1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389   case scMulExpr:
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVNAryExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
535                                  ->getElementType();
536               return true;
537             }
538 
539   return false;
540 }
541 
542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
543   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
544     if (VCE->getOpcode() == Instruction::PtrToInt)
545       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
546         if (CE->getOpcode() == Instruction::GetElementPtr &&
547             CE->getOperand(0)->isNullValue()) {
548           Type *Ty =
549             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty =
576             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
577           // Ignore vector types here so that ScalarEvolutionExpander doesn't
578           // emit getelementptrs that index into vectors.
579           if (Ty->isStructTy() || Ty->isArrayTy()) {
580             CTy = Ty;
581             FieldNo = CE->getOperand(2);
582             return true;
583           }
584         }
585 
586   return false;
587 }
588 
589 //===----------------------------------------------------------------------===//
590 //                               SCEV Utilities
591 //===----------------------------------------------------------------------===//
592 
593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
595 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
596 /// have been previously deemed to be "equally complex" by this routine.  It is
597 /// intended to avoid exponential time complexity in cases like:
598 ///
599 ///   %a = f(%x, %y)
600 ///   %b = f(%a, %a)
601 ///   %c = f(%b, %b)
602 ///
603 ///   %d = f(%x, %y)
604 ///   %e = f(%d, %d)
605 ///   %f = f(%e, %e)
606 ///
607 ///   CompareValueComplexity(%f, %c)
608 ///
609 /// Since we do not continue running this routine on expression trees once we
610 /// have seen unequal values, there is no need to track them in the cache.
611 static int
612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
613                        const LoopInfo *const LI, Value *LV, Value *RV,
614                        unsigned Depth) {
615   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
616     return 0;
617 
618   // Order pointer values after integer values. This helps SCEVExpander form
619   // GEPs.
620   bool LIsPointer = LV->getType()->isPointerTy(),
621        RIsPointer = RV->getType()->isPointerTy();
622   if (LIsPointer != RIsPointer)
623     return (int)LIsPointer - (int)RIsPointer;
624 
625   // Compare getValueID values.
626   unsigned LID = LV->getValueID(), RID = RV->getValueID();
627   if (LID != RID)
628     return (int)LID - (int)RID;
629 
630   // Sort arguments by their position.
631   if (const auto *LA = dyn_cast<Argument>(LV)) {
632     const auto *RA = cast<Argument>(RV);
633     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
634     return (int)LArgNo - (int)RArgNo;
635   }
636 
637   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
638     const auto *RGV = cast<GlobalValue>(RV);
639 
640     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
641       auto LT = GV->getLinkage();
642       return !(GlobalValue::isPrivateLinkage(LT) ||
643                GlobalValue::isInternalLinkage(LT));
644     };
645 
646     // Use the names to distinguish the two values, but only if the
647     // names are semantically important.
648     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
649       return LGV->getName().compare(RGV->getName());
650   }
651 
652   // For instructions, compare their loop depth, and their operand count.  This
653   // is pretty loose.
654   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
655     const auto *RInst = cast<Instruction>(RV);
656 
657     // Compare loop depths.
658     const BasicBlock *LParent = LInst->getParent(),
659                      *RParent = RInst->getParent();
660     if (LParent != RParent) {
661       unsigned LDepth = LI->getLoopDepth(LParent),
662                RDepth = LI->getLoopDepth(RParent);
663       if (LDepth != RDepth)
664         return (int)LDepth - (int)RDepth;
665     }
666 
667     // Compare the number of operands.
668     unsigned LNumOps = LInst->getNumOperands(),
669              RNumOps = RInst->getNumOperands();
670     if (LNumOps != RNumOps)
671       return (int)LNumOps - (int)RNumOps;
672 
673     for (unsigned Idx : seq(0u, LNumOps)) {
674       int Result =
675           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
676                                  RInst->getOperand(Idx), Depth + 1);
677       if (Result != 0)
678         return Result;
679     }
680   }
681 
682   EqCacheValue.unionSets(LV, RV);
683   return 0;
684 }
685 
686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
687 // than RHS, respectively. A three-way result allows recursive comparisons to be
688 // more efficient.
689 // If the max analysis depth was reached, return None, assuming we do not know
690 // if they are equivalent for sure.
691 static Optional<int>
692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693                       EquivalenceClasses<const Value *> &EqCacheValue,
694                       const LoopInfo *const LI, const SCEV *LHS,
695                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
696   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697   if (LHS == RHS)
698     return 0;
699 
700   // Primarily, sort the SCEVs by their getSCEVType().
701   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702   if (LType != RType)
703     return (int)LType - (int)RType;
704 
705   if (EqCacheSCEV.isEquivalent(LHS, RHS))
706     return 0;
707 
708   if (Depth > MaxSCEVCompareDepth)
709     return None;
710 
711   // Aside from the getSCEVType() ordering, the particular ordering
712   // isn't very important except that it's beneficial to be consistent,
713   // so that (a + b) and (b + a) don't end up as different expressions.
714   switch (LType) {
715   case scUnknown: {
716     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
717     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
718 
719     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
720                                    RU->getValue(), Depth + 1);
721     if (X == 0)
722       EqCacheSCEV.unionSets(LHS, RHS);
723     return X;
724   }
725 
726   case scConstant: {
727     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
728     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
729 
730     // Compare constant values.
731     const APInt &LA = LC->getAPInt();
732     const APInt &RA = RC->getAPInt();
733     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
734     if (LBitWidth != RBitWidth)
735       return (int)LBitWidth - (int)RBitWidth;
736     return LA.ult(RA) ? -1 : 1;
737   }
738 
739   case scAddRecExpr: {
740     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
741     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
742 
743     // There is always a dominance between two recs that are used by one SCEV,
744     // so we can safely sort recs by loop header dominance. We require such
745     // order in getAddExpr.
746     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
747     if (LLoop != RLoop) {
748       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
749       assert(LHead != RHead && "Two loops share the same header?");
750       if (DT.dominates(LHead, RHead))
751         return 1;
752       else
753         assert(DT.dominates(RHead, LHead) &&
754                "No dominance between recurrences used by one SCEV?");
755       return -1;
756     }
757 
758     // Addrec complexity grows with operand count.
759     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
760     if (LNumOps != RNumOps)
761       return (int)LNumOps - (int)RNumOps;
762 
763     // Lexicographically compare.
764     for (unsigned i = 0; i != LNumOps; ++i) {
765       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
766                                      LA->getOperand(i), RA->getOperand(i), DT,
767                                      Depth + 1);
768       if (X != 0)
769         return X;
770     }
771     EqCacheSCEV.unionSets(LHS, RHS);
772     return 0;
773   }
774 
775   case scAddExpr:
776   case scMulExpr:
777   case scSMaxExpr:
778   case scUMaxExpr:
779   case scSMinExpr:
780   case scUMinExpr: {
781     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
782     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
783 
784     // Lexicographically compare n-ary expressions.
785     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
786     if (LNumOps != RNumOps)
787       return (int)LNumOps - (int)RNumOps;
788 
789     for (unsigned i = 0; i != LNumOps; ++i) {
790       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
791                                      LC->getOperand(i), RC->getOperand(i), DT,
792                                      Depth + 1);
793       if (X != 0)
794         return X;
795     }
796     EqCacheSCEV.unionSets(LHS, RHS);
797     return 0;
798   }
799 
800   case scUDivExpr: {
801     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
802     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
803 
804     // Lexicographically compare udiv expressions.
805     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
806                                    RC->getLHS(), DT, Depth + 1);
807     if (X != 0)
808       return X;
809     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
810                               RC->getRHS(), DT, Depth + 1);
811     if (X == 0)
812       EqCacheSCEV.unionSets(LHS, RHS);
813     return X;
814   }
815 
816   case scPtrToInt:
817   case scTruncate:
818   case scZeroExtend:
819   case scSignExtend: {
820     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
821     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
822 
823     // Compare cast expressions by operand.
824     auto X =
825         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
826                               RC->getOperand(), DT, Depth + 1);
827     if (X == 0)
828       EqCacheSCEV.unionSets(LHS, RHS);
829     return X;
830   }
831 
832   case scCouldNotCompute:
833     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
834   }
835   llvm_unreachable("Unknown SCEV kind!");
836 }
837 
838 /// Given a list of SCEV objects, order them by their complexity, and group
839 /// objects of the same complexity together by value.  When this routine is
840 /// finished, we know that any duplicates in the vector are consecutive and that
841 /// complexity is monotonically increasing.
842 ///
843 /// Note that we go take special precautions to ensure that we get deterministic
844 /// results from this routine.  In other words, we don't want the results of
845 /// this to depend on where the addresses of various SCEV objects happened to
846 /// land in memory.
847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
848                               LoopInfo *LI, DominatorTree &DT) {
849   if (Ops.size() < 2) return;  // Noop
850 
851   EquivalenceClasses<const SCEV *> EqCacheSCEV;
852   EquivalenceClasses<const Value *> EqCacheValue;
853 
854   // Whether LHS has provably less complexity than RHS.
855   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
856     auto Complexity =
857         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
858     return Complexity && *Complexity < 0;
859   };
860   if (Ops.size() == 2) {
861     // This is the common case, which also happens to be trivially simple.
862     // Special case it.
863     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
864     if (IsLessComplex(RHS, LHS))
865       std::swap(LHS, RHS);
866     return;
867   }
868 
869   // Do the rough sort by complexity.
870   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
871     return IsLessComplex(LHS, RHS);
872   });
873 
874   // Now that we are sorted by complexity, group elements of the same
875   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
876   // be extremely short in practice.  Note that we take this approach because we
877   // do not want to depend on the addresses of the objects we are grouping.
878   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
879     const SCEV *S = Ops[i];
880     unsigned Complexity = S->getSCEVType();
881 
882     // If there are any objects of the same complexity and same value as this
883     // one, group them.
884     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
885       if (Ops[j] == S) { // Found a duplicate.
886         // Move it to immediately after i'th element.
887         std::swap(Ops[i+1], Ops[j]);
888         ++i;   // no need to rescan it.
889         if (i == e-2) return;  // Done!
890       }
891     }
892   }
893 }
894 
895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
896 /// least HugeExprThreshold nodes).
897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
898   return any_of(Ops, [](const SCEV *S) {
899     return S->getExpressionSize() >= HugeExprThreshold;
900   });
901 }
902 
903 //===----------------------------------------------------------------------===//
904 //                      Simple SCEV method implementations
905 //===----------------------------------------------------------------------===//
906 
907 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
909                                        ScalarEvolution &SE,
910                                        Type *ResultTy) {
911   // Handle the simplest case efficiently.
912   if (K == 1)
913     return SE.getTruncateOrZeroExtend(It, ResultTy);
914 
915   // We are using the following formula for BC(It, K):
916   //
917   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
918   //
919   // Suppose, W is the bitwidth of the return value.  We must be prepared for
920   // overflow.  Hence, we must assure that the result of our computation is
921   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
922   // safe in modular arithmetic.
923   //
924   // However, this code doesn't use exactly that formula; the formula it uses
925   // is something like the following, where T is the number of factors of 2 in
926   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
927   // exponentiation:
928   //
929   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
930   //
931   // This formula is trivially equivalent to the previous formula.  However,
932   // this formula can be implemented much more efficiently.  The trick is that
933   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
934   // arithmetic.  To do exact division in modular arithmetic, all we have
935   // to do is multiply by the inverse.  Therefore, this step can be done at
936   // width W.
937   //
938   // The next issue is how to safely do the division by 2^T.  The way this
939   // is done is by doing the multiplication step at a width of at least W + T
940   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
941   // when we perform the division by 2^T (which is equivalent to a right shift
942   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
943   // truncated out after the division by 2^T.
944   //
945   // In comparison to just directly using the first formula, this technique
946   // is much more efficient; using the first formula requires W * K bits,
947   // but this formula less than W + K bits. Also, the first formula requires
948   // a division step, whereas this formula only requires multiplies and shifts.
949   //
950   // It doesn't matter whether the subtraction step is done in the calculation
951   // width or the input iteration count's width; if the subtraction overflows,
952   // the result must be zero anyway.  We prefer here to do it in the width of
953   // the induction variable because it helps a lot for certain cases; CodeGen
954   // isn't smart enough to ignore the overflow, which leads to much less
955   // efficient code if the width of the subtraction is wider than the native
956   // register width.
957   //
958   // (It's possible to not widen at all by pulling out factors of 2 before
959   // the multiplication; for example, K=2 can be calculated as
960   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
961   // extra arithmetic, so it's not an obvious win, and it gets
962   // much more complicated for K > 3.)
963 
964   // Protection from insane SCEVs; this bound is conservative,
965   // but it probably doesn't matter.
966   if (K > 1000)
967     return SE.getCouldNotCompute();
968 
969   unsigned W = SE.getTypeSizeInBits(ResultTy);
970 
971   // Calculate K! / 2^T and T; we divide out the factors of two before
972   // multiplying for calculating K! / 2^T to avoid overflow.
973   // Other overflow doesn't matter because we only care about the bottom
974   // W bits of the result.
975   APInt OddFactorial(W, 1);
976   unsigned T = 1;
977   for (unsigned i = 3; i <= K; ++i) {
978     APInt Mult(W, i);
979     unsigned TwoFactors = Mult.countTrailingZeros();
980     T += TwoFactors;
981     Mult.lshrInPlace(TwoFactors);
982     OddFactorial *= Mult;
983   }
984 
985   // We need at least W + T bits for the multiplication step
986   unsigned CalculationBits = W + T;
987 
988   // Calculate 2^T, at width T+W.
989   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
990 
991   // Calculate the multiplicative inverse of K! / 2^T;
992   // this multiplication factor will perform the exact division by
993   // K! / 2^T.
994   APInt Mod = APInt::getSignedMinValue(W+1);
995   APInt MultiplyFactor = OddFactorial.zext(W+1);
996   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
997   MultiplyFactor = MultiplyFactor.trunc(W);
998 
999   // Calculate the product, at width T+W
1000   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1001                                                       CalculationBits);
1002   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1003   for (unsigned i = 1; i != K; ++i) {
1004     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1005     Dividend = SE.getMulExpr(Dividend,
1006                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1007   }
1008 
1009   // Divide by 2^T
1010   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1011 
1012   // Truncate the result, and divide by K! / 2^T.
1013 
1014   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1015                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1016 }
1017 
1018 /// Return the value of this chain of recurrences at the specified iteration
1019 /// number.  We can evaluate this recurrence by multiplying each element in the
1020 /// chain by the binomial coefficient corresponding to it.  In other words, we
1021 /// can evaluate {A,+,B,+,C,+,D} as:
1022 ///
1023 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1024 ///
1025 /// where BC(It, k) stands for binomial coefficient.
1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1027                                                 ScalarEvolution &SE) const {
1028   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1029 }
1030 
1031 const SCEV *
1032 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1033                                     const SCEV *It, ScalarEvolution &SE) {
1034   assert(Operands.size() > 0);
1035   const SCEV *Result = Operands[0];
1036   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1037     // The computation is correct in the face of overflow provided that the
1038     // multiplication is performed _after_ the evaluation of the binomial
1039     // coefficient.
1040     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1041     if (isa<SCEVCouldNotCompute>(Coeff))
1042       return Coeff;
1043 
1044     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1045   }
1046   return Result;
1047 }
1048 
1049 //===----------------------------------------------------------------------===//
1050 //                    SCEV Expression folder implementations
1051 //===----------------------------------------------------------------------===//
1052 
1053 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1054                                                      unsigned Depth) {
1055   assert(Depth <= 1 &&
1056          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1057 
1058   // We could be called with an integer-typed operands during SCEV rewrites.
1059   // Since the operand is an integer already, just perform zext/trunc/self cast.
1060   if (!Op->getType()->isPointerTy())
1061     return Op;
1062 
1063   assert(!getDataLayout().isNonIntegralPointerType(Op->getType()) &&
1064          "Source pointer type must be integral for ptrtoint!");
1065 
1066   // What would be an ID for such a SCEV cast expression?
1067   FoldingSetNodeID ID;
1068   ID.AddInteger(scPtrToInt);
1069   ID.AddPointer(Op);
1070 
1071   void *IP = nullptr;
1072 
1073   // Is there already an expression for such a cast?
1074   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1075     return S;
1076 
1077   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1078 
1079   // We can only model ptrtoint if SCEV's effective (integer) type
1080   // is sufficiently wide to represent all possible pointer values.
1081   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1082       getDataLayout().getTypeSizeInBits(IntPtrTy))
1083     return getCouldNotCompute();
1084 
1085   // If not, is this expression something we can't reduce any further?
1086   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1087     // Perform some basic constant folding. If the operand of the ptr2int cast
1088     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1089     // left as-is), but produce a zero constant.
1090     // NOTE: We could handle a more general case, but lack motivational cases.
1091     if (isa<ConstantPointerNull>(U->getValue()))
1092       return getZero(IntPtrTy);
1093 
1094     // Create an explicit cast node.
1095     // We can reuse the existing insert position since if we get here,
1096     // we won't have made any changes which would invalidate it.
1097     SCEV *S = new (SCEVAllocator)
1098         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1099     UniqueSCEVs.InsertNode(S, IP);
1100     addToLoopUseLists(S);
1101     return S;
1102   }
1103 
1104   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1105                        "non-SCEVUnknown's.");
1106 
1107   // Otherwise, we've got some expression that is more complex than just a
1108   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1109   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1110   // only, and the expressions must otherwise be integer-typed.
1111   // So sink the cast down to the SCEVUnknown's.
1112 
1113   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1114   /// which computes a pointer-typed value, and rewrites the whole expression
1115   /// tree so that *all* the computations are done on integers, and the only
1116   /// pointer-typed operands in the expression are SCEVUnknown.
1117   class SCEVPtrToIntSinkingRewriter
1118       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1119     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1120 
1121   public:
1122     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1123 
1124     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1125       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1126       return Rewriter.visit(Scev);
1127     }
1128 
1129     const SCEV *visit(const SCEV *S) {
1130       Type *STy = S->getType();
1131       // If the expression is not pointer-typed, just keep it as-is.
1132       if (!STy->isPointerTy())
1133         return S;
1134       // Else, recursively sink the cast down into it.
1135       return Base::visit(S);
1136     }
1137 
1138     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1139       SmallVector<const SCEV *, 2> Operands;
1140       bool Changed = false;
1141       for (auto *Op : Expr->operands()) {
1142         Operands.push_back(visit(Op));
1143         Changed |= Op != Operands.back();
1144       }
1145       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1146     }
1147 
1148     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1149       SmallVector<const SCEV *, 2> Operands;
1150       bool Changed = false;
1151       for (auto *Op : Expr->operands()) {
1152         Operands.push_back(visit(Op));
1153         Changed |= Op != Operands.back();
1154       }
1155       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1156     }
1157 
1158     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1159       assert(Expr->getType()->isPointerTy() &&
1160              "Should only reach pointer-typed SCEVUnknown's.");
1161       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1162     }
1163   };
1164 
1165   // And actually perform the cast sinking.
1166   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1167   assert(IntOp->getType()->isIntegerTy() &&
1168          "We must have succeeded in sinking the cast, "
1169          "and ending up with an integer-typed expression!");
1170   return IntOp;
1171 }
1172 
1173 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1174   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1175 
1176   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1177   if (isa<SCEVCouldNotCompute>(IntOp))
1178     return IntOp;
1179 
1180   return getTruncateOrZeroExtend(IntOp, Ty);
1181 }
1182 
1183 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1184                                              unsigned Depth) {
1185   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1186          "This is not a truncating conversion!");
1187   assert(isSCEVable(Ty) &&
1188          "This is not a conversion to a SCEVable type!");
1189   Ty = getEffectiveSCEVType(Ty);
1190 
1191   FoldingSetNodeID ID;
1192   ID.AddInteger(scTruncate);
1193   ID.AddPointer(Op);
1194   ID.AddPointer(Ty);
1195   void *IP = nullptr;
1196   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1197 
1198   // Fold if the operand is constant.
1199   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1200     return getConstant(
1201       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1202 
1203   // trunc(trunc(x)) --> trunc(x)
1204   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1205     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1206 
1207   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1208   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1209     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1213     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1214 
1215   if (Depth > MaxCastDepth) {
1216     SCEV *S =
1217         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1218     UniqueSCEVs.InsertNode(S, IP);
1219     addToLoopUseLists(S);
1220     return S;
1221   }
1222 
1223   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1224   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1225   // if after transforming we have at most one truncate, not counting truncates
1226   // that replace other casts.
1227   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1228     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1229     SmallVector<const SCEV *, 4> Operands;
1230     unsigned numTruncs = 0;
1231     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1232          ++i) {
1233       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1234       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1235           isa<SCEVTruncateExpr>(S))
1236         numTruncs++;
1237       Operands.push_back(S);
1238     }
1239     if (numTruncs < 2) {
1240       if (isa<SCEVAddExpr>(Op))
1241         return getAddExpr(Operands);
1242       else if (isa<SCEVMulExpr>(Op))
1243         return getMulExpr(Operands);
1244       else
1245         llvm_unreachable("Unexpected SCEV type for Op.");
1246     }
1247     // Although we checked in the beginning that ID is not in the cache, it is
1248     // possible that during recursion and different modification ID was inserted
1249     // into the cache. So if we find it, just return it.
1250     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1251       return S;
1252   }
1253 
1254   // If the input value is a chrec scev, truncate the chrec's operands.
1255   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1256     SmallVector<const SCEV *, 4> Operands;
1257     for (const SCEV *Op : AddRec->operands())
1258       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1259     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1260   }
1261 
1262   // Return zero if truncating to known zeros.
1263   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1264   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1265     return getZero(Ty);
1266 
1267   // The cast wasn't folded; create an explicit cast node. We can reuse
1268   // the existing insert position since if we get here, we won't have
1269   // made any changes which would invalidate it.
1270   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1271                                                  Op, Ty);
1272   UniqueSCEVs.InsertNode(S, IP);
1273   addToLoopUseLists(S);
1274   return S;
1275 }
1276 
1277 // Get the limit of a recurrence such that incrementing by Step cannot cause
1278 // signed overflow as long as the value of the recurrence within the
1279 // loop does not exceed this limit before incrementing.
1280 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1281                                                  ICmpInst::Predicate *Pred,
1282                                                  ScalarEvolution *SE) {
1283   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1284   if (SE->isKnownPositive(Step)) {
1285     *Pred = ICmpInst::ICMP_SLT;
1286     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1287                            SE->getSignedRangeMax(Step));
1288   }
1289   if (SE->isKnownNegative(Step)) {
1290     *Pred = ICmpInst::ICMP_SGT;
1291     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1292                            SE->getSignedRangeMin(Step));
1293   }
1294   return nullptr;
1295 }
1296 
1297 // Get the limit of a recurrence such that incrementing by Step cannot cause
1298 // unsigned overflow as long as the value of the recurrence within the loop does
1299 // not exceed this limit before incrementing.
1300 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1301                                                    ICmpInst::Predicate *Pred,
1302                                                    ScalarEvolution *SE) {
1303   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1304   *Pred = ICmpInst::ICMP_ULT;
1305 
1306   return SE->getConstant(APInt::getMinValue(BitWidth) -
1307                          SE->getUnsignedRangeMax(Step));
1308 }
1309 
1310 namespace {
1311 
1312 struct ExtendOpTraitsBase {
1313   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1314                                                           unsigned);
1315 };
1316 
1317 // Used to make code generic over signed and unsigned overflow.
1318 template <typename ExtendOp> struct ExtendOpTraits {
1319   // Members present:
1320   //
1321   // static const SCEV::NoWrapFlags WrapType;
1322   //
1323   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1324   //
1325   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1326   //                                           ICmpInst::Predicate *Pred,
1327   //                                           ScalarEvolution *SE);
1328 };
1329 
1330 template <>
1331 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1332   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1333 
1334   static const GetExtendExprTy GetExtendExpr;
1335 
1336   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1337                                              ICmpInst::Predicate *Pred,
1338                                              ScalarEvolution *SE) {
1339     return getSignedOverflowLimitForStep(Step, Pred, SE);
1340   }
1341 };
1342 
1343 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1344     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1345 
1346 template <>
1347 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1348   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1349 
1350   static const GetExtendExprTy GetExtendExpr;
1351 
1352   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1353                                              ICmpInst::Predicate *Pred,
1354                                              ScalarEvolution *SE) {
1355     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1356   }
1357 };
1358 
1359 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1360     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1361 
1362 } // end anonymous namespace
1363 
1364 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1365 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1366 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1367 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1368 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1369 // expression "Step + sext/zext(PreIncAR)" is congruent with
1370 // "sext/zext(PostIncAR)"
1371 template <typename ExtendOpTy>
1372 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1373                                         ScalarEvolution *SE, unsigned Depth) {
1374   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1375   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1376 
1377   const Loop *L = AR->getLoop();
1378   const SCEV *Start = AR->getStart();
1379   const SCEV *Step = AR->getStepRecurrence(*SE);
1380 
1381   // Check for a simple looking step prior to loop entry.
1382   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1383   if (!SA)
1384     return nullptr;
1385 
1386   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1387   // subtraction is expensive. For this purpose, perform a quick and dirty
1388   // difference, by checking for Step in the operand list.
1389   SmallVector<const SCEV *, 4> DiffOps;
1390   for (const SCEV *Op : SA->operands())
1391     if (Op != Step)
1392       DiffOps.push_back(Op);
1393 
1394   if (DiffOps.size() == SA->getNumOperands())
1395     return nullptr;
1396 
1397   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1398   // `Step`:
1399 
1400   // 1. NSW/NUW flags on the step increment.
1401   auto PreStartFlags =
1402     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1403   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1404   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1405       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1406 
1407   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1408   // "S+X does not sign/unsign-overflow".
1409   //
1410 
1411   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1412   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1413       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1414     return PreStart;
1415 
1416   // 2. Direct overflow check on the step operation's expression.
1417   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1418   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1419   const SCEV *OperandExtendedStart =
1420       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1421                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1422   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1423     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1424       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1425       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1426       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1427       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1428     }
1429     return PreStart;
1430   }
1431 
1432   // 3. Loop precondition.
1433   ICmpInst::Predicate Pred;
1434   const SCEV *OverflowLimit =
1435       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1436 
1437   if (OverflowLimit &&
1438       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1439     return PreStart;
1440 
1441   return nullptr;
1442 }
1443 
1444 // Get the normalized zero or sign extended expression for this AddRec's Start.
1445 template <typename ExtendOpTy>
1446 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1447                                         ScalarEvolution *SE,
1448                                         unsigned Depth) {
1449   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1450 
1451   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1452   if (!PreStart)
1453     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1454 
1455   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1456                                              Depth),
1457                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1458 }
1459 
1460 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1461 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1462 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1463 //
1464 // Formally:
1465 //
1466 //     {S,+,X} == {S-T,+,X} + T
1467 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1468 //
1469 // If ({S-T,+,X} + T) does not overflow  ... (1)
1470 //
1471 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1472 //
1473 // If {S-T,+,X} does not overflow  ... (2)
1474 //
1475 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1476 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1477 //
1478 // If (S-T)+T does not overflow  ... (3)
1479 //
1480 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1481 //      == {Ext(S),+,Ext(X)} == LHS
1482 //
1483 // Thus, if (1), (2) and (3) are true for some T, then
1484 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1485 //
1486 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1487 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1488 // to check for (1) and (2).
1489 //
1490 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1491 // is `Delta` (defined below).
1492 template <typename ExtendOpTy>
1493 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1494                                                 const SCEV *Step,
1495                                                 const Loop *L) {
1496   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1497 
1498   // We restrict `Start` to a constant to prevent SCEV from spending too much
1499   // time here.  It is correct (but more expensive) to continue with a
1500   // non-constant `Start` and do a general SCEV subtraction to compute
1501   // `PreStart` below.
1502   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1503   if (!StartC)
1504     return false;
1505 
1506   APInt StartAI = StartC->getAPInt();
1507 
1508   for (unsigned Delta : {-2, -1, 1, 2}) {
1509     const SCEV *PreStart = getConstant(StartAI - Delta);
1510 
1511     FoldingSetNodeID ID;
1512     ID.AddInteger(scAddRecExpr);
1513     ID.AddPointer(PreStart);
1514     ID.AddPointer(Step);
1515     ID.AddPointer(L);
1516     void *IP = nullptr;
1517     const auto *PreAR =
1518       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1519 
1520     // Give up if we don't already have the add recurrence we need because
1521     // actually constructing an add recurrence is relatively expensive.
1522     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1523       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1524       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1525       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1526           DeltaS, &Pred, this);
1527       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1528         return true;
1529     }
1530   }
1531 
1532   return false;
1533 }
1534 
1535 // Finds an integer D for an expression (C + x + y + ...) such that the top
1536 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1537 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1538 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1539 // the (C + x + y + ...) expression is \p WholeAddExpr.
1540 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1541                                             const SCEVConstant *ConstantTerm,
1542                                             const SCEVAddExpr *WholeAddExpr) {
1543   const APInt &C = ConstantTerm->getAPInt();
1544   const unsigned BitWidth = C.getBitWidth();
1545   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1546   uint32_t TZ = BitWidth;
1547   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1548     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1549   if (TZ) {
1550     // Set D to be as many least significant bits of C as possible while still
1551     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1552     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1553   }
1554   return APInt(BitWidth, 0);
1555 }
1556 
1557 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1558 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1559 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1560 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1561 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1562                                             const APInt &ConstantStart,
1563                                             const SCEV *Step) {
1564   const unsigned BitWidth = ConstantStart.getBitWidth();
1565   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1566   if (TZ)
1567     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1568                          : ConstantStart;
1569   return APInt(BitWidth, 0);
1570 }
1571 
1572 const SCEV *
1573 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1574   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1575          "This is not an extending conversion!");
1576   assert(isSCEVable(Ty) &&
1577          "This is not a conversion to a SCEVable type!");
1578   Ty = getEffectiveSCEVType(Ty);
1579 
1580   // Fold if the operand is constant.
1581   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1582     return getConstant(
1583       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1584 
1585   // zext(zext(x)) --> zext(x)
1586   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1587     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1588 
1589   // Before doing any expensive analysis, check to see if we've already
1590   // computed a SCEV for this Op and Ty.
1591   FoldingSetNodeID ID;
1592   ID.AddInteger(scZeroExtend);
1593   ID.AddPointer(Op);
1594   ID.AddPointer(Ty);
1595   void *IP = nullptr;
1596   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1597   if (Depth > MaxCastDepth) {
1598     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1599                                                      Op, Ty);
1600     UniqueSCEVs.InsertNode(S, IP);
1601     addToLoopUseLists(S);
1602     return S;
1603   }
1604 
1605   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1606   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1607     // It's possible the bits taken off by the truncate were all zero bits. If
1608     // so, we should be able to simplify this further.
1609     const SCEV *X = ST->getOperand();
1610     ConstantRange CR = getUnsignedRange(X);
1611     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1612     unsigned NewBits = getTypeSizeInBits(Ty);
1613     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1614             CR.zextOrTrunc(NewBits)))
1615       return getTruncateOrZeroExtend(X, Ty, Depth);
1616   }
1617 
1618   // If the input value is a chrec scev, and we can prove that the value
1619   // did not overflow the old, smaller, value, we can zero extend all of the
1620   // operands (often constants).  This allows analysis of something like
1621   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1622   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1623     if (AR->isAffine()) {
1624       const SCEV *Start = AR->getStart();
1625       const SCEV *Step = AR->getStepRecurrence(*this);
1626       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1627       const Loop *L = AR->getLoop();
1628 
1629       if (!AR->hasNoUnsignedWrap()) {
1630         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1631         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1632       }
1633 
1634       // If we have special knowledge that this addrec won't overflow,
1635       // we don't need to do any further analysis.
1636       if (AR->hasNoUnsignedWrap())
1637         return getAddRecExpr(
1638             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1639             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1640 
1641       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1642       // Note that this serves two purposes: It filters out loops that are
1643       // simply not analyzable, and it covers the case where this code is
1644       // being called from within backedge-taken count analysis, such that
1645       // attempting to ask for the backedge-taken count would likely result
1646       // in infinite recursion. In the later case, the analysis code will
1647       // cope with a conservative value, and it will take care to purge
1648       // that value once it has finished.
1649       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1650       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1651         // Manually compute the final value for AR, checking for overflow.
1652 
1653         // Check whether the backedge-taken count can be losslessly casted to
1654         // the addrec's type. The count is always unsigned.
1655         const SCEV *CastedMaxBECount =
1656             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1657         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1658             CastedMaxBECount, MaxBECount->getType(), Depth);
1659         if (MaxBECount == RecastedMaxBECount) {
1660           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1661           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1662           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1663                                         SCEV::FlagAnyWrap, Depth + 1);
1664           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1665                                                           SCEV::FlagAnyWrap,
1666                                                           Depth + 1),
1667                                                WideTy, Depth + 1);
1668           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1669           const SCEV *WideMaxBECount =
1670             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1671           const SCEV *OperandExtendedAdd =
1672             getAddExpr(WideStart,
1673                        getMulExpr(WideMaxBECount,
1674                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1675                                   SCEV::FlagAnyWrap, Depth + 1),
1676                        SCEV::FlagAnyWrap, Depth + 1);
1677           if (ZAdd == OperandExtendedAdd) {
1678             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1679             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1680             // Return the expression with the addrec on the outside.
1681             return getAddRecExpr(
1682                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1683                                                          Depth + 1),
1684                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1685                 AR->getNoWrapFlags());
1686           }
1687           // Similar to above, only this time treat the step value as signed.
1688           // This covers loops that count down.
1689           OperandExtendedAdd =
1690             getAddExpr(WideStart,
1691                        getMulExpr(WideMaxBECount,
1692                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1693                                   SCEV::FlagAnyWrap, Depth + 1),
1694                        SCEV::FlagAnyWrap, Depth + 1);
1695           if (ZAdd == OperandExtendedAdd) {
1696             // Cache knowledge of AR NW, which is propagated to this AddRec.
1697             // Negative step causes unsigned wrap, but it still can't self-wrap.
1698             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1699             // Return the expression with the addrec on the outside.
1700             return getAddRecExpr(
1701                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1702                                                          Depth + 1),
1703                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1704                 AR->getNoWrapFlags());
1705           }
1706         }
1707       }
1708 
1709       // Normally, in the cases we can prove no-overflow via a
1710       // backedge guarding condition, we can also compute a backedge
1711       // taken count for the loop.  The exceptions are assumptions and
1712       // guards present in the loop -- SCEV is not great at exploiting
1713       // these to compute max backedge taken counts, but can still use
1714       // these to prove lack of overflow.  Use this fact to avoid
1715       // doing extra work that may not pay off.
1716       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1717           !AC.assumptions().empty()) {
1718 
1719         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1720         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1721         if (AR->hasNoUnsignedWrap()) {
1722           // Same as nuw case above - duplicated here to avoid a compile time
1723           // issue.  It's not clear that the order of checks does matter, but
1724           // it's one of two issue possible causes for a change which was
1725           // reverted.  Be conservative for the moment.
1726           return getAddRecExpr(
1727                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1728                                                          Depth + 1),
1729                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1730                 AR->getNoWrapFlags());
1731         }
1732 
1733         // For a negative step, we can extend the operands iff doing so only
1734         // traverses values in the range zext([0,UINT_MAX]).
1735         if (isKnownNegative(Step)) {
1736           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1737                                       getSignedRangeMin(Step));
1738           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1739               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1740             // Cache knowledge of AR NW, which is propagated to this
1741             // AddRec.  Negative step causes unsigned wrap, but it
1742             // still can't self-wrap.
1743             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1744             // Return the expression with the addrec on the outside.
1745             return getAddRecExpr(
1746                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1747                                                          Depth + 1),
1748                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1749                 AR->getNoWrapFlags());
1750           }
1751         }
1752       }
1753 
1754       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1755       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1756       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1757       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1758         const APInt &C = SC->getAPInt();
1759         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1760         if (D != 0) {
1761           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1762           const SCEV *SResidual =
1763               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1764           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1765           return getAddExpr(SZExtD, SZExtR,
1766                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1767                             Depth + 1);
1768         }
1769       }
1770 
1771       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1772         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1773         return getAddRecExpr(
1774             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1775             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1776       }
1777     }
1778 
1779   // zext(A % B) --> zext(A) % zext(B)
1780   {
1781     const SCEV *LHS;
1782     const SCEV *RHS;
1783     if (matchURem(Op, LHS, RHS))
1784       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1785                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1786   }
1787 
1788   // zext(A / B) --> zext(A) / zext(B).
1789   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1790     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1791                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1792 
1793   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1794     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1795     if (SA->hasNoUnsignedWrap()) {
1796       // If the addition does not unsign overflow then we can, by definition,
1797       // commute the zero extension with the addition operation.
1798       SmallVector<const SCEV *, 4> Ops;
1799       for (const auto *Op : SA->operands())
1800         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1801       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1802     }
1803 
1804     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1805     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1806     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1807     //
1808     // Often address arithmetics contain expressions like
1809     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1810     // This transformation is useful while proving that such expressions are
1811     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1812     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1813       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1814       if (D != 0) {
1815         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1816         const SCEV *SResidual =
1817             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1818         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1819         return getAddExpr(SZExtD, SZExtR,
1820                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1821                           Depth + 1);
1822       }
1823     }
1824   }
1825 
1826   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1827     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1828     if (SM->hasNoUnsignedWrap()) {
1829       // If the multiply does not unsign overflow then we can, by definition,
1830       // commute the zero extension with the multiply operation.
1831       SmallVector<const SCEV *, 4> Ops;
1832       for (const auto *Op : SM->operands())
1833         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1834       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1835     }
1836 
1837     // zext(2^K * (trunc X to iN)) to iM ->
1838     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1839     //
1840     // Proof:
1841     //
1842     //     zext(2^K * (trunc X to iN)) to iM
1843     //   = zext((trunc X to iN) << K) to iM
1844     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1845     //     (because shl removes the top K bits)
1846     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1847     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1848     //
1849     if (SM->getNumOperands() == 2)
1850       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1851         if (MulLHS->getAPInt().isPowerOf2())
1852           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1853             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1854                                MulLHS->getAPInt().logBase2();
1855             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1856             return getMulExpr(
1857                 getZeroExtendExpr(MulLHS, Ty),
1858                 getZeroExtendExpr(
1859                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1860                 SCEV::FlagNUW, Depth + 1);
1861           }
1862   }
1863 
1864   // The cast wasn't folded; create an explicit cast node.
1865   // Recompute the insert position, as it may have been invalidated.
1866   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1867   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1868                                                    Op, Ty);
1869   UniqueSCEVs.InsertNode(S, IP);
1870   addToLoopUseLists(S);
1871   return S;
1872 }
1873 
1874 const SCEV *
1875 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1876   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1877          "This is not an extending conversion!");
1878   assert(isSCEVable(Ty) &&
1879          "This is not a conversion to a SCEVable type!");
1880   Ty = getEffectiveSCEVType(Ty);
1881 
1882   // Fold if the operand is constant.
1883   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1884     return getConstant(
1885       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1886 
1887   // sext(sext(x)) --> sext(x)
1888   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1889     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1890 
1891   // sext(zext(x)) --> zext(x)
1892   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1893     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1894 
1895   // Before doing any expensive analysis, check to see if we've already
1896   // computed a SCEV for this Op and Ty.
1897   FoldingSetNodeID ID;
1898   ID.AddInteger(scSignExtend);
1899   ID.AddPointer(Op);
1900   ID.AddPointer(Ty);
1901   void *IP = nullptr;
1902   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1903   // Limit recursion depth.
1904   if (Depth > MaxCastDepth) {
1905     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1906                                                      Op, Ty);
1907     UniqueSCEVs.InsertNode(S, IP);
1908     addToLoopUseLists(S);
1909     return S;
1910   }
1911 
1912   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1913   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1914     // It's possible the bits taken off by the truncate were all sign bits. If
1915     // so, we should be able to simplify this further.
1916     const SCEV *X = ST->getOperand();
1917     ConstantRange CR = getSignedRange(X);
1918     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1919     unsigned NewBits = getTypeSizeInBits(Ty);
1920     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1921             CR.sextOrTrunc(NewBits)))
1922       return getTruncateOrSignExtend(X, Ty, Depth);
1923   }
1924 
1925   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1926     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1927     if (SA->hasNoSignedWrap()) {
1928       // If the addition does not sign overflow then we can, by definition,
1929       // commute the sign extension with the addition operation.
1930       SmallVector<const SCEV *, 4> Ops;
1931       for (const auto *Op : SA->operands())
1932         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1933       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1934     }
1935 
1936     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1937     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1938     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1939     //
1940     // For instance, this will bring two seemingly different expressions:
1941     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1942     //         sext(6 + 20 * %x + 24 * %y)
1943     // to the same form:
1944     //     2 + sext(4 + 20 * %x + 24 * %y)
1945     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1946       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1947       if (D != 0) {
1948         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1949         const SCEV *SResidual =
1950             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1951         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1952         return getAddExpr(SSExtD, SSExtR,
1953                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1954                           Depth + 1);
1955       }
1956     }
1957   }
1958   // If the input value is a chrec scev, and we can prove that the value
1959   // did not overflow the old, smaller, value, we can sign extend all of the
1960   // operands (often constants).  This allows analysis of something like
1961   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1962   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1963     if (AR->isAffine()) {
1964       const SCEV *Start = AR->getStart();
1965       const SCEV *Step = AR->getStepRecurrence(*this);
1966       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1967       const Loop *L = AR->getLoop();
1968 
1969       if (!AR->hasNoSignedWrap()) {
1970         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1971         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1972       }
1973 
1974       // If we have special knowledge that this addrec won't overflow,
1975       // we don't need to do any further analysis.
1976       if (AR->hasNoSignedWrap())
1977         return getAddRecExpr(
1978             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1979             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1980 
1981       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1982       // Note that this serves two purposes: It filters out loops that are
1983       // simply not analyzable, and it covers the case where this code is
1984       // being called from within backedge-taken count analysis, such that
1985       // attempting to ask for the backedge-taken count would likely result
1986       // in infinite recursion. In the later case, the analysis code will
1987       // cope with a conservative value, and it will take care to purge
1988       // that value once it has finished.
1989       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1990       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1991         // Manually compute the final value for AR, checking for
1992         // overflow.
1993 
1994         // Check whether the backedge-taken count can be losslessly casted to
1995         // the addrec's type. The count is always unsigned.
1996         const SCEV *CastedMaxBECount =
1997             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1998         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1999             CastedMaxBECount, MaxBECount->getType(), Depth);
2000         if (MaxBECount == RecastedMaxBECount) {
2001           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2002           // Check whether Start+Step*MaxBECount has no signed overflow.
2003           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2004                                         SCEV::FlagAnyWrap, Depth + 1);
2005           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2006                                                           SCEV::FlagAnyWrap,
2007                                                           Depth + 1),
2008                                                WideTy, Depth + 1);
2009           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2010           const SCEV *WideMaxBECount =
2011             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2012           const SCEV *OperandExtendedAdd =
2013             getAddExpr(WideStart,
2014                        getMulExpr(WideMaxBECount,
2015                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2016                                   SCEV::FlagAnyWrap, Depth + 1),
2017                        SCEV::FlagAnyWrap, Depth + 1);
2018           if (SAdd == OperandExtendedAdd) {
2019             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2020             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2021             // Return the expression with the addrec on the outside.
2022             return getAddRecExpr(
2023                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2024                                                          Depth + 1),
2025                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2026                 AR->getNoWrapFlags());
2027           }
2028           // Similar to above, only this time treat the step value as unsigned.
2029           // This covers loops that count up with an unsigned step.
2030           OperandExtendedAdd =
2031             getAddExpr(WideStart,
2032                        getMulExpr(WideMaxBECount,
2033                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2034                                   SCEV::FlagAnyWrap, Depth + 1),
2035                        SCEV::FlagAnyWrap, Depth + 1);
2036           if (SAdd == OperandExtendedAdd) {
2037             // If AR wraps around then
2038             //
2039             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2040             // => SAdd != OperandExtendedAdd
2041             //
2042             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2043             // (SAdd == OperandExtendedAdd => AR is NW)
2044 
2045             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2046 
2047             // Return the expression with the addrec on the outside.
2048             return getAddRecExpr(
2049                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2050                                                          Depth + 1),
2051                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2052                 AR->getNoWrapFlags());
2053           }
2054         }
2055       }
2056 
2057       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2058       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2059       if (AR->hasNoSignedWrap()) {
2060         // Same as nsw case above - duplicated here to avoid a compile time
2061         // issue.  It's not clear that the order of checks does matter, but
2062         // it's one of two issue possible causes for a change which was
2063         // reverted.  Be conservative for the moment.
2064         return getAddRecExpr(
2065             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2066             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2067       }
2068 
2069       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2070       // if D + (C - D + Step * n) could be proven to not signed wrap
2071       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2072       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2073         const APInt &C = SC->getAPInt();
2074         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2075         if (D != 0) {
2076           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2077           const SCEV *SResidual =
2078               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2079           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2080           return getAddExpr(SSExtD, SSExtR,
2081                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2082                             Depth + 1);
2083         }
2084       }
2085 
2086       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2087         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2088         return getAddRecExpr(
2089             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2090             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2091       }
2092     }
2093 
2094   // If the input value is provably positive and we could not simplify
2095   // away the sext build a zext instead.
2096   if (isKnownNonNegative(Op))
2097     return getZeroExtendExpr(Op, Ty, Depth + 1);
2098 
2099   // The cast wasn't folded; create an explicit cast node.
2100   // Recompute the insert position, as it may have been invalidated.
2101   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2102   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2103                                                    Op, Ty);
2104   UniqueSCEVs.InsertNode(S, IP);
2105   addToLoopUseLists(S);
2106   return S;
2107 }
2108 
2109 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2110 /// unspecified bits out to the given type.
2111 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2112                                               Type *Ty) {
2113   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2114          "This is not an extending conversion!");
2115   assert(isSCEVable(Ty) &&
2116          "This is not a conversion to a SCEVable type!");
2117   Ty = getEffectiveSCEVType(Ty);
2118 
2119   // Sign-extend negative constants.
2120   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2121     if (SC->getAPInt().isNegative())
2122       return getSignExtendExpr(Op, Ty);
2123 
2124   // Peel off a truncate cast.
2125   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2126     const SCEV *NewOp = T->getOperand();
2127     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2128       return getAnyExtendExpr(NewOp, Ty);
2129     return getTruncateOrNoop(NewOp, Ty);
2130   }
2131 
2132   // Next try a zext cast. If the cast is folded, use it.
2133   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2134   if (!isa<SCEVZeroExtendExpr>(ZExt))
2135     return ZExt;
2136 
2137   // Next try a sext cast. If the cast is folded, use it.
2138   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2139   if (!isa<SCEVSignExtendExpr>(SExt))
2140     return SExt;
2141 
2142   // Force the cast to be folded into the operands of an addrec.
2143   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2144     SmallVector<const SCEV *, 4> Ops;
2145     for (const SCEV *Op : AR->operands())
2146       Ops.push_back(getAnyExtendExpr(Op, Ty));
2147     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2148   }
2149 
2150   // If the expression is obviously signed, use the sext cast value.
2151   if (isa<SCEVSMaxExpr>(Op))
2152     return SExt;
2153 
2154   // Absent any other information, use the zext cast value.
2155   return ZExt;
2156 }
2157 
2158 /// Process the given Ops list, which is a list of operands to be added under
2159 /// the given scale, update the given map. This is a helper function for
2160 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2161 /// that would form an add expression like this:
2162 ///
2163 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2164 ///
2165 /// where A and B are constants, update the map with these values:
2166 ///
2167 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2168 ///
2169 /// and add 13 + A*B*29 to AccumulatedConstant.
2170 /// This will allow getAddRecExpr to produce this:
2171 ///
2172 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2173 ///
2174 /// This form often exposes folding opportunities that are hidden in
2175 /// the original operand list.
2176 ///
2177 /// Return true iff it appears that any interesting folding opportunities
2178 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2179 /// the common case where no interesting opportunities are present, and
2180 /// is also used as a check to avoid infinite recursion.
2181 static bool
2182 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2183                              SmallVectorImpl<const SCEV *> &NewOps,
2184                              APInt &AccumulatedConstant,
2185                              const SCEV *const *Ops, size_t NumOperands,
2186                              const APInt &Scale,
2187                              ScalarEvolution &SE) {
2188   bool Interesting = false;
2189 
2190   // Iterate over the add operands. They are sorted, with constants first.
2191   unsigned i = 0;
2192   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2193     ++i;
2194     // Pull a buried constant out to the outside.
2195     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2196       Interesting = true;
2197     AccumulatedConstant += Scale * C->getAPInt();
2198   }
2199 
2200   // Next comes everything else. We're especially interested in multiplies
2201   // here, but they're in the middle, so just visit the rest with one loop.
2202   for (; i != NumOperands; ++i) {
2203     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2204     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2205       APInt NewScale =
2206           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2207       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2208         // A multiplication of a constant with another add; recurse.
2209         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2210         Interesting |=
2211           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2212                                        Add->op_begin(), Add->getNumOperands(),
2213                                        NewScale, SE);
2214       } else {
2215         // A multiplication of a constant with some other value. Update
2216         // the map.
2217         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2218         const SCEV *Key = SE.getMulExpr(MulOps);
2219         auto Pair = M.insert({Key, NewScale});
2220         if (Pair.second) {
2221           NewOps.push_back(Pair.first->first);
2222         } else {
2223           Pair.first->second += NewScale;
2224           // The map already had an entry for this value, which may indicate
2225           // a folding opportunity.
2226           Interesting = true;
2227         }
2228       }
2229     } else {
2230       // An ordinary operand. Update the map.
2231       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2232           M.insert({Ops[i], Scale});
2233       if (Pair.second) {
2234         NewOps.push_back(Pair.first->first);
2235       } else {
2236         Pair.first->second += Scale;
2237         // The map already had an entry for this value, which may indicate
2238         // a folding opportunity.
2239         Interesting = true;
2240       }
2241     }
2242   }
2243 
2244   return Interesting;
2245 }
2246 
2247 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2248                                       const SCEV *LHS, const SCEV *RHS) {
2249   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2250                                             SCEV::NoWrapFlags, unsigned);
2251   switch (BinOp) {
2252   default:
2253     llvm_unreachable("Unsupported binary op");
2254   case Instruction::Add:
2255     Operation = &ScalarEvolution::getAddExpr;
2256     break;
2257   case Instruction::Sub:
2258     Operation = &ScalarEvolution::getMinusSCEV;
2259     break;
2260   case Instruction::Mul:
2261     Operation = &ScalarEvolution::getMulExpr;
2262     break;
2263   }
2264 
2265   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2266       Signed ? &ScalarEvolution::getSignExtendExpr
2267              : &ScalarEvolution::getZeroExtendExpr;
2268 
2269   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2270   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2271   auto *WideTy =
2272       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2273 
2274   const SCEV *A = (this->*Extension)(
2275       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2276   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2277                                      (this->*Extension)(RHS, WideTy, 0),
2278                                      SCEV::FlagAnyWrap, 0);
2279   return A == B;
2280 }
2281 
2282 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2283 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2284     const OverflowingBinaryOperator *OBO) {
2285   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2286 
2287   if (OBO->hasNoUnsignedWrap())
2288     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2289   if (OBO->hasNoSignedWrap())
2290     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2291 
2292   bool Deduced = false;
2293 
2294   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2295     return {Flags, Deduced};
2296 
2297   if (OBO->getOpcode() != Instruction::Add &&
2298       OBO->getOpcode() != Instruction::Sub &&
2299       OBO->getOpcode() != Instruction::Mul)
2300     return {Flags, Deduced};
2301 
2302   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2303   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2304 
2305   if (!OBO->hasNoUnsignedWrap() &&
2306       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2307                       /* Signed */ false, LHS, RHS)) {
2308     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2309     Deduced = true;
2310   }
2311 
2312   if (!OBO->hasNoSignedWrap() &&
2313       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2314                       /* Signed */ true, LHS, RHS)) {
2315     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2316     Deduced = true;
2317   }
2318 
2319   return {Flags, Deduced};
2320 }
2321 
2322 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2323 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2324 // can't-overflow flags for the operation if possible.
2325 static SCEV::NoWrapFlags
2326 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2327                       const ArrayRef<const SCEV *> Ops,
2328                       SCEV::NoWrapFlags Flags) {
2329   using namespace std::placeholders;
2330 
2331   using OBO = OverflowingBinaryOperator;
2332 
2333   bool CanAnalyze =
2334       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2335   (void)CanAnalyze;
2336   assert(CanAnalyze && "don't call from other places!");
2337 
2338   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2339   SCEV::NoWrapFlags SignOrUnsignWrap =
2340       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2341 
2342   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2343   auto IsKnownNonNegative = [&](const SCEV *S) {
2344     return SE->isKnownNonNegative(S);
2345   };
2346 
2347   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2348     Flags =
2349         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2350 
2351   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2352 
2353   if (SignOrUnsignWrap != SignOrUnsignMask &&
2354       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2355       isa<SCEVConstant>(Ops[0])) {
2356 
2357     auto Opcode = [&] {
2358       switch (Type) {
2359       case scAddExpr:
2360         return Instruction::Add;
2361       case scMulExpr:
2362         return Instruction::Mul;
2363       default:
2364         llvm_unreachable("Unexpected SCEV op.");
2365       }
2366     }();
2367 
2368     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2369 
2370     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2371     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2372       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2373           Opcode, C, OBO::NoSignedWrap);
2374       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2375         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2376     }
2377 
2378     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2379     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2380       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2381           Opcode, C, OBO::NoUnsignedWrap);
2382       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2383         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2384     }
2385   }
2386 
2387   return Flags;
2388 }
2389 
2390 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2391   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2392 }
2393 
2394 /// Get a canonical add expression, or something simpler if possible.
2395 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2396                                         SCEV::NoWrapFlags OrigFlags,
2397                                         unsigned Depth) {
2398   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2399          "only nuw or nsw allowed");
2400   assert(!Ops.empty() && "Cannot get empty add!");
2401   if (Ops.size() == 1) return Ops[0];
2402 #ifndef NDEBUG
2403   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2404   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2405     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2406            "SCEVAddExpr operand types don't match!");
2407 #endif
2408 
2409   // Sort by complexity, this groups all similar expression types together.
2410   GroupByComplexity(Ops, &LI, DT);
2411 
2412   // If there are any constants, fold them together.
2413   unsigned Idx = 0;
2414   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2415     ++Idx;
2416     assert(Idx < Ops.size());
2417     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2418       // We found two constants, fold them together!
2419       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2420       if (Ops.size() == 2) return Ops[0];
2421       Ops.erase(Ops.begin()+1);  // Erase the folded element
2422       LHSC = cast<SCEVConstant>(Ops[0]);
2423     }
2424 
2425     // If we are left with a constant zero being added, strip it off.
2426     if (LHSC->getValue()->isZero()) {
2427       Ops.erase(Ops.begin());
2428       --Idx;
2429     }
2430 
2431     if (Ops.size() == 1) return Ops[0];
2432   }
2433 
2434   // Delay expensive flag strengthening until necessary.
2435   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2436     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2437   };
2438 
2439   // Limit recursion calls depth.
2440   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2441     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2442 
2443   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2444     // Don't strengthen flags if we have no new information.
2445     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2446     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2447       Add->setNoWrapFlags(ComputeFlags(Ops));
2448     return S;
2449   }
2450 
2451   // Okay, check to see if the same value occurs in the operand list more than
2452   // once.  If so, merge them together into an multiply expression.  Since we
2453   // sorted the list, these values are required to be adjacent.
2454   Type *Ty = Ops[0]->getType();
2455   bool FoundMatch = false;
2456   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2457     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2458       // Scan ahead to count how many equal operands there are.
2459       unsigned Count = 2;
2460       while (i+Count != e && Ops[i+Count] == Ops[i])
2461         ++Count;
2462       // Merge the values into a multiply.
2463       const SCEV *Scale = getConstant(Ty, Count);
2464       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2465       if (Ops.size() == Count)
2466         return Mul;
2467       Ops[i] = Mul;
2468       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2469       --i; e -= Count - 1;
2470       FoundMatch = true;
2471     }
2472   if (FoundMatch)
2473     return getAddExpr(Ops, OrigFlags, Depth + 1);
2474 
2475   // Check for truncates. If all the operands are truncated from the same
2476   // type, see if factoring out the truncate would permit the result to be
2477   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2478   // if the contents of the resulting outer trunc fold to something simple.
2479   auto FindTruncSrcType = [&]() -> Type * {
2480     // We're ultimately looking to fold an addrec of truncs and muls of only
2481     // constants and truncs, so if we find any other types of SCEV
2482     // as operands of the addrec then we bail and return nullptr here.
2483     // Otherwise, we return the type of the operand of a trunc that we find.
2484     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2485       return T->getOperand()->getType();
2486     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2487       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2488       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2489         return T->getOperand()->getType();
2490     }
2491     return nullptr;
2492   };
2493   if (auto *SrcType = FindTruncSrcType()) {
2494     SmallVector<const SCEV *, 8> LargeOps;
2495     bool Ok = true;
2496     // Check all the operands to see if they can be represented in the
2497     // source type of the truncate.
2498     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2499       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2500         if (T->getOperand()->getType() != SrcType) {
2501           Ok = false;
2502           break;
2503         }
2504         LargeOps.push_back(T->getOperand());
2505       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2506         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2507       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2508         SmallVector<const SCEV *, 8> LargeMulOps;
2509         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2510           if (const SCEVTruncateExpr *T =
2511                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2512             if (T->getOperand()->getType() != SrcType) {
2513               Ok = false;
2514               break;
2515             }
2516             LargeMulOps.push_back(T->getOperand());
2517           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2518             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2519           } else {
2520             Ok = false;
2521             break;
2522           }
2523         }
2524         if (Ok)
2525           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2526       } else {
2527         Ok = false;
2528         break;
2529       }
2530     }
2531     if (Ok) {
2532       // Evaluate the expression in the larger type.
2533       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2534       // If it folds to something simple, use it. Otherwise, don't.
2535       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2536         return getTruncateExpr(Fold, Ty);
2537     }
2538   }
2539 
2540   // Skip past any other cast SCEVs.
2541   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2542     ++Idx;
2543 
2544   // If there are add operands they would be next.
2545   if (Idx < Ops.size()) {
2546     bool DeletedAdd = false;
2547     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2548       if (Ops.size() > AddOpsInlineThreshold ||
2549           Add->getNumOperands() > AddOpsInlineThreshold)
2550         break;
2551       // If we have an add, expand the add operands onto the end of the operands
2552       // list.
2553       Ops.erase(Ops.begin()+Idx);
2554       Ops.append(Add->op_begin(), Add->op_end());
2555       DeletedAdd = true;
2556     }
2557 
2558     // If we deleted at least one add, we added operands to the end of the list,
2559     // and they are not necessarily sorted.  Recurse to resort and resimplify
2560     // any operands we just acquired.
2561     if (DeletedAdd)
2562       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2563   }
2564 
2565   // Skip over the add expression until we get to a multiply.
2566   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2567     ++Idx;
2568 
2569   // Check to see if there are any folding opportunities present with
2570   // operands multiplied by constant values.
2571   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2572     uint64_t BitWidth = getTypeSizeInBits(Ty);
2573     DenseMap<const SCEV *, APInt> M;
2574     SmallVector<const SCEV *, 8> NewOps;
2575     APInt AccumulatedConstant(BitWidth, 0);
2576     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2577                                      Ops.data(), Ops.size(),
2578                                      APInt(BitWidth, 1), *this)) {
2579       struct APIntCompare {
2580         bool operator()(const APInt &LHS, const APInt &RHS) const {
2581           return LHS.ult(RHS);
2582         }
2583       };
2584 
2585       // Some interesting folding opportunity is present, so its worthwhile to
2586       // re-generate the operands list. Group the operands by constant scale,
2587       // to avoid multiplying by the same constant scale multiple times.
2588       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2589       for (const SCEV *NewOp : NewOps)
2590         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2591       // Re-generate the operands list.
2592       Ops.clear();
2593       if (AccumulatedConstant != 0)
2594         Ops.push_back(getConstant(AccumulatedConstant));
2595       for (auto &MulOp : MulOpLists)
2596         if (MulOp.first != 0)
2597           Ops.push_back(getMulExpr(
2598               getConstant(MulOp.first),
2599               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2600               SCEV::FlagAnyWrap, Depth + 1));
2601       if (Ops.empty())
2602         return getZero(Ty);
2603       if (Ops.size() == 1)
2604         return Ops[0];
2605       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2606     }
2607   }
2608 
2609   // If we are adding something to a multiply expression, make sure the
2610   // something is not already an operand of the multiply.  If so, merge it into
2611   // the multiply.
2612   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2613     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2614     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2615       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2616       if (isa<SCEVConstant>(MulOpSCEV))
2617         continue;
2618       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2619         if (MulOpSCEV == Ops[AddOp]) {
2620           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2621           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2622           if (Mul->getNumOperands() != 2) {
2623             // If the multiply has more than two operands, we must get the
2624             // Y*Z term.
2625             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2626                                                 Mul->op_begin()+MulOp);
2627             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2628             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2629           }
2630           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2631           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2632           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2633                                             SCEV::FlagAnyWrap, Depth + 1);
2634           if (Ops.size() == 2) return OuterMul;
2635           if (AddOp < Idx) {
2636             Ops.erase(Ops.begin()+AddOp);
2637             Ops.erase(Ops.begin()+Idx-1);
2638           } else {
2639             Ops.erase(Ops.begin()+Idx);
2640             Ops.erase(Ops.begin()+AddOp-1);
2641           }
2642           Ops.push_back(OuterMul);
2643           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2644         }
2645 
2646       // Check this multiply against other multiplies being added together.
2647       for (unsigned OtherMulIdx = Idx+1;
2648            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2649            ++OtherMulIdx) {
2650         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2651         // If MulOp occurs in OtherMul, we can fold the two multiplies
2652         // together.
2653         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2654              OMulOp != e; ++OMulOp)
2655           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2656             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2657             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2658             if (Mul->getNumOperands() != 2) {
2659               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2660                                                   Mul->op_begin()+MulOp);
2661               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2662               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2663             }
2664             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2665             if (OtherMul->getNumOperands() != 2) {
2666               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2667                                                   OtherMul->op_begin()+OMulOp);
2668               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2669               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2670             }
2671             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2672             const SCEV *InnerMulSum =
2673                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2674             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2675                                               SCEV::FlagAnyWrap, Depth + 1);
2676             if (Ops.size() == 2) return OuterMul;
2677             Ops.erase(Ops.begin()+Idx);
2678             Ops.erase(Ops.begin()+OtherMulIdx-1);
2679             Ops.push_back(OuterMul);
2680             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681           }
2682       }
2683     }
2684   }
2685 
2686   // If there are any add recurrences in the operands list, see if any other
2687   // added values are loop invariant.  If so, we can fold them into the
2688   // recurrence.
2689   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2690     ++Idx;
2691 
2692   // Scan over all recurrences, trying to fold loop invariants into them.
2693   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2694     // Scan all of the other operands to this add and add them to the vector if
2695     // they are loop invariant w.r.t. the recurrence.
2696     SmallVector<const SCEV *, 8> LIOps;
2697     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2698     const Loop *AddRecLoop = AddRec->getLoop();
2699     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2700       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2701         LIOps.push_back(Ops[i]);
2702         Ops.erase(Ops.begin()+i);
2703         --i; --e;
2704       }
2705 
2706     // If we found some loop invariants, fold them into the recurrence.
2707     if (!LIOps.empty()) {
2708       // Compute nowrap flags for the addition of the loop-invariant ops and
2709       // the addrec. Temporarily push it as an operand for that purpose.
2710       LIOps.push_back(AddRec);
2711       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2712       LIOps.pop_back();
2713 
2714       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2715       LIOps.push_back(AddRec->getStart());
2716 
2717       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2718       // This follows from the fact that the no-wrap flags on the outer add
2719       // expression are applicable on the 0th iteration, when the add recurrence
2720       // will be equal to its start value.
2721       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2722 
2723       // Build the new addrec. Propagate the NUW and NSW flags if both the
2724       // outer add and the inner addrec are guaranteed to have no overflow.
2725       // Always propagate NW.
2726       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2727       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2728 
2729       // If all of the other operands were loop invariant, we are done.
2730       if (Ops.size() == 1) return NewRec;
2731 
2732       // Otherwise, add the folded AddRec by the non-invariant parts.
2733       for (unsigned i = 0;; ++i)
2734         if (Ops[i] == AddRec) {
2735           Ops[i] = NewRec;
2736           break;
2737         }
2738       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2739     }
2740 
2741     // Okay, if there weren't any loop invariants to be folded, check to see if
2742     // there are multiple AddRec's with the same loop induction variable being
2743     // added together.  If so, we can fold them.
2744     for (unsigned OtherIdx = Idx+1;
2745          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2746          ++OtherIdx) {
2747       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2748       // so that the 1st found AddRecExpr is dominated by all others.
2749       assert(DT.dominates(
2750            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2751            AddRec->getLoop()->getHeader()) &&
2752         "AddRecExprs are not sorted in reverse dominance order?");
2753       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2754         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2755         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2756         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2757              ++OtherIdx) {
2758           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2759           if (OtherAddRec->getLoop() == AddRecLoop) {
2760             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2761                  i != e; ++i) {
2762               if (i >= AddRecOps.size()) {
2763                 AddRecOps.append(OtherAddRec->op_begin()+i,
2764                                  OtherAddRec->op_end());
2765                 break;
2766               }
2767               SmallVector<const SCEV *, 2> TwoOps = {
2768                   AddRecOps[i], OtherAddRec->getOperand(i)};
2769               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2770             }
2771             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2772           }
2773         }
2774         // Step size has changed, so we cannot guarantee no self-wraparound.
2775         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2776         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2777       }
2778     }
2779 
2780     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2781     // next one.
2782   }
2783 
2784   // Okay, it looks like we really DO need an add expr.  Check to see if we
2785   // already have one, otherwise create a new one.
2786   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2787 }
2788 
2789 const SCEV *
2790 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2791                                     SCEV::NoWrapFlags Flags) {
2792   FoldingSetNodeID ID;
2793   ID.AddInteger(scAddExpr);
2794   for (const SCEV *Op : Ops)
2795     ID.AddPointer(Op);
2796   void *IP = nullptr;
2797   SCEVAddExpr *S =
2798       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2799   if (!S) {
2800     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2801     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2802     S = new (SCEVAllocator)
2803         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2804     UniqueSCEVs.InsertNode(S, IP);
2805     addToLoopUseLists(S);
2806   }
2807   S->setNoWrapFlags(Flags);
2808   return S;
2809 }
2810 
2811 const SCEV *
2812 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2813                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2814   FoldingSetNodeID ID;
2815   ID.AddInteger(scAddRecExpr);
2816   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2817     ID.AddPointer(Ops[i]);
2818   ID.AddPointer(L);
2819   void *IP = nullptr;
2820   SCEVAddRecExpr *S =
2821       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2822   if (!S) {
2823     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2824     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2825     S = new (SCEVAllocator)
2826         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2827     UniqueSCEVs.InsertNode(S, IP);
2828     addToLoopUseLists(S);
2829   }
2830   setNoWrapFlags(S, Flags);
2831   return S;
2832 }
2833 
2834 const SCEV *
2835 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2836                                     SCEV::NoWrapFlags Flags) {
2837   FoldingSetNodeID ID;
2838   ID.AddInteger(scMulExpr);
2839   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2840     ID.AddPointer(Ops[i]);
2841   void *IP = nullptr;
2842   SCEVMulExpr *S =
2843     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2844   if (!S) {
2845     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2846     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2847     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2848                                         O, Ops.size());
2849     UniqueSCEVs.InsertNode(S, IP);
2850     addToLoopUseLists(S);
2851   }
2852   S->setNoWrapFlags(Flags);
2853   return S;
2854 }
2855 
2856 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2857   uint64_t k = i*j;
2858   if (j > 1 && k / j != i) Overflow = true;
2859   return k;
2860 }
2861 
2862 /// Compute the result of "n choose k", the binomial coefficient.  If an
2863 /// intermediate computation overflows, Overflow will be set and the return will
2864 /// be garbage. Overflow is not cleared on absence of overflow.
2865 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2866   // We use the multiplicative formula:
2867   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2868   // At each iteration, we take the n-th term of the numeral and divide by the
2869   // (k-n)th term of the denominator.  This division will always produce an
2870   // integral result, and helps reduce the chance of overflow in the
2871   // intermediate computations. However, we can still overflow even when the
2872   // final result would fit.
2873 
2874   if (n == 0 || n == k) return 1;
2875   if (k > n) return 0;
2876 
2877   if (k > n/2)
2878     k = n-k;
2879 
2880   uint64_t r = 1;
2881   for (uint64_t i = 1; i <= k; ++i) {
2882     r = umul_ov(r, n-(i-1), Overflow);
2883     r /= i;
2884   }
2885   return r;
2886 }
2887 
2888 /// Determine if any of the operands in this SCEV are a constant or if
2889 /// any of the add or multiply expressions in this SCEV contain a constant.
2890 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2891   struct FindConstantInAddMulChain {
2892     bool FoundConstant = false;
2893 
2894     bool follow(const SCEV *S) {
2895       FoundConstant |= isa<SCEVConstant>(S);
2896       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2897     }
2898 
2899     bool isDone() const {
2900       return FoundConstant;
2901     }
2902   };
2903 
2904   FindConstantInAddMulChain F;
2905   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2906   ST.visitAll(StartExpr);
2907   return F.FoundConstant;
2908 }
2909 
2910 /// Get a canonical multiply expression, or something simpler if possible.
2911 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2912                                         SCEV::NoWrapFlags OrigFlags,
2913                                         unsigned Depth) {
2914   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2915          "only nuw or nsw allowed");
2916   assert(!Ops.empty() && "Cannot get empty mul!");
2917   if (Ops.size() == 1) return Ops[0];
2918 #ifndef NDEBUG
2919   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2920   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2921     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2922            "SCEVMulExpr operand types don't match!");
2923 #endif
2924 
2925   // Sort by complexity, this groups all similar expression types together.
2926   GroupByComplexity(Ops, &LI, DT);
2927 
2928   // If there are any constants, fold them together.
2929   unsigned Idx = 0;
2930   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2931     ++Idx;
2932     assert(Idx < Ops.size());
2933     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2934       // We found two constants, fold them together!
2935       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2936       if (Ops.size() == 2) return Ops[0];
2937       Ops.erase(Ops.begin()+1);  // Erase the folded element
2938       LHSC = cast<SCEVConstant>(Ops[0]);
2939     }
2940 
2941     // If we have a multiply of zero, it will always be zero.
2942     if (LHSC->getValue()->isZero())
2943       return LHSC;
2944 
2945     // If we are left with a constant one being multiplied, strip it off.
2946     if (LHSC->getValue()->isOne()) {
2947       Ops.erase(Ops.begin());
2948       --Idx;
2949     }
2950 
2951     if (Ops.size() == 1)
2952       return Ops[0];
2953   }
2954 
2955   // Delay expensive flag strengthening until necessary.
2956   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2957     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2958   };
2959 
2960   // Limit recursion calls depth.
2961   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2962     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2963 
2964   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2965     // Don't strengthen flags if we have no new information.
2966     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2967     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2968       Mul->setNoWrapFlags(ComputeFlags(Ops));
2969     return S;
2970   }
2971 
2972   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2973     if (Ops.size() == 2) {
2974       // C1*(C2+V) -> C1*C2 + C1*V
2975       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2976         // If any of Add's ops are Adds or Muls with a constant, apply this
2977         // transformation as well.
2978         //
2979         // TODO: There are some cases where this transformation is not
2980         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2981         // this transformation should be narrowed down.
2982         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2983           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2984                                        SCEV::FlagAnyWrap, Depth + 1),
2985                             getMulExpr(LHSC, Add->getOperand(1),
2986                                        SCEV::FlagAnyWrap, Depth + 1),
2987                             SCEV::FlagAnyWrap, Depth + 1);
2988 
2989       if (Ops[0]->isAllOnesValue()) {
2990         // If we have a mul by -1 of an add, try distributing the -1 among the
2991         // add operands.
2992         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2993           SmallVector<const SCEV *, 4> NewOps;
2994           bool AnyFolded = false;
2995           for (const SCEV *AddOp : Add->operands()) {
2996             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2997                                          Depth + 1);
2998             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2999             NewOps.push_back(Mul);
3000           }
3001           if (AnyFolded)
3002             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3003         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3004           // Negation preserves a recurrence's no self-wrap property.
3005           SmallVector<const SCEV *, 4> Operands;
3006           for (const SCEV *AddRecOp : AddRec->operands())
3007             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3008                                           Depth + 1));
3009 
3010           return getAddRecExpr(Operands, AddRec->getLoop(),
3011                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3012         }
3013       }
3014     }
3015   }
3016 
3017   // Skip over the add expression until we get to a multiply.
3018   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3019     ++Idx;
3020 
3021   // If there are mul operands inline them all into this expression.
3022   if (Idx < Ops.size()) {
3023     bool DeletedMul = false;
3024     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3025       if (Ops.size() > MulOpsInlineThreshold)
3026         break;
3027       // If we have an mul, expand the mul operands onto the end of the
3028       // operands list.
3029       Ops.erase(Ops.begin()+Idx);
3030       Ops.append(Mul->op_begin(), Mul->op_end());
3031       DeletedMul = true;
3032     }
3033 
3034     // If we deleted at least one mul, we added operands to the end of the
3035     // list, and they are not necessarily sorted.  Recurse to resort and
3036     // resimplify any operands we just acquired.
3037     if (DeletedMul)
3038       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3039   }
3040 
3041   // If there are any add recurrences in the operands list, see if any other
3042   // added values are loop invariant.  If so, we can fold them into the
3043   // recurrence.
3044   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3045     ++Idx;
3046 
3047   // Scan over all recurrences, trying to fold loop invariants into them.
3048   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3049     // Scan all of the other operands to this mul and add them to the vector
3050     // if they are loop invariant w.r.t. the recurrence.
3051     SmallVector<const SCEV *, 8> LIOps;
3052     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3053     const Loop *AddRecLoop = AddRec->getLoop();
3054     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3055       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3056         LIOps.push_back(Ops[i]);
3057         Ops.erase(Ops.begin()+i);
3058         --i; --e;
3059       }
3060 
3061     // If we found some loop invariants, fold them into the recurrence.
3062     if (!LIOps.empty()) {
3063       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3064       SmallVector<const SCEV *, 4> NewOps;
3065       NewOps.reserve(AddRec->getNumOperands());
3066       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3067       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3068         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3069                                     SCEV::FlagAnyWrap, Depth + 1));
3070 
3071       // Build the new addrec. Propagate the NUW and NSW flags if both the
3072       // outer mul and the inner addrec are guaranteed to have no overflow.
3073       //
3074       // No self-wrap cannot be guaranteed after changing the step size, but
3075       // will be inferred if either NUW or NSW is true.
3076       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3077       const SCEV *NewRec = getAddRecExpr(
3078           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3079 
3080       // If all of the other operands were loop invariant, we are done.
3081       if (Ops.size() == 1) return NewRec;
3082 
3083       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3084       for (unsigned i = 0;; ++i)
3085         if (Ops[i] == AddRec) {
3086           Ops[i] = NewRec;
3087           break;
3088         }
3089       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3090     }
3091 
3092     // Okay, if there weren't any loop invariants to be folded, check to see
3093     // if there are multiple AddRec's with the same loop induction variable
3094     // being multiplied together.  If so, we can fold them.
3095 
3096     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3097     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3098     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3099     //   ]]],+,...up to x=2n}.
3100     // Note that the arguments to choose() are always integers with values
3101     // known at compile time, never SCEV objects.
3102     //
3103     // The implementation avoids pointless extra computations when the two
3104     // addrec's are of different length (mathematically, it's equivalent to
3105     // an infinite stream of zeros on the right).
3106     bool OpsModified = false;
3107     for (unsigned OtherIdx = Idx+1;
3108          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3109          ++OtherIdx) {
3110       const SCEVAddRecExpr *OtherAddRec =
3111         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3112       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3113         continue;
3114 
3115       // Limit max number of arguments to avoid creation of unreasonably big
3116       // SCEVAddRecs with very complex operands.
3117       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3118           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3119         continue;
3120 
3121       bool Overflow = false;
3122       Type *Ty = AddRec->getType();
3123       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3124       SmallVector<const SCEV*, 7> AddRecOps;
3125       for (int x = 0, xe = AddRec->getNumOperands() +
3126              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3127         SmallVector <const SCEV *, 7> SumOps;
3128         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3129           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3130           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3131                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3132                z < ze && !Overflow; ++z) {
3133             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3134             uint64_t Coeff;
3135             if (LargerThan64Bits)
3136               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3137             else
3138               Coeff = Coeff1*Coeff2;
3139             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3140             const SCEV *Term1 = AddRec->getOperand(y-z);
3141             const SCEV *Term2 = OtherAddRec->getOperand(z);
3142             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3143                                         SCEV::FlagAnyWrap, Depth + 1));
3144           }
3145         }
3146         if (SumOps.empty())
3147           SumOps.push_back(getZero(Ty));
3148         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3149       }
3150       if (!Overflow) {
3151         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3152                                               SCEV::FlagAnyWrap);
3153         if (Ops.size() == 2) return NewAddRec;
3154         Ops[Idx] = NewAddRec;
3155         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3156         OpsModified = true;
3157         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3158         if (!AddRec)
3159           break;
3160       }
3161     }
3162     if (OpsModified)
3163       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3164 
3165     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3166     // next one.
3167   }
3168 
3169   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3170   // already have one, otherwise create a new one.
3171   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3172 }
3173 
3174 /// Represents an unsigned remainder expression based on unsigned division.
3175 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3176                                          const SCEV *RHS) {
3177   assert(getEffectiveSCEVType(LHS->getType()) ==
3178          getEffectiveSCEVType(RHS->getType()) &&
3179          "SCEVURemExpr operand types don't match!");
3180 
3181   // Short-circuit easy cases
3182   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3183     // If constant is one, the result is trivial
3184     if (RHSC->getValue()->isOne())
3185       return getZero(LHS->getType()); // X urem 1 --> 0
3186 
3187     // If constant is a power of two, fold into a zext(trunc(LHS)).
3188     if (RHSC->getAPInt().isPowerOf2()) {
3189       Type *FullTy = LHS->getType();
3190       Type *TruncTy =
3191           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3192       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3193     }
3194   }
3195 
3196   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3197   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3198   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3199   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3200 }
3201 
3202 /// Get a canonical unsigned division expression, or something simpler if
3203 /// possible.
3204 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3205                                          const SCEV *RHS) {
3206   assert(getEffectiveSCEVType(LHS->getType()) ==
3207          getEffectiveSCEVType(RHS->getType()) &&
3208          "SCEVUDivExpr operand types don't match!");
3209 
3210   FoldingSetNodeID ID;
3211   ID.AddInteger(scUDivExpr);
3212   ID.AddPointer(LHS);
3213   ID.AddPointer(RHS);
3214   void *IP = nullptr;
3215   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3216     return S;
3217 
3218   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3219     if (RHSC->getValue()->isOne())
3220       return LHS;                               // X udiv 1 --> x
3221     // If the denominator is zero, the result of the udiv is undefined. Don't
3222     // try to analyze it, because the resolution chosen here may differ from
3223     // the resolution chosen in other parts of the compiler.
3224     if (!RHSC->getValue()->isZero()) {
3225       // Determine if the division can be folded into the operands of
3226       // its operands.
3227       // TODO: Generalize this to non-constants by using known-bits information.
3228       Type *Ty = LHS->getType();
3229       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3230       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3231       // For non-power-of-two values, effectively round the value up to the
3232       // nearest power of two.
3233       if (!RHSC->getAPInt().isPowerOf2())
3234         ++MaxShiftAmt;
3235       IntegerType *ExtTy =
3236         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3237       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3238         if (const SCEVConstant *Step =
3239             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3240           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3241           const APInt &StepInt = Step->getAPInt();
3242           const APInt &DivInt = RHSC->getAPInt();
3243           if (!StepInt.urem(DivInt) &&
3244               getZeroExtendExpr(AR, ExtTy) ==
3245               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3246                             getZeroExtendExpr(Step, ExtTy),
3247                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3248             SmallVector<const SCEV *, 4> Operands;
3249             for (const SCEV *Op : AR->operands())
3250               Operands.push_back(getUDivExpr(Op, RHS));
3251             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3252           }
3253           /// Get a canonical UDivExpr for a recurrence.
3254           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3255           // We can currently only fold X%N if X is constant.
3256           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3257           if (StartC && !DivInt.urem(StepInt) &&
3258               getZeroExtendExpr(AR, ExtTy) ==
3259               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3260                             getZeroExtendExpr(Step, ExtTy),
3261                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3262             const APInt &StartInt = StartC->getAPInt();
3263             const APInt &StartRem = StartInt.urem(StepInt);
3264             if (StartRem != 0) {
3265               const SCEV *NewLHS =
3266                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3267                                 AR->getLoop(), SCEV::FlagNW);
3268               if (LHS != NewLHS) {
3269                 LHS = NewLHS;
3270 
3271                 // Reset the ID to include the new LHS, and check if it is
3272                 // already cached.
3273                 ID.clear();
3274                 ID.AddInteger(scUDivExpr);
3275                 ID.AddPointer(LHS);
3276                 ID.AddPointer(RHS);
3277                 IP = nullptr;
3278                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3279                   return S;
3280               }
3281             }
3282           }
3283         }
3284       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3285       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3286         SmallVector<const SCEV *, 4> Operands;
3287         for (const SCEV *Op : M->operands())
3288           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3289         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3290           // Find an operand that's safely divisible.
3291           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3292             const SCEV *Op = M->getOperand(i);
3293             const SCEV *Div = getUDivExpr(Op, RHSC);
3294             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3295               Operands = SmallVector<const SCEV *, 4>(M->operands());
3296               Operands[i] = Div;
3297               return getMulExpr(Operands);
3298             }
3299           }
3300       }
3301 
3302       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3303       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3304         if (auto *DivisorConstant =
3305                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3306           bool Overflow = false;
3307           APInt NewRHS =
3308               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3309           if (Overflow) {
3310             return getConstant(RHSC->getType(), 0, false);
3311           }
3312           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3313         }
3314       }
3315 
3316       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3317       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3318         SmallVector<const SCEV *, 4> Operands;
3319         for (const SCEV *Op : A->operands())
3320           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3321         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3322           Operands.clear();
3323           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3324             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3325             if (isa<SCEVUDivExpr>(Op) ||
3326                 getMulExpr(Op, RHS) != A->getOperand(i))
3327               break;
3328             Operands.push_back(Op);
3329           }
3330           if (Operands.size() == A->getNumOperands())
3331             return getAddExpr(Operands);
3332         }
3333       }
3334 
3335       // Fold if both operands are constant.
3336       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3337         Constant *LHSCV = LHSC->getValue();
3338         Constant *RHSCV = RHSC->getValue();
3339         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3340                                                                    RHSCV)));
3341       }
3342     }
3343   }
3344 
3345   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3346   // changes). Make sure we get a new one.
3347   IP = nullptr;
3348   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3349   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3350                                              LHS, RHS);
3351   UniqueSCEVs.InsertNode(S, IP);
3352   addToLoopUseLists(S);
3353   return S;
3354 }
3355 
3356 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3357   APInt A = C1->getAPInt().abs();
3358   APInt B = C2->getAPInt().abs();
3359   uint32_t ABW = A.getBitWidth();
3360   uint32_t BBW = B.getBitWidth();
3361 
3362   if (ABW > BBW)
3363     B = B.zext(ABW);
3364   else if (ABW < BBW)
3365     A = A.zext(BBW);
3366 
3367   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3368 }
3369 
3370 /// Get a canonical unsigned division expression, or something simpler if
3371 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3372 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3373 /// it's not exact because the udiv may be clearing bits.
3374 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3375                                               const SCEV *RHS) {
3376   // TODO: we could try to find factors in all sorts of things, but for now we
3377   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3378   // end of this file for inspiration.
3379 
3380   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3381   if (!Mul || !Mul->hasNoUnsignedWrap())
3382     return getUDivExpr(LHS, RHS);
3383 
3384   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3385     // If the mulexpr multiplies by a constant, then that constant must be the
3386     // first element of the mulexpr.
3387     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3388       if (LHSCst == RHSCst) {
3389         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3390         return getMulExpr(Operands);
3391       }
3392 
3393       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3394       // that there's a factor provided by one of the other terms. We need to
3395       // check.
3396       APInt Factor = gcd(LHSCst, RHSCst);
3397       if (!Factor.isIntN(1)) {
3398         LHSCst =
3399             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3400         RHSCst =
3401             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3402         SmallVector<const SCEV *, 2> Operands;
3403         Operands.push_back(LHSCst);
3404         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3405         LHS = getMulExpr(Operands);
3406         RHS = RHSCst;
3407         Mul = dyn_cast<SCEVMulExpr>(LHS);
3408         if (!Mul)
3409           return getUDivExactExpr(LHS, RHS);
3410       }
3411     }
3412   }
3413 
3414   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3415     if (Mul->getOperand(i) == RHS) {
3416       SmallVector<const SCEV *, 2> Operands;
3417       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3418       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3419       return getMulExpr(Operands);
3420     }
3421   }
3422 
3423   return getUDivExpr(LHS, RHS);
3424 }
3425 
3426 /// Get an add recurrence expression for the specified loop.  Simplify the
3427 /// expression as much as possible.
3428 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3429                                            const Loop *L,
3430                                            SCEV::NoWrapFlags Flags) {
3431   SmallVector<const SCEV *, 4> Operands;
3432   Operands.push_back(Start);
3433   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3434     if (StepChrec->getLoop() == L) {
3435       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3436       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3437     }
3438 
3439   Operands.push_back(Step);
3440   return getAddRecExpr(Operands, L, Flags);
3441 }
3442 
3443 /// Get an add recurrence expression for the specified loop.  Simplify the
3444 /// expression as much as possible.
3445 const SCEV *
3446 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3447                                const Loop *L, SCEV::NoWrapFlags Flags) {
3448   if (Operands.size() == 1) return Operands[0];
3449 #ifndef NDEBUG
3450   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3451   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3452     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3453            "SCEVAddRecExpr operand types don't match!");
3454   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3455     assert(isLoopInvariant(Operands[i], L) &&
3456            "SCEVAddRecExpr operand is not loop-invariant!");
3457 #endif
3458 
3459   if (Operands.back()->isZero()) {
3460     Operands.pop_back();
3461     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3462   }
3463 
3464   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3465   // use that information to infer NUW and NSW flags. However, computing a
3466   // BE count requires calling getAddRecExpr, so we may not yet have a
3467   // meaningful BE count at this point (and if we don't, we'd be stuck
3468   // with a SCEVCouldNotCompute as the cached BE count).
3469 
3470   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3471 
3472   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3473   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3474     const Loop *NestedLoop = NestedAR->getLoop();
3475     if (L->contains(NestedLoop)
3476             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3477             : (!NestedLoop->contains(L) &&
3478                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3479       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3480       Operands[0] = NestedAR->getStart();
3481       // AddRecs require their operands be loop-invariant with respect to their
3482       // loops. Don't perform this transformation if it would break this
3483       // requirement.
3484       bool AllInvariant = all_of(
3485           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3486 
3487       if (AllInvariant) {
3488         // Create a recurrence for the outer loop with the same step size.
3489         //
3490         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3491         // inner recurrence has the same property.
3492         SCEV::NoWrapFlags OuterFlags =
3493           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3494 
3495         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3496         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3497           return isLoopInvariant(Op, NestedLoop);
3498         });
3499 
3500         if (AllInvariant) {
3501           // Ok, both add recurrences are valid after the transformation.
3502           //
3503           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3504           // the outer recurrence has the same property.
3505           SCEV::NoWrapFlags InnerFlags =
3506             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3507           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3508         }
3509       }
3510       // Reset Operands to its original state.
3511       Operands[0] = NestedAR;
3512     }
3513   }
3514 
3515   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3516   // already have one, otherwise create a new one.
3517   return getOrCreateAddRecExpr(Operands, L, Flags);
3518 }
3519 
3520 const SCEV *
3521 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3522                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3523   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3524   // getSCEV(Base)->getType() has the same address space as Base->getType()
3525   // because SCEV::getType() preserves the address space.
3526   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3527   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3528   // instruction to its SCEV, because the Instruction may be guarded by control
3529   // flow and the no-overflow bits may not be valid for the expression in any
3530   // context. This can be fixed similarly to how these flags are handled for
3531   // adds.
3532   SCEV::NoWrapFlags OffsetWrap =
3533       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3534 
3535   Type *CurTy = GEP->getType();
3536   bool FirstIter = true;
3537   SmallVector<const SCEV *, 4> Offsets;
3538   for (const SCEV *IndexExpr : IndexExprs) {
3539     // Compute the (potentially symbolic) offset in bytes for this index.
3540     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3541       // For a struct, add the member offset.
3542       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3543       unsigned FieldNo = Index->getZExtValue();
3544       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3545       Offsets.push_back(FieldOffset);
3546 
3547       // Update CurTy to the type of the field at Index.
3548       CurTy = STy->getTypeAtIndex(Index);
3549     } else {
3550       // Update CurTy to its element type.
3551       if (FirstIter) {
3552         assert(isa<PointerType>(CurTy) &&
3553                "The first index of a GEP indexes a pointer");
3554         CurTy = GEP->getSourceElementType();
3555         FirstIter = false;
3556       } else {
3557         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3558       }
3559       // For an array, add the element offset, explicitly scaled.
3560       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3561       // Getelementptr indices are signed.
3562       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3563 
3564       // Multiply the index by the element size to compute the element offset.
3565       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3566       Offsets.push_back(LocalOffset);
3567     }
3568   }
3569 
3570   // Handle degenerate case of GEP without offsets.
3571   if (Offsets.empty())
3572     return BaseExpr;
3573 
3574   // Add the offsets together, assuming nsw if inbounds.
3575   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3576   // Add the base address and the offset. We cannot use the nsw flag, as the
3577   // base address is unsigned. However, if we know that the offset is
3578   // non-negative, we can use nuw.
3579   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3580                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3581   return getAddExpr(BaseExpr, Offset, BaseWrap);
3582 }
3583 
3584 std::tuple<SCEV *, FoldingSetNodeID, void *>
3585 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3586                                          ArrayRef<const SCEV *> Ops) {
3587   FoldingSetNodeID ID;
3588   void *IP = nullptr;
3589   ID.AddInteger(SCEVType);
3590   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3591     ID.AddPointer(Ops[i]);
3592   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3593       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3594 }
3595 
3596 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3597   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3598   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3599 }
3600 
3601 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3602                                            SmallVectorImpl<const SCEV *> &Ops) {
3603   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3604   if (Ops.size() == 1) return Ops[0];
3605 #ifndef NDEBUG
3606   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3607   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3608     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3609            "Operand types don't match!");
3610 #endif
3611 
3612   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3613   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3614 
3615   // Sort by complexity, this groups all similar expression types together.
3616   GroupByComplexity(Ops, &LI, DT);
3617 
3618   // Check if we have created the same expression before.
3619   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3620     return S;
3621   }
3622 
3623   // If there are any constants, fold them together.
3624   unsigned Idx = 0;
3625   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3626     ++Idx;
3627     assert(Idx < Ops.size());
3628     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3629       if (Kind == scSMaxExpr)
3630         return APIntOps::smax(LHS, RHS);
3631       else if (Kind == scSMinExpr)
3632         return APIntOps::smin(LHS, RHS);
3633       else if (Kind == scUMaxExpr)
3634         return APIntOps::umax(LHS, RHS);
3635       else if (Kind == scUMinExpr)
3636         return APIntOps::umin(LHS, RHS);
3637       llvm_unreachable("Unknown SCEV min/max opcode");
3638     };
3639 
3640     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3641       // We found two constants, fold them together!
3642       ConstantInt *Fold = ConstantInt::get(
3643           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3644       Ops[0] = getConstant(Fold);
3645       Ops.erase(Ops.begin()+1);  // Erase the folded element
3646       if (Ops.size() == 1) return Ops[0];
3647       LHSC = cast<SCEVConstant>(Ops[0]);
3648     }
3649 
3650     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3651     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3652 
3653     if (IsMax ? IsMinV : IsMaxV) {
3654       // If we are left with a constant minimum(/maximum)-int, strip it off.
3655       Ops.erase(Ops.begin());
3656       --Idx;
3657     } else if (IsMax ? IsMaxV : IsMinV) {
3658       // If we have a max(/min) with a constant maximum(/minimum)-int,
3659       // it will always be the extremum.
3660       return LHSC;
3661     }
3662 
3663     if (Ops.size() == 1) return Ops[0];
3664   }
3665 
3666   // Find the first operation of the same kind
3667   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3668     ++Idx;
3669 
3670   // Check to see if one of the operands is of the same kind. If so, expand its
3671   // operands onto our operand list, and recurse to simplify.
3672   if (Idx < Ops.size()) {
3673     bool DeletedAny = false;
3674     while (Ops[Idx]->getSCEVType() == Kind) {
3675       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3676       Ops.erase(Ops.begin()+Idx);
3677       Ops.append(SMME->op_begin(), SMME->op_end());
3678       DeletedAny = true;
3679     }
3680 
3681     if (DeletedAny)
3682       return getMinMaxExpr(Kind, Ops);
3683   }
3684 
3685   // Okay, check to see if the same value occurs in the operand list twice.  If
3686   // so, delete one.  Since we sorted the list, these values are required to
3687   // be adjacent.
3688   llvm::CmpInst::Predicate GEPred =
3689       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3690   llvm::CmpInst::Predicate LEPred =
3691       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3692   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3693   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3694   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3695     if (Ops[i] == Ops[i + 1] ||
3696         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3697       //  X op Y op Y  -->  X op Y
3698       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3699       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3700       --i;
3701       --e;
3702     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3703                                                Ops[i + 1])) {
3704       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3705       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3706       --i;
3707       --e;
3708     }
3709   }
3710 
3711   if (Ops.size() == 1) return Ops[0];
3712 
3713   assert(!Ops.empty() && "Reduced smax down to nothing!");
3714 
3715   // Okay, it looks like we really DO need an expr.  Check to see if we
3716   // already have one, otherwise create a new one.
3717   const SCEV *ExistingSCEV;
3718   FoldingSetNodeID ID;
3719   void *IP;
3720   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3721   if (ExistingSCEV)
3722     return ExistingSCEV;
3723   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3724   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3725   SCEV *S = new (SCEVAllocator)
3726       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3727 
3728   UniqueSCEVs.InsertNode(S, IP);
3729   addToLoopUseLists(S);
3730   return S;
3731 }
3732 
3733 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3734   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3735   return getSMaxExpr(Ops);
3736 }
3737 
3738 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3739   return getMinMaxExpr(scSMaxExpr, Ops);
3740 }
3741 
3742 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3743   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3744   return getUMaxExpr(Ops);
3745 }
3746 
3747 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3748   return getMinMaxExpr(scUMaxExpr, Ops);
3749 }
3750 
3751 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3752                                          const SCEV *RHS) {
3753   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3754   return getSMinExpr(Ops);
3755 }
3756 
3757 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3758   return getMinMaxExpr(scSMinExpr, Ops);
3759 }
3760 
3761 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3762                                          const SCEV *RHS) {
3763   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3764   return getUMinExpr(Ops);
3765 }
3766 
3767 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3768   return getMinMaxExpr(scUMinExpr, Ops);
3769 }
3770 
3771 const SCEV *
3772 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3773                                              ScalableVectorType *ScalableTy) {
3774   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3775   Constant *One = ConstantInt::get(IntTy, 1);
3776   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3777   // Note that the expression we created is the final expression, we don't
3778   // want to simplify it any further Also, if we call a normal getSCEV(),
3779   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3780   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3781 }
3782 
3783 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3784   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3785     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3786   // We can bypass creating a target-independent constant expression and then
3787   // folding it back into a ConstantInt. This is just a compile-time
3788   // optimization.
3789   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3790 }
3791 
3792 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3793   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3794     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3795   // We can bypass creating a target-independent constant expression and then
3796   // folding it back into a ConstantInt. This is just a compile-time
3797   // optimization.
3798   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3799 }
3800 
3801 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3802                                              StructType *STy,
3803                                              unsigned FieldNo) {
3804   // We can bypass creating a target-independent constant expression and then
3805   // folding it back into a ConstantInt. This is just a compile-time
3806   // optimization.
3807   return getConstant(
3808       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3809 }
3810 
3811 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3812   // Don't attempt to do anything other than create a SCEVUnknown object
3813   // here.  createSCEV only calls getUnknown after checking for all other
3814   // interesting possibilities, and any other code that calls getUnknown
3815   // is doing so in order to hide a value from SCEV canonicalization.
3816 
3817   FoldingSetNodeID ID;
3818   ID.AddInteger(scUnknown);
3819   ID.AddPointer(V);
3820   void *IP = nullptr;
3821   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3822     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3823            "Stale SCEVUnknown in uniquing map!");
3824     return S;
3825   }
3826   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3827                                             FirstUnknown);
3828   FirstUnknown = cast<SCEVUnknown>(S);
3829   UniqueSCEVs.InsertNode(S, IP);
3830   return S;
3831 }
3832 
3833 //===----------------------------------------------------------------------===//
3834 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3835 //
3836 
3837 /// Test if values of the given type are analyzable within the SCEV
3838 /// framework. This primarily includes integer types, and it can optionally
3839 /// include pointer types if the ScalarEvolution class has access to
3840 /// target-specific information.
3841 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3842   // Integers and pointers are always SCEVable.
3843   return Ty->isIntOrPtrTy();
3844 }
3845 
3846 /// Return the size in bits of the specified type, for which isSCEVable must
3847 /// return true.
3848 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3849   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3850   if (Ty->isPointerTy())
3851     return getDataLayout().getIndexTypeSizeInBits(Ty);
3852   return getDataLayout().getTypeSizeInBits(Ty);
3853 }
3854 
3855 /// Return a type with the same bitwidth as the given type and which represents
3856 /// how SCEV will treat the given type, for which isSCEVable must return
3857 /// true. For pointer types, this is the pointer index sized integer type.
3858 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3859   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3860 
3861   if (Ty->isIntegerTy())
3862     return Ty;
3863 
3864   // The only other support type is pointer.
3865   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3866   return getDataLayout().getIndexType(Ty);
3867 }
3868 
3869 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3870   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3871 }
3872 
3873 const SCEV *ScalarEvolution::getCouldNotCompute() {
3874   return CouldNotCompute.get();
3875 }
3876 
3877 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3878   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3879     auto *SU = dyn_cast<SCEVUnknown>(S);
3880     return SU && SU->getValue() == nullptr;
3881   });
3882 
3883   return !ContainsNulls;
3884 }
3885 
3886 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3887   HasRecMapType::iterator I = HasRecMap.find(S);
3888   if (I != HasRecMap.end())
3889     return I->second;
3890 
3891   bool FoundAddRec =
3892       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3893   HasRecMap.insert({S, FoundAddRec});
3894   return FoundAddRec;
3895 }
3896 
3897 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3898 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3899 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3900 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3901   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3902   if (!Add)
3903     return {S, nullptr};
3904 
3905   if (Add->getNumOperands() != 2)
3906     return {S, nullptr};
3907 
3908   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3909   if (!ConstOp)
3910     return {S, nullptr};
3911 
3912   return {Add->getOperand(1), ConstOp->getValue()};
3913 }
3914 
3915 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3916 /// by the value and offset from any ValueOffsetPair in the set.
3917 ScalarEvolution::ValueOffsetPairSetVector *
3918 ScalarEvolution::getSCEVValues(const SCEV *S) {
3919   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3920   if (SI == ExprValueMap.end())
3921     return nullptr;
3922 #ifndef NDEBUG
3923   if (VerifySCEVMap) {
3924     // Check there is no dangling Value in the set returned.
3925     for (const auto &VE : SI->second)
3926       assert(ValueExprMap.count(VE.first));
3927   }
3928 #endif
3929   return &SI->second;
3930 }
3931 
3932 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3933 /// cannot be used separately. eraseValueFromMap should be used to remove
3934 /// V from ValueExprMap and ExprValueMap at the same time.
3935 void ScalarEvolution::eraseValueFromMap(Value *V) {
3936   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3937   if (I != ValueExprMap.end()) {
3938     const SCEV *S = I->second;
3939     // Remove {V, 0} from the set of ExprValueMap[S]
3940     if (auto *SV = getSCEVValues(S))
3941       SV->remove({V, nullptr});
3942 
3943     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3944     const SCEV *Stripped;
3945     ConstantInt *Offset;
3946     std::tie(Stripped, Offset) = splitAddExpr(S);
3947     if (Offset != nullptr) {
3948       if (auto *SV = getSCEVValues(Stripped))
3949         SV->remove({V, Offset});
3950     }
3951     ValueExprMap.erase(V);
3952   }
3953 }
3954 
3955 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3956 /// TODO: In reality it is better to check the poison recursively
3957 /// but this is better than nothing.
3958 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3959   if (auto *I = dyn_cast<Instruction>(V)) {
3960     if (isa<OverflowingBinaryOperator>(I)) {
3961       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3962         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3963           return true;
3964         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3965           return true;
3966       }
3967     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3968       return true;
3969   }
3970   return false;
3971 }
3972 
3973 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3974 /// create a new one.
3975 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3976   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3977 
3978   const SCEV *S = getExistingSCEV(V);
3979   if (S == nullptr) {
3980     S = createSCEV(V);
3981     // During PHI resolution, it is possible to create two SCEVs for the same
3982     // V, so it is needed to double check whether V->S is inserted into
3983     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3984     std::pair<ValueExprMapType::iterator, bool> Pair =
3985         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3986     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3987       ExprValueMap[S].insert({V, nullptr});
3988 
3989       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3990       // ExprValueMap.
3991       const SCEV *Stripped = S;
3992       ConstantInt *Offset = nullptr;
3993       std::tie(Stripped, Offset) = splitAddExpr(S);
3994       // If stripped is SCEVUnknown, don't bother to save
3995       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3996       // increase the complexity of the expansion code.
3997       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3998       // because it may generate add/sub instead of GEP in SCEV expansion.
3999       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4000           !isa<GetElementPtrInst>(V))
4001         ExprValueMap[Stripped].insert({V, Offset});
4002     }
4003   }
4004   return S;
4005 }
4006 
4007 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4008   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4009 
4010   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4011   if (I != ValueExprMap.end()) {
4012     const SCEV *S = I->second;
4013     if (checkValidity(S))
4014       return S;
4015     eraseValueFromMap(V);
4016     forgetMemoizedResults(S);
4017   }
4018   return nullptr;
4019 }
4020 
4021 /// Return a SCEV corresponding to -V = -1*V
4022 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4023                                              SCEV::NoWrapFlags Flags) {
4024   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4025     return getConstant(
4026                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4027 
4028   Type *Ty = V->getType();
4029   Ty = getEffectiveSCEVType(Ty);
4030   return getMulExpr(V, getMinusOne(Ty), Flags);
4031 }
4032 
4033 /// If Expr computes ~A, return A else return nullptr
4034 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4035   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4036   if (!Add || Add->getNumOperands() != 2 ||
4037       !Add->getOperand(0)->isAllOnesValue())
4038     return nullptr;
4039 
4040   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4041   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4042       !AddRHS->getOperand(0)->isAllOnesValue())
4043     return nullptr;
4044 
4045   return AddRHS->getOperand(1);
4046 }
4047 
4048 /// Return a SCEV corresponding to ~V = -1-V
4049 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4050   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4051     return getConstant(
4052                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4053 
4054   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4055   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4056     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4057       SmallVector<const SCEV *, 2> MatchedOperands;
4058       for (const SCEV *Operand : MME->operands()) {
4059         const SCEV *Matched = MatchNotExpr(Operand);
4060         if (!Matched)
4061           return (const SCEV *)nullptr;
4062         MatchedOperands.push_back(Matched);
4063       }
4064       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4065                            MatchedOperands);
4066     };
4067     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4068       return Replaced;
4069   }
4070 
4071   Type *Ty = V->getType();
4072   Ty = getEffectiveSCEVType(Ty);
4073   return getMinusSCEV(getMinusOne(Ty), V);
4074 }
4075 
4076 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4077                                           SCEV::NoWrapFlags Flags,
4078                                           unsigned Depth) {
4079   // Fast path: X - X --> 0.
4080   if (LHS == RHS)
4081     return getZero(LHS->getType());
4082 
4083   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4084   // makes it so that we cannot make much use of NUW.
4085   auto AddFlags = SCEV::FlagAnyWrap;
4086   const bool RHSIsNotMinSigned =
4087       !getSignedRangeMin(RHS).isMinSignedValue();
4088   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4089     // Let M be the minimum representable signed value. Then (-1)*RHS
4090     // signed-wraps if and only if RHS is M. That can happen even for
4091     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4092     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4093     // (-1)*RHS, we need to prove that RHS != M.
4094     //
4095     // If LHS is non-negative and we know that LHS - RHS does not
4096     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4097     // either by proving that RHS > M or that LHS >= 0.
4098     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4099       AddFlags = SCEV::FlagNSW;
4100     }
4101   }
4102 
4103   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4104   // RHS is NSW and LHS >= 0.
4105   //
4106   // The difficulty here is that the NSW flag may have been proven
4107   // relative to a loop that is to be found in a recurrence in LHS and
4108   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4109   // larger scope than intended.
4110   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4111 
4112   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4113 }
4114 
4115 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4116                                                      unsigned Depth) {
4117   Type *SrcTy = V->getType();
4118   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4119          "Cannot truncate or zero extend with non-integer arguments!");
4120   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4121     return V;  // No conversion
4122   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4123     return getTruncateExpr(V, Ty, Depth);
4124   return getZeroExtendExpr(V, Ty, Depth);
4125 }
4126 
4127 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4128                                                      unsigned Depth) {
4129   Type *SrcTy = V->getType();
4130   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4131          "Cannot truncate or zero extend with non-integer arguments!");
4132   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4133     return V;  // No conversion
4134   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4135     return getTruncateExpr(V, Ty, Depth);
4136   return getSignExtendExpr(V, Ty, Depth);
4137 }
4138 
4139 const SCEV *
4140 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4141   Type *SrcTy = V->getType();
4142   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4143          "Cannot noop or zero extend with non-integer arguments!");
4144   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4145          "getNoopOrZeroExtend cannot truncate!");
4146   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4147     return V;  // No conversion
4148   return getZeroExtendExpr(V, Ty);
4149 }
4150 
4151 const SCEV *
4152 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4153   Type *SrcTy = V->getType();
4154   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4155          "Cannot noop or sign extend with non-integer arguments!");
4156   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4157          "getNoopOrSignExtend cannot truncate!");
4158   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4159     return V;  // No conversion
4160   return getSignExtendExpr(V, Ty);
4161 }
4162 
4163 const SCEV *
4164 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4165   Type *SrcTy = V->getType();
4166   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4167          "Cannot noop or any extend with non-integer arguments!");
4168   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4169          "getNoopOrAnyExtend cannot truncate!");
4170   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4171     return V;  // No conversion
4172   return getAnyExtendExpr(V, Ty);
4173 }
4174 
4175 const SCEV *
4176 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4177   Type *SrcTy = V->getType();
4178   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4179          "Cannot truncate or noop with non-integer arguments!");
4180   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4181          "getTruncateOrNoop cannot extend!");
4182   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4183     return V;  // No conversion
4184   return getTruncateExpr(V, Ty);
4185 }
4186 
4187 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4188                                                         const SCEV *RHS) {
4189   const SCEV *PromotedLHS = LHS;
4190   const SCEV *PromotedRHS = RHS;
4191 
4192   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4193     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4194   else
4195     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4196 
4197   return getUMaxExpr(PromotedLHS, PromotedRHS);
4198 }
4199 
4200 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4201                                                         const SCEV *RHS) {
4202   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4203   return getUMinFromMismatchedTypes(Ops);
4204 }
4205 
4206 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4207     SmallVectorImpl<const SCEV *> &Ops) {
4208   assert(!Ops.empty() && "At least one operand must be!");
4209   // Trivial case.
4210   if (Ops.size() == 1)
4211     return Ops[0];
4212 
4213   // Find the max type first.
4214   Type *MaxType = nullptr;
4215   for (auto *S : Ops)
4216     if (MaxType)
4217       MaxType = getWiderType(MaxType, S->getType());
4218     else
4219       MaxType = S->getType();
4220   assert(MaxType && "Failed to find maximum type!");
4221 
4222   // Extend all ops to max type.
4223   SmallVector<const SCEV *, 2> PromotedOps;
4224   for (auto *S : Ops)
4225     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4226 
4227   // Generate umin.
4228   return getUMinExpr(PromotedOps);
4229 }
4230 
4231 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4232   // A pointer operand may evaluate to a nonpointer expression, such as null.
4233   if (!V->getType()->isPointerTy())
4234     return V;
4235 
4236   while (true) {
4237     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4238       V = Cast->getOperand();
4239     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4240       const SCEV *PtrOp = nullptr;
4241       for (const SCEV *NAryOp : NAry->operands()) {
4242         if (NAryOp->getType()->isPointerTy()) {
4243           // Cannot find the base of an expression with multiple pointer ops.
4244           if (PtrOp)
4245             return V;
4246           PtrOp = NAryOp;
4247         }
4248       }
4249       if (!PtrOp) // All operands were non-pointer.
4250         return V;
4251       V = PtrOp;
4252     } else // Not something we can look further into.
4253       return V;
4254   }
4255 }
4256 
4257 /// Push users of the given Instruction onto the given Worklist.
4258 static void
4259 PushDefUseChildren(Instruction *I,
4260                    SmallVectorImpl<Instruction *> &Worklist) {
4261   // Push the def-use children onto the Worklist stack.
4262   for (User *U : I->users())
4263     Worklist.push_back(cast<Instruction>(U));
4264 }
4265 
4266 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4267   SmallVector<Instruction *, 16> Worklist;
4268   PushDefUseChildren(PN, Worklist);
4269 
4270   SmallPtrSet<Instruction *, 8> Visited;
4271   Visited.insert(PN);
4272   while (!Worklist.empty()) {
4273     Instruction *I = Worklist.pop_back_val();
4274     if (!Visited.insert(I).second)
4275       continue;
4276 
4277     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4278     if (It != ValueExprMap.end()) {
4279       const SCEV *Old = It->second;
4280 
4281       // Short-circuit the def-use traversal if the symbolic name
4282       // ceases to appear in expressions.
4283       if (Old != SymName && !hasOperand(Old, SymName))
4284         continue;
4285 
4286       // SCEVUnknown for a PHI either means that it has an unrecognized
4287       // structure, it's a PHI that's in the progress of being computed
4288       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4289       // additional loop trip count information isn't going to change anything.
4290       // In the second case, createNodeForPHI will perform the necessary
4291       // updates on its own when it gets to that point. In the third, we do
4292       // want to forget the SCEVUnknown.
4293       if (!isa<PHINode>(I) ||
4294           !isa<SCEVUnknown>(Old) ||
4295           (I != PN && Old == SymName)) {
4296         eraseValueFromMap(It->first);
4297         forgetMemoizedResults(Old);
4298       }
4299     }
4300 
4301     PushDefUseChildren(I, Worklist);
4302   }
4303 }
4304 
4305 namespace {
4306 
4307 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4308 /// expression in case its Loop is L. If it is not L then
4309 /// if IgnoreOtherLoops is true then use AddRec itself
4310 /// otherwise rewrite cannot be done.
4311 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4312 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4313 public:
4314   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4315                              bool IgnoreOtherLoops = true) {
4316     SCEVInitRewriter Rewriter(L, SE);
4317     const SCEV *Result = Rewriter.visit(S);
4318     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4319       return SE.getCouldNotCompute();
4320     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4321                ? SE.getCouldNotCompute()
4322                : Result;
4323   }
4324 
4325   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4326     if (!SE.isLoopInvariant(Expr, L))
4327       SeenLoopVariantSCEVUnknown = true;
4328     return Expr;
4329   }
4330 
4331   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4332     // Only re-write AddRecExprs for this loop.
4333     if (Expr->getLoop() == L)
4334       return Expr->getStart();
4335     SeenOtherLoops = true;
4336     return Expr;
4337   }
4338 
4339   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4340 
4341   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4342 
4343 private:
4344   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4345       : SCEVRewriteVisitor(SE), L(L) {}
4346 
4347   const Loop *L;
4348   bool SeenLoopVariantSCEVUnknown = false;
4349   bool SeenOtherLoops = false;
4350 };
4351 
4352 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4353 /// increment expression in case its Loop is L. If it is not L then
4354 /// use AddRec itself.
4355 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4356 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4357 public:
4358   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4359     SCEVPostIncRewriter Rewriter(L, SE);
4360     const SCEV *Result = Rewriter.visit(S);
4361     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4362         ? SE.getCouldNotCompute()
4363         : Result;
4364   }
4365 
4366   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4367     if (!SE.isLoopInvariant(Expr, L))
4368       SeenLoopVariantSCEVUnknown = true;
4369     return Expr;
4370   }
4371 
4372   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4373     // Only re-write AddRecExprs for this loop.
4374     if (Expr->getLoop() == L)
4375       return Expr->getPostIncExpr(SE);
4376     SeenOtherLoops = true;
4377     return Expr;
4378   }
4379 
4380   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4381 
4382   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4383 
4384 private:
4385   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4386       : SCEVRewriteVisitor(SE), L(L) {}
4387 
4388   const Loop *L;
4389   bool SeenLoopVariantSCEVUnknown = false;
4390   bool SeenOtherLoops = false;
4391 };
4392 
4393 /// This class evaluates the compare condition by matching it against the
4394 /// condition of loop latch. If there is a match we assume a true value
4395 /// for the condition while building SCEV nodes.
4396 class SCEVBackedgeConditionFolder
4397     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4398 public:
4399   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4400                              ScalarEvolution &SE) {
4401     bool IsPosBECond = false;
4402     Value *BECond = nullptr;
4403     if (BasicBlock *Latch = L->getLoopLatch()) {
4404       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4405       if (BI && BI->isConditional()) {
4406         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4407                "Both outgoing branches should not target same header!");
4408         BECond = BI->getCondition();
4409         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4410       } else {
4411         return S;
4412       }
4413     }
4414     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4415     return Rewriter.visit(S);
4416   }
4417 
4418   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4419     const SCEV *Result = Expr;
4420     bool InvariantF = SE.isLoopInvariant(Expr, L);
4421 
4422     if (!InvariantF) {
4423       Instruction *I = cast<Instruction>(Expr->getValue());
4424       switch (I->getOpcode()) {
4425       case Instruction::Select: {
4426         SelectInst *SI = cast<SelectInst>(I);
4427         Optional<const SCEV *> Res =
4428             compareWithBackedgeCondition(SI->getCondition());
4429         if (Res.hasValue()) {
4430           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4431           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4432         }
4433         break;
4434       }
4435       default: {
4436         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4437         if (Res.hasValue())
4438           Result = Res.getValue();
4439         break;
4440       }
4441       }
4442     }
4443     return Result;
4444   }
4445 
4446 private:
4447   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4448                                        bool IsPosBECond, ScalarEvolution &SE)
4449       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4450         IsPositiveBECond(IsPosBECond) {}
4451 
4452   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4453 
4454   const Loop *L;
4455   /// Loop back condition.
4456   Value *BackedgeCond = nullptr;
4457   /// Set to true if loop back is on positive branch condition.
4458   bool IsPositiveBECond;
4459 };
4460 
4461 Optional<const SCEV *>
4462 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4463 
4464   // If value matches the backedge condition for loop latch,
4465   // then return a constant evolution node based on loopback
4466   // branch taken.
4467   if (BackedgeCond == IC)
4468     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4469                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4470   return None;
4471 }
4472 
4473 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4474 public:
4475   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4476                              ScalarEvolution &SE) {
4477     SCEVShiftRewriter Rewriter(L, SE);
4478     const SCEV *Result = Rewriter.visit(S);
4479     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4480   }
4481 
4482   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4483     // Only allow AddRecExprs for this loop.
4484     if (!SE.isLoopInvariant(Expr, L))
4485       Valid = false;
4486     return Expr;
4487   }
4488 
4489   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4490     if (Expr->getLoop() == L && Expr->isAffine())
4491       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4492     Valid = false;
4493     return Expr;
4494   }
4495 
4496   bool isValid() { return Valid; }
4497 
4498 private:
4499   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4500       : SCEVRewriteVisitor(SE), L(L) {}
4501 
4502   const Loop *L;
4503   bool Valid = true;
4504 };
4505 
4506 } // end anonymous namespace
4507 
4508 SCEV::NoWrapFlags
4509 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4510   if (!AR->isAffine())
4511     return SCEV::FlagAnyWrap;
4512 
4513   using OBO = OverflowingBinaryOperator;
4514 
4515   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4516 
4517   if (!AR->hasNoSignedWrap()) {
4518     ConstantRange AddRecRange = getSignedRange(AR);
4519     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4520 
4521     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4522         Instruction::Add, IncRange, OBO::NoSignedWrap);
4523     if (NSWRegion.contains(AddRecRange))
4524       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4525   }
4526 
4527   if (!AR->hasNoUnsignedWrap()) {
4528     ConstantRange AddRecRange = getUnsignedRange(AR);
4529     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4530 
4531     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4532         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4533     if (NUWRegion.contains(AddRecRange))
4534       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4535   }
4536 
4537   return Result;
4538 }
4539 
4540 SCEV::NoWrapFlags
4541 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4542   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4543 
4544   if (AR->hasNoSignedWrap())
4545     return Result;
4546 
4547   if (!AR->isAffine())
4548     return Result;
4549 
4550   const SCEV *Step = AR->getStepRecurrence(*this);
4551   const Loop *L = AR->getLoop();
4552 
4553   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4554   // Note that this serves two purposes: It filters out loops that are
4555   // simply not analyzable, and it covers the case where this code is
4556   // being called from within backedge-taken count analysis, such that
4557   // attempting to ask for the backedge-taken count would likely result
4558   // in infinite recursion. In the later case, the analysis code will
4559   // cope with a conservative value, and it will take care to purge
4560   // that value once it has finished.
4561   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4562 
4563   // Normally, in the cases we can prove no-overflow via a
4564   // backedge guarding condition, we can also compute a backedge
4565   // taken count for the loop.  The exceptions are assumptions and
4566   // guards present in the loop -- SCEV is not great at exploiting
4567   // these to compute max backedge taken counts, but can still use
4568   // these to prove lack of overflow.  Use this fact to avoid
4569   // doing extra work that may not pay off.
4570 
4571   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4572       AC.assumptions().empty())
4573     return Result;
4574 
4575   // If the backedge is guarded by a comparison with the pre-inc  value the
4576   // addrec is safe. Also, if the entry is guarded by a comparison with the
4577   // start value and the backedge is guarded by a comparison with the post-inc
4578   // value, the addrec is safe.
4579   ICmpInst::Predicate Pred;
4580   const SCEV *OverflowLimit =
4581     getSignedOverflowLimitForStep(Step, &Pred, this);
4582   if (OverflowLimit &&
4583       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4584        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4585     Result = setFlags(Result, SCEV::FlagNSW);
4586   }
4587   return Result;
4588 }
4589 SCEV::NoWrapFlags
4590 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4591   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4592 
4593   if (AR->hasNoUnsignedWrap())
4594     return Result;
4595 
4596   if (!AR->isAffine())
4597     return Result;
4598 
4599   const SCEV *Step = AR->getStepRecurrence(*this);
4600   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4601   const Loop *L = AR->getLoop();
4602 
4603   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4604   // Note that this serves two purposes: It filters out loops that are
4605   // simply not analyzable, and it covers the case where this code is
4606   // being called from within backedge-taken count analysis, such that
4607   // attempting to ask for the backedge-taken count would likely result
4608   // in infinite recursion. In the later case, the analysis code will
4609   // cope with a conservative value, and it will take care to purge
4610   // that value once it has finished.
4611   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4612 
4613   // Normally, in the cases we can prove no-overflow via a
4614   // backedge guarding condition, we can also compute a backedge
4615   // taken count for the loop.  The exceptions are assumptions and
4616   // guards present in the loop -- SCEV is not great at exploiting
4617   // these to compute max backedge taken counts, but can still use
4618   // these to prove lack of overflow.  Use this fact to avoid
4619   // doing extra work that may not pay off.
4620 
4621   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4622       AC.assumptions().empty())
4623     return Result;
4624 
4625   // If the backedge is guarded by a comparison with the pre-inc  value the
4626   // addrec is safe. Also, if the entry is guarded by a comparison with the
4627   // start value and the backedge is guarded by a comparison with the post-inc
4628   // value, the addrec is safe.
4629   if (isKnownPositive(Step)) {
4630     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4631                                 getUnsignedRangeMax(Step));
4632     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4633         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4634       Result = setFlags(Result, SCEV::FlagNUW);
4635     }
4636   }
4637 
4638   return Result;
4639 }
4640 
4641 namespace {
4642 
4643 /// Represents an abstract binary operation.  This may exist as a
4644 /// normal instruction or constant expression, or may have been
4645 /// derived from an expression tree.
4646 struct BinaryOp {
4647   unsigned Opcode;
4648   Value *LHS;
4649   Value *RHS;
4650   bool IsNSW = false;
4651   bool IsNUW = false;
4652 
4653   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4654   /// constant expression.
4655   Operator *Op = nullptr;
4656 
4657   explicit BinaryOp(Operator *Op)
4658       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4659         Op(Op) {
4660     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4661       IsNSW = OBO->hasNoSignedWrap();
4662       IsNUW = OBO->hasNoUnsignedWrap();
4663     }
4664   }
4665 
4666   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4667                     bool IsNUW = false)
4668       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4669 };
4670 
4671 } // end anonymous namespace
4672 
4673 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4674 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4675   auto *Op = dyn_cast<Operator>(V);
4676   if (!Op)
4677     return None;
4678 
4679   // Implementation detail: all the cleverness here should happen without
4680   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4681   // SCEV expressions when possible, and we should not break that.
4682 
4683   switch (Op->getOpcode()) {
4684   case Instruction::Add:
4685   case Instruction::Sub:
4686   case Instruction::Mul:
4687   case Instruction::UDiv:
4688   case Instruction::URem:
4689   case Instruction::And:
4690   case Instruction::Or:
4691   case Instruction::AShr:
4692   case Instruction::Shl:
4693     return BinaryOp(Op);
4694 
4695   case Instruction::Xor:
4696     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4697       // If the RHS of the xor is a signmask, then this is just an add.
4698       // Instcombine turns add of signmask into xor as a strength reduction step.
4699       if (RHSC->getValue().isSignMask())
4700         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4701     return BinaryOp(Op);
4702 
4703   case Instruction::LShr:
4704     // Turn logical shift right of a constant into a unsigned divide.
4705     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4706       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4707 
4708       // If the shift count is not less than the bitwidth, the result of
4709       // the shift is undefined. Don't try to analyze it, because the
4710       // resolution chosen here may differ from the resolution chosen in
4711       // other parts of the compiler.
4712       if (SA->getValue().ult(BitWidth)) {
4713         Constant *X =
4714             ConstantInt::get(SA->getContext(),
4715                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4716         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4717       }
4718     }
4719     return BinaryOp(Op);
4720 
4721   case Instruction::ExtractValue: {
4722     auto *EVI = cast<ExtractValueInst>(Op);
4723     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4724       break;
4725 
4726     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4727     if (!WO)
4728       break;
4729 
4730     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4731     bool Signed = WO->isSigned();
4732     // TODO: Should add nuw/nsw flags for mul as well.
4733     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4734       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4735 
4736     // Now that we know that all uses of the arithmetic-result component of
4737     // CI are guarded by the overflow check, we can go ahead and pretend
4738     // that the arithmetic is non-overflowing.
4739     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4740                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4741   }
4742 
4743   default:
4744     break;
4745   }
4746 
4747   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4748   // semantics as a Sub, return a binary sub expression.
4749   if (auto *II = dyn_cast<IntrinsicInst>(V))
4750     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4751       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4752 
4753   return None;
4754 }
4755 
4756 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4757 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4758 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4759 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4760 /// follows one of the following patterns:
4761 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4762 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4763 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4764 /// we return the type of the truncation operation, and indicate whether the
4765 /// truncated type should be treated as signed/unsigned by setting
4766 /// \p Signed to true/false, respectively.
4767 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4768                                bool &Signed, ScalarEvolution &SE) {
4769   // The case where Op == SymbolicPHI (that is, with no type conversions on
4770   // the way) is handled by the regular add recurrence creating logic and
4771   // would have already been triggered in createAddRecForPHI. Reaching it here
4772   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4773   // because one of the other operands of the SCEVAddExpr updating this PHI is
4774   // not invariant).
4775   //
4776   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4777   // this case predicates that allow us to prove that Op == SymbolicPHI will
4778   // be added.
4779   if (Op == SymbolicPHI)
4780     return nullptr;
4781 
4782   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4783   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4784   if (SourceBits != NewBits)
4785     return nullptr;
4786 
4787   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4788   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4789   if (!SExt && !ZExt)
4790     return nullptr;
4791   const SCEVTruncateExpr *Trunc =
4792       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4793            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4794   if (!Trunc)
4795     return nullptr;
4796   const SCEV *X = Trunc->getOperand();
4797   if (X != SymbolicPHI)
4798     return nullptr;
4799   Signed = SExt != nullptr;
4800   return Trunc->getType();
4801 }
4802 
4803 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4804   if (!PN->getType()->isIntegerTy())
4805     return nullptr;
4806   const Loop *L = LI.getLoopFor(PN->getParent());
4807   if (!L || L->getHeader() != PN->getParent())
4808     return nullptr;
4809   return L;
4810 }
4811 
4812 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4813 // computation that updates the phi follows the following pattern:
4814 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4815 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4816 // If so, try to see if it can be rewritten as an AddRecExpr under some
4817 // Predicates. If successful, return them as a pair. Also cache the results
4818 // of the analysis.
4819 //
4820 // Example usage scenario:
4821 //    Say the Rewriter is called for the following SCEV:
4822 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4823 //    where:
4824 //         %X = phi i64 (%Start, %BEValue)
4825 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4826 //    and call this function with %SymbolicPHI = %X.
4827 //
4828 //    The analysis will find that the value coming around the backedge has
4829 //    the following SCEV:
4830 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4831 //    Upon concluding that this matches the desired pattern, the function
4832 //    will return the pair {NewAddRec, SmallPredsVec} where:
4833 //         NewAddRec = {%Start,+,%Step}
4834 //         SmallPredsVec = {P1, P2, P3} as follows:
4835 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4836 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4837 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4838 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4839 //    under the predicates {P1,P2,P3}.
4840 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4841 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4842 //
4843 // TODO's:
4844 //
4845 // 1) Extend the Induction descriptor to also support inductions that involve
4846 //    casts: When needed (namely, when we are called in the context of the
4847 //    vectorizer induction analysis), a Set of cast instructions will be
4848 //    populated by this method, and provided back to isInductionPHI. This is
4849 //    needed to allow the vectorizer to properly record them to be ignored by
4850 //    the cost model and to avoid vectorizing them (otherwise these casts,
4851 //    which are redundant under the runtime overflow checks, will be
4852 //    vectorized, which can be costly).
4853 //
4854 // 2) Support additional induction/PHISCEV patterns: We also want to support
4855 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4856 //    after the induction update operation (the induction increment):
4857 //
4858 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4859 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4860 //
4861 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4862 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4863 //
4864 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4865 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4866 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4867   SmallVector<const SCEVPredicate *, 3> Predicates;
4868 
4869   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4870   // return an AddRec expression under some predicate.
4871 
4872   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4873   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4874   assert(L && "Expecting an integer loop header phi");
4875 
4876   // The loop may have multiple entrances or multiple exits; we can analyze
4877   // this phi as an addrec if it has a unique entry value and a unique
4878   // backedge value.
4879   Value *BEValueV = nullptr, *StartValueV = nullptr;
4880   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4881     Value *V = PN->getIncomingValue(i);
4882     if (L->contains(PN->getIncomingBlock(i))) {
4883       if (!BEValueV) {
4884         BEValueV = V;
4885       } else if (BEValueV != V) {
4886         BEValueV = nullptr;
4887         break;
4888       }
4889     } else if (!StartValueV) {
4890       StartValueV = V;
4891     } else if (StartValueV != V) {
4892       StartValueV = nullptr;
4893       break;
4894     }
4895   }
4896   if (!BEValueV || !StartValueV)
4897     return None;
4898 
4899   const SCEV *BEValue = getSCEV(BEValueV);
4900 
4901   // If the value coming around the backedge is an add with the symbolic
4902   // value we just inserted, possibly with casts that we can ignore under
4903   // an appropriate runtime guard, then we found a simple induction variable!
4904   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4905   if (!Add)
4906     return None;
4907 
4908   // If there is a single occurrence of the symbolic value, possibly
4909   // casted, replace it with a recurrence.
4910   unsigned FoundIndex = Add->getNumOperands();
4911   Type *TruncTy = nullptr;
4912   bool Signed;
4913   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4914     if ((TruncTy =
4915              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4916       if (FoundIndex == e) {
4917         FoundIndex = i;
4918         break;
4919       }
4920 
4921   if (FoundIndex == Add->getNumOperands())
4922     return None;
4923 
4924   // Create an add with everything but the specified operand.
4925   SmallVector<const SCEV *, 8> Ops;
4926   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4927     if (i != FoundIndex)
4928       Ops.push_back(Add->getOperand(i));
4929   const SCEV *Accum = getAddExpr(Ops);
4930 
4931   // The runtime checks will not be valid if the step amount is
4932   // varying inside the loop.
4933   if (!isLoopInvariant(Accum, L))
4934     return None;
4935 
4936   // *** Part2: Create the predicates
4937 
4938   // Analysis was successful: we have a phi-with-cast pattern for which we
4939   // can return an AddRec expression under the following predicates:
4940   //
4941   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4942   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4943   // P2: An Equal predicate that guarantees that
4944   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4945   // P3: An Equal predicate that guarantees that
4946   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4947   //
4948   // As we next prove, the above predicates guarantee that:
4949   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4950   //
4951   //
4952   // More formally, we want to prove that:
4953   //     Expr(i+1) = Start + (i+1) * Accum
4954   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4955   //
4956   // Given that:
4957   // 1) Expr(0) = Start
4958   // 2) Expr(1) = Start + Accum
4959   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4960   // 3) Induction hypothesis (step i):
4961   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4962   //
4963   // Proof:
4964   //  Expr(i+1) =
4965   //   = Start + (i+1)*Accum
4966   //   = (Start + i*Accum) + Accum
4967   //   = Expr(i) + Accum
4968   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4969   //                                                             :: from step i
4970   //
4971   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4972   //
4973   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4974   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4975   //     + Accum                                                     :: from P3
4976   //
4977   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4978   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4979   //
4980   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4981   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4982   //
4983   // By induction, the same applies to all iterations 1<=i<n:
4984   //
4985 
4986   // Create a truncated addrec for which we will add a no overflow check (P1).
4987   const SCEV *StartVal = getSCEV(StartValueV);
4988   const SCEV *PHISCEV =
4989       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4990                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4991 
4992   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4993   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4994   // will be constant.
4995   //
4996   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4997   // add P1.
4998   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4999     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5000         Signed ? SCEVWrapPredicate::IncrementNSSW
5001                : SCEVWrapPredicate::IncrementNUSW;
5002     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5003     Predicates.push_back(AddRecPred);
5004   }
5005 
5006   // Create the Equal Predicates P2,P3:
5007 
5008   // It is possible that the predicates P2 and/or P3 are computable at
5009   // compile time due to StartVal and/or Accum being constants.
5010   // If either one is, then we can check that now and escape if either P2
5011   // or P3 is false.
5012 
5013   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5014   // for each of StartVal and Accum
5015   auto getExtendedExpr = [&](const SCEV *Expr,
5016                              bool CreateSignExtend) -> const SCEV * {
5017     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5018     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5019     const SCEV *ExtendedExpr =
5020         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5021                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5022     return ExtendedExpr;
5023   };
5024 
5025   // Given:
5026   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5027   //               = getExtendedExpr(Expr)
5028   // Determine whether the predicate P: Expr == ExtendedExpr
5029   // is known to be false at compile time
5030   auto PredIsKnownFalse = [&](const SCEV *Expr,
5031                               const SCEV *ExtendedExpr) -> bool {
5032     return Expr != ExtendedExpr &&
5033            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5034   };
5035 
5036   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5037   if (PredIsKnownFalse(StartVal, StartExtended)) {
5038     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5039     return None;
5040   }
5041 
5042   // The Step is always Signed (because the overflow checks are either
5043   // NSSW or NUSW)
5044   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5045   if (PredIsKnownFalse(Accum, AccumExtended)) {
5046     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5047     return None;
5048   }
5049 
5050   auto AppendPredicate = [&](const SCEV *Expr,
5051                              const SCEV *ExtendedExpr) -> void {
5052     if (Expr != ExtendedExpr &&
5053         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5054       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5055       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5056       Predicates.push_back(Pred);
5057     }
5058   };
5059 
5060   AppendPredicate(StartVal, StartExtended);
5061   AppendPredicate(Accum, AccumExtended);
5062 
5063   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5064   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5065   // into NewAR if it will also add the runtime overflow checks specified in
5066   // Predicates.
5067   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5068 
5069   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5070       std::make_pair(NewAR, Predicates);
5071   // Remember the result of the analysis for this SCEV at this locayyytion.
5072   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5073   return PredRewrite;
5074 }
5075 
5076 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5077 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5078   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5079   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5080   if (!L)
5081     return None;
5082 
5083   // Check to see if we already analyzed this PHI.
5084   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5085   if (I != PredicatedSCEVRewrites.end()) {
5086     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5087         I->second;
5088     // Analysis was done before and failed to create an AddRec:
5089     if (Rewrite.first == SymbolicPHI)
5090       return None;
5091     // Analysis was done before and succeeded to create an AddRec under
5092     // a predicate:
5093     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5094     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5095     return Rewrite;
5096   }
5097 
5098   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5099     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5100 
5101   // Record in the cache that the analysis failed
5102   if (!Rewrite) {
5103     SmallVector<const SCEVPredicate *, 3> Predicates;
5104     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5105     return None;
5106   }
5107 
5108   return Rewrite;
5109 }
5110 
5111 // FIXME: This utility is currently required because the Rewriter currently
5112 // does not rewrite this expression:
5113 // {0, +, (sext ix (trunc iy to ix) to iy)}
5114 // into {0, +, %step},
5115 // even when the following Equal predicate exists:
5116 // "%step == (sext ix (trunc iy to ix) to iy)".
5117 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5118     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5119   if (AR1 == AR2)
5120     return true;
5121 
5122   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5123     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5124         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5125       return false;
5126     return true;
5127   };
5128 
5129   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5130       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5131     return false;
5132   return true;
5133 }
5134 
5135 /// A helper function for createAddRecFromPHI to handle simple cases.
5136 ///
5137 /// This function tries to find an AddRec expression for the simplest (yet most
5138 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5139 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5140 /// technique for finding the AddRec expression.
5141 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5142                                                       Value *BEValueV,
5143                                                       Value *StartValueV) {
5144   const Loop *L = LI.getLoopFor(PN->getParent());
5145   assert(L && L->getHeader() == PN->getParent());
5146   assert(BEValueV && StartValueV);
5147 
5148   auto BO = MatchBinaryOp(BEValueV, DT);
5149   if (!BO)
5150     return nullptr;
5151 
5152   if (BO->Opcode != Instruction::Add)
5153     return nullptr;
5154 
5155   const SCEV *Accum = nullptr;
5156   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5157     Accum = getSCEV(BO->RHS);
5158   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5159     Accum = getSCEV(BO->LHS);
5160 
5161   if (!Accum)
5162     return nullptr;
5163 
5164   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5165   if (BO->IsNUW)
5166     Flags = setFlags(Flags, SCEV::FlagNUW);
5167   if (BO->IsNSW)
5168     Flags = setFlags(Flags, SCEV::FlagNSW);
5169 
5170   const SCEV *StartVal = getSCEV(StartValueV);
5171   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5172 
5173   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5174 
5175   // We can add Flags to the post-inc expression only if we
5176   // know that it is *undefined behavior* for BEValueV to
5177   // overflow.
5178   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5179     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5180       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5181 
5182   return PHISCEV;
5183 }
5184 
5185 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5186   const Loop *L = LI.getLoopFor(PN->getParent());
5187   if (!L || L->getHeader() != PN->getParent())
5188     return nullptr;
5189 
5190   // The loop may have multiple entrances or multiple exits; we can analyze
5191   // this phi as an addrec if it has a unique entry value and a unique
5192   // backedge value.
5193   Value *BEValueV = nullptr, *StartValueV = nullptr;
5194   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5195     Value *V = PN->getIncomingValue(i);
5196     if (L->contains(PN->getIncomingBlock(i))) {
5197       if (!BEValueV) {
5198         BEValueV = V;
5199       } else if (BEValueV != V) {
5200         BEValueV = nullptr;
5201         break;
5202       }
5203     } else if (!StartValueV) {
5204       StartValueV = V;
5205     } else if (StartValueV != V) {
5206       StartValueV = nullptr;
5207       break;
5208     }
5209   }
5210   if (!BEValueV || !StartValueV)
5211     return nullptr;
5212 
5213   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5214          "PHI node already processed?");
5215 
5216   // First, try to find AddRec expression without creating a fictituos symbolic
5217   // value for PN.
5218   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5219     return S;
5220 
5221   // Handle PHI node value symbolically.
5222   const SCEV *SymbolicName = getUnknown(PN);
5223   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5224 
5225   // Using this symbolic name for the PHI, analyze the value coming around
5226   // the back-edge.
5227   const SCEV *BEValue = getSCEV(BEValueV);
5228 
5229   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5230   // has a special value for the first iteration of the loop.
5231 
5232   // If the value coming around the backedge is an add with the symbolic
5233   // value we just inserted, then we found a simple induction variable!
5234   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5235     // If there is a single occurrence of the symbolic value, replace it
5236     // with a recurrence.
5237     unsigned FoundIndex = Add->getNumOperands();
5238     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5239       if (Add->getOperand(i) == SymbolicName)
5240         if (FoundIndex == e) {
5241           FoundIndex = i;
5242           break;
5243         }
5244 
5245     if (FoundIndex != Add->getNumOperands()) {
5246       // Create an add with everything but the specified operand.
5247       SmallVector<const SCEV *, 8> Ops;
5248       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5249         if (i != FoundIndex)
5250           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5251                                                              L, *this));
5252       const SCEV *Accum = getAddExpr(Ops);
5253 
5254       // This is not a valid addrec if the step amount is varying each
5255       // loop iteration, but is not itself an addrec in this loop.
5256       if (isLoopInvariant(Accum, L) ||
5257           (isa<SCEVAddRecExpr>(Accum) &&
5258            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5259         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5260 
5261         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5262           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5263             if (BO->IsNUW)
5264               Flags = setFlags(Flags, SCEV::FlagNUW);
5265             if (BO->IsNSW)
5266               Flags = setFlags(Flags, SCEV::FlagNSW);
5267           }
5268         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5269           // If the increment is an inbounds GEP, then we know the address
5270           // space cannot be wrapped around. We cannot make any guarantee
5271           // about signed or unsigned overflow because pointers are
5272           // unsigned but we may have a negative index from the base
5273           // pointer. We can guarantee that no unsigned wrap occurs if the
5274           // indices form a positive value.
5275           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5276             Flags = setFlags(Flags, SCEV::FlagNW);
5277 
5278             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5279             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5280               Flags = setFlags(Flags, SCEV::FlagNUW);
5281           }
5282 
5283           // We cannot transfer nuw and nsw flags from subtraction
5284           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5285           // for instance.
5286         }
5287 
5288         const SCEV *StartVal = getSCEV(StartValueV);
5289         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5290 
5291         // Okay, for the entire analysis of this edge we assumed the PHI
5292         // to be symbolic.  We now need to go back and purge all of the
5293         // entries for the scalars that use the symbolic expression.
5294         forgetSymbolicName(PN, SymbolicName);
5295         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5296 
5297         // We can add Flags to the post-inc expression only if we
5298         // know that it is *undefined behavior* for BEValueV to
5299         // overflow.
5300         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5301           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5302             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5303 
5304         return PHISCEV;
5305       }
5306     }
5307   } else {
5308     // Otherwise, this could be a loop like this:
5309     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5310     // In this case, j = {1,+,1}  and BEValue is j.
5311     // Because the other in-value of i (0) fits the evolution of BEValue
5312     // i really is an addrec evolution.
5313     //
5314     // We can generalize this saying that i is the shifted value of BEValue
5315     // by one iteration:
5316     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5317     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5318     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5319     if (Shifted != getCouldNotCompute() &&
5320         Start != getCouldNotCompute()) {
5321       const SCEV *StartVal = getSCEV(StartValueV);
5322       if (Start == StartVal) {
5323         // Okay, for the entire analysis of this edge we assumed the PHI
5324         // to be symbolic.  We now need to go back and purge all of the
5325         // entries for the scalars that use the symbolic expression.
5326         forgetSymbolicName(PN, SymbolicName);
5327         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5328         return Shifted;
5329       }
5330     }
5331   }
5332 
5333   // Remove the temporary PHI node SCEV that has been inserted while intending
5334   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5335   // as it will prevent later (possibly simpler) SCEV expressions to be added
5336   // to the ValueExprMap.
5337   eraseValueFromMap(PN);
5338 
5339   return nullptr;
5340 }
5341 
5342 // Checks if the SCEV S is available at BB.  S is considered available at BB
5343 // if S can be materialized at BB without introducing a fault.
5344 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5345                                BasicBlock *BB) {
5346   struct CheckAvailable {
5347     bool TraversalDone = false;
5348     bool Available = true;
5349 
5350     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5351     BasicBlock *BB = nullptr;
5352     DominatorTree &DT;
5353 
5354     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5355       : L(L), BB(BB), DT(DT) {}
5356 
5357     bool setUnavailable() {
5358       TraversalDone = true;
5359       Available = false;
5360       return false;
5361     }
5362 
5363     bool follow(const SCEV *S) {
5364       switch (S->getSCEVType()) {
5365       case scConstant:
5366       case scPtrToInt:
5367       case scTruncate:
5368       case scZeroExtend:
5369       case scSignExtend:
5370       case scAddExpr:
5371       case scMulExpr:
5372       case scUMaxExpr:
5373       case scSMaxExpr:
5374       case scUMinExpr:
5375       case scSMinExpr:
5376         // These expressions are available if their operand(s) is/are.
5377         return true;
5378 
5379       case scAddRecExpr: {
5380         // We allow add recurrences that are on the loop BB is in, or some
5381         // outer loop.  This guarantees availability because the value of the
5382         // add recurrence at BB is simply the "current" value of the induction
5383         // variable.  We can relax this in the future; for instance an add
5384         // recurrence on a sibling dominating loop is also available at BB.
5385         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5386         if (L && (ARLoop == L || ARLoop->contains(L)))
5387           return true;
5388 
5389         return setUnavailable();
5390       }
5391 
5392       case scUnknown: {
5393         // For SCEVUnknown, we check for simple dominance.
5394         const auto *SU = cast<SCEVUnknown>(S);
5395         Value *V = SU->getValue();
5396 
5397         if (isa<Argument>(V))
5398           return false;
5399 
5400         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5401           return false;
5402 
5403         return setUnavailable();
5404       }
5405 
5406       case scUDivExpr:
5407       case scCouldNotCompute:
5408         // We do not try to smart about these at all.
5409         return setUnavailable();
5410       }
5411       llvm_unreachable("Unknown SCEV kind!");
5412     }
5413 
5414     bool isDone() { return TraversalDone; }
5415   };
5416 
5417   CheckAvailable CA(L, BB, DT);
5418   SCEVTraversal<CheckAvailable> ST(CA);
5419 
5420   ST.visitAll(S);
5421   return CA.Available;
5422 }
5423 
5424 // Try to match a control flow sequence that branches out at BI and merges back
5425 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5426 // match.
5427 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5428                           Value *&C, Value *&LHS, Value *&RHS) {
5429   C = BI->getCondition();
5430 
5431   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5432   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5433 
5434   if (!LeftEdge.isSingleEdge())
5435     return false;
5436 
5437   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5438 
5439   Use &LeftUse = Merge->getOperandUse(0);
5440   Use &RightUse = Merge->getOperandUse(1);
5441 
5442   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5443     LHS = LeftUse;
5444     RHS = RightUse;
5445     return true;
5446   }
5447 
5448   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5449     LHS = RightUse;
5450     RHS = LeftUse;
5451     return true;
5452   }
5453 
5454   return false;
5455 }
5456 
5457 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5458   auto IsReachable =
5459       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5460   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5461     const Loop *L = LI.getLoopFor(PN->getParent());
5462 
5463     // We don't want to break LCSSA, even in a SCEV expression tree.
5464     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5465       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5466         return nullptr;
5467 
5468     // Try to match
5469     //
5470     //  br %cond, label %left, label %right
5471     // left:
5472     //  br label %merge
5473     // right:
5474     //  br label %merge
5475     // merge:
5476     //  V = phi [ %x, %left ], [ %y, %right ]
5477     //
5478     // as "select %cond, %x, %y"
5479 
5480     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5481     assert(IDom && "At least the entry block should dominate PN");
5482 
5483     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5484     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5485 
5486     if (BI && BI->isConditional() &&
5487         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5488         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5489         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5490       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5491   }
5492 
5493   return nullptr;
5494 }
5495 
5496 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5497   if (const SCEV *S = createAddRecFromPHI(PN))
5498     return S;
5499 
5500   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5501     return S;
5502 
5503   // If the PHI has a single incoming value, follow that value, unless the
5504   // PHI's incoming blocks are in a different loop, in which case doing so
5505   // risks breaking LCSSA form. Instcombine would normally zap these, but
5506   // it doesn't have DominatorTree information, so it may miss cases.
5507   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5508     if (LI.replacementPreservesLCSSAForm(PN, V))
5509       return getSCEV(V);
5510 
5511   // If it's not a loop phi, we can't handle it yet.
5512   return getUnknown(PN);
5513 }
5514 
5515 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5516                                                       Value *Cond,
5517                                                       Value *TrueVal,
5518                                                       Value *FalseVal) {
5519   // Handle "constant" branch or select. This can occur for instance when a
5520   // loop pass transforms an inner loop and moves on to process the outer loop.
5521   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5522     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5523 
5524   // Try to match some simple smax or umax patterns.
5525   auto *ICI = dyn_cast<ICmpInst>(Cond);
5526   if (!ICI)
5527     return getUnknown(I);
5528 
5529   Value *LHS = ICI->getOperand(0);
5530   Value *RHS = ICI->getOperand(1);
5531 
5532   switch (ICI->getPredicate()) {
5533   case ICmpInst::ICMP_SLT:
5534   case ICmpInst::ICMP_SLE:
5535     std::swap(LHS, RHS);
5536     LLVM_FALLTHROUGH;
5537   case ICmpInst::ICMP_SGT:
5538   case ICmpInst::ICMP_SGE:
5539     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5540     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5541     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5542       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5543       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5544       const SCEV *LA = getSCEV(TrueVal);
5545       const SCEV *RA = getSCEV(FalseVal);
5546       const SCEV *LDiff = getMinusSCEV(LA, LS);
5547       const SCEV *RDiff = getMinusSCEV(RA, RS);
5548       if (LDiff == RDiff)
5549         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5550       LDiff = getMinusSCEV(LA, RS);
5551       RDiff = getMinusSCEV(RA, LS);
5552       if (LDiff == RDiff)
5553         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5554     }
5555     break;
5556   case ICmpInst::ICMP_ULT:
5557   case ICmpInst::ICMP_ULE:
5558     std::swap(LHS, RHS);
5559     LLVM_FALLTHROUGH;
5560   case ICmpInst::ICMP_UGT:
5561   case ICmpInst::ICMP_UGE:
5562     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5563     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5564     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5565       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5566       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5567       const SCEV *LA = getSCEV(TrueVal);
5568       const SCEV *RA = getSCEV(FalseVal);
5569       const SCEV *LDiff = getMinusSCEV(LA, LS);
5570       const SCEV *RDiff = getMinusSCEV(RA, RS);
5571       if (LDiff == RDiff)
5572         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5573       LDiff = getMinusSCEV(LA, RS);
5574       RDiff = getMinusSCEV(RA, LS);
5575       if (LDiff == RDiff)
5576         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5577     }
5578     break;
5579   case ICmpInst::ICMP_NE:
5580     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5581     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5582         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5583       const SCEV *One = getOne(I->getType());
5584       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5585       const SCEV *LA = getSCEV(TrueVal);
5586       const SCEV *RA = getSCEV(FalseVal);
5587       const SCEV *LDiff = getMinusSCEV(LA, LS);
5588       const SCEV *RDiff = getMinusSCEV(RA, One);
5589       if (LDiff == RDiff)
5590         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5591     }
5592     break;
5593   case ICmpInst::ICMP_EQ:
5594     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5595     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5596         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5597       const SCEV *One = getOne(I->getType());
5598       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5599       const SCEV *LA = getSCEV(TrueVal);
5600       const SCEV *RA = getSCEV(FalseVal);
5601       const SCEV *LDiff = getMinusSCEV(LA, One);
5602       const SCEV *RDiff = getMinusSCEV(RA, LS);
5603       if (LDiff == RDiff)
5604         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5605     }
5606     break;
5607   default:
5608     break;
5609   }
5610 
5611   return getUnknown(I);
5612 }
5613 
5614 /// Expand GEP instructions into add and multiply operations. This allows them
5615 /// to be analyzed by regular SCEV code.
5616 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5617   // Don't attempt to analyze GEPs over unsized objects.
5618   if (!GEP->getSourceElementType()->isSized())
5619     return getUnknown(GEP);
5620 
5621   SmallVector<const SCEV *, 4> IndexExprs;
5622   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5623     IndexExprs.push_back(getSCEV(*Index));
5624   return getGEPExpr(GEP, IndexExprs);
5625 }
5626 
5627 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5628   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5629     return C->getAPInt().countTrailingZeros();
5630 
5631   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5632     return GetMinTrailingZeros(I->getOperand());
5633 
5634   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5635     return std::min(GetMinTrailingZeros(T->getOperand()),
5636                     (uint32_t)getTypeSizeInBits(T->getType()));
5637 
5638   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5639     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5640     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5641                ? getTypeSizeInBits(E->getType())
5642                : OpRes;
5643   }
5644 
5645   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5646     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5647     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5648                ? getTypeSizeInBits(E->getType())
5649                : OpRes;
5650   }
5651 
5652   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5653     // The result is the min of all operands results.
5654     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5655     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5656       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5657     return MinOpRes;
5658   }
5659 
5660   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5661     // The result is the sum of all operands results.
5662     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5663     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5664     for (unsigned i = 1, e = M->getNumOperands();
5665          SumOpRes != BitWidth && i != e; ++i)
5666       SumOpRes =
5667           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5668     return SumOpRes;
5669   }
5670 
5671   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5672     // The result is the min of all operands results.
5673     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5674     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5675       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5676     return MinOpRes;
5677   }
5678 
5679   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5680     // The result is the min of all operands results.
5681     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5682     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5683       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5684     return MinOpRes;
5685   }
5686 
5687   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5688     // The result is the min of all operands results.
5689     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5690     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5691       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5692     return MinOpRes;
5693   }
5694 
5695   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5696     // For a SCEVUnknown, ask ValueTracking.
5697     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5698     return Known.countMinTrailingZeros();
5699   }
5700 
5701   // SCEVUDivExpr
5702   return 0;
5703 }
5704 
5705 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5706   auto I = MinTrailingZerosCache.find(S);
5707   if (I != MinTrailingZerosCache.end())
5708     return I->second;
5709 
5710   uint32_t Result = GetMinTrailingZerosImpl(S);
5711   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5712   assert(InsertPair.second && "Should insert a new key");
5713   return InsertPair.first->second;
5714 }
5715 
5716 /// Helper method to assign a range to V from metadata present in the IR.
5717 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5718   if (Instruction *I = dyn_cast<Instruction>(V))
5719     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5720       return getConstantRangeFromMetadata(*MD);
5721 
5722   return None;
5723 }
5724 
5725 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5726                                      SCEV::NoWrapFlags Flags) {
5727   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5728     AddRec->setNoWrapFlags(Flags);
5729     UnsignedRanges.erase(AddRec);
5730     SignedRanges.erase(AddRec);
5731   }
5732 }
5733 
5734 ConstantRange ScalarEvolution::
5735 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5736   const DataLayout &DL = getDataLayout();
5737 
5738   unsigned BitWidth = getTypeSizeInBits(U->getType());
5739   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5740 
5741   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5742   // use information about the trip count to improve our available range.  Note
5743   // that the trip count independent cases are already handled by known bits.
5744   // WARNING: The definition of recurrence used here is subtly different than
5745   // the one used by AddRec (and thus most of this file).  Step is allowed to
5746   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5747   // and other addrecs in the same loop (for non-affine addrecs).  The code
5748   // below intentionally handles the case where step is not loop invariant.
5749   auto *P = dyn_cast<PHINode>(U->getValue());
5750   if (!P)
5751     return FullSet;
5752 
5753   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5754   // even the values that are not available in these blocks may come from them,
5755   // and this leads to false-positive recurrence test.
5756   for (auto *Pred : predecessors(P->getParent()))
5757     if (!DT.isReachableFromEntry(Pred))
5758       return FullSet;
5759 
5760   BinaryOperator *BO;
5761   Value *Start, *Step;
5762   if (!matchSimpleRecurrence(P, BO, Start, Step))
5763     return FullSet;
5764 
5765   // If we found a recurrence in reachable code, we must be in a loop. Note
5766   // that BO might be in some subloop of L, and that's completely okay.
5767   auto *L = LI.getLoopFor(P->getParent());
5768   assert(L && L->getHeader() == P->getParent());
5769   if (!L->contains(BO->getParent()))
5770     // NOTE: This bailout should be an assert instead.  However, asserting
5771     // the condition here exposes a case where LoopFusion is querying SCEV
5772     // with malformed loop information during the midst of the transform.
5773     // There doesn't appear to be an obvious fix, so for the moment bailout
5774     // until the caller issue can be fixed.  PR49566 tracks the bug.
5775     return FullSet;
5776 
5777   // TODO: Extend to other opcodes such as mul, and div
5778   switch (BO->getOpcode()) {
5779   default:
5780     return FullSet;
5781   case Instruction::AShr:
5782   case Instruction::LShr:
5783   case Instruction::Shl:
5784     break;
5785   };
5786 
5787   if (BO->getOperand(0) != P)
5788     // TODO: Handle the power function forms some day.
5789     return FullSet;
5790 
5791   unsigned TC = getSmallConstantMaxTripCount(L);
5792   if (!TC || TC >= BitWidth)
5793     return FullSet;
5794 
5795   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5796   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5797   assert(KnownStart.getBitWidth() == BitWidth &&
5798          KnownStep.getBitWidth() == BitWidth);
5799 
5800   // Compute total shift amount, being careful of overflow and bitwidths.
5801   auto MaxShiftAmt = KnownStep.getMaxValue();
5802   APInt TCAP(BitWidth, TC-1);
5803   bool Overflow = false;
5804   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5805   if (Overflow)
5806     return FullSet;
5807 
5808   switch (BO->getOpcode()) {
5809   default:
5810     llvm_unreachable("filtered out above");
5811   case Instruction::AShr: {
5812     // For each ashr, three cases:
5813     //   shift = 0 => unchanged value
5814     //   saturation => 0 or -1
5815     //   other => a value closer to zero (of the same sign)
5816     // Thus, the end value is closer to zero than the start.
5817     auto KnownEnd = KnownBits::ashr(KnownStart,
5818                                     KnownBits::makeConstant(TotalShift));
5819     if (KnownStart.isNonNegative())
5820       // Analogous to lshr (simply not yet canonicalized)
5821       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5822                                         KnownStart.getMaxValue() + 1);
5823     if (KnownStart.isNegative())
5824       // End >=u Start && End <=s Start
5825       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5826                                         KnownEnd.getMaxValue() + 1);
5827     break;
5828   }
5829   case Instruction::LShr: {
5830     // For each lshr, three cases:
5831     //   shift = 0 => unchanged value
5832     //   saturation => 0
5833     //   other => a smaller positive number
5834     // Thus, the low end of the unsigned range is the last value produced.
5835     auto KnownEnd = KnownBits::lshr(KnownStart,
5836                                     KnownBits::makeConstant(TotalShift));
5837     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5838                                       KnownStart.getMaxValue() + 1);
5839   }
5840   case Instruction::Shl: {
5841     // Iff no bits are shifted out, value increases on every shift.
5842     auto KnownEnd = KnownBits::shl(KnownStart,
5843                                    KnownBits::makeConstant(TotalShift));
5844     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5845       return ConstantRange(KnownStart.getMinValue(),
5846                            KnownEnd.getMaxValue() + 1);
5847     break;
5848   }
5849   };
5850   return FullSet;
5851 }
5852 
5853 /// Determine the range for a particular SCEV.  If SignHint is
5854 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5855 /// with a "cleaner" unsigned (resp. signed) representation.
5856 const ConstantRange &
5857 ScalarEvolution::getRangeRef(const SCEV *S,
5858                              ScalarEvolution::RangeSignHint SignHint) {
5859   DenseMap<const SCEV *, ConstantRange> &Cache =
5860       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5861                                                        : SignedRanges;
5862   ConstantRange::PreferredRangeType RangeType =
5863       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5864           ? ConstantRange::Unsigned : ConstantRange::Signed;
5865 
5866   // See if we've computed this range already.
5867   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5868   if (I != Cache.end())
5869     return I->second;
5870 
5871   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5872     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5873 
5874   unsigned BitWidth = getTypeSizeInBits(S->getType());
5875   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5876   using OBO = OverflowingBinaryOperator;
5877 
5878   // If the value has known zeros, the maximum value will have those known zeros
5879   // as well.
5880   uint32_t TZ = GetMinTrailingZeros(S);
5881   if (TZ != 0) {
5882     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5883       ConservativeResult =
5884           ConstantRange(APInt::getMinValue(BitWidth),
5885                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5886     else
5887       ConservativeResult = ConstantRange(
5888           APInt::getSignedMinValue(BitWidth),
5889           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5890   }
5891 
5892   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5893     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5894     unsigned WrapType = OBO::AnyWrap;
5895     if (Add->hasNoSignedWrap())
5896       WrapType |= OBO::NoSignedWrap;
5897     if (Add->hasNoUnsignedWrap())
5898       WrapType |= OBO::NoUnsignedWrap;
5899     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5900       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5901                           WrapType, RangeType);
5902     return setRange(Add, SignHint,
5903                     ConservativeResult.intersectWith(X, RangeType));
5904   }
5905 
5906   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5907     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5908     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5909       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5910     return setRange(Mul, SignHint,
5911                     ConservativeResult.intersectWith(X, RangeType));
5912   }
5913 
5914   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5915     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5916     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5917       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5918     return setRange(SMax, SignHint,
5919                     ConservativeResult.intersectWith(X, RangeType));
5920   }
5921 
5922   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5923     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5924     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5925       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5926     return setRange(UMax, SignHint,
5927                     ConservativeResult.intersectWith(X, RangeType));
5928   }
5929 
5930   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5931     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5932     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5933       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5934     return setRange(SMin, SignHint,
5935                     ConservativeResult.intersectWith(X, RangeType));
5936   }
5937 
5938   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5939     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5940     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5941       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5942     return setRange(UMin, SignHint,
5943                     ConservativeResult.intersectWith(X, RangeType));
5944   }
5945 
5946   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5947     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5948     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5949     return setRange(UDiv, SignHint,
5950                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5951   }
5952 
5953   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5954     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5955     return setRange(ZExt, SignHint,
5956                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5957                                                      RangeType));
5958   }
5959 
5960   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5961     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5962     return setRange(SExt, SignHint,
5963                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5964                                                      RangeType));
5965   }
5966 
5967   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5968     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5969     return setRange(PtrToInt, SignHint, X);
5970   }
5971 
5972   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5973     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5974     return setRange(Trunc, SignHint,
5975                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5976                                                      RangeType));
5977   }
5978 
5979   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5980     // If there's no unsigned wrap, the value will never be less than its
5981     // initial value.
5982     if (AddRec->hasNoUnsignedWrap()) {
5983       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5984       if (!UnsignedMinValue.isNullValue())
5985         ConservativeResult = ConservativeResult.intersectWith(
5986             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5987     }
5988 
5989     // If there's no signed wrap, and all the operands except initial value have
5990     // the same sign or zero, the value won't ever be:
5991     // 1: smaller than initial value if operands are non negative,
5992     // 2: bigger than initial value if operands are non positive.
5993     // For both cases, value can not cross signed min/max boundary.
5994     if (AddRec->hasNoSignedWrap()) {
5995       bool AllNonNeg = true;
5996       bool AllNonPos = true;
5997       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5998         if (!isKnownNonNegative(AddRec->getOperand(i)))
5999           AllNonNeg = false;
6000         if (!isKnownNonPositive(AddRec->getOperand(i)))
6001           AllNonPos = false;
6002       }
6003       if (AllNonNeg)
6004         ConservativeResult = ConservativeResult.intersectWith(
6005             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6006                                        APInt::getSignedMinValue(BitWidth)),
6007             RangeType);
6008       else if (AllNonPos)
6009         ConservativeResult = ConservativeResult.intersectWith(
6010             ConstantRange::getNonEmpty(
6011                 APInt::getSignedMinValue(BitWidth),
6012                 getSignedRangeMax(AddRec->getStart()) + 1),
6013             RangeType);
6014     }
6015 
6016     // TODO: non-affine addrec
6017     if (AddRec->isAffine()) {
6018       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6019       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6020           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6021         auto RangeFromAffine = getRangeForAffineAR(
6022             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6023             BitWidth);
6024         ConservativeResult =
6025             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6026 
6027         auto RangeFromFactoring = getRangeViaFactoring(
6028             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6029             BitWidth);
6030         ConservativeResult =
6031             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6032       }
6033 
6034       // Now try symbolic BE count and more powerful methods.
6035       if (UseExpensiveRangeSharpening) {
6036         const SCEV *SymbolicMaxBECount =
6037             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6038         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6039             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6040             AddRec->hasNoSelfWrap()) {
6041           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6042               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6043           ConservativeResult =
6044               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6045         }
6046       }
6047     }
6048 
6049     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6050   }
6051 
6052   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6053 
6054     // Check if the IR explicitly contains !range metadata.
6055     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6056     if (MDRange.hasValue())
6057       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6058                                                             RangeType);
6059 
6060     // Use facts about recurrences in the underlying IR.  Note that add
6061     // recurrences are AddRecExprs and thus don't hit this path.  This
6062     // primarily handles shift recurrences.
6063     auto CR = getRangeForUnknownRecurrence(U);
6064     ConservativeResult = ConservativeResult.intersectWith(CR);
6065 
6066     // See if ValueTracking can give us a useful range.
6067     const DataLayout &DL = getDataLayout();
6068     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6069     if (Known.getBitWidth() != BitWidth)
6070       Known = Known.zextOrTrunc(BitWidth);
6071 
6072     // ValueTracking may be able to compute a tighter result for the number of
6073     // sign bits than for the value of those sign bits.
6074     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6075     if (U->getType()->isPointerTy()) {
6076       // If the pointer size is larger than the index size type, this can cause
6077       // NS to be larger than BitWidth. So compensate for this.
6078       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6079       int ptrIdxDiff = ptrSize - BitWidth;
6080       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6081         NS -= ptrIdxDiff;
6082     }
6083 
6084     if (NS > 1) {
6085       // If we know any of the sign bits, we know all of the sign bits.
6086       if (!Known.Zero.getHiBits(NS).isNullValue())
6087         Known.Zero.setHighBits(NS);
6088       if (!Known.One.getHiBits(NS).isNullValue())
6089         Known.One.setHighBits(NS);
6090     }
6091 
6092     if (Known.getMinValue() != Known.getMaxValue() + 1)
6093       ConservativeResult = ConservativeResult.intersectWith(
6094           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6095           RangeType);
6096     if (NS > 1)
6097       ConservativeResult = ConservativeResult.intersectWith(
6098           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6099                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6100           RangeType);
6101 
6102     // A range of Phi is a subset of union of all ranges of its input.
6103     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6104       // Make sure that we do not run over cycled Phis.
6105       if (PendingPhiRanges.insert(Phi).second) {
6106         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6107         for (auto &Op : Phi->operands()) {
6108           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6109           RangeFromOps = RangeFromOps.unionWith(OpRange);
6110           // No point to continue if we already have a full set.
6111           if (RangeFromOps.isFullSet())
6112             break;
6113         }
6114         ConservativeResult =
6115             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6116         bool Erased = PendingPhiRanges.erase(Phi);
6117         assert(Erased && "Failed to erase Phi properly?");
6118         (void) Erased;
6119       }
6120     }
6121 
6122     return setRange(U, SignHint, std::move(ConservativeResult));
6123   }
6124 
6125   return setRange(S, SignHint, std::move(ConservativeResult));
6126 }
6127 
6128 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6129 // values that the expression can take. Initially, the expression has a value
6130 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6131 // argument defines if we treat Step as signed or unsigned.
6132 static ConstantRange getRangeForAffineARHelper(APInt Step,
6133                                                const ConstantRange &StartRange,
6134                                                const APInt &MaxBECount,
6135                                                unsigned BitWidth, bool Signed) {
6136   // If either Step or MaxBECount is 0, then the expression won't change, and we
6137   // just need to return the initial range.
6138   if (Step == 0 || MaxBECount == 0)
6139     return StartRange;
6140 
6141   // If we don't know anything about the initial value (i.e. StartRange is
6142   // FullRange), then we don't know anything about the final range either.
6143   // Return FullRange.
6144   if (StartRange.isFullSet())
6145     return ConstantRange::getFull(BitWidth);
6146 
6147   // If Step is signed and negative, then we use its absolute value, but we also
6148   // note that we're moving in the opposite direction.
6149   bool Descending = Signed && Step.isNegative();
6150 
6151   if (Signed)
6152     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6153     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6154     // This equations hold true due to the well-defined wrap-around behavior of
6155     // APInt.
6156     Step = Step.abs();
6157 
6158   // Check if Offset is more than full span of BitWidth. If it is, the
6159   // expression is guaranteed to overflow.
6160   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6161     return ConstantRange::getFull(BitWidth);
6162 
6163   // Offset is by how much the expression can change. Checks above guarantee no
6164   // overflow here.
6165   APInt Offset = Step * MaxBECount;
6166 
6167   // Minimum value of the final range will match the minimal value of StartRange
6168   // if the expression is increasing and will be decreased by Offset otherwise.
6169   // Maximum value of the final range will match the maximal value of StartRange
6170   // if the expression is decreasing and will be increased by Offset otherwise.
6171   APInt StartLower = StartRange.getLower();
6172   APInt StartUpper = StartRange.getUpper() - 1;
6173   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6174                                    : (StartUpper + std::move(Offset));
6175 
6176   // It's possible that the new minimum/maximum value will fall into the initial
6177   // range (due to wrap around). This means that the expression can take any
6178   // value in this bitwidth, and we have to return full range.
6179   if (StartRange.contains(MovedBoundary))
6180     return ConstantRange::getFull(BitWidth);
6181 
6182   APInt NewLower =
6183       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6184   APInt NewUpper =
6185       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6186   NewUpper += 1;
6187 
6188   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6189   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6190 }
6191 
6192 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6193                                                    const SCEV *Step,
6194                                                    const SCEV *MaxBECount,
6195                                                    unsigned BitWidth) {
6196   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6197          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6198          "Precondition!");
6199 
6200   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6201   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6202 
6203   // First, consider step signed.
6204   ConstantRange StartSRange = getSignedRange(Start);
6205   ConstantRange StepSRange = getSignedRange(Step);
6206 
6207   // If Step can be both positive and negative, we need to find ranges for the
6208   // maximum absolute step values in both directions and union them.
6209   ConstantRange SR =
6210       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6211                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6212   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6213                                               StartSRange, MaxBECountValue,
6214                                               BitWidth, /* Signed = */ true));
6215 
6216   // Next, consider step unsigned.
6217   ConstantRange UR = getRangeForAffineARHelper(
6218       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6219       MaxBECountValue, BitWidth, /* Signed = */ false);
6220 
6221   // Finally, intersect signed and unsigned ranges.
6222   return SR.intersectWith(UR, ConstantRange::Smallest);
6223 }
6224 
6225 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6226     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6227     ScalarEvolution::RangeSignHint SignHint) {
6228   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6229   assert(AddRec->hasNoSelfWrap() &&
6230          "This only works for non-self-wrapping AddRecs!");
6231   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6232   const SCEV *Step = AddRec->getStepRecurrence(*this);
6233   // Only deal with constant step to save compile time.
6234   if (!isa<SCEVConstant>(Step))
6235     return ConstantRange::getFull(BitWidth);
6236   // Let's make sure that we can prove that we do not self-wrap during
6237   // MaxBECount iterations. We need this because MaxBECount is a maximum
6238   // iteration count estimate, and we might infer nw from some exit for which we
6239   // do not know max exit count (or any other side reasoning).
6240   // TODO: Turn into assert at some point.
6241   if (getTypeSizeInBits(MaxBECount->getType()) >
6242       getTypeSizeInBits(AddRec->getType()))
6243     return ConstantRange::getFull(BitWidth);
6244   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6245   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6246   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6247   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6248   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6249                                          MaxItersWithoutWrap))
6250     return ConstantRange::getFull(BitWidth);
6251 
6252   ICmpInst::Predicate LEPred =
6253       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6254   ICmpInst::Predicate GEPred =
6255       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6256   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6257 
6258   // We know that there is no self-wrap. Let's take Start and End values and
6259   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6260   // the iteration. They either lie inside the range [Min(Start, End),
6261   // Max(Start, End)] or outside it:
6262   //
6263   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6264   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6265   //
6266   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6267   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6268   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6269   // Start <= End and step is positive, or Start >= End and step is negative.
6270   const SCEV *Start = AddRec->getStart();
6271   ConstantRange StartRange = getRangeRef(Start, SignHint);
6272   ConstantRange EndRange = getRangeRef(End, SignHint);
6273   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6274   // If they already cover full iteration space, we will know nothing useful
6275   // even if we prove what we want to prove.
6276   if (RangeBetween.isFullSet())
6277     return RangeBetween;
6278   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6279   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6280                                : RangeBetween.isWrappedSet();
6281   if (IsWrappedSet)
6282     return ConstantRange::getFull(BitWidth);
6283 
6284   if (isKnownPositive(Step) &&
6285       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6286     return RangeBetween;
6287   else if (isKnownNegative(Step) &&
6288            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6289     return RangeBetween;
6290   return ConstantRange::getFull(BitWidth);
6291 }
6292 
6293 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6294                                                     const SCEV *Step,
6295                                                     const SCEV *MaxBECount,
6296                                                     unsigned BitWidth) {
6297   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6298   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6299 
6300   struct SelectPattern {
6301     Value *Condition = nullptr;
6302     APInt TrueValue;
6303     APInt FalseValue;
6304 
6305     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6306                            const SCEV *S) {
6307       Optional<unsigned> CastOp;
6308       APInt Offset(BitWidth, 0);
6309 
6310       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6311              "Should be!");
6312 
6313       // Peel off a constant offset:
6314       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6315         // In the future we could consider being smarter here and handle
6316         // {Start+Step,+,Step} too.
6317         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6318           return;
6319 
6320         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6321         S = SA->getOperand(1);
6322       }
6323 
6324       // Peel off a cast operation
6325       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6326         CastOp = SCast->getSCEVType();
6327         S = SCast->getOperand();
6328       }
6329 
6330       using namespace llvm::PatternMatch;
6331 
6332       auto *SU = dyn_cast<SCEVUnknown>(S);
6333       const APInt *TrueVal, *FalseVal;
6334       if (!SU ||
6335           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6336                                           m_APInt(FalseVal)))) {
6337         Condition = nullptr;
6338         return;
6339       }
6340 
6341       TrueValue = *TrueVal;
6342       FalseValue = *FalseVal;
6343 
6344       // Re-apply the cast we peeled off earlier
6345       if (CastOp.hasValue())
6346         switch (*CastOp) {
6347         default:
6348           llvm_unreachable("Unknown SCEV cast type!");
6349 
6350         case scTruncate:
6351           TrueValue = TrueValue.trunc(BitWidth);
6352           FalseValue = FalseValue.trunc(BitWidth);
6353           break;
6354         case scZeroExtend:
6355           TrueValue = TrueValue.zext(BitWidth);
6356           FalseValue = FalseValue.zext(BitWidth);
6357           break;
6358         case scSignExtend:
6359           TrueValue = TrueValue.sext(BitWidth);
6360           FalseValue = FalseValue.sext(BitWidth);
6361           break;
6362         }
6363 
6364       // Re-apply the constant offset we peeled off earlier
6365       TrueValue += Offset;
6366       FalseValue += Offset;
6367     }
6368 
6369     bool isRecognized() { return Condition != nullptr; }
6370   };
6371 
6372   SelectPattern StartPattern(*this, BitWidth, Start);
6373   if (!StartPattern.isRecognized())
6374     return ConstantRange::getFull(BitWidth);
6375 
6376   SelectPattern StepPattern(*this, BitWidth, Step);
6377   if (!StepPattern.isRecognized())
6378     return ConstantRange::getFull(BitWidth);
6379 
6380   if (StartPattern.Condition != StepPattern.Condition) {
6381     // We don't handle this case today; but we could, by considering four
6382     // possibilities below instead of two. I'm not sure if there are cases where
6383     // that will help over what getRange already does, though.
6384     return ConstantRange::getFull(BitWidth);
6385   }
6386 
6387   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6388   // construct arbitrary general SCEV expressions here.  This function is called
6389   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6390   // say) can end up caching a suboptimal value.
6391 
6392   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6393   // C2352 and C2512 (otherwise it isn't needed).
6394 
6395   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6396   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6397   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6398   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6399 
6400   ConstantRange TrueRange =
6401       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6402   ConstantRange FalseRange =
6403       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6404 
6405   return TrueRange.unionWith(FalseRange);
6406 }
6407 
6408 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6409   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6410   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6411 
6412   // Return early if there are no flags to propagate to the SCEV.
6413   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6414   if (BinOp->hasNoUnsignedWrap())
6415     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6416   if (BinOp->hasNoSignedWrap())
6417     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6418   if (Flags == SCEV::FlagAnyWrap)
6419     return SCEV::FlagAnyWrap;
6420 
6421   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6422 }
6423 
6424 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6425   // Here we check that I is in the header of the innermost loop containing I,
6426   // since we only deal with instructions in the loop header. The actual loop we
6427   // need to check later will come from an add recurrence, but getting that
6428   // requires computing the SCEV of the operands, which can be expensive. This
6429   // check we can do cheaply to rule out some cases early.
6430   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6431   if (InnermostContainingLoop == nullptr ||
6432       InnermostContainingLoop->getHeader() != I->getParent())
6433     return false;
6434 
6435   // Only proceed if we can prove that I does not yield poison.
6436   if (!programUndefinedIfPoison(I))
6437     return false;
6438 
6439   // At this point we know that if I is executed, then it does not wrap
6440   // according to at least one of NSW or NUW. If I is not executed, then we do
6441   // not know if the calculation that I represents would wrap. Multiple
6442   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6443   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6444   // derived from other instructions that map to the same SCEV. We cannot make
6445   // that guarantee for cases where I is not executed. So we need to find the
6446   // loop that I is considered in relation to and prove that I is executed for
6447   // every iteration of that loop. That implies that the value that I
6448   // calculates does not wrap anywhere in the loop, so then we can apply the
6449   // flags to the SCEV.
6450   //
6451   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6452   // from different loops, so that we know which loop to prove that I is
6453   // executed in.
6454   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6455     // I could be an extractvalue from a call to an overflow intrinsic.
6456     // TODO: We can do better here in some cases.
6457     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6458       return false;
6459     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6460     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6461       bool AllOtherOpsLoopInvariant = true;
6462       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6463            ++OtherOpIndex) {
6464         if (OtherOpIndex != OpIndex) {
6465           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6466           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6467             AllOtherOpsLoopInvariant = false;
6468             break;
6469           }
6470         }
6471       }
6472       if (AllOtherOpsLoopInvariant &&
6473           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6474         return true;
6475     }
6476   }
6477   return false;
6478 }
6479 
6480 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6481   // If we know that \c I can never be poison period, then that's enough.
6482   if (isSCEVExprNeverPoison(I))
6483     return true;
6484 
6485   // For an add recurrence specifically, we assume that infinite loops without
6486   // side effects are undefined behavior, and then reason as follows:
6487   //
6488   // If the add recurrence is poison in any iteration, it is poison on all
6489   // future iterations (since incrementing poison yields poison). If the result
6490   // of the add recurrence is fed into the loop latch condition and the loop
6491   // does not contain any throws or exiting blocks other than the latch, we now
6492   // have the ability to "choose" whether the backedge is taken or not (by
6493   // choosing a sufficiently evil value for the poison feeding into the branch)
6494   // for every iteration including and after the one in which \p I first became
6495   // poison.  There are two possibilities (let's call the iteration in which \p
6496   // I first became poison as K):
6497   //
6498   //  1. In the set of iterations including and after K, the loop body executes
6499   //     no side effects.  In this case executing the backege an infinte number
6500   //     of times will yield undefined behavior.
6501   //
6502   //  2. In the set of iterations including and after K, the loop body executes
6503   //     at least one side effect.  In this case, that specific instance of side
6504   //     effect is control dependent on poison, which also yields undefined
6505   //     behavior.
6506 
6507   auto *ExitingBB = L->getExitingBlock();
6508   auto *LatchBB = L->getLoopLatch();
6509   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6510     return false;
6511 
6512   SmallPtrSet<const Instruction *, 16> Pushed;
6513   SmallVector<const Instruction *, 8> PoisonStack;
6514 
6515   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6516   // things that are known to be poison under that assumption go on the
6517   // PoisonStack.
6518   Pushed.insert(I);
6519   PoisonStack.push_back(I);
6520 
6521   bool LatchControlDependentOnPoison = false;
6522   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6523     const Instruction *Poison = PoisonStack.pop_back_val();
6524 
6525     for (auto *PoisonUser : Poison->users()) {
6526       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6527         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6528           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6529       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6530         assert(BI->isConditional() && "Only possibility!");
6531         if (BI->getParent() == LatchBB) {
6532           LatchControlDependentOnPoison = true;
6533           break;
6534         }
6535       }
6536     }
6537   }
6538 
6539   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6540 }
6541 
6542 ScalarEvolution::LoopProperties
6543 ScalarEvolution::getLoopProperties(const Loop *L) {
6544   using LoopProperties = ScalarEvolution::LoopProperties;
6545 
6546   auto Itr = LoopPropertiesCache.find(L);
6547   if (Itr == LoopPropertiesCache.end()) {
6548     auto HasSideEffects = [](Instruction *I) {
6549       if (auto *SI = dyn_cast<StoreInst>(I))
6550         return !SI->isSimple();
6551 
6552       return I->mayHaveSideEffects();
6553     };
6554 
6555     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6556                          /*HasNoSideEffects*/ true};
6557 
6558     for (auto *BB : L->getBlocks())
6559       for (auto &I : *BB) {
6560         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6561           LP.HasNoAbnormalExits = false;
6562         if (HasSideEffects(&I))
6563           LP.HasNoSideEffects = false;
6564         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6565           break; // We're already as pessimistic as we can get.
6566       }
6567 
6568     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6569     assert(InsertPair.second && "We just checked!");
6570     Itr = InsertPair.first;
6571   }
6572 
6573   return Itr->second;
6574 }
6575 
6576 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6577   // TODO: Use the loop metadata form of mustprogress as well.
6578   if (!L->getHeader()->getParent()->mustProgress())
6579     return false;
6580 
6581   // A loop without side effects must be finite.
6582   // TODO: The check used here is very conservative.  It's only *specific*
6583   // side effects which are well defined in infinite loops.
6584   return loopHasNoSideEffects(L);
6585 }
6586 
6587 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6588   if (!isSCEVable(V->getType()))
6589     return getUnknown(V);
6590 
6591   if (Instruction *I = dyn_cast<Instruction>(V)) {
6592     // Don't attempt to analyze instructions in blocks that aren't
6593     // reachable. Such instructions don't matter, and they aren't required
6594     // to obey basic rules for definitions dominating uses which this
6595     // analysis depends on.
6596     if (!DT.isReachableFromEntry(I->getParent()))
6597       return getUnknown(UndefValue::get(V->getType()));
6598   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6599     return getConstant(CI);
6600   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6601     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6602   else if (!isa<ConstantExpr>(V))
6603     return getUnknown(V);
6604 
6605   Operator *U = cast<Operator>(V);
6606   if (auto BO = MatchBinaryOp(U, DT)) {
6607     switch (BO->Opcode) {
6608     case Instruction::Add: {
6609       // The simple thing to do would be to just call getSCEV on both operands
6610       // and call getAddExpr with the result. However if we're looking at a
6611       // bunch of things all added together, this can be quite inefficient,
6612       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6613       // Instead, gather up all the operands and make a single getAddExpr call.
6614       // LLVM IR canonical form means we need only traverse the left operands.
6615       SmallVector<const SCEV *, 4> AddOps;
6616       do {
6617         if (BO->Op) {
6618           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6619             AddOps.push_back(OpSCEV);
6620             break;
6621           }
6622 
6623           // If a NUW or NSW flag can be applied to the SCEV for this
6624           // addition, then compute the SCEV for this addition by itself
6625           // with a separate call to getAddExpr. We need to do that
6626           // instead of pushing the operands of the addition onto AddOps,
6627           // since the flags are only known to apply to this particular
6628           // addition - they may not apply to other additions that can be
6629           // formed with operands from AddOps.
6630           const SCEV *RHS = getSCEV(BO->RHS);
6631           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6632           if (Flags != SCEV::FlagAnyWrap) {
6633             const SCEV *LHS = getSCEV(BO->LHS);
6634             if (BO->Opcode == Instruction::Sub)
6635               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6636             else
6637               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6638             break;
6639           }
6640         }
6641 
6642         if (BO->Opcode == Instruction::Sub)
6643           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6644         else
6645           AddOps.push_back(getSCEV(BO->RHS));
6646 
6647         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6648         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6649                        NewBO->Opcode != Instruction::Sub)) {
6650           AddOps.push_back(getSCEV(BO->LHS));
6651           break;
6652         }
6653         BO = NewBO;
6654       } while (true);
6655 
6656       return getAddExpr(AddOps);
6657     }
6658 
6659     case Instruction::Mul: {
6660       SmallVector<const SCEV *, 4> MulOps;
6661       do {
6662         if (BO->Op) {
6663           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6664             MulOps.push_back(OpSCEV);
6665             break;
6666           }
6667 
6668           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6669           if (Flags != SCEV::FlagAnyWrap) {
6670             MulOps.push_back(
6671                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6672             break;
6673           }
6674         }
6675 
6676         MulOps.push_back(getSCEV(BO->RHS));
6677         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6678         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6679           MulOps.push_back(getSCEV(BO->LHS));
6680           break;
6681         }
6682         BO = NewBO;
6683       } while (true);
6684 
6685       return getMulExpr(MulOps);
6686     }
6687     case Instruction::UDiv:
6688       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6689     case Instruction::URem:
6690       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6691     case Instruction::Sub: {
6692       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6693       if (BO->Op)
6694         Flags = getNoWrapFlagsFromUB(BO->Op);
6695       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6696     }
6697     case Instruction::And:
6698       // For an expression like x&255 that merely masks off the high bits,
6699       // use zext(trunc(x)) as the SCEV expression.
6700       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6701         if (CI->isZero())
6702           return getSCEV(BO->RHS);
6703         if (CI->isMinusOne())
6704           return getSCEV(BO->LHS);
6705         const APInt &A = CI->getValue();
6706 
6707         // Instcombine's ShrinkDemandedConstant may strip bits out of
6708         // constants, obscuring what would otherwise be a low-bits mask.
6709         // Use computeKnownBits to compute what ShrinkDemandedConstant
6710         // knew about to reconstruct a low-bits mask value.
6711         unsigned LZ = A.countLeadingZeros();
6712         unsigned TZ = A.countTrailingZeros();
6713         unsigned BitWidth = A.getBitWidth();
6714         KnownBits Known(BitWidth);
6715         computeKnownBits(BO->LHS, Known, getDataLayout(),
6716                          0, &AC, nullptr, &DT);
6717 
6718         APInt EffectiveMask =
6719             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6720         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6721           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6722           const SCEV *LHS = getSCEV(BO->LHS);
6723           const SCEV *ShiftedLHS = nullptr;
6724           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6725             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6726               // For an expression like (x * 8) & 8, simplify the multiply.
6727               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6728               unsigned GCD = std::min(MulZeros, TZ);
6729               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6730               SmallVector<const SCEV*, 4> MulOps;
6731               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6732               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6733               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6734               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6735             }
6736           }
6737           if (!ShiftedLHS)
6738             ShiftedLHS = getUDivExpr(LHS, MulCount);
6739           return getMulExpr(
6740               getZeroExtendExpr(
6741                   getTruncateExpr(ShiftedLHS,
6742                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6743                   BO->LHS->getType()),
6744               MulCount);
6745         }
6746       }
6747       break;
6748 
6749     case Instruction::Or:
6750       // If the RHS of the Or is a constant, we may have something like:
6751       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6752       // optimizations will transparently handle this case.
6753       //
6754       // In order for this transformation to be safe, the LHS must be of the
6755       // form X*(2^n) and the Or constant must be less than 2^n.
6756       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6757         const SCEV *LHS = getSCEV(BO->LHS);
6758         const APInt &CIVal = CI->getValue();
6759         if (GetMinTrailingZeros(LHS) >=
6760             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6761           // Build a plain add SCEV.
6762           return getAddExpr(LHS, getSCEV(CI),
6763                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6764         }
6765       }
6766       break;
6767 
6768     case Instruction::Xor:
6769       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6770         // If the RHS of xor is -1, then this is a not operation.
6771         if (CI->isMinusOne())
6772           return getNotSCEV(getSCEV(BO->LHS));
6773 
6774         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6775         // This is a variant of the check for xor with -1, and it handles
6776         // the case where instcombine has trimmed non-demanded bits out
6777         // of an xor with -1.
6778         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6779           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6780             if (LBO->getOpcode() == Instruction::And &&
6781                 LCI->getValue() == CI->getValue())
6782               if (const SCEVZeroExtendExpr *Z =
6783                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6784                 Type *UTy = BO->LHS->getType();
6785                 const SCEV *Z0 = Z->getOperand();
6786                 Type *Z0Ty = Z0->getType();
6787                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6788 
6789                 // If C is a low-bits mask, the zero extend is serving to
6790                 // mask off the high bits. Complement the operand and
6791                 // re-apply the zext.
6792                 if (CI->getValue().isMask(Z0TySize))
6793                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6794 
6795                 // If C is a single bit, it may be in the sign-bit position
6796                 // before the zero-extend. In this case, represent the xor
6797                 // using an add, which is equivalent, and re-apply the zext.
6798                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6799                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6800                     Trunc.isSignMask())
6801                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6802                                            UTy);
6803               }
6804       }
6805       break;
6806 
6807     case Instruction::Shl:
6808       // Turn shift left of a constant amount into a multiply.
6809       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6810         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6811 
6812         // If the shift count is not less than the bitwidth, the result of
6813         // the shift is undefined. Don't try to analyze it, because the
6814         // resolution chosen here may differ from the resolution chosen in
6815         // other parts of the compiler.
6816         if (SA->getValue().uge(BitWidth))
6817           break;
6818 
6819         // We can safely preserve the nuw flag in all cases. It's also safe to
6820         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6821         // requires special handling. It can be preserved as long as we're not
6822         // left shifting by bitwidth - 1.
6823         auto Flags = SCEV::FlagAnyWrap;
6824         if (BO->Op) {
6825           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6826           if ((MulFlags & SCEV::FlagNSW) &&
6827               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6828             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6829           if (MulFlags & SCEV::FlagNUW)
6830             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6831         }
6832 
6833         Constant *X = ConstantInt::get(
6834             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6835         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6836       }
6837       break;
6838 
6839     case Instruction::AShr: {
6840       // AShr X, C, where C is a constant.
6841       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6842       if (!CI)
6843         break;
6844 
6845       Type *OuterTy = BO->LHS->getType();
6846       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6847       // If the shift count is not less than the bitwidth, the result of
6848       // the shift is undefined. Don't try to analyze it, because the
6849       // resolution chosen here may differ from the resolution chosen in
6850       // other parts of the compiler.
6851       if (CI->getValue().uge(BitWidth))
6852         break;
6853 
6854       if (CI->isZero())
6855         return getSCEV(BO->LHS); // shift by zero --> noop
6856 
6857       uint64_t AShrAmt = CI->getZExtValue();
6858       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6859 
6860       Operator *L = dyn_cast<Operator>(BO->LHS);
6861       if (L && L->getOpcode() == Instruction::Shl) {
6862         // X = Shl A, n
6863         // Y = AShr X, m
6864         // Both n and m are constant.
6865 
6866         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6867         if (L->getOperand(1) == BO->RHS)
6868           // For a two-shift sext-inreg, i.e. n = m,
6869           // use sext(trunc(x)) as the SCEV expression.
6870           return getSignExtendExpr(
6871               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6872 
6873         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6874         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6875           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6876           if (ShlAmt > AShrAmt) {
6877             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6878             // expression. We already checked that ShlAmt < BitWidth, so
6879             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6880             // ShlAmt - AShrAmt < Amt.
6881             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6882                                             ShlAmt - AShrAmt);
6883             return getSignExtendExpr(
6884                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6885                 getConstant(Mul)), OuterTy);
6886           }
6887         }
6888       }
6889       break;
6890     }
6891     }
6892   }
6893 
6894   switch (U->getOpcode()) {
6895   case Instruction::Trunc:
6896     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6897 
6898   case Instruction::ZExt:
6899     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6900 
6901   case Instruction::SExt:
6902     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6903       // The NSW flag of a subtract does not always survive the conversion to
6904       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6905       // more likely to preserve NSW and allow later AddRec optimisations.
6906       //
6907       // NOTE: This is effectively duplicating this logic from getSignExtend:
6908       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6909       // but by that point the NSW information has potentially been lost.
6910       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6911         Type *Ty = U->getType();
6912         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6913         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6914         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6915       }
6916     }
6917     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6918 
6919   case Instruction::BitCast:
6920     // BitCasts are no-op casts so we just eliminate the cast.
6921     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6922       return getSCEV(U->getOperand(0));
6923     break;
6924 
6925   case Instruction::PtrToInt: {
6926     // Pointer to integer cast is straight-forward, so do model it.
6927     const SCEV *Op = getSCEV(U->getOperand(0));
6928     Type *DstIntTy = U->getType();
6929     // But only if effective SCEV (integer) type is wide enough to represent
6930     // all possible pointer values.
6931     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
6932     if (isa<SCEVCouldNotCompute>(IntOp))
6933       return getUnknown(V);
6934     return IntOp;
6935   }
6936   case Instruction::IntToPtr:
6937     // Just don't deal with inttoptr casts.
6938     return getUnknown(V);
6939 
6940   case Instruction::SDiv:
6941     // If both operands are non-negative, this is just an udiv.
6942     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6943         isKnownNonNegative(getSCEV(U->getOperand(1))))
6944       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6945     break;
6946 
6947   case Instruction::SRem:
6948     // If both operands are non-negative, this is just an urem.
6949     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6950         isKnownNonNegative(getSCEV(U->getOperand(1))))
6951       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6952     break;
6953 
6954   case Instruction::GetElementPtr:
6955     return createNodeForGEP(cast<GEPOperator>(U));
6956 
6957   case Instruction::PHI:
6958     return createNodeForPHI(cast<PHINode>(U));
6959 
6960   case Instruction::Select:
6961     // U can also be a select constant expr, which let fall through.  Since
6962     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6963     // constant expressions cannot have instructions as operands, we'd have
6964     // returned getUnknown for a select constant expressions anyway.
6965     if (isa<Instruction>(U))
6966       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6967                                       U->getOperand(1), U->getOperand(2));
6968     break;
6969 
6970   case Instruction::Call:
6971   case Instruction::Invoke:
6972     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6973       return getSCEV(RV);
6974 
6975     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6976       switch (II->getIntrinsicID()) {
6977       case Intrinsic::abs:
6978         return getAbsExpr(
6979             getSCEV(II->getArgOperand(0)),
6980             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6981       case Intrinsic::umax:
6982         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6983                            getSCEV(II->getArgOperand(1)));
6984       case Intrinsic::umin:
6985         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6986                            getSCEV(II->getArgOperand(1)));
6987       case Intrinsic::smax:
6988         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6989                            getSCEV(II->getArgOperand(1)));
6990       case Intrinsic::smin:
6991         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6992                            getSCEV(II->getArgOperand(1)));
6993       case Intrinsic::usub_sat: {
6994         const SCEV *X = getSCEV(II->getArgOperand(0));
6995         const SCEV *Y = getSCEV(II->getArgOperand(1));
6996         const SCEV *ClampedY = getUMinExpr(X, Y);
6997         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6998       }
6999       case Intrinsic::uadd_sat: {
7000         const SCEV *X = getSCEV(II->getArgOperand(0));
7001         const SCEV *Y = getSCEV(II->getArgOperand(1));
7002         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7003         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7004       }
7005       case Intrinsic::start_loop_iterations:
7006         // A start_loop_iterations is just equivalent to the first operand for
7007         // SCEV purposes.
7008         return getSCEV(II->getArgOperand(0));
7009       default:
7010         break;
7011       }
7012     }
7013     break;
7014   }
7015 
7016   return getUnknown(V);
7017 }
7018 
7019 //===----------------------------------------------------------------------===//
7020 //                   Iteration Count Computation Code
7021 //
7022 
7023 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7024   // Get the trip count from the BE count by adding 1.  Overflow, results
7025   // in zero which means "unknown".
7026   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7027 }
7028 
7029 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7030   if (!ExitCount)
7031     return 0;
7032 
7033   ConstantInt *ExitConst = ExitCount->getValue();
7034 
7035   // Guard against huge trip counts.
7036   if (ExitConst->getValue().getActiveBits() > 32)
7037     return 0;
7038 
7039   // In case of integer overflow, this returns 0, which is correct.
7040   return ((unsigned)ExitConst->getZExtValue()) + 1;
7041 }
7042 
7043 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7044   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7045   return getConstantTripCount(ExitCount);
7046 }
7047 
7048 unsigned
7049 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7050                                            const BasicBlock *ExitingBlock) {
7051   assert(ExitingBlock && "Must pass a non-null exiting block!");
7052   assert(L->isLoopExiting(ExitingBlock) &&
7053          "Exiting block must actually branch out of the loop!");
7054   const SCEVConstant *ExitCount =
7055       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7056   return getConstantTripCount(ExitCount);
7057 }
7058 
7059 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7060   const auto *MaxExitCount =
7061       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7062   return getConstantTripCount(MaxExitCount);
7063 }
7064 
7065 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7066   SmallVector<BasicBlock *, 8> ExitingBlocks;
7067   L->getExitingBlocks(ExitingBlocks);
7068 
7069   Optional<unsigned> Res = None;
7070   for (auto *ExitingBB : ExitingBlocks) {
7071     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7072     if (!Res)
7073       Res = Multiple;
7074     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7075   }
7076   return Res.getValueOr(1);
7077 }
7078 
7079 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7080                                                        const SCEV *ExitCount) {
7081   if (ExitCount == getCouldNotCompute())
7082     return 1;
7083 
7084   // Get the trip count
7085   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7086 
7087   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7088   if (!TC)
7089     // Attempt to factor more general cases. Returns the greatest power of
7090     // two divisor. If overflow happens, the trip count expression is still
7091     // divisible by the greatest power of 2 divisor returned.
7092     return 1U << std::min((uint32_t)31,
7093                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7094 
7095   ConstantInt *Result = TC->getValue();
7096 
7097   // Guard against huge trip counts (this requires checking
7098   // for zero to handle the case where the trip count == -1 and the
7099   // addition wraps).
7100   if (!Result || Result->getValue().getActiveBits() > 32 ||
7101       Result->getValue().getActiveBits() == 0)
7102     return 1;
7103 
7104   return (unsigned)Result->getZExtValue();
7105 }
7106 
7107 /// Returns the largest constant divisor of the trip count of this loop as a
7108 /// normal unsigned value, if possible. This means that the actual trip count is
7109 /// always a multiple of the returned value (don't forget the trip count could
7110 /// very well be zero as well!).
7111 ///
7112 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7113 /// multiple of a constant (which is also the case if the trip count is simply
7114 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7115 /// if the trip count is very large (>= 2^32).
7116 ///
7117 /// As explained in the comments for getSmallConstantTripCount, this assumes
7118 /// that control exits the loop via ExitingBlock.
7119 unsigned
7120 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7121                                               const BasicBlock *ExitingBlock) {
7122   assert(ExitingBlock && "Must pass a non-null exiting block!");
7123   assert(L->isLoopExiting(ExitingBlock) &&
7124          "Exiting block must actually branch out of the loop!");
7125   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7126   return getSmallConstantTripMultiple(L, ExitCount);
7127 }
7128 
7129 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7130                                           const BasicBlock *ExitingBlock,
7131                                           ExitCountKind Kind) {
7132   switch (Kind) {
7133   case Exact:
7134   case SymbolicMaximum:
7135     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7136   case ConstantMaximum:
7137     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7138   };
7139   llvm_unreachable("Invalid ExitCountKind!");
7140 }
7141 
7142 const SCEV *
7143 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7144                                                  SCEVUnionPredicate &Preds) {
7145   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7146 }
7147 
7148 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7149                                                    ExitCountKind Kind) {
7150   switch (Kind) {
7151   case Exact:
7152     return getBackedgeTakenInfo(L).getExact(L, this);
7153   case ConstantMaximum:
7154     return getBackedgeTakenInfo(L).getConstantMax(this);
7155   case SymbolicMaximum:
7156     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7157   };
7158   llvm_unreachable("Invalid ExitCountKind!");
7159 }
7160 
7161 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7162   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7163 }
7164 
7165 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7166 static void
7167 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7168   BasicBlock *Header = L->getHeader();
7169 
7170   // Push all Loop-header PHIs onto the Worklist stack.
7171   for (PHINode &PN : Header->phis())
7172     Worklist.push_back(&PN);
7173 }
7174 
7175 const ScalarEvolution::BackedgeTakenInfo &
7176 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7177   auto &BTI = getBackedgeTakenInfo(L);
7178   if (BTI.hasFullInfo())
7179     return BTI;
7180 
7181   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7182 
7183   if (!Pair.second)
7184     return Pair.first->second;
7185 
7186   BackedgeTakenInfo Result =
7187       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7188 
7189   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7190 }
7191 
7192 ScalarEvolution::BackedgeTakenInfo &
7193 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7194   // Initially insert an invalid entry for this loop. If the insertion
7195   // succeeds, proceed to actually compute a backedge-taken count and
7196   // update the value. The temporary CouldNotCompute value tells SCEV
7197   // code elsewhere that it shouldn't attempt to request a new
7198   // backedge-taken count, which could result in infinite recursion.
7199   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7200       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7201   if (!Pair.second)
7202     return Pair.first->second;
7203 
7204   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7205   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7206   // must be cleared in this scope.
7207   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7208 
7209   // In product build, there are no usage of statistic.
7210   (void)NumTripCountsComputed;
7211   (void)NumTripCountsNotComputed;
7212 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7213   const SCEV *BEExact = Result.getExact(L, this);
7214   if (BEExact != getCouldNotCompute()) {
7215     assert(isLoopInvariant(BEExact, L) &&
7216            isLoopInvariant(Result.getConstantMax(this), L) &&
7217            "Computed backedge-taken count isn't loop invariant for loop!");
7218     ++NumTripCountsComputed;
7219   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7220              isa<PHINode>(L->getHeader()->begin())) {
7221     // Only count loops that have phi nodes as not being computable.
7222     ++NumTripCountsNotComputed;
7223   }
7224 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7225 
7226   // Now that we know more about the trip count for this loop, forget any
7227   // existing SCEV values for PHI nodes in this loop since they are only
7228   // conservative estimates made without the benefit of trip count
7229   // information. This is similar to the code in forgetLoop, except that
7230   // it handles SCEVUnknown PHI nodes specially.
7231   if (Result.hasAnyInfo()) {
7232     SmallVector<Instruction *, 16> Worklist;
7233     PushLoopPHIs(L, Worklist);
7234 
7235     SmallPtrSet<Instruction *, 8> Discovered;
7236     while (!Worklist.empty()) {
7237       Instruction *I = Worklist.pop_back_val();
7238 
7239       ValueExprMapType::iterator It =
7240         ValueExprMap.find_as(static_cast<Value *>(I));
7241       if (It != ValueExprMap.end()) {
7242         const SCEV *Old = It->second;
7243 
7244         // SCEVUnknown for a PHI either means that it has an unrecognized
7245         // structure, or it's a PHI that's in the progress of being computed
7246         // by createNodeForPHI.  In the former case, additional loop trip
7247         // count information isn't going to change anything. In the later
7248         // case, createNodeForPHI will perform the necessary updates on its
7249         // own when it gets to that point.
7250         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7251           eraseValueFromMap(It->first);
7252           forgetMemoizedResults(Old);
7253         }
7254         if (PHINode *PN = dyn_cast<PHINode>(I))
7255           ConstantEvolutionLoopExitValue.erase(PN);
7256       }
7257 
7258       // Since we don't need to invalidate anything for correctness and we're
7259       // only invalidating to make SCEV's results more precise, we get to stop
7260       // early to avoid invalidating too much.  This is especially important in
7261       // cases like:
7262       //
7263       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7264       // loop0:
7265       //   %pn0 = phi
7266       //   ...
7267       // loop1:
7268       //   %pn1 = phi
7269       //   ...
7270       //
7271       // where both loop0 and loop1's backedge taken count uses the SCEV
7272       // expression for %v.  If we don't have the early stop below then in cases
7273       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7274       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7275       // count for loop1, effectively nullifying SCEV's trip count cache.
7276       for (auto *U : I->users())
7277         if (auto *I = dyn_cast<Instruction>(U)) {
7278           auto *LoopForUser = LI.getLoopFor(I->getParent());
7279           if (LoopForUser && L->contains(LoopForUser) &&
7280               Discovered.insert(I).second)
7281             Worklist.push_back(I);
7282         }
7283     }
7284   }
7285 
7286   // Re-lookup the insert position, since the call to
7287   // computeBackedgeTakenCount above could result in a
7288   // recusive call to getBackedgeTakenInfo (on a different
7289   // loop), which would invalidate the iterator computed
7290   // earlier.
7291   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7292 }
7293 
7294 void ScalarEvolution::forgetAllLoops() {
7295   // This method is intended to forget all info about loops. It should
7296   // invalidate caches as if the following happened:
7297   // - The trip counts of all loops have changed arbitrarily
7298   // - Every llvm::Value has been updated in place to produce a different
7299   // result.
7300   BackedgeTakenCounts.clear();
7301   PredicatedBackedgeTakenCounts.clear();
7302   LoopPropertiesCache.clear();
7303   ConstantEvolutionLoopExitValue.clear();
7304   ValueExprMap.clear();
7305   ValuesAtScopes.clear();
7306   LoopDispositions.clear();
7307   BlockDispositions.clear();
7308   UnsignedRanges.clear();
7309   SignedRanges.clear();
7310   ExprValueMap.clear();
7311   HasRecMap.clear();
7312   MinTrailingZerosCache.clear();
7313   PredicatedSCEVRewrites.clear();
7314 }
7315 
7316 void ScalarEvolution::forgetLoop(const Loop *L) {
7317   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7318   SmallVector<Instruction *, 32> Worklist;
7319   SmallPtrSet<Instruction *, 16> Visited;
7320 
7321   // Iterate over all the loops and sub-loops to drop SCEV information.
7322   while (!LoopWorklist.empty()) {
7323     auto *CurrL = LoopWorklist.pop_back_val();
7324 
7325     // Drop any stored trip count value.
7326     BackedgeTakenCounts.erase(CurrL);
7327     PredicatedBackedgeTakenCounts.erase(CurrL);
7328 
7329     // Drop information about predicated SCEV rewrites for this loop.
7330     for (auto I = PredicatedSCEVRewrites.begin();
7331          I != PredicatedSCEVRewrites.end();) {
7332       std::pair<const SCEV *, const Loop *> Entry = I->first;
7333       if (Entry.second == CurrL)
7334         PredicatedSCEVRewrites.erase(I++);
7335       else
7336         ++I;
7337     }
7338 
7339     auto LoopUsersItr = LoopUsers.find(CurrL);
7340     if (LoopUsersItr != LoopUsers.end()) {
7341       for (auto *S : LoopUsersItr->second)
7342         forgetMemoizedResults(S);
7343       LoopUsers.erase(LoopUsersItr);
7344     }
7345 
7346     // Drop information about expressions based on loop-header PHIs.
7347     PushLoopPHIs(CurrL, Worklist);
7348 
7349     while (!Worklist.empty()) {
7350       Instruction *I = Worklist.pop_back_val();
7351       if (!Visited.insert(I).second)
7352         continue;
7353 
7354       ValueExprMapType::iterator It =
7355           ValueExprMap.find_as(static_cast<Value *>(I));
7356       if (It != ValueExprMap.end()) {
7357         eraseValueFromMap(It->first);
7358         forgetMemoizedResults(It->second);
7359         if (PHINode *PN = dyn_cast<PHINode>(I))
7360           ConstantEvolutionLoopExitValue.erase(PN);
7361       }
7362 
7363       PushDefUseChildren(I, Worklist);
7364     }
7365 
7366     LoopPropertiesCache.erase(CurrL);
7367     // Forget all contained loops too, to avoid dangling entries in the
7368     // ValuesAtScopes map.
7369     LoopWorklist.append(CurrL->begin(), CurrL->end());
7370   }
7371 }
7372 
7373 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7374   while (Loop *Parent = L->getParentLoop())
7375     L = Parent;
7376   forgetLoop(L);
7377 }
7378 
7379 void ScalarEvolution::forgetValue(Value *V) {
7380   Instruction *I = dyn_cast<Instruction>(V);
7381   if (!I) return;
7382 
7383   // Drop information about expressions based on loop-header PHIs.
7384   SmallVector<Instruction *, 16> Worklist;
7385   Worklist.push_back(I);
7386 
7387   SmallPtrSet<Instruction *, 8> Visited;
7388   while (!Worklist.empty()) {
7389     I = Worklist.pop_back_val();
7390     if (!Visited.insert(I).second)
7391       continue;
7392 
7393     ValueExprMapType::iterator It =
7394       ValueExprMap.find_as(static_cast<Value *>(I));
7395     if (It != ValueExprMap.end()) {
7396       eraseValueFromMap(It->first);
7397       forgetMemoizedResults(It->second);
7398       if (PHINode *PN = dyn_cast<PHINode>(I))
7399         ConstantEvolutionLoopExitValue.erase(PN);
7400     }
7401 
7402     PushDefUseChildren(I, Worklist);
7403   }
7404 }
7405 
7406 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7407   LoopDispositions.clear();
7408 }
7409 
7410 /// Get the exact loop backedge taken count considering all loop exits. A
7411 /// computable result can only be returned for loops with all exiting blocks
7412 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7413 /// is never skipped. This is a valid assumption as long as the loop exits via
7414 /// that test. For precise results, it is the caller's responsibility to specify
7415 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7416 const SCEV *
7417 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7418                                              SCEVUnionPredicate *Preds) const {
7419   // If any exits were not computable, the loop is not computable.
7420   if (!isComplete() || ExitNotTaken.empty())
7421     return SE->getCouldNotCompute();
7422 
7423   const BasicBlock *Latch = L->getLoopLatch();
7424   // All exiting blocks we have collected must dominate the only backedge.
7425   if (!Latch)
7426     return SE->getCouldNotCompute();
7427 
7428   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7429   // count is simply a minimum out of all these calculated exit counts.
7430   SmallVector<const SCEV *, 2> Ops;
7431   for (auto &ENT : ExitNotTaken) {
7432     const SCEV *BECount = ENT.ExactNotTaken;
7433     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7434     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7435            "We should only have known counts for exiting blocks that dominate "
7436            "latch!");
7437 
7438     Ops.push_back(BECount);
7439 
7440     if (Preds && !ENT.hasAlwaysTruePredicate())
7441       Preds->add(ENT.Predicate.get());
7442 
7443     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7444            "Predicate should be always true!");
7445   }
7446 
7447   return SE->getUMinFromMismatchedTypes(Ops);
7448 }
7449 
7450 /// Get the exact not taken count for this loop exit.
7451 const SCEV *
7452 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7453                                              ScalarEvolution *SE) const {
7454   for (auto &ENT : ExitNotTaken)
7455     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7456       return ENT.ExactNotTaken;
7457 
7458   return SE->getCouldNotCompute();
7459 }
7460 
7461 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7462     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7463   for (auto &ENT : ExitNotTaken)
7464     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7465       return ENT.MaxNotTaken;
7466 
7467   return SE->getCouldNotCompute();
7468 }
7469 
7470 /// getConstantMax - Get the constant max backedge taken count for the loop.
7471 const SCEV *
7472 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7473   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7474     return !ENT.hasAlwaysTruePredicate();
7475   };
7476 
7477   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7478     return SE->getCouldNotCompute();
7479 
7480   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7481           isa<SCEVConstant>(getConstantMax())) &&
7482          "No point in having a non-constant max backedge taken count!");
7483   return getConstantMax();
7484 }
7485 
7486 const SCEV *
7487 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7488                                                    ScalarEvolution *SE) {
7489   if (!SymbolicMax)
7490     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7491   return SymbolicMax;
7492 }
7493 
7494 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7495     ScalarEvolution *SE) const {
7496   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7497     return !ENT.hasAlwaysTruePredicate();
7498   };
7499   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7500 }
7501 
7502 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7503   return Operands.contains(S);
7504 }
7505 
7506 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7507     : ExactNotTaken(E), MaxNotTaken(E) {
7508   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7509           isa<SCEVConstant>(MaxNotTaken)) &&
7510          "No point in having a non-constant max backedge taken count!");
7511 }
7512 
7513 ScalarEvolution::ExitLimit::ExitLimit(
7514     const SCEV *E, const SCEV *M, bool MaxOrZero,
7515     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7516     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7517   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7518           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7519          "Exact is not allowed to be less precise than Max");
7520   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7521           isa<SCEVConstant>(MaxNotTaken)) &&
7522          "No point in having a non-constant max backedge taken count!");
7523   for (auto *PredSet : PredSetList)
7524     for (auto *P : *PredSet)
7525       addPredicate(P);
7526 }
7527 
7528 ScalarEvolution::ExitLimit::ExitLimit(
7529     const SCEV *E, const SCEV *M, bool MaxOrZero,
7530     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7531     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7532   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7533           isa<SCEVConstant>(MaxNotTaken)) &&
7534          "No point in having a non-constant max backedge taken count!");
7535 }
7536 
7537 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7538                                       bool MaxOrZero)
7539     : ExitLimit(E, M, MaxOrZero, None) {
7540   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7541           isa<SCEVConstant>(MaxNotTaken)) &&
7542          "No point in having a non-constant max backedge taken count!");
7543 }
7544 
7545 class SCEVRecordOperands {
7546   SmallPtrSetImpl<const SCEV *> &Operands;
7547 
7548 public:
7549   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7550     : Operands(Operands) {}
7551   bool follow(const SCEV *S) {
7552     Operands.insert(S);
7553     return true;
7554   }
7555   bool isDone() { return false; }
7556 };
7557 
7558 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7559 /// computable exit into a persistent ExitNotTakenInfo array.
7560 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7561     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7562     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7563     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7564   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7565 
7566   ExitNotTaken.reserve(ExitCounts.size());
7567   std::transform(
7568       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7569       [&](const EdgeExitInfo &EEI) {
7570         BasicBlock *ExitBB = EEI.first;
7571         const ExitLimit &EL = EEI.second;
7572         if (EL.Predicates.empty())
7573           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7574                                   nullptr);
7575 
7576         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7577         for (auto *Pred : EL.Predicates)
7578           Predicate->add(Pred);
7579 
7580         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7581                                 std::move(Predicate));
7582       });
7583   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7584           isa<SCEVConstant>(ConstantMax)) &&
7585          "No point in having a non-constant max backedge taken count!");
7586 
7587   SCEVRecordOperands RecordOperands(Operands);
7588   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7589   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7590     ST.visitAll(ConstantMax);
7591   for (auto &ENT : ExitNotTaken)
7592     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7593       ST.visitAll(ENT.ExactNotTaken);
7594 }
7595 
7596 /// Compute the number of times the backedge of the specified loop will execute.
7597 ScalarEvolution::BackedgeTakenInfo
7598 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7599                                            bool AllowPredicates) {
7600   SmallVector<BasicBlock *, 8> ExitingBlocks;
7601   L->getExitingBlocks(ExitingBlocks);
7602 
7603   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7604 
7605   SmallVector<EdgeExitInfo, 4> ExitCounts;
7606   bool CouldComputeBECount = true;
7607   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7608   const SCEV *MustExitMaxBECount = nullptr;
7609   const SCEV *MayExitMaxBECount = nullptr;
7610   bool MustExitMaxOrZero = false;
7611 
7612   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7613   // and compute maxBECount.
7614   // Do a union of all the predicates here.
7615   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7616     BasicBlock *ExitBB = ExitingBlocks[i];
7617 
7618     // We canonicalize untaken exits to br (constant), ignore them so that
7619     // proving an exit untaken doesn't negatively impact our ability to reason
7620     // about the loop as whole.
7621     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7622       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7623         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7624         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7625           continue;
7626       }
7627 
7628     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7629 
7630     assert((AllowPredicates || EL.Predicates.empty()) &&
7631            "Predicated exit limit when predicates are not allowed!");
7632 
7633     // 1. For each exit that can be computed, add an entry to ExitCounts.
7634     // CouldComputeBECount is true only if all exits can be computed.
7635     if (EL.ExactNotTaken == getCouldNotCompute())
7636       // We couldn't compute an exact value for this exit, so
7637       // we won't be able to compute an exact value for the loop.
7638       CouldComputeBECount = false;
7639     else
7640       ExitCounts.emplace_back(ExitBB, EL);
7641 
7642     // 2. Derive the loop's MaxBECount from each exit's max number of
7643     // non-exiting iterations. Partition the loop exits into two kinds:
7644     // LoopMustExits and LoopMayExits.
7645     //
7646     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7647     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7648     // MaxBECount is the minimum EL.MaxNotTaken of computable
7649     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7650     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7651     // computable EL.MaxNotTaken.
7652     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7653         DT.dominates(ExitBB, Latch)) {
7654       if (!MustExitMaxBECount) {
7655         MustExitMaxBECount = EL.MaxNotTaken;
7656         MustExitMaxOrZero = EL.MaxOrZero;
7657       } else {
7658         MustExitMaxBECount =
7659             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7660       }
7661     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7662       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7663         MayExitMaxBECount = EL.MaxNotTaken;
7664       else {
7665         MayExitMaxBECount =
7666             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7667       }
7668     }
7669   }
7670   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7671     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7672   // The loop backedge will be taken the maximum or zero times if there's
7673   // a single exit that must be taken the maximum or zero times.
7674   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7675   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7676                            MaxBECount, MaxOrZero);
7677 }
7678 
7679 ScalarEvolution::ExitLimit
7680 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7681                                       bool AllowPredicates) {
7682   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7683   // If our exiting block does not dominate the latch, then its connection with
7684   // loop's exit limit may be far from trivial.
7685   const BasicBlock *Latch = L->getLoopLatch();
7686   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7687     return getCouldNotCompute();
7688 
7689   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7690   Instruction *Term = ExitingBlock->getTerminator();
7691   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7692     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7693     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7694     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7695            "It should have one successor in loop and one exit block!");
7696     // Proceed to the next level to examine the exit condition expression.
7697     return computeExitLimitFromCond(
7698         L, BI->getCondition(), ExitIfTrue,
7699         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7700   }
7701 
7702   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7703     // For switch, make sure that there is a single exit from the loop.
7704     BasicBlock *Exit = nullptr;
7705     for (auto *SBB : successors(ExitingBlock))
7706       if (!L->contains(SBB)) {
7707         if (Exit) // Multiple exit successors.
7708           return getCouldNotCompute();
7709         Exit = SBB;
7710       }
7711     assert(Exit && "Exiting block must have at least one exit");
7712     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7713                                                 /*ControlsExit=*/IsOnlyExit);
7714   }
7715 
7716   return getCouldNotCompute();
7717 }
7718 
7719 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7720     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7721     bool ControlsExit, bool AllowPredicates) {
7722   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7723   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7724                                         ControlsExit, AllowPredicates);
7725 }
7726 
7727 Optional<ScalarEvolution::ExitLimit>
7728 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7729                                       bool ExitIfTrue, bool ControlsExit,
7730                                       bool AllowPredicates) {
7731   (void)this->L;
7732   (void)this->ExitIfTrue;
7733   (void)this->AllowPredicates;
7734 
7735   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7736          this->AllowPredicates == AllowPredicates &&
7737          "Variance in assumed invariant key components!");
7738   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7739   if (Itr == TripCountMap.end())
7740     return None;
7741   return Itr->second;
7742 }
7743 
7744 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7745                                              bool ExitIfTrue,
7746                                              bool ControlsExit,
7747                                              bool AllowPredicates,
7748                                              const ExitLimit &EL) {
7749   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7750          this->AllowPredicates == AllowPredicates &&
7751          "Variance in assumed invariant key components!");
7752 
7753   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7754   assert(InsertResult.second && "Expected successful insertion!");
7755   (void)InsertResult;
7756   (void)ExitIfTrue;
7757 }
7758 
7759 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7760     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7761     bool ControlsExit, bool AllowPredicates) {
7762 
7763   if (auto MaybeEL =
7764           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7765     return *MaybeEL;
7766 
7767   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7768                                               ControlsExit, AllowPredicates);
7769   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7770   return EL;
7771 }
7772 
7773 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7774     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7775     bool ControlsExit, bool AllowPredicates) {
7776   // Handle BinOp conditions (And, Or).
7777   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7778           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7779     return *LimitFromBinOp;
7780 
7781   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7782   // Proceed to the next level to examine the icmp.
7783   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7784     ExitLimit EL =
7785         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7786     if (EL.hasFullInfo() || !AllowPredicates)
7787       return EL;
7788 
7789     // Try again, but use SCEV predicates this time.
7790     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7791                                     /*AllowPredicates=*/true);
7792   }
7793 
7794   // Check for a constant condition. These are normally stripped out by
7795   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7796   // preserve the CFG and is temporarily leaving constant conditions
7797   // in place.
7798   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7799     if (ExitIfTrue == !CI->getZExtValue())
7800       // The backedge is always taken.
7801       return getCouldNotCompute();
7802     else
7803       // The backedge is never taken.
7804       return getZero(CI->getType());
7805   }
7806 
7807   // If it's not an integer or pointer comparison then compute it the hard way.
7808   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7809 }
7810 
7811 Optional<ScalarEvolution::ExitLimit>
7812 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7813     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7814     bool ControlsExit, bool AllowPredicates) {
7815   // Check if the controlling expression for this loop is an And or Or.
7816   Value *Op0, *Op1;
7817   bool IsAnd = false;
7818   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7819     IsAnd = true;
7820   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7821     IsAnd = false;
7822   else
7823     return None;
7824 
7825   // EitherMayExit is true in these two cases:
7826   //   br (and Op0 Op1), loop, exit
7827   //   br (or  Op0 Op1), exit, loop
7828   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7829   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7830                                                  ControlsExit && !EitherMayExit,
7831                                                  AllowPredicates);
7832   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7833                                                  ControlsExit && !EitherMayExit,
7834                                                  AllowPredicates);
7835 
7836   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7837   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7838   if (isa<ConstantInt>(Op1))
7839     return Op1 == NeutralElement ? EL0 : EL1;
7840   if (isa<ConstantInt>(Op0))
7841     return Op0 == NeutralElement ? EL1 : EL0;
7842 
7843   const SCEV *BECount = getCouldNotCompute();
7844   const SCEV *MaxBECount = getCouldNotCompute();
7845   if (EitherMayExit) {
7846     // Both conditions must be same for the loop to continue executing.
7847     // Choose the less conservative count.
7848     // If ExitCond is a short-circuit form (select), using
7849     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7850     // To see the detailed examples, please see
7851     // test/Analysis/ScalarEvolution/exit-count-select.ll
7852     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7853     if (!PoisonSafe)
7854       // Even if ExitCond is select, we can safely derive BECount using both
7855       // EL0 and EL1 in these cases:
7856       // (1) EL0.ExactNotTaken is non-zero
7857       // (2) EL1.ExactNotTaken is non-poison
7858       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7859       //     it cannot be umin(0, ..))
7860       // The PoisonSafe assignment below is simplified and the assertion after
7861       // BECount calculation fully guarantees the condition (3).
7862       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7863                    isa<SCEVConstant>(EL1.ExactNotTaken);
7864     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7865         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7866       BECount =
7867           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7868 
7869       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7870       // it should have been simplified to zero (see the condition (3) above)
7871       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7872              BECount->isZero());
7873     }
7874     if (EL0.MaxNotTaken == getCouldNotCompute())
7875       MaxBECount = EL1.MaxNotTaken;
7876     else if (EL1.MaxNotTaken == getCouldNotCompute())
7877       MaxBECount = EL0.MaxNotTaken;
7878     else
7879       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7880   } else {
7881     // Both conditions must be same at the same time for the loop to exit.
7882     // For now, be conservative.
7883     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7884       BECount = EL0.ExactNotTaken;
7885   }
7886 
7887   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7888   // to be more aggressive when computing BECount than when computing
7889   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7890   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7891   // to not.
7892   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7893       !isa<SCEVCouldNotCompute>(BECount))
7894     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7895 
7896   return ExitLimit(BECount, MaxBECount, false,
7897                    { &EL0.Predicates, &EL1.Predicates });
7898 }
7899 
7900 ScalarEvolution::ExitLimit
7901 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7902                                           ICmpInst *ExitCond,
7903                                           bool ExitIfTrue,
7904                                           bool ControlsExit,
7905                                           bool AllowPredicates) {
7906   // If the condition was exit on true, convert the condition to exit on false
7907   ICmpInst::Predicate Pred;
7908   if (!ExitIfTrue)
7909     Pred = ExitCond->getPredicate();
7910   else
7911     Pred = ExitCond->getInversePredicate();
7912   const ICmpInst::Predicate OriginalPred = Pred;
7913 
7914   // Handle common loops like: for (X = "string"; *X; ++X)
7915   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7916     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7917       ExitLimit ItCnt =
7918         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7919       if (ItCnt.hasAnyInfo())
7920         return ItCnt;
7921     }
7922 
7923   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7924   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7925 
7926   // Try to evaluate any dependencies out of the loop.
7927   LHS = getSCEVAtScope(LHS, L);
7928   RHS = getSCEVAtScope(RHS, L);
7929 
7930   // At this point, we would like to compute how many iterations of the
7931   // loop the predicate will return true for these inputs.
7932   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7933     // If there is a loop-invariant, force it into the RHS.
7934     std::swap(LHS, RHS);
7935     Pred = ICmpInst::getSwappedPredicate(Pred);
7936   }
7937 
7938   // Simplify the operands before analyzing them.
7939   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7940 
7941   // If we have a comparison of a chrec against a constant, try to use value
7942   // ranges to answer this query.
7943   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7944     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7945       if (AddRec->getLoop() == L) {
7946         // Form the constant range.
7947         ConstantRange CompRange =
7948             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7949 
7950         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7951         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7952       }
7953 
7954   switch (Pred) {
7955   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7956     // Convert to: while (X-Y != 0)
7957     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7958                                 AllowPredicates);
7959     if (EL.hasAnyInfo()) return EL;
7960     break;
7961   }
7962   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7963     // Convert to: while (X-Y == 0)
7964     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7965     if (EL.hasAnyInfo()) return EL;
7966     break;
7967   }
7968   case ICmpInst::ICMP_SLT:
7969   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7970     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7971     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7972                                     AllowPredicates);
7973     if (EL.hasAnyInfo()) return EL;
7974     break;
7975   }
7976   case ICmpInst::ICMP_SGT:
7977   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7978     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7979     ExitLimit EL =
7980         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7981                             AllowPredicates);
7982     if (EL.hasAnyInfo()) return EL;
7983     break;
7984   }
7985   default:
7986     break;
7987   }
7988 
7989   auto *ExhaustiveCount =
7990       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7991 
7992   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7993     return ExhaustiveCount;
7994 
7995   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7996                                       ExitCond->getOperand(1), L, OriginalPred);
7997 }
7998 
7999 ScalarEvolution::ExitLimit
8000 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8001                                                       SwitchInst *Switch,
8002                                                       BasicBlock *ExitingBlock,
8003                                                       bool ControlsExit) {
8004   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8005 
8006   // Give up if the exit is the default dest of a switch.
8007   if (Switch->getDefaultDest() == ExitingBlock)
8008     return getCouldNotCompute();
8009 
8010   assert(L->contains(Switch->getDefaultDest()) &&
8011          "Default case must not exit the loop!");
8012   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8013   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8014 
8015   // while (X != Y) --> while (X-Y != 0)
8016   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8017   if (EL.hasAnyInfo())
8018     return EL;
8019 
8020   return getCouldNotCompute();
8021 }
8022 
8023 static ConstantInt *
8024 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8025                                 ScalarEvolution &SE) {
8026   const SCEV *InVal = SE.getConstant(C);
8027   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8028   assert(isa<SCEVConstant>(Val) &&
8029          "Evaluation of SCEV at constant didn't fold correctly?");
8030   return cast<SCEVConstant>(Val)->getValue();
8031 }
8032 
8033 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8034 /// compute the backedge execution count.
8035 ScalarEvolution::ExitLimit
8036 ScalarEvolution::computeLoadConstantCompareExitLimit(
8037   LoadInst *LI,
8038   Constant *RHS,
8039   const Loop *L,
8040   ICmpInst::Predicate predicate) {
8041   if (LI->isVolatile()) return getCouldNotCompute();
8042 
8043   // Check to see if the loaded pointer is a getelementptr of a global.
8044   // TODO: Use SCEV instead of manually grubbing with GEPs.
8045   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8046   if (!GEP) return getCouldNotCompute();
8047 
8048   // Make sure that it is really a constant global we are gepping, with an
8049   // initializer, and make sure the first IDX is really 0.
8050   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8051   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8052       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8053       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8054     return getCouldNotCompute();
8055 
8056   // Okay, we allow one non-constant index into the GEP instruction.
8057   Value *VarIdx = nullptr;
8058   std::vector<Constant*> Indexes;
8059   unsigned VarIdxNum = 0;
8060   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8061     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8062       Indexes.push_back(CI);
8063     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8064       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8065       VarIdx = GEP->getOperand(i);
8066       VarIdxNum = i-2;
8067       Indexes.push_back(nullptr);
8068     }
8069 
8070   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8071   if (!VarIdx)
8072     return getCouldNotCompute();
8073 
8074   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8075   // Check to see if X is a loop variant variable value now.
8076   const SCEV *Idx = getSCEV(VarIdx);
8077   Idx = getSCEVAtScope(Idx, L);
8078 
8079   // We can only recognize very limited forms of loop index expressions, in
8080   // particular, only affine AddRec's like {C1,+,C2}<L>.
8081   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8082   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8083       isLoopInvariant(IdxExpr, L) ||
8084       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8085       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8086     return getCouldNotCompute();
8087 
8088   unsigned MaxSteps = MaxBruteForceIterations;
8089   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8090     ConstantInt *ItCst = ConstantInt::get(
8091                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8092     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8093 
8094     // Form the GEP offset.
8095     Indexes[VarIdxNum] = Val;
8096 
8097     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8098                                                          Indexes);
8099     if (!Result) break;  // Cannot compute!
8100 
8101     // Evaluate the condition for this iteration.
8102     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8103     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8104     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8105       ++NumArrayLenItCounts;
8106       return getConstant(ItCst);   // Found terminating iteration!
8107     }
8108   }
8109   return getCouldNotCompute();
8110 }
8111 
8112 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8113     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8114   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8115   if (!RHS)
8116     return getCouldNotCompute();
8117 
8118   const BasicBlock *Latch = L->getLoopLatch();
8119   if (!Latch)
8120     return getCouldNotCompute();
8121 
8122   const BasicBlock *Predecessor = L->getLoopPredecessor();
8123   if (!Predecessor)
8124     return getCouldNotCompute();
8125 
8126   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8127   // Return LHS in OutLHS and shift_opt in OutOpCode.
8128   auto MatchPositiveShift =
8129       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8130 
8131     using namespace PatternMatch;
8132 
8133     ConstantInt *ShiftAmt;
8134     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8135       OutOpCode = Instruction::LShr;
8136     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8137       OutOpCode = Instruction::AShr;
8138     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8139       OutOpCode = Instruction::Shl;
8140     else
8141       return false;
8142 
8143     return ShiftAmt->getValue().isStrictlyPositive();
8144   };
8145 
8146   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8147   //
8148   // loop:
8149   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8150   //   %iv.shifted = lshr i32 %iv, <positive constant>
8151   //
8152   // Return true on a successful match.  Return the corresponding PHI node (%iv
8153   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8154   auto MatchShiftRecurrence =
8155       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8156     Optional<Instruction::BinaryOps> PostShiftOpCode;
8157 
8158     {
8159       Instruction::BinaryOps OpC;
8160       Value *V;
8161 
8162       // If we encounter a shift instruction, "peel off" the shift operation,
8163       // and remember that we did so.  Later when we inspect %iv's backedge
8164       // value, we will make sure that the backedge value uses the same
8165       // operation.
8166       //
8167       // Note: the peeled shift operation does not have to be the same
8168       // instruction as the one feeding into the PHI's backedge value.  We only
8169       // really care about it being the same *kind* of shift instruction --
8170       // that's all that is required for our later inferences to hold.
8171       if (MatchPositiveShift(LHS, V, OpC)) {
8172         PostShiftOpCode = OpC;
8173         LHS = V;
8174       }
8175     }
8176 
8177     PNOut = dyn_cast<PHINode>(LHS);
8178     if (!PNOut || PNOut->getParent() != L->getHeader())
8179       return false;
8180 
8181     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8182     Value *OpLHS;
8183 
8184     return
8185         // The backedge value for the PHI node must be a shift by a positive
8186         // amount
8187         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8188 
8189         // of the PHI node itself
8190         OpLHS == PNOut &&
8191 
8192         // and the kind of shift should be match the kind of shift we peeled
8193         // off, if any.
8194         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8195   };
8196 
8197   PHINode *PN;
8198   Instruction::BinaryOps OpCode;
8199   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8200     return getCouldNotCompute();
8201 
8202   const DataLayout &DL = getDataLayout();
8203 
8204   // The key rationale for this optimization is that for some kinds of shift
8205   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8206   // within a finite number of iterations.  If the condition guarding the
8207   // backedge (in the sense that the backedge is taken if the condition is true)
8208   // is false for the value the shift recurrence stabilizes to, then we know
8209   // that the backedge is taken only a finite number of times.
8210 
8211   ConstantInt *StableValue = nullptr;
8212   switch (OpCode) {
8213   default:
8214     llvm_unreachable("Impossible case!");
8215 
8216   case Instruction::AShr: {
8217     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8218     // bitwidth(K) iterations.
8219     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8220     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8221                                        Predecessor->getTerminator(), &DT);
8222     auto *Ty = cast<IntegerType>(RHS->getType());
8223     if (Known.isNonNegative())
8224       StableValue = ConstantInt::get(Ty, 0);
8225     else if (Known.isNegative())
8226       StableValue = ConstantInt::get(Ty, -1, true);
8227     else
8228       return getCouldNotCompute();
8229 
8230     break;
8231   }
8232   case Instruction::LShr:
8233   case Instruction::Shl:
8234     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8235     // stabilize to 0 in at most bitwidth(K) iterations.
8236     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8237     break;
8238   }
8239 
8240   auto *Result =
8241       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8242   assert(Result->getType()->isIntegerTy(1) &&
8243          "Otherwise cannot be an operand to a branch instruction");
8244 
8245   if (Result->isZeroValue()) {
8246     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8247     const SCEV *UpperBound =
8248         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8249     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8250   }
8251 
8252   return getCouldNotCompute();
8253 }
8254 
8255 /// Return true if we can constant fold an instruction of the specified type,
8256 /// assuming that all operands were constants.
8257 static bool CanConstantFold(const Instruction *I) {
8258   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8259       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8260       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8261     return true;
8262 
8263   if (const CallInst *CI = dyn_cast<CallInst>(I))
8264     if (const Function *F = CI->getCalledFunction())
8265       return canConstantFoldCallTo(CI, F);
8266   return false;
8267 }
8268 
8269 /// Determine whether this instruction can constant evolve within this loop
8270 /// assuming its operands can all constant evolve.
8271 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8272   // An instruction outside of the loop can't be derived from a loop PHI.
8273   if (!L->contains(I)) return false;
8274 
8275   if (isa<PHINode>(I)) {
8276     // We don't currently keep track of the control flow needed to evaluate
8277     // PHIs, so we cannot handle PHIs inside of loops.
8278     return L->getHeader() == I->getParent();
8279   }
8280 
8281   // If we won't be able to constant fold this expression even if the operands
8282   // are constants, bail early.
8283   return CanConstantFold(I);
8284 }
8285 
8286 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8287 /// recursing through each instruction operand until reaching a loop header phi.
8288 static PHINode *
8289 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8290                                DenseMap<Instruction *, PHINode *> &PHIMap,
8291                                unsigned Depth) {
8292   if (Depth > MaxConstantEvolvingDepth)
8293     return nullptr;
8294 
8295   // Otherwise, we can evaluate this instruction if all of its operands are
8296   // constant or derived from a PHI node themselves.
8297   PHINode *PHI = nullptr;
8298   for (Value *Op : UseInst->operands()) {
8299     if (isa<Constant>(Op)) continue;
8300 
8301     Instruction *OpInst = dyn_cast<Instruction>(Op);
8302     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8303 
8304     PHINode *P = dyn_cast<PHINode>(OpInst);
8305     if (!P)
8306       // If this operand is already visited, reuse the prior result.
8307       // We may have P != PHI if this is the deepest point at which the
8308       // inconsistent paths meet.
8309       P = PHIMap.lookup(OpInst);
8310     if (!P) {
8311       // Recurse and memoize the results, whether a phi is found or not.
8312       // This recursive call invalidates pointers into PHIMap.
8313       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8314       PHIMap[OpInst] = P;
8315     }
8316     if (!P)
8317       return nullptr;  // Not evolving from PHI
8318     if (PHI && PHI != P)
8319       return nullptr;  // Evolving from multiple different PHIs.
8320     PHI = P;
8321   }
8322   // This is a expression evolving from a constant PHI!
8323   return PHI;
8324 }
8325 
8326 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8327 /// in the loop that V is derived from.  We allow arbitrary operations along the
8328 /// way, but the operands of an operation must either be constants or a value
8329 /// derived from a constant PHI.  If this expression does not fit with these
8330 /// constraints, return null.
8331 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8332   Instruction *I = dyn_cast<Instruction>(V);
8333   if (!I || !canConstantEvolve(I, L)) return nullptr;
8334 
8335   if (PHINode *PN = dyn_cast<PHINode>(I))
8336     return PN;
8337 
8338   // Record non-constant instructions contained by the loop.
8339   DenseMap<Instruction *, PHINode *> PHIMap;
8340   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8341 }
8342 
8343 /// EvaluateExpression - Given an expression that passes the
8344 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8345 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8346 /// reason, return null.
8347 static Constant *EvaluateExpression(Value *V, const Loop *L,
8348                                     DenseMap<Instruction *, Constant *> &Vals,
8349                                     const DataLayout &DL,
8350                                     const TargetLibraryInfo *TLI) {
8351   // Convenient constant check, but redundant for recursive calls.
8352   if (Constant *C = dyn_cast<Constant>(V)) return C;
8353   Instruction *I = dyn_cast<Instruction>(V);
8354   if (!I) return nullptr;
8355 
8356   if (Constant *C = Vals.lookup(I)) return C;
8357 
8358   // An instruction inside the loop depends on a value outside the loop that we
8359   // weren't given a mapping for, or a value such as a call inside the loop.
8360   if (!canConstantEvolve(I, L)) return nullptr;
8361 
8362   // An unmapped PHI can be due to a branch or another loop inside this loop,
8363   // or due to this not being the initial iteration through a loop where we
8364   // couldn't compute the evolution of this particular PHI last time.
8365   if (isa<PHINode>(I)) return nullptr;
8366 
8367   std::vector<Constant*> Operands(I->getNumOperands());
8368 
8369   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8370     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8371     if (!Operand) {
8372       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8373       if (!Operands[i]) return nullptr;
8374       continue;
8375     }
8376     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8377     Vals[Operand] = C;
8378     if (!C) return nullptr;
8379     Operands[i] = C;
8380   }
8381 
8382   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8383     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8384                                            Operands[1], DL, TLI);
8385   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8386     if (!LI->isVolatile())
8387       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8388   }
8389   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8390 }
8391 
8392 
8393 // If every incoming value to PN except the one for BB is a specific Constant,
8394 // return that, else return nullptr.
8395 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8396   Constant *IncomingVal = nullptr;
8397 
8398   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8399     if (PN->getIncomingBlock(i) == BB)
8400       continue;
8401 
8402     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8403     if (!CurrentVal)
8404       return nullptr;
8405 
8406     if (IncomingVal != CurrentVal) {
8407       if (IncomingVal)
8408         return nullptr;
8409       IncomingVal = CurrentVal;
8410     }
8411   }
8412 
8413   return IncomingVal;
8414 }
8415 
8416 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8417 /// in the header of its containing loop, we know the loop executes a
8418 /// constant number of times, and the PHI node is just a recurrence
8419 /// involving constants, fold it.
8420 Constant *
8421 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8422                                                    const APInt &BEs,
8423                                                    const Loop *L) {
8424   auto I = ConstantEvolutionLoopExitValue.find(PN);
8425   if (I != ConstantEvolutionLoopExitValue.end())
8426     return I->second;
8427 
8428   if (BEs.ugt(MaxBruteForceIterations))
8429     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8430 
8431   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8432 
8433   DenseMap<Instruction *, Constant *> CurrentIterVals;
8434   BasicBlock *Header = L->getHeader();
8435   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8436 
8437   BasicBlock *Latch = L->getLoopLatch();
8438   if (!Latch)
8439     return nullptr;
8440 
8441   for (PHINode &PHI : Header->phis()) {
8442     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8443       CurrentIterVals[&PHI] = StartCST;
8444   }
8445   if (!CurrentIterVals.count(PN))
8446     return RetVal = nullptr;
8447 
8448   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8449 
8450   // Execute the loop symbolically to determine the exit value.
8451   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8452          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8453 
8454   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8455   unsigned IterationNum = 0;
8456   const DataLayout &DL = getDataLayout();
8457   for (; ; ++IterationNum) {
8458     if (IterationNum == NumIterations)
8459       return RetVal = CurrentIterVals[PN];  // Got exit value!
8460 
8461     // Compute the value of the PHIs for the next iteration.
8462     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8463     DenseMap<Instruction *, Constant *> NextIterVals;
8464     Constant *NextPHI =
8465         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8466     if (!NextPHI)
8467       return nullptr;        // Couldn't evaluate!
8468     NextIterVals[PN] = NextPHI;
8469 
8470     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8471 
8472     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8473     // cease to be able to evaluate one of them or if they stop evolving,
8474     // because that doesn't necessarily prevent us from computing PN.
8475     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8476     for (const auto &I : CurrentIterVals) {
8477       PHINode *PHI = dyn_cast<PHINode>(I.first);
8478       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8479       PHIsToCompute.emplace_back(PHI, I.second);
8480     }
8481     // We use two distinct loops because EvaluateExpression may invalidate any
8482     // iterators into CurrentIterVals.
8483     for (const auto &I : PHIsToCompute) {
8484       PHINode *PHI = I.first;
8485       Constant *&NextPHI = NextIterVals[PHI];
8486       if (!NextPHI) {   // Not already computed.
8487         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8488         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8489       }
8490       if (NextPHI != I.second)
8491         StoppedEvolving = false;
8492     }
8493 
8494     // If all entries in CurrentIterVals == NextIterVals then we can stop
8495     // iterating, the loop can't continue to change.
8496     if (StoppedEvolving)
8497       return RetVal = CurrentIterVals[PN];
8498 
8499     CurrentIterVals.swap(NextIterVals);
8500   }
8501 }
8502 
8503 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8504                                                           Value *Cond,
8505                                                           bool ExitWhen) {
8506   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8507   if (!PN) return getCouldNotCompute();
8508 
8509   // If the loop is canonicalized, the PHI will have exactly two entries.
8510   // That's the only form we support here.
8511   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8512 
8513   DenseMap<Instruction *, Constant *> CurrentIterVals;
8514   BasicBlock *Header = L->getHeader();
8515   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8516 
8517   BasicBlock *Latch = L->getLoopLatch();
8518   assert(Latch && "Should follow from NumIncomingValues == 2!");
8519 
8520   for (PHINode &PHI : Header->phis()) {
8521     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8522       CurrentIterVals[&PHI] = StartCST;
8523   }
8524   if (!CurrentIterVals.count(PN))
8525     return getCouldNotCompute();
8526 
8527   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8528   // the loop symbolically to determine when the condition gets a value of
8529   // "ExitWhen".
8530   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8531   const DataLayout &DL = getDataLayout();
8532   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8533     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8534         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8535 
8536     // Couldn't symbolically evaluate.
8537     if (!CondVal) return getCouldNotCompute();
8538 
8539     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8540       ++NumBruteForceTripCountsComputed;
8541       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8542     }
8543 
8544     // Update all the PHI nodes for the next iteration.
8545     DenseMap<Instruction *, Constant *> NextIterVals;
8546 
8547     // Create a list of which PHIs we need to compute. We want to do this before
8548     // calling EvaluateExpression on them because that may invalidate iterators
8549     // into CurrentIterVals.
8550     SmallVector<PHINode *, 8> PHIsToCompute;
8551     for (const auto &I : CurrentIterVals) {
8552       PHINode *PHI = dyn_cast<PHINode>(I.first);
8553       if (!PHI || PHI->getParent() != Header) continue;
8554       PHIsToCompute.push_back(PHI);
8555     }
8556     for (PHINode *PHI : PHIsToCompute) {
8557       Constant *&NextPHI = NextIterVals[PHI];
8558       if (NextPHI) continue;    // Already computed!
8559 
8560       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8561       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8562     }
8563     CurrentIterVals.swap(NextIterVals);
8564   }
8565 
8566   // Too many iterations were needed to evaluate.
8567   return getCouldNotCompute();
8568 }
8569 
8570 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8571   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8572       ValuesAtScopes[V];
8573   // Check to see if we've folded this expression at this loop before.
8574   for (auto &LS : Values)
8575     if (LS.first == L)
8576       return LS.second ? LS.second : V;
8577 
8578   Values.emplace_back(L, nullptr);
8579 
8580   // Otherwise compute it.
8581   const SCEV *C = computeSCEVAtScope(V, L);
8582   for (auto &LS : reverse(ValuesAtScopes[V]))
8583     if (LS.first == L) {
8584       LS.second = C;
8585       break;
8586     }
8587   return C;
8588 }
8589 
8590 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8591 /// will return Constants for objects which aren't represented by a
8592 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8593 /// Returns NULL if the SCEV isn't representable as a Constant.
8594 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8595   switch (V->getSCEVType()) {
8596   case scCouldNotCompute:
8597   case scAddRecExpr:
8598     return nullptr;
8599   case scConstant:
8600     return cast<SCEVConstant>(V)->getValue();
8601   case scUnknown:
8602     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8603   case scSignExtend: {
8604     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8605     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8606       return ConstantExpr::getSExt(CastOp, SS->getType());
8607     return nullptr;
8608   }
8609   case scZeroExtend: {
8610     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8611     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8612       return ConstantExpr::getZExt(CastOp, SZ->getType());
8613     return nullptr;
8614   }
8615   case scPtrToInt: {
8616     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8617     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8618       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8619 
8620     return nullptr;
8621   }
8622   case scTruncate: {
8623     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8624     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8625       return ConstantExpr::getTrunc(CastOp, ST->getType());
8626     return nullptr;
8627   }
8628   case scAddExpr: {
8629     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8630     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8631       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8632         unsigned AS = PTy->getAddressSpace();
8633         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8634         C = ConstantExpr::getBitCast(C, DestPtrTy);
8635       }
8636       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8637         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8638         if (!C2)
8639           return nullptr;
8640 
8641         // First pointer!
8642         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8643           unsigned AS = C2->getType()->getPointerAddressSpace();
8644           std::swap(C, C2);
8645           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8646           // The offsets have been converted to bytes.  We can add bytes to an
8647           // i8* by GEP with the byte count in the first index.
8648           C = ConstantExpr::getBitCast(C, DestPtrTy);
8649         }
8650 
8651         // Don't bother trying to sum two pointers. We probably can't
8652         // statically compute a load that results from it anyway.
8653         if (C2->getType()->isPointerTy())
8654           return nullptr;
8655 
8656         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8657           if (PTy->getElementType()->isStructTy())
8658             C2 = ConstantExpr::getIntegerCast(
8659                 C2, Type::getInt32Ty(C->getContext()), true);
8660           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8661         } else
8662           C = ConstantExpr::getAdd(C, C2);
8663       }
8664       return C;
8665     }
8666     return nullptr;
8667   }
8668   case scMulExpr: {
8669     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8670     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8671       // Don't bother with pointers at all.
8672       if (C->getType()->isPointerTy())
8673         return nullptr;
8674       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8675         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8676         if (!C2 || C2->getType()->isPointerTy())
8677           return nullptr;
8678         C = ConstantExpr::getMul(C, C2);
8679       }
8680       return C;
8681     }
8682     return nullptr;
8683   }
8684   case scUDivExpr: {
8685     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8686     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8687       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8688         if (LHS->getType() == RHS->getType())
8689           return ConstantExpr::getUDiv(LHS, RHS);
8690     return nullptr;
8691   }
8692   case scSMaxExpr:
8693   case scUMaxExpr:
8694   case scSMinExpr:
8695   case scUMinExpr:
8696     return nullptr; // TODO: smax, umax, smin, umax.
8697   }
8698   llvm_unreachable("Unknown SCEV kind!");
8699 }
8700 
8701 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8702   if (isa<SCEVConstant>(V)) return V;
8703 
8704   // If this instruction is evolved from a constant-evolving PHI, compute the
8705   // exit value from the loop without using SCEVs.
8706   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8707     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8708       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8709         const Loop *CurrLoop = this->LI[I->getParent()];
8710         // Looking for loop exit value.
8711         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8712             PN->getParent() == CurrLoop->getHeader()) {
8713           // Okay, there is no closed form solution for the PHI node.  Check
8714           // to see if the loop that contains it has a known backedge-taken
8715           // count.  If so, we may be able to force computation of the exit
8716           // value.
8717           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8718           // This trivial case can show up in some degenerate cases where
8719           // the incoming IR has not yet been fully simplified.
8720           if (BackedgeTakenCount->isZero()) {
8721             Value *InitValue = nullptr;
8722             bool MultipleInitValues = false;
8723             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8724               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8725                 if (!InitValue)
8726                   InitValue = PN->getIncomingValue(i);
8727                 else if (InitValue != PN->getIncomingValue(i)) {
8728                   MultipleInitValues = true;
8729                   break;
8730                 }
8731               }
8732             }
8733             if (!MultipleInitValues && InitValue)
8734               return getSCEV(InitValue);
8735           }
8736           // Do we have a loop invariant value flowing around the backedge
8737           // for a loop which must execute the backedge?
8738           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8739               isKnownPositive(BackedgeTakenCount) &&
8740               PN->getNumIncomingValues() == 2) {
8741 
8742             unsigned InLoopPred =
8743                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8744             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8745             if (CurrLoop->isLoopInvariant(BackedgeVal))
8746               return getSCEV(BackedgeVal);
8747           }
8748           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8749             // Okay, we know how many times the containing loop executes.  If
8750             // this is a constant evolving PHI node, get the final value at
8751             // the specified iteration number.
8752             Constant *RV = getConstantEvolutionLoopExitValue(
8753                 PN, BTCC->getAPInt(), CurrLoop);
8754             if (RV) return getSCEV(RV);
8755           }
8756         }
8757 
8758         // If there is a single-input Phi, evaluate it at our scope. If we can
8759         // prove that this replacement does not break LCSSA form, use new value.
8760         if (PN->getNumOperands() == 1) {
8761           const SCEV *Input = getSCEV(PN->getOperand(0));
8762           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8763           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8764           // for the simplest case just support constants.
8765           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8766         }
8767       }
8768 
8769       // Okay, this is an expression that we cannot symbolically evaluate
8770       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8771       // the arguments into constants, and if so, try to constant propagate the
8772       // result.  This is particularly useful for computing loop exit values.
8773       if (CanConstantFold(I)) {
8774         SmallVector<Constant *, 4> Operands;
8775         bool MadeImprovement = false;
8776         for (Value *Op : I->operands()) {
8777           if (Constant *C = dyn_cast<Constant>(Op)) {
8778             Operands.push_back(C);
8779             continue;
8780           }
8781 
8782           // If any of the operands is non-constant and if they are
8783           // non-integer and non-pointer, don't even try to analyze them
8784           // with scev techniques.
8785           if (!isSCEVable(Op->getType()))
8786             return V;
8787 
8788           const SCEV *OrigV = getSCEV(Op);
8789           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8790           MadeImprovement |= OrigV != OpV;
8791 
8792           Constant *C = BuildConstantFromSCEV(OpV);
8793           if (!C) return V;
8794           if (C->getType() != Op->getType())
8795             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8796                                                               Op->getType(),
8797                                                               false),
8798                                       C, Op->getType());
8799           Operands.push_back(C);
8800         }
8801 
8802         // Check to see if getSCEVAtScope actually made an improvement.
8803         if (MadeImprovement) {
8804           Constant *C = nullptr;
8805           const DataLayout &DL = getDataLayout();
8806           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8807             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8808                                                 Operands[1], DL, &TLI);
8809           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8810             if (!Load->isVolatile())
8811               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8812                                                DL);
8813           } else
8814             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8815           if (!C) return V;
8816           return getSCEV(C);
8817         }
8818       }
8819     }
8820 
8821     // This is some other type of SCEVUnknown, just return it.
8822     return V;
8823   }
8824 
8825   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8826     // Avoid performing the look-up in the common case where the specified
8827     // expression has no loop-variant portions.
8828     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8829       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8830       if (OpAtScope != Comm->getOperand(i)) {
8831         // Okay, at least one of these operands is loop variant but might be
8832         // foldable.  Build a new instance of the folded commutative expression.
8833         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8834                                             Comm->op_begin()+i);
8835         NewOps.push_back(OpAtScope);
8836 
8837         for (++i; i != e; ++i) {
8838           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8839           NewOps.push_back(OpAtScope);
8840         }
8841         if (isa<SCEVAddExpr>(Comm))
8842           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8843         if (isa<SCEVMulExpr>(Comm))
8844           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8845         if (isa<SCEVMinMaxExpr>(Comm))
8846           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8847         llvm_unreachable("Unknown commutative SCEV type!");
8848       }
8849     }
8850     // If we got here, all operands are loop invariant.
8851     return Comm;
8852   }
8853 
8854   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8855     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8856     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8857     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8858       return Div;   // must be loop invariant
8859     return getUDivExpr(LHS, RHS);
8860   }
8861 
8862   // If this is a loop recurrence for a loop that does not contain L, then we
8863   // are dealing with the final value computed by the loop.
8864   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8865     // First, attempt to evaluate each operand.
8866     // Avoid performing the look-up in the common case where the specified
8867     // expression has no loop-variant portions.
8868     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8869       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8870       if (OpAtScope == AddRec->getOperand(i))
8871         continue;
8872 
8873       // Okay, at least one of these operands is loop variant but might be
8874       // foldable.  Build a new instance of the folded commutative expression.
8875       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8876                                           AddRec->op_begin()+i);
8877       NewOps.push_back(OpAtScope);
8878       for (++i; i != e; ++i)
8879         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8880 
8881       const SCEV *FoldedRec =
8882         getAddRecExpr(NewOps, AddRec->getLoop(),
8883                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8884       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8885       // The addrec may be folded to a nonrecurrence, for example, if the
8886       // induction variable is multiplied by zero after constant folding. Go
8887       // ahead and return the folded value.
8888       if (!AddRec)
8889         return FoldedRec;
8890       break;
8891     }
8892 
8893     // If the scope is outside the addrec's loop, evaluate it by using the
8894     // loop exit value of the addrec.
8895     if (!AddRec->getLoop()->contains(L)) {
8896       // To evaluate this recurrence, we need to know how many times the AddRec
8897       // loop iterates.  Compute this now.
8898       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8899       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8900 
8901       // Then, evaluate the AddRec.
8902       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8903     }
8904 
8905     return AddRec;
8906   }
8907 
8908   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8909     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8910     if (Op == Cast->getOperand())
8911       return Cast;  // must be loop invariant
8912     return getZeroExtendExpr(Op, Cast->getType());
8913   }
8914 
8915   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8916     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8917     if (Op == Cast->getOperand())
8918       return Cast;  // must be loop invariant
8919     return getSignExtendExpr(Op, Cast->getType());
8920   }
8921 
8922   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8923     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8924     if (Op == Cast->getOperand())
8925       return Cast;  // must be loop invariant
8926     return getTruncateExpr(Op, Cast->getType());
8927   }
8928 
8929   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8930     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8931     if (Op == Cast->getOperand())
8932       return Cast; // must be loop invariant
8933     return getPtrToIntExpr(Op, Cast->getType());
8934   }
8935 
8936   llvm_unreachable("Unknown SCEV type!");
8937 }
8938 
8939 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8940   return getSCEVAtScope(getSCEV(V), L);
8941 }
8942 
8943 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8944   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8945     return stripInjectiveFunctions(ZExt->getOperand());
8946   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8947     return stripInjectiveFunctions(SExt->getOperand());
8948   return S;
8949 }
8950 
8951 /// Finds the minimum unsigned root of the following equation:
8952 ///
8953 ///     A * X = B (mod N)
8954 ///
8955 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8956 /// A and B isn't important.
8957 ///
8958 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8959 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8960                                                ScalarEvolution &SE) {
8961   uint32_t BW = A.getBitWidth();
8962   assert(BW == SE.getTypeSizeInBits(B->getType()));
8963   assert(A != 0 && "A must be non-zero.");
8964 
8965   // 1. D = gcd(A, N)
8966   //
8967   // The gcd of A and N may have only one prime factor: 2. The number of
8968   // trailing zeros in A is its multiplicity
8969   uint32_t Mult2 = A.countTrailingZeros();
8970   // D = 2^Mult2
8971 
8972   // 2. Check if B is divisible by D.
8973   //
8974   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8975   // is not less than multiplicity of this prime factor for D.
8976   if (SE.GetMinTrailingZeros(B) < Mult2)
8977     return SE.getCouldNotCompute();
8978 
8979   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8980   // modulo (N / D).
8981   //
8982   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8983   // (N / D) in general. The inverse itself always fits into BW bits, though,
8984   // so we immediately truncate it.
8985   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8986   APInt Mod(BW + 1, 0);
8987   Mod.setBit(BW - Mult2);  // Mod = N / D
8988   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8989 
8990   // 4. Compute the minimum unsigned root of the equation:
8991   // I * (B / D) mod (N / D)
8992   // To simplify the computation, we factor out the divide by D:
8993   // (I * B mod N) / D
8994   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8995   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8996 }
8997 
8998 /// For a given quadratic addrec, generate coefficients of the corresponding
8999 /// quadratic equation, multiplied by a common value to ensure that they are
9000 /// integers.
9001 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9002 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9003 /// were multiplied by, and BitWidth is the bit width of the original addrec
9004 /// coefficients.
9005 /// This function returns None if the addrec coefficients are not compile-
9006 /// time constants.
9007 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9008 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9009   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9010   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9011   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9012   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9013   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9014                     << *AddRec << '\n');
9015 
9016   // We currently can only solve this if the coefficients are constants.
9017   if (!LC || !MC || !NC) {
9018     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9019     return None;
9020   }
9021 
9022   APInt L = LC->getAPInt();
9023   APInt M = MC->getAPInt();
9024   APInt N = NC->getAPInt();
9025   assert(!N.isNullValue() && "This is not a quadratic addrec");
9026 
9027   unsigned BitWidth = LC->getAPInt().getBitWidth();
9028   unsigned NewWidth = BitWidth + 1;
9029   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9030                     << BitWidth << '\n');
9031   // The sign-extension (as opposed to a zero-extension) here matches the
9032   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9033   N = N.sext(NewWidth);
9034   M = M.sext(NewWidth);
9035   L = L.sext(NewWidth);
9036 
9037   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9038   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9039   //   L+M, L+2M+N, L+3M+3N, ...
9040   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9041   //
9042   // The equation Acc = 0 is then
9043   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9044   // In a quadratic form it becomes:
9045   //   N n^2 + (2M-N) n + 2L = 0.
9046 
9047   APInt A = N;
9048   APInt B = 2 * M - A;
9049   APInt C = 2 * L;
9050   APInt T = APInt(NewWidth, 2);
9051   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9052                     << "x + " << C << ", coeff bw: " << NewWidth
9053                     << ", multiplied by " << T << '\n');
9054   return std::make_tuple(A, B, C, T, BitWidth);
9055 }
9056 
9057 /// Helper function to compare optional APInts:
9058 /// (a) if X and Y both exist, return min(X, Y),
9059 /// (b) if neither X nor Y exist, return None,
9060 /// (c) if exactly one of X and Y exists, return that value.
9061 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9062   if (X.hasValue() && Y.hasValue()) {
9063     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9064     APInt XW = X->sextOrSelf(W);
9065     APInt YW = Y->sextOrSelf(W);
9066     return XW.slt(YW) ? *X : *Y;
9067   }
9068   if (!X.hasValue() && !Y.hasValue())
9069     return None;
9070   return X.hasValue() ? *X : *Y;
9071 }
9072 
9073 /// Helper function to truncate an optional APInt to a given BitWidth.
9074 /// When solving addrec-related equations, it is preferable to return a value
9075 /// that has the same bit width as the original addrec's coefficients. If the
9076 /// solution fits in the original bit width, truncate it (except for i1).
9077 /// Returning a value of a different bit width may inhibit some optimizations.
9078 ///
9079 /// In general, a solution to a quadratic equation generated from an addrec
9080 /// may require BW+1 bits, where BW is the bit width of the addrec's
9081 /// coefficients. The reason is that the coefficients of the quadratic
9082 /// equation are BW+1 bits wide (to avoid truncation when converting from
9083 /// the addrec to the equation).
9084 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9085   if (!X.hasValue())
9086     return None;
9087   unsigned W = X->getBitWidth();
9088   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9089     return X->trunc(BitWidth);
9090   return X;
9091 }
9092 
9093 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9094 /// iterations. The values L, M, N are assumed to be signed, and they
9095 /// should all have the same bit widths.
9096 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9097 /// where BW is the bit width of the addrec's coefficients.
9098 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9099 /// returned as such, otherwise the bit width of the returned value may
9100 /// be greater than BW.
9101 ///
9102 /// This function returns None if
9103 /// (a) the addrec coefficients are not constant, or
9104 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9105 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9106 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9107 static Optional<APInt>
9108 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9109   APInt A, B, C, M;
9110   unsigned BitWidth;
9111   auto T = GetQuadraticEquation(AddRec);
9112   if (!T.hasValue())
9113     return None;
9114 
9115   std::tie(A, B, C, M, BitWidth) = *T;
9116   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9117   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9118   if (!X.hasValue())
9119     return None;
9120 
9121   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9122   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9123   if (!V->isZero())
9124     return None;
9125 
9126   return TruncIfPossible(X, BitWidth);
9127 }
9128 
9129 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9130 /// iterations. The values M, N are assumed to be signed, and they
9131 /// should all have the same bit widths.
9132 /// Find the least n such that c(n) does not belong to the given range,
9133 /// while c(n-1) does.
9134 ///
9135 /// This function returns None if
9136 /// (a) the addrec coefficients are not constant, or
9137 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9138 ///     bounds of the range.
9139 static Optional<APInt>
9140 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9141                           const ConstantRange &Range, ScalarEvolution &SE) {
9142   assert(AddRec->getOperand(0)->isZero() &&
9143          "Starting value of addrec should be 0");
9144   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9145                     << Range << ", addrec " << *AddRec << '\n');
9146   // This case is handled in getNumIterationsInRange. Here we can assume that
9147   // we start in the range.
9148   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9149          "Addrec's initial value should be in range");
9150 
9151   APInt A, B, C, M;
9152   unsigned BitWidth;
9153   auto T = GetQuadraticEquation(AddRec);
9154   if (!T.hasValue())
9155     return None;
9156 
9157   // Be careful about the return value: there can be two reasons for not
9158   // returning an actual number. First, if no solutions to the equations
9159   // were found, and second, if the solutions don't leave the given range.
9160   // The first case means that the actual solution is "unknown", the second
9161   // means that it's known, but not valid. If the solution is unknown, we
9162   // cannot make any conclusions.
9163   // Return a pair: the optional solution and a flag indicating if the
9164   // solution was found.
9165   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9166     // Solve for signed overflow and unsigned overflow, pick the lower
9167     // solution.
9168     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9169                       << Bound << " (before multiplying by " << M << ")\n");
9170     Bound *= M; // The quadratic equation multiplier.
9171 
9172     Optional<APInt> SO = None;
9173     if (BitWidth > 1) {
9174       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9175                            "signed overflow\n");
9176       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9177     }
9178     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9179                          "unsigned overflow\n");
9180     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9181                                                               BitWidth+1);
9182 
9183     auto LeavesRange = [&] (const APInt &X) {
9184       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9185       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9186       if (Range.contains(V0->getValue()))
9187         return false;
9188       // X should be at least 1, so X-1 is non-negative.
9189       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9190       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9191       if (Range.contains(V1->getValue()))
9192         return true;
9193       return false;
9194     };
9195 
9196     // If SolveQuadraticEquationWrap returns None, it means that there can
9197     // be a solution, but the function failed to find it. We cannot treat it
9198     // as "no solution".
9199     if (!SO.hasValue() || !UO.hasValue())
9200       return { None, false };
9201 
9202     // Check the smaller value first to see if it leaves the range.
9203     // At this point, both SO and UO must have values.
9204     Optional<APInt> Min = MinOptional(SO, UO);
9205     if (LeavesRange(*Min))
9206       return { Min, true };
9207     Optional<APInt> Max = Min == SO ? UO : SO;
9208     if (LeavesRange(*Max))
9209       return { Max, true };
9210 
9211     // Solutions were found, but were eliminated, hence the "true".
9212     return { None, true };
9213   };
9214 
9215   std::tie(A, B, C, M, BitWidth) = *T;
9216   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9217   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9218   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9219   auto SL = SolveForBoundary(Lower);
9220   auto SU = SolveForBoundary(Upper);
9221   // If any of the solutions was unknown, no meaninigful conclusions can
9222   // be made.
9223   if (!SL.second || !SU.second)
9224     return None;
9225 
9226   // Claim: The correct solution is not some value between Min and Max.
9227   //
9228   // Justification: Assuming that Min and Max are different values, one of
9229   // them is when the first signed overflow happens, the other is when the
9230   // first unsigned overflow happens. Crossing the range boundary is only
9231   // possible via an overflow (treating 0 as a special case of it, modeling
9232   // an overflow as crossing k*2^W for some k).
9233   //
9234   // The interesting case here is when Min was eliminated as an invalid
9235   // solution, but Max was not. The argument is that if there was another
9236   // overflow between Min and Max, it would also have been eliminated if
9237   // it was considered.
9238   //
9239   // For a given boundary, it is possible to have two overflows of the same
9240   // type (signed/unsigned) without having the other type in between: this
9241   // can happen when the vertex of the parabola is between the iterations
9242   // corresponding to the overflows. This is only possible when the two
9243   // overflows cross k*2^W for the same k. In such case, if the second one
9244   // left the range (and was the first one to do so), the first overflow
9245   // would have to enter the range, which would mean that either we had left
9246   // the range before or that we started outside of it. Both of these cases
9247   // are contradictions.
9248   //
9249   // Claim: In the case where SolveForBoundary returns None, the correct
9250   // solution is not some value between the Max for this boundary and the
9251   // Min of the other boundary.
9252   //
9253   // Justification: Assume that we had such Max_A and Min_B corresponding
9254   // to range boundaries A and B and such that Max_A < Min_B. If there was
9255   // a solution between Max_A and Min_B, it would have to be caused by an
9256   // overflow corresponding to either A or B. It cannot correspond to B,
9257   // since Min_B is the first occurrence of such an overflow. If it
9258   // corresponded to A, it would have to be either a signed or an unsigned
9259   // overflow that is larger than both eliminated overflows for A. But
9260   // between the eliminated overflows and this overflow, the values would
9261   // cover the entire value space, thus crossing the other boundary, which
9262   // is a contradiction.
9263 
9264   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9265 }
9266 
9267 ScalarEvolution::ExitLimit
9268 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9269                               bool AllowPredicates) {
9270 
9271   // This is only used for loops with a "x != y" exit test. The exit condition
9272   // is now expressed as a single expression, V = x-y. So the exit test is
9273   // effectively V != 0.  We know and take advantage of the fact that this
9274   // expression only being used in a comparison by zero context.
9275 
9276   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9277   // If the value is a constant
9278   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9279     // If the value is already zero, the branch will execute zero times.
9280     if (C->getValue()->isZero()) return C;
9281     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9282   }
9283 
9284   const SCEVAddRecExpr *AddRec =
9285       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9286 
9287   if (!AddRec && AllowPredicates)
9288     // Try to make this an AddRec using runtime tests, in the first X
9289     // iterations of this loop, where X is the SCEV expression found by the
9290     // algorithm below.
9291     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9292 
9293   if (!AddRec || AddRec->getLoop() != L)
9294     return getCouldNotCompute();
9295 
9296   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9297   // the quadratic equation to solve it.
9298   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9299     // We can only use this value if the chrec ends up with an exact zero
9300     // value at this index.  When solving for "X*X != 5", for example, we
9301     // should not accept a root of 2.
9302     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9303       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9304       return ExitLimit(R, R, false, Predicates);
9305     }
9306     return getCouldNotCompute();
9307   }
9308 
9309   // Otherwise we can only handle this if it is affine.
9310   if (!AddRec->isAffine())
9311     return getCouldNotCompute();
9312 
9313   // If this is an affine expression, the execution count of this branch is
9314   // the minimum unsigned root of the following equation:
9315   //
9316   //     Start + Step*N = 0 (mod 2^BW)
9317   //
9318   // equivalent to:
9319   //
9320   //             Step*N = -Start (mod 2^BW)
9321   //
9322   // where BW is the common bit width of Start and Step.
9323 
9324   // Get the initial value for the loop.
9325   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9326   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9327 
9328   // For now we handle only constant steps.
9329   //
9330   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9331   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9332   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9333   // We have not yet seen any such cases.
9334   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9335   if (!StepC || StepC->getValue()->isZero())
9336     return getCouldNotCompute();
9337 
9338   // For positive steps (counting up until unsigned overflow):
9339   //   N = -Start/Step (as unsigned)
9340   // For negative steps (counting down to zero):
9341   //   N = Start/-Step
9342   // First compute the unsigned distance from zero in the direction of Step.
9343   bool CountDown = StepC->getAPInt().isNegative();
9344   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9345 
9346   // Handle unitary steps, which cannot wraparound.
9347   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9348   //   N = Distance (as unsigned)
9349   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9350     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9351     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9352     if (MaxBECountBase.ult(MaxBECount))
9353       MaxBECount = MaxBECountBase;
9354 
9355     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9356     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9357     // case, and see if we can improve the bound.
9358     //
9359     // Explicitly handling this here is necessary because getUnsignedRange
9360     // isn't context-sensitive; it doesn't know that we only care about the
9361     // range inside the loop.
9362     const SCEV *Zero = getZero(Distance->getType());
9363     const SCEV *One = getOne(Distance->getType());
9364     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9365     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9366       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9367       // as "unsigned_max(Distance + 1) - 1".
9368       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9369       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9370     }
9371     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9372   }
9373 
9374   // If the condition controls loop exit (the loop exits only if the expression
9375   // is true) and the addition is no-wrap we can use unsigned divide to
9376   // compute the backedge count.  In this case, the step may not divide the
9377   // distance, but we don't care because if the condition is "missed" the loop
9378   // will have undefined behavior due to wrapping.
9379   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9380       loopHasNoAbnormalExits(AddRec->getLoop())) {
9381     const SCEV *Exact =
9382         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9383     const SCEV *Max = getCouldNotCompute();
9384     if (Exact != getCouldNotCompute()) {
9385       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9386       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9387       if (BaseMaxInt.ult(MaxInt))
9388         Max = getConstant(BaseMaxInt);
9389       else
9390         Max = getConstant(MaxInt);
9391     }
9392     return ExitLimit(Exact, Max, false, Predicates);
9393   }
9394 
9395   // Solve the general equation.
9396   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9397                                                getNegativeSCEV(Start), *this);
9398   const SCEV *M = E == getCouldNotCompute()
9399                       ? E
9400                       : getConstant(getUnsignedRangeMax(E));
9401   return ExitLimit(E, M, false, Predicates);
9402 }
9403 
9404 ScalarEvolution::ExitLimit
9405 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9406   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9407   // handle them yet except for the trivial case.  This could be expanded in the
9408   // future as needed.
9409 
9410   // If the value is a constant, check to see if it is known to be non-zero
9411   // already.  If so, the backedge will execute zero times.
9412   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9413     if (!C->getValue()->isZero())
9414       return getZero(C->getType());
9415     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9416   }
9417 
9418   // We could implement others, but I really doubt anyone writes loops like
9419   // this, and if they did, they would already be constant folded.
9420   return getCouldNotCompute();
9421 }
9422 
9423 std::pair<const BasicBlock *, const BasicBlock *>
9424 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9425     const {
9426   // If the block has a unique predecessor, then there is no path from the
9427   // predecessor to the block that does not go through the direct edge
9428   // from the predecessor to the block.
9429   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9430     return {Pred, BB};
9431 
9432   // A loop's header is defined to be a block that dominates the loop.
9433   // If the header has a unique predecessor outside the loop, it must be
9434   // a block that has exactly one successor that can reach the loop.
9435   if (const Loop *L = LI.getLoopFor(BB))
9436     return {L->getLoopPredecessor(), L->getHeader()};
9437 
9438   return {nullptr, nullptr};
9439 }
9440 
9441 /// SCEV structural equivalence is usually sufficient for testing whether two
9442 /// expressions are equal, however for the purposes of looking for a condition
9443 /// guarding a loop, it can be useful to be a little more general, since a
9444 /// front-end may have replicated the controlling expression.
9445 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9446   // Quick check to see if they are the same SCEV.
9447   if (A == B) return true;
9448 
9449   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9450     // Not all instructions that are "identical" compute the same value.  For
9451     // instance, two distinct alloca instructions allocating the same type are
9452     // identical and do not read memory; but compute distinct values.
9453     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9454   };
9455 
9456   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9457   // two different instructions with the same value. Check for this case.
9458   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9459     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9460       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9461         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9462           if (ComputesEqualValues(AI, BI))
9463             return true;
9464 
9465   // Otherwise assume they may have a different value.
9466   return false;
9467 }
9468 
9469 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9470                                            const SCEV *&LHS, const SCEV *&RHS,
9471                                            unsigned Depth) {
9472   bool Changed = false;
9473   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9474   // '0 != 0'.
9475   auto TrivialCase = [&](bool TriviallyTrue) {
9476     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9477     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9478     return true;
9479   };
9480   // If we hit the max recursion limit bail out.
9481   if (Depth >= 3)
9482     return false;
9483 
9484   // Canonicalize a constant to the right side.
9485   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9486     // Check for both operands constant.
9487     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9488       if (ConstantExpr::getICmp(Pred,
9489                                 LHSC->getValue(),
9490                                 RHSC->getValue())->isNullValue())
9491         return TrivialCase(false);
9492       else
9493         return TrivialCase(true);
9494     }
9495     // Otherwise swap the operands to put the constant on the right.
9496     std::swap(LHS, RHS);
9497     Pred = ICmpInst::getSwappedPredicate(Pred);
9498     Changed = true;
9499   }
9500 
9501   // If we're comparing an addrec with a value which is loop-invariant in the
9502   // addrec's loop, put the addrec on the left. Also make a dominance check,
9503   // as both operands could be addrecs loop-invariant in each other's loop.
9504   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9505     const Loop *L = AR->getLoop();
9506     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9507       std::swap(LHS, RHS);
9508       Pred = ICmpInst::getSwappedPredicate(Pred);
9509       Changed = true;
9510     }
9511   }
9512 
9513   // If there's a constant operand, canonicalize comparisons with boundary
9514   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9515   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9516     const APInt &RA = RC->getAPInt();
9517 
9518     bool SimplifiedByConstantRange = false;
9519 
9520     if (!ICmpInst::isEquality(Pred)) {
9521       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9522       if (ExactCR.isFullSet())
9523         return TrivialCase(true);
9524       else if (ExactCR.isEmptySet())
9525         return TrivialCase(false);
9526 
9527       APInt NewRHS;
9528       CmpInst::Predicate NewPred;
9529       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9530           ICmpInst::isEquality(NewPred)) {
9531         // We were able to convert an inequality to an equality.
9532         Pred = NewPred;
9533         RHS = getConstant(NewRHS);
9534         Changed = SimplifiedByConstantRange = true;
9535       }
9536     }
9537 
9538     if (!SimplifiedByConstantRange) {
9539       switch (Pred) {
9540       default:
9541         break;
9542       case ICmpInst::ICMP_EQ:
9543       case ICmpInst::ICMP_NE:
9544         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9545         if (!RA)
9546           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9547             if (const SCEVMulExpr *ME =
9548                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9549               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9550                   ME->getOperand(0)->isAllOnesValue()) {
9551                 RHS = AE->getOperand(1);
9552                 LHS = ME->getOperand(1);
9553                 Changed = true;
9554               }
9555         break;
9556 
9557 
9558         // The "Should have been caught earlier!" messages refer to the fact
9559         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9560         // should have fired on the corresponding cases, and canonicalized the
9561         // check to trivial case.
9562 
9563       case ICmpInst::ICMP_UGE:
9564         assert(!RA.isMinValue() && "Should have been caught earlier!");
9565         Pred = ICmpInst::ICMP_UGT;
9566         RHS = getConstant(RA - 1);
9567         Changed = true;
9568         break;
9569       case ICmpInst::ICMP_ULE:
9570         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9571         Pred = ICmpInst::ICMP_ULT;
9572         RHS = getConstant(RA + 1);
9573         Changed = true;
9574         break;
9575       case ICmpInst::ICMP_SGE:
9576         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9577         Pred = ICmpInst::ICMP_SGT;
9578         RHS = getConstant(RA - 1);
9579         Changed = true;
9580         break;
9581       case ICmpInst::ICMP_SLE:
9582         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9583         Pred = ICmpInst::ICMP_SLT;
9584         RHS = getConstant(RA + 1);
9585         Changed = true;
9586         break;
9587       }
9588     }
9589   }
9590 
9591   // Check for obvious equality.
9592   if (HasSameValue(LHS, RHS)) {
9593     if (ICmpInst::isTrueWhenEqual(Pred))
9594       return TrivialCase(true);
9595     if (ICmpInst::isFalseWhenEqual(Pred))
9596       return TrivialCase(false);
9597   }
9598 
9599   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9600   // adding or subtracting 1 from one of the operands.
9601   switch (Pred) {
9602   case ICmpInst::ICMP_SLE:
9603     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9604       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9605                        SCEV::FlagNSW);
9606       Pred = ICmpInst::ICMP_SLT;
9607       Changed = true;
9608     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9609       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9610                        SCEV::FlagNSW);
9611       Pred = ICmpInst::ICMP_SLT;
9612       Changed = true;
9613     }
9614     break;
9615   case ICmpInst::ICMP_SGE:
9616     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9617       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9618                        SCEV::FlagNSW);
9619       Pred = ICmpInst::ICMP_SGT;
9620       Changed = true;
9621     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9622       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9623                        SCEV::FlagNSW);
9624       Pred = ICmpInst::ICMP_SGT;
9625       Changed = true;
9626     }
9627     break;
9628   case ICmpInst::ICMP_ULE:
9629     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9630       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9631                        SCEV::FlagNUW);
9632       Pred = ICmpInst::ICMP_ULT;
9633       Changed = true;
9634     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9635       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9636       Pred = ICmpInst::ICMP_ULT;
9637       Changed = true;
9638     }
9639     break;
9640   case ICmpInst::ICMP_UGE:
9641     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9642       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9643       Pred = ICmpInst::ICMP_UGT;
9644       Changed = true;
9645     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9646       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9647                        SCEV::FlagNUW);
9648       Pred = ICmpInst::ICMP_UGT;
9649       Changed = true;
9650     }
9651     break;
9652   default:
9653     break;
9654   }
9655 
9656   // TODO: More simplifications are possible here.
9657 
9658   // Recursively simplify until we either hit a recursion limit or nothing
9659   // changes.
9660   if (Changed)
9661     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9662 
9663   return Changed;
9664 }
9665 
9666 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9667   return getSignedRangeMax(S).isNegative();
9668 }
9669 
9670 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9671   return getSignedRangeMin(S).isStrictlyPositive();
9672 }
9673 
9674 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9675   return !getSignedRangeMin(S).isNegative();
9676 }
9677 
9678 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9679   return !getSignedRangeMax(S).isStrictlyPositive();
9680 }
9681 
9682 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9683   return isKnownNegative(S) || isKnownPositive(S);
9684 }
9685 
9686 std::pair<const SCEV *, const SCEV *>
9687 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9688   // Compute SCEV on entry of loop L.
9689   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9690   if (Start == getCouldNotCompute())
9691     return { Start, Start };
9692   // Compute post increment SCEV for loop L.
9693   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9694   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9695   return { Start, PostInc };
9696 }
9697 
9698 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9699                                           const SCEV *LHS, const SCEV *RHS) {
9700   // First collect all loops.
9701   SmallPtrSet<const Loop *, 8> LoopsUsed;
9702   getUsedLoops(LHS, LoopsUsed);
9703   getUsedLoops(RHS, LoopsUsed);
9704 
9705   if (LoopsUsed.empty())
9706     return false;
9707 
9708   // Domination relationship must be a linear order on collected loops.
9709 #ifndef NDEBUG
9710   for (auto *L1 : LoopsUsed)
9711     for (auto *L2 : LoopsUsed)
9712       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9713               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9714              "Domination relationship is not a linear order");
9715 #endif
9716 
9717   const Loop *MDL =
9718       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9719                         [&](const Loop *L1, const Loop *L2) {
9720          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9721        });
9722 
9723   // Get init and post increment value for LHS.
9724   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9725   // if LHS contains unknown non-invariant SCEV then bail out.
9726   if (SplitLHS.first == getCouldNotCompute())
9727     return false;
9728   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9729   // Get init and post increment value for RHS.
9730   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9731   // if RHS contains unknown non-invariant SCEV then bail out.
9732   if (SplitRHS.first == getCouldNotCompute())
9733     return false;
9734   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9735   // It is possible that init SCEV contains an invariant load but it does
9736   // not dominate MDL and is not available at MDL loop entry, so we should
9737   // check it here.
9738   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9739       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9740     return false;
9741 
9742   // It seems backedge guard check is faster than entry one so in some cases
9743   // it can speed up whole estimation by short circuit
9744   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9745                                      SplitRHS.second) &&
9746          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9747 }
9748 
9749 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9750                                        const SCEV *LHS, const SCEV *RHS) {
9751   // Canonicalize the inputs first.
9752   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9753 
9754   if (isKnownViaInduction(Pred, LHS, RHS))
9755     return true;
9756 
9757   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9758     return true;
9759 
9760   // Otherwise see what can be done with some simple reasoning.
9761   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9762 }
9763 
9764 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9765                                                   const SCEV *LHS,
9766                                                   const SCEV *RHS) {
9767   if (isKnownPredicate(Pred, LHS, RHS))
9768     return true;
9769   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9770     return false;
9771   return None;
9772 }
9773 
9774 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9775                                          const SCEV *LHS, const SCEV *RHS,
9776                                          const Instruction *Context) {
9777   // TODO: Analyze guards and assumes from Context's block.
9778   return isKnownPredicate(Pred, LHS, RHS) ||
9779          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9780 }
9781 
9782 Optional<bool>
9783 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9784                                      const SCEV *RHS,
9785                                      const Instruction *Context) {
9786   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9787   if (KnownWithoutContext)
9788     return KnownWithoutContext;
9789 
9790   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9791     return true;
9792   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9793                                           ICmpInst::getInversePredicate(Pred),
9794                                           LHS, RHS))
9795     return false;
9796   return None;
9797 }
9798 
9799 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9800                                               const SCEVAddRecExpr *LHS,
9801                                               const SCEV *RHS) {
9802   const Loop *L = LHS->getLoop();
9803   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9804          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9805 }
9806 
9807 Optional<ScalarEvolution::MonotonicPredicateType>
9808 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9809                                            ICmpInst::Predicate Pred) {
9810   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9811 
9812 #ifndef NDEBUG
9813   // Verify an invariant: inverting the predicate should turn a monotonically
9814   // increasing change to a monotonically decreasing one, and vice versa.
9815   if (Result) {
9816     auto ResultSwapped =
9817         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9818 
9819     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9820     assert(ResultSwapped.getValue() != Result.getValue() &&
9821            "monotonicity should flip as we flip the predicate");
9822   }
9823 #endif
9824 
9825   return Result;
9826 }
9827 
9828 Optional<ScalarEvolution::MonotonicPredicateType>
9829 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9830                                                ICmpInst::Predicate Pred) {
9831   // A zero step value for LHS means the induction variable is essentially a
9832   // loop invariant value. We don't really depend on the predicate actually
9833   // flipping from false to true (for increasing predicates, and the other way
9834   // around for decreasing predicates), all we care about is that *if* the
9835   // predicate changes then it only changes from false to true.
9836   //
9837   // A zero step value in itself is not very useful, but there may be places
9838   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9839   // as general as possible.
9840 
9841   // Only handle LE/LT/GE/GT predicates.
9842   if (!ICmpInst::isRelational(Pred))
9843     return None;
9844 
9845   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9846   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9847          "Should be greater or less!");
9848 
9849   // Check that AR does not wrap.
9850   if (ICmpInst::isUnsigned(Pred)) {
9851     if (!LHS->hasNoUnsignedWrap())
9852       return None;
9853     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9854   } else {
9855     assert(ICmpInst::isSigned(Pred) &&
9856            "Relational predicate is either signed or unsigned!");
9857     if (!LHS->hasNoSignedWrap())
9858       return None;
9859 
9860     const SCEV *Step = LHS->getStepRecurrence(*this);
9861 
9862     if (isKnownNonNegative(Step))
9863       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9864 
9865     if (isKnownNonPositive(Step))
9866       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9867 
9868     return None;
9869   }
9870 }
9871 
9872 Optional<ScalarEvolution::LoopInvariantPredicate>
9873 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9874                                            const SCEV *LHS, const SCEV *RHS,
9875                                            const Loop *L) {
9876 
9877   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9878   if (!isLoopInvariant(RHS, L)) {
9879     if (!isLoopInvariant(LHS, L))
9880       return None;
9881 
9882     std::swap(LHS, RHS);
9883     Pred = ICmpInst::getSwappedPredicate(Pred);
9884   }
9885 
9886   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9887   if (!ArLHS || ArLHS->getLoop() != L)
9888     return None;
9889 
9890   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9891   if (!MonotonicType)
9892     return None;
9893   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9894   // true as the loop iterates, and the backedge is control dependent on
9895   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9896   //
9897   //   * if the predicate was false in the first iteration then the predicate
9898   //     is never evaluated again, since the loop exits without taking the
9899   //     backedge.
9900   //   * if the predicate was true in the first iteration then it will
9901   //     continue to be true for all future iterations since it is
9902   //     monotonically increasing.
9903   //
9904   // For both the above possibilities, we can replace the loop varying
9905   // predicate with its value on the first iteration of the loop (which is
9906   // loop invariant).
9907   //
9908   // A similar reasoning applies for a monotonically decreasing predicate, by
9909   // replacing true with false and false with true in the above two bullets.
9910   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9911   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9912 
9913   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9914     return None;
9915 
9916   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9917 }
9918 
9919 Optional<ScalarEvolution::LoopInvariantPredicate>
9920 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9921     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9922     const Instruction *Context, const SCEV *MaxIter) {
9923   // Try to prove the following set of facts:
9924   // - The predicate is monotonic in the iteration space.
9925   // - If the check does not fail on the 1st iteration:
9926   //   - No overflow will happen during first MaxIter iterations;
9927   //   - It will not fail on the MaxIter'th iteration.
9928   // If the check does fail on the 1st iteration, we leave the loop and no
9929   // other checks matter.
9930 
9931   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9932   if (!isLoopInvariant(RHS, L)) {
9933     if (!isLoopInvariant(LHS, L))
9934       return None;
9935 
9936     std::swap(LHS, RHS);
9937     Pred = ICmpInst::getSwappedPredicate(Pred);
9938   }
9939 
9940   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9941   if (!AR || AR->getLoop() != L)
9942     return None;
9943 
9944   // The predicate must be relational (i.e. <, <=, >=, >).
9945   if (!ICmpInst::isRelational(Pred))
9946     return None;
9947 
9948   // TODO: Support steps other than +/- 1.
9949   const SCEV *Step = AR->getStepRecurrence(*this);
9950   auto *One = getOne(Step->getType());
9951   auto *MinusOne = getNegativeSCEV(One);
9952   if (Step != One && Step != MinusOne)
9953     return None;
9954 
9955   // Type mismatch here means that MaxIter is potentially larger than max
9956   // unsigned value in start type, which mean we cannot prove no wrap for the
9957   // indvar.
9958   if (AR->getType() != MaxIter->getType())
9959     return None;
9960 
9961   // Value of IV on suggested last iteration.
9962   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9963   // Does it still meet the requirement?
9964   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9965     return None;
9966   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9967   // not exceed max unsigned value of this type), this effectively proves
9968   // that there is no wrap during the iteration. To prove that there is no
9969   // signed/unsigned wrap, we need to check that
9970   // Start <= Last for step = 1 or Start >= Last for step = -1.
9971   ICmpInst::Predicate NoOverflowPred =
9972       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9973   if (Step == MinusOne)
9974     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9975   const SCEV *Start = AR->getStart();
9976   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9977     return None;
9978 
9979   // Everything is fine.
9980   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9981 }
9982 
9983 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9984     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9985   if (HasSameValue(LHS, RHS))
9986     return ICmpInst::isTrueWhenEqual(Pred);
9987 
9988   // This code is split out from isKnownPredicate because it is called from
9989   // within isLoopEntryGuardedByCond.
9990 
9991   auto CheckRanges = [&](const ConstantRange &RangeLHS,
9992                          const ConstantRange &RangeRHS) {
9993     return RangeLHS.icmp(Pred, RangeRHS);
9994   };
9995 
9996   // The check at the top of the function catches the case where the values are
9997   // known to be equal.
9998   if (Pred == CmpInst::ICMP_EQ)
9999     return false;
10000 
10001   if (Pred == CmpInst::ICMP_NE)
10002     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10003            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
10004            isKnownNonZero(getMinusSCEV(LHS, RHS));
10005 
10006   if (CmpInst::isSigned(Pred))
10007     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10008 
10009   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10010 }
10011 
10012 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10013                                                     const SCEV *LHS,
10014                                                     const SCEV *RHS) {
10015   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
10016   // Return Y via OutY.
10017   auto MatchBinaryAddToConst =
10018       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
10019              SCEV::NoWrapFlags ExpectedFlags) {
10020     const SCEV *NonConstOp, *ConstOp;
10021     SCEV::NoWrapFlags FlagsPresent;
10022 
10023     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
10024         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
10025       return false;
10026 
10027     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
10028     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
10029   };
10030 
10031   APInt C;
10032 
10033   switch (Pred) {
10034   default:
10035     break;
10036 
10037   case ICmpInst::ICMP_SGE:
10038     std::swap(LHS, RHS);
10039     LLVM_FALLTHROUGH;
10040   case ICmpInst::ICMP_SLE:
10041     // X s<= (X + C)<nsw> if C >= 0
10042     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
10043       return true;
10044 
10045     // (X + C)<nsw> s<= X if C <= 0
10046     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
10047         !C.isStrictlyPositive())
10048       return true;
10049     break;
10050 
10051   case ICmpInst::ICMP_SGT:
10052     std::swap(LHS, RHS);
10053     LLVM_FALLTHROUGH;
10054   case ICmpInst::ICMP_SLT:
10055     // X s< (X + C)<nsw> if C > 0
10056     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
10057         C.isStrictlyPositive())
10058       return true;
10059 
10060     // (X + C)<nsw> s< X if C < 0
10061     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
10062       return true;
10063     break;
10064 
10065   case ICmpInst::ICMP_UGE:
10066     std::swap(LHS, RHS);
10067     LLVM_FALLTHROUGH;
10068   case ICmpInst::ICMP_ULE:
10069     // X u<= (X + C)<nuw> for any C
10070     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
10071       return true;
10072     break;
10073 
10074   case ICmpInst::ICMP_UGT:
10075     std::swap(LHS, RHS);
10076     LLVM_FALLTHROUGH;
10077   case ICmpInst::ICMP_ULT:
10078     // X u< (X + C)<nuw> if C != 0
10079     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
10080       return true;
10081     break;
10082   }
10083 
10084   return false;
10085 }
10086 
10087 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10088                                                    const SCEV *LHS,
10089                                                    const SCEV *RHS) {
10090   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10091     return false;
10092 
10093   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10094   // the stack can result in exponential time complexity.
10095   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10096 
10097   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10098   //
10099   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10100   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10101   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10102   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10103   // use isKnownPredicate later if needed.
10104   return isKnownNonNegative(RHS) &&
10105          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10106          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10107 }
10108 
10109 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10110                                         ICmpInst::Predicate Pred,
10111                                         const SCEV *LHS, const SCEV *RHS) {
10112   // No need to even try if we know the module has no guards.
10113   if (!HasGuards)
10114     return false;
10115 
10116   return any_of(*BB, [&](const Instruction &I) {
10117     using namespace llvm::PatternMatch;
10118 
10119     Value *Condition;
10120     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10121                          m_Value(Condition))) &&
10122            isImpliedCond(Pred, LHS, RHS, Condition, false);
10123   });
10124 }
10125 
10126 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10127 /// protected by a conditional between LHS and RHS.  This is used to
10128 /// to eliminate casts.
10129 bool
10130 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10131                                              ICmpInst::Predicate Pred,
10132                                              const SCEV *LHS, const SCEV *RHS) {
10133   // Interpret a null as meaning no loop, where there is obviously no guard
10134   // (interprocedural conditions notwithstanding).
10135   if (!L) return true;
10136 
10137   if (VerifyIR)
10138     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10139            "This cannot be done on broken IR!");
10140 
10141 
10142   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10143     return true;
10144 
10145   BasicBlock *Latch = L->getLoopLatch();
10146   if (!Latch)
10147     return false;
10148 
10149   BranchInst *LoopContinuePredicate =
10150     dyn_cast<BranchInst>(Latch->getTerminator());
10151   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10152       isImpliedCond(Pred, LHS, RHS,
10153                     LoopContinuePredicate->getCondition(),
10154                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10155     return true;
10156 
10157   // We don't want more than one activation of the following loops on the stack
10158   // -- that can lead to O(n!) time complexity.
10159   if (WalkingBEDominatingConds)
10160     return false;
10161 
10162   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10163 
10164   // See if we can exploit a trip count to prove the predicate.
10165   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10166   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10167   if (LatchBECount != getCouldNotCompute()) {
10168     // We know that Latch branches back to the loop header exactly
10169     // LatchBECount times.  This means the backdege condition at Latch is
10170     // equivalent to  "{0,+,1} u< LatchBECount".
10171     Type *Ty = LatchBECount->getType();
10172     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10173     const SCEV *LoopCounter =
10174       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10175     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10176                       LatchBECount))
10177       return true;
10178   }
10179 
10180   // Check conditions due to any @llvm.assume intrinsics.
10181   for (auto &AssumeVH : AC.assumptions()) {
10182     if (!AssumeVH)
10183       continue;
10184     auto *CI = cast<CallInst>(AssumeVH);
10185     if (!DT.dominates(CI, Latch->getTerminator()))
10186       continue;
10187 
10188     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10189       return true;
10190   }
10191 
10192   // If the loop is not reachable from the entry block, we risk running into an
10193   // infinite loop as we walk up into the dom tree.  These loops do not matter
10194   // anyway, so we just return a conservative answer when we see them.
10195   if (!DT.isReachableFromEntry(L->getHeader()))
10196     return false;
10197 
10198   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10199     return true;
10200 
10201   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10202        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10203     assert(DTN && "should reach the loop header before reaching the root!");
10204 
10205     BasicBlock *BB = DTN->getBlock();
10206     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10207       return true;
10208 
10209     BasicBlock *PBB = BB->getSinglePredecessor();
10210     if (!PBB)
10211       continue;
10212 
10213     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10214     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10215       continue;
10216 
10217     Value *Condition = ContinuePredicate->getCondition();
10218 
10219     // If we have an edge `E` within the loop body that dominates the only
10220     // latch, the condition guarding `E` also guards the backedge.  This
10221     // reasoning works only for loops with a single latch.
10222 
10223     BasicBlockEdge DominatingEdge(PBB, BB);
10224     if (DominatingEdge.isSingleEdge()) {
10225       // We're constructively (and conservatively) enumerating edges within the
10226       // loop body that dominate the latch.  The dominator tree better agree
10227       // with us on this:
10228       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10229 
10230       if (isImpliedCond(Pred, LHS, RHS, Condition,
10231                         BB != ContinuePredicate->getSuccessor(0)))
10232         return true;
10233     }
10234   }
10235 
10236   return false;
10237 }
10238 
10239 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10240                                                      ICmpInst::Predicate Pred,
10241                                                      const SCEV *LHS,
10242                                                      const SCEV *RHS) {
10243   if (VerifyIR)
10244     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10245            "This cannot be done on broken IR!");
10246 
10247   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10248   // the facts (a >= b && a != b) separately. A typical situation is when the
10249   // non-strict comparison is known from ranges and non-equality is known from
10250   // dominating predicates. If we are proving strict comparison, we always try
10251   // to prove non-equality and non-strict comparison separately.
10252   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10253   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10254   bool ProvedNonStrictComparison = false;
10255   bool ProvedNonEquality = false;
10256 
10257   auto SplitAndProve =
10258     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10259     if (!ProvedNonStrictComparison)
10260       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10261     if (!ProvedNonEquality)
10262       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10263     if (ProvedNonStrictComparison && ProvedNonEquality)
10264       return true;
10265     return false;
10266   };
10267 
10268   if (ProvingStrictComparison) {
10269     auto ProofFn = [&](ICmpInst::Predicate P) {
10270       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10271     };
10272     if (SplitAndProve(ProofFn))
10273       return true;
10274   }
10275 
10276   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10277   auto ProveViaGuard = [&](const BasicBlock *Block) {
10278     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10279       return true;
10280     if (ProvingStrictComparison) {
10281       auto ProofFn = [&](ICmpInst::Predicate P) {
10282         return isImpliedViaGuard(Block, P, LHS, RHS);
10283       };
10284       if (SplitAndProve(ProofFn))
10285         return true;
10286     }
10287     return false;
10288   };
10289 
10290   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10291   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10292     const Instruction *Context = &BB->front();
10293     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10294       return true;
10295     if (ProvingStrictComparison) {
10296       auto ProofFn = [&](ICmpInst::Predicate P) {
10297         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10298       };
10299       if (SplitAndProve(ProofFn))
10300         return true;
10301     }
10302     return false;
10303   };
10304 
10305   // Starting at the block's predecessor, climb up the predecessor chain, as long
10306   // as there are predecessors that can be found that have unique successors
10307   // leading to the original block.
10308   const Loop *ContainingLoop = LI.getLoopFor(BB);
10309   const BasicBlock *PredBB;
10310   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10311     PredBB = ContainingLoop->getLoopPredecessor();
10312   else
10313     PredBB = BB->getSinglePredecessor();
10314   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10315        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10316     if (ProveViaGuard(Pair.first))
10317       return true;
10318 
10319     const BranchInst *LoopEntryPredicate =
10320         dyn_cast<BranchInst>(Pair.first->getTerminator());
10321     if (!LoopEntryPredicate ||
10322         LoopEntryPredicate->isUnconditional())
10323       continue;
10324 
10325     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10326                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10327       return true;
10328   }
10329 
10330   // Check conditions due to any @llvm.assume intrinsics.
10331   for (auto &AssumeVH : AC.assumptions()) {
10332     if (!AssumeVH)
10333       continue;
10334     auto *CI = cast<CallInst>(AssumeVH);
10335     if (!DT.dominates(CI, BB))
10336       continue;
10337 
10338     if (ProveViaCond(CI->getArgOperand(0), false))
10339       return true;
10340   }
10341 
10342   return false;
10343 }
10344 
10345 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10346                                                ICmpInst::Predicate Pred,
10347                                                const SCEV *LHS,
10348                                                const SCEV *RHS) {
10349   // Interpret a null as meaning no loop, where there is obviously no guard
10350   // (interprocedural conditions notwithstanding).
10351   if (!L)
10352     return false;
10353 
10354   // Both LHS and RHS must be available at loop entry.
10355   assert(isAvailableAtLoopEntry(LHS, L) &&
10356          "LHS is not available at Loop Entry");
10357   assert(isAvailableAtLoopEntry(RHS, L) &&
10358          "RHS is not available at Loop Entry");
10359 
10360   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10361     return true;
10362 
10363   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10364 }
10365 
10366 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10367                                     const SCEV *RHS,
10368                                     const Value *FoundCondValue, bool Inverse,
10369                                     const Instruction *Context) {
10370   // False conditions implies anything. Do not bother analyzing it further.
10371   if (FoundCondValue ==
10372       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10373     return true;
10374 
10375   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10376     return false;
10377 
10378   auto ClearOnExit =
10379       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10380 
10381   // Recursively handle And and Or conditions.
10382   const Value *Op0, *Op1;
10383   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10384     if (!Inverse)
10385       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10386               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10387   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10388     if (Inverse)
10389       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10390               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10391   }
10392 
10393   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10394   if (!ICI) return false;
10395 
10396   // Now that we found a conditional branch that dominates the loop or controls
10397   // the loop latch. Check to see if it is the comparison we are looking for.
10398   ICmpInst::Predicate FoundPred;
10399   if (Inverse)
10400     FoundPred = ICI->getInversePredicate();
10401   else
10402     FoundPred = ICI->getPredicate();
10403 
10404   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10405   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10406 
10407   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10408 }
10409 
10410 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10411                                     const SCEV *RHS,
10412                                     ICmpInst::Predicate FoundPred,
10413                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10414                                     const Instruction *Context) {
10415   // Balance the types.
10416   if (getTypeSizeInBits(LHS->getType()) <
10417       getTypeSizeInBits(FoundLHS->getType())) {
10418     // For unsigned and equality predicates, try to prove that both found
10419     // operands fit into narrow unsigned range. If so, try to prove facts in
10420     // narrow types.
10421     if (!CmpInst::isSigned(FoundPred)) {
10422       auto *NarrowType = LHS->getType();
10423       auto *WideType = FoundLHS->getType();
10424       auto BitWidth = getTypeSizeInBits(NarrowType);
10425       const SCEV *MaxValue = getZeroExtendExpr(
10426           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10427       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10428           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10429         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10430         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10431         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10432                                        TruncFoundRHS, Context))
10433           return true;
10434       }
10435     }
10436 
10437     if (CmpInst::isSigned(Pred)) {
10438       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10439       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10440     } else {
10441       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10442       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10443     }
10444   } else if (getTypeSizeInBits(LHS->getType()) >
10445       getTypeSizeInBits(FoundLHS->getType())) {
10446     if (CmpInst::isSigned(FoundPred)) {
10447       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10448       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10449     } else {
10450       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10451       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10452     }
10453   }
10454   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10455                                     FoundRHS, Context);
10456 }
10457 
10458 bool ScalarEvolution::isImpliedCondBalancedTypes(
10459     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10460     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10461     const Instruction *Context) {
10462   assert(getTypeSizeInBits(LHS->getType()) ==
10463              getTypeSizeInBits(FoundLHS->getType()) &&
10464          "Types should be balanced!");
10465   // Canonicalize the query to match the way instcombine will have
10466   // canonicalized the comparison.
10467   if (SimplifyICmpOperands(Pred, LHS, RHS))
10468     if (LHS == RHS)
10469       return CmpInst::isTrueWhenEqual(Pred);
10470   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10471     if (FoundLHS == FoundRHS)
10472       return CmpInst::isFalseWhenEqual(FoundPred);
10473 
10474   // Check to see if we can make the LHS or RHS match.
10475   if (LHS == FoundRHS || RHS == FoundLHS) {
10476     if (isa<SCEVConstant>(RHS)) {
10477       std::swap(FoundLHS, FoundRHS);
10478       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10479     } else {
10480       std::swap(LHS, RHS);
10481       Pred = ICmpInst::getSwappedPredicate(Pred);
10482     }
10483   }
10484 
10485   // Check whether the found predicate is the same as the desired predicate.
10486   if (FoundPred == Pred)
10487     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10488 
10489   // Check whether swapping the found predicate makes it the same as the
10490   // desired predicate.
10491   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10492     // We can write the implication
10493     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10494     // using one of the following ways:
10495     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10496     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10497     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10498     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10499     // Forms 1. and 2. require swapping the operands of one condition. Don't
10500     // do this if it would break canonical constant/addrec ordering.
10501     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10502       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10503                                    Context);
10504     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10505       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10506 
10507     // There's no clear preference between forms 3. and 4., try both.
10508     return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10509                                  FoundLHS, FoundRHS, Context) ||
10510            isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10511                                  getNotSCEV(FoundRHS), Context);
10512   }
10513 
10514   // Unsigned comparison is the same as signed comparison when both the operands
10515   // are non-negative.
10516   if (CmpInst::isUnsigned(FoundPred) &&
10517       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10518       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10519     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10520 
10521   // Check if we can make progress by sharpening ranges.
10522   if (FoundPred == ICmpInst::ICMP_NE &&
10523       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10524 
10525     const SCEVConstant *C = nullptr;
10526     const SCEV *V = nullptr;
10527 
10528     if (isa<SCEVConstant>(FoundLHS)) {
10529       C = cast<SCEVConstant>(FoundLHS);
10530       V = FoundRHS;
10531     } else {
10532       C = cast<SCEVConstant>(FoundRHS);
10533       V = FoundLHS;
10534     }
10535 
10536     // The guarding predicate tells us that C != V. If the known range
10537     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10538     // range we consider has to correspond to same signedness as the
10539     // predicate we're interested in folding.
10540 
10541     APInt Min = ICmpInst::isSigned(Pred) ?
10542         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10543 
10544     if (Min == C->getAPInt()) {
10545       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10546       // This is true even if (Min + 1) wraps around -- in case of
10547       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10548 
10549       APInt SharperMin = Min + 1;
10550 
10551       switch (Pred) {
10552         case ICmpInst::ICMP_SGE:
10553         case ICmpInst::ICMP_UGE:
10554           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10555           // RHS, we're done.
10556           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10557                                     Context))
10558             return true;
10559           LLVM_FALLTHROUGH;
10560 
10561         case ICmpInst::ICMP_SGT:
10562         case ICmpInst::ICMP_UGT:
10563           // We know from the range information that (V `Pred` Min ||
10564           // V == Min).  We know from the guarding condition that !(V
10565           // == Min).  This gives us
10566           //
10567           //       V `Pred` Min || V == Min && !(V == Min)
10568           //   =>  V `Pred` Min
10569           //
10570           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10571 
10572           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10573                                     Context))
10574             return true;
10575           break;
10576 
10577         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10578         case ICmpInst::ICMP_SLE:
10579         case ICmpInst::ICMP_ULE:
10580           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10581                                     LHS, V, getConstant(SharperMin), Context))
10582             return true;
10583           LLVM_FALLTHROUGH;
10584 
10585         case ICmpInst::ICMP_SLT:
10586         case ICmpInst::ICMP_ULT:
10587           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10588                                     LHS, V, getConstant(Min), Context))
10589             return true;
10590           break;
10591 
10592         default:
10593           // No change
10594           break;
10595       }
10596     }
10597   }
10598 
10599   // Check whether the actual condition is beyond sufficient.
10600   if (FoundPred == ICmpInst::ICMP_EQ)
10601     if (ICmpInst::isTrueWhenEqual(Pred))
10602       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10603         return true;
10604   if (Pred == ICmpInst::ICMP_NE)
10605     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10606       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10607                                 Context))
10608         return true;
10609 
10610   // Otherwise assume the worst.
10611   return false;
10612 }
10613 
10614 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10615                                      const SCEV *&L, const SCEV *&R,
10616                                      SCEV::NoWrapFlags &Flags) {
10617   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10618   if (!AE || AE->getNumOperands() != 2)
10619     return false;
10620 
10621   L = AE->getOperand(0);
10622   R = AE->getOperand(1);
10623   Flags = AE->getNoWrapFlags();
10624   return true;
10625 }
10626 
10627 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10628                                                            const SCEV *Less) {
10629   // We avoid subtracting expressions here because this function is usually
10630   // fairly deep in the call stack (i.e. is called many times).
10631 
10632   // X - X = 0.
10633   if (More == Less)
10634     return APInt(getTypeSizeInBits(More->getType()), 0);
10635 
10636   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10637     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10638     const auto *MAR = cast<SCEVAddRecExpr>(More);
10639 
10640     if (LAR->getLoop() != MAR->getLoop())
10641       return None;
10642 
10643     // We look at affine expressions only; not for correctness but to keep
10644     // getStepRecurrence cheap.
10645     if (!LAR->isAffine() || !MAR->isAffine())
10646       return None;
10647 
10648     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10649       return None;
10650 
10651     Less = LAR->getStart();
10652     More = MAR->getStart();
10653 
10654     // fall through
10655   }
10656 
10657   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10658     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10659     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10660     return M - L;
10661   }
10662 
10663   SCEV::NoWrapFlags Flags;
10664   const SCEV *LLess = nullptr, *RLess = nullptr;
10665   const SCEV *LMore = nullptr, *RMore = nullptr;
10666   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10667   // Compare (X + C1) vs X.
10668   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10669     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10670       if (RLess == More)
10671         return -(C1->getAPInt());
10672 
10673   // Compare X vs (X + C2).
10674   if (splitBinaryAdd(More, LMore, RMore, Flags))
10675     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10676       if (RMore == Less)
10677         return C2->getAPInt();
10678 
10679   // Compare (X + C1) vs (X + C2).
10680   if (C1 && C2 && RLess == RMore)
10681     return C2->getAPInt() - C1->getAPInt();
10682 
10683   return None;
10684 }
10685 
10686 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10687     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10688     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10689   // Try to recognize the following pattern:
10690   //
10691   //   FoundRHS = ...
10692   // ...
10693   // loop:
10694   //   FoundLHS = {Start,+,W}
10695   // context_bb: // Basic block from the same loop
10696   //   known(Pred, FoundLHS, FoundRHS)
10697   //
10698   // If some predicate is known in the context of a loop, it is also known on
10699   // each iteration of this loop, including the first iteration. Therefore, in
10700   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10701   // prove the original pred using this fact.
10702   if (!Context)
10703     return false;
10704   const BasicBlock *ContextBB = Context->getParent();
10705   // Make sure AR varies in the context block.
10706   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10707     const Loop *L = AR->getLoop();
10708     // Make sure that context belongs to the loop and executes on 1st iteration
10709     // (if it ever executes at all).
10710     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10711       return false;
10712     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10713       return false;
10714     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10715   }
10716 
10717   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10718     const Loop *L = AR->getLoop();
10719     // Make sure that context belongs to the loop and executes on 1st iteration
10720     // (if it ever executes at all).
10721     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10722       return false;
10723     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10724       return false;
10725     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10726   }
10727 
10728   return false;
10729 }
10730 
10731 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10732     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10733     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10734   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10735     return false;
10736 
10737   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10738   if (!AddRecLHS)
10739     return false;
10740 
10741   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10742   if (!AddRecFoundLHS)
10743     return false;
10744 
10745   // We'd like to let SCEV reason about control dependencies, so we constrain
10746   // both the inequalities to be about add recurrences on the same loop.  This
10747   // way we can use isLoopEntryGuardedByCond later.
10748 
10749   const Loop *L = AddRecFoundLHS->getLoop();
10750   if (L != AddRecLHS->getLoop())
10751     return false;
10752 
10753   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10754   //
10755   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10756   //                                                                  ... (2)
10757   //
10758   // Informal proof for (2), assuming (1) [*]:
10759   //
10760   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10761   //
10762   // Then
10763   //
10764   //       FoundLHS s< FoundRHS s< INT_MIN - C
10765   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10766   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10767   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10768   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10769   // <=>  FoundLHS + C s< FoundRHS + C
10770   //
10771   // [*]: (1) can be proved by ruling out overflow.
10772   //
10773   // [**]: This can be proved by analyzing all the four possibilities:
10774   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10775   //    (A s>= 0, B s>= 0).
10776   //
10777   // Note:
10778   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10779   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10780   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10781   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10782   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10783   // C)".
10784 
10785   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10786   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10787   if (!LDiff || !RDiff || *LDiff != *RDiff)
10788     return false;
10789 
10790   if (LDiff->isMinValue())
10791     return true;
10792 
10793   APInt FoundRHSLimit;
10794 
10795   if (Pred == CmpInst::ICMP_ULT) {
10796     FoundRHSLimit = -(*RDiff);
10797   } else {
10798     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10799     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10800   }
10801 
10802   // Try to prove (1) or (2), as needed.
10803   return isAvailableAtLoopEntry(FoundRHS, L) &&
10804          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10805                                   getConstant(FoundRHSLimit));
10806 }
10807 
10808 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10809                                         const SCEV *LHS, const SCEV *RHS,
10810                                         const SCEV *FoundLHS,
10811                                         const SCEV *FoundRHS, unsigned Depth) {
10812   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10813 
10814   auto ClearOnExit = make_scope_exit([&]() {
10815     if (LPhi) {
10816       bool Erased = PendingMerges.erase(LPhi);
10817       assert(Erased && "Failed to erase LPhi!");
10818       (void)Erased;
10819     }
10820     if (RPhi) {
10821       bool Erased = PendingMerges.erase(RPhi);
10822       assert(Erased && "Failed to erase RPhi!");
10823       (void)Erased;
10824     }
10825   });
10826 
10827   // Find respective Phis and check that they are not being pending.
10828   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10829     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10830       if (!PendingMerges.insert(Phi).second)
10831         return false;
10832       LPhi = Phi;
10833     }
10834   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10835     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10836       // If we detect a loop of Phi nodes being processed by this method, for
10837       // example:
10838       //
10839       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10840       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10841       //
10842       // we don't want to deal with a case that complex, so return conservative
10843       // answer false.
10844       if (!PendingMerges.insert(Phi).second)
10845         return false;
10846       RPhi = Phi;
10847     }
10848 
10849   // If none of LHS, RHS is a Phi, nothing to do here.
10850   if (!LPhi && !RPhi)
10851     return false;
10852 
10853   // If there is a SCEVUnknown Phi we are interested in, make it left.
10854   if (!LPhi) {
10855     std::swap(LHS, RHS);
10856     std::swap(FoundLHS, FoundRHS);
10857     std::swap(LPhi, RPhi);
10858     Pred = ICmpInst::getSwappedPredicate(Pred);
10859   }
10860 
10861   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10862   const BasicBlock *LBB = LPhi->getParent();
10863   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10864 
10865   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10866     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10867            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10868            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10869   };
10870 
10871   if (RPhi && RPhi->getParent() == LBB) {
10872     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10873     // If we compare two Phis from the same block, and for each entry block
10874     // the predicate is true for incoming values from this block, then the
10875     // predicate is also true for the Phis.
10876     for (const BasicBlock *IncBB : predecessors(LBB)) {
10877       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10878       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10879       if (!ProvedEasily(L, R))
10880         return false;
10881     }
10882   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10883     // Case two: RHS is also a Phi from the same basic block, and it is an
10884     // AddRec. It means that there is a loop which has both AddRec and Unknown
10885     // PHIs, for it we can compare incoming values of AddRec from above the loop
10886     // and latch with their respective incoming values of LPhi.
10887     // TODO: Generalize to handle loops with many inputs in a header.
10888     if (LPhi->getNumIncomingValues() != 2) return false;
10889 
10890     auto *RLoop = RAR->getLoop();
10891     auto *Predecessor = RLoop->getLoopPredecessor();
10892     assert(Predecessor && "Loop with AddRec with no predecessor?");
10893     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10894     if (!ProvedEasily(L1, RAR->getStart()))
10895       return false;
10896     auto *Latch = RLoop->getLoopLatch();
10897     assert(Latch && "Loop with AddRec with no latch?");
10898     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10899     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10900       return false;
10901   } else {
10902     // In all other cases go over inputs of LHS and compare each of them to RHS,
10903     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10904     // At this point RHS is either a non-Phi, or it is a Phi from some block
10905     // different from LBB.
10906     for (const BasicBlock *IncBB : predecessors(LBB)) {
10907       // Check that RHS is available in this block.
10908       if (!dominates(RHS, IncBB))
10909         return false;
10910       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10911       // Make sure L does not refer to a value from a potentially previous
10912       // iteration of a loop.
10913       if (!properlyDominates(L, IncBB))
10914         return false;
10915       if (!ProvedEasily(L, RHS))
10916         return false;
10917     }
10918   }
10919   return true;
10920 }
10921 
10922 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10923                                             const SCEV *LHS, const SCEV *RHS,
10924                                             const SCEV *FoundLHS,
10925                                             const SCEV *FoundRHS,
10926                                             const Instruction *Context) {
10927   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10928     return true;
10929 
10930   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10931     return true;
10932 
10933   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10934                                           Context))
10935     return true;
10936 
10937   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10938                                      FoundLHS, FoundRHS);
10939 }
10940 
10941 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10942 template <typename MinMaxExprType>
10943 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10944                                  const SCEV *Candidate) {
10945   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10946   if (!MinMaxExpr)
10947     return false;
10948 
10949   return is_contained(MinMaxExpr->operands(), Candidate);
10950 }
10951 
10952 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10953                                            ICmpInst::Predicate Pred,
10954                                            const SCEV *LHS, const SCEV *RHS) {
10955   // If both sides are affine addrecs for the same loop, with equal
10956   // steps, and we know the recurrences don't wrap, then we only
10957   // need to check the predicate on the starting values.
10958 
10959   if (!ICmpInst::isRelational(Pred))
10960     return false;
10961 
10962   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10963   if (!LAR)
10964     return false;
10965   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10966   if (!RAR)
10967     return false;
10968   if (LAR->getLoop() != RAR->getLoop())
10969     return false;
10970   if (!LAR->isAffine() || !RAR->isAffine())
10971     return false;
10972 
10973   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10974     return false;
10975 
10976   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10977                          SCEV::FlagNSW : SCEV::FlagNUW;
10978   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10979     return false;
10980 
10981   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10982 }
10983 
10984 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10985 /// expression?
10986 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10987                                         ICmpInst::Predicate Pred,
10988                                         const SCEV *LHS, const SCEV *RHS) {
10989   switch (Pred) {
10990   default:
10991     return false;
10992 
10993   case ICmpInst::ICMP_SGE:
10994     std::swap(LHS, RHS);
10995     LLVM_FALLTHROUGH;
10996   case ICmpInst::ICMP_SLE:
10997     return
10998         // min(A, ...) <= A
10999         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11000         // A <= max(A, ...)
11001         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11002 
11003   case ICmpInst::ICMP_UGE:
11004     std::swap(LHS, RHS);
11005     LLVM_FALLTHROUGH;
11006   case ICmpInst::ICMP_ULE:
11007     return
11008         // min(A, ...) <= A
11009         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11010         // A <= max(A, ...)
11011         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11012   }
11013 
11014   llvm_unreachable("covered switch fell through?!");
11015 }
11016 
11017 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11018                                              const SCEV *LHS, const SCEV *RHS,
11019                                              const SCEV *FoundLHS,
11020                                              const SCEV *FoundRHS,
11021                                              unsigned Depth) {
11022   assert(getTypeSizeInBits(LHS->getType()) ==
11023              getTypeSizeInBits(RHS->getType()) &&
11024          "LHS and RHS have different sizes?");
11025   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11026              getTypeSizeInBits(FoundRHS->getType()) &&
11027          "FoundLHS and FoundRHS have different sizes?");
11028   // We want to avoid hurting the compile time with analysis of too big trees.
11029   if (Depth > MaxSCEVOperationsImplicationDepth)
11030     return false;
11031 
11032   // We only want to work with GT comparison so far.
11033   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11034     Pred = CmpInst::getSwappedPredicate(Pred);
11035     std::swap(LHS, RHS);
11036     std::swap(FoundLHS, FoundRHS);
11037   }
11038 
11039   // For unsigned, try to reduce it to corresponding signed comparison.
11040   if (Pred == ICmpInst::ICMP_UGT)
11041     // We can replace unsigned predicate with its signed counterpart if all
11042     // involved values are non-negative.
11043     // TODO: We could have better support for unsigned.
11044     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11045       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11046       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11047       // use this fact to prove that LHS and RHS are non-negative.
11048       const SCEV *MinusOne = getMinusOne(LHS->getType());
11049       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11050                                 FoundRHS) &&
11051           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11052                                 FoundRHS))
11053         Pred = ICmpInst::ICMP_SGT;
11054     }
11055 
11056   if (Pred != ICmpInst::ICMP_SGT)
11057     return false;
11058 
11059   auto GetOpFromSExt = [&](const SCEV *S) {
11060     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11061       return Ext->getOperand();
11062     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11063     // the constant in some cases.
11064     return S;
11065   };
11066 
11067   // Acquire values from extensions.
11068   auto *OrigLHS = LHS;
11069   auto *OrigFoundLHS = FoundLHS;
11070   LHS = GetOpFromSExt(LHS);
11071   FoundLHS = GetOpFromSExt(FoundLHS);
11072 
11073   // Is the SGT predicate can be proved trivially or using the found context.
11074   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11075     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11076            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11077                                   FoundRHS, Depth + 1);
11078   };
11079 
11080   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11081     // We want to avoid creation of any new non-constant SCEV. Since we are
11082     // going to compare the operands to RHS, we should be certain that we don't
11083     // need any size extensions for this. So let's decline all cases when the
11084     // sizes of types of LHS and RHS do not match.
11085     // TODO: Maybe try to get RHS from sext to catch more cases?
11086     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11087       return false;
11088 
11089     // Should not overflow.
11090     if (!LHSAddExpr->hasNoSignedWrap())
11091       return false;
11092 
11093     auto *LL = LHSAddExpr->getOperand(0);
11094     auto *LR = LHSAddExpr->getOperand(1);
11095     auto *MinusOne = getMinusOne(RHS->getType());
11096 
11097     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11098     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11099       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11100     };
11101     // Try to prove the following rule:
11102     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11103     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11104     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11105       return true;
11106   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11107     Value *LL, *LR;
11108     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11109 
11110     using namespace llvm::PatternMatch;
11111 
11112     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11113       // Rules for division.
11114       // We are going to perform some comparisons with Denominator and its
11115       // derivative expressions. In general case, creating a SCEV for it may
11116       // lead to a complex analysis of the entire graph, and in particular it
11117       // can request trip count recalculation for the same loop. This would
11118       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11119       // this, we only want to create SCEVs that are constants in this section.
11120       // So we bail if Denominator is not a constant.
11121       if (!isa<ConstantInt>(LR))
11122         return false;
11123 
11124       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11125 
11126       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11127       // then a SCEV for the numerator already exists and matches with FoundLHS.
11128       auto *Numerator = getExistingSCEV(LL);
11129       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11130         return false;
11131 
11132       // Make sure that the numerator matches with FoundLHS and the denominator
11133       // is positive.
11134       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11135         return false;
11136 
11137       auto *DTy = Denominator->getType();
11138       auto *FRHSTy = FoundRHS->getType();
11139       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11140         // One of types is a pointer and another one is not. We cannot extend
11141         // them properly to a wider type, so let us just reject this case.
11142         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11143         // to avoid this check.
11144         return false;
11145 
11146       // Given that:
11147       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11148       auto *WTy = getWiderType(DTy, FRHSTy);
11149       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11150       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11151 
11152       // Try to prove the following rule:
11153       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11154       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11155       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11156       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11157       if (isKnownNonPositive(RHS) &&
11158           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11159         return true;
11160 
11161       // Try to prove the following rule:
11162       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11163       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11164       // If we divide it by Denominator > 2, then:
11165       // 1. If FoundLHS is negative, then the result is 0.
11166       // 2. If FoundLHS is non-negative, then the result is non-negative.
11167       // Anyways, the result is non-negative.
11168       auto *MinusOne = getMinusOne(WTy);
11169       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11170       if (isKnownNegative(RHS) &&
11171           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11172         return true;
11173     }
11174   }
11175 
11176   // If our expression contained SCEVUnknown Phis, and we split it down and now
11177   // need to prove something for them, try to prove the predicate for every
11178   // possible incoming values of those Phis.
11179   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11180     return true;
11181 
11182   return false;
11183 }
11184 
11185 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11186                                         const SCEV *LHS, const SCEV *RHS) {
11187   // zext x u<= sext x, sext x s<= zext x
11188   switch (Pred) {
11189   case ICmpInst::ICMP_SGE:
11190     std::swap(LHS, RHS);
11191     LLVM_FALLTHROUGH;
11192   case ICmpInst::ICMP_SLE: {
11193     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11194     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11195     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11196     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11197       return true;
11198     break;
11199   }
11200   case ICmpInst::ICMP_UGE:
11201     std::swap(LHS, RHS);
11202     LLVM_FALLTHROUGH;
11203   case ICmpInst::ICMP_ULE: {
11204     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11205     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11206     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11207     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11208       return true;
11209     break;
11210   }
11211   default:
11212     break;
11213   };
11214   return false;
11215 }
11216 
11217 bool
11218 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11219                                            const SCEV *LHS, const SCEV *RHS) {
11220   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11221          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11222          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11223          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11224          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11225 }
11226 
11227 bool
11228 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11229                                              const SCEV *LHS, const SCEV *RHS,
11230                                              const SCEV *FoundLHS,
11231                                              const SCEV *FoundRHS) {
11232   switch (Pred) {
11233   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11234   case ICmpInst::ICMP_EQ:
11235   case ICmpInst::ICMP_NE:
11236     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11237       return true;
11238     break;
11239   case ICmpInst::ICMP_SLT:
11240   case ICmpInst::ICMP_SLE:
11241     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11242         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11243       return true;
11244     break;
11245   case ICmpInst::ICMP_SGT:
11246   case ICmpInst::ICMP_SGE:
11247     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11248         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11249       return true;
11250     break;
11251   case ICmpInst::ICMP_ULT:
11252   case ICmpInst::ICMP_ULE:
11253     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11254         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11255       return true;
11256     break;
11257   case ICmpInst::ICMP_UGT:
11258   case ICmpInst::ICMP_UGE:
11259     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11260         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11261       return true;
11262     break;
11263   }
11264 
11265   // Maybe it can be proved via operations?
11266   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11267     return true;
11268 
11269   return false;
11270 }
11271 
11272 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11273                                                      const SCEV *LHS,
11274                                                      const SCEV *RHS,
11275                                                      const SCEV *FoundLHS,
11276                                                      const SCEV *FoundRHS) {
11277   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11278     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11279     // reduce the compile time impact of this optimization.
11280     return false;
11281 
11282   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11283   if (!Addend)
11284     return false;
11285 
11286   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11287 
11288   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11289   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11290   ConstantRange FoundLHSRange =
11291       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11292 
11293   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11294   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11295 
11296   // We can also compute the range of values for `LHS` that satisfy the
11297   // consequent, "`LHS` `Pred` `RHS`":
11298   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11299   // The antecedent implies the consequent if every value of `LHS` that
11300   // satisfies the antecedent also satisfies the consequent.
11301   return LHSRange.icmp(Pred, ConstRHS);
11302 }
11303 
11304 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11305                                         bool IsSigned) {
11306   assert(isKnownPositive(Stride) && "Positive stride expected!");
11307 
11308   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11309   const SCEV *One = getOne(Stride->getType());
11310 
11311   if (IsSigned) {
11312     APInt MaxRHS = getSignedRangeMax(RHS);
11313     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11314     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11315 
11316     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11317     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11318   }
11319 
11320   APInt MaxRHS = getUnsignedRangeMax(RHS);
11321   APInt MaxValue = APInt::getMaxValue(BitWidth);
11322   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11323 
11324   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11325   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11326 }
11327 
11328 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11329                                         bool IsSigned) {
11330 
11331   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11332   const SCEV *One = getOne(Stride->getType());
11333 
11334   if (IsSigned) {
11335     APInt MinRHS = getSignedRangeMin(RHS);
11336     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11337     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11338 
11339     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11340     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11341   }
11342 
11343   APInt MinRHS = getUnsignedRangeMin(RHS);
11344   APInt MinValue = APInt::getMinValue(BitWidth);
11345   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11346 
11347   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11348   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11349 }
11350 
11351 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta,
11352                                             const SCEV *Step) {
11353   const SCEV *One = getOne(Step->getType());
11354   Delta = getAddExpr(Delta, getMinusSCEV(Step, One));
11355   return getUDivExpr(Delta, Step);
11356 }
11357 
11358 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11359                                                     const SCEV *Stride,
11360                                                     const SCEV *End,
11361                                                     unsigned BitWidth,
11362                                                     bool IsSigned) {
11363 
11364   assert(!isKnownNonPositive(Stride) &&
11365          "Stride is expected strictly positive!");
11366   // Calculate the maximum backedge count based on the range of values
11367   // permitted by Start, End, and Stride.
11368   const SCEV *MaxBECount;
11369   APInt MinStart =
11370       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11371 
11372   APInt StrideForMaxBECount =
11373       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11374 
11375   // We already know that the stride is positive, so we paper over conservatism
11376   // in our range computation by forcing StrideForMaxBECount to be at least one.
11377   // In theory this is unnecessary, but we expect MaxBECount to be a
11378   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11379   // is nothing to constant fold it to).
11380   APInt One(BitWidth, 1, IsSigned);
11381   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11382 
11383   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11384                             : APInt::getMaxValue(BitWidth);
11385   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11386 
11387   // Although End can be a MAX expression we estimate MaxEnd considering only
11388   // the case End = RHS of the loop termination condition. This is safe because
11389   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11390   // taken count.
11391   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11392                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11393 
11394   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11395                               getConstant(StrideForMaxBECount) /* Step */);
11396 
11397   return MaxBECount;
11398 }
11399 
11400 ScalarEvolution::ExitLimit
11401 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11402                                   const Loop *L, bool IsSigned,
11403                                   bool ControlsExit, bool AllowPredicates) {
11404   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11405 
11406   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11407   bool PredicatedIV = false;
11408 
11409   if (!IV && AllowPredicates) {
11410     // Try to make this an AddRec using runtime tests, in the first X
11411     // iterations of this loop, where X is the SCEV expression found by the
11412     // algorithm below.
11413     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11414     PredicatedIV = true;
11415   }
11416 
11417   // Avoid weird loops
11418   if (!IV || IV->getLoop() != L || !IV->isAffine())
11419     return getCouldNotCompute();
11420 
11421   bool NoWrap = ControlsExit &&
11422                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11423 
11424   const SCEV *Stride = IV->getStepRecurrence(*this);
11425 
11426   bool PositiveStride = isKnownPositive(Stride);
11427 
11428   // Avoid negative or zero stride values.
11429   if (!PositiveStride) {
11430     // We can compute the correct backedge taken count for loops with unknown
11431     // strides if we can prove that the loop is not an infinite loop with side
11432     // effects. Here's the loop structure we are trying to handle -
11433     //
11434     // i = start
11435     // do {
11436     //   A[i] = i;
11437     //   i += s;
11438     // } while (i < end);
11439     //
11440     // The backedge taken count for such loops is evaluated as -
11441     // (max(end, start + stride) - start - 1) /u stride
11442     //
11443     // The additional preconditions that we need to check to prove correctness
11444     // of the above formula is as follows -
11445     //
11446     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11447     //    NoWrap flag).
11448     // b) loop is single exit with no side effects.
11449     //
11450     //
11451     // Precondition a) implies that if the stride is negative, this is a single
11452     // trip loop. The backedge taken count formula reduces to zero in this case.
11453     //
11454     // Precondition b) implies that the unknown stride cannot be zero otherwise
11455     // we have UB.
11456     //
11457     // The positive stride case is the same as isKnownPositive(Stride) returning
11458     // true (original behavior of the function).
11459     //
11460     // We want to make sure that the stride is truly unknown as there are edge
11461     // cases where ScalarEvolution propagates no wrap flags to the
11462     // post-increment/decrement IV even though the increment/decrement operation
11463     // itself is wrapping. The computed backedge taken count may be wrong in
11464     // such cases. This is prevented by checking that the stride is not known to
11465     // be either positive or non-positive. For example, no wrap flags are
11466     // propagated to the post-increment IV of this loop with a trip count of 2 -
11467     //
11468     // unsigned char i;
11469     // for(i=127; i<128; i+=129)
11470     //   A[i] = i;
11471     //
11472     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11473         !loopIsFiniteByAssumption(L))
11474       return getCouldNotCompute();
11475   } else if (!Stride->isOne() && !NoWrap) {
11476     auto isUBOnWrap = [&]() {
11477       // Can we prove this loop *must* be UB if overflow of IV occurs?
11478       // Reasoning goes as follows:
11479       // * Suppose the IV did self wrap.
11480       // * If Stride evenly divides the iteration space, then once wrap
11481       //   occurs, the loop must revisit the same values.
11482       // * We know that RHS is invariant, and that none of those values
11483       //   caused this exit to be taken previously.  Thus, this exit is
11484       //   dynamically dead.
11485       // * If this is the sole exit, then a dead exit implies the loop
11486       //   must be infinite if there are no abnormal exits.
11487       // * If the loop were infinite, then it must either not be mustprogress
11488       //   or have side effects. Otherwise, it must be UB.
11489       // * It can't (by assumption), be UB so we have contradicted our
11490       //   premise and can conclude the IV did not in fact self-wrap.
11491       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11492       // follows trivially from the fact that every (un)signed-wrapped, but
11493       // not self-wrapped value must be LT than the last value before
11494       // (un)signed wrap.  Since we know that last value didn't exit, nor
11495       // will any smaller one.
11496 
11497       if (!isLoopInvariant(RHS, L))
11498         return false;
11499 
11500       auto *StrideC = dyn_cast<SCEVConstant>(Stride);
11501       if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11502         return false;
11503 
11504       if (!ControlsExit || !loopHasNoAbnormalExits(L))
11505         return false;
11506 
11507       return loopIsFiniteByAssumption(L);
11508     };
11509 
11510     // Avoid proven overflow cases: this will ensure that the backedge taken
11511     // count will not generate any unsigned overflow. Relaxed no-overflow
11512     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11513     // undefined behaviors like the case of C language.
11514     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11515       return getCouldNotCompute();
11516   }
11517 
11518   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11519                                       : ICmpInst::ICMP_ULT;
11520   const SCEV *Start = IV->getStart();
11521   const SCEV *End = RHS;
11522   // When the RHS is not invariant, we do not know the end bound of the loop and
11523   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11524   // calculate the MaxBECount, given the start, stride and max value for the end
11525   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11526   // checked above).
11527   if (!isLoopInvariant(RHS, L)) {
11528     const SCEV *MaxBECount = computeMaxBECountForLT(
11529         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11530     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11531                      false /*MaxOrZero*/, Predicates);
11532   }
11533   // If the backedge is taken at least once, then it will be taken
11534   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11535   // is the LHS value of the less-than comparison the first time it is evaluated
11536   // and End is the RHS.
11537   const SCEV *BECountIfBackedgeTaken =
11538     computeBECount(getMinusSCEV(End, Start), Stride);
11539   // If the loop entry is guarded by the result of the backedge test of the
11540   // first loop iteration, then we know the backedge will be taken at least
11541   // once and so the backedge taken count is as above. If not then we use the
11542   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11543   // as if the backedge is taken at least once max(End,Start) is End and so the
11544   // result is as above, and if not max(End,Start) is Start so we get a backedge
11545   // count of zero.
11546   const SCEV *BECount;
11547   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11548     BECount = BECountIfBackedgeTaken;
11549   else {
11550     // If we know that RHS >= Start in the context of loop, then we know that
11551     // max(RHS, Start) = RHS at this point.
11552     if (isLoopEntryGuardedByCond(
11553             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11554       End = RHS;
11555     else
11556       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11557     BECount = computeBECount(getMinusSCEV(End, Start), Stride);
11558   }
11559 
11560   const SCEV *MaxBECount;
11561   bool MaxOrZero = false;
11562   if (isa<SCEVConstant>(BECount))
11563     MaxBECount = BECount;
11564   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11565     // If we know exactly how many times the backedge will be taken if it's
11566     // taken at least once, then the backedge count will either be that or
11567     // zero.
11568     MaxBECount = BECountIfBackedgeTaken;
11569     MaxOrZero = true;
11570   } else {
11571     MaxBECount = computeMaxBECountForLT(
11572         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11573   }
11574 
11575   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11576       !isa<SCEVCouldNotCompute>(BECount))
11577     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11578 
11579   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11580 }
11581 
11582 ScalarEvolution::ExitLimit
11583 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11584                                      const Loop *L, bool IsSigned,
11585                                      bool ControlsExit, bool AllowPredicates) {
11586   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11587   // We handle only IV > Invariant
11588   if (!isLoopInvariant(RHS, L))
11589     return getCouldNotCompute();
11590 
11591   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11592   if (!IV && AllowPredicates)
11593     // Try to make this an AddRec using runtime tests, in the first X
11594     // iterations of this loop, where X is the SCEV expression found by the
11595     // algorithm below.
11596     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11597 
11598   // Avoid weird loops
11599   if (!IV || IV->getLoop() != L || !IV->isAffine())
11600     return getCouldNotCompute();
11601 
11602   bool NoWrap = ControlsExit &&
11603                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11604 
11605   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11606 
11607   // Avoid negative or zero stride values
11608   if (!isKnownPositive(Stride))
11609     return getCouldNotCompute();
11610 
11611   // Avoid proven overflow cases: this will ensure that the backedge taken count
11612   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11613   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11614   // behaviors like the case of C language.
11615   if (!Stride->isOne() && !NoWrap)
11616     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
11617       return getCouldNotCompute();
11618 
11619   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11620                                       : ICmpInst::ICMP_UGT;
11621 
11622   const SCEV *Start = IV->getStart();
11623   const SCEV *End = RHS;
11624   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11625     // If we know that Start >= RHS in the context of loop, then we know that
11626     // min(RHS, Start) = RHS at this point.
11627     if (isLoopEntryGuardedByCond(
11628             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11629       End = RHS;
11630     else
11631       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11632   }
11633 
11634   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride);
11635 
11636   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11637                             : getUnsignedRangeMax(Start);
11638 
11639   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11640                              : getUnsignedRangeMin(Stride);
11641 
11642   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11643   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11644                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11645 
11646   // Although End can be a MIN expression we estimate MinEnd considering only
11647   // the case End = RHS. This is safe because in the other case (Start - End)
11648   // is zero, leading to a zero maximum backedge taken count.
11649   APInt MinEnd =
11650     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11651              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11652 
11653   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11654                                ? BECount
11655                                : computeBECount(getConstant(MaxStart - MinEnd),
11656                                                 getConstant(MinStride));
11657 
11658   if (isa<SCEVCouldNotCompute>(MaxBECount))
11659     MaxBECount = BECount;
11660 
11661   return ExitLimit(BECount, MaxBECount, false, Predicates);
11662 }
11663 
11664 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11665                                                     ScalarEvolution &SE) const {
11666   if (Range.isFullSet())  // Infinite loop.
11667     return SE.getCouldNotCompute();
11668 
11669   // If the start is a non-zero constant, shift the range to simplify things.
11670   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11671     if (!SC->getValue()->isZero()) {
11672       SmallVector<const SCEV *, 4> Operands(operands());
11673       Operands[0] = SE.getZero(SC->getType());
11674       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11675                                              getNoWrapFlags(FlagNW));
11676       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11677         return ShiftedAddRec->getNumIterationsInRange(
11678             Range.subtract(SC->getAPInt()), SE);
11679       // This is strange and shouldn't happen.
11680       return SE.getCouldNotCompute();
11681     }
11682 
11683   // The only time we can solve this is when we have all constant indices.
11684   // Otherwise, we cannot determine the overflow conditions.
11685   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11686     return SE.getCouldNotCompute();
11687 
11688   // Okay at this point we know that all elements of the chrec are constants and
11689   // that the start element is zero.
11690 
11691   // First check to see if the range contains zero.  If not, the first
11692   // iteration exits.
11693   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11694   if (!Range.contains(APInt(BitWidth, 0)))
11695     return SE.getZero(getType());
11696 
11697   if (isAffine()) {
11698     // If this is an affine expression then we have this situation:
11699     //   Solve {0,+,A} in Range  ===  Ax in Range
11700 
11701     // We know that zero is in the range.  If A is positive then we know that
11702     // the upper value of the range must be the first possible exit value.
11703     // If A is negative then the lower of the range is the last possible loop
11704     // value.  Also note that we already checked for a full range.
11705     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11706     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11707 
11708     // The exit value should be (End+A)/A.
11709     APInt ExitVal = (End + A).udiv(A);
11710     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11711 
11712     // Evaluate at the exit value.  If we really did fall out of the valid
11713     // range, then we computed our trip count, otherwise wrap around or other
11714     // things must have happened.
11715     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11716     if (Range.contains(Val->getValue()))
11717       return SE.getCouldNotCompute();  // Something strange happened
11718 
11719     // Ensure that the previous value is in the range.  This is a sanity check.
11720     assert(Range.contains(
11721            EvaluateConstantChrecAtConstant(this,
11722            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11723            "Linear scev computation is off in a bad way!");
11724     return SE.getConstant(ExitValue);
11725   }
11726 
11727   if (isQuadratic()) {
11728     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11729       return SE.getConstant(S.getValue());
11730   }
11731 
11732   return SE.getCouldNotCompute();
11733 }
11734 
11735 const SCEVAddRecExpr *
11736 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11737   assert(getNumOperands() > 1 && "AddRec with zero step?");
11738   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11739   // but in this case we cannot guarantee that the value returned will be an
11740   // AddRec because SCEV does not have a fixed point where it stops
11741   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11742   // may happen if we reach arithmetic depth limit while simplifying. So we
11743   // construct the returned value explicitly.
11744   SmallVector<const SCEV *, 3> Ops;
11745   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11746   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11747   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11748     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11749   // We know that the last operand is not a constant zero (otherwise it would
11750   // have been popped out earlier). This guarantees us that if the result has
11751   // the same last operand, then it will also not be popped out, meaning that
11752   // the returned value will be an AddRec.
11753   const SCEV *Last = getOperand(getNumOperands() - 1);
11754   assert(!Last->isZero() && "Recurrency with zero step?");
11755   Ops.push_back(Last);
11756   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11757                                                SCEV::FlagAnyWrap));
11758 }
11759 
11760 // Return true when S contains at least an undef value.
11761 static inline bool containsUndefs(const SCEV *S) {
11762   return SCEVExprContains(S, [](const SCEV *S) {
11763     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11764       return isa<UndefValue>(SU->getValue());
11765     return false;
11766   });
11767 }
11768 
11769 namespace {
11770 
11771 // Collect all steps of SCEV expressions.
11772 struct SCEVCollectStrides {
11773   ScalarEvolution &SE;
11774   SmallVectorImpl<const SCEV *> &Strides;
11775 
11776   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11777       : SE(SE), Strides(S) {}
11778 
11779   bool follow(const SCEV *S) {
11780     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11781       Strides.push_back(AR->getStepRecurrence(SE));
11782     return true;
11783   }
11784 
11785   bool isDone() const { return false; }
11786 };
11787 
11788 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11789 struct SCEVCollectTerms {
11790   SmallVectorImpl<const SCEV *> &Terms;
11791 
11792   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11793 
11794   bool follow(const SCEV *S) {
11795     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11796         isa<SCEVSignExtendExpr>(S)) {
11797       if (!containsUndefs(S))
11798         Terms.push_back(S);
11799 
11800       // Stop recursion: once we collected a term, do not walk its operands.
11801       return false;
11802     }
11803 
11804     // Keep looking.
11805     return true;
11806   }
11807 
11808   bool isDone() const { return false; }
11809 };
11810 
11811 // Check if a SCEV contains an AddRecExpr.
11812 struct SCEVHasAddRec {
11813   bool &ContainsAddRec;
11814 
11815   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11816     ContainsAddRec = false;
11817   }
11818 
11819   bool follow(const SCEV *S) {
11820     if (isa<SCEVAddRecExpr>(S)) {
11821       ContainsAddRec = true;
11822 
11823       // Stop recursion: once we collected a term, do not walk its operands.
11824       return false;
11825     }
11826 
11827     // Keep looking.
11828     return true;
11829   }
11830 
11831   bool isDone() const { return false; }
11832 };
11833 
11834 // Find factors that are multiplied with an expression that (possibly as a
11835 // subexpression) contains an AddRecExpr. In the expression:
11836 //
11837 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11838 //
11839 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11840 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11841 // parameters as they form a product with an induction variable.
11842 //
11843 // This collector expects all array size parameters to be in the same MulExpr.
11844 // It might be necessary to later add support for collecting parameters that are
11845 // spread over different nested MulExpr.
11846 struct SCEVCollectAddRecMultiplies {
11847   SmallVectorImpl<const SCEV *> &Terms;
11848   ScalarEvolution &SE;
11849 
11850   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11851       : Terms(T), SE(SE) {}
11852 
11853   bool follow(const SCEV *S) {
11854     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11855       bool HasAddRec = false;
11856       SmallVector<const SCEV *, 0> Operands;
11857       for (auto Op : Mul->operands()) {
11858         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11859         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11860           Operands.push_back(Op);
11861         } else if (Unknown) {
11862           HasAddRec = true;
11863         } else {
11864           bool ContainsAddRec = false;
11865           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11866           visitAll(Op, ContiansAddRec);
11867           HasAddRec |= ContainsAddRec;
11868         }
11869       }
11870       if (Operands.size() == 0)
11871         return true;
11872 
11873       if (!HasAddRec)
11874         return false;
11875 
11876       Terms.push_back(SE.getMulExpr(Operands));
11877       // Stop recursion: once we collected a term, do not walk its operands.
11878       return false;
11879     }
11880 
11881     // Keep looking.
11882     return true;
11883   }
11884 
11885   bool isDone() const { return false; }
11886 };
11887 
11888 } // end anonymous namespace
11889 
11890 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11891 /// two places:
11892 ///   1) The strides of AddRec expressions.
11893 ///   2) Unknowns that are multiplied with AddRec expressions.
11894 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11895     SmallVectorImpl<const SCEV *> &Terms) {
11896   SmallVector<const SCEV *, 4> Strides;
11897   SCEVCollectStrides StrideCollector(*this, Strides);
11898   visitAll(Expr, StrideCollector);
11899 
11900   LLVM_DEBUG({
11901     dbgs() << "Strides:\n";
11902     for (const SCEV *S : Strides)
11903       dbgs() << *S << "\n";
11904   });
11905 
11906   for (const SCEV *S : Strides) {
11907     SCEVCollectTerms TermCollector(Terms);
11908     visitAll(S, TermCollector);
11909   }
11910 
11911   LLVM_DEBUG({
11912     dbgs() << "Terms:\n";
11913     for (const SCEV *T : Terms)
11914       dbgs() << *T << "\n";
11915   });
11916 
11917   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11918   visitAll(Expr, MulCollector);
11919 }
11920 
11921 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11922                                    SmallVectorImpl<const SCEV *> &Terms,
11923                                    SmallVectorImpl<const SCEV *> &Sizes) {
11924   int Last = Terms.size() - 1;
11925   const SCEV *Step = Terms[Last];
11926 
11927   // End of recursion.
11928   if (Last == 0) {
11929     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11930       SmallVector<const SCEV *, 2> Qs;
11931       for (const SCEV *Op : M->operands())
11932         if (!isa<SCEVConstant>(Op))
11933           Qs.push_back(Op);
11934 
11935       Step = SE.getMulExpr(Qs);
11936     }
11937 
11938     Sizes.push_back(Step);
11939     return true;
11940   }
11941 
11942   for (const SCEV *&Term : Terms) {
11943     // Normalize the terms before the next call to findArrayDimensionsRec.
11944     const SCEV *Q, *R;
11945     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11946 
11947     // Bail out when GCD does not evenly divide one of the terms.
11948     if (!R->isZero())
11949       return false;
11950 
11951     Term = Q;
11952   }
11953 
11954   // Remove all SCEVConstants.
11955   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11956 
11957   if (Terms.size() > 0)
11958     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11959       return false;
11960 
11961   Sizes.push_back(Step);
11962   return true;
11963 }
11964 
11965 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11966 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11967   for (const SCEV *T : Terms)
11968     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11969       return true;
11970 
11971   return false;
11972 }
11973 
11974 // Return the number of product terms in S.
11975 static inline int numberOfTerms(const SCEV *S) {
11976   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11977     return Expr->getNumOperands();
11978   return 1;
11979 }
11980 
11981 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11982   if (isa<SCEVConstant>(T))
11983     return nullptr;
11984 
11985   if (isa<SCEVUnknown>(T))
11986     return T;
11987 
11988   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11989     SmallVector<const SCEV *, 2> Factors;
11990     for (const SCEV *Op : M->operands())
11991       if (!isa<SCEVConstant>(Op))
11992         Factors.push_back(Op);
11993 
11994     return SE.getMulExpr(Factors);
11995   }
11996 
11997   return T;
11998 }
11999 
12000 /// Return the size of an element read or written by Inst.
12001 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12002   Type *Ty;
12003   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12004     Ty = Store->getValueOperand()->getType();
12005   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12006     Ty = Load->getType();
12007   else
12008     return nullptr;
12009 
12010   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12011   return getSizeOfExpr(ETy, Ty);
12012 }
12013 
12014 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
12015                                           SmallVectorImpl<const SCEV *> &Sizes,
12016                                           const SCEV *ElementSize) {
12017   if (Terms.size() < 1 || !ElementSize)
12018     return;
12019 
12020   // Early return when Terms do not contain parameters: we do not delinearize
12021   // non parametric SCEVs.
12022   if (!containsParameters(Terms))
12023     return;
12024 
12025   LLVM_DEBUG({
12026     dbgs() << "Terms:\n";
12027     for (const SCEV *T : Terms)
12028       dbgs() << *T << "\n";
12029   });
12030 
12031   // Remove duplicates.
12032   array_pod_sort(Terms.begin(), Terms.end());
12033   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
12034 
12035   // Put larger terms first.
12036   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
12037     return numberOfTerms(LHS) > numberOfTerms(RHS);
12038   });
12039 
12040   // Try to divide all terms by the element size. If term is not divisible by
12041   // element size, proceed with the original term.
12042   for (const SCEV *&Term : Terms) {
12043     const SCEV *Q, *R;
12044     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
12045     if (!Q->isZero())
12046       Term = Q;
12047   }
12048 
12049   SmallVector<const SCEV *, 4> NewTerms;
12050 
12051   // Remove constant factors.
12052   for (const SCEV *T : Terms)
12053     if (const SCEV *NewT = removeConstantFactors(*this, T))
12054       NewTerms.push_back(NewT);
12055 
12056   LLVM_DEBUG({
12057     dbgs() << "Terms after sorting:\n";
12058     for (const SCEV *T : NewTerms)
12059       dbgs() << *T << "\n";
12060   });
12061 
12062   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
12063     Sizes.clear();
12064     return;
12065   }
12066 
12067   // The last element to be pushed into Sizes is the size of an element.
12068   Sizes.push_back(ElementSize);
12069 
12070   LLVM_DEBUG({
12071     dbgs() << "Sizes:\n";
12072     for (const SCEV *S : Sizes)
12073       dbgs() << *S << "\n";
12074   });
12075 }
12076 
12077 void ScalarEvolution::computeAccessFunctions(
12078     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
12079     SmallVectorImpl<const SCEV *> &Sizes) {
12080   // Early exit in case this SCEV is not an affine multivariate function.
12081   if (Sizes.empty())
12082     return;
12083 
12084   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
12085     if (!AR->isAffine())
12086       return;
12087 
12088   const SCEV *Res = Expr;
12089   int Last = Sizes.size() - 1;
12090   for (int i = Last; i >= 0; i--) {
12091     const SCEV *Q, *R;
12092     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
12093 
12094     LLVM_DEBUG({
12095       dbgs() << "Res: " << *Res << "\n";
12096       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
12097       dbgs() << "Res divided by Sizes[i]:\n";
12098       dbgs() << "Quotient: " << *Q << "\n";
12099       dbgs() << "Remainder: " << *R << "\n";
12100     });
12101 
12102     Res = Q;
12103 
12104     // Do not record the last subscript corresponding to the size of elements in
12105     // the array.
12106     if (i == Last) {
12107 
12108       // Bail out if the remainder is too complex.
12109       if (isa<SCEVAddRecExpr>(R)) {
12110         Subscripts.clear();
12111         Sizes.clear();
12112         return;
12113       }
12114 
12115       continue;
12116     }
12117 
12118     // Record the access function for the current subscript.
12119     Subscripts.push_back(R);
12120   }
12121 
12122   // Also push in last position the remainder of the last division: it will be
12123   // the access function of the innermost dimension.
12124   Subscripts.push_back(Res);
12125 
12126   std::reverse(Subscripts.begin(), Subscripts.end());
12127 
12128   LLVM_DEBUG({
12129     dbgs() << "Subscripts:\n";
12130     for (const SCEV *S : Subscripts)
12131       dbgs() << *S << "\n";
12132   });
12133 }
12134 
12135 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
12136 /// sizes of an array access. Returns the remainder of the delinearization that
12137 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
12138 /// the multiples of SCEV coefficients: that is a pattern matching of sub
12139 /// expressions in the stride and base of a SCEV corresponding to the
12140 /// computation of a GCD (greatest common divisor) of base and stride.  When
12141 /// SCEV->delinearize fails, it returns the SCEV unchanged.
12142 ///
12143 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
12144 ///
12145 ///  void foo(long n, long m, long o, double A[n][m][o]) {
12146 ///
12147 ///    for (long i = 0; i < n; i++)
12148 ///      for (long j = 0; j < m; j++)
12149 ///        for (long k = 0; k < o; k++)
12150 ///          A[i][j][k] = 1.0;
12151 ///  }
12152 ///
12153 /// the delinearization input is the following AddRec SCEV:
12154 ///
12155 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12156 ///
12157 /// From this SCEV, we are able to say that the base offset of the access is %A
12158 /// because it appears as an offset that does not divide any of the strides in
12159 /// the loops:
12160 ///
12161 ///  CHECK: Base offset: %A
12162 ///
12163 /// and then SCEV->delinearize determines the size of some of the dimensions of
12164 /// the array as these are the multiples by which the strides are happening:
12165 ///
12166 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12167 ///
12168 /// Note that the outermost dimension remains of UnknownSize because there are
12169 /// no strides that would help identifying the size of the last dimension: when
12170 /// the array has been statically allocated, one could compute the size of that
12171 /// dimension by dividing the overall size of the array by the size of the known
12172 /// dimensions: %m * %o * 8.
12173 ///
12174 /// Finally delinearize provides the access functions for the array reference
12175 /// that does correspond to A[i][j][k] of the above C testcase:
12176 ///
12177 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12178 ///
12179 /// The testcases are checking the output of a function pass:
12180 /// DelinearizationPass that walks through all loads and stores of a function
12181 /// asking for the SCEV of the memory access with respect to all enclosing
12182 /// loops, calling SCEV->delinearize on that and printing the results.
12183 void ScalarEvolution::delinearize(const SCEV *Expr,
12184                                  SmallVectorImpl<const SCEV *> &Subscripts,
12185                                  SmallVectorImpl<const SCEV *> &Sizes,
12186                                  const SCEV *ElementSize) {
12187   // First step: collect parametric terms.
12188   SmallVector<const SCEV *, 4> Terms;
12189   collectParametricTerms(Expr, Terms);
12190 
12191   if (Terms.empty())
12192     return;
12193 
12194   // Second step: find subscript sizes.
12195   findArrayDimensions(Terms, Sizes, ElementSize);
12196 
12197   if (Sizes.empty())
12198     return;
12199 
12200   // Third step: compute the access functions for each subscript.
12201   computeAccessFunctions(Expr, Subscripts, Sizes);
12202 
12203   if (Subscripts.empty())
12204     return;
12205 
12206   LLVM_DEBUG({
12207     dbgs() << "succeeded to delinearize " << *Expr << "\n";
12208     dbgs() << "ArrayDecl[UnknownSize]";
12209     for (const SCEV *S : Sizes)
12210       dbgs() << "[" << *S << "]";
12211 
12212     dbgs() << "\nArrayRef";
12213     for (const SCEV *S : Subscripts)
12214       dbgs() << "[" << *S << "]";
12215     dbgs() << "\n";
12216   });
12217 }
12218 
12219 bool ScalarEvolution::getIndexExpressionsFromGEP(
12220     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12221     SmallVectorImpl<int> &Sizes) {
12222   assert(Subscripts.empty() && Sizes.empty() &&
12223          "Expected output lists to be empty on entry to this function.");
12224   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12225   Type *Ty = GEP->getPointerOperandType();
12226   bool DroppedFirstDim = false;
12227   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12228     const SCEV *Expr = getSCEV(GEP->getOperand(i));
12229     if (i == 1) {
12230       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
12231         Ty = PtrTy->getElementType();
12232       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
12233         Ty = ArrayTy->getElementType();
12234       } else {
12235         Subscripts.clear();
12236         Sizes.clear();
12237         return false;
12238       }
12239       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12240         if (Const->getValue()->isZero()) {
12241           DroppedFirstDim = true;
12242           continue;
12243         }
12244       Subscripts.push_back(Expr);
12245       continue;
12246     }
12247 
12248     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12249     if (!ArrayTy) {
12250       Subscripts.clear();
12251       Sizes.clear();
12252       return false;
12253     }
12254 
12255     Subscripts.push_back(Expr);
12256     if (!(DroppedFirstDim && i == 2))
12257       Sizes.push_back(ArrayTy->getNumElements());
12258 
12259     Ty = ArrayTy->getElementType();
12260   }
12261   return !Subscripts.empty();
12262 }
12263 
12264 //===----------------------------------------------------------------------===//
12265 //                   SCEVCallbackVH Class Implementation
12266 //===----------------------------------------------------------------------===//
12267 
12268 void ScalarEvolution::SCEVCallbackVH::deleted() {
12269   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12270   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12271     SE->ConstantEvolutionLoopExitValue.erase(PN);
12272   SE->eraseValueFromMap(getValPtr());
12273   // this now dangles!
12274 }
12275 
12276 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12277   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12278 
12279   // Forget all the expressions associated with users of the old value,
12280   // so that future queries will recompute the expressions using the new
12281   // value.
12282   Value *Old = getValPtr();
12283   SmallVector<User *, 16> Worklist(Old->users());
12284   SmallPtrSet<User *, 8> Visited;
12285   while (!Worklist.empty()) {
12286     User *U = Worklist.pop_back_val();
12287     // Deleting the Old value will cause this to dangle. Postpone
12288     // that until everything else is done.
12289     if (U == Old)
12290       continue;
12291     if (!Visited.insert(U).second)
12292       continue;
12293     if (PHINode *PN = dyn_cast<PHINode>(U))
12294       SE->ConstantEvolutionLoopExitValue.erase(PN);
12295     SE->eraseValueFromMap(U);
12296     llvm::append_range(Worklist, U->users());
12297   }
12298   // Delete the Old value.
12299   if (PHINode *PN = dyn_cast<PHINode>(Old))
12300     SE->ConstantEvolutionLoopExitValue.erase(PN);
12301   SE->eraseValueFromMap(Old);
12302   // this now dangles!
12303 }
12304 
12305 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12306   : CallbackVH(V), SE(se) {}
12307 
12308 //===----------------------------------------------------------------------===//
12309 //                   ScalarEvolution Class Implementation
12310 //===----------------------------------------------------------------------===//
12311 
12312 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12313                                  AssumptionCache &AC, DominatorTree &DT,
12314                                  LoopInfo &LI)
12315     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12316       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12317       LoopDispositions(64), BlockDispositions(64) {
12318   // To use guards for proving predicates, we need to scan every instruction in
12319   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12320   // time if the IR does not actually contain any calls to
12321   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12322   //
12323   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12324   // to _add_ guards to the module when there weren't any before, and wants
12325   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12326   // efficient in lieu of being smart in that rather obscure case.
12327 
12328   auto *GuardDecl = F.getParent()->getFunction(
12329       Intrinsic::getName(Intrinsic::experimental_guard));
12330   HasGuards = GuardDecl && !GuardDecl->use_empty();
12331 }
12332 
12333 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12334     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12335       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12336       ValueExprMap(std::move(Arg.ValueExprMap)),
12337       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12338       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12339       PendingMerges(std::move(Arg.PendingMerges)),
12340       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12341       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12342       PredicatedBackedgeTakenCounts(
12343           std::move(Arg.PredicatedBackedgeTakenCounts)),
12344       ConstantEvolutionLoopExitValue(
12345           std::move(Arg.ConstantEvolutionLoopExitValue)),
12346       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12347       LoopDispositions(std::move(Arg.LoopDispositions)),
12348       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12349       BlockDispositions(std::move(Arg.BlockDispositions)),
12350       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12351       SignedRanges(std::move(Arg.SignedRanges)),
12352       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12353       UniquePreds(std::move(Arg.UniquePreds)),
12354       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12355       LoopUsers(std::move(Arg.LoopUsers)),
12356       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12357       FirstUnknown(Arg.FirstUnknown) {
12358   Arg.FirstUnknown = nullptr;
12359 }
12360 
12361 ScalarEvolution::~ScalarEvolution() {
12362   // Iterate through all the SCEVUnknown instances and call their
12363   // destructors, so that they release their references to their values.
12364   for (SCEVUnknown *U = FirstUnknown; U;) {
12365     SCEVUnknown *Tmp = U;
12366     U = U->Next;
12367     Tmp->~SCEVUnknown();
12368   }
12369   FirstUnknown = nullptr;
12370 
12371   ExprValueMap.clear();
12372   ValueExprMap.clear();
12373   HasRecMap.clear();
12374   BackedgeTakenCounts.clear();
12375   PredicatedBackedgeTakenCounts.clear();
12376 
12377   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12378   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12379   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12380   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12381   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12382 }
12383 
12384 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12385   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12386 }
12387 
12388 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12389                           const Loop *L) {
12390   // Print all inner loops first
12391   for (Loop *I : *L)
12392     PrintLoopInfo(OS, SE, I);
12393 
12394   OS << "Loop ";
12395   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12396   OS << ": ";
12397 
12398   SmallVector<BasicBlock *, 8> ExitingBlocks;
12399   L->getExitingBlocks(ExitingBlocks);
12400   if (ExitingBlocks.size() != 1)
12401     OS << "<multiple exits> ";
12402 
12403   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12404     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12405   else
12406     OS << "Unpredictable backedge-taken count.\n";
12407 
12408   if (ExitingBlocks.size() > 1)
12409     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12410       OS << "  exit count for " << ExitingBlock->getName() << ": "
12411          << *SE->getExitCount(L, ExitingBlock) << "\n";
12412     }
12413 
12414   OS << "Loop ";
12415   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12416   OS << ": ";
12417 
12418   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12419     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12420     if (SE->isBackedgeTakenCountMaxOrZero(L))
12421       OS << ", actual taken count either this or zero.";
12422   } else {
12423     OS << "Unpredictable max backedge-taken count. ";
12424   }
12425 
12426   OS << "\n"
12427         "Loop ";
12428   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12429   OS << ": ";
12430 
12431   SCEVUnionPredicate Pred;
12432   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12433   if (!isa<SCEVCouldNotCompute>(PBT)) {
12434     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12435     OS << " Predicates:\n";
12436     Pred.print(OS, 4);
12437   } else {
12438     OS << "Unpredictable predicated backedge-taken count. ";
12439   }
12440   OS << "\n";
12441 
12442   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12443     OS << "Loop ";
12444     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12445     OS << ": ";
12446     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12447   }
12448 }
12449 
12450 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12451   switch (LD) {
12452   case ScalarEvolution::LoopVariant:
12453     return "Variant";
12454   case ScalarEvolution::LoopInvariant:
12455     return "Invariant";
12456   case ScalarEvolution::LoopComputable:
12457     return "Computable";
12458   }
12459   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12460 }
12461 
12462 void ScalarEvolution::print(raw_ostream &OS) const {
12463   // ScalarEvolution's implementation of the print method is to print
12464   // out SCEV values of all instructions that are interesting. Doing
12465   // this potentially causes it to create new SCEV objects though,
12466   // which technically conflicts with the const qualifier. This isn't
12467   // observable from outside the class though, so casting away the
12468   // const isn't dangerous.
12469   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12470 
12471   if (ClassifyExpressions) {
12472     OS << "Classifying expressions for: ";
12473     F.printAsOperand(OS, /*PrintType=*/false);
12474     OS << "\n";
12475     for (Instruction &I : instructions(F))
12476       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12477         OS << I << '\n';
12478         OS << "  -->  ";
12479         const SCEV *SV = SE.getSCEV(&I);
12480         SV->print(OS);
12481         if (!isa<SCEVCouldNotCompute>(SV)) {
12482           OS << " U: ";
12483           SE.getUnsignedRange(SV).print(OS);
12484           OS << " S: ";
12485           SE.getSignedRange(SV).print(OS);
12486         }
12487 
12488         const Loop *L = LI.getLoopFor(I.getParent());
12489 
12490         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12491         if (AtUse != SV) {
12492           OS << "  -->  ";
12493           AtUse->print(OS);
12494           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12495             OS << " U: ";
12496             SE.getUnsignedRange(AtUse).print(OS);
12497             OS << " S: ";
12498             SE.getSignedRange(AtUse).print(OS);
12499           }
12500         }
12501 
12502         if (L) {
12503           OS << "\t\t" "Exits: ";
12504           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12505           if (!SE.isLoopInvariant(ExitValue, L)) {
12506             OS << "<<Unknown>>";
12507           } else {
12508             OS << *ExitValue;
12509           }
12510 
12511           bool First = true;
12512           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12513             if (First) {
12514               OS << "\t\t" "LoopDispositions: { ";
12515               First = false;
12516             } else {
12517               OS << ", ";
12518             }
12519 
12520             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12521             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12522           }
12523 
12524           for (auto *InnerL : depth_first(L)) {
12525             if (InnerL == L)
12526               continue;
12527             if (First) {
12528               OS << "\t\t" "LoopDispositions: { ";
12529               First = false;
12530             } else {
12531               OS << ", ";
12532             }
12533 
12534             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12535             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12536           }
12537 
12538           OS << " }";
12539         }
12540 
12541         OS << "\n";
12542       }
12543   }
12544 
12545   OS << "Determining loop execution counts for: ";
12546   F.printAsOperand(OS, /*PrintType=*/false);
12547   OS << "\n";
12548   for (Loop *I : LI)
12549     PrintLoopInfo(OS, &SE, I);
12550 }
12551 
12552 ScalarEvolution::LoopDisposition
12553 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12554   auto &Values = LoopDispositions[S];
12555   for (auto &V : Values) {
12556     if (V.getPointer() == L)
12557       return V.getInt();
12558   }
12559   Values.emplace_back(L, LoopVariant);
12560   LoopDisposition D = computeLoopDisposition(S, L);
12561   auto &Values2 = LoopDispositions[S];
12562   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12563     if (V.getPointer() == L) {
12564       V.setInt(D);
12565       break;
12566     }
12567   }
12568   return D;
12569 }
12570 
12571 ScalarEvolution::LoopDisposition
12572 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12573   switch (S->getSCEVType()) {
12574   case scConstant:
12575     return LoopInvariant;
12576   case scPtrToInt:
12577   case scTruncate:
12578   case scZeroExtend:
12579   case scSignExtend:
12580     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12581   case scAddRecExpr: {
12582     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12583 
12584     // If L is the addrec's loop, it's computable.
12585     if (AR->getLoop() == L)
12586       return LoopComputable;
12587 
12588     // Add recurrences are never invariant in the function-body (null loop).
12589     if (!L)
12590       return LoopVariant;
12591 
12592     // Everything that is not defined at loop entry is variant.
12593     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12594       return LoopVariant;
12595     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12596            " dominate the contained loop's header?");
12597 
12598     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12599     if (AR->getLoop()->contains(L))
12600       return LoopInvariant;
12601 
12602     // This recurrence is variant w.r.t. L if any of its operands
12603     // are variant.
12604     for (auto *Op : AR->operands())
12605       if (!isLoopInvariant(Op, L))
12606         return LoopVariant;
12607 
12608     // Otherwise it's loop-invariant.
12609     return LoopInvariant;
12610   }
12611   case scAddExpr:
12612   case scMulExpr:
12613   case scUMaxExpr:
12614   case scSMaxExpr:
12615   case scUMinExpr:
12616   case scSMinExpr: {
12617     bool HasVarying = false;
12618     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12619       LoopDisposition D = getLoopDisposition(Op, L);
12620       if (D == LoopVariant)
12621         return LoopVariant;
12622       if (D == LoopComputable)
12623         HasVarying = true;
12624     }
12625     return HasVarying ? LoopComputable : LoopInvariant;
12626   }
12627   case scUDivExpr: {
12628     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12629     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12630     if (LD == LoopVariant)
12631       return LoopVariant;
12632     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12633     if (RD == LoopVariant)
12634       return LoopVariant;
12635     return (LD == LoopInvariant && RD == LoopInvariant) ?
12636            LoopInvariant : LoopComputable;
12637   }
12638   case scUnknown:
12639     // All non-instruction values are loop invariant.  All instructions are loop
12640     // invariant if they are not contained in the specified loop.
12641     // Instructions are never considered invariant in the function body
12642     // (null loop) because they are defined within the "loop".
12643     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12644       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12645     return LoopInvariant;
12646   case scCouldNotCompute:
12647     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12648   }
12649   llvm_unreachable("Unknown SCEV kind!");
12650 }
12651 
12652 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12653   return getLoopDisposition(S, L) == LoopInvariant;
12654 }
12655 
12656 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12657   return getLoopDisposition(S, L) == LoopComputable;
12658 }
12659 
12660 ScalarEvolution::BlockDisposition
12661 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12662   auto &Values = BlockDispositions[S];
12663   for (auto &V : Values) {
12664     if (V.getPointer() == BB)
12665       return V.getInt();
12666   }
12667   Values.emplace_back(BB, DoesNotDominateBlock);
12668   BlockDisposition D = computeBlockDisposition(S, BB);
12669   auto &Values2 = BlockDispositions[S];
12670   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12671     if (V.getPointer() == BB) {
12672       V.setInt(D);
12673       break;
12674     }
12675   }
12676   return D;
12677 }
12678 
12679 ScalarEvolution::BlockDisposition
12680 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12681   switch (S->getSCEVType()) {
12682   case scConstant:
12683     return ProperlyDominatesBlock;
12684   case scPtrToInt:
12685   case scTruncate:
12686   case scZeroExtend:
12687   case scSignExtend:
12688     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12689   case scAddRecExpr: {
12690     // This uses a "dominates" query instead of "properly dominates" query
12691     // to test for proper dominance too, because the instruction which
12692     // produces the addrec's value is a PHI, and a PHI effectively properly
12693     // dominates its entire containing block.
12694     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12695     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12696       return DoesNotDominateBlock;
12697 
12698     // Fall through into SCEVNAryExpr handling.
12699     LLVM_FALLTHROUGH;
12700   }
12701   case scAddExpr:
12702   case scMulExpr:
12703   case scUMaxExpr:
12704   case scSMaxExpr:
12705   case scUMinExpr:
12706   case scSMinExpr: {
12707     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12708     bool Proper = true;
12709     for (const SCEV *NAryOp : NAry->operands()) {
12710       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12711       if (D == DoesNotDominateBlock)
12712         return DoesNotDominateBlock;
12713       if (D == DominatesBlock)
12714         Proper = false;
12715     }
12716     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12717   }
12718   case scUDivExpr: {
12719     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12720     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12721     BlockDisposition LD = getBlockDisposition(LHS, BB);
12722     if (LD == DoesNotDominateBlock)
12723       return DoesNotDominateBlock;
12724     BlockDisposition RD = getBlockDisposition(RHS, BB);
12725     if (RD == DoesNotDominateBlock)
12726       return DoesNotDominateBlock;
12727     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12728       ProperlyDominatesBlock : DominatesBlock;
12729   }
12730   case scUnknown:
12731     if (Instruction *I =
12732           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12733       if (I->getParent() == BB)
12734         return DominatesBlock;
12735       if (DT.properlyDominates(I->getParent(), BB))
12736         return ProperlyDominatesBlock;
12737       return DoesNotDominateBlock;
12738     }
12739     return ProperlyDominatesBlock;
12740   case scCouldNotCompute:
12741     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12742   }
12743   llvm_unreachable("Unknown SCEV kind!");
12744 }
12745 
12746 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12747   return getBlockDisposition(S, BB) >= DominatesBlock;
12748 }
12749 
12750 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12751   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12752 }
12753 
12754 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12755   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12756 }
12757 
12758 void
12759 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12760   ValuesAtScopes.erase(S);
12761   LoopDispositions.erase(S);
12762   BlockDispositions.erase(S);
12763   UnsignedRanges.erase(S);
12764   SignedRanges.erase(S);
12765   ExprValueMap.erase(S);
12766   HasRecMap.erase(S);
12767   MinTrailingZerosCache.erase(S);
12768 
12769   for (auto I = PredicatedSCEVRewrites.begin();
12770        I != PredicatedSCEVRewrites.end();) {
12771     std::pair<const SCEV *, const Loop *> Entry = I->first;
12772     if (Entry.first == S)
12773       PredicatedSCEVRewrites.erase(I++);
12774     else
12775       ++I;
12776   }
12777 
12778   auto RemoveSCEVFromBackedgeMap =
12779       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12780         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12781           BackedgeTakenInfo &BEInfo = I->second;
12782           if (BEInfo.hasOperand(S))
12783             Map.erase(I++);
12784           else
12785             ++I;
12786         }
12787       };
12788 
12789   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12790   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12791 }
12792 
12793 void
12794 ScalarEvolution::getUsedLoops(const SCEV *S,
12795                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12796   struct FindUsedLoops {
12797     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12798         : LoopsUsed(LoopsUsed) {}
12799     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12800     bool follow(const SCEV *S) {
12801       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12802         LoopsUsed.insert(AR->getLoop());
12803       return true;
12804     }
12805 
12806     bool isDone() const { return false; }
12807   };
12808 
12809   FindUsedLoops F(LoopsUsed);
12810   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12811 }
12812 
12813 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12814   SmallPtrSet<const Loop *, 8> LoopsUsed;
12815   getUsedLoops(S, LoopsUsed);
12816   for (auto *L : LoopsUsed)
12817     LoopUsers[L].push_back(S);
12818 }
12819 
12820 void ScalarEvolution::verify() const {
12821   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12822   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12823 
12824   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12825 
12826   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12827   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12828     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12829 
12830     const SCEV *visitConstant(const SCEVConstant *Constant) {
12831       return SE.getConstant(Constant->getAPInt());
12832     }
12833 
12834     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12835       return SE.getUnknown(Expr->getValue());
12836     }
12837 
12838     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12839       return SE.getCouldNotCompute();
12840     }
12841   };
12842 
12843   SCEVMapper SCM(SE2);
12844 
12845   while (!LoopStack.empty()) {
12846     auto *L = LoopStack.pop_back_val();
12847     llvm::append_range(LoopStack, *L);
12848 
12849     auto *CurBECount = SCM.visit(
12850         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12851     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12852 
12853     if (CurBECount == SE2.getCouldNotCompute() ||
12854         NewBECount == SE2.getCouldNotCompute()) {
12855       // NB! This situation is legal, but is very suspicious -- whatever pass
12856       // change the loop to make a trip count go from could not compute to
12857       // computable or vice-versa *should have* invalidated SCEV.  However, we
12858       // choose not to assert here (for now) since we don't want false
12859       // positives.
12860       continue;
12861     }
12862 
12863     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12864       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12865       // not propagate undef aggressively).  This means we can (and do) fail
12866       // verification in cases where a transform makes the trip count of a loop
12867       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12868       // both cases the loop iterates "undef" times, but SCEV thinks we
12869       // increased the trip count of the loop by 1 incorrectly.
12870       continue;
12871     }
12872 
12873     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12874         SE.getTypeSizeInBits(NewBECount->getType()))
12875       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12876     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12877              SE.getTypeSizeInBits(NewBECount->getType()))
12878       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12879 
12880     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12881 
12882     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12883     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12884       dbgs() << "Trip Count for " << *L << " Changed!\n";
12885       dbgs() << "Old: " << *CurBECount << "\n";
12886       dbgs() << "New: " << *NewBECount << "\n";
12887       dbgs() << "Delta: " << *Delta << "\n";
12888       std::abort();
12889     }
12890   }
12891 
12892   // Collect all valid loops currently in LoopInfo.
12893   SmallPtrSet<Loop *, 32> ValidLoops;
12894   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12895   while (!Worklist.empty()) {
12896     Loop *L = Worklist.pop_back_val();
12897     if (ValidLoops.contains(L))
12898       continue;
12899     ValidLoops.insert(L);
12900     Worklist.append(L->begin(), L->end());
12901   }
12902   // Check for SCEV expressions referencing invalid/deleted loops.
12903   for (auto &KV : ValueExprMap) {
12904     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12905     if (!AR)
12906       continue;
12907     assert(ValidLoops.contains(AR->getLoop()) &&
12908            "AddRec references invalid loop");
12909   }
12910 }
12911 
12912 bool ScalarEvolution::invalidate(
12913     Function &F, const PreservedAnalyses &PA,
12914     FunctionAnalysisManager::Invalidator &Inv) {
12915   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12916   // of its dependencies is invalidated.
12917   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12918   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12919          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12920          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12921          Inv.invalidate<LoopAnalysis>(F, PA);
12922 }
12923 
12924 AnalysisKey ScalarEvolutionAnalysis::Key;
12925 
12926 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12927                                              FunctionAnalysisManager &AM) {
12928   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12929                          AM.getResult<AssumptionAnalysis>(F),
12930                          AM.getResult<DominatorTreeAnalysis>(F),
12931                          AM.getResult<LoopAnalysis>(F));
12932 }
12933 
12934 PreservedAnalyses
12935 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12936   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12937   return PreservedAnalyses::all();
12938 }
12939 
12940 PreservedAnalyses
12941 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12942   // For compatibility with opt's -analyze feature under legacy pass manager
12943   // which was not ported to NPM. This keeps tests using
12944   // update_analyze_test_checks.py working.
12945   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12946      << F.getName() << "':\n";
12947   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12948   return PreservedAnalyses::all();
12949 }
12950 
12951 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12952                       "Scalar Evolution Analysis", false, true)
12953 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12954 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12955 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12956 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12957 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12958                     "Scalar Evolution Analysis", false, true)
12959 
12960 char ScalarEvolutionWrapperPass::ID = 0;
12961 
12962 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12963   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12964 }
12965 
12966 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12967   SE.reset(new ScalarEvolution(
12968       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12969       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12970       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12971       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12972   return false;
12973 }
12974 
12975 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12976 
12977 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12978   SE->print(OS);
12979 }
12980 
12981 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12982   if (!VerifySCEV)
12983     return;
12984 
12985   SE->verify();
12986 }
12987 
12988 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12989   AU.setPreservesAll();
12990   AU.addRequiredTransitive<AssumptionCacheTracker>();
12991   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12992   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12993   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12994 }
12995 
12996 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12997                                                         const SCEV *RHS) {
12998   FoldingSetNodeID ID;
12999   assert(LHS->getType() == RHS->getType() &&
13000          "Type mismatch between LHS and RHS");
13001   // Unique this node based on the arguments
13002   ID.AddInteger(SCEVPredicate::P_Equal);
13003   ID.AddPointer(LHS);
13004   ID.AddPointer(RHS);
13005   void *IP = nullptr;
13006   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13007     return S;
13008   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13009       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13010   UniquePreds.InsertNode(Eq, IP);
13011   return Eq;
13012 }
13013 
13014 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13015     const SCEVAddRecExpr *AR,
13016     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13017   FoldingSetNodeID ID;
13018   // Unique this node based on the arguments
13019   ID.AddInteger(SCEVPredicate::P_Wrap);
13020   ID.AddPointer(AR);
13021   ID.AddInteger(AddedFlags);
13022   void *IP = nullptr;
13023   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13024     return S;
13025   auto *OF = new (SCEVAllocator)
13026       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13027   UniquePreds.InsertNode(OF, IP);
13028   return OF;
13029 }
13030 
13031 namespace {
13032 
13033 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13034 public:
13035 
13036   /// Rewrites \p S in the context of a loop L and the SCEV predication
13037   /// infrastructure.
13038   ///
13039   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13040   /// equivalences present in \p Pred.
13041   ///
13042   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13043   /// \p NewPreds such that the result will be an AddRecExpr.
13044   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13045                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13046                              SCEVUnionPredicate *Pred) {
13047     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13048     return Rewriter.visit(S);
13049   }
13050 
13051   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13052     if (Pred) {
13053       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13054       for (auto *Pred : ExprPreds)
13055         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13056           if (IPred->getLHS() == Expr)
13057             return IPred->getRHS();
13058     }
13059     return convertToAddRecWithPreds(Expr);
13060   }
13061 
13062   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13063     const SCEV *Operand = visit(Expr->getOperand());
13064     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13065     if (AR && AR->getLoop() == L && AR->isAffine()) {
13066       // This couldn't be folded because the operand didn't have the nuw
13067       // flag. Add the nusw flag as an assumption that we could make.
13068       const SCEV *Step = AR->getStepRecurrence(SE);
13069       Type *Ty = Expr->getType();
13070       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13071         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13072                                 SE.getSignExtendExpr(Step, Ty), L,
13073                                 AR->getNoWrapFlags());
13074     }
13075     return SE.getZeroExtendExpr(Operand, Expr->getType());
13076   }
13077 
13078   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13079     const SCEV *Operand = visit(Expr->getOperand());
13080     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13081     if (AR && AR->getLoop() == L && AR->isAffine()) {
13082       // This couldn't be folded because the operand didn't have the nsw
13083       // flag. Add the nssw flag as an assumption that we could make.
13084       const SCEV *Step = AR->getStepRecurrence(SE);
13085       Type *Ty = Expr->getType();
13086       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13087         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13088                                 SE.getSignExtendExpr(Step, Ty), L,
13089                                 AR->getNoWrapFlags());
13090     }
13091     return SE.getSignExtendExpr(Operand, Expr->getType());
13092   }
13093 
13094 private:
13095   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13096                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13097                         SCEVUnionPredicate *Pred)
13098       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13099 
13100   bool addOverflowAssumption(const SCEVPredicate *P) {
13101     if (!NewPreds) {
13102       // Check if we've already made this assumption.
13103       return Pred && Pred->implies(P);
13104     }
13105     NewPreds->insert(P);
13106     return true;
13107   }
13108 
13109   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13110                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13111     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13112     return addOverflowAssumption(A);
13113   }
13114 
13115   // If \p Expr represents a PHINode, we try to see if it can be represented
13116   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13117   // to add this predicate as a runtime overflow check, we return the AddRec.
13118   // If \p Expr does not meet these conditions (is not a PHI node, or we
13119   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13120   // return \p Expr.
13121   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13122     if (!isa<PHINode>(Expr->getValue()))
13123       return Expr;
13124     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13125     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13126     if (!PredicatedRewrite)
13127       return Expr;
13128     for (auto *P : PredicatedRewrite->second){
13129       // Wrap predicates from outer loops are not supported.
13130       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13131         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13132         if (L != AR->getLoop())
13133           return Expr;
13134       }
13135       if (!addOverflowAssumption(P))
13136         return Expr;
13137     }
13138     return PredicatedRewrite->first;
13139   }
13140 
13141   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13142   SCEVUnionPredicate *Pred;
13143   const Loop *L;
13144 };
13145 
13146 } // end anonymous namespace
13147 
13148 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13149                                                    SCEVUnionPredicate &Preds) {
13150   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13151 }
13152 
13153 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13154     const SCEV *S, const Loop *L,
13155     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13156   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13157   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13158   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13159 
13160   if (!AddRec)
13161     return nullptr;
13162 
13163   // Since the transformation was successful, we can now transfer the SCEV
13164   // predicates.
13165   for (auto *P : TransformPreds)
13166     Preds.insert(P);
13167 
13168   return AddRec;
13169 }
13170 
13171 /// SCEV predicates
13172 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13173                              SCEVPredicateKind Kind)
13174     : FastID(ID), Kind(Kind) {}
13175 
13176 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13177                                        const SCEV *LHS, const SCEV *RHS)
13178     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13179   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13180   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13181 }
13182 
13183 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13184   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13185 
13186   if (!Op)
13187     return false;
13188 
13189   return Op->LHS == LHS && Op->RHS == RHS;
13190 }
13191 
13192 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13193 
13194 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13195 
13196 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13197   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13198 }
13199 
13200 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13201                                      const SCEVAddRecExpr *AR,
13202                                      IncrementWrapFlags Flags)
13203     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13204 
13205 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13206 
13207 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13208   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13209 
13210   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13211 }
13212 
13213 bool SCEVWrapPredicate::isAlwaysTrue() const {
13214   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13215   IncrementWrapFlags IFlags = Flags;
13216 
13217   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13218     IFlags = clearFlags(IFlags, IncrementNSSW);
13219 
13220   return IFlags == IncrementAnyWrap;
13221 }
13222 
13223 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13224   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13225   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13226     OS << "<nusw>";
13227   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13228     OS << "<nssw>";
13229   OS << "\n";
13230 }
13231 
13232 SCEVWrapPredicate::IncrementWrapFlags
13233 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13234                                    ScalarEvolution &SE) {
13235   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13236   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13237 
13238   // We can safely transfer the NSW flag as NSSW.
13239   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13240     ImpliedFlags = IncrementNSSW;
13241 
13242   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13243     // If the increment is positive, the SCEV NUW flag will also imply the
13244     // WrapPredicate NUSW flag.
13245     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13246       if (Step->getValue()->getValue().isNonNegative())
13247         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13248   }
13249 
13250   return ImpliedFlags;
13251 }
13252 
13253 /// Union predicates don't get cached so create a dummy set ID for it.
13254 SCEVUnionPredicate::SCEVUnionPredicate()
13255     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13256 
13257 bool SCEVUnionPredicate::isAlwaysTrue() const {
13258   return all_of(Preds,
13259                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13260 }
13261 
13262 ArrayRef<const SCEVPredicate *>
13263 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13264   auto I = SCEVToPreds.find(Expr);
13265   if (I == SCEVToPreds.end())
13266     return ArrayRef<const SCEVPredicate *>();
13267   return I->second;
13268 }
13269 
13270 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13271   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13272     return all_of(Set->Preds,
13273                   [this](const SCEVPredicate *I) { return this->implies(I); });
13274 
13275   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13276   if (ScevPredsIt == SCEVToPreds.end())
13277     return false;
13278   auto &SCEVPreds = ScevPredsIt->second;
13279 
13280   return any_of(SCEVPreds,
13281                 [N](const SCEVPredicate *I) { return I->implies(N); });
13282 }
13283 
13284 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13285 
13286 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13287   for (auto Pred : Preds)
13288     Pred->print(OS, Depth);
13289 }
13290 
13291 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13292   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13293     for (auto Pred : Set->Preds)
13294       add(Pred);
13295     return;
13296   }
13297 
13298   if (implies(N))
13299     return;
13300 
13301   const SCEV *Key = N->getExpr();
13302   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13303                 " associated expression!");
13304 
13305   SCEVToPreds[Key].push_back(N);
13306   Preds.push_back(N);
13307 }
13308 
13309 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13310                                                      Loop &L)
13311     : SE(SE), L(L) {}
13312 
13313 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13314   const SCEV *Expr = SE.getSCEV(V);
13315   RewriteEntry &Entry = RewriteMap[Expr];
13316 
13317   // If we already have an entry and the version matches, return it.
13318   if (Entry.second && Generation == Entry.first)
13319     return Entry.second;
13320 
13321   // We found an entry but it's stale. Rewrite the stale entry
13322   // according to the current predicate.
13323   if (Entry.second)
13324     Expr = Entry.second;
13325 
13326   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13327   Entry = {Generation, NewSCEV};
13328 
13329   return NewSCEV;
13330 }
13331 
13332 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13333   if (!BackedgeCount) {
13334     SCEVUnionPredicate BackedgePred;
13335     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13336     addPredicate(BackedgePred);
13337   }
13338   return BackedgeCount;
13339 }
13340 
13341 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13342   if (Preds.implies(&Pred))
13343     return;
13344   Preds.add(&Pred);
13345   updateGeneration();
13346 }
13347 
13348 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13349   return Preds;
13350 }
13351 
13352 void PredicatedScalarEvolution::updateGeneration() {
13353   // If the generation number wrapped recompute everything.
13354   if (++Generation == 0) {
13355     for (auto &II : RewriteMap) {
13356       const SCEV *Rewritten = II.second.second;
13357       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13358     }
13359   }
13360 }
13361 
13362 void PredicatedScalarEvolution::setNoOverflow(
13363     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13364   const SCEV *Expr = getSCEV(V);
13365   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13366 
13367   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13368 
13369   // Clear the statically implied flags.
13370   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13371   addPredicate(*SE.getWrapPredicate(AR, Flags));
13372 
13373   auto II = FlagsMap.insert({V, Flags});
13374   if (!II.second)
13375     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13376 }
13377 
13378 bool PredicatedScalarEvolution::hasNoOverflow(
13379     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13380   const SCEV *Expr = getSCEV(V);
13381   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13382 
13383   Flags = SCEVWrapPredicate::clearFlags(
13384       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13385 
13386   auto II = FlagsMap.find(V);
13387 
13388   if (II != FlagsMap.end())
13389     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13390 
13391   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13392 }
13393 
13394 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13395   const SCEV *Expr = this->getSCEV(V);
13396   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13397   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13398 
13399   if (!New)
13400     return nullptr;
13401 
13402   for (auto *P : NewPreds)
13403     Preds.add(P);
13404 
13405   updateGeneration();
13406   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13407   return New;
13408 }
13409 
13410 PredicatedScalarEvolution::PredicatedScalarEvolution(
13411     const PredicatedScalarEvolution &Init)
13412     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13413       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13414   for (auto I : Init.FlagsMap)
13415     FlagsMap.insert(I);
13416 }
13417 
13418 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13419   // For each block.
13420   for (auto *BB : L.getBlocks())
13421     for (auto &I : *BB) {
13422       if (!SE.isSCEVable(I.getType()))
13423         continue;
13424 
13425       auto *Expr = SE.getSCEV(&I);
13426       auto II = RewriteMap.find(Expr);
13427 
13428       if (II == RewriteMap.end())
13429         continue;
13430 
13431       // Don't print things that are not interesting.
13432       if (II->second.second == Expr)
13433         continue;
13434 
13435       OS.indent(Depth) << "[PSE]" << I << ":\n";
13436       OS.indent(Depth + 2) << *Expr << "\n";
13437       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13438     }
13439 }
13440 
13441 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13442 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13443 // for URem with constant power-of-2 second operands.
13444 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13445 // 4, A / B becomes X / 8).
13446 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13447                                 const SCEV *&RHS) {
13448   // Try to match 'zext (trunc A to iB) to iY', which is used
13449   // for URem with constant power-of-2 second operands. Make sure the size of
13450   // the operand A matches the size of the whole expressions.
13451   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13452     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13453       LHS = Trunc->getOperand();
13454       // Bail out if the type of the LHS is larger than the type of the
13455       // expression for now.
13456       if (getTypeSizeInBits(LHS->getType()) >
13457           getTypeSizeInBits(Expr->getType()))
13458         return false;
13459       if (LHS->getType() != Expr->getType())
13460         LHS = getZeroExtendExpr(LHS, Expr->getType());
13461       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13462                         << getTypeSizeInBits(Trunc->getType()));
13463       return true;
13464     }
13465   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13466   if (Add == nullptr || Add->getNumOperands() != 2)
13467     return false;
13468 
13469   const SCEV *A = Add->getOperand(1);
13470   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13471 
13472   if (Mul == nullptr)
13473     return false;
13474 
13475   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13476     // (SomeExpr + (-(SomeExpr / B) * B)).
13477     if (Expr == getURemExpr(A, B)) {
13478       LHS = A;
13479       RHS = B;
13480       return true;
13481     }
13482     return false;
13483   };
13484 
13485   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13486   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13487     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13488            MatchURemWithDivisor(Mul->getOperand(2));
13489 
13490   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13491   if (Mul->getNumOperands() == 2)
13492     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13493            MatchURemWithDivisor(Mul->getOperand(0)) ||
13494            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13495            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13496   return false;
13497 }
13498 
13499 const SCEV *
13500 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13501   SmallVector<BasicBlock*, 16> ExitingBlocks;
13502   L->getExitingBlocks(ExitingBlocks);
13503 
13504   // Form an expression for the maximum exit count possible for this loop. We
13505   // merge the max and exact information to approximate a version of
13506   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13507   SmallVector<const SCEV*, 4> ExitCounts;
13508   for (BasicBlock *ExitingBB : ExitingBlocks) {
13509     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13510     if (isa<SCEVCouldNotCompute>(ExitCount))
13511       ExitCount = getExitCount(L, ExitingBB,
13512                                   ScalarEvolution::ConstantMaximum);
13513     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13514       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13515              "We should only have known counts for exiting blocks that "
13516              "dominate latch!");
13517       ExitCounts.push_back(ExitCount);
13518     }
13519   }
13520   if (ExitCounts.empty())
13521     return getCouldNotCompute();
13522   return getUMinFromMismatchedTypes(ExitCounts);
13523 }
13524 
13525 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13526 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13527 /// we cannot guarantee that the replacement is loop invariant in the loop of
13528 /// the AddRec.
13529 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13530   ValueToSCEVMapTy &Map;
13531 
13532 public:
13533   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13534       : SCEVRewriteVisitor(SE), Map(M) {}
13535 
13536   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13537 
13538   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13539     auto I = Map.find(Expr->getValue());
13540     if (I == Map.end())
13541       return Expr;
13542     return I->second;
13543   }
13544 };
13545 
13546 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13547   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13548                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13549     // If we have LHS == 0, check if LHS is computing a property of some unknown
13550     // SCEV %v which we can rewrite %v to express explicitly.
13551     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13552     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13553         RHSC->getValue()->isNullValue()) {
13554       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13555       // explicitly express that.
13556       const SCEV *URemLHS = nullptr;
13557       const SCEV *URemRHS = nullptr;
13558       if (matchURem(LHS, URemLHS, URemRHS)) {
13559         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13560           Value *V = LHSUnknown->getValue();
13561           auto Multiple =
13562               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13563                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13564           RewriteMap[V] = Multiple;
13565           return;
13566         }
13567       }
13568     }
13569 
13570     if (!isa<SCEVUnknown>(LHS)) {
13571       std::swap(LHS, RHS);
13572       Predicate = CmpInst::getSwappedPredicate(Predicate);
13573     }
13574 
13575     // For now, limit to conditions that provide information about unknown
13576     // expressions.
13577     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13578     if (!LHSUnknown)
13579       return;
13580 
13581     // Check whether LHS has already been rewritten. In that case we want to
13582     // chain further rewrites onto the already rewritten value.
13583     auto I = RewriteMap.find(LHSUnknown->getValue());
13584     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13585 
13586     // TODO: use information from more predicates.
13587     switch (Predicate) {
13588     case CmpInst::ICMP_ULT:
13589       if (!containsAddRecurrence(RHS))
13590         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(
13591             RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13592       break;
13593     case CmpInst::ICMP_ULE:
13594       if (!containsAddRecurrence(RHS))
13595         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(RewrittenLHS, RHS);
13596       break;
13597     case CmpInst::ICMP_UGT:
13598       if (!containsAddRecurrence(RHS))
13599         RewriteMap[LHSUnknown->getValue()] =
13600             getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13601       break;
13602     case CmpInst::ICMP_UGE:
13603       if (!containsAddRecurrence(RHS))
13604         RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(RewrittenLHS, RHS);
13605       break;
13606     case CmpInst::ICMP_EQ:
13607       if (isa<SCEVConstant>(RHS))
13608         RewriteMap[LHSUnknown->getValue()] = RHS;
13609       break;
13610     case CmpInst::ICMP_NE:
13611       if (isa<SCEVConstant>(RHS) &&
13612           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13613         RewriteMap[LHSUnknown->getValue()] =
13614             getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13615       break;
13616     default:
13617       break;
13618     }
13619   };
13620   // Starting at the loop predecessor, climb up the predecessor chain, as long
13621   // as there are predecessors that can be found that have unique successors
13622   // leading to the original header.
13623   // TODO: share this logic with isLoopEntryGuardedByCond.
13624   ValueToSCEVMapTy RewriteMap;
13625   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13626            L->getLoopPredecessor(), L->getHeader());
13627        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13628 
13629     const BranchInst *LoopEntryPredicate =
13630         dyn_cast<BranchInst>(Pair.first->getTerminator());
13631     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13632       continue;
13633 
13634     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13635     SmallVector<Value *, 8> Worklist;
13636     SmallPtrSet<Value *, 8> Visited;
13637     Worklist.push_back(LoopEntryPredicate->getCondition());
13638     while (!Worklist.empty()) {
13639       Value *Cond = Worklist.pop_back_val();
13640       if (!Visited.insert(Cond).second)
13641         continue;
13642 
13643       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13644         auto Predicate =
13645             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13646         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13647                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13648         continue;
13649       }
13650 
13651       Value *L, *R;
13652       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13653                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13654         Worklist.push_back(L);
13655         Worklist.push_back(R);
13656       }
13657     }
13658   }
13659 
13660   // Also collect information from assumptions dominating the loop.
13661   for (auto &AssumeVH : AC.assumptions()) {
13662     if (!AssumeVH)
13663       continue;
13664     auto *AssumeI = cast<CallInst>(AssumeVH);
13665     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13666     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13667       continue;
13668     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13669                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13670   }
13671 
13672   if (RewriteMap.empty())
13673     return Expr;
13674   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13675   return Rewriter.visit(Expr);
13676 }
13677