
12143     assert(ValidLoops.contains(AR->getLoop()) &&
12144            "AddRec references invalid loop");
12145   }
12146 }
12147 
12148 bool ScalarEvolution::invalidate(
12149     Function &F, const PreservedAnalyses &PA,
12150     FunctionAnalysisManager::Invalidator &Inv) {
12151   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12152   // of its dependencies is invalidated.
12153   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12154   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12155          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12156          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12157          Inv.invalidate<LoopAnalysis>(F, PA);
12158 }
12159 
12160 AnalysisKey ScalarEvolutionAnalysis::Key;
12161 
12162 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12163                                              FunctionAnalysisManager &AM) {
12164   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12165                          AM.getResult<AssumptionAnalysis>(F),
12166                          AM.getResult<DominatorTreeAnalysis>(F),
12167                          AM.getResult<LoopAnalysis>(F));
12168 }
12169 
12170 PreservedAnalyses
12171 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12172   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12173   return PreservedAnalyses::all();
12174 }
12175 
12176 PreservedAnalyses
12177 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12178   // For compatibility with opt's -analyze feature under legacy pass manager
12179   // which was not ported to NPM. This keeps tests using
12180   // update_analyze_test_checks.py working.
12181   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12182      << F.getName() << "':\n";
12183   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12184   return PreservedAnalyses::all();
12185 }
12186 
12187 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12188                       "Scalar Evolution Analysis", false, true)
12189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12190 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12192 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12193 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12194                     "Scalar Evolution Analysis", false, true)
12195 
12196 char ScalarEvolutionWrapperPass::ID = 0;
12197 
12198 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12199   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12200 }
12201 
12202 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12203   SE.reset(new ScalarEvolution(
12204       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12205       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12206       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12207       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12208   return false;
12209 }
12210 
12211 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12212 
12213 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12214   SE->print(OS);
12215 }
12216 
12217 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12218   if (!VerifySCEV)
12219     return;
12220 
12221   SE->verify();
12222 }
12223 
12224 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12225   AU.setPreservesAll();
12226   AU.addRequiredTransitive<AssumptionCacheTracker>();
12227   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12228   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12229   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12230 }
12231 
12232 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12233                                                         const SCEV *RHS) {
12234   FoldingSetNodeID ID;
12235   assert(LHS->getType() == RHS->getType() &&
12236          "Type mismatch between LHS and RHS");
12237   // Unique this node based on the arguments
12238   ID.AddInteger(SCEVPredicate::P_Equal);
12239   ID.AddPointer(LHS);
12240   ID.AddPointer(RHS);
12241   void *IP = nullptr;
12242   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12243     return S;
12244   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12245       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12246   UniquePreds.InsertNode(Eq, IP);
12247   return Eq;
12248 }
12249 
12250 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12251     const SCEVAddRecExpr *AR,
12252     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12253   FoldingSetNodeID ID;
12254   // Unique this node based on the arguments
12255   ID.AddInteger(SCEVPredicate::P_Wrap);
12256   ID.AddPointer(AR);
12257   ID.AddInteger(AddedFlags);
12258   void *IP = nullptr;
12259   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12260     return S;
12261   auto *OF = new (SCEVAllocator)
12262       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12263   UniquePreds.InsertNode(OF, IP);
12264   return OF;
12265 }
12266 
12267 namespace {
12268 
12269 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12270 public:
12271 
12272   /// Rewrites \p S in the context of a loop L and the SCEV predication
12273   /// infrastructure.
12274   ///
12275   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12276   /// equivalences present in \p Pred.
12277   ///
12278   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12279   /// \p NewPreds such that the result will be an AddRecExpr.
12280   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12281                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12282                              SCEVUnionPredicate *Pred) {
12283     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12284     return Rewriter.visit(S);
12285   }
12286 
12287   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12288     if (Pred) {
12289       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12290       for (auto *Pred : ExprPreds)
12291         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12292           if (IPred->getLHS() == Expr)
12293             return IPred->getRHS();
12294     }
12295     return convertToAddRecWithPreds(Expr);
12296   }
12297 
12298   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12299     const SCEV *Operand = visit(Expr->getOperand());
12300     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12301     if (AR && AR->getLoop() == L && AR->isAffine()) {
12302       // This couldn't be folded because the operand didn't have the nuw
12303       // flag. Add the nusw flag as an assumption that we could make.
12304       const SCEV *Step = AR->getStepRecurrence(SE);
12305       Type *Ty = Expr->getType();
12306       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12307         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12308                                 SE.getSignExtendExpr(Step, Ty), L,
12309                                 AR->getNoWrapFlags());
12310     }
12311     return SE.getZeroExtendExpr(Operand, Expr->getType());
12312   }
12313 
12314   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12315     const SCEV *Operand = visit(Expr->getOperand());
12316     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12317     if (AR && AR->getLoop() == L && AR->isAffine()) {
12318       // This couldn't be folded because the operand didn't have the nsw
12319       // flag. Add the nssw flag as an assumption that we could make.
12320       const SCEV *Step = AR->getStepRecurrence(SE);
12321       Type *Ty = Expr->getType();
12322       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12323         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12324                                 SE.getSignExtendExpr(Step, Ty), L,
12325                                 AR->getNoWrapFlags());
12326     }
12327     return SE.getSignExtendExpr(Operand, Expr->getType());
12328   }
12329 
12330 private:
12331   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12332                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12333                         SCEVUnionPredicate *Pred)
12334       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12335 
12336   bool addOverflowAssumption(const SCEVPredicate *P) {
12337     if (!NewPreds) {
12338       // Check if we've already made this assumption.
12339       return Pred && Pred->implies(P);
12340     }
12341     NewPreds->insert(P);
12342     return true;
12343   }
12344 
12345   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12346                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12347     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12348     return addOverflowAssumption(A);
12349   }
12350 
12351   // If \p Expr represents a PHINode, we try to see if it can be represented
12352   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12353   // to add this predicate as a runtime overflow check, we return the AddRec.
12354   // If \p Expr does not meet these conditions (is not a PHI node, or we
12355   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12356   // return \p Expr.
12357   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12358     if (!isa<PHINode>(Expr->getValue()))
12359       return Expr;
12360     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12361     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12362     if (!PredicatedRewrite)
12363       return Expr;
12364     for (auto *P : PredicatedRewrite->second){
12365       // Wrap predicates from outer loops are not supported.
12366       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12367         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12368         if (L != AR->getLoop())
12369           return Expr;
12370       }
12371       if (!addOverflowAssumption(P))
12372         return Expr;
12373     }
12374     return PredicatedRewrite->first;
12375   }
12376 
12377   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12378   SCEVUnionPredicate *Pred;
12379   const Loop *L;
12380 };
12381 
12382 } // end anonymous namespace
12383 
12384 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12385                                                    SCEVUnionPredicate &Preds) {
12386   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12387 }
12388 
12389 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12390     const SCEV *S, const Loop *L,
12391     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12392   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12393   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12394   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12395 
12396   if (!AddRec)
12397     return nullptr;
12398 
12399   // Since the transformation was successful, we can now transfer the SCEV
12400   // predicates.
12401   for (auto *P : TransformPreds)
12402     Preds.insert(P);
12403 
12404   return AddRec;
12405 }
12406 
12407 /// SCEV predicates
12408 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12409                              SCEVPredicateKind Kind)
12410     : FastID(ID), Kind(Kind) {}
12411 
12412 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12413                                        const SCEV *LHS, const SCEV *RHS)
12414     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12415   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12416   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12417 }
12418 
12419 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12420   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12421 
12422   if (!Op)
12423     return false;
12424 
12425   return Op->LHS == LHS && Op->RHS == RHS;
12426 }
12427 
12428 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12429 
12430 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12431 
12432 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12433   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12434 }
12435 
12436 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12437                                      const SCEVAddRecExpr *AR,
12438                                      IncrementWrapFlags Flags)
12439     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12440 
12441 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12442 
12443 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12444   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12445 
12446   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12447 }
12448 
12449 bool SCEVWrapPredicate::isAlwaysTrue() const {
12450   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12451   IncrementWrapFlags IFlags = Flags;
12452 
12453   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12454     IFlags = clearFlags(IFlags, IncrementNSSW);
12455 
12456   return IFlags == IncrementAnyWrap;
12457 }
12458 
12459 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12460   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12461   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12462     OS << "<nusw>";
12463   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12464     OS << "<nssw>";
12465   OS << "\n";
12466 }
12467 
12468 SCEVWrapPredicate::IncrementWrapFlags
12469 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12470                                    ScalarEvolution &SE) {
12471   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12472   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12473 
12474   // We can safely transfer the NSW flag as NSSW.
12475   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12476     ImpliedFlags = IncrementNSSW;
12477 
12478   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12479     // If the increment is positive, the SCEV NUW flag will also imply the
12480     // WrapPredicate NUSW flag.
12481     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12482       if (Step->getValue()->getValue().isNonNegative())
12483         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12484   }
12485 
12486   return ImpliedFlags;
12487 }
12488 
12489 /// Union predicates don't get cached so create a dummy set ID for it.
12490 SCEVUnionPredicate::SCEVUnionPredicate()
12491     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12492 
12493 bool SCEVUnionPredicate::isAlwaysTrue() const {
12494   return all_of(Preds,
12495                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12496 }
12497 
12498 ArrayRef<const SCEVPredicate *>
12499 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12500   auto I = SCEVToPreds.find(Expr);
12501   if (I == SCEVToPreds.end())
12502     return ArrayRef<const SCEVPredicate *>();
12503   return I->second;
12504 }
12505 
12506 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12507   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12508     return all_of(Set->Preds,
12509                   [this](const SCEVPredicate *I) { return this->implies(I); });
12510 
12511   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12512   if (ScevPredsIt == SCEVToPreds.end())
12513     return false;
12514   auto &SCEVPreds = ScevPredsIt->second;
12515 
12516   return any_of(SCEVPreds,
12517                 [N](const SCEVPredicate *I) { return I->implies(N); });
12518 }
12519 
12520 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12521 
12522 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12523   for (auto Pred : Preds)
12524     Pred->print(OS, Depth);
12525 }
12526 
12527 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12528   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12529     for (auto Pred : Set->Preds)
12530       add(Pred);
12531     return;
12532   }
12533 
12534   if (implies(N))
12535     return;
12536 
12537   const SCEV *Key = N->getExpr();
12538   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12539                 " associated expression!");
12540 
12541   SCEVToPreds[Key].push_back(N);
12542   Preds.push_back(N);
12543 }
12544 
12545 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12546                                                      Loop &L)
12547     : SE(SE), L(L) {}
12548 
12549 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12550   const SCEV *Expr = SE.getSCEV(V);
12551   RewriteEntry &Entry = RewriteMap[Expr];
12552 
12553   // If we already have an entry and the version matches, return it.
12554   if (Entry.second && Generation == Entry.first)
12555     return Entry.second;
12556 
12557   // We found an entry but it's stale. Rewrite the stale entry
12558   // according to the current predicate.
12559   if (Entry.second)
12560     Expr = Entry.second;
12561 
12562   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12563   Entry = {Generation, NewSCEV};
12564 
12565   return NewSCEV;
12566 }
12567 
12568 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12569   if (!BackedgeCount) {
12570     SCEVUnionPredicate BackedgePred;
12571     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12572     addPredicate(BackedgePred);
12573   }
12574   return BackedgeCount;
12575 }
12576 
12577 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12578   if (Preds.implies(&Pred))
12579     return;
12580   Preds.add(&Pred);
12581   updateGeneration();
12582 }
12583 
12584 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12585   return Preds;
12586 }
12587 
12588 void PredicatedScalarEvolution::updateGeneration() {
12589   // If the generation number wrapped recompute everything.
12590   if (++Generation == 0) {
12591     for (auto &II : RewriteMap) {
12592       const SCEV *Rewritten = II.second.second;
12593       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12594     }
12595   }
12596 }
12597 
12598 void PredicatedScalarEvolution::setNoOverflow(
12599     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12600   const SCEV *Expr = getSCEV(V);
12601   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12602 
12603   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12604 
12605   // Clear the statically implied flags.
12606   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12607   addPredicate(*SE.getWrapPredicate(AR, Flags));
12608 
12609   auto II = FlagsMap.insert({V, Flags});
12610   if (!II.second)
12611     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12612 }
12613 
12614 bool PredicatedScalarEvolution::hasNoOverflow(
12615     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12616   const SCEV *Expr = getSCEV(V);
12617   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12618 
12619   Flags = SCEVWrapPredicate::clearFlags(
12620       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12621 
12622   auto II = FlagsMap.find(V);
12623 
12624   if (II != FlagsMap.end())
12625     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12626 
12627   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12628 }
12629 
12630 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12631   const SCEV *Expr = this->getSCEV(V);
12632   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12633   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12634 
12635   if (!New)
12636     return nullptr;
12637 
12638   for (auto *P : NewPreds)
12639     Preds.add(P);
12640 
12641   updateGeneration();
12642   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12643   return New;
12644 }
12645 
12646 PredicatedScalarEvolution::PredicatedScalarEvolution(
12647     const PredicatedScalarEvolution &Init)
12648     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12649       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12650   for (auto I : Init.FlagsMap)
12651     FlagsMap.insert(I);
12652 }
12653 
12654 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12655   // For each block.
12656   for (auto *BB : L.getBlocks())
12657     for (auto &I : *BB) {
12658       if (!SE.isSCEVable(I.getType()))
12659         continue;
12660 
12661       auto *Expr = SE.getSCEV(&I);
12662       auto II = RewriteMap.find(Expr);
12663 
12664       if (II == RewriteMap.end())
12665         continue;
12666 
12667       // Don't print things that are not interesting.
12668       if (II->second.second == Expr)
12669         continue;
12670 
12671       OS.indent(Depth) << "[PSE]" << I << ":\n";
12672       OS.indent(Depth + 2) << *Expr << "\n";
12673       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12674     }
12675 }
12676 
12677 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12678 // arbitrary expressions.
12679 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12680 // 4, A / B becomes X / 8).
12681 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12682                                 const SCEV *&RHS) {
12683   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12684   if (Add == nullptr || Add->getNumOperands() != 2)
12685     return false;
12686 
12687   const SCEV *A = Add->getOperand(1);
12688   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12689 
12690   if (Mul == nullptr)
12691     return false;
12692 
12693   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12694     // (SomeExpr + (-(SomeExpr / B) * B)).
12695     if (Expr == getURemExpr(A, B)) {
12696       LHS = A;
12697       RHS = B;
12698       return true;
12699     }
12700     return false;
12701   };
12702 
12703   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12704   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12705     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12706            MatchURemWithDivisor(Mul->getOperand(2));
12707 
12708   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12709   if (Mul->getNumOperands() == 2)
12710     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12711            MatchURemWithDivisor(Mul->getOperand(0)) ||
12712            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12713            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12714   return false;
12715 }
12716 
12717 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) {
12718   SmallVector<BasicBlock*, 16> ExitingBlocks;
12719   L->getExitingBlocks(ExitingBlocks);
12720 
12721   // Form an expression for the maximum exit count possible for this loop. We
12722   // merge the max and exact information to approximate a version of
12723   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
12724   SmallVector<const SCEV*, 4> ExitCounts;
12725   for (BasicBlock *ExitingBB : ExitingBlocks) {
12726     const SCEV *ExitCount = getExitCount(L, ExitingBB);
12727     if (isa<SCEVCouldNotCompute>(ExitCount))
12728       ExitCount = getExitCount(L, ExitingBB,
12729                                   ScalarEvolution::ConstantMaximum);
12730     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
12731       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
12732              "We should only have known counts for exiting blocks that "
12733              "dominate latch!");
12734       ExitCounts.push_back(ExitCount);
12735     }
12736   }
12737   if (ExitCounts.empty())
12738     return getCouldNotCompute();
12739   return getUMinFromMismatchedTypes(ExitCounts);
12740 }
12741 
12742 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
12743 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
12744 /// we cannot guarantee that the replacement is loop invariant in the loop of
12745 /// the AddRec.
12746 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
12747   ValueToSCEVMapTy &Map;
12748 
12749 public:
12750   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
12751       : SCEVRewriteVisitor(SE), Map(M) {}
12752 
12753   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
12754 
12755   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12756     auto I = Map.find(Expr->getValue());
12757     if (I == Map.end())
12758       return Expr;
12759     return I->second;
12760   }
12761 };
12762 
12763 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
12764   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
12765                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
12766     if (!isa<SCEVUnknown>(LHS)) {
12767       std::swap(LHS, RHS);
12768       Predicate = CmpInst::getSwappedPredicate(Predicate);
12769     }
12770 
12771     // For now, limit to conditions that provide information about unknown
12772     // expressions.
12773     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
12774     if (!LHSUnknown)
12775       return;
12776 
12777     // TODO: use information from more predicates.
12778     switch (Predicate) {
12779     case CmpInst::ICMP_ULT: {
12780       if (!containsAddRecurrence(RHS)) {
12781         const SCEV *Base = LHS;
12782         auto I = RewriteMap.find(LHSUnknown->getValue());
12783         if (I != RewriteMap.end())
12784           Base = I->second;
12785 
12786         RewriteMap[LHSUnknown->getValue()] =
12787             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
12788       }
12789       break;
12790     }
12791     case CmpInst::ICMP_ULE: {
12792       if (!containsAddRecurrence(RHS)) {
12793         const SCEV *Base = LHS;
12794         auto I = RewriteMap.find(LHSUnknown->getValue());
12795         if (I != RewriteMap.end())
12796           Base = I->second;
12797         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
12798       }
12799       break;
12800     }
12801     case CmpInst::ICMP_EQ:
12802       if (isa<SCEVConstant>(RHS))
12803         RewriteMap[LHSUnknown->getValue()] = RHS;
12804       break;
12805     case CmpInst::ICMP_NE:
12806       if (isa<SCEVConstant>(RHS) &&
12807           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
12808         RewriteMap[LHSUnknown->getValue()] =
12809             getUMaxExpr(LHS, getOne(RHS->getType()));
12810       break;
12811     default:
12812       break;
12813     }
12814   };
12815   // Starting at the loop predecessor, climb up the predecessor chain, as long
12816   // as there are predecessors that can be found that have unique successors
12817   // leading to the original header.
12818   // TODO: share this logic with isLoopEntryGuardedByCond.
12819   ValueToSCEVMapTy RewriteMap;
12820   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
12821            L->getLoopPredecessor(), L->getHeader());
12822        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
12823 
12824     const BranchInst *LoopEntryPredicate =
12825         dyn_cast<BranchInst>(Pair.first->getTerminator());
12826     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
12827       continue;
12828 
12829     // TODO: use information from more complex conditions, e.g. AND expressions.
12830     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
12831     if (!Cmp)
12832       continue;
12833 
12834     auto Predicate = Cmp->getPredicate();
12835     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
12836       Predicate = CmpInst::getInversePredicate(Predicate);
12837     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
12838                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12839   }
12840 
12841   // Also collect information from assumptions dominating the loop.
12842   for (auto &AssumeVH : AC.assumptions()) {
12843     if (!AssumeVH)
12844       continue;
12845     auto *AssumeI = cast<CallInst>(AssumeVH);
12846     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
12847     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
12848       continue;
12849     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
12850                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12851   }
12852 
12853   if (RewriteMap.empty())
12854     return Expr;
12855   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
12856   return Rewriter.visit(Expr);
12857 }
12858