1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/CallSite.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 451 452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 453 const SCEV *op, Type *ty) 454 : SCEVCastExpr(ID, scTruncate, op, ty) { 455 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 456 "Cannot truncate non-integer value!"); 457 } 458 459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 460 const SCEV *op, Type *ty) 461 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 462 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 463 "Cannot zero extend non-integer value!"); 464 } 465 466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 467 const SCEV *op, Type *ty) 468 : SCEVCastExpr(ID, scSignExtend, op, ty) { 469 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 470 "Cannot sign extend non-integer value!"); 471 } 472 473 void SCEVUnknown::deleted() { 474 // Clear this SCEVUnknown from various maps. 475 SE->forgetMemoizedResults(this); 476 477 // Remove this SCEVUnknown from the uniquing map. 478 SE->UniqueSCEVs.RemoveNode(this); 479 480 // Release the value. 481 setValPtr(nullptr); 482 } 483 484 void SCEVUnknown::allUsesReplacedWith(Value *New) { 485 // Remove this SCEVUnknown from the uniquing map. 486 SE->UniqueSCEVs.RemoveNode(this); 487 488 // Update this SCEVUnknown to point to the new value. This is needed 489 // because there may still be outstanding SCEVs which still point to 490 // this SCEVUnknown. 491 setValPtr(New); 492 } 493 494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 495 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 496 if (VCE->getOpcode() == Instruction::PtrToInt) 497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 498 if (CE->getOpcode() == Instruction::GetElementPtr && 499 CE->getOperand(0)->isNullValue() && 500 CE->getNumOperands() == 2) 501 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 502 if (CI->isOne()) { 503 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 504 ->getElementType(); 505 return true; 506 } 507 508 return false; 509 } 510 511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 513 if (VCE->getOpcode() == Instruction::PtrToInt) 514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 515 if (CE->getOpcode() == Instruction::GetElementPtr && 516 CE->getOperand(0)->isNullValue()) { 517 Type *Ty = 518 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 519 if (StructType *STy = dyn_cast<StructType>(Ty)) 520 if (!STy->isPacked() && 521 CE->getNumOperands() == 3 && 522 CE->getOperand(1)->isNullValue()) { 523 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 524 if (CI->isOne() && 525 STy->getNumElements() == 2 && 526 STy->getElementType(0)->isIntegerTy(1)) { 527 AllocTy = STy->getElementType(1); 528 return true; 529 } 530 } 531 } 532 533 return false; 534 } 535 536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 537 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 538 if (VCE->getOpcode() == Instruction::PtrToInt) 539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 540 if (CE->getOpcode() == Instruction::GetElementPtr && 541 CE->getNumOperands() == 3 && 542 CE->getOperand(0)->isNullValue() && 543 CE->getOperand(1)->isNullValue()) { 544 Type *Ty = 545 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 546 // Ignore vector types here so that ScalarEvolutionExpander doesn't 547 // emit getelementptrs that index into vectors. 548 if (Ty->isStructTy() || Ty->isArrayTy()) { 549 CTy = Ty; 550 FieldNo = CE->getOperand(2); 551 return true; 552 } 553 } 554 555 return false; 556 } 557 558 //===----------------------------------------------------------------------===// 559 // SCEV Utilities 560 //===----------------------------------------------------------------------===// 561 562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 564 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 565 /// have been previously deemed to be "equally complex" by this routine. It is 566 /// intended to avoid exponential time complexity in cases like: 567 /// 568 /// %a = f(%x, %y) 569 /// %b = f(%a, %a) 570 /// %c = f(%b, %b) 571 /// 572 /// %d = f(%x, %y) 573 /// %e = f(%d, %d) 574 /// %f = f(%e, %e) 575 /// 576 /// CompareValueComplexity(%f, %c) 577 /// 578 /// Since we do not continue running this routine on expression trees once we 579 /// have seen unequal values, there is no need to track them in the cache. 580 static int 581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 582 const LoopInfo *const LI, Value *LV, Value *RV, 583 unsigned Depth) { 584 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 585 return 0; 586 587 // Order pointer values after integer values. This helps SCEVExpander form 588 // GEPs. 589 bool LIsPointer = LV->getType()->isPointerTy(), 590 RIsPointer = RV->getType()->isPointerTy(); 591 if (LIsPointer != RIsPointer) 592 return (int)LIsPointer - (int)RIsPointer; 593 594 // Compare getValueID values. 595 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 596 if (LID != RID) 597 return (int)LID - (int)RID; 598 599 // Sort arguments by their position. 600 if (const auto *LA = dyn_cast<Argument>(LV)) { 601 const auto *RA = cast<Argument>(RV); 602 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 603 return (int)LArgNo - (int)RArgNo; 604 } 605 606 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 607 const auto *RGV = cast<GlobalValue>(RV); 608 609 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 610 auto LT = GV->getLinkage(); 611 return !(GlobalValue::isPrivateLinkage(LT) || 612 GlobalValue::isInternalLinkage(LT)); 613 }; 614 615 // Use the names to distinguish the two values, but only if the 616 // names are semantically important. 617 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 618 return LGV->getName().compare(RGV->getName()); 619 } 620 621 // For instructions, compare their loop depth, and their operand count. This 622 // is pretty loose. 623 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 624 const auto *RInst = cast<Instruction>(RV); 625 626 // Compare loop depths. 627 const BasicBlock *LParent = LInst->getParent(), 628 *RParent = RInst->getParent(); 629 if (LParent != RParent) { 630 unsigned LDepth = LI->getLoopDepth(LParent), 631 RDepth = LI->getLoopDepth(RParent); 632 if (LDepth != RDepth) 633 return (int)LDepth - (int)RDepth; 634 } 635 636 // Compare the number of operands. 637 unsigned LNumOps = LInst->getNumOperands(), 638 RNumOps = RInst->getNumOperands(); 639 if (LNumOps != RNumOps) 640 return (int)LNumOps - (int)RNumOps; 641 642 for (unsigned Idx : seq(0u, LNumOps)) { 643 int Result = 644 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 645 RInst->getOperand(Idx), Depth + 1); 646 if (Result != 0) 647 return Result; 648 } 649 } 650 651 EqCacheValue.unionSets(LV, RV); 652 return 0; 653 } 654 655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 656 // than RHS, respectively. A three-way result allows recursive comparisons to be 657 // more efficient. 658 static int CompareSCEVComplexity( 659 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 660 EquivalenceClasses<const Value *> &EqCacheValue, 661 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 662 DominatorTree &DT, unsigned Depth = 0) { 663 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 664 if (LHS == RHS) 665 return 0; 666 667 // Primarily, sort the SCEVs by their getSCEVType(). 668 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 669 if (LType != RType) 670 return (int)LType - (int)RType; 671 672 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 673 return 0; 674 // Aside from the getSCEVType() ordering, the particular ordering 675 // isn't very important except that it's beneficial to be consistent, 676 // so that (a + b) and (b + a) don't end up as different expressions. 677 switch (static_cast<SCEVTypes>(LType)) { 678 case scUnknown: { 679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 681 682 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 683 RU->getValue(), Depth + 1); 684 if (X == 0) 685 EqCacheSCEV.unionSets(LHS, RHS); 686 return X; 687 } 688 689 case scConstant: { 690 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 691 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 692 693 // Compare constant values. 694 const APInt &LA = LC->getAPInt(); 695 const APInt &RA = RC->getAPInt(); 696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 697 if (LBitWidth != RBitWidth) 698 return (int)LBitWidth - (int)RBitWidth; 699 return LA.ult(RA) ? -1 : 1; 700 } 701 702 case scAddRecExpr: { 703 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 704 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 705 706 // There is always a dominance between two recs that are used by one SCEV, 707 // so we can safely sort recs by loop header dominance. We require such 708 // order in getAddExpr. 709 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 710 if (LLoop != RLoop) { 711 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 712 assert(LHead != RHead && "Two loops share the same header?"); 713 if (DT.dominates(LHead, RHead)) 714 return 1; 715 else 716 assert(DT.dominates(RHead, LHead) && 717 "No dominance between recurrences used by one SCEV?"); 718 return -1; 719 } 720 721 // Addrec complexity grows with operand count. 722 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 723 if (LNumOps != RNumOps) 724 return (int)LNumOps - (int)RNumOps; 725 726 // Lexicographically compare. 727 for (unsigned i = 0; i != LNumOps; ++i) { 728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 729 LA->getOperand(i), RA->getOperand(i), DT, 730 Depth + 1); 731 if (X != 0) 732 return X; 733 } 734 EqCacheSCEV.unionSets(LHS, RHS); 735 return 0; 736 } 737 738 case scAddExpr: 739 case scMulExpr: 740 case scSMaxExpr: 741 case scUMaxExpr: 742 case scSMinExpr: 743 case scUMinExpr: { 744 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 745 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 746 747 // Lexicographically compare n-ary expressions. 748 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 749 if (LNumOps != RNumOps) 750 return (int)LNumOps - (int)RNumOps; 751 752 for (unsigned i = 0; i != LNumOps; ++i) { 753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 754 LC->getOperand(i), RC->getOperand(i), DT, 755 Depth + 1); 756 if (X != 0) 757 return X; 758 } 759 EqCacheSCEV.unionSets(LHS, RHS); 760 return 0; 761 } 762 763 case scUDivExpr: { 764 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 765 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 766 767 // Lexicographically compare udiv expressions. 768 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 769 RC->getLHS(), DT, Depth + 1); 770 if (X != 0) 771 return X; 772 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 773 RC->getRHS(), DT, Depth + 1); 774 if (X == 0) 775 EqCacheSCEV.unionSets(LHS, RHS); 776 return X; 777 } 778 779 case scTruncate: 780 case scZeroExtend: 781 case scSignExtend: { 782 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 783 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 784 785 // Compare cast expressions by operand. 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(), RC->getOperand(), DT, 788 Depth + 1); 789 if (X == 0) 790 EqCacheSCEV.unionSets(LHS, RHS); 791 return X; 792 } 793 794 case scCouldNotCompute: 795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 796 } 797 llvm_unreachable("Unknown SCEV kind!"); 798 } 799 800 /// Given a list of SCEV objects, order them by their complexity, and group 801 /// objects of the same complexity together by value. When this routine is 802 /// finished, we know that any duplicates in the vector are consecutive and that 803 /// complexity is monotonically increasing. 804 /// 805 /// Note that we go take special precautions to ensure that we get deterministic 806 /// results from this routine. In other words, we don't want the results of 807 /// this to depend on where the addresses of various SCEV objects happened to 808 /// land in memory. 809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 810 LoopInfo *LI, DominatorTree &DT) { 811 if (Ops.size() < 2) return; // Noop 812 813 EquivalenceClasses<const SCEV *> EqCacheSCEV; 814 EquivalenceClasses<const Value *> EqCacheValue; 815 if (Ops.size() == 2) { 816 // This is the common case, which also happens to be trivially simple. 817 // Special case it. 818 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 819 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 820 std::swap(LHS, RHS); 821 return; 822 } 823 824 // Do the rough sort by complexity. 825 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 826 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 827 0; 828 }); 829 830 // Now that we are sorted by complexity, group elements of the same 831 // complexity. Note that this is, at worst, N^2, but the vector is likely to 832 // be extremely short in practice. Note that we take this approach because we 833 // do not want to depend on the addresses of the objects we are grouping. 834 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 835 const SCEV *S = Ops[i]; 836 unsigned Complexity = S->getSCEVType(); 837 838 // If there are any objects of the same complexity and same value as this 839 // one, group them. 840 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 841 if (Ops[j] == S) { // Found a duplicate. 842 // Move it to immediately after i'th element. 843 std::swap(Ops[i+1], Ops[j]); 844 ++i; // no need to rescan it. 845 if (i == e-2) return; // Done! 846 } 847 } 848 } 849 } 850 851 // Returns the size of the SCEV S. 852 static inline int sizeOfSCEV(const SCEV *S) { 853 struct FindSCEVSize { 854 int Size = 0; 855 856 FindSCEVSize() = default; 857 858 bool follow(const SCEV *S) { 859 ++Size; 860 // Keep looking at all operands of S. 861 return true; 862 } 863 864 bool isDone() const { 865 return false; 866 } 867 }; 868 869 FindSCEVSize F; 870 SCEVTraversal<FindSCEVSize> ST(F); 871 ST.visitAll(S); 872 return F.Size; 873 } 874 875 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 876 /// least HugeExprThreshold nodes). 877 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 878 return any_of(Ops, [](const SCEV *S) { 879 return S->getExpressionSize() >= HugeExprThreshold; 880 }); 881 } 882 883 namespace { 884 885 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 886 public: 887 // Computes the Quotient and Remainder of the division of Numerator by 888 // Denominator. 889 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 890 const SCEV *Denominator, const SCEV **Quotient, 891 const SCEV **Remainder) { 892 assert(Numerator && Denominator && "Uninitialized SCEV"); 893 894 SCEVDivision D(SE, Numerator, Denominator); 895 896 // Check for the trivial case here to avoid having to check for it in the 897 // rest of the code. 898 if (Numerator == Denominator) { 899 *Quotient = D.One; 900 *Remainder = D.Zero; 901 return; 902 } 903 904 if (Numerator->isZero()) { 905 *Quotient = D.Zero; 906 *Remainder = D.Zero; 907 return; 908 } 909 910 // A simple case when N/1. The quotient is N. 911 if (Denominator->isOne()) { 912 *Quotient = Numerator; 913 *Remainder = D.Zero; 914 return; 915 } 916 917 // Split the Denominator when it is a product. 918 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 919 const SCEV *Q, *R; 920 *Quotient = Numerator; 921 for (const SCEV *Op : T->operands()) { 922 divide(SE, *Quotient, Op, &Q, &R); 923 *Quotient = Q; 924 925 // Bail out when the Numerator is not divisible by one of the terms of 926 // the Denominator. 927 if (!R->isZero()) { 928 *Quotient = D.Zero; 929 *Remainder = Numerator; 930 return; 931 } 932 } 933 *Remainder = D.Zero; 934 return; 935 } 936 937 D.visit(Numerator); 938 *Quotient = D.Quotient; 939 *Remainder = D.Remainder; 940 } 941 942 // Except in the trivial case described above, we do not know how to divide 943 // Expr by Denominator for the following functions with empty implementation. 944 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 945 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 946 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 947 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 948 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 949 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 950 void visitSMinExpr(const SCEVSMinExpr *Numerator) {} 951 void visitUMinExpr(const SCEVUMinExpr *Numerator) {} 952 void visitUnknown(const SCEVUnknown *Numerator) {} 953 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 954 955 void visitConstant(const SCEVConstant *Numerator) { 956 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 957 APInt NumeratorVal = Numerator->getAPInt(); 958 APInt DenominatorVal = D->getAPInt(); 959 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 960 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 961 962 if (NumeratorBW > DenominatorBW) 963 DenominatorVal = DenominatorVal.sext(NumeratorBW); 964 else if (NumeratorBW < DenominatorBW) 965 NumeratorVal = NumeratorVal.sext(DenominatorBW); 966 967 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 968 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 969 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 970 Quotient = SE.getConstant(QuotientVal); 971 Remainder = SE.getConstant(RemainderVal); 972 return; 973 } 974 } 975 976 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 977 const SCEV *StartQ, *StartR, *StepQ, *StepR; 978 if (!Numerator->isAffine()) 979 return cannotDivide(Numerator); 980 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 981 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 982 // Bail out if the types do not match. 983 Type *Ty = Denominator->getType(); 984 if (Ty != StartQ->getType() || Ty != StartR->getType() || 985 Ty != StepQ->getType() || Ty != StepR->getType()) 986 return cannotDivide(Numerator); 987 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 988 Numerator->getNoWrapFlags()); 989 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 990 Numerator->getNoWrapFlags()); 991 } 992 993 void visitAddExpr(const SCEVAddExpr *Numerator) { 994 SmallVector<const SCEV *, 2> Qs, Rs; 995 Type *Ty = Denominator->getType(); 996 997 for (const SCEV *Op : Numerator->operands()) { 998 const SCEV *Q, *R; 999 divide(SE, Op, Denominator, &Q, &R); 1000 1001 // Bail out if types do not match. 1002 if (Ty != Q->getType() || Ty != R->getType()) 1003 return cannotDivide(Numerator); 1004 1005 Qs.push_back(Q); 1006 Rs.push_back(R); 1007 } 1008 1009 if (Qs.size() == 1) { 1010 Quotient = Qs[0]; 1011 Remainder = Rs[0]; 1012 return; 1013 } 1014 1015 Quotient = SE.getAddExpr(Qs); 1016 Remainder = SE.getAddExpr(Rs); 1017 } 1018 1019 void visitMulExpr(const SCEVMulExpr *Numerator) { 1020 SmallVector<const SCEV *, 2> Qs; 1021 Type *Ty = Denominator->getType(); 1022 1023 bool FoundDenominatorTerm = false; 1024 for (const SCEV *Op : Numerator->operands()) { 1025 // Bail out if types do not match. 1026 if (Ty != Op->getType()) 1027 return cannotDivide(Numerator); 1028 1029 if (FoundDenominatorTerm) { 1030 Qs.push_back(Op); 1031 continue; 1032 } 1033 1034 // Check whether Denominator divides one of the product operands. 1035 const SCEV *Q, *R; 1036 divide(SE, Op, Denominator, &Q, &R); 1037 if (!R->isZero()) { 1038 Qs.push_back(Op); 1039 continue; 1040 } 1041 1042 // Bail out if types do not match. 1043 if (Ty != Q->getType()) 1044 return cannotDivide(Numerator); 1045 1046 FoundDenominatorTerm = true; 1047 Qs.push_back(Q); 1048 } 1049 1050 if (FoundDenominatorTerm) { 1051 Remainder = Zero; 1052 if (Qs.size() == 1) 1053 Quotient = Qs[0]; 1054 else 1055 Quotient = SE.getMulExpr(Qs); 1056 return; 1057 } 1058 1059 if (!isa<SCEVUnknown>(Denominator)) 1060 return cannotDivide(Numerator); 1061 1062 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1063 ValueToValueMap RewriteMap; 1064 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1065 cast<SCEVConstant>(Zero)->getValue(); 1066 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1067 1068 if (Remainder->isZero()) { 1069 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1070 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1071 cast<SCEVConstant>(One)->getValue(); 1072 Quotient = 1073 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1074 return; 1075 } 1076 1077 // Quotient is (Numerator - Remainder) divided by Denominator. 1078 const SCEV *Q, *R; 1079 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1080 // This SCEV does not seem to simplify: fail the division here. 1081 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1082 return cannotDivide(Numerator); 1083 divide(SE, Diff, Denominator, &Q, &R); 1084 if (R != Zero) 1085 return cannotDivide(Numerator); 1086 Quotient = Q; 1087 } 1088 1089 private: 1090 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1091 const SCEV *Denominator) 1092 : SE(S), Denominator(Denominator) { 1093 Zero = SE.getZero(Denominator->getType()); 1094 One = SE.getOne(Denominator->getType()); 1095 1096 // We generally do not know how to divide Expr by Denominator. We 1097 // initialize the division to a "cannot divide" state to simplify the rest 1098 // of the code. 1099 cannotDivide(Numerator); 1100 } 1101 1102 // Convenience function for giving up on the division. We set the quotient to 1103 // be equal to zero and the remainder to be equal to the numerator. 1104 void cannotDivide(const SCEV *Numerator) { 1105 Quotient = Zero; 1106 Remainder = Numerator; 1107 } 1108 1109 ScalarEvolution &SE; 1110 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1111 }; 1112 1113 } // end anonymous namespace 1114 1115 //===----------------------------------------------------------------------===// 1116 // Simple SCEV method implementations 1117 //===----------------------------------------------------------------------===// 1118 1119 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1120 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1121 ScalarEvolution &SE, 1122 Type *ResultTy) { 1123 // Handle the simplest case efficiently. 1124 if (K == 1) 1125 return SE.getTruncateOrZeroExtend(It, ResultTy); 1126 1127 // We are using the following formula for BC(It, K): 1128 // 1129 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1130 // 1131 // Suppose, W is the bitwidth of the return value. We must be prepared for 1132 // overflow. Hence, we must assure that the result of our computation is 1133 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1134 // safe in modular arithmetic. 1135 // 1136 // However, this code doesn't use exactly that formula; the formula it uses 1137 // is something like the following, where T is the number of factors of 2 in 1138 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1139 // exponentiation: 1140 // 1141 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1142 // 1143 // This formula is trivially equivalent to the previous formula. However, 1144 // this formula can be implemented much more efficiently. The trick is that 1145 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1146 // arithmetic. To do exact division in modular arithmetic, all we have 1147 // to do is multiply by the inverse. Therefore, this step can be done at 1148 // width W. 1149 // 1150 // The next issue is how to safely do the division by 2^T. The way this 1151 // is done is by doing the multiplication step at a width of at least W + T 1152 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1153 // when we perform the division by 2^T (which is equivalent to a right shift 1154 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1155 // truncated out after the division by 2^T. 1156 // 1157 // In comparison to just directly using the first formula, this technique 1158 // is much more efficient; using the first formula requires W * K bits, 1159 // but this formula less than W + K bits. Also, the first formula requires 1160 // a division step, whereas this formula only requires multiplies and shifts. 1161 // 1162 // It doesn't matter whether the subtraction step is done in the calculation 1163 // width or the input iteration count's width; if the subtraction overflows, 1164 // the result must be zero anyway. We prefer here to do it in the width of 1165 // the induction variable because it helps a lot for certain cases; CodeGen 1166 // isn't smart enough to ignore the overflow, which leads to much less 1167 // efficient code if the width of the subtraction is wider than the native 1168 // register width. 1169 // 1170 // (It's possible to not widen at all by pulling out factors of 2 before 1171 // the multiplication; for example, K=2 can be calculated as 1172 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1173 // extra arithmetic, so it's not an obvious win, and it gets 1174 // much more complicated for K > 3.) 1175 1176 // Protection from insane SCEVs; this bound is conservative, 1177 // but it probably doesn't matter. 1178 if (K > 1000) 1179 return SE.getCouldNotCompute(); 1180 1181 unsigned W = SE.getTypeSizeInBits(ResultTy); 1182 1183 // Calculate K! / 2^T and T; we divide out the factors of two before 1184 // multiplying for calculating K! / 2^T to avoid overflow. 1185 // Other overflow doesn't matter because we only care about the bottom 1186 // W bits of the result. 1187 APInt OddFactorial(W, 1); 1188 unsigned T = 1; 1189 for (unsigned i = 3; i <= K; ++i) { 1190 APInt Mult(W, i); 1191 unsigned TwoFactors = Mult.countTrailingZeros(); 1192 T += TwoFactors; 1193 Mult.lshrInPlace(TwoFactors); 1194 OddFactorial *= Mult; 1195 } 1196 1197 // We need at least W + T bits for the multiplication step 1198 unsigned CalculationBits = W + T; 1199 1200 // Calculate 2^T, at width T+W. 1201 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1202 1203 // Calculate the multiplicative inverse of K! / 2^T; 1204 // this multiplication factor will perform the exact division by 1205 // K! / 2^T. 1206 APInt Mod = APInt::getSignedMinValue(W+1); 1207 APInt MultiplyFactor = OddFactorial.zext(W+1); 1208 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1209 MultiplyFactor = MultiplyFactor.trunc(W); 1210 1211 // Calculate the product, at width T+W 1212 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1213 CalculationBits); 1214 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1215 for (unsigned i = 1; i != K; ++i) { 1216 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1217 Dividend = SE.getMulExpr(Dividend, 1218 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1219 } 1220 1221 // Divide by 2^T 1222 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1223 1224 // Truncate the result, and divide by K! / 2^T. 1225 1226 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1227 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1228 } 1229 1230 /// Return the value of this chain of recurrences at the specified iteration 1231 /// number. We can evaluate this recurrence by multiplying each element in the 1232 /// chain by the binomial coefficient corresponding to it. In other words, we 1233 /// can evaluate {A,+,B,+,C,+,D} as: 1234 /// 1235 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1236 /// 1237 /// where BC(It, k) stands for binomial coefficient. 1238 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1239 ScalarEvolution &SE) const { 1240 const SCEV *Result = getStart(); 1241 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1242 // The computation is correct in the face of overflow provided that the 1243 // multiplication is performed _after_ the evaluation of the binomial 1244 // coefficient. 1245 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1246 if (isa<SCEVCouldNotCompute>(Coeff)) 1247 return Coeff; 1248 1249 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1250 } 1251 return Result; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // SCEV Expression folder implementations 1256 //===----------------------------------------------------------------------===// 1257 1258 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1259 unsigned Depth) { 1260 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1261 "This is not a truncating conversion!"); 1262 assert(isSCEVable(Ty) && 1263 "This is not a conversion to a SCEVable type!"); 1264 Ty = getEffectiveSCEVType(Ty); 1265 1266 FoldingSetNodeID ID; 1267 ID.AddInteger(scTruncate); 1268 ID.AddPointer(Op); 1269 ID.AddPointer(Ty); 1270 void *IP = nullptr; 1271 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1272 1273 // Fold if the operand is constant. 1274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1275 return getConstant( 1276 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1277 1278 // trunc(trunc(x)) --> trunc(x) 1279 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1280 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1281 1282 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1283 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1284 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1285 1286 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1287 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1288 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1289 1290 if (Depth > MaxCastDepth) { 1291 SCEV *S = 1292 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1293 UniqueSCEVs.InsertNode(S, IP); 1294 addToLoopUseLists(S); 1295 return S; 1296 } 1297 1298 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1299 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1300 // if after transforming we have at most one truncate, not counting truncates 1301 // that replace other casts. 1302 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1303 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1304 SmallVector<const SCEV *, 4> Operands; 1305 unsigned numTruncs = 0; 1306 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1307 ++i) { 1308 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1309 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1310 numTruncs++; 1311 Operands.push_back(S); 1312 } 1313 if (numTruncs < 2) { 1314 if (isa<SCEVAddExpr>(Op)) 1315 return getAddExpr(Operands); 1316 else if (isa<SCEVMulExpr>(Op)) 1317 return getMulExpr(Operands); 1318 else 1319 llvm_unreachable("Unexpected SCEV type for Op."); 1320 } 1321 // Although we checked in the beginning that ID is not in the cache, it is 1322 // possible that during recursion and different modification ID was inserted 1323 // into the cache. So if we find it, just return it. 1324 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1325 return S; 1326 } 1327 1328 // If the input value is a chrec scev, truncate the chrec's operands. 1329 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1330 SmallVector<const SCEV *, 4> Operands; 1331 for (const SCEV *Op : AddRec->operands()) 1332 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1333 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1334 } 1335 1336 // The cast wasn't folded; create an explicit cast node. We can reuse 1337 // the existing insert position since if we get here, we won't have 1338 // made any changes which would invalidate it. 1339 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1340 Op, Ty); 1341 UniqueSCEVs.InsertNode(S, IP); 1342 addToLoopUseLists(S); 1343 return S; 1344 } 1345 1346 // Get the limit of a recurrence such that incrementing by Step cannot cause 1347 // signed overflow as long as the value of the recurrence within the 1348 // loop does not exceed this limit before incrementing. 1349 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1350 ICmpInst::Predicate *Pred, 1351 ScalarEvolution *SE) { 1352 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1353 if (SE->isKnownPositive(Step)) { 1354 *Pred = ICmpInst::ICMP_SLT; 1355 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1356 SE->getSignedRangeMax(Step)); 1357 } 1358 if (SE->isKnownNegative(Step)) { 1359 *Pred = ICmpInst::ICMP_SGT; 1360 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1361 SE->getSignedRangeMin(Step)); 1362 } 1363 return nullptr; 1364 } 1365 1366 // Get the limit of a recurrence such that incrementing by Step cannot cause 1367 // unsigned overflow as long as the value of the recurrence within the loop does 1368 // not exceed this limit before incrementing. 1369 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1370 ICmpInst::Predicate *Pred, 1371 ScalarEvolution *SE) { 1372 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1373 *Pred = ICmpInst::ICMP_ULT; 1374 1375 return SE->getConstant(APInt::getMinValue(BitWidth) - 1376 SE->getUnsignedRangeMax(Step)); 1377 } 1378 1379 namespace { 1380 1381 struct ExtendOpTraitsBase { 1382 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1383 unsigned); 1384 }; 1385 1386 // Used to make code generic over signed and unsigned overflow. 1387 template <typename ExtendOp> struct ExtendOpTraits { 1388 // Members present: 1389 // 1390 // static const SCEV::NoWrapFlags WrapType; 1391 // 1392 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1393 // 1394 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1395 // ICmpInst::Predicate *Pred, 1396 // ScalarEvolution *SE); 1397 }; 1398 1399 template <> 1400 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1401 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1402 1403 static const GetExtendExprTy GetExtendExpr; 1404 1405 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1406 ICmpInst::Predicate *Pred, 1407 ScalarEvolution *SE) { 1408 return getSignedOverflowLimitForStep(Step, Pred, SE); 1409 } 1410 }; 1411 1412 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1413 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1414 1415 template <> 1416 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1417 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1418 1419 static const GetExtendExprTy GetExtendExpr; 1420 1421 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1422 ICmpInst::Predicate *Pred, 1423 ScalarEvolution *SE) { 1424 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1425 } 1426 }; 1427 1428 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1429 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1430 1431 } // end anonymous namespace 1432 1433 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1434 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1435 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1436 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1437 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1438 // expression "Step + sext/zext(PreIncAR)" is congruent with 1439 // "sext/zext(PostIncAR)" 1440 template <typename ExtendOpTy> 1441 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1442 ScalarEvolution *SE, unsigned Depth) { 1443 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1444 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1445 1446 const Loop *L = AR->getLoop(); 1447 const SCEV *Start = AR->getStart(); 1448 const SCEV *Step = AR->getStepRecurrence(*SE); 1449 1450 // Check for a simple looking step prior to loop entry. 1451 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1452 if (!SA) 1453 return nullptr; 1454 1455 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1456 // subtraction is expensive. For this purpose, perform a quick and dirty 1457 // difference, by checking for Step in the operand list. 1458 SmallVector<const SCEV *, 4> DiffOps; 1459 for (const SCEV *Op : SA->operands()) 1460 if (Op != Step) 1461 DiffOps.push_back(Op); 1462 1463 if (DiffOps.size() == SA->getNumOperands()) 1464 return nullptr; 1465 1466 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1467 // `Step`: 1468 1469 // 1. NSW/NUW flags on the step increment. 1470 auto PreStartFlags = 1471 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1472 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1473 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1474 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1475 1476 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1477 // "S+X does not sign/unsign-overflow". 1478 // 1479 1480 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1481 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1482 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1483 return PreStart; 1484 1485 // 2. Direct overflow check on the step operation's expression. 1486 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1487 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1488 const SCEV *OperandExtendedStart = 1489 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1490 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1491 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1492 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1493 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1494 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1495 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1496 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1497 } 1498 return PreStart; 1499 } 1500 1501 // 3. Loop precondition. 1502 ICmpInst::Predicate Pred; 1503 const SCEV *OverflowLimit = 1504 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1505 1506 if (OverflowLimit && 1507 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1508 return PreStart; 1509 1510 return nullptr; 1511 } 1512 1513 // Get the normalized zero or sign extended expression for this AddRec's Start. 1514 template <typename ExtendOpTy> 1515 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1516 ScalarEvolution *SE, 1517 unsigned Depth) { 1518 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1519 1520 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1521 if (!PreStart) 1522 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1523 1524 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1525 Depth), 1526 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1527 } 1528 1529 // Try to prove away overflow by looking at "nearby" add recurrences. A 1530 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1531 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1532 // 1533 // Formally: 1534 // 1535 // {S,+,X} == {S-T,+,X} + T 1536 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1537 // 1538 // If ({S-T,+,X} + T) does not overflow ... (1) 1539 // 1540 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1541 // 1542 // If {S-T,+,X} does not overflow ... (2) 1543 // 1544 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1545 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1546 // 1547 // If (S-T)+T does not overflow ... (3) 1548 // 1549 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1550 // == {Ext(S),+,Ext(X)} == LHS 1551 // 1552 // Thus, if (1), (2) and (3) are true for some T, then 1553 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1554 // 1555 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1556 // does not overflow" restricted to the 0th iteration. Therefore we only need 1557 // to check for (1) and (2). 1558 // 1559 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1560 // is `Delta` (defined below). 1561 template <typename ExtendOpTy> 1562 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1563 const SCEV *Step, 1564 const Loop *L) { 1565 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1566 1567 // We restrict `Start` to a constant to prevent SCEV from spending too much 1568 // time here. It is correct (but more expensive) to continue with a 1569 // non-constant `Start` and do a general SCEV subtraction to compute 1570 // `PreStart` below. 1571 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1572 if (!StartC) 1573 return false; 1574 1575 APInt StartAI = StartC->getAPInt(); 1576 1577 for (unsigned Delta : {-2, -1, 1, 2}) { 1578 const SCEV *PreStart = getConstant(StartAI - Delta); 1579 1580 FoldingSetNodeID ID; 1581 ID.AddInteger(scAddRecExpr); 1582 ID.AddPointer(PreStart); 1583 ID.AddPointer(Step); 1584 ID.AddPointer(L); 1585 void *IP = nullptr; 1586 const auto *PreAR = 1587 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1588 1589 // Give up if we don't already have the add recurrence we need because 1590 // actually constructing an add recurrence is relatively expensive. 1591 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1592 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1593 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1594 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1595 DeltaS, &Pred, this); 1596 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1597 return true; 1598 } 1599 } 1600 1601 return false; 1602 } 1603 1604 // Finds an integer D for an expression (C + x + y + ...) such that the top 1605 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1606 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1607 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1608 // the (C + x + y + ...) expression is \p WholeAddExpr. 1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1610 const SCEVConstant *ConstantTerm, 1611 const SCEVAddExpr *WholeAddExpr) { 1612 const APInt C = ConstantTerm->getAPInt(); 1613 const unsigned BitWidth = C.getBitWidth(); 1614 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1615 uint32_t TZ = BitWidth; 1616 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1617 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1618 if (TZ) { 1619 // Set D to be as many least significant bits of C as possible while still 1620 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1621 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1622 } 1623 return APInt(BitWidth, 0); 1624 } 1625 1626 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1627 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1628 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1629 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1630 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1631 const APInt &ConstantStart, 1632 const SCEV *Step) { 1633 const unsigned BitWidth = ConstantStart.getBitWidth(); 1634 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1635 if (TZ) 1636 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1637 : ConstantStart; 1638 return APInt(BitWidth, 0); 1639 } 1640 1641 const SCEV * 1642 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1643 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1644 "This is not an extending conversion!"); 1645 assert(isSCEVable(Ty) && 1646 "This is not a conversion to a SCEVable type!"); 1647 Ty = getEffectiveSCEVType(Ty); 1648 1649 // Fold if the operand is constant. 1650 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1651 return getConstant( 1652 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1653 1654 // zext(zext(x)) --> zext(x) 1655 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1656 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1657 1658 // Before doing any expensive analysis, check to see if we've already 1659 // computed a SCEV for this Op and Ty. 1660 FoldingSetNodeID ID; 1661 ID.AddInteger(scZeroExtend); 1662 ID.AddPointer(Op); 1663 ID.AddPointer(Ty); 1664 void *IP = nullptr; 1665 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1666 if (Depth > MaxCastDepth) { 1667 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1668 Op, Ty); 1669 UniqueSCEVs.InsertNode(S, IP); 1670 addToLoopUseLists(S); 1671 return S; 1672 } 1673 1674 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1675 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1676 // It's possible the bits taken off by the truncate were all zero bits. If 1677 // so, we should be able to simplify this further. 1678 const SCEV *X = ST->getOperand(); 1679 ConstantRange CR = getUnsignedRange(X); 1680 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1681 unsigned NewBits = getTypeSizeInBits(Ty); 1682 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1683 CR.zextOrTrunc(NewBits))) 1684 return getTruncateOrZeroExtend(X, Ty, Depth); 1685 } 1686 1687 // If the input value is a chrec scev, and we can prove that the value 1688 // did not overflow the old, smaller, value, we can zero extend all of the 1689 // operands (often constants). This allows analysis of something like 1690 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1691 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1692 if (AR->isAffine()) { 1693 const SCEV *Start = AR->getStart(); 1694 const SCEV *Step = AR->getStepRecurrence(*this); 1695 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1696 const Loop *L = AR->getLoop(); 1697 1698 if (!AR->hasNoUnsignedWrap()) { 1699 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1700 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1701 } 1702 1703 // If we have special knowledge that this addrec won't overflow, 1704 // we don't need to do any further analysis. 1705 if (AR->hasNoUnsignedWrap()) 1706 return getAddRecExpr( 1707 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1708 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1709 1710 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1711 // Note that this serves two purposes: It filters out loops that are 1712 // simply not analyzable, and it covers the case where this code is 1713 // being called from within backedge-taken count analysis, such that 1714 // attempting to ask for the backedge-taken count would likely result 1715 // in infinite recursion. In the later case, the analysis code will 1716 // cope with a conservative value, and it will take care to purge 1717 // that value once it has finished. 1718 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1719 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1720 // Manually compute the final value for AR, checking for 1721 // overflow. 1722 1723 // Check whether the backedge-taken count can be losslessly casted to 1724 // the addrec's type. The count is always unsigned. 1725 const SCEV *CastedMaxBECount = 1726 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1727 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1728 CastedMaxBECount, MaxBECount->getType(), Depth); 1729 if (MaxBECount == RecastedMaxBECount) { 1730 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1731 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1732 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1733 SCEV::FlagAnyWrap, Depth + 1); 1734 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1735 SCEV::FlagAnyWrap, 1736 Depth + 1), 1737 WideTy, Depth + 1); 1738 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1739 const SCEV *WideMaxBECount = 1740 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1741 const SCEV *OperandExtendedAdd = 1742 getAddExpr(WideStart, 1743 getMulExpr(WideMaxBECount, 1744 getZeroExtendExpr(Step, WideTy, Depth + 1), 1745 SCEV::FlagAnyWrap, Depth + 1), 1746 SCEV::FlagAnyWrap, Depth + 1); 1747 if (ZAdd == OperandExtendedAdd) { 1748 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1750 // Return the expression with the addrec on the outside. 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1753 Depth + 1), 1754 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1755 AR->getNoWrapFlags()); 1756 } 1757 // Similar to above, only this time treat the step value as signed. 1758 // This covers loops that count down. 1759 OperandExtendedAdd = 1760 getAddExpr(WideStart, 1761 getMulExpr(WideMaxBECount, 1762 getSignExtendExpr(Step, WideTy, Depth + 1), 1763 SCEV::FlagAnyWrap, Depth + 1), 1764 SCEV::FlagAnyWrap, Depth + 1); 1765 if (ZAdd == OperandExtendedAdd) { 1766 // Cache knowledge of AR NW, which is propagated to this AddRec. 1767 // Negative step causes unsigned wrap, but it still can't self-wrap. 1768 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1769 // Return the expression with the addrec on the outside. 1770 return getAddRecExpr( 1771 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1772 Depth + 1), 1773 getSignExtendExpr(Step, Ty, Depth + 1), L, 1774 AR->getNoWrapFlags()); 1775 } 1776 } 1777 } 1778 1779 // Normally, in the cases we can prove no-overflow via a 1780 // backedge guarding condition, we can also compute a backedge 1781 // taken count for the loop. The exceptions are assumptions and 1782 // guards present in the loop -- SCEV is not great at exploiting 1783 // these to compute max backedge taken counts, but can still use 1784 // these to prove lack of overflow. Use this fact to avoid 1785 // doing extra work that may not pay off. 1786 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1787 !AC.assumptions().empty()) { 1788 // If the backedge is guarded by a comparison with the pre-inc 1789 // value the addrec is safe. Also, if the entry is guarded by 1790 // a comparison with the start value and the backedge is 1791 // guarded by a comparison with the post-inc value, the addrec 1792 // is safe. 1793 if (isKnownPositive(Step)) { 1794 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1795 getUnsignedRangeMax(Step)); 1796 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1797 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1798 // Cache knowledge of AR NUW, which is propagated to this 1799 // AddRec. 1800 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1801 // Return the expression with the addrec on the outside. 1802 return getAddRecExpr( 1803 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1804 Depth + 1), 1805 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1806 AR->getNoWrapFlags()); 1807 } 1808 } else if (isKnownNegative(Step)) { 1809 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1810 getSignedRangeMin(Step)); 1811 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1812 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1813 // Cache knowledge of AR NW, which is propagated to this 1814 // AddRec. Negative step causes unsigned wrap, but it 1815 // still can't self-wrap. 1816 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1817 // Return the expression with the addrec on the outside. 1818 return getAddRecExpr( 1819 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1820 Depth + 1), 1821 getSignExtendExpr(Step, Ty, Depth + 1), L, 1822 AR->getNoWrapFlags()); 1823 } 1824 } 1825 } 1826 1827 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1828 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1829 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1830 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1831 const APInt &C = SC->getAPInt(); 1832 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1833 if (D != 0) { 1834 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1835 const SCEV *SResidual = 1836 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1837 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1838 return getAddExpr(SZExtD, SZExtR, 1839 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1840 Depth + 1); 1841 } 1842 } 1843 1844 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1845 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1846 return getAddRecExpr( 1847 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1848 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1849 } 1850 } 1851 1852 // zext(A % B) --> zext(A) % zext(B) 1853 { 1854 const SCEV *LHS; 1855 const SCEV *RHS; 1856 if (matchURem(Op, LHS, RHS)) 1857 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1858 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1859 } 1860 1861 // zext(A / B) --> zext(A) / zext(B). 1862 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1863 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1864 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1865 1866 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1867 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1868 if (SA->hasNoUnsignedWrap()) { 1869 // If the addition does not unsign overflow then we can, by definition, 1870 // commute the zero extension with the addition operation. 1871 SmallVector<const SCEV *, 4> Ops; 1872 for (const auto *Op : SA->operands()) 1873 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1874 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1875 } 1876 1877 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1878 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1879 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1880 // 1881 // Often address arithmetics contain expressions like 1882 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1883 // This transformation is useful while proving that such expressions are 1884 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1885 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1886 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1887 if (D != 0) { 1888 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1889 const SCEV *SResidual = 1890 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1891 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1892 return getAddExpr(SZExtD, SZExtR, 1893 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1894 Depth + 1); 1895 } 1896 } 1897 } 1898 1899 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1900 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1901 if (SM->hasNoUnsignedWrap()) { 1902 // If the multiply does not unsign overflow then we can, by definition, 1903 // commute the zero extension with the multiply operation. 1904 SmallVector<const SCEV *, 4> Ops; 1905 for (const auto *Op : SM->operands()) 1906 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1907 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1908 } 1909 1910 // zext(2^K * (trunc X to iN)) to iM -> 1911 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1912 // 1913 // Proof: 1914 // 1915 // zext(2^K * (trunc X to iN)) to iM 1916 // = zext((trunc X to iN) << K) to iM 1917 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1918 // (because shl removes the top K bits) 1919 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1920 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1921 // 1922 if (SM->getNumOperands() == 2) 1923 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1924 if (MulLHS->getAPInt().isPowerOf2()) 1925 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1926 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1927 MulLHS->getAPInt().logBase2(); 1928 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1929 return getMulExpr( 1930 getZeroExtendExpr(MulLHS, Ty), 1931 getZeroExtendExpr( 1932 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1933 SCEV::FlagNUW, Depth + 1); 1934 } 1935 } 1936 1937 // The cast wasn't folded; create an explicit cast node. 1938 // Recompute the insert position, as it may have been invalidated. 1939 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1940 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1941 Op, Ty); 1942 UniqueSCEVs.InsertNode(S, IP); 1943 addToLoopUseLists(S); 1944 return S; 1945 } 1946 1947 const SCEV * 1948 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1949 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1950 "This is not an extending conversion!"); 1951 assert(isSCEVable(Ty) && 1952 "This is not a conversion to a SCEVable type!"); 1953 Ty = getEffectiveSCEVType(Ty); 1954 1955 // Fold if the operand is constant. 1956 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1957 return getConstant( 1958 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1959 1960 // sext(sext(x)) --> sext(x) 1961 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1962 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1963 1964 // sext(zext(x)) --> zext(x) 1965 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1966 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1967 1968 // Before doing any expensive analysis, check to see if we've already 1969 // computed a SCEV for this Op and Ty. 1970 FoldingSetNodeID ID; 1971 ID.AddInteger(scSignExtend); 1972 ID.AddPointer(Op); 1973 ID.AddPointer(Ty); 1974 void *IP = nullptr; 1975 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1976 // Limit recursion depth. 1977 if (Depth > MaxCastDepth) { 1978 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1979 Op, Ty); 1980 UniqueSCEVs.InsertNode(S, IP); 1981 addToLoopUseLists(S); 1982 return S; 1983 } 1984 1985 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1986 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1987 // It's possible the bits taken off by the truncate were all sign bits. If 1988 // so, we should be able to simplify this further. 1989 const SCEV *X = ST->getOperand(); 1990 ConstantRange CR = getSignedRange(X); 1991 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1992 unsigned NewBits = getTypeSizeInBits(Ty); 1993 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1994 CR.sextOrTrunc(NewBits))) 1995 return getTruncateOrSignExtend(X, Ty, Depth); 1996 } 1997 1998 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1999 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 2000 if (SA->hasNoSignedWrap()) { 2001 // If the addition does not sign overflow then we can, by definition, 2002 // commute the sign extension with the addition operation. 2003 SmallVector<const SCEV *, 4> Ops; 2004 for (const auto *Op : SA->operands()) 2005 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 2006 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 2007 } 2008 2009 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 2010 // if D + (C - D + x + y + ...) could be proven to not signed wrap 2011 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 2012 // 2013 // For instance, this will bring two seemingly different expressions: 2014 // 1 + sext(5 + 20 * %x + 24 * %y) and 2015 // sext(6 + 20 * %x + 24 * %y) 2016 // to the same form: 2017 // 2 + sext(4 + 20 * %x + 24 * %y) 2018 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 2019 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 2020 if (D != 0) { 2021 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2022 const SCEV *SResidual = 2023 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 2024 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2025 return getAddExpr(SSExtD, SSExtR, 2026 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2027 Depth + 1); 2028 } 2029 } 2030 } 2031 // If the input value is a chrec scev, and we can prove that the value 2032 // did not overflow the old, smaller, value, we can sign extend all of the 2033 // operands (often constants). This allows analysis of something like 2034 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 2035 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 2036 if (AR->isAffine()) { 2037 const SCEV *Start = AR->getStart(); 2038 const SCEV *Step = AR->getStepRecurrence(*this); 2039 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 2040 const Loop *L = AR->getLoop(); 2041 2042 if (!AR->hasNoSignedWrap()) { 2043 auto NewFlags = proveNoWrapViaConstantRanges(AR); 2044 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 2045 } 2046 2047 // If we have special knowledge that this addrec won't overflow, 2048 // we don't need to do any further analysis. 2049 if (AR->hasNoSignedWrap()) 2050 return getAddRecExpr( 2051 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2052 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2053 2054 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2055 // Note that this serves two purposes: It filters out loops that are 2056 // simply not analyzable, and it covers the case where this code is 2057 // being called from within backedge-taken count analysis, such that 2058 // attempting to ask for the backedge-taken count would likely result 2059 // in infinite recursion. In the later case, the analysis code will 2060 // cope with a conservative value, and it will take care to purge 2061 // that value once it has finished. 2062 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2063 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2064 // Manually compute the final value for AR, checking for 2065 // overflow. 2066 2067 // Check whether the backedge-taken count can be losslessly casted to 2068 // the addrec's type. The count is always unsigned. 2069 const SCEV *CastedMaxBECount = 2070 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2071 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2072 CastedMaxBECount, MaxBECount->getType(), Depth); 2073 if (MaxBECount == RecastedMaxBECount) { 2074 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2075 // Check whether Start+Step*MaxBECount has no signed overflow. 2076 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2077 SCEV::FlagAnyWrap, Depth + 1); 2078 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2079 SCEV::FlagAnyWrap, 2080 Depth + 1), 2081 WideTy, Depth + 1); 2082 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2083 const SCEV *WideMaxBECount = 2084 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2085 const SCEV *OperandExtendedAdd = 2086 getAddExpr(WideStart, 2087 getMulExpr(WideMaxBECount, 2088 getSignExtendExpr(Step, WideTy, Depth + 1), 2089 SCEV::FlagAnyWrap, Depth + 1), 2090 SCEV::FlagAnyWrap, Depth + 1); 2091 if (SAdd == OperandExtendedAdd) { 2092 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2093 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2094 // Return the expression with the addrec on the outside. 2095 return getAddRecExpr( 2096 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2097 Depth + 1), 2098 getSignExtendExpr(Step, Ty, Depth + 1), L, 2099 AR->getNoWrapFlags()); 2100 } 2101 // Similar to above, only this time treat the step value as unsigned. 2102 // This covers loops that count up with an unsigned step. 2103 OperandExtendedAdd = 2104 getAddExpr(WideStart, 2105 getMulExpr(WideMaxBECount, 2106 getZeroExtendExpr(Step, WideTy, Depth + 1), 2107 SCEV::FlagAnyWrap, Depth + 1), 2108 SCEV::FlagAnyWrap, Depth + 1); 2109 if (SAdd == OperandExtendedAdd) { 2110 // If AR wraps around then 2111 // 2112 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2113 // => SAdd != OperandExtendedAdd 2114 // 2115 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2116 // (SAdd == OperandExtendedAdd => AR is NW) 2117 2118 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 2119 2120 // Return the expression with the addrec on the outside. 2121 return getAddRecExpr( 2122 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2123 Depth + 1), 2124 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2125 AR->getNoWrapFlags()); 2126 } 2127 } 2128 } 2129 2130 // Normally, in the cases we can prove no-overflow via a 2131 // backedge guarding condition, we can also compute a backedge 2132 // taken count for the loop. The exceptions are assumptions and 2133 // guards present in the loop -- SCEV is not great at exploiting 2134 // these to compute max backedge taken counts, but can still use 2135 // these to prove lack of overflow. Use this fact to avoid 2136 // doing extra work that may not pay off. 2137 2138 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2139 !AC.assumptions().empty()) { 2140 // If the backedge is guarded by a comparison with the pre-inc 2141 // value the addrec is safe. Also, if the entry is guarded by 2142 // a comparison with the start value and the backedge is 2143 // guarded by a comparison with the post-inc value, the addrec 2144 // is safe. 2145 ICmpInst::Predicate Pred; 2146 const SCEV *OverflowLimit = 2147 getSignedOverflowLimitForStep(Step, &Pred, this); 2148 if (OverflowLimit && 2149 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2150 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2151 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2152 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2153 return getAddRecExpr( 2154 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2155 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2156 } 2157 } 2158 2159 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2160 // if D + (C - D + Step * n) could be proven to not signed wrap 2161 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2162 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2163 const APInt &C = SC->getAPInt(); 2164 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2165 if (D != 0) { 2166 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2167 const SCEV *SResidual = 2168 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2169 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2170 return getAddExpr(SSExtD, SSExtR, 2171 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2172 Depth + 1); 2173 } 2174 } 2175 2176 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2177 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2178 return getAddRecExpr( 2179 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2180 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2181 } 2182 } 2183 2184 // If the input value is provably positive and we could not simplify 2185 // away the sext build a zext instead. 2186 if (isKnownNonNegative(Op)) 2187 return getZeroExtendExpr(Op, Ty, Depth + 1); 2188 2189 // The cast wasn't folded; create an explicit cast node. 2190 // Recompute the insert position, as it may have been invalidated. 2191 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2192 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2193 Op, Ty); 2194 UniqueSCEVs.InsertNode(S, IP); 2195 addToLoopUseLists(S); 2196 return S; 2197 } 2198 2199 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2200 /// unspecified bits out to the given type. 2201 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2202 Type *Ty) { 2203 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2204 "This is not an extending conversion!"); 2205 assert(isSCEVable(Ty) && 2206 "This is not a conversion to a SCEVable type!"); 2207 Ty = getEffectiveSCEVType(Ty); 2208 2209 // Sign-extend negative constants. 2210 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2211 if (SC->getAPInt().isNegative()) 2212 return getSignExtendExpr(Op, Ty); 2213 2214 // Peel off a truncate cast. 2215 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2216 const SCEV *NewOp = T->getOperand(); 2217 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2218 return getAnyExtendExpr(NewOp, Ty); 2219 return getTruncateOrNoop(NewOp, Ty); 2220 } 2221 2222 // Next try a zext cast. If the cast is folded, use it. 2223 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2224 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2225 return ZExt; 2226 2227 // Next try a sext cast. If the cast is folded, use it. 2228 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2229 if (!isa<SCEVSignExtendExpr>(SExt)) 2230 return SExt; 2231 2232 // Force the cast to be folded into the operands of an addrec. 2233 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2234 SmallVector<const SCEV *, 4> Ops; 2235 for (const SCEV *Op : AR->operands()) 2236 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2237 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2238 } 2239 2240 // If the expression is obviously signed, use the sext cast value. 2241 if (isa<SCEVSMaxExpr>(Op)) 2242 return SExt; 2243 2244 // Absent any other information, use the zext cast value. 2245 return ZExt; 2246 } 2247 2248 /// Process the given Ops list, which is a list of operands to be added under 2249 /// the given scale, update the given map. This is a helper function for 2250 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2251 /// that would form an add expression like this: 2252 /// 2253 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2254 /// 2255 /// where A and B are constants, update the map with these values: 2256 /// 2257 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2258 /// 2259 /// and add 13 + A*B*29 to AccumulatedConstant. 2260 /// This will allow getAddRecExpr to produce this: 2261 /// 2262 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2263 /// 2264 /// This form often exposes folding opportunities that are hidden in 2265 /// the original operand list. 2266 /// 2267 /// Return true iff it appears that any interesting folding opportunities 2268 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2269 /// the common case where no interesting opportunities are present, and 2270 /// is also used as a check to avoid infinite recursion. 2271 static bool 2272 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2273 SmallVectorImpl<const SCEV *> &NewOps, 2274 APInt &AccumulatedConstant, 2275 const SCEV *const *Ops, size_t NumOperands, 2276 const APInt &Scale, 2277 ScalarEvolution &SE) { 2278 bool Interesting = false; 2279 2280 // Iterate over the add operands. They are sorted, with constants first. 2281 unsigned i = 0; 2282 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2283 ++i; 2284 // Pull a buried constant out to the outside. 2285 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2286 Interesting = true; 2287 AccumulatedConstant += Scale * C->getAPInt(); 2288 } 2289 2290 // Next comes everything else. We're especially interested in multiplies 2291 // here, but they're in the middle, so just visit the rest with one loop. 2292 for (; i != NumOperands; ++i) { 2293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2294 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2295 APInt NewScale = 2296 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2297 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2298 // A multiplication of a constant with another add; recurse. 2299 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2300 Interesting |= 2301 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2302 Add->op_begin(), Add->getNumOperands(), 2303 NewScale, SE); 2304 } else { 2305 // A multiplication of a constant with some other value. Update 2306 // the map. 2307 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2308 const SCEV *Key = SE.getMulExpr(MulOps); 2309 auto Pair = M.insert({Key, NewScale}); 2310 if (Pair.second) { 2311 NewOps.push_back(Pair.first->first); 2312 } else { 2313 Pair.first->second += NewScale; 2314 // The map already had an entry for this value, which may indicate 2315 // a folding opportunity. 2316 Interesting = true; 2317 } 2318 } 2319 } else { 2320 // An ordinary operand. Update the map. 2321 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2322 M.insert({Ops[i], Scale}); 2323 if (Pair.second) { 2324 NewOps.push_back(Pair.first->first); 2325 } else { 2326 Pair.first->second += Scale; 2327 // The map already had an entry for this value, which may indicate 2328 // a folding opportunity. 2329 Interesting = true; 2330 } 2331 } 2332 } 2333 2334 return Interesting; 2335 } 2336 2337 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2338 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2339 // can't-overflow flags for the operation if possible. 2340 static SCEV::NoWrapFlags 2341 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2342 const ArrayRef<const SCEV *> Ops, 2343 SCEV::NoWrapFlags Flags) { 2344 using namespace std::placeholders; 2345 2346 using OBO = OverflowingBinaryOperator; 2347 2348 bool CanAnalyze = 2349 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2350 (void)CanAnalyze; 2351 assert(CanAnalyze && "don't call from other places!"); 2352 2353 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2354 SCEV::NoWrapFlags SignOrUnsignWrap = 2355 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2356 2357 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2358 auto IsKnownNonNegative = [&](const SCEV *S) { 2359 return SE->isKnownNonNegative(S); 2360 }; 2361 2362 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2363 Flags = 2364 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2365 2366 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2367 2368 if (SignOrUnsignWrap != SignOrUnsignMask && 2369 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2370 isa<SCEVConstant>(Ops[0])) { 2371 2372 auto Opcode = [&] { 2373 switch (Type) { 2374 case scAddExpr: 2375 return Instruction::Add; 2376 case scMulExpr: 2377 return Instruction::Mul; 2378 default: 2379 llvm_unreachable("Unexpected SCEV op."); 2380 } 2381 }(); 2382 2383 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2384 2385 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2386 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2387 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2388 Opcode, C, OBO::NoSignedWrap); 2389 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2390 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2391 } 2392 2393 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2394 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2395 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2396 Opcode, C, OBO::NoUnsignedWrap); 2397 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 } 2400 } 2401 2402 return Flags; 2403 } 2404 2405 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2406 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2407 } 2408 2409 /// Get a canonical add expression, or something simpler if possible. 2410 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2411 SCEV::NoWrapFlags Flags, 2412 unsigned Depth) { 2413 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2414 "only nuw or nsw allowed"); 2415 assert(!Ops.empty() && "Cannot get empty add!"); 2416 if (Ops.size() == 1) return Ops[0]; 2417 #ifndef NDEBUG 2418 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2419 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2420 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2421 "SCEVAddExpr operand types don't match!"); 2422 #endif 2423 2424 // Sort by complexity, this groups all similar expression types together. 2425 GroupByComplexity(Ops, &LI, DT); 2426 2427 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2428 2429 // If there are any constants, fold them together. 2430 unsigned Idx = 0; 2431 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2432 ++Idx; 2433 assert(Idx < Ops.size()); 2434 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2435 // We found two constants, fold them together! 2436 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2437 if (Ops.size() == 2) return Ops[0]; 2438 Ops.erase(Ops.begin()+1); // Erase the folded element 2439 LHSC = cast<SCEVConstant>(Ops[0]); 2440 } 2441 2442 // If we are left with a constant zero being added, strip it off. 2443 if (LHSC->getValue()->isZero()) { 2444 Ops.erase(Ops.begin()); 2445 --Idx; 2446 } 2447 2448 if (Ops.size() == 1) return Ops[0]; 2449 } 2450 2451 // Limit recursion calls depth. 2452 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2453 return getOrCreateAddExpr(Ops, Flags); 2454 2455 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2456 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2457 return S; 2458 } 2459 2460 // Okay, check to see if the same value occurs in the operand list more than 2461 // once. If so, merge them together into an multiply expression. Since we 2462 // sorted the list, these values are required to be adjacent. 2463 Type *Ty = Ops[0]->getType(); 2464 bool FoundMatch = false; 2465 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2466 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2467 // Scan ahead to count how many equal operands there are. 2468 unsigned Count = 2; 2469 while (i+Count != e && Ops[i+Count] == Ops[i]) 2470 ++Count; 2471 // Merge the values into a multiply. 2472 const SCEV *Scale = getConstant(Ty, Count); 2473 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2474 if (Ops.size() == Count) 2475 return Mul; 2476 Ops[i] = Mul; 2477 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2478 --i; e -= Count - 1; 2479 FoundMatch = true; 2480 } 2481 if (FoundMatch) 2482 return getAddExpr(Ops, Flags, Depth + 1); 2483 2484 // Check for truncates. If all the operands are truncated from the same 2485 // type, see if factoring out the truncate would permit the result to be 2486 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2487 // if the contents of the resulting outer trunc fold to something simple. 2488 auto FindTruncSrcType = [&]() -> Type * { 2489 // We're ultimately looking to fold an addrec of truncs and muls of only 2490 // constants and truncs, so if we find any other types of SCEV 2491 // as operands of the addrec then we bail and return nullptr here. 2492 // Otherwise, we return the type of the operand of a trunc that we find. 2493 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2494 return T->getOperand()->getType(); 2495 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2496 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2497 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2498 return T->getOperand()->getType(); 2499 } 2500 return nullptr; 2501 }; 2502 if (auto *SrcType = FindTruncSrcType()) { 2503 SmallVector<const SCEV *, 8> LargeOps; 2504 bool Ok = true; 2505 // Check all the operands to see if they can be represented in the 2506 // source type of the truncate. 2507 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2508 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2509 if (T->getOperand()->getType() != SrcType) { 2510 Ok = false; 2511 break; 2512 } 2513 LargeOps.push_back(T->getOperand()); 2514 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2515 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2516 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2517 SmallVector<const SCEV *, 8> LargeMulOps; 2518 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2519 if (const SCEVTruncateExpr *T = 2520 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2521 if (T->getOperand()->getType() != SrcType) { 2522 Ok = false; 2523 break; 2524 } 2525 LargeMulOps.push_back(T->getOperand()); 2526 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2527 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2528 } else { 2529 Ok = false; 2530 break; 2531 } 2532 } 2533 if (Ok) 2534 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2535 } else { 2536 Ok = false; 2537 break; 2538 } 2539 } 2540 if (Ok) { 2541 // Evaluate the expression in the larger type. 2542 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2543 // If it folds to something simple, use it. Otherwise, don't. 2544 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2545 return getTruncateExpr(Fold, Ty); 2546 } 2547 } 2548 2549 // Skip past any other cast SCEVs. 2550 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2551 ++Idx; 2552 2553 // If there are add operands they would be next. 2554 if (Idx < Ops.size()) { 2555 bool DeletedAdd = false; 2556 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2557 if (Ops.size() > AddOpsInlineThreshold || 2558 Add->getNumOperands() > AddOpsInlineThreshold) 2559 break; 2560 // If we have an add, expand the add operands onto the end of the operands 2561 // list. 2562 Ops.erase(Ops.begin()+Idx); 2563 Ops.append(Add->op_begin(), Add->op_end()); 2564 DeletedAdd = true; 2565 } 2566 2567 // If we deleted at least one add, we added operands to the end of the list, 2568 // and they are not necessarily sorted. Recurse to resort and resimplify 2569 // any operands we just acquired. 2570 if (DeletedAdd) 2571 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2572 } 2573 2574 // Skip over the add expression until we get to a multiply. 2575 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2576 ++Idx; 2577 2578 // Check to see if there are any folding opportunities present with 2579 // operands multiplied by constant values. 2580 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2581 uint64_t BitWidth = getTypeSizeInBits(Ty); 2582 DenseMap<const SCEV *, APInt> M; 2583 SmallVector<const SCEV *, 8> NewOps; 2584 APInt AccumulatedConstant(BitWidth, 0); 2585 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2586 Ops.data(), Ops.size(), 2587 APInt(BitWidth, 1), *this)) { 2588 struct APIntCompare { 2589 bool operator()(const APInt &LHS, const APInt &RHS) const { 2590 return LHS.ult(RHS); 2591 } 2592 }; 2593 2594 // Some interesting folding opportunity is present, so its worthwhile to 2595 // re-generate the operands list. Group the operands by constant scale, 2596 // to avoid multiplying by the same constant scale multiple times. 2597 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2598 for (const SCEV *NewOp : NewOps) 2599 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2600 // Re-generate the operands list. 2601 Ops.clear(); 2602 if (AccumulatedConstant != 0) 2603 Ops.push_back(getConstant(AccumulatedConstant)); 2604 for (auto &MulOp : MulOpLists) 2605 if (MulOp.first != 0) 2606 Ops.push_back(getMulExpr( 2607 getConstant(MulOp.first), 2608 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2609 SCEV::FlagAnyWrap, Depth + 1)); 2610 if (Ops.empty()) 2611 return getZero(Ty); 2612 if (Ops.size() == 1) 2613 return Ops[0]; 2614 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2615 } 2616 } 2617 2618 // If we are adding something to a multiply expression, make sure the 2619 // something is not already an operand of the multiply. If so, merge it into 2620 // the multiply. 2621 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2622 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2623 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2624 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2625 if (isa<SCEVConstant>(MulOpSCEV)) 2626 continue; 2627 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2628 if (MulOpSCEV == Ops[AddOp]) { 2629 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2630 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2631 if (Mul->getNumOperands() != 2) { 2632 // If the multiply has more than two operands, we must get the 2633 // Y*Z term. 2634 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2635 Mul->op_begin()+MulOp); 2636 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2637 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2638 } 2639 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2640 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2641 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2642 SCEV::FlagAnyWrap, Depth + 1); 2643 if (Ops.size() == 2) return OuterMul; 2644 if (AddOp < Idx) { 2645 Ops.erase(Ops.begin()+AddOp); 2646 Ops.erase(Ops.begin()+Idx-1); 2647 } else { 2648 Ops.erase(Ops.begin()+Idx); 2649 Ops.erase(Ops.begin()+AddOp-1); 2650 } 2651 Ops.push_back(OuterMul); 2652 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2653 } 2654 2655 // Check this multiply against other multiplies being added together. 2656 for (unsigned OtherMulIdx = Idx+1; 2657 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2658 ++OtherMulIdx) { 2659 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2660 // If MulOp occurs in OtherMul, we can fold the two multiplies 2661 // together. 2662 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2663 OMulOp != e; ++OMulOp) 2664 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2665 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2666 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2667 if (Mul->getNumOperands() != 2) { 2668 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2669 Mul->op_begin()+MulOp); 2670 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2671 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2672 } 2673 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2674 if (OtherMul->getNumOperands() != 2) { 2675 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2676 OtherMul->op_begin()+OMulOp); 2677 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2678 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2679 } 2680 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2681 const SCEV *InnerMulSum = 2682 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2683 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2684 SCEV::FlagAnyWrap, Depth + 1); 2685 if (Ops.size() == 2) return OuterMul; 2686 Ops.erase(Ops.begin()+Idx); 2687 Ops.erase(Ops.begin()+OtherMulIdx-1); 2688 Ops.push_back(OuterMul); 2689 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2690 } 2691 } 2692 } 2693 } 2694 2695 // If there are any add recurrences in the operands list, see if any other 2696 // added values are loop invariant. If so, we can fold them into the 2697 // recurrence. 2698 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2699 ++Idx; 2700 2701 // Scan over all recurrences, trying to fold loop invariants into them. 2702 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2703 // Scan all of the other operands to this add and add them to the vector if 2704 // they are loop invariant w.r.t. the recurrence. 2705 SmallVector<const SCEV *, 8> LIOps; 2706 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2707 const Loop *AddRecLoop = AddRec->getLoop(); 2708 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2709 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2710 LIOps.push_back(Ops[i]); 2711 Ops.erase(Ops.begin()+i); 2712 --i; --e; 2713 } 2714 2715 // If we found some loop invariants, fold them into the recurrence. 2716 if (!LIOps.empty()) { 2717 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2718 LIOps.push_back(AddRec->getStart()); 2719 2720 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2721 AddRec->op_end()); 2722 // This follows from the fact that the no-wrap flags on the outer add 2723 // expression are applicable on the 0th iteration, when the add recurrence 2724 // will be equal to its start value. 2725 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2726 2727 // Build the new addrec. Propagate the NUW and NSW flags if both the 2728 // outer add and the inner addrec are guaranteed to have no overflow. 2729 // Always propagate NW. 2730 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2731 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2732 2733 // If all of the other operands were loop invariant, we are done. 2734 if (Ops.size() == 1) return NewRec; 2735 2736 // Otherwise, add the folded AddRec by the non-invariant parts. 2737 for (unsigned i = 0;; ++i) 2738 if (Ops[i] == AddRec) { 2739 Ops[i] = NewRec; 2740 break; 2741 } 2742 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2743 } 2744 2745 // Okay, if there weren't any loop invariants to be folded, check to see if 2746 // there are multiple AddRec's with the same loop induction variable being 2747 // added together. If so, we can fold them. 2748 for (unsigned OtherIdx = Idx+1; 2749 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2750 ++OtherIdx) { 2751 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2752 // so that the 1st found AddRecExpr is dominated by all others. 2753 assert(DT.dominates( 2754 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2755 AddRec->getLoop()->getHeader()) && 2756 "AddRecExprs are not sorted in reverse dominance order?"); 2757 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2758 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2759 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2760 AddRec->op_end()); 2761 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2762 ++OtherIdx) { 2763 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2764 if (OtherAddRec->getLoop() == AddRecLoop) { 2765 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2766 i != e; ++i) { 2767 if (i >= AddRecOps.size()) { 2768 AddRecOps.append(OtherAddRec->op_begin()+i, 2769 OtherAddRec->op_end()); 2770 break; 2771 } 2772 SmallVector<const SCEV *, 2> TwoOps = { 2773 AddRecOps[i], OtherAddRec->getOperand(i)}; 2774 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2775 } 2776 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2777 } 2778 } 2779 // Step size has changed, so we cannot guarantee no self-wraparound. 2780 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2781 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2782 } 2783 } 2784 2785 // Otherwise couldn't fold anything into this recurrence. Move onto the 2786 // next one. 2787 } 2788 2789 // Okay, it looks like we really DO need an add expr. Check to see if we 2790 // already have one, otherwise create a new one. 2791 return getOrCreateAddExpr(Ops, Flags); 2792 } 2793 2794 const SCEV * 2795 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2796 SCEV::NoWrapFlags Flags) { 2797 FoldingSetNodeID ID; 2798 ID.AddInteger(scAddExpr); 2799 for (const SCEV *Op : Ops) 2800 ID.AddPointer(Op); 2801 void *IP = nullptr; 2802 SCEVAddExpr *S = 2803 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2804 if (!S) { 2805 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2806 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2807 S = new (SCEVAllocator) 2808 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2809 UniqueSCEVs.InsertNode(S, IP); 2810 addToLoopUseLists(S); 2811 } 2812 S->setNoWrapFlags(Flags); 2813 return S; 2814 } 2815 2816 const SCEV * 2817 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2818 const Loop *L, SCEV::NoWrapFlags Flags) { 2819 FoldingSetNodeID ID; 2820 ID.AddInteger(scAddRecExpr); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 ID.AddPointer(Ops[i]); 2823 ID.AddPointer(L); 2824 void *IP = nullptr; 2825 SCEVAddRecExpr *S = 2826 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2827 if (!S) { 2828 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2829 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2830 S = new (SCEVAllocator) 2831 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2832 UniqueSCEVs.InsertNode(S, IP); 2833 addToLoopUseLists(S); 2834 } 2835 S->setNoWrapFlags(Flags); 2836 return S; 2837 } 2838 2839 const SCEV * 2840 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2841 SCEV::NoWrapFlags Flags) { 2842 FoldingSetNodeID ID; 2843 ID.AddInteger(scMulExpr); 2844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2845 ID.AddPointer(Ops[i]); 2846 void *IP = nullptr; 2847 SCEVMulExpr *S = 2848 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2849 if (!S) { 2850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2852 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2853 O, Ops.size()); 2854 UniqueSCEVs.InsertNode(S, IP); 2855 addToLoopUseLists(S); 2856 } 2857 S->setNoWrapFlags(Flags); 2858 return S; 2859 } 2860 2861 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2862 uint64_t k = i*j; 2863 if (j > 1 && k / j != i) Overflow = true; 2864 return k; 2865 } 2866 2867 /// Compute the result of "n choose k", the binomial coefficient. If an 2868 /// intermediate computation overflows, Overflow will be set and the return will 2869 /// be garbage. Overflow is not cleared on absence of overflow. 2870 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2871 // We use the multiplicative formula: 2872 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2873 // At each iteration, we take the n-th term of the numeral and divide by the 2874 // (k-n)th term of the denominator. This division will always produce an 2875 // integral result, and helps reduce the chance of overflow in the 2876 // intermediate computations. However, we can still overflow even when the 2877 // final result would fit. 2878 2879 if (n == 0 || n == k) return 1; 2880 if (k > n) return 0; 2881 2882 if (k > n/2) 2883 k = n-k; 2884 2885 uint64_t r = 1; 2886 for (uint64_t i = 1; i <= k; ++i) { 2887 r = umul_ov(r, n-(i-1), Overflow); 2888 r /= i; 2889 } 2890 return r; 2891 } 2892 2893 /// Determine if any of the operands in this SCEV are a constant or if 2894 /// any of the add or multiply expressions in this SCEV contain a constant. 2895 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2896 struct FindConstantInAddMulChain { 2897 bool FoundConstant = false; 2898 2899 bool follow(const SCEV *S) { 2900 FoundConstant |= isa<SCEVConstant>(S); 2901 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2902 } 2903 2904 bool isDone() const { 2905 return FoundConstant; 2906 } 2907 }; 2908 2909 FindConstantInAddMulChain F; 2910 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2911 ST.visitAll(StartExpr); 2912 return F.FoundConstant; 2913 } 2914 2915 /// Get a canonical multiply expression, or something simpler if possible. 2916 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2917 SCEV::NoWrapFlags Flags, 2918 unsigned Depth) { 2919 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2920 "only nuw or nsw allowed"); 2921 assert(!Ops.empty() && "Cannot get empty mul!"); 2922 if (Ops.size() == 1) return Ops[0]; 2923 #ifndef NDEBUG 2924 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2925 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2926 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2927 "SCEVMulExpr operand types don't match!"); 2928 #endif 2929 2930 // Sort by complexity, this groups all similar expression types together. 2931 GroupByComplexity(Ops, &LI, DT); 2932 2933 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2934 2935 // Limit recursion calls depth. 2936 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2937 return getOrCreateMulExpr(Ops, Flags); 2938 2939 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2940 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2941 return S; 2942 } 2943 2944 // If there are any constants, fold them together. 2945 unsigned Idx = 0; 2946 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2947 2948 if (Ops.size() == 2) 2949 // C1*(C2+V) -> C1*C2 + C1*V 2950 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2951 // If any of Add's ops are Adds or Muls with a constant, apply this 2952 // transformation as well. 2953 // 2954 // TODO: There are some cases where this transformation is not 2955 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2956 // this transformation should be narrowed down. 2957 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2958 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2959 SCEV::FlagAnyWrap, Depth + 1), 2960 getMulExpr(LHSC, Add->getOperand(1), 2961 SCEV::FlagAnyWrap, Depth + 1), 2962 SCEV::FlagAnyWrap, Depth + 1); 2963 2964 ++Idx; 2965 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2966 // We found two constants, fold them together! 2967 ConstantInt *Fold = 2968 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2969 Ops[0] = getConstant(Fold); 2970 Ops.erase(Ops.begin()+1); // Erase the folded element 2971 if (Ops.size() == 1) return Ops[0]; 2972 LHSC = cast<SCEVConstant>(Ops[0]); 2973 } 2974 2975 // If we are left with a constant one being multiplied, strip it off. 2976 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2977 Ops.erase(Ops.begin()); 2978 --Idx; 2979 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2980 // If we have a multiply of zero, it will always be zero. 2981 return Ops[0]; 2982 } else if (Ops[0]->isAllOnesValue()) { 2983 // If we have a mul by -1 of an add, try distributing the -1 among the 2984 // add operands. 2985 if (Ops.size() == 2) { 2986 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2987 SmallVector<const SCEV *, 4> NewOps; 2988 bool AnyFolded = false; 2989 for (const SCEV *AddOp : Add->operands()) { 2990 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2991 Depth + 1); 2992 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2993 NewOps.push_back(Mul); 2994 } 2995 if (AnyFolded) 2996 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2997 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2998 // Negation preserves a recurrence's no self-wrap property. 2999 SmallVector<const SCEV *, 4> Operands; 3000 for (const SCEV *AddRecOp : AddRec->operands()) 3001 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3002 Depth + 1)); 3003 3004 return getAddRecExpr(Operands, AddRec->getLoop(), 3005 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3006 } 3007 } 3008 } 3009 3010 if (Ops.size() == 1) 3011 return Ops[0]; 3012 } 3013 3014 // Skip over the add expression until we get to a multiply. 3015 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3016 ++Idx; 3017 3018 // If there are mul operands inline them all into this expression. 3019 if (Idx < Ops.size()) { 3020 bool DeletedMul = false; 3021 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3022 if (Ops.size() > MulOpsInlineThreshold) 3023 break; 3024 // If we have an mul, expand the mul operands onto the end of the 3025 // operands list. 3026 Ops.erase(Ops.begin()+Idx); 3027 Ops.append(Mul->op_begin(), Mul->op_end()); 3028 DeletedMul = true; 3029 } 3030 3031 // If we deleted at least one mul, we added operands to the end of the 3032 // list, and they are not necessarily sorted. Recurse to resort and 3033 // resimplify any operands we just acquired. 3034 if (DeletedMul) 3035 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3036 } 3037 3038 // If there are any add recurrences in the operands list, see if any other 3039 // added values are loop invariant. If so, we can fold them into the 3040 // recurrence. 3041 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3042 ++Idx; 3043 3044 // Scan over all recurrences, trying to fold loop invariants into them. 3045 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3046 // Scan all of the other operands to this mul and add them to the vector 3047 // if they are loop invariant w.r.t. the recurrence. 3048 SmallVector<const SCEV *, 8> LIOps; 3049 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3050 const Loop *AddRecLoop = AddRec->getLoop(); 3051 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3052 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3053 LIOps.push_back(Ops[i]); 3054 Ops.erase(Ops.begin()+i); 3055 --i; --e; 3056 } 3057 3058 // If we found some loop invariants, fold them into the recurrence. 3059 if (!LIOps.empty()) { 3060 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3061 SmallVector<const SCEV *, 4> NewOps; 3062 NewOps.reserve(AddRec->getNumOperands()); 3063 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3064 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3065 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3066 SCEV::FlagAnyWrap, Depth + 1)); 3067 3068 // Build the new addrec. Propagate the NUW and NSW flags if both the 3069 // outer mul and the inner addrec are guaranteed to have no overflow. 3070 // 3071 // No self-wrap cannot be guaranteed after changing the step size, but 3072 // will be inferred if either NUW or NSW is true. 3073 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 3074 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 3075 3076 // If all of the other operands were loop invariant, we are done. 3077 if (Ops.size() == 1) return NewRec; 3078 3079 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3080 for (unsigned i = 0;; ++i) 3081 if (Ops[i] == AddRec) { 3082 Ops[i] = NewRec; 3083 break; 3084 } 3085 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3086 } 3087 3088 // Okay, if there weren't any loop invariants to be folded, check to see 3089 // if there are multiple AddRec's with the same loop induction variable 3090 // being multiplied together. If so, we can fold them. 3091 3092 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3093 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3094 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3095 // ]]],+,...up to x=2n}. 3096 // Note that the arguments to choose() are always integers with values 3097 // known at compile time, never SCEV objects. 3098 // 3099 // The implementation avoids pointless extra computations when the two 3100 // addrec's are of different length (mathematically, it's equivalent to 3101 // an infinite stream of zeros on the right). 3102 bool OpsModified = false; 3103 for (unsigned OtherIdx = Idx+1; 3104 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3105 ++OtherIdx) { 3106 const SCEVAddRecExpr *OtherAddRec = 3107 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3108 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3109 continue; 3110 3111 // Limit max number of arguments to avoid creation of unreasonably big 3112 // SCEVAddRecs with very complex operands. 3113 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3114 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3115 continue; 3116 3117 bool Overflow = false; 3118 Type *Ty = AddRec->getType(); 3119 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3120 SmallVector<const SCEV*, 7> AddRecOps; 3121 for (int x = 0, xe = AddRec->getNumOperands() + 3122 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3123 SmallVector <const SCEV *, 7> SumOps; 3124 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3125 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3126 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3127 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3128 z < ze && !Overflow; ++z) { 3129 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3130 uint64_t Coeff; 3131 if (LargerThan64Bits) 3132 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3133 else 3134 Coeff = Coeff1*Coeff2; 3135 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3136 const SCEV *Term1 = AddRec->getOperand(y-z); 3137 const SCEV *Term2 = OtherAddRec->getOperand(z); 3138 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3139 SCEV::FlagAnyWrap, Depth + 1)); 3140 } 3141 } 3142 if (SumOps.empty()) 3143 SumOps.push_back(getZero(Ty)); 3144 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3145 } 3146 if (!Overflow) { 3147 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3148 SCEV::FlagAnyWrap); 3149 if (Ops.size() == 2) return NewAddRec; 3150 Ops[Idx] = NewAddRec; 3151 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3152 OpsModified = true; 3153 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3154 if (!AddRec) 3155 break; 3156 } 3157 } 3158 if (OpsModified) 3159 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3160 3161 // Otherwise couldn't fold anything into this recurrence. Move onto the 3162 // next one. 3163 } 3164 3165 // Okay, it looks like we really DO need an mul expr. Check to see if we 3166 // already have one, otherwise create a new one. 3167 return getOrCreateMulExpr(Ops, Flags); 3168 } 3169 3170 /// Represents an unsigned remainder expression based on unsigned division. 3171 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3172 const SCEV *RHS) { 3173 assert(getEffectiveSCEVType(LHS->getType()) == 3174 getEffectiveSCEVType(RHS->getType()) && 3175 "SCEVURemExpr operand types don't match!"); 3176 3177 // Short-circuit easy cases 3178 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3179 // If constant is one, the result is trivial 3180 if (RHSC->getValue()->isOne()) 3181 return getZero(LHS->getType()); // X urem 1 --> 0 3182 3183 // If constant is a power of two, fold into a zext(trunc(LHS)). 3184 if (RHSC->getAPInt().isPowerOf2()) { 3185 Type *FullTy = LHS->getType(); 3186 Type *TruncTy = 3187 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3188 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3189 } 3190 } 3191 3192 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3193 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3194 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3195 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3196 } 3197 3198 /// Get a canonical unsigned division expression, or something simpler if 3199 /// possible. 3200 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3201 const SCEV *RHS) { 3202 assert(getEffectiveSCEVType(LHS->getType()) == 3203 getEffectiveSCEVType(RHS->getType()) && 3204 "SCEVUDivExpr operand types don't match!"); 3205 3206 FoldingSetNodeID ID; 3207 ID.AddInteger(scUDivExpr); 3208 ID.AddPointer(LHS); 3209 ID.AddPointer(RHS); 3210 void *IP = nullptr; 3211 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3212 return S; 3213 3214 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3215 if (RHSC->getValue()->isOne()) 3216 return LHS; // X udiv 1 --> x 3217 // If the denominator is zero, the result of the udiv is undefined. Don't 3218 // try to analyze it, because the resolution chosen here may differ from 3219 // the resolution chosen in other parts of the compiler. 3220 if (!RHSC->getValue()->isZero()) { 3221 // Determine if the division can be folded into the operands of 3222 // its operands. 3223 // TODO: Generalize this to non-constants by using known-bits information. 3224 Type *Ty = LHS->getType(); 3225 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3226 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3227 // For non-power-of-two values, effectively round the value up to the 3228 // nearest power of two. 3229 if (!RHSC->getAPInt().isPowerOf2()) 3230 ++MaxShiftAmt; 3231 IntegerType *ExtTy = 3232 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3233 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3234 if (const SCEVConstant *Step = 3235 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3236 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3237 const APInt &StepInt = Step->getAPInt(); 3238 const APInt &DivInt = RHSC->getAPInt(); 3239 if (!StepInt.urem(DivInt) && 3240 getZeroExtendExpr(AR, ExtTy) == 3241 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3242 getZeroExtendExpr(Step, ExtTy), 3243 AR->getLoop(), SCEV::FlagAnyWrap)) { 3244 SmallVector<const SCEV *, 4> Operands; 3245 for (const SCEV *Op : AR->operands()) 3246 Operands.push_back(getUDivExpr(Op, RHS)); 3247 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3248 } 3249 /// Get a canonical UDivExpr for a recurrence. 3250 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3251 // We can currently only fold X%N if X is constant. 3252 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3253 if (StartC && !DivInt.urem(StepInt) && 3254 getZeroExtendExpr(AR, ExtTy) == 3255 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3256 getZeroExtendExpr(Step, ExtTy), 3257 AR->getLoop(), SCEV::FlagAnyWrap)) { 3258 const APInt &StartInt = StartC->getAPInt(); 3259 const APInt &StartRem = StartInt.urem(StepInt); 3260 if (StartRem != 0) { 3261 const SCEV *NewLHS = 3262 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3263 AR->getLoop(), SCEV::FlagNW); 3264 if (LHS != NewLHS) { 3265 LHS = NewLHS; 3266 3267 // Reset the ID to include the new LHS, and check if it is 3268 // already cached. 3269 ID.clear(); 3270 ID.AddInteger(scUDivExpr); 3271 ID.AddPointer(LHS); 3272 ID.AddPointer(RHS); 3273 IP = nullptr; 3274 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3275 return S; 3276 } 3277 } 3278 } 3279 } 3280 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3281 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3282 SmallVector<const SCEV *, 4> Operands; 3283 for (const SCEV *Op : M->operands()) 3284 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3285 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3286 // Find an operand that's safely divisible. 3287 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3288 const SCEV *Op = M->getOperand(i); 3289 const SCEV *Div = getUDivExpr(Op, RHSC); 3290 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3291 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3292 M->op_end()); 3293 Operands[i] = Div; 3294 return getMulExpr(Operands); 3295 } 3296 } 3297 } 3298 3299 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3300 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3301 if (auto *DivisorConstant = 3302 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3303 bool Overflow = false; 3304 APInt NewRHS = 3305 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3306 if (Overflow) { 3307 return getConstant(RHSC->getType(), 0, false); 3308 } 3309 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3310 } 3311 } 3312 3313 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3314 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3315 SmallVector<const SCEV *, 4> Operands; 3316 for (const SCEV *Op : A->operands()) 3317 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3318 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3319 Operands.clear(); 3320 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3321 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3322 if (isa<SCEVUDivExpr>(Op) || 3323 getMulExpr(Op, RHS) != A->getOperand(i)) 3324 break; 3325 Operands.push_back(Op); 3326 } 3327 if (Operands.size() == A->getNumOperands()) 3328 return getAddExpr(Operands); 3329 } 3330 } 3331 3332 // Fold if both operands are constant. 3333 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3334 Constant *LHSCV = LHSC->getValue(); 3335 Constant *RHSCV = RHSC->getValue(); 3336 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3337 RHSCV))); 3338 } 3339 } 3340 } 3341 3342 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3343 // changes). Make sure we get a new one. 3344 IP = nullptr; 3345 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3346 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3347 LHS, RHS); 3348 UniqueSCEVs.InsertNode(S, IP); 3349 addToLoopUseLists(S); 3350 return S; 3351 } 3352 3353 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3354 APInt A = C1->getAPInt().abs(); 3355 APInt B = C2->getAPInt().abs(); 3356 uint32_t ABW = A.getBitWidth(); 3357 uint32_t BBW = B.getBitWidth(); 3358 3359 if (ABW > BBW) 3360 B = B.zext(ABW); 3361 else if (ABW < BBW) 3362 A = A.zext(BBW); 3363 3364 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3365 } 3366 3367 /// Get a canonical unsigned division expression, or something simpler if 3368 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3369 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3370 /// it's not exact because the udiv may be clearing bits. 3371 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3372 const SCEV *RHS) { 3373 // TODO: we could try to find factors in all sorts of things, but for now we 3374 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3375 // end of this file for inspiration. 3376 3377 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3378 if (!Mul || !Mul->hasNoUnsignedWrap()) 3379 return getUDivExpr(LHS, RHS); 3380 3381 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3382 // If the mulexpr multiplies by a constant, then that constant must be the 3383 // first element of the mulexpr. 3384 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3385 if (LHSCst == RHSCst) { 3386 SmallVector<const SCEV *, 2> Operands; 3387 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3388 return getMulExpr(Operands); 3389 } 3390 3391 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3392 // that there's a factor provided by one of the other terms. We need to 3393 // check. 3394 APInt Factor = gcd(LHSCst, RHSCst); 3395 if (!Factor.isIntN(1)) { 3396 LHSCst = 3397 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3398 RHSCst = 3399 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3400 SmallVector<const SCEV *, 2> Operands; 3401 Operands.push_back(LHSCst); 3402 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3403 LHS = getMulExpr(Operands); 3404 RHS = RHSCst; 3405 Mul = dyn_cast<SCEVMulExpr>(LHS); 3406 if (!Mul) 3407 return getUDivExactExpr(LHS, RHS); 3408 } 3409 } 3410 } 3411 3412 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3413 if (Mul->getOperand(i) == RHS) { 3414 SmallVector<const SCEV *, 2> Operands; 3415 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3416 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3417 return getMulExpr(Operands); 3418 } 3419 } 3420 3421 return getUDivExpr(LHS, RHS); 3422 } 3423 3424 /// Get an add recurrence expression for the specified loop. Simplify the 3425 /// expression as much as possible. 3426 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3427 const Loop *L, 3428 SCEV::NoWrapFlags Flags) { 3429 SmallVector<const SCEV *, 4> Operands; 3430 Operands.push_back(Start); 3431 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3432 if (StepChrec->getLoop() == L) { 3433 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3434 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3435 } 3436 3437 Operands.push_back(Step); 3438 return getAddRecExpr(Operands, L, Flags); 3439 } 3440 3441 /// Get an add recurrence expression for the specified loop. Simplify the 3442 /// expression as much as possible. 3443 const SCEV * 3444 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3445 const Loop *L, SCEV::NoWrapFlags Flags) { 3446 if (Operands.size() == 1) return Operands[0]; 3447 #ifndef NDEBUG 3448 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3449 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3450 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3451 "SCEVAddRecExpr operand types don't match!"); 3452 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3453 assert(isLoopInvariant(Operands[i], L) && 3454 "SCEVAddRecExpr operand is not loop-invariant!"); 3455 #endif 3456 3457 if (Operands.back()->isZero()) { 3458 Operands.pop_back(); 3459 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3460 } 3461 3462 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3463 // use that information to infer NUW and NSW flags. However, computing a 3464 // BE count requires calling getAddRecExpr, so we may not yet have a 3465 // meaningful BE count at this point (and if we don't, we'd be stuck 3466 // with a SCEVCouldNotCompute as the cached BE count). 3467 3468 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3469 3470 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3471 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3472 const Loop *NestedLoop = NestedAR->getLoop(); 3473 if (L->contains(NestedLoop) 3474 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3475 : (!NestedLoop->contains(L) && 3476 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3477 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3478 NestedAR->op_end()); 3479 Operands[0] = NestedAR->getStart(); 3480 // AddRecs require their operands be loop-invariant with respect to their 3481 // loops. Don't perform this transformation if it would break this 3482 // requirement. 3483 bool AllInvariant = all_of( 3484 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3485 3486 if (AllInvariant) { 3487 // Create a recurrence for the outer loop with the same step size. 3488 // 3489 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3490 // inner recurrence has the same property. 3491 SCEV::NoWrapFlags OuterFlags = 3492 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3493 3494 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3495 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3496 return isLoopInvariant(Op, NestedLoop); 3497 }); 3498 3499 if (AllInvariant) { 3500 // Ok, both add recurrences are valid after the transformation. 3501 // 3502 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3503 // the outer recurrence has the same property. 3504 SCEV::NoWrapFlags InnerFlags = 3505 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3506 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3507 } 3508 } 3509 // Reset Operands to its original state. 3510 Operands[0] = NestedAR; 3511 } 3512 } 3513 3514 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3515 // already have one, otherwise create a new one. 3516 return getOrCreateAddRecExpr(Operands, L, Flags); 3517 } 3518 3519 const SCEV * 3520 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3521 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3522 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3523 // getSCEV(Base)->getType() has the same address space as Base->getType() 3524 // because SCEV::getType() preserves the address space. 3525 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3526 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3527 // instruction to its SCEV, because the Instruction may be guarded by control 3528 // flow and the no-overflow bits may not be valid for the expression in any 3529 // context. This can be fixed similarly to how these flags are handled for 3530 // adds. 3531 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3532 : SCEV::FlagAnyWrap; 3533 3534 const SCEV *TotalOffset = getZero(IntIdxTy); 3535 Type *CurTy = GEP->getType(); 3536 bool FirstIter = true; 3537 for (const SCEV *IndexExpr : IndexExprs) { 3538 // Compute the (potentially symbolic) offset in bytes for this index. 3539 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3540 // For a struct, add the member offset. 3541 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3542 unsigned FieldNo = Index->getZExtValue(); 3543 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3544 3545 // Add the field offset to the running total offset. 3546 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3547 3548 // Update CurTy to the type of the field at Index. 3549 CurTy = STy->getTypeAtIndex(Index); 3550 } else { 3551 // Update CurTy to its element type. 3552 if (FirstIter) { 3553 assert(isa<PointerType>(CurTy) && 3554 "The first index of a GEP indexes a pointer"); 3555 CurTy = GEP->getSourceElementType(); 3556 FirstIter = false; 3557 } else { 3558 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3559 } 3560 // For an array, add the element offset, explicitly scaled. 3561 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3562 // Getelementptr indices are signed. 3563 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3564 3565 // Multiply the index by the element size to compute the element offset. 3566 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3567 3568 // Add the element offset to the running total offset. 3569 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3570 } 3571 } 3572 3573 // Add the total offset from all the GEP indices to the base. 3574 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3575 } 3576 3577 std::tuple<SCEV *, FoldingSetNodeID, void *> 3578 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3579 ArrayRef<const SCEV *> Ops) { 3580 FoldingSetNodeID ID; 3581 void *IP = nullptr; 3582 ID.AddInteger(SCEVType); 3583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3584 ID.AddPointer(Ops[i]); 3585 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3586 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3587 } 3588 3589 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3590 SmallVectorImpl<const SCEV *> &Ops) { 3591 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3592 if (Ops.size() == 1) return Ops[0]; 3593 #ifndef NDEBUG 3594 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3595 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3596 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3597 "Operand types don't match!"); 3598 #endif 3599 3600 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3601 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3602 3603 // Sort by complexity, this groups all similar expression types together. 3604 GroupByComplexity(Ops, &LI, DT); 3605 3606 // Check if we have created the same expression before. 3607 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3608 return S; 3609 } 3610 3611 // If there are any constants, fold them together. 3612 unsigned Idx = 0; 3613 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3614 ++Idx; 3615 assert(Idx < Ops.size()); 3616 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3617 if (Kind == scSMaxExpr) 3618 return APIntOps::smax(LHS, RHS); 3619 else if (Kind == scSMinExpr) 3620 return APIntOps::smin(LHS, RHS); 3621 else if (Kind == scUMaxExpr) 3622 return APIntOps::umax(LHS, RHS); 3623 else if (Kind == scUMinExpr) 3624 return APIntOps::umin(LHS, RHS); 3625 llvm_unreachable("Unknown SCEV min/max opcode"); 3626 }; 3627 3628 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3629 // We found two constants, fold them together! 3630 ConstantInt *Fold = ConstantInt::get( 3631 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3632 Ops[0] = getConstant(Fold); 3633 Ops.erase(Ops.begin()+1); // Erase the folded element 3634 if (Ops.size() == 1) return Ops[0]; 3635 LHSC = cast<SCEVConstant>(Ops[0]); 3636 } 3637 3638 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3639 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3640 3641 if (IsMax ? IsMinV : IsMaxV) { 3642 // If we are left with a constant minimum(/maximum)-int, strip it off. 3643 Ops.erase(Ops.begin()); 3644 --Idx; 3645 } else if (IsMax ? IsMaxV : IsMinV) { 3646 // If we have a max(/min) with a constant maximum(/minimum)-int, 3647 // it will always be the extremum. 3648 return LHSC; 3649 } 3650 3651 if (Ops.size() == 1) return Ops[0]; 3652 } 3653 3654 // Find the first operation of the same kind 3655 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3656 ++Idx; 3657 3658 // Check to see if one of the operands is of the same kind. If so, expand its 3659 // operands onto our operand list, and recurse to simplify. 3660 if (Idx < Ops.size()) { 3661 bool DeletedAny = false; 3662 while (Ops[Idx]->getSCEVType() == Kind) { 3663 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3664 Ops.erase(Ops.begin()+Idx); 3665 Ops.append(SMME->op_begin(), SMME->op_end()); 3666 DeletedAny = true; 3667 } 3668 3669 if (DeletedAny) 3670 return getMinMaxExpr(Kind, Ops); 3671 } 3672 3673 // Okay, check to see if the same value occurs in the operand list twice. If 3674 // so, delete one. Since we sorted the list, these values are required to 3675 // be adjacent. 3676 llvm::CmpInst::Predicate GEPred = 3677 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3678 llvm::CmpInst::Predicate LEPred = 3679 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3680 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3681 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3682 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3683 if (Ops[i] == Ops[i + 1] || 3684 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3685 // X op Y op Y --> X op Y 3686 // X op Y --> X, if we know X, Y are ordered appropriately 3687 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3688 --i; 3689 --e; 3690 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3691 Ops[i + 1])) { 3692 // X op Y --> Y, if we know X, Y are ordered appropriately 3693 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3694 --i; 3695 --e; 3696 } 3697 } 3698 3699 if (Ops.size() == 1) return Ops[0]; 3700 3701 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3702 3703 // Okay, it looks like we really DO need an expr. Check to see if we 3704 // already have one, otherwise create a new one. 3705 const SCEV *ExistingSCEV; 3706 FoldingSetNodeID ID; 3707 void *IP; 3708 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3709 if (ExistingSCEV) 3710 return ExistingSCEV; 3711 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3712 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3713 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3714 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3715 3716 UniqueSCEVs.InsertNode(S, IP); 3717 addToLoopUseLists(S); 3718 return S; 3719 } 3720 3721 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3722 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3723 return getSMaxExpr(Ops); 3724 } 3725 3726 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3727 return getMinMaxExpr(scSMaxExpr, Ops); 3728 } 3729 3730 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3731 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3732 return getUMaxExpr(Ops); 3733 } 3734 3735 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3736 return getMinMaxExpr(scUMaxExpr, Ops); 3737 } 3738 3739 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3740 const SCEV *RHS) { 3741 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3742 return getSMinExpr(Ops); 3743 } 3744 3745 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3746 return getMinMaxExpr(scSMinExpr, Ops); 3747 } 3748 3749 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3750 const SCEV *RHS) { 3751 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3752 return getUMinExpr(Ops); 3753 } 3754 3755 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3756 return getMinMaxExpr(scUMinExpr, Ops); 3757 } 3758 3759 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3760 // We can bypass creating a target-independent 3761 // constant expression and then folding it back into a ConstantInt. 3762 // This is just a compile-time optimization. 3763 if (auto *VecTy = dyn_cast<VectorType>(AllocTy)) { 3764 if (VecTy->isScalable()) { 3765 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3766 Constant *One = ConstantInt::get(IntTy, 1); 3767 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3768 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3769 } 3770 } 3771 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3772 } 3773 3774 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3775 StructType *STy, 3776 unsigned FieldNo) { 3777 // We can bypass creating a target-independent 3778 // constant expression and then folding it back into a ConstantInt. 3779 // This is just a compile-time optimization. 3780 return getConstant( 3781 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3782 } 3783 3784 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3785 // Don't attempt to do anything other than create a SCEVUnknown object 3786 // here. createSCEV only calls getUnknown after checking for all other 3787 // interesting possibilities, and any other code that calls getUnknown 3788 // is doing so in order to hide a value from SCEV canonicalization. 3789 3790 FoldingSetNodeID ID; 3791 ID.AddInteger(scUnknown); 3792 ID.AddPointer(V); 3793 void *IP = nullptr; 3794 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3795 assert(cast<SCEVUnknown>(S)->getValue() == V && 3796 "Stale SCEVUnknown in uniquing map!"); 3797 return S; 3798 } 3799 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3800 FirstUnknown); 3801 FirstUnknown = cast<SCEVUnknown>(S); 3802 UniqueSCEVs.InsertNode(S, IP); 3803 return S; 3804 } 3805 3806 //===----------------------------------------------------------------------===// 3807 // Basic SCEV Analysis and PHI Idiom Recognition Code 3808 // 3809 3810 /// Test if values of the given type are analyzable within the SCEV 3811 /// framework. This primarily includes integer types, and it can optionally 3812 /// include pointer types if the ScalarEvolution class has access to 3813 /// target-specific information. 3814 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3815 // Integers and pointers are always SCEVable. 3816 return Ty->isIntOrPtrTy(); 3817 } 3818 3819 /// Return the size in bits of the specified type, for which isSCEVable must 3820 /// return true. 3821 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3822 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3823 if (Ty->isPointerTy()) 3824 return getDataLayout().getIndexTypeSizeInBits(Ty); 3825 return getDataLayout().getTypeSizeInBits(Ty); 3826 } 3827 3828 /// Return a type with the same bitwidth as the given type and which represents 3829 /// how SCEV will treat the given type, for which isSCEVable must return 3830 /// true. For pointer types, this is the pointer index sized integer type. 3831 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3832 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3833 3834 if (Ty->isIntegerTy()) 3835 return Ty; 3836 3837 // The only other support type is pointer. 3838 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3839 return getDataLayout().getIndexType(Ty); 3840 } 3841 3842 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3843 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3844 } 3845 3846 const SCEV *ScalarEvolution::getCouldNotCompute() { 3847 return CouldNotCompute.get(); 3848 } 3849 3850 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3851 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3852 auto *SU = dyn_cast<SCEVUnknown>(S); 3853 return SU && SU->getValue() == nullptr; 3854 }); 3855 3856 return !ContainsNulls; 3857 } 3858 3859 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3860 HasRecMapType::iterator I = HasRecMap.find(S); 3861 if (I != HasRecMap.end()) 3862 return I->second; 3863 3864 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3865 HasRecMap.insert({S, FoundAddRec}); 3866 return FoundAddRec; 3867 } 3868 3869 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3870 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3871 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3872 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3873 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3874 if (!Add) 3875 return {S, nullptr}; 3876 3877 if (Add->getNumOperands() != 2) 3878 return {S, nullptr}; 3879 3880 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3881 if (!ConstOp) 3882 return {S, nullptr}; 3883 3884 return {Add->getOperand(1), ConstOp->getValue()}; 3885 } 3886 3887 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3888 /// by the value and offset from any ValueOffsetPair in the set. 3889 SetVector<ScalarEvolution::ValueOffsetPair> * 3890 ScalarEvolution::getSCEVValues(const SCEV *S) { 3891 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3892 if (SI == ExprValueMap.end()) 3893 return nullptr; 3894 #ifndef NDEBUG 3895 if (VerifySCEVMap) { 3896 // Check there is no dangling Value in the set returned. 3897 for (const auto &VE : SI->second) 3898 assert(ValueExprMap.count(VE.first)); 3899 } 3900 #endif 3901 return &SI->second; 3902 } 3903 3904 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3905 /// cannot be used separately. eraseValueFromMap should be used to remove 3906 /// V from ValueExprMap and ExprValueMap at the same time. 3907 void ScalarEvolution::eraseValueFromMap(Value *V) { 3908 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3909 if (I != ValueExprMap.end()) { 3910 const SCEV *S = I->second; 3911 // Remove {V, 0} from the set of ExprValueMap[S] 3912 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3913 SV->remove({V, nullptr}); 3914 3915 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3916 const SCEV *Stripped; 3917 ConstantInt *Offset; 3918 std::tie(Stripped, Offset) = splitAddExpr(S); 3919 if (Offset != nullptr) { 3920 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3921 SV->remove({V, Offset}); 3922 } 3923 ValueExprMap.erase(V); 3924 } 3925 } 3926 3927 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3928 /// TODO: In reality it is better to check the poison recursively 3929 /// but this is better than nothing. 3930 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3931 if (auto *I = dyn_cast<Instruction>(V)) { 3932 if (isa<OverflowingBinaryOperator>(I)) { 3933 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3934 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3935 return true; 3936 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3937 return true; 3938 } 3939 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3940 return true; 3941 } 3942 return false; 3943 } 3944 3945 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3946 /// create a new one. 3947 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3948 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3949 3950 const SCEV *S = getExistingSCEV(V); 3951 if (S == nullptr) { 3952 S = createSCEV(V); 3953 // During PHI resolution, it is possible to create two SCEVs for the same 3954 // V, so it is needed to double check whether V->S is inserted into 3955 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3956 std::pair<ValueExprMapType::iterator, bool> Pair = 3957 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3958 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3959 ExprValueMap[S].insert({V, nullptr}); 3960 3961 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3962 // ExprValueMap. 3963 const SCEV *Stripped = S; 3964 ConstantInt *Offset = nullptr; 3965 std::tie(Stripped, Offset) = splitAddExpr(S); 3966 // If stripped is SCEVUnknown, don't bother to save 3967 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3968 // increase the complexity of the expansion code. 3969 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3970 // because it may generate add/sub instead of GEP in SCEV expansion. 3971 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3972 !isa<GetElementPtrInst>(V)) 3973 ExprValueMap[Stripped].insert({V, Offset}); 3974 } 3975 } 3976 return S; 3977 } 3978 3979 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3980 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3981 3982 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3983 if (I != ValueExprMap.end()) { 3984 const SCEV *S = I->second; 3985 if (checkValidity(S)) 3986 return S; 3987 eraseValueFromMap(V); 3988 forgetMemoizedResults(S); 3989 } 3990 return nullptr; 3991 } 3992 3993 /// Return a SCEV corresponding to -V = -1*V 3994 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3995 SCEV::NoWrapFlags Flags) { 3996 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3997 return getConstant( 3998 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3999 4000 Type *Ty = V->getType(); 4001 Ty = getEffectiveSCEVType(Ty); 4002 return getMulExpr( 4003 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 4004 } 4005 4006 /// If Expr computes ~A, return A else return nullptr 4007 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4008 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4009 if (!Add || Add->getNumOperands() != 2 || 4010 !Add->getOperand(0)->isAllOnesValue()) 4011 return nullptr; 4012 4013 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4014 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4015 !AddRHS->getOperand(0)->isAllOnesValue()) 4016 return nullptr; 4017 4018 return AddRHS->getOperand(1); 4019 } 4020 4021 /// Return a SCEV corresponding to ~V = -1-V 4022 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4023 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4024 return getConstant( 4025 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4026 4027 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4028 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4029 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4030 SmallVector<const SCEV *, 2> MatchedOperands; 4031 for (const SCEV *Operand : MME->operands()) { 4032 const SCEV *Matched = MatchNotExpr(Operand); 4033 if (!Matched) 4034 return (const SCEV *)nullptr; 4035 MatchedOperands.push_back(Matched); 4036 } 4037 return getMinMaxExpr( 4038 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 4039 MatchedOperands); 4040 }; 4041 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4042 return Replaced; 4043 } 4044 4045 Type *Ty = V->getType(); 4046 Ty = getEffectiveSCEVType(Ty); 4047 const SCEV *AllOnes = 4048 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 4049 return getMinusSCEV(AllOnes, V); 4050 } 4051 4052 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4053 SCEV::NoWrapFlags Flags, 4054 unsigned Depth) { 4055 // Fast path: X - X --> 0. 4056 if (LHS == RHS) 4057 return getZero(LHS->getType()); 4058 4059 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4060 // makes it so that we cannot make much use of NUW. 4061 auto AddFlags = SCEV::FlagAnyWrap; 4062 const bool RHSIsNotMinSigned = 4063 !getSignedRangeMin(RHS).isMinSignedValue(); 4064 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4065 // Let M be the minimum representable signed value. Then (-1)*RHS 4066 // signed-wraps if and only if RHS is M. That can happen even for 4067 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4068 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4069 // (-1)*RHS, we need to prove that RHS != M. 4070 // 4071 // If LHS is non-negative and we know that LHS - RHS does not 4072 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4073 // either by proving that RHS > M or that LHS >= 0. 4074 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4075 AddFlags = SCEV::FlagNSW; 4076 } 4077 } 4078 4079 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4080 // RHS is NSW and LHS >= 0. 4081 // 4082 // The difficulty here is that the NSW flag may have been proven 4083 // relative to a loop that is to be found in a recurrence in LHS and 4084 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4085 // larger scope than intended. 4086 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4087 4088 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4089 } 4090 4091 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4092 unsigned Depth) { 4093 Type *SrcTy = V->getType(); 4094 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4095 "Cannot truncate or zero extend with non-integer arguments!"); 4096 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4097 return V; // No conversion 4098 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4099 return getTruncateExpr(V, Ty, Depth); 4100 return getZeroExtendExpr(V, Ty, Depth); 4101 } 4102 4103 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4104 unsigned Depth) { 4105 Type *SrcTy = V->getType(); 4106 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4107 "Cannot truncate or zero extend with non-integer arguments!"); 4108 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4109 return V; // No conversion 4110 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4111 return getTruncateExpr(V, Ty, Depth); 4112 return getSignExtendExpr(V, Ty, Depth); 4113 } 4114 4115 const SCEV * 4116 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4117 Type *SrcTy = V->getType(); 4118 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4119 "Cannot noop or zero extend with non-integer arguments!"); 4120 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4121 "getNoopOrZeroExtend cannot truncate!"); 4122 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4123 return V; // No conversion 4124 return getZeroExtendExpr(V, Ty); 4125 } 4126 4127 const SCEV * 4128 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4129 Type *SrcTy = V->getType(); 4130 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4131 "Cannot noop or sign extend with non-integer arguments!"); 4132 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4133 "getNoopOrSignExtend cannot truncate!"); 4134 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4135 return V; // No conversion 4136 return getSignExtendExpr(V, Ty); 4137 } 4138 4139 const SCEV * 4140 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4141 Type *SrcTy = V->getType(); 4142 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4143 "Cannot noop or any extend with non-integer arguments!"); 4144 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4145 "getNoopOrAnyExtend cannot truncate!"); 4146 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4147 return V; // No conversion 4148 return getAnyExtendExpr(V, Ty); 4149 } 4150 4151 const SCEV * 4152 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4153 Type *SrcTy = V->getType(); 4154 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4155 "Cannot truncate or noop with non-integer arguments!"); 4156 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4157 "getTruncateOrNoop cannot extend!"); 4158 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4159 return V; // No conversion 4160 return getTruncateExpr(V, Ty); 4161 } 4162 4163 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4164 const SCEV *RHS) { 4165 const SCEV *PromotedLHS = LHS; 4166 const SCEV *PromotedRHS = RHS; 4167 4168 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4169 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4170 else 4171 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4172 4173 return getUMaxExpr(PromotedLHS, PromotedRHS); 4174 } 4175 4176 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4177 const SCEV *RHS) { 4178 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4179 return getUMinFromMismatchedTypes(Ops); 4180 } 4181 4182 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4183 SmallVectorImpl<const SCEV *> &Ops) { 4184 assert(!Ops.empty() && "At least one operand must be!"); 4185 // Trivial case. 4186 if (Ops.size() == 1) 4187 return Ops[0]; 4188 4189 // Find the max type first. 4190 Type *MaxType = nullptr; 4191 for (auto *S : Ops) 4192 if (MaxType) 4193 MaxType = getWiderType(MaxType, S->getType()); 4194 else 4195 MaxType = S->getType(); 4196 4197 // Extend all ops to max type. 4198 SmallVector<const SCEV *, 2> PromotedOps; 4199 for (auto *S : Ops) 4200 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4201 4202 // Generate umin. 4203 return getUMinExpr(PromotedOps); 4204 } 4205 4206 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4207 // A pointer operand may evaluate to a nonpointer expression, such as null. 4208 if (!V->getType()->isPointerTy()) 4209 return V; 4210 4211 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4212 return getPointerBase(Cast->getOperand()); 4213 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4214 const SCEV *PtrOp = nullptr; 4215 for (const SCEV *NAryOp : NAry->operands()) { 4216 if (NAryOp->getType()->isPointerTy()) { 4217 // Cannot find the base of an expression with multiple pointer operands. 4218 if (PtrOp) 4219 return V; 4220 PtrOp = NAryOp; 4221 } 4222 } 4223 if (!PtrOp) 4224 return V; 4225 return getPointerBase(PtrOp); 4226 } 4227 return V; 4228 } 4229 4230 /// Push users of the given Instruction onto the given Worklist. 4231 static void 4232 PushDefUseChildren(Instruction *I, 4233 SmallVectorImpl<Instruction *> &Worklist) { 4234 // Push the def-use children onto the Worklist stack. 4235 for (User *U : I->users()) 4236 Worklist.push_back(cast<Instruction>(U)); 4237 } 4238 4239 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4240 SmallVector<Instruction *, 16> Worklist; 4241 PushDefUseChildren(PN, Worklist); 4242 4243 SmallPtrSet<Instruction *, 8> Visited; 4244 Visited.insert(PN); 4245 while (!Worklist.empty()) { 4246 Instruction *I = Worklist.pop_back_val(); 4247 if (!Visited.insert(I).second) 4248 continue; 4249 4250 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4251 if (It != ValueExprMap.end()) { 4252 const SCEV *Old = It->second; 4253 4254 // Short-circuit the def-use traversal if the symbolic name 4255 // ceases to appear in expressions. 4256 if (Old != SymName && !hasOperand(Old, SymName)) 4257 continue; 4258 4259 // SCEVUnknown for a PHI either means that it has an unrecognized 4260 // structure, it's a PHI that's in the progress of being computed 4261 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4262 // additional loop trip count information isn't going to change anything. 4263 // In the second case, createNodeForPHI will perform the necessary 4264 // updates on its own when it gets to that point. In the third, we do 4265 // want to forget the SCEVUnknown. 4266 if (!isa<PHINode>(I) || 4267 !isa<SCEVUnknown>(Old) || 4268 (I != PN && Old == SymName)) { 4269 eraseValueFromMap(It->first); 4270 forgetMemoizedResults(Old); 4271 } 4272 } 4273 4274 PushDefUseChildren(I, Worklist); 4275 } 4276 } 4277 4278 namespace { 4279 4280 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4281 /// expression in case its Loop is L. If it is not L then 4282 /// if IgnoreOtherLoops is true then use AddRec itself 4283 /// otherwise rewrite cannot be done. 4284 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4285 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4286 public: 4287 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4288 bool IgnoreOtherLoops = true) { 4289 SCEVInitRewriter Rewriter(L, SE); 4290 const SCEV *Result = Rewriter.visit(S); 4291 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4292 return SE.getCouldNotCompute(); 4293 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4294 ? SE.getCouldNotCompute() 4295 : Result; 4296 } 4297 4298 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4299 if (!SE.isLoopInvariant(Expr, L)) 4300 SeenLoopVariantSCEVUnknown = true; 4301 return Expr; 4302 } 4303 4304 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4305 // Only re-write AddRecExprs for this loop. 4306 if (Expr->getLoop() == L) 4307 return Expr->getStart(); 4308 SeenOtherLoops = true; 4309 return Expr; 4310 } 4311 4312 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4313 4314 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4315 4316 private: 4317 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4318 : SCEVRewriteVisitor(SE), L(L) {} 4319 4320 const Loop *L; 4321 bool SeenLoopVariantSCEVUnknown = false; 4322 bool SeenOtherLoops = false; 4323 }; 4324 4325 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4326 /// increment expression in case its Loop is L. If it is not L then 4327 /// use AddRec itself. 4328 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4329 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4330 public: 4331 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4332 SCEVPostIncRewriter Rewriter(L, SE); 4333 const SCEV *Result = Rewriter.visit(S); 4334 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4335 ? SE.getCouldNotCompute() 4336 : Result; 4337 } 4338 4339 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4340 if (!SE.isLoopInvariant(Expr, L)) 4341 SeenLoopVariantSCEVUnknown = true; 4342 return Expr; 4343 } 4344 4345 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4346 // Only re-write AddRecExprs for this loop. 4347 if (Expr->getLoop() == L) 4348 return Expr->getPostIncExpr(SE); 4349 SeenOtherLoops = true; 4350 return Expr; 4351 } 4352 4353 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4354 4355 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4356 4357 private: 4358 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4359 : SCEVRewriteVisitor(SE), L(L) {} 4360 4361 const Loop *L; 4362 bool SeenLoopVariantSCEVUnknown = false; 4363 bool SeenOtherLoops = false; 4364 }; 4365 4366 /// This class evaluates the compare condition by matching it against the 4367 /// condition of loop latch. If there is a match we assume a true value 4368 /// for the condition while building SCEV nodes. 4369 class SCEVBackedgeConditionFolder 4370 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4371 public: 4372 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4373 ScalarEvolution &SE) { 4374 bool IsPosBECond = false; 4375 Value *BECond = nullptr; 4376 if (BasicBlock *Latch = L->getLoopLatch()) { 4377 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4378 if (BI && BI->isConditional()) { 4379 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4380 "Both outgoing branches should not target same header!"); 4381 BECond = BI->getCondition(); 4382 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4383 } else { 4384 return S; 4385 } 4386 } 4387 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4388 return Rewriter.visit(S); 4389 } 4390 4391 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4392 const SCEV *Result = Expr; 4393 bool InvariantF = SE.isLoopInvariant(Expr, L); 4394 4395 if (!InvariantF) { 4396 Instruction *I = cast<Instruction>(Expr->getValue()); 4397 switch (I->getOpcode()) { 4398 case Instruction::Select: { 4399 SelectInst *SI = cast<SelectInst>(I); 4400 Optional<const SCEV *> Res = 4401 compareWithBackedgeCondition(SI->getCondition()); 4402 if (Res.hasValue()) { 4403 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4404 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4405 } 4406 break; 4407 } 4408 default: { 4409 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4410 if (Res.hasValue()) 4411 Result = Res.getValue(); 4412 break; 4413 } 4414 } 4415 } 4416 return Result; 4417 } 4418 4419 private: 4420 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4421 bool IsPosBECond, ScalarEvolution &SE) 4422 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4423 IsPositiveBECond(IsPosBECond) {} 4424 4425 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4426 4427 const Loop *L; 4428 /// Loop back condition. 4429 Value *BackedgeCond = nullptr; 4430 /// Set to true if loop back is on positive branch condition. 4431 bool IsPositiveBECond; 4432 }; 4433 4434 Optional<const SCEV *> 4435 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4436 4437 // If value matches the backedge condition for loop latch, 4438 // then return a constant evolution node based on loopback 4439 // branch taken. 4440 if (BackedgeCond == IC) 4441 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4442 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4443 return None; 4444 } 4445 4446 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4447 public: 4448 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4449 ScalarEvolution &SE) { 4450 SCEVShiftRewriter Rewriter(L, SE); 4451 const SCEV *Result = Rewriter.visit(S); 4452 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4453 } 4454 4455 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4456 // Only allow AddRecExprs for this loop. 4457 if (!SE.isLoopInvariant(Expr, L)) 4458 Valid = false; 4459 return Expr; 4460 } 4461 4462 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4463 if (Expr->getLoop() == L && Expr->isAffine()) 4464 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4465 Valid = false; 4466 return Expr; 4467 } 4468 4469 bool isValid() { return Valid; } 4470 4471 private: 4472 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4473 : SCEVRewriteVisitor(SE), L(L) {} 4474 4475 const Loop *L; 4476 bool Valid = true; 4477 }; 4478 4479 } // end anonymous namespace 4480 4481 SCEV::NoWrapFlags 4482 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4483 if (!AR->isAffine()) 4484 return SCEV::FlagAnyWrap; 4485 4486 using OBO = OverflowingBinaryOperator; 4487 4488 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4489 4490 if (!AR->hasNoSignedWrap()) { 4491 ConstantRange AddRecRange = getSignedRange(AR); 4492 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4493 4494 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4495 Instruction::Add, IncRange, OBO::NoSignedWrap); 4496 if (NSWRegion.contains(AddRecRange)) 4497 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4498 } 4499 4500 if (!AR->hasNoUnsignedWrap()) { 4501 ConstantRange AddRecRange = getUnsignedRange(AR); 4502 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4503 4504 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4505 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4506 if (NUWRegion.contains(AddRecRange)) 4507 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4508 } 4509 4510 return Result; 4511 } 4512 4513 namespace { 4514 4515 /// Represents an abstract binary operation. This may exist as a 4516 /// normal instruction or constant expression, or may have been 4517 /// derived from an expression tree. 4518 struct BinaryOp { 4519 unsigned Opcode; 4520 Value *LHS; 4521 Value *RHS; 4522 bool IsNSW = false; 4523 bool IsNUW = false; 4524 4525 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4526 /// constant expression. 4527 Operator *Op = nullptr; 4528 4529 explicit BinaryOp(Operator *Op) 4530 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4531 Op(Op) { 4532 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4533 IsNSW = OBO->hasNoSignedWrap(); 4534 IsNUW = OBO->hasNoUnsignedWrap(); 4535 } 4536 } 4537 4538 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4539 bool IsNUW = false) 4540 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4541 }; 4542 4543 } // end anonymous namespace 4544 4545 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4546 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4547 auto *Op = dyn_cast<Operator>(V); 4548 if (!Op) 4549 return None; 4550 4551 // Implementation detail: all the cleverness here should happen without 4552 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4553 // SCEV expressions when possible, and we should not break that. 4554 4555 switch (Op->getOpcode()) { 4556 case Instruction::Add: 4557 case Instruction::Sub: 4558 case Instruction::Mul: 4559 case Instruction::UDiv: 4560 case Instruction::URem: 4561 case Instruction::And: 4562 case Instruction::Or: 4563 case Instruction::AShr: 4564 case Instruction::Shl: 4565 return BinaryOp(Op); 4566 4567 case Instruction::Xor: 4568 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4569 // If the RHS of the xor is a signmask, then this is just an add. 4570 // Instcombine turns add of signmask into xor as a strength reduction step. 4571 if (RHSC->getValue().isSignMask()) 4572 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4573 return BinaryOp(Op); 4574 4575 case Instruction::LShr: 4576 // Turn logical shift right of a constant into a unsigned divide. 4577 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4578 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4579 4580 // If the shift count is not less than the bitwidth, the result of 4581 // the shift is undefined. Don't try to analyze it, because the 4582 // resolution chosen here may differ from the resolution chosen in 4583 // other parts of the compiler. 4584 if (SA->getValue().ult(BitWidth)) { 4585 Constant *X = 4586 ConstantInt::get(SA->getContext(), 4587 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4588 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4589 } 4590 } 4591 return BinaryOp(Op); 4592 4593 case Instruction::ExtractValue: { 4594 auto *EVI = cast<ExtractValueInst>(Op); 4595 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4596 break; 4597 4598 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4599 if (!WO) 4600 break; 4601 4602 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4603 bool Signed = WO->isSigned(); 4604 // TODO: Should add nuw/nsw flags for mul as well. 4605 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4606 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4607 4608 // Now that we know that all uses of the arithmetic-result component of 4609 // CI are guarded by the overflow check, we can go ahead and pretend 4610 // that the arithmetic is non-overflowing. 4611 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4612 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4613 } 4614 4615 default: 4616 break; 4617 } 4618 4619 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4620 // semantics as a Sub, return a binary sub expression. 4621 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4622 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4623 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4624 4625 return None; 4626 } 4627 4628 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4629 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4630 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4631 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4632 /// follows one of the following patterns: 4633 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4634 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4635 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4636 /// we return the type of the truncation operation, and indicate whether the 4637 /// truncated type should be treated as signed/unsigned by setting 4638 /// \p Signed to true/false, respectively. 4639 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4640 bool &Signed, ScalarEvolution &SE) { 4641 // The case where Op == SymbolicPHI (that is, with no type conversions on 4642 // the way) is handled by the regular add recurrence creating logic and 4643 // would have already been triggered in createAddRecForPHI. Reaching it here 4644 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4645 // because one of the other operands of the SCEVAddExpr updating this PHI is 4646 // not invariant). 4647 // 4648 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4649 // this case predicates that allow us to prove that Op == SymbolicPHI will 4650 // be added. 4651 if (Op == SymbolicPHI) 4652 return nullptr; 4653 4654 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4655 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4656 if (SourceBits != NewBits) 4657 return nullptr; 4658 4659 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4660 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4661 if (!SExt && !ZExt) 4662 return nullptr; 4663 const SCEVTruncateExpr *Trunc = 4664 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4665 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4666 if (!Trunc) 4667 return nullptr; 4668 const SCEV *X = Trunc->getOperand(); 4669 if (X != SymbolicPHI) 4670 return nullptr; 4671 Signed = SExt != nullptr; 4672 return Trunc->getType(); 4673 } 4674 4675 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4676 if (!PN->getType()->isIntegerTy()) 4677 return nullptr; 4678 const Loop *L = LI.getLoopFor(PN->getParent()); 4679 if (!L || L->getHeader() != PN->getParent()) 4680 return nullptr; 4681 return L; 4682 } 4683 4684 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4685 // computation that updates the phi follows the following pattern: 4686 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4687 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4688 // If so, try to see if it can be rewritten as an AddRecExpr under some 4689 // Predicates. If successful, return them as a pair. Also cache the results 4690 // of the analysis. 4691 // 4692 // Example usage scenario: 4693 // Say the Rewriter is called for the following SCEV: 4694 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4695 // where: 4696 // %X = phi i64 (%Start, %BEValue) 4697 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4698 // and call this function with %SymbolicPHI = %X. 4699 // 4700 // The analysis will find that the value coming around the backedge has 4701 // the following SCEV: 4702 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4703 // Upon concluding that this matches the desired pattern, the function 4704 // will return the pair {NewAddRec, SmallPredsVec} where: 4705 // NewAddRec = {%Start,+,%Step} 4706 // SmallPredsVec = {P1, P2, P3} as follows: 4707 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4708 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4709 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4710 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4711 // under the predicates {P1,P2,P3}. 4712 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4713 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4714 // 4715 // TODO's: 4716 // 4717 // 1) Extend the Induction descriptor to also support inductions that involve 4718 // casts: When needed (namely, when we are called in the context of the 4719 // vectorizer induction analysis), a Set of cast instructions will be 4720 // populated by this method, and provided back to isInductionPHI. This is 4721 // needed to allow the vectorizer to properly record them to be ignored by 4722 // the cost model and to avoid vectorizing them (otherwise these casts, 4723 // which are redundant under the runtime overflow checks, will be 4724 // vectorized, which can be costly). 4725 // 4726 // 2) Support additional induction/PHISCEV patterns: We also want to support 4727 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4728 // after the induction update operation (the induction increment): 4729 // 4730 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4731 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4732 // 4733 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4734 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4735 // 4736 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4737 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4738 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4739 SmallVector<const SCEVPredicate *, 3> Predicates; 4740 4741 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4742 // return an AddRec expression under some predicate. 4743 4744 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4745 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4746 assert(L && "Expecting an integer loop header phi"); 4747 4748 // The loop may have multiple entrances or multiple exits; we can analyze 4749 // this phi as an addrec if it has a unique entry value and a unique 4750 // backedge value. 4751 Value *BEValueV = nullptr, *StartValueV = nullptr; 4752 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4753 Value *V = PN->getIncomingValue(i); 4754 if (L->contains(PN->getIncomingBlock(i))) { 4755 if (!BEValueV) { 4756 BEValueV = V; 4757 } else if (BEValueV != V) { 4758 BEValueV = nullptr; 4759 break; 4760 } 4761 } else if (!StartValueV) { 4762 StartValueV = V; 4763 } else if (StartValueV != V) { 4764 StartValueV = nullptr; 4765 break; 4766 } 4767 } 4768 if (!BEValueV || !StartValueV) 4769 return None; 4770 4771 const SCEV *BEValue = getSCEV(BEValueV); 4772 4773 // If the value coming around the backedge is an add with the symbolic 4774 // value we just inserted, possibly with casts that we can ignore under 4775 // an appropriate runtime guard, then we found a simple induction variable! 4776 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4777 if (!Add) 4778 return None; 4779 4780 // If there is a single occurrence of the symbolic value, possibly 4781 // casted, replace it with a recurrence. 4782 unsigned FoundIndex = Add->getNumOperands(); 4783 Type *TruncTy = nullptr; 4784 bool Signed; 4785 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4786 if ((TruncTy = 4787 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4788 if (FoundIndex == e) { 4789 FoundIndex = i; 4790 break; 4791 } 4792 4793 if (FoundIndex == Add->getNumOperands()) 4794 return None; 4795 4796 // Create an add with everything but the specified operand. 4797 SmallVector<const SCEV *, 8> Ops; 4798 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4799 if (i != FoundIndex) 4800 Ops.push_back(Add->getOperand(i)); 4801 const SCEV *Accum = getAddExpr(Ops); 4802 4803 // The runtime checks will not be valid if the step amount is 4804 // varying inside the loop. 4805 if (!isLoopInvariant(Accum, L)) 4806 return None; 4807 4808 // *** Part2: Create the predicates 4809 4810 // Analysis was successful: we have a phi-with-cast pattern for which we 4811 // can return an AddRec expression under the following predicates: 4812 // 4813 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4814 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4815 // P2: An Equal predicate that guarantees that 4816 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4817 // P3: An Equal predicate that guarantees that 4818 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4819 // 4820 // As we next prove, the above predicates guarantee that: 4821 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4822 // 4823 // 4824 // More formally, we want to prove that: 4825 // Expr(i+1) = Start + (i+1) * Accum 4826 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4827 // 4828 // Given that: 4829 // 1) Expr(0) = Start 4830 // 2) Expr(1) = Start + Accum 4831 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4832 // 3) Induction hypothesis (step i): 4833 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4834 // 4835 // Proof: 4836 // Expr(i+1) = 4837 // = Start + (i+1)*Accum 4838 // = (Start + i*Accum) + Accum 4839 // = Expr(i) + Accum 4840 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4841 // :: from step i 4842 // 4843 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4844 // 4845 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4846 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4847 // + Accum :: from P3 4848 // 4849 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4850 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4851 // 4852 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4853 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4854 // 4855 // By induction, the same applies to all iterations 1<=i<n: 4856 // 4857 4858 // Create a truncated addrec for which we will add a no overflow check (P1). 4859 const SCEV *StartVal = getSCEV(StartValueV); 4860 const SCEV *PHISCEV = 4861 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4862 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4863 4864 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4865 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4866 // will be constant. 4867 // 4868 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4869 // add P1. 4870 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4871 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4872 Signed ? SCEVWrapPredicate::IncrementNSSW 4873 : SCEVWrapPredicate::IncrementNUSW; 4874 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4875 Predicates.push_back(AddRecPred); 4876 } 4877 4878 // Create the Equal Predicates P2,P3: 4879 4880 // It is possible that the predicates P2 and/or P3 are computable at 4881 // compile time due to StartVal and/or Accum being constants. 4882 // If either one is, then we can check that now and escape if either P2 4883 // or P3 is false. 4884 4885 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4886 // for each of StartVal and Accum 4887 auto getExtendedExpr = [&](const SCEV *Expr, 4888 bool CreateSignExtend) -> const SCEV * { 4889 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4890 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4891 const SCEV *ExtendedExpr = 4892 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4893 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4894 return ExtendedExpr; 4895 }; 4896 4897 // Given: 4898 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4899 // = getExtendedExpr(Expr) 4900 // Determine whether the predicate P: Expr == ExtendedExpr 4901 // is known to be false at compile time 4902 auto PredIsKnownFalse = [&](const SCEV *Expr, 4903 const SCEV *ExtendedExpr) -> bool { 4904 return Expr != ExtendedExpr && 4905 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4906 }; 4907 4908 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4909 if (PredIsKnownFalse(StartVal, StartExtended)) { 4910 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4911 return None; 4912 } 4913 4914 // The Step is always Signed (because the overflow checks are either 4915 // NSSW or NUSW) 4916 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4917 if (PredIsKnownFalse(Accum, AccumExtended)) { 4918 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4919 return None; 4920 } 4921 4922 auto AppendPredicate = [&](const SCEV *Expr, 4923 const SCEV *ExtendedExpr) -> void { 4924 if (Expr != ExtendedExpr && 4925 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4926 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4927 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4928 Predicates.push_back(Pred); 4929 } 4930 }; 4931 4932 AppendPredicate(StartVal, StartExtended); 4933 AppendPredicate(Accum, AccumExtended); 4934 4935 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4936 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4937 // into NewAR if it will also add the runtime overflow checks specified in 4938 // Predicates. 4939 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4940 4941 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4942 std::make_pair(NewAR, Predicates); 4943 // Remember the result of the analysis for this SCEV at this locayyytion. 4944 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4945 return PredRewrite; 4946 } 4947 4948 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4949 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4950 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4951 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4952 if (!L) 4953 return None; 4954 4955 // Check to see if we already analyzed this PHI. 4956 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4957 if (I != PredicatedSCEVRewrites.end()) { 4958 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4959 I->second; 4960 // Analysis was done before and failed to create an AddRec: 4961 if (Rewrite.first == SymbolicPHI) 4962 return None; 4963 // Analysis was done before and succeeded to create an AddRec under 4964 // a predicate: 4965 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4966 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4967 return Rewrite; 4968 } 4969 4970 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4971 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4972 4973 // Record in the cache that the analysis failed 4974 if (!Rewrite) { 4975 SmallVector<const SCEVPredicate *, 3> Predicates; 4976 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4977 return None; 4978 } 4979 4980 return Rewrite; 4981 } 4982 4983 // FIXME: This utility is currently required because the Rewriter currently 4984 // does not rewrite this expression: 4985 // {0, +, (sext ix (trunc iy to ix) to iy)} 4986 // into {0, +, %step}, 4987 // even when the following Equal predicate exists: 4988 // "%step == (sext ix (trunc iy to ix) to iy)". 4989 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4990 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4991 if (AR1 == AR2) 4992 return true; 4993 4994 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4995 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4996 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4997 return false; 4998 return true; 4999 }; 5000 5001 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5002 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5003 return false; 5004 return true; 5005 } 5006 5007 /// A helper function for createAddRecFromPHI to handle simple cases. 5008 /// 5009 /// This function tries to find an AddRec expression for the simplest (yet most 5010 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5011 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5012 /// technique for finding the AddRec expression. 5013 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5014 Value *BEValueV, 5015 Value *StartValueV) { 5016 const Loop *L = LI.getLoopFor(PN->getParent()); 5017 assert(L && L->getHeader() == PN->getParent()); 5018 assert(BEValueV && StartValueV); 5019 5020 auto BO = MatchBinaryOp(BEValueV, DT); 5021 if (!BO) 5022 return nullptr; 5023 5024 if (BO->Opcode != Instruction::Add) 5025 return nullptr; 5026 5027 const SCEV *Accum = nullptr; 5028 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5029 Accum = getSCEV(BO->RHS); 5030 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5031 Accum = getSCEV(BO->LHS); 5032 5033 if (!Accum) 5034 return nullptr; 5035 5036 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5037 if (BO->IsNUW) 5038 Flags = setFlags(Flags, SCEV::FlagNUW); 5039 if (BO->IsNSW) 5040 Flags = setFlags(Flags, SCEV::FlagNSW); 5041 5042 const SCEV *StartVal = getSCEV(StartValueV); 5043 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5044 5045 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5046 5047 // We can add Flags to the post-inc expression only if we 5048 // know that it is *undefined behavior* for BEValueV to 5049 // overflow. 5050 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5051 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5052 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5053 5054 return PHISCEV; 5055 } 5056 5057 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5058 const Loop *L = LI.getLoopFor(PN->getParent()); 5059 if (!L || L->getHeader() != PN->getParent()) 5060 return nullptr; 5061 5062 // The loop may have multiple entrances or multiple exits; we can analyze 5063 // this phi as an addrec if it has a unique entry value and a unique 5064 // backedge value. 5065 Value *BEValueV = nullptr, *StartValueV = nullptr; 5066 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5067 Value *V = PN->getIncomingValue(i); 5068 if (L->contains(PN->getIncomingBlock(i))) { 5069 if (!BEValueV) { 5070 BEValueV = V; 5071 } else if (BEValueV != V) { 5072 BEValueV = nullptr; 5073 break; 5074 } 5075 } else if (!StartValueV) { 5076 StartValueV = V; 5077 } else if (StartValueV != V) { 5078 StartValueV = nullptr; 5079 break; 5080 } 5081 } 5082 if (!BEValueV || !StartValueV) 5083 return nullptr; 5084 5085 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5086 "PHI node already processed?"); 5087 5088 // First, try to find AddRec expression without creating a fictituos symbolic 5089 // value for PN. 5090 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5091 return S; 5092 5093 // Handle PHI node value symbolically. 5094 const SCEV *SymbolicName = getUnknown(PN); 5095 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5096 5097 // Using this symbolic name for the PHI, analyze the value coming around 5098 // the back-edge. 5099 const SCEV *BEValue = getSCEV(BEValueV); 5100 5101 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5102 // has a special value for the first iteration of the loop. 5103 5104 // If the value coming around the backedge is an add with the symbolic 5105 // value we just inserted, then we found a simple induction variable! 5106 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5107 // If there is a single occurrence of the symbolic value, replace it 5108 // with a recurrence. 5109 unsigned FoundIndex = Add->getNumOperands(); 5110 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5111 if (Add->getOperand(i) == SymbolicName) 5112 if (FoundIndex == e) { 5113 FoundIndex = i; 5114 break; 5115 } 5116 5117 if (FoundIndex != Add->getNumOperands()) { 5118 // Create an add with everything but the specified operand. 5119 SmallVector<const SCEV *, 8> Ops; 5120 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5121 if (i != FoundIndex) 5122 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5123 L, *this)); 5124 const SCEV *Accum = getAddExpr(Ops); 5125 5126 // This is not a valid addrec if the step amount is varying each 5127 // loop iteration, but is not itself an addrec in this loop. 5128 if (isLoopInvariant(Accum, L) || 5129 (isa<SCEVAddRecExpr>(Accum) && 5130 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5131 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5132 5133 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5134 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5135 if (BO->IsNUW) 5136 Flags = setFlags(Flags, SCEV::FlagNUW); 5137 if (BO->IsNSW) 5138 Flags = setFlags(Flags, SCEV::FlagNSW); 5139 } 5140 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5141 // If the increment is an inbounds GEP, then we know the address 5142 // space cannot be wrapped around. We cannot make any guarantee 5143 // about signed or unsigned overflow because pointers are 5144 // unsigned but we may have a negative index from the base 5145 // pointer. We can guarantee that no unsigned wrap occurs if the 5146 // indices form a positive value. 5147 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5148 Flags = setFlags(Flags, SCEV::FlagNW); 5149 5150 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5151 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5152 Flags = setFlags(Flags, SCEV::FlagNUW); 5153 } 5154 5155 // We cannot transfer nuw and nsw flags from subtraction 5156 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5157 // for instance. 5158 } 5159 5160 const SCEV *StartVal = getSCEV(StartValueV); 5161 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5162 5163 // Okay, for the entire analysis of this edge we assumed the PHI 5164 // to be symbolic. We now need to go back and purge all of the 5165 // entries for the scalars that use the symbolic expression. 5166 forgetSymbolicName(PN, SymbolicName); 5167 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5168 5169 // We can add Flags to the post-inc expression only if we 5170 // know that it is *undefined behavior* for BEValueV to 5171 // overflow. 5172 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5173 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5174 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5175 5176 return PHISCEV; 5177 } 5178 } 5179 } else { 5180 // Otherwise, this could be a loop like this: 5181 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5182 // In this case, j = {1,+,1} and BEValue is j. 5183 // Because the other in-value of i (0) fits the evolution of BEValue 5184 // i really is an addrec evolution. 5185 // 5186 // We can generalize this saying that i is the shifted value of BEValue 5187 // by one iteration: 5188 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5189 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5190 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5191 if (Shifted != getCouldNotCompute() && 5192 Start != getCouldNotCompute()) { 5193 const SCEV *StartVal = getSCEV(StartValueV); 5194 if (Start == StartVal) { 5195 // Okay, for the entire analysis of this edge we assumed the PHI 5196 // to be symbolic. We now need to go back and purge all of the 5197 // entries for the scalars that use the symbolic expression. 5198 forgetSymbolicName(PN, SymbolicName); 5199 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5200 return Shifted; 5201 } 5202 } 5203 } 5204 5205 // Remove the temporary PHI node SCEV that has been inserted while intending 5206 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5207 // as it will prevent later (possibly simpler) SCEV expressions to be added 5208 // to the ValueExprMap. 5209 eraseValueFromMap(PN); 5210 5211 return nullptr; 5212 } 5213 5214 // Checks if the SCEV S is available at BB. S is considered available at BB 5215 // if S can be materialized at BB without introducing a fault. 5216 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5217 BasicBlock *BB) { 5218 struct CheckAvailable { 5219 bool TraversalDone = false; 5220 bool Available = true; 5221 5222 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5223 BasicBlock *BB = nullptr; 5224 DominatorTree &DT; 5225 5226 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5227 : L(L), BB(BB), DT(DT) {} 5228 5229 bool setUnavailable() { 5230 TraversalDone = true; 5231 Available = false; 5232 return false; 5233 } 5234 5235 bool follow(const SCEV *S) { 5236 switch (S->getSCEVType()) { 5237 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5238 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5239 case scUMinExpr: 5240 case scSMinExpr: 5241 // These expressions are available if their operand(s) is/are. 5242 return true; 5243 5244 case scAddRecExpr: { 5245 // We allow add recurrences that are on the loop BB is in, or some 5246 // outer loop. This guarantees availability because the value of the 5247 // add recurrence at BB is simply the "current" value of the induction 5248 // variable. We can relax this in the future; for instance an add 5249 // recurrence on a sibling dominating loop is also available at BB. 5250 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5251 if (L && (ARLoop == L || ARLoop->contains(L))) 5252 return true; 5253 5254 return setUnavailable(); 5255 } 5256 5257 case scUnknown: { 5258 // For SCEVUnknown, we check for simple dominance. 5259 const auto *SU = cast<SCEVUnknown>(S); 5260 Value *V = SU->getValue(); 5261 5262 if (isa<Argument>(V)) 5263 return false; 5264 5265 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5266 return false; 5267 5268 return setUnavailable(); 5269 } 5270 5271 case scUDivExpr: 5272 case scCouldNotCompute: 5273 // We do not try to smart about these at all. 5274 return setUnavailable(); 5275 } 5276 llvm_unreachable("switch should be fully covered!"); 5277 } 5278 5279 bool isDone() { return TraversalDone; } 5280 }; 5281 5282 CheckAvailable CA(L, BB, DT); 5283 SCEVTraversal<CheckAvailable> ST(CA); 5284 5285 ST.visitAll(S); 5286 return CA.Available; 5287 } 5288 5289 // Try to match a control flow sequence that branches out at BI and merges back 5290 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5291 // match. 5292 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5293 Value *&C, Value *&LHS, Value *&RHS) { 5294 C = BI->getCondition(); 5295 5296 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5297 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5298 5299 if (!LeftEdge.isSingleEdge()) 5300 return false; 5301 5302 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5303 5304 Use &LeftUse = Merge->getOperandUse(0); 5305 Use &RightUse = Merge->getOperandUse(1); 5306 5307 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5308 LHS = LeftUse; 5309 RHS = RightUse; 5310 return true; 5311 } 5312 5313 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5314 LHS = RightUse; 5315 RHS = LeftUse; 5316 return true; 5317 } 5318 5319 return false; 5320 } 5321 5322 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5323 auto IsReachable = 5324 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5325 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5326 const Loop *L = LI.getLoopFor(PN->getParent()); 5327 5328 // We don't want to break LCSSA, even in a SCEV expression tree. 5329 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5330 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5331 return nullptr; 5332 5333 // Try to match 5334 // 5335 // br %cond, label %left, label %right 5336 // left: 5337 // br label %merge 5338 // right: 5339 // br label %merge 5340 // merge: 5341 // V = phi [ %x, %left ], [ %y, %right ] 5342 // 5343 // as "select %cond, %x, %y" 5344 5345 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5346 assert(IDom && "At least the entry block should dominate PN"); 5347 5348 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5349 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5350 5351 if (BI && BI->isConditional() && 5352 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5353 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5354 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5355 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5356 } 5357 5358 return nullptr; 5359 } 5360 5361 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5362 if (const SCEV *S = createAddRecFromPHI(PN)) 5363 return S; 5364 5365 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5366 return S; 5367 5368 // If the PHI has a single incoming value, follow that value, unless the 5369 // PHI's incoming blocks are in a different loop, in which case doing so 5370 // risks breaking LCSSA form. Instcombine would normally zap these, but 5371 // it doesn't have DominatorTree information, so it may miss cases. 5372 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5373 if (LI.replacementPreservesLCSSAForm(PN, V)) 5374 return getSCEV(V); 5375 5376 // If it's not a loop phi, we can't handle it yet. 5377 return getUnknown(PN); 5378 } 5379 5380 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5381 Value *Cond, 5382 Value *TrueVal, 5383 Value *FalseVal) { 5384 // Handle "constant" branch or select. This can occur for instance when a 5385 // loop pass transforms an inner loop and moves on to process the outer loop. 5386 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5387 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5388 5389 // Try to match some simple smax or umax patterns. 5390 auto *ICI = dyn_cast<ICmpInst>(Cond); 5391 if (!ICI) 5392 return getUnknown(I); 5393 5394 Value *LHS = ICI->getOperand(0); 5395 Value *RHS = ICI->getOperand(1); 5396 5397 switch (ICI->getPredicate()) { 5398 case ICmpInst::ICMP_SLT: 5399 case ICmpInst::ICMP_SLE: 5400 std::swap(LHS, RHS); 5401 LLVM_FALLTHROUGH; 5402 case ICmpInst::ICMP_SGT: 5403 case ICmpInst::ICMP_SGE: 5404 // a >s b ? a+x : b+x -> smax(a, b)+x 5405 // a >s b ? b+x : a+x -> smin(a, b)+x 5406 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5407 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5408 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5409 const SCEV *LA = getSCEV(TrueVal); 5410 const SCEV *RA = getSCEV(FalseVal); 5411 const SCEV *LDiff = getMinusSCEV(LA, LS); 5412 const SCEV *RDiff = getMinusSCEV(RA, RS); 5413 if (LDiff == RDiff) 5414 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5415 LDiff = getMinusSCEV(LA, RS); 5416 RDiff = getMinusSCEV(RA, LS); 5417 if (LDiff == RDiff) 5418 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5419 } 5420 break; 5421 case ICmpInst::ICMP_ULT: 5422 case ICmpInst::ICMP_ULE: 5423 std::swap(LHS, RHS); 5424 LLVM_FALLTHROUGH; 5425 case ICmpInst::ICMP_UGT: 5426 case ICmpInst::ICMP_UGE: 5427 // a >u b ? a+x : b+x -> umax(a, b)+x 5428 // a >u b ? b+x : a+x -> umin(a, b)+x 5429 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5430 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5431 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5432 const SCEV *LA = getSCEV(TrueVal); 5433 const SCEV *RA = getSCEV(FalseVal); 5434 const SCEV *LDiff = getMinusSCEV(LA, LS); 5435 const SCEV *RDiff = getMinusSCEV(RA, RS); 5436 if (LDiff == RDiff) 5437 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5438 LDiff = getMinusSCEV(LA, RS); 5439 RDiff = getMinusSCEV(RA, LS); 5440 if (LDiff == RDiff) 5441 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5442 } 5443 break; 5444 case ICmpInst::ICMP_NE: 5445 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5446 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5447 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5448 const SCEV *One = getOne(I->getType()); 5449 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5450 const SCEV *LA = getSCEV(TrueVal); 5451 const SCEV *RA = getSCEV(FalseVal); 5452 const SCEV *LDiff = getMinusSCEV(LA, LS); 5453 const SCEV *RDiff = getMinusSCEV(RA, One); 5454 if (LDiff == RDiff) 5455 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5456 } 5457 break; 5458 case ICmpInst::ICMP_EQ: 5459 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5460 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5461 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5462 const SCEV *One = getOne(I->getType()); 5463 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5464 const SCEV *LA = getSCEV(TrueVal); 5465 const SCEV *RA = getSCEV(FalseVal); 5466 const SCEV *LDiff = getMinusSCEV(LA, One); 5467 const SCEV *RDiff = getMinusSCEV(RA, LS); 5468 if (LDiff == RDiff) 5469 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5470 } 5471 break; 5472 default: 5473 break; 5474 } 5475 5476 return getUnknown(I); 5477 } 5478 5479 /// Expand GEP instructions into add and multiply operations. This allows them 5480 /// to be analyzed by regular SCEV code. 5481 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5482 // Don't attempt to analyze GEPs over unsized objects. 5483 if (!GEP->getSourceElementType()->isSized()) 5484 return getUnknown(GEP); 5485 5486 SmallVector<const SCEV *, 4> IndexExprs; 5487 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5488 IndexExprs.push_back(getSCEV(*Index)); 5489 return getGEPExpr(GEP, IndexExprs); 5490 } 5491 5492 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5493 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5494 return C->getAPInt().countTrailingZeros(); 5495 5496 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5497 return std::min(GetMinTrailingZeros(T->getOperand()), 5498 (uint32_t)getTypeSizeInBits(T->getType())); 5499 5500 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5501 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5502 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5503 ? getTypeSizeInBits(E->getType()) 5504 : OpRes; 5505 } 5506 5507 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5508 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5509 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5510 ? getTypeSizeInBits(E->getType()) 5511 : OpRes; 5512 } 5513 5514 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5515 // The result is the min of all operands results. 5516 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5517 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5518 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5519 return MinOpRes; 5520 } 5521 5522 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5523 // The result is the sum of all operands results. 5524 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5525 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5526 for (unsigned i = 1, e = M->getNumOperands(); 5527 SumOpRes != BitWidth && i != e; ++i) 5528 SumOpRes = 5529 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5530 return SumOpRes; 5531 } 5532 5533 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5534 // The result is the min of all operands results. 5535 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5536 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5537 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5538 return MinOpRes; 5539 } 5540 5541 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5542 // The result is the min of all operands results. 5543 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5544 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5545 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5546 return MinOpRes; 5547 } 5548 5549 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5550 // The result is the min of all operands results. 5551 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5552 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5553 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5554 return MinOpRes; 5555 } 5556 5557 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5558 // For a SCEVUnknown, ask ValueTracking. 5559 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5560 return Known.countMinTrailingZeros(); 5561 } 5562 5563 // SCEVUDivExpr 5564 return 0; 5565 } 5566 5567 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5568 auto I = MinTrailingZerosCache.find(S); 5569 if (I != MinTrailingZerosCache.end()) 5570 return I->second; 5571 5572 uint32_t Result = GetMinTrailingZerosImpl(S); 5573 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5574 assert(InsertPair.second && "Should insert a new key"); 5575 return InsertPair.first->second; 5576 } 5577 5578 /// Helper method to assign a range to V from metadata present in the IR. 5579 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5580 if (Instruction *I = dyn_cast<Instruction>(V)) 5581 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5582 return getConstantRangeFromMetadata(*MD); 5583 5584 return None; 5585 } 5586 5587 /// Determine the range for a particular SCEV. If SignHint is 5588 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5589 /// with a "cleaner" unsigned (resp. signed) representation. 5590 const ConstantRange & 5591 ScalarEvolution::getRangeRef(const SCEV *S, 5592 ScalarEvolution::RangeSignHint SignHint) { 5593 DenseMap<const SCEV *, ConstantRange> &Cache = 5594 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5595 : SignedRanges; 5596 ConstantRange::PreferredRangeType RangeType = 5597 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5598 ? ConstantRange::Unsigned : ConstantRange::Signed; 5599 5600 // See if we've computed this range already. 5601 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5602 if (I != Cache.end()) 5603 return I->second; 5604 5605 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5606 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5607 5608 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5609 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5610 using OBO = OverflowingBinaryOperator; 5611 5612 // If the value has known zeros, the maximum value will have those known zeros 5613 // as well. 5614 uint32_t TZ = GetMinTrailingZeros(S); 5615 if (TZ != 0) { 5616 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5617 ConservativeResult = 5618 ConstantRange(APInt::getMinValue(BitWidth), 5619 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5620 else 5621 ConservativeResult = ConstantRange( 5622 APInt::getSignedMinValue(BitWidth), 5623 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5624 } 5625 5626 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5627 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5628 unsigned WrapType = OBO::AnyWrap; 5629 if (Add->hasNoSignedWrap()) 5630 WrapType |= OBO::NoSignedWrap; 5631 if (Add->hasNoUnsignedWrap()) 5632 WrapType |= OBO::NoUnsignedWrap; 5633 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5634 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5635 WrapType, RangeType); 5636 return setRange(Add, SignHint, 5637 ConservativeResult.intersectWith(X, RangeType)); 5638 } 5639 5640 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5641 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5642 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5643 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5644 return setRange(Mul, SignHint, 5645 ConservativeResult.intersectWith(X, RangeType)); 5646 } 5647 5648 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5649 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5650 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5651 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5652 return setRange(SMax, SignHint, 5653 ConservativeResult.intersectWith(X, RangeType)); 5654 } 5655 5656 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5657 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5658 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5659 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5660 return setRange(UMax, SignHint, 5661 ConservativeResult.intersectWith(X, RangeType)); 5662 } 5663 5664 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5665 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5666 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5667 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5668 return setRange(SMin, SignHint, 5669 ConservativeResult.intersectWith(X, RangeType)); 5670 } 5671 5672 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5673 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5674 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5675 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5676 return setRange(UMin, SignHint, 5677 ConservativeResult.intersectWith(X, RangeType)); 5678 } 5679 5680 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5681 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5682 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5683 return setRange(UDiv, SignHint, 5684 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5685 } 5686 5687 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5688 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5689 return setRange(ZExt, SignHint, 5690 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5691 RangeType)); 5692 } 5693 5694 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5695 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5696 return setRange(SExt, SignHint, 5697 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5698 RangeType)); 5699 } 5700 5701 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5702 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5703 return setRange(Trunc, SignHint, 5704 ConservativeResult.intersectWith(X.truncate(BitWidth), 5705 RangeType)); 5706 } 5707 5708 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5709 // If there's no unsigned wrap, the value will never be less than its 5710 // initial value. 5711 if (AddRec->hasNoUnsignedWrap()) { 5712 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5713 if (!UnsignedMinValue.isNullValue()) 5714 ConservativeResult = ConservativeResult.intersectWith( 5715 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5716 } 5717 5718 // If there's no signed wrap, and all the operands except initial value have 5719 // the same sign or zero, the value won't ever be: 5720 // 1: smaller than initial value if operands are non negative, 5721 // 2: bigger than initial value if operands are non positive. 5722 // For both cases, value can not cross signed min/max boundary. 5723 if (AddRec->hasNoSignedWrap()) { 5724 bool AllNonNeg = true; 5725 bool AllNonPos = true; 5726 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5727 if (!isKnownNonNegative(AddRec->getOperand(i))) 5728 AllNonNeg = false; 5729 if (!isKnownNonPositive(AddRec->getOperand(i))) 5730 AllNonPos = false; 5731 } 5732 if (AllNonNeg) 5733 ConservativeResult = ConservativeResult.intersectWith( 5734 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5735 APInt::getSignedMinValue(BitWidth)), 5736 RangeType); 5737 else if (AllNonPos) 5738 ConservativeResult = ConservativeResult.intersectWith( 5739 ConstantRange::getNonEmpty( 5740 APInt::getSignedMinValue(BitWidth), 5741 getSignedRangeMax(AddRec->getStart()) + 1), 5742 RangeType); 5743 } 5744 5745 // TODO: non-affine addrec 5746 if (AddRec->isAffine()) { 5747 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5748 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5749 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5750 auto RangeFromAffine = getRangeForAffineAR( 5751 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5752 BitWidth); 5753 if (!RangeFromAffine.isFullSet()) 5754 ConservativeResult = 5755 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5756 5757 auto RangeFromFactoring = getRangeViaFactoring( 5758 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5759 BitWidth); 5760 if (!RangeFromFactoring.isFullSet()) 5761 ConservativeResult = 5762 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5763 } 5764 } 5765 5766 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5767 } 5768 5769 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5770 // Check if the IR explicitly contains !range metadata. 5771 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5772 if (MDRange.hasValue()) 5773 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5774 RangeType); 5775 5776 // Split here to avoid paying the compile-time cost of calling both 5777 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5778 // if needed. 5779 const DataLayout &DL = getDataLayout(); 5780 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5781 // For a SCEVUnknown, ask ValueTracking. 5782 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5783 if (Known.getBitWidth() != BitWidth) 5784 Known = Known.zextOrTrunc(BitWidth); 5785 // If Known does not result in full-set, intersect with it. 5786 if (Known.getMinValue() != Known.getMaxValue() + 1) 5787 ConservativeResult = ConservativeResult.intersectWith( 5788 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5789 RangeType); 5790 } else { 5791 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5792 "generalize as needed!"); 5793 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5794 // If the pointer size is larger than the index size type, this can cause 5795 // NS to be larger than BitWidth. So compensate for this. 5796 if (U->getType()->isPointerTy()) { 5797 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5798 int ptrIdxDiff = ptrSize - BitWidth; 5799 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5800 NS -= ptrIdxDiff; 5801 } 5802 5803 if (NS > 1) 5804 ConservativeResult = ConservativeResult.intersectWith( 5805 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5806 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5807 RangeType); 5808 } 5809 5810 // A range of Phi is a subset of union of all ranges of its input. 5811 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5812 // Make sure that we do not run over cycled Phis. 5813 if (PendingPhiRanges.insert(Phi).second) { 5814 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5815 for (auto &Op : Phi->operands()) { 5816 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5817 RangeFromOps = RangeFromOps.unionWith(OpRange); 5818 // No point to continue if we already have a full set. 5819 if (RangeFromOps.isFullSet()) 5820 break; 5821 } 5822 ConservativeResult = 5823 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5824 bool Erased = PendingPhiRanges.erase(Phi); 5825 assert(Erased && "Failed to erase Phi properly?"); 5826 (void) Erased; 5827 } 5828 } 5829 5830 return setRange(U, SignHint, std::move(ConservativeResult)); 5831 } 5832 5833 return setRange(S, SignHint, std::move(ConservativeResult)); 5834 } 5835 5836 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5837 // values that the expression can take. Initially, the expression has a value 5838 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5839 // argument defines if we treat Step as signed or unsigned. 5840 static ConstantRange getRangeForAffineARHelper(APInt Step, 5841 const ConstantRange &StartRange, 5842 const APInt &MaxBECount, 5843 unsigned BitWidth, bool Signed) { 5844 // If either Step or MaxBECount is 0, then the expression won't change, and we 5845 // just need to return the initial range. 5846 if (Step == 0 || MaxBECount == 0) 5847 return StartRange; 5848 5849 // If we don't know anything about the initial value (i.e. StartRange is 5850 // FullRange), then we don't know anything about the final range either. 5851 // Return FullRange. 5852 if (StartRange.isFullSet()) 5853 return ConstantRange::getFull(BitWidth); 5854 5855 // If Step is signed and negative, then we use its absolute value, but we also 5856 // note that we're moving in the opposite direction. 5857 bool Descending = Signed && Step.isNegative(); 5858 5859 if (Signed) 5860 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5861 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5862 // This equations hold true due to the well-defined wrap-around behavior of 5863 // APInt. 5864 Step = Step.abs(); 5865 5866 // Check if Offset is more than full span of BitWidth. If it is, the 5867 // expression is guaranteed to overflow. 5868 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5869 return ConstantRange::getFull(BitWidth); 5870 5871 // Offset is by how much the expression can change. Checks above guarantee no 5872 // overflow here. 5873 APInt Offset = Step * MaxBECount; 5874 5875 // Minimum value of the final range will match the minimal value of StartRange 5876 // if the expression is increasing and will be decreased by Offset otherwise. 5877 // Maximum value of the final range will match the maximal value of StartRange 5878 // if the expression is decreasing and will be increased by Offset otherwise. 5879 APInt StartLower = StartRange.getLower(); 5880 APInt StartUpper = StartRange.getUpper() - 1; 5881 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5882 : (StartUpper + std::move(Offset)); 5883 5884 // It's possible that the new minimum/maximum value will fall into the initial 5885 // range (due to wrap around). This means that the expression can take any 5886 // value in this bitwidth, and we have to return full range. 5887 if (StartRange.contains(MovedBoundary)) 5888 return ConstantRange::getFull(BitWidth); 5889 5890 APInt NewLower = 5891 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5892 APInt NewUpper = 5893 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5894 NewUpper += 1; 5895 5896 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5897 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5898 } 5899 5900 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5901 const SCEV *Step, 5902 const SCEV *MaxBECount, 5903 unsigned BitWidth) { 5904 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5905 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5906 "Precondition!"); 5907 5908 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5909 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5910 5911 // First, consider step signed. 5912 ConstantRange StartSRange = getSignedRange(Start); 5913 ConstantRange StepSRange = getSignedRange(Step); 5914 5915 // If Step can be both positive and negative, we need to find ranges for the 5916 // maximum absolute step values in both directions and union them. 5917 ConstantRange SR = 5918 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5919 MaxBECountValue, BitWidth, /* Signed = */ true); 5920 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5921 StartSRange, MaxBECountValue, 5922 BitWidth, /* Signed = */ true)); 5923 5924 // Next, consider step unsigned. 5925 ConstantRange UR = getRangeForAffineARHelper( 5926 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5927 MaxBECountValue, BitWidth, /* Signed = */ false); 5928 5929 // Finally, intersect signed and unsigned ranges. 5930 return SR.intersectWith(UR, ConstantRange::Smallest); 5931 } 5932 5933 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5934 const SCEV *Step, 5935 const SCEV *MaxBECount, 5936 unsigned BitWidth) { 5937 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5938 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5939 5940 struct SelectPattern { 5941 Value *Condition = nullptr; 5942 APInt TrueValue; 5943 APInt FalseValue; 5944 5945 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5946 const SCEV *S) { 5947 Optional<unsigned> CastOp; 5948 APInt Offset(BitWidth, 0); 5949 5950 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5951 "Should be!"); 5952 5953 // Peel off a constant offset: 5954 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5955 // In the future we could consider being smarter here and handle 5956 // {Start+Step,+,Step} too. 5957 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5958 return; 5959 5960 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5961 S = SA->getOperand(1); 5962 } 5963 5964 // Peel off a cast operation 5965 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5966 CastOp = SCast->getSCEVType(); 5967 S = SCast->getOperand(); 5968 } 5969 5970 using namespace llvm::PatternMatch; 5971 5972 auto *SU = dyn_cast<SCEVUnknown>(S); 5973 const APInt *TrueVal, *FalseVal; 5974 if (!SU || 5975 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5976 m_APInt(FalseVal)))) { 5977 Condition = nullptr; 5978 return; 5979 } 5980 5981 TrueValue = *TrueVal; 5982 FalseValue = *FalseVal; 5983 5984 // Re-apply the cast we peeled off earlier 5985 if (CastOp.hasValue()) 5986 switch (*CastOp) { 5987 default: 5988 llvm_unreachable("Unknown SCEV cast type!"); 5989 5990 case scTruncate: 5991 TrueValue = TrueValue.trunc(BitWidth); 5992 FalseValue = FalseValue.trunc(BitWidth); 5993 break; 5994 case scZeroExtend: 5995 TrueValue = TrueValue.zext(BitWidth); 5996 FalseValue = FalseValue.zext(BitWidth); 5997 break; 5998 case scSignExtend: 5999 TrueValue = TrueValue.sext(BitWidth); 6000 FalseValue = FalseValue.sext(BitWidth); 6001 break; 6002 } 6003 6004 // Re-apply the constant offset we peeled off earlier 6005 TrueValue += Offset; 6006 FalseValue += Offset; 6007 } 6008 6009 bool isRecognized() { return Condition != nullptr; } 6010 }; 6011 6012 SelectPattern StartPattern(*this, BitWidth, Start); 6013 if (!StartPattern.isRecognized()) 6014 return ConstantRange::getFull(BitWidth); 6015 6016 SelectPattern StepPattern(*this, BitWidth, Step); 6017 if (!StepPattern.isRecognized()) 6018 return ConstantRange::getFull(BitWidth); 6019 6020 if (StartPattern.Condition != StepPattern.Condition) { 6021 // We don't handle this case today; but we could, by considering four 6022 // possibilities below instead of two. I'm not sure if there are cases where 6023 // that will help over what getRange already does, though. 6024 return ConstantRange::getFull(BitWidth); 6025 } 6026 6027 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6028 // construct arbitrary general SCEV expressions here. This function is called 6029 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6030 // say) can end up caching a suboptimal value. 6031 6032 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6033 // C2352 and C2512 (otherwise it isn't needed). 6034 6035 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6036 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6037 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6038 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6039 6040 ConstantRange TrueRange = 6041 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6042 ConstantRange FalseRange = 6043 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6044 6045 return TrueRange.unionWith(FalseRange); 6046 } 6047 6048 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6049 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6050 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6051 6052 // Return early if there are no flags to propagate to the SCEV. 6053 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6054 if (BinOp->hasNoUnsignedWrap()) 6055 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6056 if (BinOp->hasNoSignedWrap()) 6057 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6058 if (Flags == SCEV::FlagAnyWrap) 6059 return SCEV::FlagAnyWrap; 6060 6061 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6062 } 6063 6064 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6065 // Here we check that I is in the header of the innermost loop containing I, 6066 // since we only deal with instructions in the loop header. The actual loop we 6067 // need to check later will come from an add recurrence, but getting that 6068 // requires computing the SCEV of the operands, which can be expensive. This 6069 // check we can do cheaply to rule out some cases early. 6070 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6071 if (InnermostContainingLoop == nullptr || 6072 InnermostContainingLoop->getHeader() != I->getParent()) 6073 return false; 6074 6075 // Only proceed if we can prove that I does not yield poison. 6076 if (!programUndefinedIfFullPoison(I)) 6077 return false; 6078 6079 // At this point we know that if I is executed, then it does not wrap 6080 // according to at least one of NSW or NUW. If I is not executed, then we do 6081 // not know if the calculation that I represents would wrap. Multiple 6082 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6083 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6084 // derived from other instructions that map to the same SCEV. We cannot make 6085 // that guarantee for cases where I is not executed. So we need to find the 6086 // loop that I is considered in relation to and prove that I is executed for 6087 // every iteration of that loop. That implies that the value that I 6088 // calculates does not wrap anywhere in the loop, so then we can apply the 6089 // flags to the SCEV. 6090 // 6091 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6092 // from different loops, so that we know which loop to prove that I is 6093 // executed in. 6094 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6095 // I could be an extractvalue from a call to an overflow intrinsic. 6096 // TODO: We can do better here in some cases. 6097 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6098 return false; 6099 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6100 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6101 bool AllOtherOpsLoopInvariant = true; 6102 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6103 ++OtherOpIndex) { 6104 if (OtherOpIndex != OpIndex) { 6105 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6106 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6107 AllOtherOpsLoopInvariant = false; 6108 break; 6109 } 6110 } 6111 } 6112 if (AllOtherOpsLoopInvariant && 6113 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6114 return true; 6115 } 6116 } 6117 return false; 6118 } 6119 6120 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6121 // If we know that \c I can never be poison period, then that's enough. 6122 if (isSCEVExprNeverPoison(I)) 6123 return true; 6124 6125 // For an add recurrence specifically, we assume that infinite loops without 6126 // side effects are undefined behavior, and then reason as follows: 6127 // 6128 // If the add recurrence is poison in any iteration, it is poison on all 6129 // future iterations (since incrementing poison yields poison). If the result 6130 // of the add recurrence is fed into the loop latch condition and the loop 6131 // does not contain any throws or exiting blocks other than the latch, we now 6132 // have the ability to "choose" whether the backedge is taken or not (by 6133 // choosing a sufficiently evil value for the poison feeding into the branch) 6134 // for every iteration including and after the one in which \p I first became 6135 // poison. There are two possibilities (let's call the iteration in which \p 6136 // I first became poison as K): 6137 // 6138 // 1. In the set of iterations including and after K, the loop body executes 6139 // no side effects. In this case executing the backege an infinte number 6140 // of times will yield undefined behavior. 6141 // 6142 // 2. In the set of iterations including and after K, the loop body executes 6143 // at least one side effect. In this case, that specific instance of side 6144 // effect is control dependent on poison, which also yields undefined 6145 // behavior. 6146 6147 auto *ExitingBB = L->getExitingBlock(); 6148 auto *LatchBB = L->getLoopLatch(); 6149 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6150 return false; 6151 6152 SmallPtrSet<const Instruction *, 16> Pushed; 6153 SmallVector<const Instruction *, 8> PoisonStack; 6154 6155 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6156 // things that are known to be fully poison under that assumption go on the 6157 // PoisonStack. 6158 Pushed.insert(I); 6159 PoisonStack.push_back(I); 6160 6161 bool LatchControlDependentOnPoison = false; 6162 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6163 const Instruction *Poison = PoisonStack.pop_back_val(); 6164 6165 for (auto *PoisonUser : Poison->users()) { 6166 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 6167 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6168 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6169 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6170 assert(BI->isConditional() && "Only possibility!"); 6171 if (BI->getParent() == LatchBB) { 6172 LatchControlDependentOnPoison = true; 6173 break; 6174 } 6175 } 6176 } 6177 } 6178 6179 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6180 } 6181 6182 ScalarEvolution::LoopProperties 6183 ScalarEvolution::getLoopProperties(const Loop *L) { 6184 using LoopProperties = ScalarEvolution::LoopProperties; 6185 6186 auto Itr = LoopPropertiesCache.find(L); 6187 if (Itr == LoopPropertiesCache.end()) { 6188 auto HasSideEffects = [](Instruction *I) { 6189 if (auto *SI = dyn_cast<StoreInst>(I)) 6190 return !SI->isSimple(); 6191 6192 return I->mayHaveSideEffects(); 6193 }; 6194 6195 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6196 /*HasNoSideEffects*/ true}; 6197 6198 for (auto *BB : L->getBlocks()) 6199 for (auto &I : *BB) { 6200 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6201 LP.HasNoAbnormalExits = false; 6202 if (HasSideEffects(&I)) 6203 LP.HasNoSideEffects = false; 6204 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6205 break; // We're already as pessimistic as we can get. 6206 } 6207 6208 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6209 assert(InsertPair.second && "We just checked!"); 6210 Itr = InsertPair.first; 6211 } 6212 6213 return Itr->second; 6214 } 6215 6216 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6217 if (!isSCEVable(V->getType())) 6218 return getUnknown(V); 6219 6220 if (Instruction *I = dyn_cast<Instruction>(V)) { 6221 // Don't attempt to analyze instructions in blocks that aren't 6222 // reachable. Such instructions don't matter, and they aren't required 6223 // to obey basic rules for definitions dominating uses which this 6224 // analysis depends on. 6225 if (!DT.isReachableFromEntry(I->getParent())) 6226 return getUnknown(UndefValue::get(V->getType())); 6227 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6228 return getConstant(CI); 6229 else if (isa<ConstantPointerNull>(V)) 6230 return getZero(V->getType()); 6231 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6232 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6233 else if (!isa<ConstantExpr>(V)) 6234 return getUnknown(V); 6235 6236 Operator *U = cast<Operator>(V); 6237 if (auto BO = MatchBinaryOp(U, DT)) { 6238 switch (BO->Opcode) { 6239 case Instruction::Add: { 6240 // The simple thing to do would be to just call getSCEV on both operands 6241 // and call getAddExpr with the result. However if we're looking at a 6242 // bunch of things all added together, this can be quite inefficient, 6243 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6244 // Instead, gather up all the operands and make a single getAddExpr call. 6245 // LLVM IR canonical form means we need only traverse the left operands. 6246 SmallVector<const SCEV *, 4> AddOps; 6247 do { 6248 if (BO->Op) { 6249 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6250 AddOps.push_back(OpSCEV); 6251 break; 6252 } 6253 6254 // If a NUW or NSW flag can be applied to the SCEV for this 6255 // addition, then compute the SCEV for this addition by itself 6256 // with a separate call to getAddExpr. We need to do that 6257 // instead of pushing the operands of the addition onto AddOps, 6258 // since the flags are only known to apply to this particular 6259 // addition - they may not apply to other additions that can be 6260 // formed with operands from AddOps. 6261 const SCEV *RHS = getSCEV(BO->RHS); 6262 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6263 if (Flags != SCEV::FlagAnyWrap) { 6264 const SCEV *LHS = getSCEV(BO->LHS); 6265 if (BO->Opcode == Instruction::Sub) 6266 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6267 else 6268 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6269 break; 6270 } 6271 } 6272 6273 if (BO->Opcode == Instruction::Sub) 6274 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6275 else 6276 AddOps.push_back(getSCEV(BO->RHS)); 6277 6278 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6279 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6280 NewBO->Opcode != Instruction::Sub)) { 6281 AddOps.push_back(getSCEV(BO->LHS)); 6282 break; 6283 } 6284 BO = NewBO; 6285 } while (true); 6286 6287 return getAddExpr(AddOps); 6288 } 6289 6290 case Instruction::Mul: { 6291 SmallVector<const SCEV *, 4> MulOps; 6292 do { 6293 if (BO->Op) { 6294 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6295 MulOps.push_back(OpSCEV); 6296 break; 6297 } 6298 6299 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6300 if (Flags != SCEV::FlagAnyWrap) { 6301 MulOps.push_back( 6302 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6303 break; 6304 } 6305 } 6306 6307 MulOps.push_back(getSCEV(BO->RHS)); 6308 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6309 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6310 MulOps.push_back(getSCEV(BO->LHS)); 6311 break; 6312 } 6313 BO = NewBO; 6314 } while (true); 6315 6316 return getMulExpr(MulOps); 6317 } 6318 case Instruction::UDiv: 6319 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6320 case Instruction::URem: 6321 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6322 case Instruction::Sub: { 6323 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6324 if (BO->Op) 6325 Flags = getNoWrapFlagsFromUB(BO->Op); 6326 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6327 } 6328 case Instruction::And: 6329 // For an expression like x&255 that merely masks off the high bits, 6330 // use zext(trunc(x)) as the SCEV expression. 6331 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6332 if (CI->isZero()) 6333 return getSCEV(BO->RHS); 6334 if (CI->isMinusOne()) 6335 return getSCEV(BO->LHS); 6336 const APInt &A = CI->getValue(); 6337 6338 // Instcombine's ShrinkDemandedConstant may strip bits out of 6339 // constants, obscuring what would otherwise be a low-bits mask. 6340 // Use computeKnownBits to compute what ShrinkDemandedConstant 6341 // knew about to reconstruct a low-bits mask value. 6342 unsigned LZ = A.countLeadingZeros(); 6343 unsigned TZ = A.countTrailingZeros(); 6344 unsigned BitWidth = A.getBitWidth(); 6345 KnownBits Known(BitWidth); 6346 computeKnownBits(BO->LHS, Known, getDataLayout(), 6347 0, &AC, nullptr, &DT); 6348 6349 APInt EffectiveMask = 6350 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6351 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6352 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6353 const SCEV *LHS = getSCEV(BO->LHS); 6354 const SCEV *ShiftedLHS = nullptr; 6355 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6356 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6357 // For an expression like (x * 8) & 8, simplify the multiply. 6358 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6359 unsigned GCD = std::min(MulZeros, TZ); 6360 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6361 SmallVector<const SCEV*, 4> MulOps; 6362 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6363 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6364 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6365 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6366 } 6367 } 6368 if (!ShiftedLHS) 6369 ShiftedLHS = getUDivExpr(LHS, MulCount); 6370 return getMulExpr( 6371 getZeroExtendExpr( 6372 getTruncateExpr(ShiftedLHS, 6373 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6374 BO->LHS->getType()), 6375 MulCount); 6376 } 6377 } 6378 break; 6379 6380 case Instruction::Or: 6381 // If the RHS of the Or is a constant, we may have something like: 6382 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6383 // optimizations will transparently handle this case. 6384 // 6385 // In order for this transformation to be safe, the LHS must be of the 6386 // form X*(2^n) and the Or constant must be less than 2^n. 6387 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6388 const SCEV *LHS = getSCEV(BO->LHS); 6389 const APInt &CIVal = CI->getValue(); 6390 if (GetMinTrailingZeros(LHS) >= 6391 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6392 // Build a plain add SCEV. 6393 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6394 // If the LHS of the add was an addrec and it has no-wrap flags, 6395 // transfer the no-wrap flags, since an or won't introduce a wrap. 6396 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6397 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6398 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6399 OldAR->getNoWrapFlags()); 6400 } 6401 return S; 6402 } 6403 } 6404 break; 6405 6406 case Instruction::Xor: 6407 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6408 // If the RHS of xor is -1, then this is a not operation. 6409 if (CI->isMinusOne()) 6410 return getNotSCEV(getSCEV(BO->LHS)); 6411 6412 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6413 // This is a variant of the check for xor with -1, and it handles 6414 // the case where instcombine has trimmed non-demanded bits out 6415 // of an xor with -1. 6416 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6417 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6418 if (LBO->getOpcode() == Instruction::And && 6419 LCI->getValue() == CI->getValue()) 6420 if (const SCEVZeroExtendExpr *Z = 6421 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6422 Type *UTy = BO->LHS->getType(); 6423 const SCEV *Z0 = Z->getOperand(); 6424 Type *Z0Ty = Z0->getType(); 6425 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6426 6427 // If C is a low-bits mask, the zero extend is serving to 6428 // mask off the high bits. Complement the operand and 6429 // re-apply the zext. 6430 if (CI->getValue().isMask(Z0TySize)) 6431 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6432 6433 // If C is a single bit, it may be in the sign-bit position 6434 // before the zero-extend. In this case, represent the xor 6435 // using an add, which is equivalent, and re-apply the zext. 6436 APInt Trunc = CI->getValue().trunc(Z0TySize); 6437 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6438 Trunc.isSignMask()) 6439 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6440 UTy); 6441 } 6442 } 6443 break; 6444 6445 case Instruction::Shl: 6446 // Turn shift left of a constant amount into a multiply. 6447 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6448 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6449 6450 // If the shift count is not less than the bitwidth, the result of 6451 // the shift is undefined. Don't try to analyze it, because the 6452 // resolution chosen here may differ from the resolution chosen in 6453 // other parts of the compiler. 6454 if (SA->getValue().uge(BitWidth)) 6455 break; 6456 6457 // It is currently not resolved how to interpret NSW for left 6458 // shift by BitWidth - 1, so we avoid applying flags in that 6459 // case. Remove this check (or this comment) once the situation 6460 // is resolved. See 6461 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6462 // and http://reviews.llvm.org/D8890 . 6463 auto Flags = SCEV::FlagAnyWrap; 6464 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6465 Flags = getNoWrapFlagsFromUB(BO->Op); 6466 6467 Constant *X = ConstantInt::get( 6468 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6469 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6470 } 6471 break; 6472 6473 case Instruction::AShr: { 6474 // AShr X, C, where C is a constant. 6475 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6476 if (!CI) 6477 break; 6478 6479 Type *OuterTy = BO->LHS->getType(); 6480 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6481 // If the shift count is not less than the bitwidth, the result of 6482 // the shift is undefined. Don't try to analyze it, because the 6483 // resolution chosen here may differ from the resolution chosen in 6484 // other parts of the compiler. 6485 if (CI->getValue().uge(BitWidth)) 6486 break; 6487 6488 if (CI->isZero()) 6489 return getSCEV(BO->LHS); // shift by zero --> noop 6490 6491 uint64_t AShrAmt = CI->getZExtValue(); 6492 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6493 6494 Operator *L = dyn_cast<Operator>(BO->LHS); 6495 if (L && L->getOpcode() == Instruction::Shl) { 6496 // X = Shl A, n 6497 // Y = AShr X, m 6498 // Both n and m are constant. 6499 6500 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6501 if (L->getOperand(1) == BO->RHS) 6502 // For a two-shift sext-inreg, i.e. n = m, 6503 // use sext(trunc(x)) as the SCEV expression. 6504 return getSignExtendExpr( 6505 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6506 6507 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6508 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6509 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6510 if (ShlAmt > AShrAmt) { 6511 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6512 // expression. We already checked that ShlAmt < BitWidth, so 6513 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6514 // ShlAmt - AShrAmt < Amt. 6515 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6516 ShlAmt - AShrAmt); 6517 return getSignExtendExpr( 6518 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6519 getConstant(Mul)), OuterTy); 6520 } 6521 } 6522 } 6523 break; 6524 } 6525 } 6526 } 6527 6528 switch (U->getOpcode()) { 6529 case Instruction::Trunc: 6530 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6531 6532 case Instruction::ZExt: 6533 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6534 6535 case Instruction::SExt: 6536 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6537 // The NSW flag of a subtract does not always survive the conversion to 6538 // A + (-1)*B. By pushing sign extension onto its operands we are much 6539 // more likely to preserve NSW and allow later AddRec optimisations. 6540 // 6541 // NOTE: This is effectively duplicating this logic from getSignExtend: 6542 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6543 // but by that point the NSW information has potentially been lost. 6544 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6545 Type *Ty = U->getType(); 6546 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6547 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6548 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6549 } 6550 } 6551 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6552 6553 case Instruction::BitCast: 6554 // BitCasts are no-op casts so we just eliminate the cast. 6555 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6556 return getSCEV(U->getOperand(0)); 6557 break; 6558 6559 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6560 // lead to pointer expressions which cannot safely be expanded to GEPs, 6561 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6562 // simplifying integer expressions. 6563 6564 case Instruction::GetElementPtr: 6565 return createNodeForGEP(cast<GEPOperator>(U)); 6566 6567 case Instruction::PHI: 6568 return createNodeForPHI(cast<PHINode>(U)); 6569 6570 case Instruction::Select: 6571 // U can also be a select constant expr, which let fall through. Since 6572 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6573 // constant expressions cannot have instructions as operands, we'd have 6574 // returned getUnknown for a select constant expressions anyway. 6575 if (isa<Instruction>(U)) 6576 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6577 U->getOperand(1), U->getOperand(2)); 6578 break; 6579 6580 case Instruction::Call: 6581 case Instruction::Invoke: 6582 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6583 return getSCEV(RV); 6584 break; 6585 } 6586 6587 return getUnknown(V); 6588 } 6589 6590 //===----------------------------------------------------------------------===// 6591 // Iteration Count Computation Code 6592 // 6593 6594 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6595 if (!ExitCount) 6596 return 0; 6597 6598 ConstantInt *ExitConst = ExitCount->getValue(); 6599 6600 // Guard against huge trip counts. 6601 if (ExitConst->getValue().getActiveBits() > 32) 6602 return 0; 6603 6604 // In case of integer overflow, this returns 0, which is correct. 6605 return ((unsigned)ExitConst->getZExtValue()) + 1; 6606 } 6607 6608 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6609 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6610 return getSmallConstantTripCount(L, ExitingBB); 6611 6612 // No trip count information for multiple exits. 6613 return 0; 6614 } 6615 6616 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6617 BasicBlock *ExitingBlock) { 6618 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6619 assert(L->isLoopExiting(ExitingBlock) && 6620 "Exiting block must actually branch out of the loop!"); 6621 const SCEVConstant *ExitCount = 6622 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6623 return getConstantTripCount(ExitCount); 6624 } 6625 6626 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6627 const auto *MaxExitCount = 6628 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6629 return getConstantTripCount(MaxExitCount); 6630 } 6631 6632 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6633 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6634 return getSmallConstantTripMultiple(L, ExitingBB); 6635 6636 // No trip multiple information for multiple exits. 6637 return 0; 6638 } 6639 6640 /// Returns the largest constant divisor of the trip count of this loop as a 6641 /// normal unsigned value, if possible. This means that the actual trip count is 6642 /// always a multiple of the returned value (don't forget the trip count could 6643 /// very well be zero as well!). 6644 /// 6645 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6646 /// multiple of a constant (which is also the case if the trip count is simply 6647 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6648 /// if the trip count is very large (>= 2^32). 6649 /// 6650 /// As explained in the comments for getSmallConstantTripCount, this assumes 6651 /// that control exits the loop via ExitingBlock. 6652 unsigned 6653 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6654 BasicBlock *ExitingBlock) { 6655 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6656 assert(L->isLoopExiting(ExitingBlock) && 6657 "Exiting block must actually branch out of the loop!"); 6658 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6659 if (ExitCount == getCouldNotCompute()) 6660 return 1; 6661 6662 // Get the trip count from the BE count by adding 1. 6663 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6664 6665 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6666 if (!TC) 6667 // Attempt to factor more general cases. Returns the greatest power of 6668 // two divisor. If overflow happens, the trip count expression is still 6669 // divisible by the greatest power of 2 divisor returned. 6670 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6671 6672 ConstantInt *Result = TC->getValue(); 6673 6674 // Guard against huge trip counts (this requires checking 6675 // for zero to handle the case where the trip count == -1 and the 6676 // addition wraps). 6677 if (!Result || Result->getValue().getActiveBits() > 32 || 6678 Result->getValue().getActiveBits() == 0) 6679 return 1; 6680 6681 return (unsigned)Result->getZExtValue(); 6682 } 6683 6684 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6685 BasicBlock *ExitingBlock, 6686 ExitCountKind Kind) { 6687 switch (Kind) { 6688 case Exact: 6689 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6690 case ConstantMaximum: 6691 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6692 }; 6693 llvm_unreachable("Invalid ExitCountKind!"); 6694 } 6695 6696 const SCEV * 6697 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6698 SCEVUnionPredicate &Preds) { 6699 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6700 } 6701 6702 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6703 ExitCountKind Kind) { 6704 switch (Kind) { 6705 case Exact: 6706 return getBackedgeTakenInfo(L).getExact(L, this); 6707 case ConstantMaximum: 6708 return getBackedgeTakenInfo(L).getMax(this); 6709 }; 6710 llvm_unreachable("Invalid ExitCountKind!"); 6711 } 6712 6713 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6714 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6715 } 6716 6717 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6718 static void 6719 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6720 BasicBlock *Header = L->getHeader(); 6721 6722 // Push all Loop-header PHIs onto the Worklist stack. 6723 for (PHINode &PN : Header->phis()) 6724 Worklist.push_back(&PN); 6725 } 6726 6727 const ScalarEvolution::BackedgeTakenInfo & 6728 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6729 auto &BTI = getBackedgeTakenInfo(L); 6730 if (BTI.hasFullInfo()) 6731 return BTI; 6732 6733 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6734 6735 if (!Pair.second) 6736 return Pair.first->second; 6737 6738 BackedgeTakenInfo Result = 6739 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6740 6741 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6742 } 6743 6744 const ScalarEvolution::BackedgeTakenInfo & 6745 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6746 // Initially insert an invalid entry for this loop. If the insertion 6747 // succeeds, proceed to actually compute a backedge-taken count and 6748 // update the value. The temporary CouldNotCompute value tells SCEV 6749 // code elsewhere that it shouldn't attempt to request a new 6750 // backedge-taken count, which could result in infinite recursion. 6751 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6752 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6753 if (!Pair.second) 6754 return Pair.first->second; 6755 6756 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6757 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6758 // must be cleared in this scope. 6759 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6760 6761 // In product build, there are no usage of statistic. 6762 (void)NumTripCountsComputed; 6763 (void)NumTripCountsNotComputed; 6764 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6765 const SCEV *BEExact = Result.getExact(L, this); 6766 if (BEExact != getCouldNotCompute()) { 6767 assert(isLoopInvariant(BEExact, L) && 6768 isLoopInvariant(Result.getMax(this), L) && 6769 "Computed backedge-taken count isn't loop invariant for loop!"); 6770 ++NumTripCountsComputed; 6771 } 6772 else if (Result.getMax(this) == getCouldNotCompute() && 6773 isa<PHINode>(L->getHeader()->begin())) { 6774 // Only count loops that have phi nodes as not being computable. 6775 ++NumTripCountsNotComputed; 6776 } 6777 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6778 6779 // Now that we know more about the trip count for this loop, forget any 6780 // existing SCEV values for PHI nodes in this loop since they are only 6781 // conservative estimates made without the benefit of trip count 6782 // information. This is similar to the code in forgetLoop, except that 6783 // it handles SCEVUnknown PHI nodes specially. 6784 if (Result.hasAnyInfo()) { 6785 SmallVector<Instruction *, 16> Worklist; 6786 PushLoopPHIs(L, Worklist); 6787 6788 SmallPtrSet<Instruction *, 8> Discovered; 6789 while (!Worklist.empty()) { 6790 Instruction *I = Worklist.pop_back_val(); 6791 6792 ValueExprMapType::iterator It = 6793 ValueExprMap.find_as(static_cast<Value *>(I)); 6794 if (It != ValueExprMap.end()) { 6795 const SCEV *Old = It->second; 6796 6797 // SCEVUnknown for a PHI either means that it has an unrecognized 6798 // structure, or it's a PHI that's in the progress of being computed 6799 // by createNodeForPHI. In the former case, additional loop trip 6800 // count information isn't going to change anything. In the later 6801 // case, createNodeForPHI will perform the necessary updates on its 6802 // own when it gets to that point. 6803 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6804 eraseValueFromMap(It->first); 6805 forgetMemoizedResults(Old); 6806 } 6807 if (PHINode *PN = dyn_cast<PHINode>(I)) 6808 ConstantEvolutionLoopExitValue.erase(PN); 6809 } 6810 6811 // Since we don't need to invalidate anything for correctness and we're 6812 // only invalidating to make SCEV's results more precise, we get to stop 6813 // early to avoid invalidating too much. This is especially important in 6814 // cases like: 6815 // 6816 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6817 // loop0: 6818 // %pn0 = phi 6819 // ... 6820 // loop1: 6821 // %pn1 = phi 6822 // ... 6823 // 6824 // where both loop0 and loop1's backedge taken count uses the SCEV 6825 // expression for %v. If we don't have the early stop below then in cases 6826 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6827 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6828 // count for loop1, effectively nullifying SCEV's trip count cache. 6829 for (auto *U : I->users()) 6830 if (auto *I = dyn_cast<Instruction>(U)) { 6831 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6832 if (LoopForUser && L->contains(LoopForUser) && 6833 Discovered.insert(I).second) 6834 Worklist.push_back(I); 6835 } 6836 } 6837 } 6838 6839 // Re-lookup the insert position, since the call to 6840 // computeBackedgeTakenCount above could result in a 6841 // recusive call to getBackedgeTakenInfo (on a different 6842 // loop), which would invalidate the iterator computed 6843 // earlier. 6844 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6845 } 6846 6847 void ScalarEvolution::forgetAllLoops() { 6848 // This method is intended to forget all info about loops. It should 6849 // invalidate caches as if the following happened: 6850 // - The trip counts of all loops have changed arbitrarily 6851 // - Every llvm::Value has been updated in place to produce a different 6852 // result. 6853 BackedgeTakenCounts.clear(); 6854 PredicatedBackedgeTakenCounts.clear(); 6855 LoopPropertiesCache.clear(); 6856 ConstantEvolutionLoopExitValue.clear(); 6857 ValueExprMap.clear(); 6858 ValuesAtScopes.clear(); 6859 LoopDispositions.clear(); 6860 BlockDispositions.clear(); 6861 UnsignedRanges.clear(); 6862 SignedRanges.clear(); 6863 ExprValueMap.clear(); 6864 HasRecMap.clear(); 6865 MinTrailingZerosCache.clear(); 6866 PredicatedSCEVRewrites.clear(); 6867 } 6868 6869 void ScalarEvolution::forgetLoop(const Loop *L) { 6870 // Drop any stored trip count value. 6871 auto RemoveLoopFromBackedgeMap = 6872 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6873 auto BTCPos = Map.find(L); 6874 if (BTCPos != Map.end()) { 6875 BTCPos->second.clear(); 6876 Map.erase(BTCPos); 6877 } 6878 }; 6879 6880 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6881 SmallVector<Instruction *, 32> Worklist; 6882 SmallPtrSet<Instruction *, 16> Visited; 6883 6884 // Iterate over all the loops and sub-loops to drop SCEV information. 6885 while (!LoopWorklist.empty()) { 6886 auto *CurrL = LoopWorklist.pop_back_val(); 6887 6888 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6889 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6890 6891 // Drop information about predicated SCEV rewrites for this loop. 6892 for (auto I = PredicatedSCEVRewrites.begin(); 6893 I != PredicatedSCEVRewrites.end();) { 6894 std::pair<const SCEV *, const Loop *> Entry = I->first; 6895 if (Entry.second == CurrL) 6896 PredicatedSCEVRewrites.erase(I++); 6897 else 6898 ++I; 6899 } 6900 6901 auto LoopUsersItr = LoopUsers.find(CurrL); 6902 if (LoopUsersItr != LoopUsers.end()) { 6903 for (auto *S : LoopUsersItr->second) 6904 forgetMemoizedResults(S); 6905 LoopUsers.erase(LoopUsersItr); 6906 } 6907 6908 // Drop information about expressions based on loop-header PHIs. 6909 PushLoopPHIs(CurrL, Worklist); 6910 6911 while (!Worklist.empty()) { 6912 Instruction *I = Worklist.pop_back_val(); 6913 if (!Visited.insert(I).second) 6914 continue; 6915 6916 ValueExprMapType::iterator It = 6917 ValueExprMap.find_as(static_cast<Value *>(I)); 6918 if (It != ValueExprMap.end()) { 6919 eraseValueFromMap(It->first); 6920 forgetMemoizedResults(It->second); 6921 if (PHINode *PN = dyn_cast<PHINode>(I)) 6922 ConstantEvolutionLoopExitValue.erase(PN); 6923 } 6924 6925 PushDefUseChildren(I, Worklist); 6926 } 6927 6928 LoopPropertiesCache.erase(CurrL); 6929 // Forget all contained loops too, to avoid dangling entries in the 6930 // ValuesAtScopes map. 6931 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6932 } 6933 } 6934 6935 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6936 while (Loop *Parent = L->getParentLoop()) 6937 L = Parent; 6938 forgetLoop(L); 6939 } 6940 6941 void ScalarEvolution::forgetValue(Value *V) { 6942 Instruction *I = dyn_cast<Instruction>(V); 6943 if (!I) return; 6944 6945 // Drop information about expressions based on loop-header PHIs. 6946 SmallVector<Instruction *, 16> Worklist; 6947 Worklist.push_back(I); 6948 6949 SmallPtrSet<Instruction *, 8> Visited; 6950 while (!Worklist.empty()) { 6951 I = Worklist.pop_back_val(); 6952 if (!Visited.insert(I).second) 6953 continue; 6954 6955 ValueExprMapType::iterator It = 6956 ValueExprMap.find_as(static_cast<Value *>(I)); 6957 if (It != ValueExprMap.end()) { 6958 eraseValueFromMap(It->first); 6959 forgetMemoizedResults(It->second); 6960 if (PHINode *PN = dyn_cast<PHINode>(I)) 6961 ConstantEvolutionLoopExitValue.erase(PN); 6962 } 6963 6964 PushDefUseChildren(I, Worklist); 6965 } 6966 } 6967 6968 /// Get the exact loop backedge taken count considering all loop exits. A 6969 /// computable result can only be returned for loops with all exiting blocks 6970 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6971 /// is never skipped. This is a valid assumption as long as the loop exits via 6972 /// that test. For precise results, it is the caller's responsibility to specify 6973 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6974 const SCEV * 6975 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6976 SCEVUnionPredicate *Preds) const { 6977 // If any exits were not computable, the loop is not computable. 6978 if (!isComplete() || ExitNotTaken.empty()) 6979 return SE->getCouldNotCompute(); 6980 6981 const BasicBlock *Latch = L->getLoopLatch(); 6982 // All exiting blocks we have collected must dominate the only backedge. 6983 if (!Latch) 6984 return SE->getCouldNotCompute(); 6985 6986 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6987 // count is simply a minimum out of all these calculated exit counts. 6988 SmallVector<const SCEV *, 2> Ops; 6989 for (auto &ENT : ExitNotTaken) { 6990 const SCEV *BECount = ENT.ExactNotTaken; 6991 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6992 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6993 "We should only have known counts for exiting blocks that dominate " 6994 "latch!"); 6995 6996 Ops.push_back(BECount); 6997 6998 if (Preds && !ENT.hasAlwaysTruePredicate()) 6999 Preds->add(ENT.Predicate.get()); 7000 7001 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7002 "Predicate should be always true!"); 7003 } 7004 7005 return SE->getUMinFromMismatchedTypes(Ops); 7006 } 7007 7008 /// Get the exact not taken count for this loop exit. 7009 const SCEV * 7010 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 7011 ScalarEvolution *SE) const { 7012 for (auto &ENT : ExitNotTaken) 7013 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7014 return ENT.ExactNotTaken; 7015 7016 return SE->getCouldNotCompute(); 7017 } 7018 7019 const SCEV * 7020 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, 7021 ScalarEvolution *SE) const { 7022 for (auto &ENT : ExitNotTaken) 7023 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7024 return ENT.MaxNotTaken; 7025 7026 return SE->getCouldNotCompute(); 7027 } 7028 7029 /// getMax - Get the max backedge taken count for the loop. 7030 const SCEV * 7031 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 7032 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7033 return !ENT.hasAlwaysTruePredicate(); 7034 }; 7035 7036 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 7037 return SE->getCouldNotCompute(); 7038 7039 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 7040 "No point in having a non-constant max backedge taken count!"); 7041 return getMax(); 7042 } 7043 7044 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 7045 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7046 return !ENT.hasAlwaysTruePredicate(); 7047 }; 7048 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7049 } 7050 7051 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7052 ScalarEvolution *SE) const { 7053 if (getMax() && getMax() != SE->getCouldNotCompute() && 7054 SE->hasOperand(getMax(), S)) 7055 return true; 7056 7057 for (auto &ENT : ExitNotTaken) 7058 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7059 SE->hasOperand(ENT.ExactNotTaken, S)) 7060 return true; 7061 7062 return false; 7063 } 7064 7065 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7066 : ExactNotTaken(E), MaxNotTaken(E) { 7067 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7068 isa<SCEVConstant>(MaxNotTaken)) && 7069 "No point in having a non-constant max backedge taken count!"); 7070 } 7071 7072 ScalarEvolution::ExitLimit::ExitLimit( 7073 const SCEV *E, const SCEV *M, bool MaxOrZero, 7074 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7075 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7076 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7077 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7078 "Exact is not allowed to be less precise than Max"); 7079 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7080 isa<SCEVConstant>(MaxNotTaken)) && 7081 "No point in having a non-constant max backedge taken count!"); 7082 for (auto *PredSet : PredSetList) 7083 for (auto *P : *PredSet) 7084 addPredicate(P); 7085 } 7086 7087 ScalarEvolution::ExitLimit::ExitLimit( 7088 const SCEV *E, const SCEV *M, bool MaxOrZero, 7089 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7090 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7091 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7092 isa<SCEVConstant>(MaxNotTaken)) && 7093 "No point in having a non-constant max backedge taken count!"); 7094 } 7095 7096 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7097 bool MaxOrZero) 7098 : ExitLimit(E, M, MaxOrZero, None) { 7099 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7100 isa<SCEVConstant>(MaxNotTaken)) && 7101 "No point in having a non-constant max backedge taken count!"); 7102 } 7103 7104 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7105 /// computable exit into a persistent ExitNotTakenInfo array. 7106 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7107 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 7108 ExitCounts, 7109 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 7110 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 7111 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7112 7113 ExitNotTaken.reserve(ExitCounts.size()); 7114 std::transform( 7115 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7116 [&](const EdgeExitInfo &EEI) { 7117 BasicBlock *ExitBB = EEI.first; 7118 const ExitLimit &EL = EEI.second; 7119 if (EL.Predicates.empty()) 7120 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7121 nullptr); 7122 7123 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7124 for (auto *Pred : EL.Predicates) 7125 Predicate->add(Pred); 7126 7127 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7128 std::move(Predicate)); 7129 }); 7130 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 7131 "No point in having a non-constant max backedge taken count!"); 7132 } 7133 7134 /// Invalidate this result and free the ExitNotTakenInfo array. 7135 void ScalarEvolution::BackedgeTakenInfo::clear() { 7136 ExitNotTaken.clear(); 7137 } 7138 7139 /// Compute the number of times the backedge of the specified loop will execute. 7140 ScalarEvolution::BackedgeTakenInfo 7141 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7142 bool AllowPredicates) { 7143 SmallVector<BasicBlock *, 8> ExitingBlocks; 7144 L->getExitingBlocks(ExitingBlocks); 7145 7146 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7147 7148 SmallVector<EdgeExitInfo, 4> ExitCounts; 7149 bool CouldComputeBECount = true; 7150 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7151 const SCEV *MustExitMaxBECount = nullptr; 7152 const SCEV *MayExitMaxBECount = nullptr; 7153 bool MustExitMaxOrZero = false; 7154 7155 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7156 // and compute maxBECount. 7157 // Do a union of all the predicates here. 7158 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7159 BasicBlock *ExitBB = ExitingBlocks[i]; 7160 7161 // We canonicalize untaken exits to br (constant), ignore them so that 7162 // proving an exit untaken doesn't negatively impact our ability to reason 7163 // about the loop as whole. 7164 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7165 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7166 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7167 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7168 continue; 7169 } 7170 7171 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7172 7173 assert((AllowPredicates || EL.Predicates.empty()) && 7174 "Predicated exit limit when predicates are not allowed!"); 7175 7176 // 1. For each exit that can be computed, add an entry to ExitCounts. 7177 // CouldComputeBECount is true only if all exits can be computed. 7178 if (EL.ExactNotTaken == getCouldNotCompute()) 7179 // We couldn't compute an exact value for this exit, so 7180 // we won't be able to compute an exact value for the loop. 7181 CouldComputeBECount = false; 7182 else 7183 ExitCounts.emplace_back(ExitBB, EL); 7184 7185 // 2. Derive the loop's MaxBECount from each exit's max number of 7186 // non-exiting iterations. Partition the loop exits into two kinds: 7187 // LoopMustExits and LoopMayExits. 7188 // 7189 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7190 // is a LoopMayExit. If any computable LoopMustExit is found, then 7191 // MaxBECount is the minimum EL.MaxNotTaken of computable 7192 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7193 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7194 // computable EL.MaxNotTaken. 7195 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7196 DT.dominates(ExitBB, Latch)) { 7197 if (!MustExitMaxBECount) { 7198 MustExitMaxBECount = EL.MaxNotTaken; 7199 MustExitMaxOrZero = EL.MaxOrZero; 7200 } else { 7201 MustExitMaxBECount = 7202 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7203 } 7204 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7205 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7206 MayExitMaxBECount = EL.MaxNotTaken; 7207 else { 7208 MayExitMaxBECount = 7209 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7210 } 7211 } 7212 } 7213 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7214 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7215 // The loop backedge will be taken the maximum or zero times if there's 7216 // a single exit that must be taken the maximum or zero times. 7217 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7218 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7219 MaxBECount, MaxOrZero); 7220 } 7221 7222 ScalarEvolution::ExitLimit 7223 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7224 bool AllowPredicates) { 7225 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7226 // If our exiting block does not dominate the latch, then its connection with 7227 // loop's exit limit may be far from trivial. 7228 const BasicBlock *Latch = L->getLoopLatch(); 7229 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7230 return getCouldNotCompute(); 7231 7232 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7233 Instruction *Term = ExitingBlock->getTerminator(); 7234 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7235 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7236 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7237 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7238 "It should have one successor in loop and one exit block!"); 7239 // Proceed to the next level to examine the exit condition expression. 7240 return computeExitLimitFromCond( 7241 L, BI->getCondition(), ExitIfTrue, 7242 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7243 } 7244 7245 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7246 // For switch, make sure that there is a single exit from the loop. 7247 BasicBlock *Exit = nullptr; 7248 for (auto *SBB : successors(ExitingBlock)) 7249 if (!L->contains(SBB)) { 7250 if (Exit) // Multiple exit successors. 7251 return getCouldNotCompute(); 7252 Exit = SBB; 7253 } 7254 assert(Exit && "Exiting block must have at least one exit"); 7255 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7256 /*ControlsExit=*/IsOnlyExit); 7257 } 7258 7259 return getCouldNotCompute(); 7260 } 7261 7262 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7263 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7264 bool ControlsExit, bool AllowPredicates) { 7265 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7266 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7267 ControlsExit, AllowPredicates); 7268 } 7269 7270 Optional<ScalarEvolution::ExitLimit> 7271 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7272 bool ExitIfTrue, bool ControlsExit, 7273 bool AllowPredicates) { 7274 (void)this->L; 7275 (void)this->ExitIfTrue; 7276 (void)this->AllowPredicates; 7277 7278 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7279 this->AllowPredicates == AllowPredicates && 7280 "Variance in assumed invariant key components!"); 7281 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7282 if (Itr == TripCountMap.end()) 7283 return None; 7284 return Itr->second; 7285 } 7286 7287 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7288 bool ExitIfTrue, 7289 bool ControlsExit, 7290 bool AllowPredicates, 7291 const ExitLimit &EL) { 7292 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7293 this->AllowPredicates == AllowPredicates && 7294 "Variance in assumed invariant key components!"); 7295 7296 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7297 assert(InsertResult.second && "Expected successful insertion!"); 7298 (void)InsertResult; 7299 (void)ExitIfTrue; 7300 } 7301 7302 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7303 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7304 bool ControlsExit, bool AllowPredicates) { 7305 7306 if (auto MaybeEL = 7307 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7308 return *MaybeEL; 7309 7310 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7311 ControlsExit, AllowPredicates); 7312 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7313 return EL; 7314 } 7315 7316 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7317 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7318 bool ControlsExit, bool AllowPredicates) { 7319 // Check if the controlling expression for this loop is an And or Or. 7320 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7321 if (BO->getOpcode() == Instruction::And) { 7322 // Recurse on the operands of the and. 7323 bool EitherMayExit = !ExitIfTrue; 7324 ExitLimit EL0 = computeExitLimitFromCondCached( 7325 Cache, L, BO->getOperand(0), ExitIfTrue, 7326 ControlsExit && !EitherMayExit, AllowPredicates); 7327 ExitLimit EL1 = computeExitLimitFromCondCached( 7328 Cache, L, BO->getOperand(1), ExitIfTrue, 7329 ControlsExit && !EitherMayExit, AllowPredicates); 7330 // Be robust against unsimplified IR for the form "and i1 X, true" 7331 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7332 return CI->isOne() ? EL0 : EL1; 7333 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7334 return CI->isOne() ? EL1 : EL0; 7335 const SCEV *BECount = getCouldNotCompute(); 7336 const SCEV *MaxBECount = getCouldNotCompute(); 7337 if (EitherMayExit) { 7338 // Both conditions must be true for the loop to continue executing. 7339 // Choose the less conservative count. 7340 if (EL0.ExactNotTaken == getCouldNotCompute() || 7341 EL1.ExactNotTaken == getCouldNotCompute()) 7342 BECount = getCouldNotCompute(); 7343 else 7344 BECount = 7345 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7346 if (EL0.MaxNotTaken == getCouldNotCompute()) 7347 MaxBECount = EL1.MaxNotTaken; 7348 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7349 MaxBECount = EL0.MaxNotTaken; 7350 else 7351 MaxBECount = 7352 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7353 } else { 7354 // Both conditions must be true at the same time for the loop to exit. 7355 // For now, be conservative. 7356 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7357 MaxBECount = EL0.MaxNotTaken; 7358 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7359 BECount = EL0.ExactNotTaken; 7360 } 7361 7362 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7363 // to be more aggressive when computing BECount than when computing 7364 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7365 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7366 // to not. 7367 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7368 !isa<SCEVCouldNotCompute>(BECount)) 7369 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7370 7371 return ExitLimit(BECount, MaxBECount, false, 7372 {&EL0.Predicates, &EL1.Predicates}); 7373 } 7374 if (BO->getOpcode() == Instruction::Or) { 7375 // Recurse on the operands of the or. 7376 bool EitherMayExit = ExitIfTrue; 7377 ExitLimit EL0 = computeExitLimitFromCondCached( 7378 Cache, L, BO->getOperand(0), ExitIfTrue, 7379 ControlsExit && !EitherMayExit, AllowPredicates); 7380 ExitLimit EL1 = computeExitLimitFromCondCached( 7381 Cache, L, BO->getOperand(1), ExitIfTrue, 7382 ControlsExit && !EitherMayExit, AllowPredicates); 7383 // Be robust against unsimplified IR for the form "or i1 X, true" 7384 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7385 return CI->isZero() ? EL0 : EL1; 7386 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7387 return CI->isZero() ? EL1 : EL0; 7388 const SCEV *BECount = getCouldNotCompute(); 7389 const SCEV *MaxBECount = getCouldNotCompute(); 7390 if (EitherMayExit) { 7391 // Both conditions must be false for the loop to continue executing. 7392 // Choose the less conservative count. 7393 if (EL0.ExactNotTaken == getCouldNotCompute() || 7394 EL1.ExactNotTaken == getCouldNotCompute()) 7395 BECount = getCouldNotCompute(); 7396 else 7397 BECount = 7398 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7399 if (EL0.MaxNotTaken == getCouldNotCompute()) 7400 MaxBECount = EL1.MaxNotTaken; 7401 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7402 MaxBECount = EL0.MaxNotTaken; 7403 else 7404 MaxBECount = 7405 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7406 } else { 7407 // Both conditions must be false at the same time for the loop to exit. 7408 // For now, be conservative. 7409 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7410 MaxBECount = EL0.MaxNotTaken; 7411 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7412 BECount = EL0.ExactNotTaken; 7413 } 7414 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7415 // to be more aggressive when computing BECount than when computing 7416 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7417 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7418 // to not. 7419 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7420 !isa<SCEVCouldNotCompute>(BECount)) 7421 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7422 7423 return ExitLimit(BECount, MaxBECount, false, 7424 {&EL0.Predicates, &EL1.Predicates}); 7425 } 7426 } 7427 7428 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7429 // Proceed to the next level to examine the icmp. 7430 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7431 ExitLimit EL = 7432 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7433 if (EL.hasFullInfo() || !AllowPredicates) 7434 return EL; 7435 7436 // Try again, but use SCEV predicates this time. 7437 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7438 /*AllowPredicates=*/true); 7439 } 7440 7441 // Check for a constant condition. These are normally stripped out by 7442 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7443 // preserve the CFG and is temporarily leaving constant conditions 7444 // in place. 7445 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7446 if (ExitIfTrue == !CI->getZExtValue()) 7447 // The backedge is always taken. 7448 return getCouldNotCompute(); 7449 else 7450 // The backedge is never taken. 7451 return getZero(CI->getType()); 7452 } 7453 7454 // If it's not an integer or pointer comparison then compute it the hard way. 7455 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7456 } 7457 7458 ScalarEvolution::ExitLimit 7459 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7460 ICmpInst *ExitCond, 7461 bool ExitIfTrue, 7462 bool ControlsExit, 7463 bool AllowPredicates) { 7464 // If the condition was exit on true, convert the condition to exit on false 7465 ICmpInst::Predicate Pred; 7466 if (!ExitIfTrue) 7467 Pred = ExitCond->getPredicate(); 7468 else 7469 Pred = ExitCond->getInversePredicate(); 7470 const ICmpInst::Predicate OriginalPred = Pred; 7471 7472 // Handle common loops like: for (X = "string"; *X; ++X) 7473 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7474 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7475 ExitLimit ItCnt = 7476 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7477 if (ItCnt.hasAnyInfo()) 7478 return ItCnt; 7479 } 7480 7481 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7482 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7483 7484 // Try to evaluate any dependencies out of the loop. 7485 LHS = getSCEVAtScope(LHS, L); 7486 RHS = getSCEVAtScope(RHS, L); 7487 7488 // At this point, we would like to compute how many iterations of the 7489 // loop the predicate will return true for these inputs. 7490 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7491 // If there is a loop-invariant, force it into the RHS. 7492 std::swap(LHS, RHS); 7493 Pred = ICmpInst::getSwappedPredicate(Pred); 7494 } 7495 7496 // Simplify the operands before analyzing them. 7497 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7498 7499 // If we have a comparison of a chrec against a constant, try to use value 7500 // ranges to answer this query. 7501 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7503 if (AddRec->getLoop() == L) { 7504 // Form the constant range. 7505 ConstantRange CompRange = 7506 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7507 7508 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7509 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7510 } 7511 7512 switch (Pred) { 7513 case ICmpInst::ICMP_NE: { // while (X != Y) 7514 // Convert to: while (X-Y != 0) 7515 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7516 AllowPredicates); 7517 if (EL.hasAnyInfo()) return EL; 7518 break; 7519 } 7520 case ICmpInst::ICMP_EQ: { // while (X == Y) 7521 // Convert to: while (X-Y == 0) 7522 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7523 if (EL.hasAnyInfo()) return EL; 7524 break; 7525 } 7526 case ICmpInst::ICMP_SLT: 7527 case ICmpInst::ICMP_ULT: { // while (X < Y) 7528 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7529 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7530 AllowPredicates); 7531 if (EL.hasAnyInfo()) return EL; 7532 break; 7533 } 7534 case ICmpInst::ICMP_SGT: 7535 case ICmpInst::ICMP_UGT: { // while (X > Y) 7536 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7537 ExitLimit EL = 7538 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7539 AllowPredicates); 7540 if (EL.hasAnyInfo()) return EL; 7541 break; 7542 } 7543 default: 7544 break; 7545 } 7546 7547 auto *ExhaustiveCount = 7548 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7549 7550 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7551 return ExhaustiveCount; 7552 7553 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7554 ExitCond->getOperand(1), L, OriginalPred); 7555 } 7556 7557 ScalarEvolution::ExitLimit 7558 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7559 SwitchInst *Switch, 7560 BasicBlock *ExitingBlock, 7561 bool ControlsExit) { 7562 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7563 7564 // Give up if the exit is the default dest of a switch. 7565 if (Switch->getDefaultDest() == ExitingBlock) 7566 return getCouldNotCompute(); 7567 7568 assert(L->contains(Switch->getDefaultDest()) && 7569 "Default case must not exit the loop!"); 7570 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7571 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7572 7573 // while (X != Y) --> while (X-Y != 0) 7574 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7575 if (EL.hasAnyInfo()) 7576 return EL; 7577 7578 return getCouldNotCompute(); 7579 } 7580 7581 static ConstantInt * 7582 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7583 ScalarEvolution &SE) { 7584 const SCEV *InVal = SE.getConstant(C); 7585 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7586 assert(isa<SCEVConstant>(Val) && 7587 "Evaluation of SCEV at constant didn't fold correctly?"); 7588 return cast<SCEVConstant>(Val)->getValue(); 7589 } 7590 7591 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7592 /// compute the backedge execution count. 7593 ScalarEvolution::ExitLimit 7594 ScalarEvolution::computeLoadConstantCompareExitLimit( 7595 LoadInst *LI, 7596 Constant *RHS, 7597 const Loop *L, 7598 ICmpInst::Predicate predicate) { 7599 if (LI->isVolatile()) return getCouldNotCompute(); 7600 7601 // Check to see if the loaded pointer is a getelementptr of a global. 7602 // TODO: Use SCEV instead of manually grubbing with GEPs. 7603 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7604 if (!GEP) return getCouldNotCompute(); 7605 7606 // Make sure that it is really a constant global we are gepping, with an 7607 // initializer, and make sure the first IDX is really 0. 7608 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7609 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7610 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7611 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7612 return getCouldNotCompute(); 7613 7614 // Okay, we allow one non-constant index into the GEP instruction. 7615 Value *VarIdx = nullptr; 7616 std::vector<Constant*> Indexes; 7617 unsigned VarIdxNum = 0; 7618 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7619 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7620 Indexes.push_back(CI); 7621 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7622 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7623 VarIdx = GEP->getOperand(i); 7624 VarIdxNum = i-2; 7625 Indexes.push_back(nullptr); 7626 } 7627 7628 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7629 if (!VarIdx) 7630 return getCouldNotCompute(); 7631 7632 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7633 // Check to see if X is a loop variant variable value now. 7634 const SCEV *Idx = getSCEV(VarIdx); 7635 Idx = getSCEVAtScope(Idx, L); 7636 7637 // We can only recognize very limited forms of loop index expressions, in 7638 // particular, only affine AddRec's like {C1,+,C2}. 7639 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7640 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7641 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7642 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7643 return getCouldNotCompute(); 7644 7645 unsigned MaxSteps = MaxBruteForceIterations; 7646 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7647 ConstantInt *ItCst = ConstantInt::get( 7648 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7649 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7650 7651 // Form the GEP offset. 7652 Indexes[VarIdxNum] = Val; 7653 7654 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7655 Indexes); 7656 if (!Result) break; // Cannot compute! 7657 7658 // Evaluate the condition for this iteration. 7659 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7660 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7661 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7662 ++NumArrayLenItCounts; 7663 return getConstant(ItCst); // Found terminating iteration! 7664 } 7665 } 7666 return getCouldNotCompute(); 7667 } 7668 7669 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7670 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7671 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7672 if (!RHS) 7673 return getCouldNotCompute(); 7674 7675 const BasicBlock *Latch = L->getLoopLatch(); 7676 if (!Latch) 7677 return getCouldNotCompute(); 7678 7679 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7680 if (!Predecessor) 7681 return getCouldNotCompute(); 7682 7683 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7684 // Return LHS in OutLHS and shift_opt in OutOpCode. 7685 auto MatchPositiveShift = 7686 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7687 7688 using namespace PatternMatch; 7689 7690 ConstantInt *ShiftAmt; 7691 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7692 OutOpCode = Instruction::LShr; 7693 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7694 OutOpCode = Instruction::AShr; 7695 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7696 OutOpCode = Instruction::Shl; 7697 else 7698 return false; 7699 7700 return ShiftAmt->getValue().isStrictlyPositive(); 7701 }; 7702 7703 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7704 // 7705 // loop: 7706 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7707 // %iv.shifted = lshr i32 %iv, <positive constant> 7708 // 7709 // Return true on a successful match. Return the corresponding PHI node (%iv 7710 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7711 auto MatchShiftRecurrence = 7712 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7713 Optional<Instruction::BinaryOps> PostShiftOpCode; 7714 7715 { 7716 Instruction::BinaryOps OpC; 7717 Value *V; 7718 7719 // If we encounter a shift instruction, "peel off" the shift operation, 7720 // and remember that we did so. Later when we inspect %iv's backedge 7721 // value, we will make sure that the backedge value uses the same 7722 // operation. 7723 // 7724 // Note: the peeled shift operation does not have to be the same 7725 // instruction as the one feeding into the PHI's backedge value. We only 7726 // really care about it being the same *kind* of shift instruction -- 7727 // that's all that is required for our later inferences to hold. 7728 if (MatchPositiveShift(LHS, V, OpC)) { 7729 PostShiftOpCode = OpC; 7730 LHS = V; 7731 } 7732 } 7733 7734 PNOut = dyn_cast<PHINode>(LHS); 7735 if (!PNOut || PNOut->getParent() != L->getHeader()) 7736 return false; 7737 7738 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7739 Value *OpLHS; 7740 7741 return 7742 // The backedge value for the PHI node must be a shift by a positive 7743 // amount 7744 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7745 7746 // of the PHI node itself 7747 OpLHS == PNOut && 7748 7749 // and the kind of shift should be match the kind of shift we peeled 7750 // off, if any. 7751 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7752 }; 7753 7754 PHINode *PN; 7755 Instruction::BinaryOps OpCode; 7756 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7757 return getCouldNotCompute(); 7758 7759 const DataLayout &DL = getDataLayout(); 7760 7761 // The key rationale for this optimization is that for some kinds of shift 7762 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7763 // within a finite number of iterations. If the condition guarding the 7764 // backedge (in the sense that the backedge is taken if the condition is true) 7765 // is false for the value the shift recurrence stabilizes to, then we know 7766 // that the backedge is taken only a finite number of times. 7767 7768 ConstantInt *StableValue = nullptr; 7769 switch (OpCode) { 7770 default: 7771 llvm_unreachable("Impossible case!"); 7772 7773 case Instruction::AShr: { 7774 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7775 // bitwidth(K) iterations. 7776 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7777 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7778 Predecessor->getTerminator(), &DT); 7779 auto *Ty = cast<IntegerType>(RHS->getType()); 7780 if (Known.isNonNegative()) 7781 StableValue = ConstantInt::get(Ty, 0); 7782 else if (Known.isNegative()) 7783 StableValue = ConstantInt::get(Ty, -1, true); 7784 else 7785 return getCouldNotCompute(); 7786 7787 break; 7788 } 7789 case Instruction::LShr: 7790 case Instruction::Shl: 7791 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7792 // stabilize to 0 in at most bitwidth(K) iterations. 7793 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7794 break; 7795 } 7796 7797 auto *Result = 7798 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7799 assert(Result->getType()->isIntegerTy(1) && 7800 "Otherwise cannot be an operand to a branch instruction"); 7801 7802 if (Result->isZeroValue()) { 7803 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7804 const SCEV *UpperBound = 7805 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7806 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7807 } 7808 7809 return getCouldNotCompute(); 7810 } 7811 7812 /// Return true if we can constant fold an instruction of the specified type, 7813 /// assuming that all operands were constants. 7814 static bool CanConstantFold(const Instruction *I) { 7815 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7816 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7817 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7818 return true; 7819 7820 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7821 if (const Function *F = CI->getCalledFunction()) 7822 return canConstantFoldCallTo(CI, F); 7823 return false; 7824 } 7825 7826 /// Determine whether this instruction can constant evolve within this loop 7827 /// assuming its operands can all constant evolve. 7828 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7829 // An instruction outside of the loop can't be derived from a loop PHI. 7830 if (!L->contains(I)) return false; 7831 7832 if (isa<PHINode>(I)) { 7833 // We don't currently keep track of the control flow needed to evaluate 7834 // PHIs, so we cannot handle PHIs inside of loops. 7835 return L->getHeader() == I->getParent(); 7836 } 7837 7838 // If we won't be able to constant fold this expression even if the operands 7839 // are constants, bail early. 7840 return CanConstantFold(I); 7841 } 7842 7843 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7844 /// recursing through each instruction operand until reaching a loop header phi. 7845 static PHINode * 7846 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7847 DenseMap<Instruction *, PHINode *> &PHIMap, 7848 unsigned Depth) { 7849 if (Depth > MaxConstantEvolvingDepth) 7850 return nullptr; 7851 7852 // Otherwise, we can evaluate this instruction if all of its operands are 7853 // constant or derived from a PHI node themselves. 7854 PHINode *PHI = nullptr; 7855 for (Value *Op : UseInst->operands()) { 7856 if (isa<Constant>(Op)) continue; 7857 7858 Instruction *OpInst = dyn_cast<Instruction>(Op); 7859 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7860 7861 PHINode *P = dyn_cast<PHINode>(OpInst); 7862 if (!P) 7863 // If this operand is already visited, reuse the prior result. 7864 // We may have P != PHI if this is the deepest point at which the 7865 // inconsistent paths meet. 7866 P = PHIMap.lookup(OpInst); 7867 if (!P) { 7868 // Recurse and memoize the results, whether a phi is found or not. 7869 // This recursive call invalidates pointers into PHIMap. 7870 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7871 PHIMap[OpInst] = P; 7872 } 7873 if (!P) 7874 return nullptr; // Not evolving from PHI 7875 if (PHI && PHI != P) 7876 return nullptr; // Evolving from multiple different PHIs. 7877 PHI = P; 7878 } 7879 // This is a expression evolving from a constant PHI! 7880 return PHI; 7881 } 7882 7883 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7884 /// in the loop that V is derived from. We allow arbitrary operations along the 7885 /// way, but the operands of an operation must either be constants or a value 7886 /// derived from a constant PHI. If this expression does not fit with these 7887 /// constraints, return null. 7888 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7889 Instruction *I = dyn_cast<Instruction>(V); 7890 if (!I || !canConstantEvolve(I, L)) return nullptr; 7891 7892 if (PHINode *PN = dyn_cast<PHINode>(I)) 7893 return PN; 7894 7895 // Record non-constant instructions contained by the loop. 7896 DenseMap<Instruction *, PHINode *> PHIMap; 7897 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7898 } 7899 7900 /// EvaluateExpression - Given an expression that passes the 7901 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7902 /// in the loop has the value PHIVal. If we can't fold this expression for some 7903 /// reason, return null. 7904 static Constant *EvaluateExpression(Value *V, const Loop *L, 7905 DenseMap<Instruction *, Constant *> &Vals, 7906 const DataLayout &DL, 7907 const TargetLibraryInfo *TLI) { 7908 // Convenient constant check, but redundant for recursive calls. 7909 if (Constant *C = dyn_cast<Constant>(V)) return C; 7910 Instruction *I = dyn_cast<Instruction>(V); 7911 if (!I) return nullptr; 7912 7913 if (Constant *C = Vals.lookup(I)) return C; 7914 7915 // An instruction inside the loop depends on a value outside the loop that we 7916 // weren't given a mapping for, or a value such as a call inside the loop. 7917 if (!canConstantEvolve(I, L)) return nullptr; 7918 7919 // An unmapped PHI can be due to a branch or another loop inside this loop, 7920 // or due to this not being the initial iteration through a loop where we 7921 // couldn't compute the evolution of this particular PHI last time. 7922 if (isa<PHINode>(I)) return nullptr; 7923 7924 std::vector<Constant*> Operands(I->getNumOperands()); 7925 7926 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7927 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7928 if (!Operand) { 7929 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7930 if (!Operands[i]) return nullptr; 7931 continue; 7932 } 7933 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7934 Vals[Operand] = C; 7935 if (!C) return nullptr; 7936 Operands[i] = C; 7937 } 7938 7939 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7940 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7941 Operands[1], DL, TLI); 7942 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7943 if (!LI->isVolatile()) 7944 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7945 } 7946 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7947 } 7948 7949 7950 // If every incoming value to PN except the one for BB is a specific Constant, 7951 // return that, else return nullptr. 7952 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7953 Constant *IncomingVal = nullptr; 7954 7955 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7956 if (PN->getIncomingBlock(i) == BB) 7957 continue; 7958 7959 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7960 if (!CurrentVal) 7961 return nullptr; 7962 7963 if (IncomingVal != CurrentVal) { 7964 if (IncomingVal) 7965 return nullptr; 7966 IncomingVal = CurrentVal; 7967 } 7968 } 7969 7970 return IncomingVal; 7971 } 7972 7973 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7974 /// in the header of its containing loop, we know the loop executes a 7975 /// constant number of times, and the PHI node is just a recurrence 7976 /// involving constants, fold it. 7977 Constant * 7978 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7979 const APInt &BEs, 7980 const Loop *L) { 7981 auto I = ConstantEvolutionLoopExitValue.find(PN); 7982 if (I != ConstantEvolutionLoopExitValue.end()) 7983 return I->second; 7984 7985 if (BEs.ugt(MaxBruteForceIterations)) 7986 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7987 7988 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7989 7990 DenseMap<Instruction *, Constant *> CurrentIterVals; 7991 BasicBlock *Header = L->getHeader(); 7992 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7993 7994 BasicBlock *Latch = L->getLoopLatch(); 7995 if (!Latch) 7996 return nullptr; 7997 7998 for (PHINode &PHI : Header->phis()) { 7999 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8000 CurrentIterVals[&PHI] = StartCST; 8001 } 8002 if (!CurrentIterVals.count(PN)) 8003 return RetVal = nullptr; 8004 8005 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8006 8007 // Execute the loop symbolically to determine the exit value. 8008 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8009 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8010 8011 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8012 unsigned IterationNum = 0; 8013 const DataLayout &DL = getDataLayout(); 8014 for (; ; ++IterationNum) { 8015 if (IterationNum == NumIterations) 8016 return RetVal = CurrentIterVals[PN]; // Got exit value! 8017 8018 // Compute the value of the PHIs for the next iteration. 8019 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8020 DenseMap<Instruction *, Constant *> NextIterVals; 8021 Constant *NextPHI = 8022 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8023 if (!NextPHI) 8024 return nullptr; // Couldn't evaluate! 8025 NextIterVals[PN] = NextPHI; 8026 8027 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8028 8029 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8030 // cease to be able to evaluate one of them or if they stop evolving, 8031 // because that doesn't necessarily prevent us from computing PN. 8032 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8033 for (const auto &I : CurrentIterVals) { 8034 PHINode *PHI = dyn_cast<PHINode>(I.first); 8035 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8036 PHIsToCompute.emplace_back(PHI, I.second); 8037 } 8038 // We use two distinct loops because EvaluateExpression may invalidate any 8039 // iterators into CurrentIterVals. 8040 for (const auto &I : PHIsToCompute) { 8041 PHINode *PHI = I.first; 8042 Constant *&NextPHI = NextIterVals[PHI]; 8043 if (!NextPHI) { // Not already computed. 8044 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8045 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8046 } 8047 if (NextPHI != I.second) 8048 StoppedEvolving = false; 8049 } 8050 8051 // If all entries in CurrentIterVals == NextIterVals then we can stop 8052 // iterating, the loop can't continue to change. 8053 if (StoppedEvolving) 8054 return RetVal = CurrentIterVals[PN]; 8055 8056 CurrentIterVals.swap(NextIterVals); 8057 } 8058 } 8059 8060 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8061 Value *Cond, 8062 bool ExitWhen) { 8063 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8064 if (!PN) return getCouldNotCompute(); 8065 8066 // If the loop is canonicalized, the PHI will have exactly two entries. 8067 // That's the only form we support here. 8068 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8069 8070 DenseMap<Instruction *, Constant *> CurrentIterVals; 8071 BasicBlock *Header = L->getHeader(); 8072 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8073 8074 BasicBlock *Latch = L->getLoopLatch(); 8075 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8076 8077 for (PHINode &PHI : Header->phis()) { 8078 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8079 CurrentIterVals[&PHI] = StartCST; 8080 } 8081 if (!CurrentIterVals.count(PN)) 8082 return getCouldNotCompute(); 8083 8084 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8085 // the loop symbolically to determine when the condition gets a value of 8086 // "ExitWhen". 8087 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8088 const DataLayout &DL = getDataLayout(); 8089 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8090 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8091 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8092 8093 // Couldn't symbolically evaluate. 8094 if (!CondVal) return getCouldNotCompute(); 8095 8096 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8097 ++NumBruteForceTripCountsComputed; 8098 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8099 } 8100 8101 // Update all the PHI nodes for the next iteration. 8102 DenseMap<Instruction *, Constant *> NextIterVals; 8103 8104 // Create a list of which PHIs we need to compute. We want to do this before 8105 // calling EvaluateExpression on them because that may invalidate iterators 8106 // into CurrentIterVals. 8107 SmallVector<PHINode *, 8> PHIsToCompute; 8108 for (const auto &I : CurrentIterVals) { 8109 PHINode *PHI = dyn_cast<PHINode>(I.first); 8110 if (!PHI || PHI->getParent() != Header) continue; 8111 PHIsToCompute.push_back(PHI); 8112 } 8113 for (PHINode *PHI : PHIsToCompute) { 8114 Constant *&NextPHI = NextIterVals[PHI]; 8115 if (NextPHI) continue; // Already computed! 8116 8117 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8118 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8119 } 8120 CurrentIterVals.swap(NextIterVals); 8121 } 8122 8123 // Too many iterations were needed to evaluate. 8124 return getCouldNotCompute(); 8125 } 8126 8127 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8128 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8129 ValuesAtScopes[V]; 8130 // Check to see if we've folded this expression at this loop before. 8131 for (auto &LS : Values) 8132 if (LS.first == L) 8133 return LS.second ? LS.second : V; 8134 8135 Values.emplace_back(L, nullptr); 8136 8137 // Otherwise compute it. 8138 const SCEV *C = computeSCEVAtScope(V, L); 8139 for (auto &LS : reverse(ValuesAtScopes[V])) 8140 if (LS.first == L) { 8141 LS.second = C; 8142 break; 8143 } 8144 return C; 8145 } 8146 8147 /// This builds up a Constant using the ConstantExpr interface. That way, we 8148 /// will return Constants for objects which aren't represented by a 8149 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8150 /// Returns NULL if the SCEV isn't representable as a Constant. 8151 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8152 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 8153 case scCouldNotCompute: 8154 case scAddRecExpr: 8155 break; 8156 case scConstant: 8157 return cast<SCEVConstant>(V)->getValue(); 8158 case scUnknown: 8159 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8160 case scSignExtend: { 8161 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8162 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8163 return ConstantExpr::getSExt(CastOp, SS->getType()); 8164 break; 8165 } 8166 case scZeroExtend: { 8167 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8168 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8169 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8170 break; 8171 } 8172 case scTruncate: { 8173 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8174 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8175 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8176 break; 8177 } 8178 case scAddExpr: { 8179 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8180 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8181 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8182 unsigned AS = PTy->getAddressSpace(); 8183 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8184 C = ConstantExpr::getBitCast(C, DestPtrTy); 8185 } 8186 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8187 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8188 if (!C2) return nullptr; 8189 8190 // First pointer! 8191 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8192 unsigned AS = C2->getType()->getPointerAddressSpace(); 8193 std::swap(C, C2); 8194 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8195 // The offsets have been converted to bytes. We can add bytes to an 8196 // i8* by GEP with the byte count in the first index. 8197 C = ConstantExpr::getBitCast(C, DestPtrTy); 8198 } 8199 8200 // Don't bother trying to sum two pointers. We probably can't 8201 // statically compute a load that results from it anyway. 8202 if (C2->getType()->isPointerTy()) 8203 return nullptr; 8204 8205 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8206 if (PTy->getElementType()->isStructTy()) 8207 C2 = ConstantExpr::getIntegerCast( 8208 C2, Type::getInt32Ty(C->getContext()), true); 8209 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8210 } else 8211 C = ConstantExpr::getAdd(C, C2); 8212 } 8213 return C; 8214 } 8215 break; 8216 } 8217 case scMulExpr: { 8218 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8219 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8220 // Don't bother with pointers at all. 8221 if (C->getType()->isPointerTy()) return nullptr; 8222 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8223 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8224 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8225 C = ConstantExpr::getMul(C, C2); 8226 } 8227 return C; 8228 } 8229 break; 8230 } 8231 case scUDivExpr: { 8232 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8233 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8234 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8235 if (LHS->getType() == RHS->getType()) 8236 return ConstantExpr::getUDiv(LHS, RHS); 8237 break; 8238 } 8239 case scSMaxExpr: 8240 case scUMaxExpr: 8241 case scSMinExpr: 8242 case scUMinExpr: 8243 break; // TODO: smax, umax, smin, umax. 8244 } 8245 return nullptr; 8246 } 8247 8248 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8249 if (isa<SCEVConstant>(V)) return V; 8250 8251 // If this instruction is evolved from a constant-evolving PHI, compute the 8252 // exit value from the loop without using SCEVs. 8253 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8254 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8255 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8256 const Loop *LI = this->LI[I->getParent()]; 8257 // Looking for loop exit value. 8258 if (LI && LI->getParentLoop() == L && 8259 PN->getParent() == LI->getHeader()) { 8260 // Okay, there is no closed form solution for the PHI node. Check 8261 // to see if the loop that contains it has a known backedge-taken 8262 // count. If so, we may be able to force computation of the exit 8263 // value. 8264 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8265 // This trivial case can show up in some degenerate cases where 8266 // the incoming IR has not yet been fully simplified. 8267 if (BackedgeTakenCount->isZero()) { 8268 Value *InitValue = nullptr; 8269 bool MultipleInitValues = false; 8270 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8271 if (!LI->contains(PN->getIncomingBlock(i))) { 8272 if (!InitValue) 8273 InitValue = PN->getIncomingValue(i); 8274 else if (InitValue != PN->getIncomingValue(i)) { 8275 MultipleInitValues = true; 8276 break; 8277 } 8278 } 8279 } 8280 if (!MultipleInitValues && InitValue) 8281 return getSCEV(InitValue); 8282 } 8283 // Do we have a loop invariant value flowing around the backedge 8284 // for a loop which must execute the backedge? 8285 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8286 isKnownPositive(BackedgeTakenCount) && 8287 PN->getNumIncomingValues() == 2) { 8288 8289 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8290 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8291 if (LI->isLoopInvariant(BackedgeVal)) 8292 return getSCEV(BackedgeVal); 8293 } 8294 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8295 // Okay, we know how many times the containing loop executes. If 8296 // this is a constant evolving PHI node, get the final value at 8297 // the specified iteration number. 8298 Constant *RV = 8299 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8300 if (RV) return getSCEV(RV); 8301 } 8302 } 8303 8304 // If there is a single-input Phi, evaluate it at our scope. If we can 8305 // prove that this replacement does not break LCSSA form, use new value. 8306 if (PN->getNumOperands() == 1) { 8307 const SCEV *Input = getSCEV(PN->getOperand(0)); 8308 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8309 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8310 // for the simplest case just support constants. 8311 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8312 } 8313 } 8314 8315 // Okay, this is an expression that we cannot symbolically evaluate 8316 // into a SCEV. Check to see if it's possible to symbolically evaluate 8317 // the arguments into constants, and if so, try to constant propagate the 8318 // result. This is particularly useful for computing loop exit values. 8319 if (CanConstantFold(I)) { 8320 SmallVector<Constant *, 4> Operands; 8321 bool MadeImprovement = false; 8322 for (Value *Op : I->operands()) { 8323 if (Constant *C = dyn_cast<Constant>(Op)) { 8324 Operands.push_back(C); 8325 continue; 8326 } 8327 8328 // If any of the operands is non-constant and if they are 8329 // non-integer and non-pointer, don't even try to analyze them 8330 // with scev techniques. 8331 if (!isSCEVable(Op->getType())) 8332 return V; 8333 8334 const SCEV *OrigV = getSCEV(Op); 8335 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8336 MadeImprovement |= OrigV != OpV; 8337 8338 Constant *C = BuildConstantFromSCEV(OpV); 8339 if (!C) return V; 8340 if (C->getType() != Op->getType()) 8341 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8342 Op->getType(), 8343 false), 8344 C, Op->getType()); 8345 Operands.push_back(C); 8346 } 8347 8348 // Check to see if getSCEVAtScope actually made an improvement. 8349 if (MadeImprovement) { 8350 Constant *C = nullptr; 8351 const DataLayout &DL = getDataLayout(); 8352 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8353 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8354 Operands[1], DL, &TLI); 8355 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8356 if (!LI->isVolatile()) 8357 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8358 } else 8359 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8360 if (!C) return V; 8361 return getSCEV(C); 8362 } 8363 } 8364 } 8365 8366 // This is some other type of SCEVUnknown, just return it. 8367 return V; 8368 } 8369 8370 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8371 // Avoid performing the look-up in the common case where the specified 8372 // expression has no loop-variant portions. 8373 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8374 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8375 if (OpAtScope != Comm->getOperand(i)) { 8376 // Okay, at least one of these operands is loop variant but might be 8377 // foldable. Build a new instance of the folded commutative expression. 8378 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8379 Comm->op_begin()+i); 8380 NewOps.push_back(OpAtScope); 8381 8382 for (++i; i != e; ++i) { 8383 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8384 NewOps.push_back(OpAtScope); 8385 } 8386 if (isa<SCEVAddExpr>(Comm)) 8387 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8388 if (isa<SCEVMulExpr>(Comm)) 8389 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8390 if (isa<SCEVMinMaxExpr>(Comm)) 8391 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8392 llvm_unreachable("Unknown commutative SCEV type!"); 8393 } 8394 } 8395 // If we got here, all operands are loop invariant. 8396 return Comm; 8397 } 8398 8399 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8400 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8401 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8402 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8403 return Div; // must be loop invariant 8404 return getUDivExpr(LHS, RHS); 8405 } 8406 8407 // If this is a loop recurrence for a loop that does not contain L, then we 8408 // are dealing with the final value computed by the loop. 8409 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8410 // First, attempt to evaluate each operand. 8411 // Avoid performing the look-up in the common case where the specified 8412 // expression has no loop-variant portions. 8413 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8414 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8415 if (OpAtScope == AddRec->getOperand(i)) 8416 continue; 8417 8418 // Okay, at least one of these operands is loop variant but might be 8419 // foldable. Build a new instance of the folded commutative expression. 8420 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8421 AddRec->op_begin()+i); 8422 NewOps.push_back(OpAtScope); 8423 for (++i; i != e; ++i) 8424 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8425 8426 const SCEV *FoldedRec = 8427 getAddRecExpr(NewOps, AddRec->getLoop(), 8428 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8429 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8430 // The addrec may be folded to a nonrecurrence, for example, if the 8431 // induction variable is multiplied by zero after constant folding. Go 8432 // ahead and return the folded value. 8433 if (!AddRec) 8434 return FoldedRec; 8435 break; 8436 } 8437 8438 // If the scope is outside the addrec's loop, evaluate it by using the 8439 // loop exit value of the addrec. 8440 if (!AddRec->getLoop()->contains(L)) { 8441 // To evaluate this recurrence, we need to know how many times the AddRec 8442 // loop iterates. Compute this now. 8443 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8444 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8445 8446 // Then, evaluate the AddRec. 8447 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8448 } 8449 8450 return AddRec; 8451 } 8452 8453 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8454 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8455 if (Op == Cast->getOperand()) 8456 return Cast; // must be loop invariant 8457 return getZeroExtendExpr(Op, Cast->getType()); 8458 } 8459 8460 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8461 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8462 if (Op == Cast->getOperand()) 8463 return Cast; // must be loop invariant 8464 return getSignExtendExpr(Op, Cast->getType()); 8465 } 8466 8467 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8468 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8469 if (Op == Cast->getOperand()) 8470 return Cast; // must be loop invariant 8471 return getTruncateExpr(Op, Cast->getType()); 8472 } 8473 8474 llvm_unreachable("Unknown SCEV type!"); 8475 } 8476 8477 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8478 return getSCEVAtScope(getSCEV(V), L); 8479 } 8480 8481 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8482 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8483 return stripInjectiveFunctions(ZExt->getOperand()); 8484 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8485 return stripInjectiveFunctions(SExt->getOperand()); 8486 return S; 8487 } 8488 8489 /// Finds the minimum unsigned root of the following equation: 8490 /// 8491 /// A * X = B (mod N) 8492 /// 8493 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8494 /// A and B isn't important. 8495 /// 8496 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8497 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8498 ScalarEvolution &SE) { 8499 uint32_t BW = A.getBitWidth(); 8500 assert(BW == SE.getTypeSizeInBits(B->getType())); 8501 assert(A != 0 && "A must be non-zero."); 8502 8503 // 1. D = gcd(A, N) 8504 // 8505 // The gcd of A and N may have only one prime factor: 2. The number of 8506 // trailing zeros in A is its multiplicity 8507 uint32_t Mult2 = A.countTrailingZeros(); 8508 // D = 2^Mult2 8509 8510 // 2. Check if B is divisible by D. 8511 // 8512 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8513 // is not less than multiplicity of this prime factor for D. 8514 if (SE.GetMinTrailingZeros(B) < Mult2) 8515 return SE.getCouldNotCompute(); 8516 8517 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8518 // modulo (N / D). 8519 // 8520 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8521 // (N / D) in general. The inverse itself always fits into BW bits, though, 8522 // so we immediately truncate it. 8523 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8524 APInt Mod(BW + 1, 0); 8525 Mod.setBit(BW - Mult2); // Mod = N / D 8526 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8527 8528 // 4. Compute the minimum unsigned root of the equation: 8529 // I * (B / D) mod (N / D) 8530 // To simplify the computation, we factor out the divide by D: 8531 // (I * B mod N) / D 8532 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8533 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8534 } 8535 8536 /// For a given quadratic addrec, generate coefficients of the corresponding 8537 /// quadratic equation, multiplied by a common value to ensure that they are 8538 /// integers. 8539 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8540 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8541 /// were multiplied by, and BitWidth is the bit width of the original addrec 8542 /// coefficients. 8543 /// This function returns None if the addrec coefficients are not compile- 8544 /// time constants. 8545 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8546 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8547 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8548 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8549 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8550 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8551 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8552 << *AddRec << '\n'); 8553 8554 // We currently can only solve this if the coefficients are constants. 8555 if (!LC || !MC || !NC) { 8556 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8557 return None; 8558 } 8559 8560 APInt L = LC->getAPInt(); 8561 APInt M = MC->getAPInt(); 8562 APInt N = NC->getAPInt(); 8563 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8564 8565 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8566 unsigned NewWidth = BitWidth + 1; 8567 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8568 << BitWidth << '\n'); 8569 // The sign-extension (as opposed to a zero-extension) here matches the 8570 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8571 N = N.sext(NewWidth); 8572 M = M.sext(NewWidth); 8573 L = L.sext(NewWidth); 8574 8575 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8576 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8577 // L+M, L+2M+N, L+3M+3N, ... 8578 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8579 // 8580 // The equation Acc = 0 is then 8581 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8582 // In a quadratic form it becomes: 8583 // N n^2 + (2M-N) n + 2L = 0. 8584 8585 APInt A = N; 8586 APInt B = 2 * M - A; 8587 APInt C = 2 * L; 8588 APInt T = APInt(NewWidth, 2); 8589 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8590 << "x + " << C << ", coeff bw: " << NewWidth 8591 << ", multiplied by " << T << '\n'); 8592 return std::make_tuple(A, B, C, T, BitWidth); 8593 } 8594 8595 /// Helper function to compare optional APInts: 8596 /// (a) if X and Y both exist, return min(X, Y), 8597 /// (b) if neither X nor Y exist, return None, 8598 /// (c) if exactly one of X and Y exists, return that value. 8599 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8600 if (X.hasValue() && Y.hasValue()) { 8601 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8602 APInt XW = X->sextOrSelf(W); 8603 APInt YW = Y->sextOrSelf(W); 8604 return XW.slt(YW) ? *X : *Y; 8605 } 8606 if (!X.hasValue() && !Y.hasValue()) 8607 return None; 8608 return X.hasValue() ? *X : *Y; 8609 } 8610 8611 /// Helper function to truncate an optional APInt to a given BitWidth. 8612 /// When solving addrec-related equations, it is preferable to return a value 8613 /// that has the same bit width as the original addrec's coefficients. If the 8614 /// solution fits in the original bit width, truncate it (except for i1). 8615 /// Returning a value of a different bit width may inhibit some optimizations. 8616 /// 8617 /// In general, a solution to a quadratic equation generated from an addrec 8618 /// may require BW+1 bits, where BW is the bit width of the addrec's 8619 /// coefficients. The reason is that the coefficients of the quadratic 8620 /// equation are BW+1 bits wide (to avoid truncation when converting from 8621 /// the addrec to the equation). 8622 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8623 if (!X.hasValue()) 8624 return None; 8625 unsigned W = X->getBitWidth(); 8626 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8627 return X->trunc(BitWidth); 8628 return X; 8629 } 8630 8631 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8632 /// iterations. The values L, M, N are assumed to be signed, and they 8633 /// should all have the same bit widths. 8634 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8635 /// where BW is the bit width of the addrec's coefficients. 8636 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8637 /// returned as such, otherwise the bit width of the returned value may 8638 /// be greater than BW. 8639 /// 8640 /// This function returns None if 8641 /// (a) the addrec coefficients are not constant, or 8642 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8643 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8644 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8645 static Optional<APInt> 8646 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8647 APInt A, B, C, M; 8648 unsigned BitWidth; 8649 auto T = GetQuadraticEquation(AddRec); 8650 if (!T.hasValue()) 8651 return None; 8652 8653 std::tie(A, B, C, M, BitWidth) = *T; 8654 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8655 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8656 if (!X.hasValue()) 8657 return None; 8658 8659 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8660 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8661 if (!V->isZero()) 8662 return None; 8663 8664 return TruncIfPossible(X, BitWidth); 8665 } 8666 8667 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8668 /// iterations. The values M, N are assumed to be signed, and they 8669 /// should all have the same bit widths. 8670 /// Find the least n such that c(n) does not belong to the given range, 8671 /// while c(n-1) does. 8672 /// 8673 /// This function returns None if 8674 /// (a) the addrec coefficients are not constant, or 8675 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8676 /// bounds of the range. 8677 static Optional<APInt> 8678 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8679 const ConstantRange &Range, ScalarEvolution &SE) { 8680 assert(AddRec->getOperand(0)->isZero() && 8681 "Starting value of addrec should be 0"); 8682 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8683 << Range << ", addrec " << *AddRec << '\n'); 8684 // This case is handled in getNumIterationsInRange. Here we can assume that 8685 // we start in the range. 8686 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8687 "Addrec's initial value should be in range"); 8688 8689 APInt A, B, C, M; 8690 unsigned BitWidth; 8691 auto T = GetQuadraticEquation(AddRec); 8692 if (!T.hasValue()) 8693 return None; 8694 8695 // Be careful about the return value: there can be two reasons for not 8696 // returning an actual number. First, if no solutions to the equations 8697 // were found, and second, if the solutions don't leave the given range. 8698 // The first case means that the actual solution is "unknown", the second 8699 // means that it's known, but not valid. If the solution is unknown, we 8700 // cannot make any conclusions. 8701 // Return a pair: the optional solution and a flag indicating if the 8702 // solution was found. 8703 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8704 // Solve for signed overflow and unsigned overflow, pick the lower 8705 // solution. 8706 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8707 << Bound << " (before multiplying by " << M << ")\n"); 8708 Bound *= M; // The quadratic equation multiplier. 8709 8710 Optional<APInt> SO = None; 8711 if (BitWidth > 1) { 8712 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8713 "signed overflow\n"); 8714 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8715 } 8716 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8717 "unsigned overflow\n"); 8718 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8719 BitWidth+1); 8720 8721 auto LeavesRange = [&] (const APInt &X) { 8722 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8723 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8724 if (Range.contains(V0->getValue())) 8725 return false; 8726 // X should be at least 1, so X-1 is non-negative. 8727 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8728 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8729 if (Range.contains(V1->getValue())) 8730 return true; 8731 return false; 8732 }; 8733 8734 // If SolveQuadraticEquationWrap returns None, it means that there can 8735 // be a solution, but the function failed to find it. We cannot treat it 8736 // as "no solution". 8737 if (!SO.hasValue() || !UO.hasValue()) 8738 return { None, false }; 8739 8740 // Check the smaller value first to see if it leaves the range. 8741 // At this point, both SO and UO must have values. 8742 Optional<APInt> Min = MinOptional(SO, UO); 8743 if (LeavesRange(*Min)) 8744 return { Min, true }; 8745 Optional<APInt> Max = Min == SO ? UO : SO; 8746 if (LeavesRange(*Max)) 8747 return { Max, true }; 8748 8749 // Solutions were found, but were eliminated, hence the "true". 8750 return { None, true }; 8751 }; 8752 8753 std::tie(A, B, C, M, BitWidth) = *T; 8754 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8755 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8756 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8757 auto SL = SolveForBoundary(Lower); 8758 auto SU = SolveForBoundary(Upper); 8759 // If any of the solutions was unknown, no meaninigful conclusions can 8760 // be made. 8761 if (!SL.second || !SU.second) 8762 return None; 8763 8764 // Claim: The correct solution is not some value between Min and Max. 8765 // 8766 // Justification: Assuming that Min and Max are different values, one of 8767 // them is when the first signed overflow happens, the other is when the 8768 // first unsigned overflow happens. Crossing the range boundary is only 8769 // possible via an overflow (treating 0 as a special case of it, modeling 8770 // an overflow as crossing k*2^W for some k). 8771 // 8772 // The interesting case here is when Min was eliminated as an invalid 8773 // solution, but Max was not. The argument is that if there was another 8774 // overflow between Min and Max, it would also have been eliminated if 8775 // it was considered. 8776 // 8777 // For a given boundary, it is possible to have two overflows of the same 8778 // type (signed/unsigned) without having the other type in between: this 8779 // can happen when the vertex of the parabola is between the iterations 8780 // corresponding to the overflows. This is only possible when the two 8781 // overflows cross k*2^W for the same k. In such case, if the second one 8782 // left the range (and was the first one to do so), the first overflow 8783 // would have to enter the range, which would mean that either we had left 8784 // the range before or that we started outside of it. Both of these cases 8785 // are contradictions. 8786 // 8787 // Claim: In the case where SolveForBoundary returns None, the correct 8788 // solution is not some value between the Max for this boundary and the 8789 // Min of the other boundary. 8790 // 8791 // Justification: Assume that we had such Max_A and Min_B corresponding 8792 // to range boundaries A and B and such that Max_A < Min_B. If there was 8793 // a solution between Max_A and Min_B, it would have to be caused by an 8794 // overflow corresponding to either A or B. It cannot correspond to B, 8795 // since Min_B is the first occurrence of such an overflow. If it 8796 // corresponded to A, it would have to be either a signed or an unsigned 8797 // overflow that is larger than both eliminated overflows for A. But 8798 // between the eliminated overflows and this overflow, the values would 8799 // cover the entire value space, thus crossing the other boundary, which 8800 // is a contradiction. 8801 8802 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8803 } 8804 8805 ScalarEvolution::ExitLimit 8806 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8807 bool AllowPredicates) { 8808 8809 // This is only used for loops with a "x != y" exit test. The exit condition 8810 // is now expressed as a single expression, V = x-y. So the exit test is 8811 // effectively V != 0. We know and take advantage of the fact that this 8812 // expression only being used in a comparison by zero context. 8813 8814 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8815 // If the value is a constant 8816 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8817 // If the value is already zero, the branch will execute zero times. 8818 if (C->getValue()->isZero()) return C; 8819 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8820 } 8821 8822 const SCEVAddRecExpr *AddRec = 8823 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8824 8825 if (!AddRec && AllowPredicates) 8826 // Try to make this an AddRec using runtime tests, in the first X 8827 // iterations of this loop, where X is the SCEV expression found by the 8828 // algorithm below. 8829 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8830 8831 if (!AddRec || AddRec->getLoop() != L) 8832 return getCouldNotCompute(); 8833 8834 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8835 // the quadratic equation to solve it. 8836 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8837 // We can only use this value if the chrec ends up with an exact zero 8838 // value at this index. When solving for "X*X != 5", for example, we 8839 // should not accept a root of 2. 8840 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8841 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8842 return ExitLimit(R, R, false, Predicates); 8843 } 8844 return getCouldNotCompute(); 8845 } 8846 8847 // Otherwise we can only handle this if it is affine. 8848 if (!AddRec->isAffine()) 8849 return getCouldNotCompute(); 8850 8851 // If this is an affine expression, the execution count of this branch is 8852 // the minimum unsigned root of the following equation: 8853 // 8854 // Start + Step*N = 0 (mod 2^BW) 8855 // 8856 // equivalent to: 8857 // 8858 // Step*N = -Start (mod 2^BW) 8859 // 8860 // where BW is the common bit width of Start and Step. 8861 8862 // Get the initial value for the loop. 8863 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8864 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8865 8866 // For now we handle only constant steps. 8867 // 8868 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8869 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8870 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8871 // We have not yet seen any such cases. 8872 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8873 if (!StepC || StepC->getValue()->isZero()) 8874 return getCouldNotCompute(); 8875 8876 // For positive steps (counting up until unsigned overflow): 8877 // N = -Start/Step (as unsigned) 8878 // For negative steps (counting down to zero): 8879 // N = Start/-Step 8880 // First compute the unsigned distance from zero in the direction of Step. 8881 bool CountDown = StepC->getAPInt().isNegative(); 8882 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8883 8884 // Handle unitary steps, which cannot wraparound. 8885 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8886 // N = Distance (as unsigned) 8887 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8888 APInt MaxBECount = getUnsignedRangeMax(Distance); 8889 8890 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8891 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8892 // case, and see if we can improve the bound. 8893 // 8894 // Explicitly handling this here is necessary because getUnsignedRange 8895 // isn't context-sensitive; it doesn't know that we only care about the 8896 // range inside the loop. 8897 const SCEV *Zero = getZero(Distance->getType()); 8898 const SCEV *One = getOne(Distance->getType()); 8899 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8900 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8901 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8902 // as "unsigned_max(Distance + 1) - 1". 8903 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8904 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8905 } 8906 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8907 } 8908 8909 // If the condition controls loop exit (the loop exits only if the expression 8910 // is true) and the addition is no-wrap we can use unsigned divide to 8911 // compute the backedge count. In this case, the step may not divide the 8912 // distance, but we don't care because if the condition is "missed" the loop 8913 // will have undefined behavior due to wrapping. 8914 if (ControlsExit && AddRec->hasNoSelfWrap() && 8915 loopHasNoAbnormalExits(AddRec->getLoop())) { 8916 const SCEV *Exact = 8917 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8918 const SCEV *Max = 8919 Exact == getCouldNotCompute() 8920 ? Exact 8921 : getConstant(getUnsignedRangeMax(Exact)); 8922 return ExitLimit(Exact, Max, false, Predicates); 8923 } 8924 8925 // Solve the general equation. 8926 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8927 getNegativeSCEV(Start), *this); 8928 const SCEV *M = E == getCouldNotCompute() 8929 ? E 8930 : getConstant(getUnsignedRangeMax(E)); 8931 return ExitLimit(E, M, false, Predicates); 8932 } 8933 8934 ScalarEvolution::ExitLimit 8935 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8936 // Loops that look like: while (X == 0) are very strange indeed. We don't 8937 // handle them yet except for the trivial case. This could be expanded in the 8938 // future as needed. 8939 8940 // If the value is a constant, check to see if it is known to be non-zero 8941 // already. If so, the backedge will execute zero times. 8942 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8943 if (!C->getValue()->isZero()) 8944 return getZero(C->getType()); 8945 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8946 } 8947 8948 // We could implement others, but I really doubt anyone writes loops like 8949 // this, and if they did, they would already be constant folded. 8950 return getCouldNotCompute(); 8951 } 8952 8953 std::pair<BasicBlock *, BasicBlock *> 8954 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8955 // If the block has a unique predecessor, then there is no path from the 8956 // predecessor to the block that does not go through the direct edge 8957 // from the predecessor to the block. 8958 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8959 return {Pred, BB}; 8960 8961 // A loop's header is defined to be a block that dominates the loop. 8962 // If the header has a unique predecessor outside the loop, it must be 8963 // a block that has exactly one successor that can reach the loop. 8964 if (Loop *L = LI.getLoopFor(BB)) 8965 return {L->getLoopPredecessor(), L->getHeader()}; 8966 8967 return {nullptr, nullptr}; 8968 } 8969 8970 /// SCEV structural equivalence is usually sufficient for testing whether two 8971 /// expressions are equal, however for the purposes of looking for a condition 8972 /// guarding a loop, it can be useful to be a little more general, since a 8973 /// front-end may have replicated the controlling expression. 8974 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8975 // Quick check to see if they are the same SCEV. 8976 if (A == B) return true; 8977 8978 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8979 // Not all instructions that are "identical" compute the same value. For 8980 // instance, two distinct alloca instructions allocating the same type are 8981 // identical and do not read memory; but compute distinct values. 8982 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8983 }; 8984 8985 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8986 // two different instructions with the same value. Check for this case. 8987 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8988 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8989 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8990 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8991 if (ComputesEqualValues(AI, BI)) 8992 return true; 8993 8994 // Otherwise assume they may have a different value. 8995 return false; 8996 } 8997 8998 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8999 const SCEV *&LHS, const SCEV *&RHS, 9000 unsigned Depth) { 9001 bool Changed = false; 9002 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9003 // '0 != 0'. 9004 auto TrivialCase = [&](bool TriviallyTrue) { 9005 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9006 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9007 return true; 9008 }; 9009 // If we hit the max recursion limit bail out. 9010 if (Depth >= 3) 9011 return false; 9012 9013 // Canonicalize a constant to the right side. 9014 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9015 // Check for both operands constant. 9016 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9017 if (ConstantExpr::getICmp(Pred, 9018 LHSC->getValue(), 9019 RHSC->getValue())->isNullValue()) 9020 return TrivialCase(false); 9021 else 9022 return TrivialCase(true); 9023 } 9024 // Otherwise swap the operands to put the constant on the right. 9025 std::swap(LHS, RHS); 9026 Pred = ICmpInst::getSwappedPredicate(Pred); 9027 Changed = true; 9028 } 9029 9030 // If we're comparing an addrec with a value which is loop-invariant in the 9031 // addrec's loop, put the addrec on the left. Also make a dominance check, 9032 // as both operands could be addrecs loop-invariant in each other's loop. 9033 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9034 const Loop *L = AR->getLoop(); 9035 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9036 std::swap(LHS, RHS); 9037 Pred = ICmpInst::getSwappedPredicate(Pred); 9038 Changed = true; 9039 } 9040 } 9041 9042 // If there's a constant operand, canonicalize comparisons with boundary 9043 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9044 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9045 const APInt &RA = RC->getAPInt(); 9046 9047 bool SimplifiedByConstantRange = false; 9048 9049 if (!ICmpInst::isEquality(Pred)) { 9050 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9051 if (ExactCR.isFullSet()) 9052 return TrivialCase(true); 9053 else if (ExactCR.isEmptySet()) 9054 return TrivialCase(false); 9055 9056 APInt NewRHS; 9057 CmpInst::Predicate NewPred; 9058 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9059 ICmpInst::isEquality(NewPred)) { 9060 // We were able to convert an inequality to an equality. 9061 Pred = NewPred; 9062 RHS = getConstant(NewRHS); 9063 Changed = SimplifiedByConstantRange = true; 9064 } 9065 } 9066 9067 if (!SimplifiedByConstantRange) { 9068 switch (Pred) { 9069 default: 9070 break; 9071 case ICmpInst::ICMP_EQ: 9072 case ICmpInst::ICMP_NE: 9073 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9074 if (!RA) 9075 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9076 if (const SCEVMulExpr *ME = 9077 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9078 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9079 ME->getOperand(0)->isAllOnesValue()) { 9080 RHS = AE->getOperand(1); 9081 LHS = ME->getOperand(1); 9082 Changed = true; 9083 } 9084 break; 9085 9086 9087 // The "Should have been caught earlier!" messages refer to the fact 9088 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9089 // should have fired on the corresponding cases, and canonicalized the 9090 // check to trivial case. 9091 9092 case ICmpInst::ICMP_UGE: 9093 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9094 Pred = ICmpInst::ICMP_UGT; 9095 RHS = getConstant(RA - 1); 9096 Changed = true; 9097 break; 9098 case ICmpInst::ICMP_ULE: 9099 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9100 Pred = ICmpInst::ICMP_ULT; 9101 RHS = getConstant(RA + 1); 9102 Changed = true; 9103 break; 9104 case ICmpInst::ICMP_SGE: 9105 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9106 Pred = ICmpInst::ICMP_SGT; 9107 RHS = getConstant(RA - 1); 9108 Changed = true; 9109 break; 9110 case ICmpInst::ICMP_SLE: 9111 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9112 Pred = ICmpInst::ICMP_SLT; 9113 RHS = getConstant(RA + 1); 9114 Changed = true; 9115 break; 9116 } 9117 } 9118 } 9119 9120 // Check for obvious equality. 9121 if (HasSameValue(LHS, RHS)) { 9122 if (ICmpInst::isTrueWhenEqual(Pred)) 9123 return TrivialCase(true); 9124 if (ICmpInst::isFalseWhenEqual(Pred)) 9125 return TrivialCase(false); 9126 } 9127 9128 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9129 // adding or subtracting 1 from one of the operands. 9130 switch (Pred) { 9131 case ICmpInst::ICMP_SLE: 9132 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9133 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9134 SCEV::FlagNSW); 9135 Pred = ICmpInst::ICMP_SLT; 9136 Changed = true; 9137 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9138 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9139 SCEV::FlagNSW); 9140 Pred = ICmpInst::ICMP_SLT; 9141 Changed = true; 9142 } 9143 break; 9144 case ICmpInst::ICMP_SGE: 9145 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9146 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9147 SCEV::FlagNSW); 9148 Pred = ICmpInst::ICMP_SGT; 9149 Changed = true; 9150 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9151 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9152 SCEV::FlagNSW); 9153 Pred = ICmpInst::ICMP_SGT; 9154 Changed = true; 9155 } 9156 break; 9157 case ICmpInst::ICMP_ULE: 9158 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9159 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9160 SCEV::FlagNUW); 9161 Pred = ICmpInst::ICMP_ULT; 9162 Changed = true; 9163 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9164 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9165 Pred = ICmpInst::ICMP_ULT; 9166 Changed = true; 9167 } 9168 break; 9169 case ICmpInst::ICMP_UGE: 9170 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9171 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9172 Pred = ICmpInst::ICMP_UGT; 9173 Changed = true; 9174 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9175 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9176 SCEV::FlagNUW); 9177 Pred = ICmpInst::ICMP_UGT; 9178 Changed = true; 9179 } 9180 break; 9181 default: 9182 break; 9183 } 9184 9185 // TODO: More simplifications are possible here. 9186 9187 // Recursively simplify until we either hit a recursion limit or nothing 9188 // changes. 9189 if (Changed) 9190 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9191 9192 return Changed; 9193 } 9194 9195 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9196 return getSignedRangeMax(S).isNegative(); 9197 } 9198 9199 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9200 return getSignedRangeMin(S).isStrictlyPositive(); 9201 } 9202 9203 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9204 return !getSignedRangeMin(S).isNegative(); 9205 } 9206 9207 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9208 return !getSignedRangeMax(S).isStrictlyPositive(); 9209 } 9210 9211 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9212 return isKnownNegative(S) || isKnownPositive(S); 9213 } 9214 9215 std::pair<const SCEV *, const SCEV *> 9216 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9217 // Compute SCEV on entry of loop L. 9218 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9219 if (Start == getCouldNotCompute()) 9220 return { Start, Start }; 9221 // Compute post increment SCEV for loop L. 9222 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9223 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9224 return { Start, PostInc }; 9225 } 9226 9227 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9228 const SCEV *LHS, const SCEV *RHS) { 9229 // First collect all loops. 9230 SmallPtrSet<const Loop *, 8> LoopsUsed; 9231 getUsedLoops(LHS, LoopsUsed); 9232 getUsedLoops(RHS, LoopsUsed); 9233 9234 if (LoopsUsed.empty()) 9235 return false; 9236 9237 // Domination relationship must be a linear order on collected loops. 9238 #ifndef NDEBUG 9239 for (auto *L1 : LoopsUsed) 9240 for (auto *L2 : LoopsUsed) 9241 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9242 DT.dominates(L2->getHeader(), L1->getHeader())) && 9243 "Domination relationship is not a linear order"); 9244 #endif 9245 9246 const Loop *MDL = 9247 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9248 [&](const Loop *L1, const Loop *L2) { 9249 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9250 }); 9251 9252 // Get init and post increment value for LHS. 9253 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9254 // if LHS contains unknown non-invariant SCEV then bail out. 9255 if (SplitLHS.first == getCouldNotCompute()) 9256 return false; 9257 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9258 // Get init and post increment value for RHS. 9259 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9260 // if RHS contains unknown non-invariant SCEV then bail out. 9261 if (SplitRHS.first == getCouldNotCompute()) 9262 return false; 9263 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9264 // It is possible that init SCEV contains an invariant load but it does 9265 // not dominate MDL and is not available at MDL loop entry, so we should 9266 // check it here. 9267 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9268 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9269 return false; 9270 9271 // It seems backedge guard check is faster than entry one so in some cases 9272 // it can speed up whole estimation by short circuit 9273 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9274 SplitRHS.second) && 9275 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9276 } 9277 9278 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9279 const SCEV *LHS, const SCEV *RHS) { 9280 // Canonicalize the inputs first. 9281 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9282 9283 if (isKnownViaInduction(Pred, LHS, RHS)) 9284 return true; 9285 9286 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9287 return true; 9288 9289 // Otherwise see what can be done with some simple reasoning. 9290 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9291 } 9292 9293 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9294 const SCEVAddRecExpr *LHS, 9295 const SCEV *RHS) { 9296 const Loop *L = LHS->getLoop(); 9297 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9298 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9299 } 9300 9301 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9302 ICmpInst::Predicate Pred, 9303 bool &Increasing) { 9304 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9305 9306 #ifndef NDEBUG 9307 // Verify an invariant: inverting the predicate should turn a monotonically 9308 // increasing change to a monotonically decreasing one, and vice versa. 9309 bool IncreasingSwapped; 9310 bool ResultSwapped = isMonotonicPredicateImpl( 9311 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9312 9313 assert(Result == ResultSwapped && "should be able to analyze both!"); 9314 if (ResultSwapped) 9315 assert(Increasing == !IncreasingSwapped && 9316 "monotonicity should flip as we flip the predicate"); 9317 #endif 9318 9319 return Result; 9320 } 9321 9322 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9323 ICmpInst::Predicate Pred, 9324 bool &Increasing) { 9325 9326 // A zero step value for LHS means the induction variable is essentially a 9327 // loop invariant value. We don't really depend on the predicate actually 9328 // flipping from false to true (for increasing predicates, and the other way 9329 // around for decreasing predicates), all we care about is that *if* the 9330 // predicate changes then it only changes from false to true. 9331 // 9332 // A zero step value in itself is not very useful, but there may be places 9333 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9334 // as general as possible. 9335 9336 switch (Pred) { 9337 default: 9338 return false; // Conservative answer 9339 9340 case ICmpInst::ICMP_UGT: 9341 case ICmpInst::ICMP_UGE: 9342 case ICmpInst::ICMP_ULT: 9343 case ICmpInst::ICMP_ULE: 9344 if (!LHS->hasNoUnsignedWrap()) 9345 return false; 9346 9347 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9348 return true; 9349 9350 case ICmpInst::ICMP_SGT: 9351 case ICmpInst::ICMP_SGE: 9352 case ICmpInst::ICMP_SLT: 9353 case ICmpInst::ICMP_SLE: { 9354 if (!LHS->hasNoSignedWrap()) 9355 return false; 9356 9357 const SCEV *Step = LHS->getStepRecurrence(*this); 9358 9359 if (isKnownNonNegative(Step)) { 9360 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9361 return true; 9362 } 9363 9364 if (isKnownNonPositive(Step)) { 9365 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9366 return true; 9367 } 9368 9369 return false; 9370 } 9371 9372 } 9373 9374 llvm_unreachable("switch has default clause!"); 9375 } 9376 9377 bool ScalarEvolution::isLoopInvariantPredicate( 9378 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9379 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9380 const SCEV *&InvariantRHS) { 9381 9382 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9383 if (!isLoopInvariant(RHS, L)) { 9384 if (!isLoopInvariant(LHS, L)) 9385 return false; 9386 9387 std::swap(LHS, RHS); 9388 Pred = ICmpInst::getSwappedPredicate(Pred); 9389 } 9390 9391 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9392 if (!ArLHS || ArLHS->getLoop() != L) 9393 return false; 9394 9395 bool Increasing; 9396 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9397 return false; 9398 9399 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9400 // true as the loop iterates, and the backedge is control dependent on 9401 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9402 // 9403 // * if the predicate was false in the first iteration then the predicate 9404 // is never evaluated again, since the loop exits without taking the 9405 // backedge. 9406 // * if the predicate was true in the first iteration then it will 9407 // continue to be true for all future iterations since it is 9408 // monotonically increasing. 9409 // 9410 // For both the above possibilities, we can replace the loop varying 9411 // predicate with its value on the first iteration of the loop (which is 9412 // loop invariant). 9413 // 9414 // A similar reasoning applies for a monotonically decreasing predicate, by 9415 // replacing true with false and false with true in the above two bullets. 9416 9417 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9418 9419 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9420 return false; 9421 9422 InvariantPred = Pred; 9423 InvariantLHS = ArLHS->getStart(); 9424 InvariantRHS = RHS; 9425 return true; 9426 } 9427 9428 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9429 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9430 if (HasSameValue(LHS, RHS)) 9431 return ICmpInst::isTrueWhenEqual(Pred); 9432 9433 // This code is split out from isKnownPredicate because it is called from 9434 // within isLoopEntryGuardedByCond. 9435 9436 auto CheckRanges = 9437 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9438 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9439 .contains(RangeLHS); 9440 }; 9441 9442 // The check at the top of the function catches the case where the values are 9443 // known to be equal. 9444 if (Pred == CmpInst::ICMP_EQ) 9445 return false; 9446 9447 if (Pred == CmpInst::ICMP_NE) 9448 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9449 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9450 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9451 9452 if (CmpInst::isSigned(Pred)) 9453 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9454 9455 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9456 } 9457 9458 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9459 const SCEV *LHS, 9460 const SCEV *RHS) { 9461 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9462 // Return Y via OutY. 9463 auto MatchBinaryAddToConst = 9464 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9465 SCEV::NoWrapFlags ExpectedFlags) { 9466 const SCEV *NonConstOp, *ConstOp; 9467 SCEV::NoWrapFlags FlagsPresent; 9468 9469 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9470 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9471 return false; 9472 9473 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9474 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9475 }; 9476 9477 APInt C; 9478 9479 switch (Pred) { 9480 default: 9481 break; 9482 9483 case ICmpInst::ICMP_SGE: 9484 std::swap(LHS, RHS); 9485 LLVM_FALLTHROUGH; 9486 case ICmpInst::ICMP_SLE: 9487 // X s<= (X + C)<nsw> if C >= 0 9488 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9489 return true; 9490 9491 // (X + C)<nsw> s<= X if C <= 0 9492 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9493 !C.isStrictlyPositive()) 9494 return true; 9495 break; 9496 9497 case ICmpInst::ICMP_SGT: 9498 std::swap(LHS, RHS); 9499 LLVM_FALLTHROUGH; 9500 case ICmpInst::ICMP_SLT: 9501 // X s< (X + C)<nsw> if C > 0 9502 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9503 C.isStrictlyPositive()) 9504 return true; 9505 9506 // (X + C)<nsw> s< X if C < 0 9507 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9508 return true; 9509 break; 9510 } 9511 9512 return false; 9513 } 9514 9515 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9516 const SCEV *LHS, 9517 const SCEV *RHS) { 9518 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9519 return false; 9520 9521 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9522 // the stack can result in exponential time complexity. 9523 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9524 9525 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9526 // 9527 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9528 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9529 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9530 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9531 // use isKnownPredicate later if needed. 9532 return isKnownNonNegative(RHS) && 9533 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9534 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9535 } 9536 9537 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9538 ICmpInst::Predicate Pred, 9539 const SCEV *LHS, const SCEV *RHS) { 9540 // No need to even try if we know the module has no guards. 9541 if (!HasGuards) 9542 return false; 9543 9544 return any_of(*BB, [&](Instruction &I) { 9545 using namespace llvm::PatternMatch; 9546 9547 Value *Condition; 9548 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9549 m_Value(Condition))) && 9550 isImpliedCond(Pred, LHS, RHS, Condition, false); 9551 }); 9552 } 9553 9554 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9555 /// protected by a conditional between LHS and RHS. This is used to 9556 /// to eliminate casts. 9557 bool 9558 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9559 ICmpInst::Predicate Pred, 9560 const SCEV *LHS, const SCEV *RHS) { 9561 // Interpret a null as meaning no loop, where there is obviously no guard 9562 // (interprocedural conditions notwithstanding). 9563 if (!L) return true; 9564 9565 if (VerifyIR) 9566 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9567 "This cannot be done on broken IR!"); 9568 9569 9570 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9571 return true; 9572 9573 BasicBlock *Latch = L->getLoopLatch(); 9574 if (!Latch) 9575 return false; 9576 9577 BranchInst *LoopContinuePredicate = 9578 dyn_cast<BranchInst>(Latch->getTerminator()); 9579 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9580 isImpliedCond(Pred, LHS, RHS, 9581 LoopContinuePredicate->getCondition(), 9582 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9583 return true; 9584 9585 // We don't want more than one activation of the following loops on the stack 9586 // -- that can lead to O(n!) time complexity. 9587 if (WalkingBEDominatingConds) 9588 return false; 9589 9590 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9591 9592 // See if we can exploit a trip count to prove the predicate. 9593 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9594 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9595 if (LatchBECount != getCouldNotCompute()) { 9596 // We know that Latch branches back to the loop header exactly 9597 // LatchBECount times. This means the backdege condition at Latch is 9598 // equivalent to "{0,+,1} u< LatchBECount". 9599 Type *Ty = LatchBECount->getType(); 9600 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9601 const SCEV *LoopCounter = 9602 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9603 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9604 LatchBECount)) 9605 return true; 9606 } 9607 9608 // Check conditions due to any @llvm.assume intrinsics. 9609 for (auto &AssumeVH : AC.assumptions()) { 9610 if (!AssumeVH) 9611 continue; 9612 auto *CI = cast<CallInst>(AssumeVH); 9613 if (!DT.dominates(CI, Latch->getTerminator())) 9614 continue; 9615 9616 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9617 return true; 9618 } 9619 9620 // If the loop is not reachable from the entry block, we risk running into an 9621 // infinite loop as we walk up into the dom tree. These loops do not matter 9622 // anyway, so we just return a conservative answer when we see them. 9623 if (!DT.isReachableFromEntry(L->getHeader())) 9624 return false; 9625 9626 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9627 return true; 9628 9629 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9630 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9631 assert(DTN && "should reach the loop header before reaching the root!"); 9632 9633 BasicBlock *BB = DTN->getBlock(); 9634 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9635 return true; 9636 9637 BasicBlock *PBB = BB->getSinglePredecessor(); 9638 if (!PBB) 9639 continue; 9640 9641 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9642 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9643 continue; 9644 9645 Value *Condition = ContinuePredicate->getCondition(); 9646 9647 // If we have an edge `E` within the loop body that dominates the only 9648 // latch, the condition guarding `E` also guards the backedge. This 9649 // reasoning works only for loops with a single latch. 9650 9651 BasicBlockEdge DominatingEdge(PBB, BB); 9652 if (DominatingEdge.isSingleEdge()) { 9653 // We're constructively (and conservatively) enumerating edges within the 9654 // loop body that dominate the latch. The dominator tree better agree 9655 // with us on this: 9656 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9657 9658 if (isImpliedCond(Pred, LHS, RHS, Condition, 9659 BB != ContinuePredicate->getSuccessor(0))) 9660 return true; 9661 } 9662 } 9663 9664 return false; 9665 } 9666 9667 bool 9668 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9669 ICmpInst::Predicate Pred, 9670 const SCEV *LHS, const SCEV *RHS) { 9671 // Interpret a null as meaning no loop, where there is obviously no guard 9672 // (interprocedural conditions notwithstanding). 9673 if (!L) return false; 9674 9675 if (VerifyIR) 9676 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9677 "This cannot be done on broken IR!"); 9678 9679 // Both LHS and RHS must be available at loop entry. 9680 assert(isAvailableAtLoopEntry(LHS, L) && 9681 "LHS is not available at Loop Entry"); 9682 assert(isAvailableAtLoopEntry(RHS, L) && 9683 "RHS is not available at Loop Entry"); 9684 9685 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9686 return true; 9687 9688 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9689 // the facts (a >= b && a != b) separately. A typical situation is when the 9690 // non-strict comparison is known from ranges and non-equality is known from 9691 // dominating predicates. If we are proving strict comparison, we always try 9692 // to prove non-equality and non-strict comparison separately. 9693 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9694 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9695 bool ProvedNonStrictComparison = false; 9696 bool ProvedNonEquality = false; 9697 9698 if (ProvingStrictComparison) { 9699 ProvedNonStrictComparison = 9700 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9701 ProvedNonEquality = 9702 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9703 if (ProvedNonStrictComparison && ProvedNonEquality) 9704 return true; 9705 } 9706 9707 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9708 auto ProveViaGuard = [&](BasicBlock *Block) { 9709 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9710 return true; 9711 if (ProvingStrictComparison) { 9712 if (!ProvedNonStrictComparison) 9713 ProvedNonStrictComparison = 9714 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9715 if (!ProvedNonEquality) 9716 ProvedNonEquality = 9717 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9718 if (ProvedNonStrictComparison && ProvedNonEquality) 9719 return true; 9720 } 9721 return false; 9722 }; 9723 9724 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9725 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9726 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9727 return true; 9728 if (ProvingStrictComparison) { 9729 if (!ProvedNonStrictComparison) 9730 ProvedNonStrictComparison = 9731 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9732 if (!ProvedNonEquality) 9733 ProvedNonEquality = 9734 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9735 if (ProvedNonStrictComparison && ProvedNonEquality) 9736 return true; 9737 } 9738 return false; 9739 }; 9740 9741 // Starting at the loop predecessor, climb up the predecessor chain, as long 9742 // as there are predecessors that can be found that have unique successors 9743 // leading to the original header. 9744 for (std::pair<BasicBlock *, BasicBlock *> 9745 Pair(L->getLoopPredecessor(), L->getHeader()); 9746 Pair.first; 9747 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9748 9749 if (ProveViaGuard(Pair.first)) 9750 return true; 9751 9752 BranchInst *LoopEntryPredicate = 9753 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9754 if (!LoopEntryPredicate || 9755 LoopEntryPredicate->isUnconditional()) 9756 continue; 9757 9758 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9759 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9760 return true; 9761 } 9762 9763 // Check conditions due to any @llvm.assume intrinsics. 9764 for (auto &AssumeVH : AC.assumptions()) { 9765 if (!AssumeVH) 9766 continue; 9767 auto *CI = cast<CallInst>(AssumeVH); 9768 if (!DT.dominates(CI, L->getHeader())) 9769 continue; 9770 9771 if (ProveViaCond(CI->getArgOperand(0), false)) 9772 return true; 9773 } 9774 9775 return false; 9776 } 9777 9778 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9779 const SCEV *LHS, const SCEV *RHS, 9780 Value *FoundCondValue, 9781 bool Inverse) { 9782 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9783 return false; 9784 9785 auto ClearOnExit = 9786 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9787 9788 // Recursively handle And and Or conditions. 9789 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9790 if (BO->getOpcode() == Instruction::And) { 9791 if (!Inverse) 9792 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9793 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9794 } else if (BO->getOpcode() == Instruction::Or) { 9795 if (Inverse) 9796 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9797 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9798 } 9799 } 9800 9801 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9802 if (!ICI) return false; 9803 9804 // Now that we found a conditional branch that dominates the loop or controls 9805 // the loop latch. Check to see if it is the comparison we are looking for. 9806 ICmpInst::Predicate FoundPred; 9807 if (Inverse) 9808 FoundPred = ICI->getInversePredicate(); 9809 else 9810 FoundPred = ICI->getPredicate(); 9811 9812 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9813 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9814 9815 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9816 } 9817 9818 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9819 const SCEV *RHS, 9820 ICmpInst::Predicate FoundPred, 9821 const SCEV *FoundLHS, 9822 const SCEV *FoundRHS) { 9823 // Balance the types. 9824 if (getTypeSizeInBits(LHS->getType()) < 9825 getTypeSizeInBits(FoundLHS->getType())) { 9826 if (CmpInst::isSigned(Pred)) { 9827 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9828 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9829 } else { 9830 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9831 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9832 } 9833 } else if (getTypeSizeInBits(LHS->getType()) > 9834 getTypeSizeInBits(FoundLHS->getType())) { 9835 if (CmpInst::isSigned(FoundPred)) { 9836 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9837 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9838 } else { 9839 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9840 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9841 } 9842 } 9843 9844 // Canonicalize the query to match the way instcombine will have 9845 // canonicalized the comparison. 9846 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9847 if (LHS == RHS) 9848 return CmpInst::isTrueWhenEqual(Pred); 9849 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9850 if (FoundLHS == FoundRHS) 9851 return CmpInst::isFalseWhenEqual(FoundPred); 9852 9853 // Check to see if we can make the LHS or RHS match. 9854 if (LHS == FoundRHS || RHS == FoundLHS) { 9855 if (isa<SCEVConstant>(RHS)) { 9856 std::swap(FoundLHS, FoundRHS); 9857 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9858 } else { 9859 std::swap(LHS, RHS); 9860 Pred = ICmpInst::getSwappedPredicate(Pred); 9861 } 9862 } 9863 9864 // Check whether the found predicate is the same as the desired predicate. 9865 if (FoundPred == Pred) 9866 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9867 9868 // Check whether swapping the found predicate makes it the same as the 9869 // desired predicate. 9870 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9871 if (isa<SCEVConstant>(RHS)) 9872 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9873 else 9874 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9875 RHS, LHS, FoundLHS, FoundRHS); 9876 } 9877 9878 // Unsigned comparison is the same as signed comparison when both the operands 9879 // are non-negative. 9880 if (CmpInst::isUnsigned(FoundPred) && 9881 CmpInst::getSignedPredicate(FoundPred) == Pred && 9882 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9883 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9884 9885 // Check if we can make progress by sharpening ranges. 9886 if (FoundPred == ICmpInst::ICMP_NE && 9887 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9888 9889 const SCEVConstant *C = nullptr; 9890 const SCEV *V = nullptr; 9891 9892 if (isa<SCEVConstant>(FoundLHS)) { 9893 C = cast<SCEVConstant>(FoundLHS); 9894 V = FoundRHS; 9895 } else { 9896 C = cast<SCEVConstant>(FoundRHS); 9897 V = FoundLHS; 9898 } 9899 9900 // The guarding predicate tells us that C != V. If the known range 9901 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9902 // range we consider has to correspond to same signedness as the 9903 // predicate we're interested in folding. 9904 9905 APInt Min = ICmpInst::isSigned(Pred) ? 9906 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9907 9908 if (Min == C->getAPInt()) { 9909 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9910 // This is true even if (Min + 1) wraps around -- in case of 9911 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9912 9913 APInt SharperMin = Min + 1; 9914 9915 switch (Pred) { 9916 case ICmpInst::ICMP_SGE: 9917 case ICmpInst::ICMP_UGE: 9918 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9919 // RHS, we're done. 9920 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9921 getConstant(SharperMin))) 9922 return true; 9923 LLVM_FALLTHROUGH; 9924 9925 case ICmpInst::ICMP_SGT: 9926 case ICmpInst::ICMP_UGT: 9927 // We know from the range information that (V `Pred` Min || 9928 // V == Min). We know from the guarding condition that !(V 9929 // == Min). This gives us 9930 // 9931 // V `Pred` Min || V == Min && !(V == Min) 9932 // => V `Pred` Min 9933 // 9934 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9935 9936 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9937 return true; 9938 LLVM_FALLTHROUGH; 9939 9940 default: 9941 // No change 9942 break; 9943 } 9944 } 9945 } 9946 9947 // Check whether the actual condition is beyond sufficient. 9948 if (FoundPred == ICmpInst::ICMP_EQ) 9949 if (ICmpInst::isTrueWhenEqual(Pred)) 9950 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9951 return true; 9952 if (Pred == ICmpInst::ICMP_NE) 9953 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9954 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9955 return true; 9956 9957 // Otherwise assume the worst. 9958 return false; 9959 } 9960 9961 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9962 const SCEV *&L, const SCEV *&R, 9963 SCEV::NoWrapFlags &Flags) { 9964 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9965 if (!AE || AE->getNumOperands() != 2) 9966 return false; 9967 9968 L = AE->getOperand(0); 9969 R = AE->getOperand(1); 9970 Flags = AE->getNoWrapFlags(); 9971 return true; 9972 } 9973 9974 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9975 const SCEV *Less) { 9976 // We avoid subtracting expressions here because this function is usually 9977 // fairly deep in the call stack (i.e. is called many times). 9978 9979 // X - X = 0. 9980 if (More == Less) 9981 return APInt(getTypeSizeInBits(More->getType()), 0); 9982 9983 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9984 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9985 const auto *MAR = cast<SCEVAddRecExpr>(More); 9986 9987 if (LAR->getLoop() != MAR->getLoop()) 9988 return None; 9989 9990 // We look at affine expressions only; not for correctness but to keep 9991 // getStepRecurrence cheap. 9992 if (!LAR->isAffine() || !MAR->isAffine()) 9993 return None; 9994 9995 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9996 return None; 9997 9998 Less = LAR->getStart(); 9999 More = MAR->getStart(); 10000 10001 // fall through 10002 } 10003 10004 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10005 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10006 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10007 return M - L; 10008 } 10009 10010 SCEV::NoWrapFlags Flags; 10011 const SCEV *LLess = nullptr, *RLess = nullptr; 10012 const SCEV *LMore = nullptr, *RMore = nullptr; 10013 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10014 // Compare (X + C1) vs X. 10015 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10016 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10017 if (RLess == More) 10018 return -(C1->getAPInt()); 10019 10020 // Compare X vs (X + C2). 10021 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10022 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10023 if (RMore == Less) 10024 return C2->getAPInt(); 10025 10026 // Compare (X + C1) vs (X + C2). 10027 if (C1 && C2 && RLess == RMore) 10028 return C2->getAPInt() - C1->getAPInt(); 10029 10030 return None; 10031 } 10032 10033 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10034 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10035 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10036 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10037 return false; 10038 10039 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10040 if (!AddRecLHS) 10041 return false; 10042 10043 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10044 if (!AddRecFoundLHS) 10045 return false; 10046 10047 // We'd like to let SCEV reason about control dependencies, so we constrain 10048 // both the inequalities to be about add recurrences on the same loop. This 10049 // way we can use isLoopEntryGuardedByCond later. 10050 10051 const Loop *L = AddRecFoundLHS->getLoop(); 10052 if (L != AddRecLHS->getLoop()) 10053 return false; 10054 10055 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10056 // 10057 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10058 // ... (2) 10059 // 10060 // Informal proof for (2), assuming (1) [*]: 10061 // 10062 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10063 // 10064 // Then 10065 // 10066 // FoundLHS s< FoundRHS s< INT_MIN - C 10067 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10068 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10069 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10070 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10071 // <=> FoundLHS + C s< FoundRHS + C 10072 // 10073 // [*]: (1) can be proved by ruling out overflow. 10074 // 10075 // [**]: This can be proved by analyzing all the four possibilities: 10076 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10077 // (A s>= 0, B s>= 0). 10078 // 10079 // Note: 10080 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10081 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10082 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10083 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10084 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10085 // C)". 10086 10087 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10088 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10089 if (!LDiff || !RDiff || *LDiff != *RDiff) 10090 return false; 10091 10092 if (LDiff->isMinValue()) 10093 return true; 10094 10095 APInt FoundRHSLimit; 10096 10097 if (Pred == CmpInst::ICMP_ULT) { 10098 FoundRHSLimit = -(*RDiff); 10099 } else { 10100 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10101 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10102 } 10103 10104 // Try to prove (1) or (2), as needed. 10105 return isAvailableAtLoopEntry(FoundRHS, L) && 10106 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10107 getConstant(FoundRHSLimit)); 10108 } 10109 10110 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10111 const SCEV *LHS, const SCEV *RHS, 10112 const SCEV *FoundLHS, 10113 const SCEV *FoundRHS, unsigned Depth) { 10114 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10115 10116 auto ClearOnExit = make_scope_exit([&]() { 10117 if (LPhi) { 10118 bool Erased = PendingMerges.erase(LPhi); 10119 assert(Erased && "Failed to erase LPhi!"); 10120 (void)Erased; 10121 } 10122 if (RPhi) { 10123 bool Erased = PendingMerges.erase(RPhi); 10124 assert(Erased && "Failed to erase RPhi!"); 10125 (void)Erased; 10126 } 10127 }); 10128 10129 // Find respective Phis and check that they are not being pending. 10130 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10131 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10132 if (!PendingMerges.insert(Phi).second) 10133 return false; 10134 LPhi = Phi; 10135 } 10136 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10137 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10138 // If we detect a loop of Phi nodes being processed by this method, for 10139 // example: 10140 // 10141 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10142 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10143 // 10144 // we don't want to deal with a case that complex, so return conservative 10145 // answer false. 10146 if (!PendingMerges.insert(Phi).second) 10147 return false; 10148 RPhi = Phi; 10149 } 10150 10151 // If none of LHS, RHS is a Phi, nothing to do here. 10152 if (!LPhi && !RPhi) 10153 return false; 10154 10155 // If there is a SCEVUnknown Phi we are interested in, make it left. 10156 if (!LPhi) { 10157 std::swap(LHS, RHS); 10158 std::swap(FoundLHS, FoundRHS); 10159 std::swap(LPhi, RPhi); 10160 Pred = ICmpInst::getSwappedPredicate(Pred); 10161 } 10162 10163 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10164 const BasicBlock *LBB = LPhi->getParent(); 10165 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10166 10167 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10168 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10169 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10170 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10171 }; 10172 10173 if (RPhi && RPhi->getParent() == LBB) { 10174 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10175 // If we compare two Phis from the same block, and for each entry block 10176 // the predicate is true for incoming values from this block, then the 10177 // predicate is also true for the Phis. 10178 for (const BasicBlock *IncBB : predecessors(LBB)) { 10179 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10180 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10181 if (!ProvedEasily(L, R)) 10182 return false; 10183 } 10184 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10185 // Case two: RHS is also a Phi from the same basic block, and it is an 10186 // AddRec. It means that there is a loop which has both AddRec and Unknown 10187 // PHIs, for it we can compare incoming values of AddRec from above the loop 10188 // and latch with their respective incoming values of LPhi. 10189 // TODO: Generalize to handle loops with many inputs in a header. 10190 if (LPhi->getNumIncomingValues() != 2) return false; 10191 10192 auto *RLoop = RAR->getLoop(); 10193 auto *Predecessor = RLoop->getLoopPredecessor(); 10194 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10195 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10196 if (!ProvedEasily(L1, RAR->getStart())) 10197 return false; 10198 auto *Latch = RLoop->getLoopLatch(); 10199 assert(Latch && "Loop with AddRec with no latch?"); 10200 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10201 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10202 return false; 10203 } else { 10204 // In all other cases go over inputs of LHS and compare each of them to RHS, 10205 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10206 // At this point RHS is either a non-Phi, or it is a Phi from some block 10207 // different from LBB. 10208 for (const BasicBlock *IncBB : predecessors(LBB)) { 10209 // Check that RHS is available in this block. 10210 if (!dominates(RHS, IncBB)) 10211 return false; 10212 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10213 if (!ProvedEasily(L, RHS)) 10214 return false; 10215 } 10216 } 10217 return true; 10218 } 10219 10220 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10221 const SCEV *LHS, const SCEV *RHS, 10222 const SCEV *FoundLHS, 10223 const SCEV *FoundRHS) { 10224 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10225 return true; 10226 10227 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10228 return true; 10229 10230 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10231 FoundLHS, FoundRHS) || 10232 // ~x < ~y --> x > y 10233 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10234 getNotSCEV(FoundRHS), 10235 getNotSCEV(FoundLHS)); 10236 } 10237 10238 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10239 template <typename MinMaxExprType> 10240 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10241 const SCEV *Candidate) { 10242 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10243 if (!MinMaxExpr) 10244 return false; 10245 10246 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10247 } 10248 10249 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10250 ICmpInst::Predicate Pred, 10251 const SCEV *LHS, const SCEV *RHS) { 10252 // If both sides are affine addrecs for the same loop, with equal 10253 // steps, and we know the recurrences don't wrap, then we only 10254 // need to check the predicate on the starting values. 10255 10256 if (!ICmpInst::isRelational(Pred)) 10257 return false; 10258 10259 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10260 if (!LAR) 10261 return false; 10262 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10263 if (!RAR) 10264 return false; 10265 if (LAR->getLoop() != RAR->getLoop()) 10266 return false; 10267 if (!LAR->isAffine() || !RAR->isAffine()) 10268 return false; 10269 10270 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10271 return false; 10272 10273 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10274 SCEV::FlagNSW : SCEV::FlagNUW; 10275 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10276 return false; 10277 10278 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10279 } 10280 10281 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10282 /// expression? 10283 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10284 ICmpInst::Predicate Pred, 10285 const SCEV *LHS, const SCEV *RHS) { 10286 switch (Pred) { 10287 default: 10288 return false; 10289 10290 case ICmpInst::ICMP_SGE: 10291 std::swap(LHS, RHS); 10292 LLVM_FALLTHROUGH; 10293 case ICmpInst::ICMP_SLE: 10294 return 10295 // min(A, ...) <= A 10296 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10297 // A <= max(A, ...) 10298 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10299 10300 case ICmpInst::ICMP_UGE: 10301 std::swap(LHS, RHS); 10302 LLVM_FALLTHROUGH; 10303 case ICmpInst::ICMP_ULE: 10304 return 10305 // min(A, ...) <= A 10306 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10307 // A <= max(A, ...) 10308 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10309 } 10310 10311 llvm_unreachable("covered switch fell through?!"); 10312 } 10313 10314 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10315 const SCEV *LHS, const SCEV *RHS, 10316 const SCEV *FoundLHS, 10317 const SCEV *FoundRHS, 10318 unsigned Depth) { 10319 assert(getTypeSizeInBits(LHS->getType()) == 10320 getTypeSizeInBits(RHS->getType()) && 10321 "LHS and RHS have different sizes?"); 10322 assert(getTypeSizeInBits(FoundLHS->getType()) == 10323 getTypeSizeInBits(FoundRHS->getType()) && 10324 "FoundLHS and FoundRHS have different sizes?"); 10325 // We want to avoid hurting the compile time with analysis of too big trees. 10326 if (Depth > MaxSCEVOperationsImplicationDepth) 10327 return false; 10328 // We only want to work with ICMP_SGT comparison so far. 10329 // TODO: Extend to ICMP_UGT? 10330 if (Pred == ICmpInst::ICMP_SLT) { 10331 Pred = ICmpInst::ICMP_SGT; 10332 std::swap(LHS, RHS); 10333 std::swap(FoundLHS, FoundRHS); 10334 } 10335 if (Pred != ICmpInst::ICMP_SGT) 10336 return false; 10337 10338 auto GetOpFromSExt = [&](const SCEV *S) { 10339 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10340 return Ext->getOperand(); 10341 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10342 // the constant in some cases. 10343 return S; 10344 }; 10345 10346 // Acquire values from extensions. 10347 auto *OrigLHS = LHS; 10348 auto *OrigFoundLHS = FoundLHS; 10349 LHS = GetOpFromSExt(LHS); 10350 FoundLHS = GetOpFromSExt(FoundLHS); 10351 10352 // Is the SGT predicate can be proved trivially or using the found context. 10353 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10354 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10355 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10356 FoundRHS, Depth + 1); 10357 }; 10358 10359 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10360 // We want to avoid creation of any new non-constant SCEV. Since we are 10361 // going to compare the operands to RHS, we should be certain that we don't 10362 // need any size extensions for this. So let's decline all cases when the 10363 // sizes of types of LHS and RHS do not match. 10364 // TODO: Maybe try to get RHS from sext to catch more cases? 10365 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10366 return false; 10367 10368 // Should not overflow. 10369 if (!LHSAddExpr->hasNoSignedWrap()) 10370 return false; 10371 10372 auto *LL = LHSAddExpr->getOperand(0); 10373 auto *LR = LHSAddExpr->getOperand(1); 10374 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10375 10376 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10377 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10378 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10379 }; 10380 // Try to prove the following rule: 10381 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10382 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10383 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10384 return true; 10385 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10386 Value *LL, *LR; 10387 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10388 10389 using namespace llvm::PatternMatch; 10390 10391 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10392 // Rules for division. 10393 // We are going to perform some comparisons with Denominator and its 10394 // derivative expressions. In general case, creating a SCEV for it may 10395 // lead to a complex analysis of the entire graph, and in particular it 10396 // can request trip count recalculation for the same loop. This would 10397 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10398 // this, we only want to create SCEVs that are constants in this section. 10399 // So we bail if Denominator is not a constant. 10400 if (!isa<ConstantInt>(LR)) 10401 return false; 10402 10403 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10404 10405 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10406 // then a SCEV for the numerator already exists and matches with FoundLHS. 10407 auto *Numerator = getExistingSCEV(LL); 10408 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10409 return false; 10410 10411 // Make sure that the numerator matches with FoundLHS and the denominator 10412 // is positive. 10413 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10414 return false; 10415 10416 auto *DTy = Denominator->getType(); 10417 auto *FRHSTy = FoundRHS->getType(); 10418 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10419 // One of types is a pointer and another one is not. We cannot extend 10420 // them properly to a wider type, so let us just reject this case. 10421 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10422 // to avoid this check. 10423 return false; 10424 10425 // Given that: 10426 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10427 auto *WTy = getWiderType(DTy, FRHSTy); 10428 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10429 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10430 10431 // Try to prove the following rule: 10432 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10433 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10434 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10435 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10436 if (isKnownNonPositive(RHS) && 10437 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10438 return true; 10439 10440 // Try to prove the following rule: 10441 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10442 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10443 // If we divide it by Denominator > 2, then: 10444 // 1. If FoundLHS is negative, then the result is 0. 10445 // 2. If FoundLHS is non-negative, then the result is non-negative. 10446 // Anyways, the result is non-negative. 10447 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10448 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10449 if (isKnownNegative(RHS) && 10450 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10451 return true; 10452 } 10453 } 10454 10455 // If our expression contained SCEVUnknown Phis, and we split it down and now 10456 // need to prove something for them, try to prove the predicate for every 10457 // possible incoming values of those Phis. 10458 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10459 return true; 10460 10461 return false; 10462 } 10463 10464 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10465 const SCEV *LHS, const SCEV *RHS) { 10466 // zext x u<= sext x, sext x s<= zext x 10467 switch (Pred) { 10468 case ICmpInst::ICMP_SGE: 10469 std::swap(LHS, RHS); 10470 LLVM_FALLTHROUGH; 10471 case ICmpInst::ICMP_SLE: { 10472 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10473 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10474 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10475 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10476 return true; 10477 break; 10478 } 10479 case ICmpInst::ICMP_UGE: 10480 std::swap(LHS, RHS); 10481 LLVM_FALLTHROUGH; 10482 case ICmpInst::ICMP_ULE: { 10483 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10484 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10485 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10486 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10487 return true; 10488 break; 10489 } 10490 default: 10491 break; 10492 }; 10493 return false; 10494 } 10495 10496 bool 10497 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10498 const SCEV *LHS, const SCEV *RHS) { 10499 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10500 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10501 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10502 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10503 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10504 } 10505 10506 bool 10507 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10508 const SCEV *LHS, const SCEV *RHS, 10509 const SCEV *FoundLHS, 10510 const SCEV *FoundRHS) { 10511 switch (Pred) { 10512 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10513 case ICmpInst::ICMP_EQ: 10514 case ICmpInst::ICMP_NE: 10515 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10516 return true; 10517 break; 10518 case ICmpInst::ICMP_SLT: 10519 case ICmpInst::ICMP_SLE: 10520 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10521 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10522 return true; 10523 break; 10524 case ICmpInst::ICMP_SGT: 10525 case ICmpInst::ICMP_SGE: 10526 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10527 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10528 return true; 10529 break; 10530 case ICmpInst::ICMP_ULT: 10531 case ICmpInst::ICMP_ULE: 10532 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10533 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10534 return true; 10535 break; 10536 case ICmpInst::ICMP_UGT: 10537 case ICmpInst::ICMP_UGE: 10538 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10539 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10540 return true; 10541 break; 10542 } 10543 10544 // Maybe it can be proved via operations? 10545 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10546 return true; 10547 10548 return false; 10549 } 10550 10551 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10552 const SCEV *LHS, 10553 const SCEV *RHS, 10554 const SCEV *FoundLHS, 10555 const SCEV *FoundRHS) { 10556 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10557 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10558 // reduce the compile time impact of this optimization. 10559 return false; 10560 10561 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10562 if (!Addend) 10563 return false; 10564 10565 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10566 10567 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10568 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10569 ConstantRange FoundLHSRange = 10570 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10571 10572 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10573 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10574 10575 // We can also compute the range of values for `LHS` that satisfy the 10576 // consequent, "`LHS` `Pred` `RHS`": 10577 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10578 ConstantRange SatisfyingLHSRange = 10579 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10580 10581 // The antecedent implies the consequent if every value of `LHS` that 10582 // satisfies the antecedent also satisfies the consequent. 10583 return SatisfyingLHSRange.contains(LHSRange); 10584 } 10585 10586 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10587 bool IsSigned, bool NoWrap) { 10588 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10589 10590 if (NoWrap) return false; 10591 10592 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10593 const SCEV *One = getOne(Stride->getType()); 10594 10595 if (IsSigned) { 10596 APInt MaxRHS = getSignedRangeMax(RHS); 10597 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10598 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10599 10600 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10601 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10602 } 10603 10604 APInt MaxRHS = getUnsignedRangeMax(RHS); 10605 APInt MaxValue = APInt::getMaxValue(BitWidth); 10606 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10607 10608 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10609 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10610 } 10611 10612 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10613 bool IsSigned, bool NoWrap) { 10614 if (NoWrap) return false; 10615 10616 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10617 const SCEV *One = getOne(Stride->getType()); 10618 10619 if (IsSigned) { 10620 APInt MinRHS = getSignedRangeMin(RHS); 10621 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10622 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10623 10624 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10625 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10626 } 10627 10628 APInt MinRHS = getUnsignedRangeMin(RHS); 10629 APInt MinValue = APInt::getMinValue(BitWidth); 10630 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10631 10632 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10633 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10634 } 10635 10636 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10637 bool Equality) { 10638 const SCEV *One = getOne(Step->getType()); 10639 Delta = Equality ? getAddExpr(Delta, Step) 10640 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10641 return getUDivExpr(Delta, Step); 10642 } 10643 10644 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10645 const SCEV *Stride, 10646 const SCEV *End, 10647 unsigned BitWidth, 10648 bool IsSigned) { 10649 10650 assert(!isKnownNonPositive(Stride) && 10651 "Stride is expected strictly positive!"); 10652 // Calculate the maximum backedge count based on the range of values 10653 // permitted by Start, End, and Stride. 10654 const SCEV *MaxBECount; 10655 APInt MinStart = 10656 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10657 10658 APInt StrideForMaxBECount = 10659 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10660 10661 // We already know that the stride is positive, so we paper over conservatism 10662 // in our range computation by forcing StrideForMaxBECount to be at least one. 10663 // In theory this is unnecessary, but we expect MaxBECount to be a 10664 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10665 // is nothing to constant fold it to). 10666 APInt One(BitWidth, 1, IsSigned); 10667 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10668 10669 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10670 : APInt::getMaxValue(BitWidth); 10671 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10672 10673 // Although End can be a MAX expression we estimate MaxEnd considering only 10674 // the case End = RHS of the loop termination condition. This is safe because 10675 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10676 // taken count. 10677 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10678 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10679 10680 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10681 getConstant(StrideForMaxBECount) /* Step */, 10682 false /* Equality */); 10683 10684 return MaxBECount; 10685 } 10686 10687 ScalarEvolution::ExitLimit 10688 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10689 const Loop *L, bool IsSigned, 10690 bool ControlsExit, bool AllowPredicates) { 10691 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10692 10693 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10694 bool PredicatedIV = false; 10695 10696 if (!IV && AllowPredicates) { 10697 // Try to make this an AddRec using runtime tests, in the first X 10698 // iterations of this loop, where X is the SCEV expression found by the 10699 // algorithm below. 10700 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10701 PredicatedIV = true; 10702 } 10703 10704 // Avoid weird loops 10705 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10706 return getCouldNotCompute(); 10707 10708 bool NoWrap = ControlsExit && 10709 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10710 10711 const SCEV *Stride = IV->getStepRecurrence(*this); 10712 10713 bool PositiveStride = isKnownPositive(Stride); 10714 10715 // Avoid negative or zero stride values. 10716 if (!PositiveStride) { 10717 // We can compute the correct backedge taken count for loops with unknown 10718 // strides if we can prove that the loop is not an infinite loop with side 10719 // effects. Here's the loop structure we are trying to handle - 10720 // 10721 // i = start 10722 // do { 10723 // A[i] = i; 10724 // i += s; 10725 // } while (i < end); 10726 // 10727 // The backedge taken count for such loops is evaluated as - 10728 // (max(end, start + stride) - start - 1) /u stride 10729 // 10730 // The additional preconditions that we need to check to prove correctness 10731 // of the above formula is as follows - 10732 // 10733 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10734 // NoWrap flag). 10735 // b) loop is single exit with no side effects. 10736 // 10737 // 10738 // Precondition a) implies that if the stride is negative, this is a single 10739 // trip loop. The backedge taken count formula reduces to zero in this case. 10740 // 10741 // Precondition b) implies that the unknown stride cannot be zero otherwise 10742 // we have UB. 10743 // 10744 // The positive stride case is the same as isKnownPositive(Stride) returning 10745 // true (original behavior of the function). 10746 // 10747 // We want to make sure that the stride is truly unknown as there are edge 10748 // cases where ScalarEvolution propagates no wrap flags to the 10749 // post-increment/decrement IV even though the increment/decrement operation 10750 // itself is wrapping. The computed backedge taken count may be wrong in 10751 // such cases. This is prevented by checking that the stride is not known to 10752 // be either positive or non-positive. For example, no wrap flags are 10753 // propagated to the post-increment IV of this loop with a trip count of 2 - 10754 // 10755 // unsigned char i; 10756 // for(i=127; i<128; i+=129) 10757 // A[i] = i; 10758 // 10759 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10760 !loopHasNoSideEffects(L)) 10761 return getCouldNotCompute(); 10762 } else if (!Stride->isOne() && 10763 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10764 // Avoid proven overflow cases: this will ensure that the backedge taken 10765 // count will not generate any unsigned overflow. Relaxed no-overflow 10766 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10767 // undefined behaviors like the case of C language. 10768 return getCouldNotCompute(); 10769 10770 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10771 : ICmpInst::ICMP_ULT; 10772 const SCEV *Start = IV->getStart(); 10773 const SCEV *End = RHS; 10774 // When the RHS is not invariant, we do not know the end bound of the loop and 10775 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10776 // calculate the MaxBECount, given the start, stride and max value for the end 10777 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10778 // checked above). 10779 if (!isLoopInvariant(RHS, L)) { 10780 const SCEV *MaxBECount = computeMaxBECountForLT( 10781 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10782 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10783 false /*MaxOrZero*/, Predicates); 10784 } 10785 // If the backedge is taken at least once, then it will be taken 10786 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10787 // is the LHS value of the less-than comparison the first time it is evaluated 10788 // and End is the RHS. 10789 const SCEV *BECountIfBackedgeTaken = 10790 computeBECount(getMinusSCEV(End, Start), Stride, false); 10791 // If the loop entry is guarded by the result of the backedge test of the 10792 // first loop iteration, then we know the backedge will be taken at least 10793 // once and so the backedge taken count is as above. If not then we use the 10794 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10795 // as if the backedge is taken at least once max(End,Start) is End and so the 10796 // result is as above, and if not max(End,Start) is Start so we get a backedge 10797 // count of zero. 10798 const SCEV *BECount; 10799 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10800 BECount = BECountIfBackedgeTaken; 10801 else { 10802 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10803 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10804 } 10805 10806 const SCEV *MaxBECount; 10807 bool MaxOrZero = false; 10808 if (isa<SCEVConstant>(BECount)) 10809 MaxBECount = BECount; 10810 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10811 // If we know exactly how many times the backedge will be taken if it's 10812 // taken at least once, then the backedge count will either be that or 10813 // zero. 10814 MaxBECount = BECountIfBackedgeTaken; 10815 MaxOrZero = true; 10816 } else { 10817 MaxBECount = computeMaxBECountForLT( 10818 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10819 } 10820 10821 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10822 !isa<SCEVCouldNotCompute>(BECount)) 10823 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10824 10825 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10826 } 10827 10828 ScalarEvolution::ExitLimit 10829 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10830 const Loop *L, bool IsSigned, 10831 bool ControlsExit, bool AllowPredicates) { 10832 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10833 // We handle only IV > Invariant 10834 if (!isLoopInvariant(RHS, L)) 10835 return getCouldNotCompute(); 10836 10837 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10838 if (!IV && AllowPredicates) 10839 // Try to make this an AddRec using runtime tests, in the first X 10840 // iterations of this loop, where X is the SCEV expression found by the 10841 // algorithm below. 10842 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10843 10844 // Avoid weird loops 10845 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10846 return getCouldNotCompute(); 10847 10848 bool NoWrap = ControlsExit && 10849 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10850 10851 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10852 10853 // Avoid negative or zero stride values 10854 if (!isKnownPositive(Stride)) 10855 return getCouldNotCompute(); 10856 10857 // Avoid proven overflow cases: this will ensure that the backedge taken count 10858 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10859 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10860 // behaviors like the case of C language. 10861 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10862 return getCouldNotCompute(); 10863 10864 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10865 : ICmpInst::ICMP_UGT; 10866 10867 const SCEV *Start = IV->getStart(); 10868 const SCEV *End = RHS; 10869 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10870 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10871 10872 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10873 10874 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10875 : getUnsignedRangeMax(Start); 10876 10877 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10878 : getUnsignedRangeMin(Stride); 10879 10880 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10881 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10882 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10883 10884 // Although End can be a MIN expression we estimate MinEnd considering only 10885 // the case End = RHS. This is safe because in the other case (Start - End) 10886 // is zero, leading to a zero maximum backedge taken count. 10887 APInt MinEnd = 10888 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10889 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10890 10891 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10892 ? BECount 10893 : computeBECount(getConstant(MaxStart - MinEnd), 10894 getConstant(MinStride), false); 10895 10896 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10897 MaxBECount = BECount; 10898 10899 return ExitLimit(BECount, MaxBECount, false, Predicates); 10900 } 10901 10902 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10903 ScalarEvolution &SE) const { 10904 if (Range.isFullSet()) // Infinite loop. 10905 return SE.getCouldNotCompute(); 10906 10907 // If the start is a non-zero constant, shift the range to simplify things. 10908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10909 if (!SC->getValue()->isZero()) { 10910 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10911 Operands[0] = SE.getZero(SC->getType()); 10912 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10913 getNoWrapFlags(FlagNW)); 10914 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10915 return ShiftedAddRec->getNumIterationsInRange( 10916 Range.subtract(SC->getAPInt()), SE); 10917 // This is strange and shouldn't happen. 10918 return SE.getCouldNotCompute(); 10919 } 10920 10921 // The only time we can solve this is when we have all constant indices. 10922 // Otherwise, we cannot determine the overflow conditions. 10923 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10924 return SE.getCouldNotCompute(); 10925 10926 // Okay at this point we know that all elements of the chrec are constants and 10927 // that the start element is zero. 10928 10929 // First check to see if the range contains zero. If not, the first 10930 // iteration exits. 10931 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10932 if (!Range.contains(APInt(BitWidth, 0))) 10933 return SE.getZero(getType()); 10934 10935 if (isAffine()) { 10936 // If this is an affine expression then we have this situation: 10937 // Solve {0,+,A} in Range === Ax in Range 10938 10939 // We know that zero is in the range. If A is positive then we know that 10940 // the upper value of the range must be the first possible exit value. 10941 // If A is negative then the lower of the range is the last possible loop 10942 // value. Also note that we already checked for a full range. 10943 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10944 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10945 10946 // The exit value should be (End+A)/A. 10947 APInt ExitVal = (End + A).udiv(A); 10948 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10949 10950 // Evaluate at the exit value. If we really did fall out of the valid 10951 // range, then we computed our trip count, otherwise wrap around or other 10952 // things must have happened. 10953 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10954 if (Range.contains(Val->getValue())) 10955 return SE.getCouldNotCompute(); // Something strange happened 10956 10957 // Ensure that the previous value is in the range. This is a sanity check. 10958 assert(Range.contains( 10959 EvaluateConstantChrecAtConstant(this, 10960 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10961 "Linear scev computation is off in a bad way!"); 10962 return SE.getConstant(ExitValue); 10963 } 10964 10965 if (isQuadratic()) { 10966 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10967 return SE.getConstant(S.getValue()); 10968 } 10969 10970 return SE.getCouldNotCompute(); 10971 } 10972 10973 const SCEVAddRecExpr * 10974 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10975 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10976 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10977 // but in this case we cannot guarantee that the value returned will be an 10978 // AddRec because SCEV does not have a fixed point where it stops 10979 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10980 // may happen if we reach arithmetic depth limit while simplifying. So we 10981 // construct the returned value explicitly. 10982 SmallVector<const SCEV *, 3> Ops; 10983 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10984 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10985 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10986 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10987 // We know that the last operand is not a constant zero (otherwise it would 10988 // have been popped out earlier). This guarantees us that if the result has 10989 // the same last operand, then it will also not be popped out, meaning that 10990 // the returned value will be an AddRec. 10991 const SCEV *Last = getOperand(getNumOperands() - 1); 10992 assert(!Last->isZero() && "Recurrency with zero step?"); 10993 Ops.push_back(Last); 10994 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10995 SCEV::FlagAnyWrap)); 10996 } 10997 10998 // Return true when S contains at least an undef value. 10999 static inline bool containsUndefs(const SCEV *S) { 11000 return SCEVExprContains(S, [](const SCEV *S) { 11001 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11002 return isa<UndefValue>(SU->getValue()); 11003 return false; 11004 }); 11005 } 11006 11007 namespace { 11008 11009 // Collect all steps of SCEV expressions. 11010 struct SCEVCollectStrides { 11011 ScalarEvolution &SE; 11012 SmallVectorImpl<const SCEV *> &Strides; 11013 11014 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11015 : SE(SE), Strides(S) {} 11016 11017 bool follow(const SCEV *S) { 11018 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11019 Strides.push_back(AR->getStepRecurrence(SE)); 11020 return true; 11021 } 11022 11023 bool isDone() const { return false; } 11024 }; 11025 11026 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11027 struct SCEVCollectTerms { 11028 SmallVectorImpl<const SCEV *> &Terms; 11029 11030 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11031 11032 bool follow(const SCEV *S) { 11033 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11034 isa<SCEVSignExtendExpr>(S)) { 11035 if (!containsUndefs(S)) 11036 Terms.push_back(S); 11037 11038 // Stop recursion: once we collected a term, do not walk its operands. 11039 return false; 11040 } 11041 11042 // Keep looking. 11043 return true; 11044 } 11045 11046 bool isDone() const { return false; } 11047 }; 11048 11049 // Check if a SCEV contains an AddRecExpr. 11050 struct SCEVHasAddRec { 11051 bool &ContainsAddRec; 11052 11053 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11054 ContainsAddRec = false; 11055 } 11056 11057 bool follow(const SCEV *S) { 11058 if (isa<SCEVAddRecExpr>(S)) { 11059 ContainsAddRec = true; 11060 11061 // Stop recursion: once we collected a term, do not walk its operands. 11062 return false; 11063 } 11064 11065 // Keep looking. 11066 return true; 11067 } 11068 11069 bool isDone() const { return false; } 11070 }; 11071 11072 // Find factors that are multiplied with an expression that (possibly as a 11073 // subexpression) contains an AddRecExpr. In the expression: 11074 // 11075 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11076 // 11077 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11078 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11079 // parameters as they form a product with an induction variable. 11080 // 11081 // This collector expects all array size parameters to be in the same MulExpr. 11082 // It might be necessary to later add support for collecting parameters that are 11083 // spread over different nested MulExpr. 11084 struct SCEVCollectAddRecMultiplies { 11085 SmallVectorImpl<const SCEV *> &Terms; 11086 ScalarEvolution &SE; 11087 11088 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11089 : Terms(T), SE(SE) {} 11090 11091 bool follow(const SCEV *S) { 11092 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11093 bool HasAddRec = false; 11094 SmallVector<const SCEV *, 0> Operands; 11095 for (auto Op : Mul->operands()) { 11096 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11097 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11098 Operands.push_back(Op); 11099 } else if (Unknown) { 11100 HasAddRec = true; 11101 } else { 11102 bool ContainsAddRec = false; 11103 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11104 visitAll(Op, ContiansAddRec); 11105 HasAddRec |= ContainsAddRec; 11106 } 11107 } 11108 if (Operands.size() == 0) 11109 return true; 11110 11111 if (!HasAddRec) 11112 return false; 11113 11114 Terms.push_back(SE.getMulExpr(Operands)); 11115 // Stop recursion: once we collected a term, do not walk its operands. 11116 return false; 11117 } 11118 11119 // Keep looking. 11120 return true; 11121 } 11122 11123 bool isDone() const { return false; } 11124 }; 11125 11126 } // end anonymous namespace 11127 11128 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11129 /// two places: 11130 /// 1) The strides of AddRec expressions. 11131 /// 2) Unknowns that are multiplied with AddRec expressions. 11132 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11133 SmallVectorImpl<const SCEV *> &Terms) { 11134 SmallVector<const SCEV *, 4> Strides; 11135 SCEVCollectStrides StrideCollector(*this, Strides); 11136 visitAll(Expr, StrideCollector); 11137 11138 LLVM_DEBUG({ 11139 dbgs() << "Strides:\n"; 11140 for (const SCEV *S : Strides) 11141 dbgs() << *S << "\n"; 11142 }); 11143 11144 for (const SCEV *S : Strides) { 11145 SCEVCollectTerms TermCollector(Terms); 11146 visitAll(S, TermCollector); 11147 } 11148 11149 LLVM_DEBUG({ 11150 dbgs() << "Terms:\n"; 11151 for (const SCEV *T : Terms) 11152 dbgs() << *T << "\n"; 11153 }); 11154 11155 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11156 visitAll(Expr, MulCollector); 11157 } 11158 11159 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11160 SmallVectorImpl<const SCEV *> &Terms, 11161 SmallVectorImpl<const SCEV *> &Sizes) { 11162 int Last = Terms.size() - 1; 11163 const SCEV *Step = Terms[Last]; 11164 11165 // End of recursion. 11166 if (Last == 0) { 11167 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11168 SmallVector<const SCEV *, 2> Qs; 11169 for (const SCEV *Op : M->operands()) 11170 if (!isa<SCEVConstant>(Op)) 11171 Qs.push_back(Op); 11172 11173 Step = SE.getMulExpr(Qs); 11174 } 11175 11176 Sizes.push_back(Step); 11177 return true; 11178 } 11179 11180 for (const SCEV *&Term : Terms) { 11181 // Normalize the terms before the next call to findArrayDimensionsRec. 11182 const SCEV *Q, *R; 11183 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11184 11185 // Bail out when GCD does not evenly divide one of the terms. 11186 if (!R->isZero()) 11187 return false; 11188 11189 Term = Q; 11190 } 11191 11192 // Remove all SCEVConstants. 11193 Terms.erase( 11194 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11195 Terms.end()); 11196 11197 if (Terms.size() > 0) 11198 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11199 return false; 11200 11201 Sizes.push_back(Step); 11202 return true; 11203 } 11204 11205 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11206 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11207 for (const SCEV *T : Terms) 11208 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 11209 return true; 11210 return false; 11211 } 11212 11213 // Return the number of product terms in S. 11214 static inline int numberOfTerms(const SCEV *S) { 11215 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11216 return Expr->getNumOperands(); 11217 return 1; 11218 } 11219 11220 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11221 if (isa<SCEVConstant>(T)) 11222 return nullptr; 11223 11224 if (isa<SCEVUnknown>(T)) 11225 return T; 11226 11227 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11228 SmallVector<const SCEV *, 2> Factors; 11229 for (const SCEV *Op : M->operands()) 11230 if (!isa<SCEVConstant>(Op)) 11231 Factors.push_back(Op); 11232 11233 return SE.getMulExpr(Factors); 11234 } 11235 11236 return T; 11237 } 11238 11239 /// Return the size of an element read or written by Inst. 11240 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11241 Type *Ty; 11242 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11243 Ty = Store->getValueOperand()->getType(); 11244 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11245 Ty = Load->getType(); 11246 else 11247 return nullptr; 11248 11249 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11250 return getSizeOfExpr(ETy, Ty); 11251 } 11252 11253 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11254 SmallVectorImpl<const SCEV *> &Sizes, 11255 const SCEV *ElementSize) { 11256 if (Terms.size() < 1 || !ElementSize) 11257 return; 11258 11259 // Early return when Terms do not contain parameters: we do not delinearize 11260 // non parametric SCEVs. 11261 if (!containsParameters(Terms)) 11262 return; 11263 11264 LLVM_DEBUG({ 11265 dbgs() << "Terms:\n"; 11266 for (const SCEV *T : Terms) 11267 dbgs() << *T << "\n"; 11268 }); 11269 11270 // Remove duplicates. 11271 array_pod_sort(Terms.begin(), Terms.end()); 11272 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11273 11274 // Put larger terms first. 11275 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11276 return numberOfTerms(LHS) > numberOfTerms(RHS); 11277 }); 11278 11279 // Try to divide all terms by the element size. If term is not divisible by 11280 // element size, proceed with the original term. 11281 for (const SCEV *&Term : Terms) { 11282 const SCEV *Q, *R; 11283 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11284 if (!Q->isZero()) 11285 Term = Q; 11286 } 11287 11288 SmallVector<const SCEV *, 4> NewTerms; 11289 11290 // Remove constant factors. 11291 for (const SCEV *T : Terms) 11292 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11293 NewTerms.push_back(NewT); 11294 11295 LLVM_DEBUG({ 11296 dbgs() << "Terms after sorting:\n"; 11297 for (const SCEV *T : NewTerms) 11298 dbgs() << *T << "\n"; 11299 }); 11300 11301 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11302 Sizes.clear(); 11303 return; 11304 } 11305 11306 // The last element to be pushed into Sizes is the size of an element. 11307 Sizes.push_back(ElementSize); 11308 11309 LLVM_DEBUG({ 11310 dbgs() << "Sizes:\n"; 11311 for (const SCEV *S : Sizes) 11312 dbgs() << *S << "\n"; 11313 }); 11314 } 11315 11316 void ScalarEvolution::computeAccessFunctions( 11317 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11318 SmallVectorImpl<const SCEV *> &Sizes) { 11319 // Early exit in case this SCEV is not an affine multivariate function. 11320 if (Sizes.empty()) 11321 return; 11322 11323 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11324 if (!AR->isAffine()) 11325 return; 11326 11327 const SCEV *Res = Expr; 11328 int Last = Sizes.size() - 1; 11329 for (int i = Last; i >= 0; i--) { 11330 const SCEV *Q, *R; 11331 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11332 11333 LLVM_DEBUG({ 11334 dbgs() << "Res: " << *Res << "\n"; 11335 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11336 dbgs() << "Res divided by Sizes[i]:\n"; 11337 dbgs() << "Quotient: " << *Q << "\n"; 11338 dbgs() << "Remainder: " << *R << "\n"; 11339 }); 11340 11341 Res = Q; 11342 11343 // Do not record the last subscript corresponding to the size of elements in 11344 // the array. 11345 if (i == Last) { 11346 11347 // Bail out if the remainder is too complex. 11348 if (isa<SCEVAddRecExpr>(R)) { 11349 Subscripts.clear(); 11350 Sizes.clear(); 11351 return; 11352 } 11353 11354 continue; 11355 } 11356 11357 // Record the access function for the current subscript. 11358 Subscripts.push_back(R); 11359 } 11360 11361 // Also push in last position the remainder of the last division: it will be 11362 // the access function of the innermost dimension. 11363 Subscripts.push_back(Res); 11364 11365 std::reverse(Subscripts.begin(), Subscripts.end()); 11366 11367 LLVM_DEBUG({ 11368 dbgs() << "Subscripts:\n"; 11369 for (const SCEV *S : Subscripts) 11370 dbgs() << *S << "\n"; 11371 }); 11372 } 11373 11374 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11375 /// sizes of an array access. Returns the remainder of the delinearization that 11376 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11377 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11378 /// expressions in the stride and base of a SCEV corresponding to the 11379 /// computation of a GCD (greatest common divisor) of base and stride. When 11380 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11381 /// 11382 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11383 /// 11384 /// void foo(long n, long m, long o, double A[n][m][o]) { 11385 /// 11386 /// for (long i = 0; i < n; i++) 11387 /// for (long j = 0; j < m; j++) 11388 /// for (long k = 0; k < o; k++) 11389 /// A[i][j][k] = 1.0; 11390 /// } 11391 /// 11392 /// the delinearization input is the following AddRec SCEV: 11393 /// 11394 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11395 /// 11396 /// From this SCEV, we are able to say that the base offset of the access is %A 11397 /// because it appears as an offset that does not divide any of the strides in 11398 /// the loops: 11399 /// 11400 /// CHECK: Base offset: %A 11401 /// 11402 /// and then SCEV->delinearize determines the size of some of the dimensions of 11403 /// the array as these are the multiples by which the strides are happening: 11404 /// 11405 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11406 /// 11407 /// Note that the outermost dimension remains of UnknownSize because there are 11408 /// no strides that would help identifying the size of the last dimension: when 11409 /// the array has been statically allocated, one could compute the size of that 11410 /// dimension by dividing the overall size of the array by the size of the known 11411 /// dimensions: %m * %o * 8. 11412 /// 11413 /// Finally delinearize provides the access functions for the array reference 11414 /// that does correspond to A[i][j][k] of the above C testcase: 11415 /// 11416 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11417 /// 11418 /// The testcases are checking the output of a function pass: 11419 /// DelinearizationPass that walks through all loads and stores of a function 11420 /// asking for the SCEV of the memory access with respect to all enclosing 11421 /// loops, calling SCEV->delinearize on that and printing the results. 11422 void ScalarEvolution::delinearize(const SCEV *Expr, 11423 SmallVectorImpl<const SCEV *> &Subscripts, 11424 SmallVectorImpl<const SCEV *> &Sizes, 11425 const SCEV *ElementSize) { 11426 // First step: collect parametric terms. 11427 SmallVector<const SCEV *, 4> Terms; 11428 collectParametricTerms(Expr, Terms); 11429 11430 if (Terms.empty()) 11431 return; 11432 11433 // Second step: find subscript sizes. 11434 findArrayDimensions(Terms, Sizes, ElementSize); 11435 11436 if (Sizes.empty()) 11437 return; 11438 11439 // Third step: compute the access functions for each subscript. 11440 computeAccessFunctions(Expr, Subscripts, Sizes); 11441 11442 if (Subscripts.empty()) 11443 return; 11444 11445 LLVM_DEBUG({ 11446 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11447 dbgs() << "ArrayDecl[UnknownSize]"; 11448 for (const SCEV *S : Sizes) 11449 dbgs() << "[" << *S << "]"; 11450 11451 dbgs() << "\nArrayRef"; 11452 for (const SCEV *S : Subscripts) 11453 dbgs() << "[" << *S << "]"; 11454 dbgs() << "\n"; 11455 }); 11456 } 11457 11458 bool ScalarEvolution::getIndexExpressionsFromGEP( 11459 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11460 SmallVectorImpl<int> &Sizes) { 11461 assert(Subscripts.empty() && Sizes.empty() && 11462 "Expected output lists to be empty on entry to this function."); 11463 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11464 Type *Ty = GEP->getPointerOperandType(); 11465 bool DroppedFirstDim = false; 11466 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11467 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11468 if (i == 1) { 11469 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11470 Ty = PtrTy->getElementType(); 11471 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11472 Ty = ArrayTy->getElementType(); 11473 } else { 11474 Subscripts.clear(); 11475 Sizes.clear(); 11476 return false; 11477 } 11478 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11479 if (Const->getValue()->isZero()) { 11480 DroppedFirstDim = true; 11481 continue; 11482 } 11483 Subscripts.push_back(Expr); 11484 continue; 11485 } 11486 11487 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11488 if (!ArrayTy) { 11489 Subscripts.clear(); 11490 Sizes.clear(); 11491 return false; 11492 } 11493 11494 Subscripts.push_back(Expr); 11495 if (!(DroppedFirstDim && i == 2)) 11496 Sizes.push_back(ArrayTy->getNumElements()); 11497 11498 Ty = ArrayTy->getElementType(); 11499 } 11500 return !Subscripts.empty(); 11501 } 11502 11503 //===----------------------------------------------------------------------===// 11504 // SCEVCallbackVH Class Implementation 11505 //===----------------------------------------------------------------------===// 11506 11507 void ScalarEvolution::SCEVCallbackVH::deleted() { 11508 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11509 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11510 SE->ConstantEvolutionLoopExitValue.erase(PN); 11511 SE->eraseValueFromMap(getValPtr()); 11512 // this now dangles! 11513 } 11514 11515 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11516 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11517 11518 // Forget all the expressions associated with users of the old value, 11519 // so that future queries will recompute the expressions using the new 11520 // value. 11521 Value *Old = getValPtr(); 11522 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11523 SmallPtrSet<User *, 8> Visited; 11524 while (!Worklist.empty()) { 11525 User *U = Worklist.pop_back_val(); 11526 // Deleting the Old value will cause this to dangle. Postpone 11527 // that until everything else is done. 11528 if (U == Old) 11529 continue; 11530 if (!Visited.insert(U).second) 11531 continue; 11532 if (PHINode *PN = dyn_cast<PHINode>(U)) 11533 SE->ConstantEvolutionLoopExitValue.erase(PN); 11534 SE->eraseValueFromMap(U); 11535 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11536 } 11537 // Delete the Old value. 11538 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11539 SE->ConstantEvolutionLoopExitValue.erase(PN); 11540 SE->eraseValueFromMap(Old); 11541 // this now dangles! 11542 } 11543 11544 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11545 : CallbackVH(V), SE(se) {} 11546 11547 //===----------------------------------------------------------------------===// 11548 // ScalarEvolution Class Implementation 11549 //===----------------------------------------------------------------------===// 11550 11551 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11552 AssumptionCache &AC, DominatorTree &DT, 11553 LoopInfo &LI) 11554 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11555 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11556 LoopDispositions(64), BlockDispositions(64) { 11557 // To use guards for proving predicates, we need to scan every instruction in 11558 // relevant basic blocks, and not just terminators. Doing this is a waste of 11559 // time if the IR does not actually contain any calls to 11560 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11561 // 11562 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11563 // to _add_ guards to the module when there weren't any before, and wants 11564 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11565 // efficient in lieu of being smart in that rather obscure case. 11566 11567 auto *GuardDecl = F.getParent()->getFunction( 11568 Intrinsic::getName(Intrinsic::experimental_guard)); 11569 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11570 } 11571 11572 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11573 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11574 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11575 ValueExprMap(std::move(Arg.ValueExprMap)), 11576 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11577 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11578 PendingMerges(std::move(Arg.PendingMerges)), 11579 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11580 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11581 PredicatedBackedgeTakenCounts( 11582 std::move(Arg.PredicatedBackedgeTakenCounts)), 11583 ConstantEvolutionLoopExitValue( 11584 std::move(Arg.ConstantEvolutionLoopExitValue)), 11585 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11586 LoopDispositions(std::move(Arg.LoopDispositions)), 11587 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11588 BlockDispositions(std::move(Arg.BlockDispositions)), 11589 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11590 SignedRanges(std::move(Arg.SignedRanges)), 11591 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11592 UniquePreds(std::move(Arg.UniquePreds)), 11593 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11594 LoopUsers(std::move(Arg.LoopUsers)), 11595 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11596 FirstUnknown(Arg.FirstUnknown) { 11597 Arg.FirstUnknown = nullptr; 11598 } 11599 11600 ScalarEvolution::~ScalarEvolution() { 11601 // Iterate through all the SCEVUnknown instances and call their 11602 // destructors, so that they release their references to their values. 11603 for (SCEVUnknown *U = FirstUnknown; U;) { 11604 SCEVUnknown *Tmp = U; 11605 U = U->Next; 11606 Tmp->~SCEVUnknown(); 11607 } 11608 FirstUnknown = nullptr; 11609 11610 ExprValueMap.clear(); 11611 ValueExprMap.clear(); 11612 HasRecMap.clear(); 11613 11614 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11615 // that a loop had multiple computable exits. 11616 for (auto &BTCI : BackedgeTakenCounts) 11617 BTCI.second.clear(); 11618 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11619 BTCI.second.clear(); 11620 11621 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11622 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11623 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11624 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11625 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11626 } 11627 11628 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11629 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11630 } 11631 11632 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11633 const Loop *L) { 11634 // Print all inner loops first 11635 for (Loop *I : *L) 11636 PrintLoopInfo(OS, SE, I); 11637 11638 OS << "Loop "; 11639 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11640 OS << ": "; 11641 11642 SmallVector<BasicBlock *, 8> ExitingBlocks; 11643 L->getExitingBlocks(ExitingBlocks); 11644 if (ExitingBlocks.size() != 1) 11645 OS << "<multiple exits> "; 11646 11647 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11648 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11649 else 11650 OS << "Unpredictable backedge-taken count.\n"; 11651 11652 if (ExitingBlocks.size() > 1) 11653 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11654 OS << " exit count for " << ExitingBlock->getName() << ": " 11655 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11656 } 11657 11658 OS << "Loop "; 11659 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11660 OS << ": "; 11661 11662 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11663 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11664 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11665 OS << ", actual taken count either this or zero."; 11666 } else { 11667 OS << "Unpredictable max backedge-taken count. "; 11668 } 11669 11670 OS << "\n" 11671 "Loop "; 11672 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11673 OS << ": "; 11674 11675 SCEVUnionPredicate Pred; 11676 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11677 if (!isa<SCEVCouldNotCompute>(PBT)) { 11678 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11679 OS << " Predicates:\n"; 11680 Pred.print(OS, 4); 11681 } else { 11682 OS << "Unpredictable predicated backedge-taken count. "; 11683 } 11684 OS << "\n"; 11685 11686 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11687 OS << "Loop "; 11688 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11689 OS << ": "; 11690 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11691 } 11692 } 11693 11694 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11695 switch (LD) { 11696 case ScalarEvolution::LoopVariant: 11697 return "Variant"; 11698 case ScalarEvolution::LoopInvariant: 11699 return "Invariant"; 11700 case ScalarEvolution::LoopComputable: 11701 return "Computable"; 11702 } 11703 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11704 } 11705 11706 void ScalarEvolution::print(raw_ostream &OS) const { 11707 // ScalarEvolution's implementation of the print method is to print 11708 // out SCEV values of all instructions that are interesting. Doing 11709 // this potentially causes it to create new SCEV objects though, 11710 // which technically conflicts with the const qualifier. This isn't 11711 // observable from outside the class though, so casting away the 11712 // const isn't dangerous. 11713 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11714 11715 if (ClassifyExpressions) { 11716 OS << "Classifying expressions for: "; 11717 F.printAsOperand(OS, /*PrintType=*/false); 11718 OS << "\n"; 11719 for (Instruction &I : instructions(F)) 11720 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11721 OS << I << '\n'; 11722 OS << " --> "; 11723 const SCEV *SV = SE.getSCEV(&I); 11724 SV->print(OS); 11725 if (!isa<SCEVCouldNotCompute>(SV)) { 11726 OS << " U: "; 11727 SE.getUnsignedRange(SV).print(OS); 11728 OS << " S: "; 11729 SE.getSignedRange(SV).print(OS); 11730 } 11731 11732 const Loop *L = LI.getLoopFor(I.getParent()); 11733 11734 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11735 if (AtUse != SV) { 11736 OS << " --> "; 11737 AtUse->print(OS); 11738 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11739 OS << " U: "; 11740 SE.getUnsignedRange(AtUse).print(OS); 11741 OS << " S: "; 11742 SE.getSignedRange(AtUse).print(OS); 11743 } 11744 } 11745 11746 if (L) { 11747 OS << "\t\t" "Exits: "; 11748 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11749 if (!SE.isLoopInvariant(ExitValue, L)) { 11750 OS << "<<Unknown>>"; 11751 } else { 11752 OS << *ExitValue; 11753 } 11754 11755 bool First = true; 11756 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11757 if (First) { 11758 OS << "\t\t" "LoopDispositions: { "; 11759 First = false; 11760 } else { 11761 OS << ", "; 11762 } 11763 11764 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11765 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11766 } 11767 11768 for (auto *InnerL : depth_first(L)) { 11769 if (InnerL == L) 11770 continue; 11771 if (First) { 11772 OS << "\t\t" "LoopDispositions: { "; 11773 First = false; 11774 } else { 11775 OS << ", "; 11776 } 11777 11778 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11779 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11780 } 11781 11782 OS << " }"; 11783 } 11784 11785 OS << "\n"; 11786 } 11787 } 11788 11789 OS << "Determining loop execution counts for: "; 11790 F.printAsOperand(OS, /*PrintType=*/false); 11791 OS << "\n"; 11792 for (Loop *I : LI) 11793 PrintLoopInfo(OS, &SE, I); 11794 } 11795 11796 ScalarEvolution::LoopDisposition 11797 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11798 auto &Values = LoopDispositions[S]; 11799 for (auto &V : Values) { 11800 if (V.getPointer() == L) 11801 return V.getInt(); 11802 } 11803 Values.emplace_back(L, LoopVariant); 11804 LoopDisposition D = computeLoopDisposition(S, L); 11805 auto &Values2 = LoopDispositions[S]; 11806 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11807 if (V.getPointer() == L) { 11808 V.setInt(D); 11809 break; 11810 } 11811 } 11812 return D; 11813 } 11814 11815 ScalarEvolution::LoopDisposition 11816 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11817 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11818 case scConstant: 11819 return LoopInvariant; 11820 case scTruncate: 11821 case scZeroExtend: 11822 case scSignExtend: 11823 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11824 case scAddRecExpr: { 11825 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11826 11827 // If L is the addrec's loop, it's computable. 11828 if (AR->getLoop() == L) 11829 return LoopComputable; 11830 11831 // Add recurrences are never invariant in the function-body (null loop). 11832 if (!L) 11833 return LoopVariant; 11834 11835 // Everything that is not defined at loop entry is variant. 11836 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11837 return LoopVariant; 11838 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11839 " dominate the contained loop's header?"); 11840 11841 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11842 if (AR->getLoop()->contains(L)) 11843 return LoopInvariant; 11844 11845 // This recurrence is variant w.r.t. L if any of its operands 11846 // are variant. 11847 for (auto *Op : AR->operands()) 11848 if (!isLoopInvariant(Op, L)) 11849 return LoopVariant; 11850 11851 // Otherwise it's loop-invariant. 11852 return LoopInvariant; 11853 } 11854 case scAddExpr: 11855 case scMulExpr: 11856 case scUMaxExpr: 11857 case scSMaxExpr: 11858 case scUMinExpr: 11859 case scSMinExpr: { 11860 bool HasVarying = false; 11861 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11862 LoopDisposition D = getLoopDisposition(Op, L); 11863 if (D == LoopVariant) 11864 return LoopVariant; 11865 if (D == LoopComputable) 11866 HasVarying = true; 11867 } 11868 return HasVarying ? LoopComputable : LoopInvariant; 11869 } 11870 case scUDivExpr: { 11871 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11872 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11873 if (LD == LoopVariant) 11874 return LoopVariant; 11875 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11876 if (RD == LoopVariant) 11877 return LoopVariant; 11878 return (LD == LoopInvariant && RD == LoopInvariant) ? 11879 LoopInvariant : LoopComputable; 11880 } 11881 case scUnknown: 11882 // All non-instruction values are loop invariant. All instructions are loop 11883 // invariant if they are not contained in the specified loop. 11884 // Instructions are never considered invariant in the function body 11885 // (null loop) because they are defined within the "loop". 11886 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11887 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11888 return LoopInvariant; 11889 case scCouldNotCompute: 11890 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11891 } 11892 llvm_unreachable("Unknown SCEV kind!"); 11893 } 11894 11895 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11896 return getLoopDisposition(S, L) == LoopInvariant; 11897 } 11898 11899 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11900 return getLoopDisposition(S, L) == LoopComputable; 11901 } 11902 11903 ScalarEvolution::BlockDisposition 11904 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11905 auto &Values = BlockDispositions[S]; 11906 for (auto &V : Values) { 11907 if (V.getPointer() == BB) 11908 return V.getInt(); 11909 } 11910 Values.emplace_back(BB, DoesNotDominateBlock); 11911 BlockDisposition D = computeBlockDisposition(S, BB); 11912 auto &Values2 = BlockDispositions[S]; 11913 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11914 if (V.getPointer() == BB) { 11915 V.setInt(D); 11916 break; 11917 } 11918 } 11919 return D; 11920 } 11921 11922 ScalarEvolution::BlockDisposition 11923 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11924 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11925 case scConstant: 11926 return ProperlyDominatesBlock; 11927 case scTruncate: 11928 case scZeroExtend: 11929 case scSignExtend: 11930 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11931 case scAddRecExpr: { 11932 // This uses a "dominates" query instead of "properly dominates" query 11933 // to test for proper dominance too, because the instruction which 11934 // produces the addrec's value is a PHI, and a PHI effectively properly 11935 // dominates its entire containing block. 11936 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11937 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11938 return DoesNotDominateBlock; 11939 11940 // Fall through into SCEVNAryExpr handling. 11941 LLVM_FALLTHROUGH; 11942 } 11943 case scAddExpr: 11944 case scMulExpr: 11945 case scUMaxExpr: 11946 case scSMaxExpr: 11947 case scUMinExpr: 11948 case scSMinExpr: { 11949 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11950 bool Proper = true; 11951 for (const SCEV *NAryOp : NAry->operands()) { 11952 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11953 if (D == DoesNotDominateBlock) 11954 return DoesNotDominateBlock; 11955 if (D == DominatesBlock) 11956 Proper = false; 11957 } 11958 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11959 } 11960 case scUDivExpr: { 11961 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11962 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11963 BlockDisposition LD = getBlockDisposition(LHS, BB); 11964 if (LD == DoesNotDominateBlock) 11965 return DoesNotDominateBlock; 11966 BlockDisposition RD = getBlockDisposition(RHS, BB); 11967 if (RD == DoesNotDominateBlock) 11968 return DoesNotDominateBlock; 11969 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11970 ProperlyDominatesBlock : DominatesBlock; 11971 } 11972 case scUnknown: 11973 if (Instruction *I = 11974 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11975 if (I->getParent() == BB) 11976 return DominatesBlock; 11977 if (DT.properlyDominates(I->getParent(), BB)) 11978 return ProperlyDominatesBlock; 11979 return DoesNotDominateBlock; 11980 } 11981 return ProperlyDominatesBlock; 11982 case scCouldNotCompute: 11983 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11984 } 11985 llvm_unreachable("Unknown SCEV kind!"); 11986 } 11987 11988 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11989 return getBlockDisposition(S, BB) >= DominatesBlock; 11990 } 11991 11992 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11993 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11994 } 11995 11996 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11997 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11998 } 11999 12000 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12001 auto IsS = [&](const SCEV *X) { return S == X; }; 12002 auto ContainsS = [&](const SCEV *X) { 12003 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12004 }; 12005 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12006 } 12007 12008 void 12009 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12010 ValuesAtScopes.erase(S); 12011 LoopDispositions.erase(S); 12012 BlockDispositions.erase(S); 12013 UnsignedRanges.erase(S); 12014 SignedRanges.erase(S); 12015 ExprValueMap.erase(S); 12016 HasRecMap.erase(S); 12017 MinTrailingZerosCache.erase(S); 12018 12019 for (auto I = PredicatedSCEVRewrites.begin(); 12020 I != PredicatedSCEVRewrites.end();) { 12021 std::pair<const SCEV *, const Loop *> Entry = I->first; 12022 if (Entry.first == S) 12023 PredicatedSCEVRewrites.erase(I++); 12024 else 12025 ++I; 12026 } 12027 12028 auto RemoveSCEVFromBackedgeMap = 12029 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12030 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12031 BackedgeTakenInfo &BEInfo = I->second; 12032 if (BEInfo.hasOperand(S, this)) { 12033 BEInfo.clear(); 12034 Map.erase(I++); 12035 } else 12036 ++I; 12037 } 12038 }; 12039 12040 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12041 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12042 } 12043 12044 void 12045 ScalarEvolution::getUsedLoops(const SCEV *S, 12046 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12047 struct FindUsedLoops { 12048 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12049 : LoopsUsed(LoopsUsed) {} 12050 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12051 bool follow(const SCEV *S) { 12052 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12053 LoopsUsed.insert(AR->getLoop()); 12054 return true; 12055 } 12056 12057 bool isDone() const { return false; } 12058 }; 12059 12060 FindUsedLoops F(LoopsUsed); 12061 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12062 } 12063 12064 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12065 SmallPtrSet<const Loop *, 8> LoopsUsed; 12066 getUsedLoops(S, LoopsUsed); 12067 for (auto *L : LoopsUsed) 12068 LoopUsers[L].push_back(S); 12069 } 12070 12071 void ScalarEvolution::verify() const { 12072 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12073 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12074 12075 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12076 12077 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12078 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12079 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12080 12081 const SCEV *visitConstant(const SCEVConstant *Constant) { 12082 return SE.getConstant(Constant->getAPInt()); 12083 } 12084 12085 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12086 return SE.getUnknown(Expr->getValue()); 12087 } 12088 12089 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12090 return SE.getCouldNotCompute(); 12091 } 12092 }; 12093 12094 SCEVMapper SCM(SE2); 12095 12096 while (!LoopStack.empty()) { 12097 auto *L = LoopStack.pop_back_val(); 12098 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12099 12100 auto *CurBECount = SCM.visit( 12101 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12102 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12103 12104 if (CurBECount == SE2.getCouldNotCompute() || 12105 NewBECount == SE2.getCouldNotCompute()) { 12106 // NB! This situation is legal, but is very suspicious -- whatever pass 12107 // change the loop to make a trip count go from could not compute to 12108 // computable or vice-versa *should have* invalidated SCEV. However, we 12109 // choose not to assert here (for now) since we don't want false 12110 // positives. 12111 continue; 12112 } 12113 12114 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12115 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12116 // not propagate undef aggressively). This means we can (and do) fail 12117 // verification in cases where a transform makes the trip count of a loop 12118 // go from "undef" to "undef+1" (say). The transform is fine, since in 12119 // both cases the loop iterates "undef" times, but SCEV thinks we 12120 // increased the trip count of the loop by 1 incorrectly. 12121 continue; 12122 } 12123 12124 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12125 SE.getTypeSizeInBits(NewBECount->getType())) 12126 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12127 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12128 SE.getTypeSizeInBits(NewBECount->getType())) 12129 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12130 12131 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12132 12133 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12134 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12135 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12136 dbgs() << "Old: " << *CurBECount << "\n"; 12137 dbgs() << "New: " << *NewBECount << "\n"; 12138 dbgs() << "Delta: " << *Delta << "\n"; 12139 std::abort(); 12140 } 12141 } 12142 } 12143 12144 bool ScalarEvolution::invalidate( 12145 Function &F, const PreservedAnalyses &PA, 12146 FunctionAnalysisManager::Invalidator &Inv) { 12147 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12148 // of its dependencies is invalidated. 12149 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12150 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12151 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12152 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12153 Inv.invalidate<LoopAnalysis>(F, PA); 12154 } 12155 12156 AnalysisKey ScalarEvolutionAnalysis::Key; 12157 12158 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12159 FunctionAnalysisManager &AM) { 12160 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12161 AM.getResult<AssumptionAnalysis>(F), 12162 AM.getResult<DominatorTreeAnalysis>(F), 12163 AM.getResult<LoopAnalysis>(F)); 12164 } 12165 12166 PreservedAnalyses 12167 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12168 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12169 return PreservedAnalyses::all(); 12170 } 12171 12172 PreservedAnalyses 12173 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12174 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12175 return PreservedAnalyses::all(); 12176 } 12177 12178 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12179 "Scalar Evolution Analysis", false, true) 12180 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12181 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12182 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12183 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12184 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12185 "Scalar Evolution Analysis", false, true) 12186 12187 char ScalarEvolutionWrapperPass::ID = 0; 12188 12189 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12190 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12191 } 12192 12193 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12194 SE.reset(new ScalarEvolution( 12195 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12196 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12197 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12198 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12199 return false; 12200 } 12201 12202 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12203 12204 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12205 SE->print(OS); 12206 } 12207 12208 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12209 if (!VerifySCEV) 12210 return; 12211 12212 SE->verify(); 12213 } 12214 12215 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12216 AU.setPreservesAll(); 12217 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12218 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12219 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12220 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12221 } 12222 12223 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12224 const SCEV *RHS) { 12225 FoldingSetNodeID ID; 12226 assert(LHS->getType() == RHS->getType() && 12227 "Type mismatch between LHS and RHS"); 12228 // Unique this node based on the arguments 12229 ID.AddInteger(SCEVPredicate::P_Equal); 12230 ID.AddPointer(LHS); 12231 ID.AddPointer(RHS); 12232 void *IP = nullptr; 12233 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12234 return S; 12235 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12236 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12237 UniquePreds.InsertNode(Eq, IP); 12238 return Eq; 12239 } 12240 12241 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12242 const SCEVAddRecExpr *AR, 12243 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12244 FoldingSetNodeID ID; 12245 // Unique this node based on the arguments 12246 ID.AddInteger(SCEVPredicate::P_Wrap); 12247 ID.AddPointer(AR); 12248 ID.AddInteger(AddedFlags); 12249 void *IP = nullptr; 12250 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12251 return S; 12252 auto *OF = new (SCEVAllocator) 12253 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12254 UniquePreds.InsertNode(OF, IP); 12255 return OF; 12256 } 12257 12258 namespace { 12259 12260 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12261 public: 12262 12263 /// Rewrites \p S in the context of a loop L and the SCEV predication 12264 /// infrastructure. 12265 /// 12266 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12267 /// equivalences present in \p Pred. 12268 /// 12269 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12270 /// \p NewPreds such that the result will be an AddRecExpr. 12271 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12272 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12273 SCEVUnionPredicate *Pred) { 12274 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12275 return Rewriter.visit(S); 12276 } 12277 12278 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12279 if (Pred) { 12280 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12281 for (auto *Pred : ExprPreds) 12282 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12283 if (IPred->getLHS() == Expr) 12284 return IPred->getRHS(); 12285 } 12286 return convertToAddRecWithPreds(Expr); 12287 } 12288 12289 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12290 const SCEV *Operand = visit(Expr->getOperand()); 12291 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12292 if (AR && AR->getLoop() == L && AR->isAffine()) { 12293 // This couldn't be folded because the operand didn't have the nuw 12294 // flag. Add the nusw flag as an assumption that we could make. 12295 const SCEV *Step = AR->getStepRecurrence(SE); 12296 Type *Ty = Expr->getType(); 12297 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12298 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12299 SE.getSignExtendExpr(Step, Ty), L, 12300 AR->getNoWrapFlags()); 12301 } 12302 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12303 } 12304 12305 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12306 const SCEV *Operand = visit(Expr->getOperand()); 12307 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12308 if (AR && AR->getLoop() == L && AR->isAffine()) { 12309 // This couldn't be folded because the operand didn't have the nsw 12310 // flag. Add the nssw flag as an assumption that we could make. 12311 const SCEV *Step = AR->getStepRecurrence(SE); 12312 Type *Ty = Expr->getType(); 12313 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12314 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12315 SE.getSignExtendExpr(Step, Ty), L, 12316 AR->getNoWrapFlags()); 12317 } 12318 return SE.getSignExtendExpr(Operand, Expr->getType()); 12319 } 12320 12321 private: 12322 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12323 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12324 SCEVUnionPredicate *Pred) 12325 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12326 12327 bool addOverflowAssumption(const SCEVPredicate *P) { 12328 if (!NewPreds) { 12329 // Check if we've already made this assumption. 12330 return Pred && Pred->implies(P); 12331 } 12332 NewPreds->insert(P); 12333 return true; 12334 } 12335 12336 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12337 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12338 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12339 return addOverflowAssumption(A); 12340 } 12341 12342 // If \p Expr represents a PHINode, we try to see if it can be represented 12343 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12344 // to add this predicate as a runtime overflow check, we return the AddRec. 12345 // If \p Expr does not meet these conditions (is not a PHI node, or we 12346 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12347 // return \p Expr. 12348 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12349 if (!isa<PHINode>(Expr->getValue())) 12350 return Expr; 12351 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12352 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12353 if (!PredicatedRewrite) 12354 return Expr; 12355 for (auto *P : PredicatedRewrite->second){ 12356 // Wrap predicates from outer loops are not supported. 12357 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12358 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12359 if (L != AR->getLoop()) 12360 return Expr; 12361 } 12362 if (!addOverflowAssumption(P)) 12363 return Expr; 12364 } 12365 return PredicatedRewrite->first; 12366 } 12367 12368 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12369 SCEVUnionPredicate *Pred; 12370 const Loop *L; 12371 }; 12372 12373 } // end anonymous namespace 12374 12375 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12376 SCEVUnionPredicate &Preds) { 12377 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12378 } 12379 12380 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12381 const SCEV *S, const Loop *L, 12382 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12383 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12384 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12385 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12386 12387 if (!AddRec) 12388 return nullptr; 12389 12390 // Since the transformation was successful, we can now transfer the SCEV 12391 // predicates. 12392 for (auto *P : TransformPreds) 12393 Preds.insert(P); 12394 12395 return AddRec; 12396 } 12397 12398 /// SCEV predicates 12399 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12400 SCEVPredicateKind Kind) 12401 : FastID(ID), Kind(Kind) {} 12402 12403 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12404 const SCEV *LHS, const SCEV *RHS) 12405 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12406 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12407 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12408 } 12409 12410 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12411 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12412 12413 if (!Op) 12414 return false; 12415 12416 return Op->LHS == LHS && Op->RHS == RHS; 12417 } 12418 12419 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12420 12421 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12422 12423 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12424 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12425 } 12426 12427 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12428 const SCEVAddRecExpr *AR, 12429 IncrementWrapFlags Flags) 12430 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12431 12432 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12433 12434 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12435 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12436 12437 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12438 } 12439 12440 bool SCEVWrapPredicate::isAlwaysTrue() const { 12441 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12442 IncrementWrapFlags IFlags = Flags; 12443 12444 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12445 IFlags = clearFlags(IFlags, IncrementNSSW); 12446 12447 return IFlags == IncrementAnyWrap; 12448 } 12449 12450 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12451 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12452 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12453 OS << "<nusw>"; 12454 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12455 OS << "<nssw>"; 12456 OS << "\n"; 12457 } 12458 12459 SCEVWrapPredicate::IncrementWrapFlags 12460 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12461 ScalarEvolution &SE) { 12462 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12463 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12464 12465 // We can safely transfer the NSW flag as NSSW. 12466 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12467 ImpliedFlags = IncrementNSSW; 12468 12469 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12470 // If the increment is positive, the SCEV NUW flag will also imply the 12471 // WrapPredicate NUSW flag. 12472 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12473 if (Step->getValue()->getValue().isNonNegative()) 12474 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12475 } 12476 12477 return ImpliedFlags; 12478 } 12479 12480 /// Union predicates don't get cached so create a dummy set ID for it. 12481 SCEVUnionPredicate::SCEVUnionPredicate() 12482 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12483 12484 bool SCEVUnionPredicate::isAlwaysTrue() const { 12485 return all_of(Preds, 12486 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12487 } 12488 12489 ArrayRef<const SCEVPredicate *> 12490 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12491 auto I = SCEVToPreds.find(Expr); 12492 if (I == SCEVToPreds.end()) 12493 return ArrayRef<const SCEVPredicate *>(); 12494 return I->second; 12495 } 12496 12497 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12498 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12499 return all_of(Set->Preds, 12500 [this](const SCEVPredicate *I) { return this->implies(I); }); 12501 12502 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12503 if (ScevPredsIt == SCEVToPreds.end()) 12504 return false; 12505 auto &SCEVPreds = ScevPredsIt->second; 12506 12507 return any_of(SCEVPreds, 12508 [N](const SCEVPredicate *I) { return I->implies(N); }); 12509 } 12510 12511 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12512 12513 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12514 for (auto Pred : Preds) 12515 Pred->print(OS, Depth); 12516 } 12517 12518 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12519 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12520 for (auto Pred : Set->Preds) 12521 add(Pred); 12522 return; 12523 } 12524 12525 if (implies(N)) 12526 return; 12527 12528 const SCEV *Key = N->getExpr(); 12529 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12530 " associated expression!"); 12531 12532 SCEVToPreds[Key].push_back(N); 12533 Preds.push_back(N); 12534 } 12535 12536 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12537 Loop &L) 12538 : SE(SE), L(L) {} 12539 12540 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12541 const SCEV *Expr = SE.getSCEV(V); 12542 RewriteEntry &Entry = RewriteMap[Expr]; 12543 12544 // If we already have an entry and the version matches, return it. 12545 if (Entry.second && Generation == Entry.first) 12546 return Entry.second; 12547 12548 // We found an entry but it's stale. Rewrite the stale entry 12549 // according to the current predicate. 12550 if (Entry.second) 12551 Expr = Entry.second; 12552 12553 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12554 Entry = {Generation, NewSCEV}; 12555 12556 return NewSCEV; 12557 } 12558 12559 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12560 if (!BackedgeCount) { 12561 SCEVUnionPredicate BackedgePred; 12562 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12563 addPredicate(BackedgePred); 12564 } 12565 return BackedgeCount; 12566 } 12567 12568 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12569 if (Preds.implies(&Pred)) 12570 return; 12571 Preds.add(&Pred); 12572 updateGeneration(); 12573 } 12574 12575 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12576 return Preds; 12577 } 12578 12579 void PredicatedScalarEvolution::updateGeneration() { 12580 // If the generation number wrapped recompute everything. 12581 if (++Generation == 0) { 12582 for (auto &II : RewriteMap) { 12583 const SCEV *Rewritten = II.second.second; 12584 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12585 } 12586 } 12587 } 12588 12589 void PredicatedScalarEvolution::setNoOverflow( 12590 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12591 const SCEV *Expr = getSCEV(V); 12592 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12593 12594 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12595 12596 // Clear the statically implied flags. 12597 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12598 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12599 12600 auto II = FlagsMap.insert({V, Flags}); 12601 if (!II.second) 12602 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12603 } 12604 12605 bool PredicatedScalarEvolution::hasNoOverflow( 12606 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12607 const SCEV *Expr = getSCEV(V); 12608 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12609 12610 Flags = SCEVWrapPredicate::clearFlags( 12611 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12612 12613 auto II = FlagsMap.find(V); 12614 12615 if (II != FlagsMap.end()) 12616 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12617 12618 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12619 } 12620 12621 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12622 const SCEV *Expr = this->getSCEV(V); 12623 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12624 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12625 12626 if (!New) 12627 return nullptr; 12628 12629 for (auto *P : NewPreds) 12630 Preds.add(P); 12631 12632 updateGeneration(); 12633 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12634 return New; 12635 } 12636 12637 PredicatedScalarEvolution::PredicatedScalarEvolution( 12638 const PredicatedScalarEvolution &Init) 12639 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12640 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12641 for (auto I : Init.FlagsMap) 12642 FlagsMap.insert(I); 12643 } 12644 12645 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12646 // For each block. 12647 for (auto *BB : L.getBlocks()) 12648 for (auto &I : *BB) { 12649 if (!SE.isSCEVable(I.getType())) 12650 continue; 12651 12652 auto *Expr = SE.getSCEV(&I); 12653 auto II = RewriteMap.find(Expr); 12654 12655 if (II == RewriteMap.end()) 12656 continue; 12657 12658 // Don't print things that are not interesting. 12659 if (II->second.second == Expr) 12660 continue; 12661 12662 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12663 OS.indent(Depth + 2) << *Expr << "\n"; 12664 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12665 } 12666 } 12667 12668 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12669 // arbitrary expressions. 12670 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12671 // 4, A / B becomes X / 8). 12672 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12673 const SCEV *&RHS) { 12674 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12675 if (Add == nullptr || Add->getNumOperands() != 2) 12676 return false; 12677 12678 const SCEV *A = Add->getOperand(1); 12679 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12680 12681 if (Mul == nullptr) 12682 return false; 12683 12684 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12685 // (SomeExpr + (-(SomeExpr / B) * B)). 12686 if (Expr == getURemExpr(A, B)) { 12687 LHS = A; 12688 RHS = B; 12689 return true; 12690 } 12691 return false; 12692 }; 12693 12694 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12695 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12696 return MatchURemWithDivisor(Mul->getOperand(1)) || 12697 MatchURemWithDivisor(Mul->getOperand(2)); 12698 12699 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12700 if (Mul->getNumOperands() == 2) 12701 return MatchURemWithDivisor(Mul->getOperand(1)) || 12702 MatchURemWithDivisor(Mul->getOperand(0)) || 12703 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12704 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12705 return false; 12706 } 12707