1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 STATISTIC(NumFoundPhiSCCs, 145 "Number of found Phi-composed strongly connected components"); 146 147 static cl::opt<unsigned> 148 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 149 cl::ZeroOrMore, 150 cl::desc("Maximum number of iterations SCEV will " 151 "symbolically execute a constant " 152 "derived loop"), 153 cl::init(100)); 154 155 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 156 static cl::opt<bool> VerifySCEV( 157 "verify-scev", cl::Hidden, 158 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 159 static cl::opt<bool> VerifySCEVStrict( 160 "verify-scev-strict", cl::Hidden, 161 cl::desc("Enable stricter verification with -verify-scev is passed")); 162 static cl::opt<bool> 163 VerifySCEVMap("verify-scev-maps", cl::Hidden, 164 cl::desc("Verify no dangling value in ScalarEvolution's " 165 "ExprValueMap (slow)")); 166 167 static cl::opt<bool> VerifyIR( 168 "scev-verify-ir", cl::Hidden, 169 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 170 cl::init(false)); 171 172 static cl::opt<unsigned> MulOpsInlineThreshold( 173 "scev-mulops-inline-threshold", cl::Hidden, 174 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 175 cl::init(32)); 176 177 static cl::opt<unsigned> AddOpsInlineThreshold( 178 "scev-addops-inline-threshold", cl::Hidden, 179 cl::desc("Threshold for inlining addition operands into a SCEV"), 180 cl::init(500)); 181 182 static cl::opt<unsigned> MaxSCEVCompareDepth( 183 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 184 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 185 cl::init(32)); 186 187 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 188 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 189 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 190 cl::init(2)); 191 192 static cl::opt<unsigned> MaxValueCompareDepth( 193 "scalar-evolution-max-value-compare-depth", cl::Hidden, 194 cl::desc("Maximum depth of recursive value complexity comparisons"), 195 cl::init(2)); 196 197 static cl::opt<unsigned> 198 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 199 cl::desc("Maximum depth of recursive arithmetics"), 200 cl::init(32)); 201 202 static cl::opt<unsigned> MaxConstantEvolvingDepth( 203 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 204 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 205 206 static cl::opt<unsigned> 207 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 209 cl::init(8)); 210 211 static cl::opt<unsigned> 212 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 213 cl::desc("Max coefficients in AddRec during evolving"), 214 cl::init(8)); 215 216 static cl::opt<unsigned> 217 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 218 cl::desc("Size of the expression which is considered huge"), 219 cl::init(4096)); 220 221 static cl::opt<bool> 222 ClassifyExpressions("scalar-evolution-classify-expressions", 223 cl::Hidden, cl::init(true), 224 cl::desc("When printing analysis, include information on every instruction")); 225 226 static cl::opt<bool> UseExpensiveRangeSharpening( 227 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 228 cl::init(false), 229 cl::desc("Use more powerful methods of sharpening expression ranges. May " 230 "be costly in terms of compile time")); 231 232 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 233 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 234 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 235 "Phi strongly connected components"), 236 cl::init(8)); 237 238 static cl::opt<bool> 239 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 240 cl::desc("Handle <= and >= in finite loops"), 241 cl::init(true)); 242 243 //===----------------------------------------------------------------------===// 244 // SCEV class definitions 245 //===----------------------------------------------------------------------===// 246 247 //===----------------------------------------------------------------------===// 248 // Implementation of the SCEV class. 249 // 250 251 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 252 LLVM_DUMP_METHOD void SCEV::dump() const { 253 print(dbgs()); 254 dbgs() << '\n'; 255 } 256 #endif 257 258 void SCEV::print(raw_ostream &OS) const { 259 switch (getSCEVType()) { 260 case scConstant: 261 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 262 return; 263 case scPtrToInt: { 264 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 265 const SCEV *Op = PtrToInt->getOperand(); 266 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 267 << *PtrToInt->getType() << ")"; 268 return; 269 } 270 case scTruncate: { 271 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 272 const SCEV *Op = Trunc->getOperand(); 273 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 274 << *Trunc->getType() << ")"; 275 return; 276 } 277 case scZeroExtend: { 278 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 279 const SCEV *Op = ZExt->getOperand(); 280 OS << "(zext " << *Op->getType() << " " << *Op << " to " 281 << *ZExt->getType() << ")"; 282 return; 283 } 284 case scSignExtend: { 285 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 286 const SCEV *Op = SExt->getOperand(); 287 OS << "(sext " << *Op->getType() << " " << *Op << " to " 288 << *SExt->getType() << ")"; 289 return; 290 } 291 case scAddRecExpr: { 292 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 293 OS << "{" << *AR->getOperand(0); 294 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 295 OS << ",+," << *AR->getOperand(i); 296 OS << "}<"; 297 if (AR->hasNoUnsignedWrap()) 298 OS << "nuw><"; 299 if (AR->hasNoSignedWrap()) 300 OS << "nsw><"; 301 if (AR->hasNoSelfWrap() && 302 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 303 OS << "nw><"; 304 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 305 OS << ">"; 306 return; 307 } 308 case scAddExpr: 309 case scMulExpr: 310 case scUMaxExpr: 311 case scSMaxExpr: 312 case scUMinExpr: 313 case scSMinExpr: 314 case scSequentialUMinExpr: { 315 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 316 const char *OpStr = nullptr; 317 switch (NAry->getSCEVType()) { 318 case scAddExpr: OpStr = " + "; break; 319 case scMulExpr: OpStr = " * "; break; 320 case scUMaxExpr: OpStr = " umax "; break; 321 case scSMaxExpr: OpStr = " smax "; break; 322 case scUMinExpr: 323 OpStr = " umin "; 324 break; 325 case scSMinExpr: 326 OpStr = " smin "; 327 break; 328 case scSequentialUMinExpr: 329 OpStr = " umin_seq "; 330 break; 331 default: 332 llvm_unreachable("There are no other nary expression types."); 333 } 334 OS << "("; 335 ListSeparator LS(OpStr); 336 for (const SCEV *Op : NAry->operands()) 337 OS << LS << *Op; 338 OS << ")"; 339 switch (NAry->getSCEVType()) { 340 case scAddExpr: 341 case scMulExpr: 342 if (NAry->hasNoUnsignedWrap()) 343 OS << "<nuw>"; 344 if (NAry->hasNoSignedWrap()) 345 OS << "<nsw>"; 346 break; 347 default: 348 // Nothing to print for other nary expressions. 349 break; 350 } 351 return; 352 } 353 case scUDivExpr: { 354 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 355 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 356 return; 357 } 358 case scUnknown: { 359 const SCEVUnknown *U = cast<SCEVUnknown>(this); 360 Type *AllocTy; 361 if (U->isSizeOf(AllocTy)) { 362 OS << "sizeof(" << *AllocTy << ")"; 363 return; 364 } 365 if (U->isAlignOf(AllocTy)) { 366 OS << "alignof(" << *AllocTy << ")"; 367 return; 368 } 369 370 Type *CTy; 371 Constant *FieldNo; 372 if (U->isOffsetOf(CTy, FieldNo)) { 373 OS << "offsetof(" << *CTy << ", "; 374 FieldNo->printAsOperand(OS, false); 375 OS << ")"; 376 return; 377 } 378 379 // Otherwise just print it normally. 380 U->getValue()->printAsOperand(OS, false); 381 return; 382 } 383 case scCouldNotCompute: 384 OS << "***COULDNOTCOMPUTE***"; 385 return; 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 Type *SCEV::getType() const { 391 switch (getSCEVType()) { 392 case scConstant: 393 return cast<SCEVConstant>(this)->getType(); 394 case scPtrToInt: 395 case scTruncate: 396 case scZeroExtend: 397 case scSignExtend: 398 return cast<SCEVCastExpr>(this)->getType(); 399 case scAddRecExpr: 400 return cast<SCEVAddRecExpr>(this)->getType(); 401 case scMulExpr: 402 return cast<SCEVMulExpr>(this)->getType(); 403 case scUMaxExpr: 404 case scSMaxExpr: 405 case scUMinExpr: 406 case scSMinExpr: 407 return cast<SCEVMinMaxExpr>(this)->getType(); 408 case scSequentialUMinExpr: 409 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 410 case scAddExpr: 411 return cast<SCEVAddExpr>(this)->getType(); 412 case scUDivExpr: 413 return cast<SCEVUDivExpr>(this)->getType(); 414 case scUnknown: 415 return cast<SCEVUnknown>(this)->getType(); 416 case scCouldNotCompute: 417 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 418 } 419 llvm_unreachable("Unknown SCEV kind!"); 420 } 421 422 bool SCEV::isZero() const { 423 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 424 return SC->getValue()->isZero(); 425 return false; 426 } 427 428 bool SCEV::isOne() const { 429 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 430 return SC->getValue()->isOne(); 431 return false; 432 } 433 434 bool SCEV::isAllOnesValue() const { 435 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 436 return SC->getValue()->isMinusOne(); 437 return false; 438 } 439 440 bool SCEV::isNonConstantNegative() const { 441 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 442 if (!Mul) return false; 443 444 // If there is a constant factor, it will be first. 445 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 446 if (!SC) return false; 447 448 // Return true if the value is negative, this matches things like (-42 * V). 449 return SC->getAPInt().isNegative(); 450 } 451 452 SCEVCouldNotCompute::SCEVCouldNotCompute() : 453 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 454 455 bool SCEVCouldNotCompute::classof(const SCEV *S) { 456 return S->getSCEVType() == scCouldNotCompute; 457 } 458 459 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 460 FoldingSetNodeID ID; 461 ID.AddInteger(scConstant); 462 ID.AddPointer(V); 463 void *IP = nullptr; 464 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 465 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 466 UniqueSCEVs.InsertNode(S, IP); 467 return S; 468 } 469 470 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 471 return getConstant(ConstantInt::get(getContext(), Val)); 472 } 473 474 const SCEV * 475 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 476 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 477 return getConstant(ConstantInt::get(ITy, V, isSigned)); 478 } 479 480 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 481 const SCEV *op, Type *ty) 482 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 483 Operands[0] = op; 484 } 485 486 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 487 Type *ITy) 488 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 489 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 490 "Must be a non-bit-width-changing pointer-to-integer cast!"); 491 } 492 493 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 494 SCEVTypes SCEVTy, const SCEV *op, 495 Type *ty) 496 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 497 498 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 499 Type *ty) 500 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 501 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 502 "Cannot truncate non-integer value!"); 503 } 504 505 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 506 const SCEV *op, Type *ty) 507 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 508 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 509 "Cannot zero extend non-integer value!"); 510 } 511 512 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 513 const SCEV *op, Type *ty) 514 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 515 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 516 "Cannot sign extend non-integer value!"); 517 } 518 519 void SCEVUnknown::deleted() { 520 // Clear this SCEVUnknown from various maps. 521 SE->forgetMemoizedResults(this); 522 523 // Remove this SCEVUnknown from the uniquing map. 524 SE->UniqueSCEVs.RemoveNode(this); 525 526 // Release the value. 527 setValPtr(nullptr); 528 } 529 530 void SCEVUnknown::allUsesReplacedWith(Value *New) { 531 // Remove this SCEVUnknown from the uniquing map. 532 SE->UniqueSCEVs.RemoveNode(this); 533 534 // Update this SCEVUnknown to point to the new value. This is needed 535 // because there may still be outstanding SCEVs which still point to 536 // this SCEVUnknown. 537 setValPtr(New); 538 } 539 540 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 541 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 542 if (VCE->getOpcode() == Instruction::PtrToInt) 543 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 544 if (CE->getOpcode() == Instruction::GetElementPtr && 545 CE->getOperand(0)->isNullValue() && 546 CE->getNumOperands() == 2) 547 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 548 if (CI->isOne()) { 549 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 550 return true; 551 } 552 553 return false; 554 } 555 556 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 557 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 558 if (VCE->getOpcode() == Instruction::PtrToInt) 559 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 560 if (CE->getOpcode() == Instruction::GetElementPtr && 561 CE->getOperand(0)->isNullValue()) { 562 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 563 if (StructType *STy = dyn_cast<StructType>(Ty)) 564 if (!STy->isPacked() && 565 CE->getNumOperands() == 3 && 566 CE->getOperand(1)->isNullValue()) { 567 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 568 if (CI->isOne() && 569 STy->getNumElements() == 2 && 570 STy->getElementType(0)->isIntegerTy(1)) { 571 AllocTy = STy->getElementType(1); 572 return true; 573 } 574 } 575 } 576 577 return false; 578 } 579 580 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 581 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 582 if (VCE->getOpcode() == Instruction::PtrToInt) 583 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 584 if (CE->getOpcode() == Instruction::GetElementPtr && 585 CE->getNumOperands() == 3 && 586 CE->getOperand(0)->isNullValue() && 587 CE->getOperand(1)->isNullValue()) { 588 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 589 // Ignore vector types here so that ScalarEvolutionExpander doesn't 590 // emit getelementptrs that index into vectors. 591 if (Ty->isStructTy() || Ty->isArrayTy()) { 592 CTy = Ty; 593 FieldNo = CE->getOperand(2); 594 return true; 595 } 596 } 597 598 return false; 599 } 600 601 //===----------------------------------------------------------------------===// 602 // SCEV Utilities 603 //===----------------------------------------------------------------------===// 604 605 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 606 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 607 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 608 /// have been previously deemed to be "equally complex" by this routine. It is 609 /// intended to avoid exponential time complexity in cases like: 610 /// 611 /// %a = f(%x, %y) 612 /// %b = f(%a, %a) 613 /// %c = f(%b, %b) 614 /// 615 /// %d = f(%x, %y) 616 /// %e = f(%d, %d) 617 /// %f = f(%e, %e) 618 /// 619 /// CompareValueComplexity(%f, %c) 620 /// 621 /// Since we do not continue running this routine on expression trees once we 622 /// have seen unequal values, there is no need to track them in the cache. 623 static int 624 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 625 const LoopInfo *const LI, Value *LV, Value *RV, 626 unsigned Depth) { 627 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 628 return 0; 629 630 // Order pointer values after integer values. This helps SCEVExpander form 631 // GEPs. 632 bool LIsPointer = LV->getType()->isPointerTy(), 633 RIsPointer = RV->getType()->isPointerTy(); 634 if (LIsPointer != RIsPointer) 635 return (int)LIsPointer - (int)RIsPointer; 636 637 // Compare getValueID values. 638 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 639 if (LID != RID) 640 return (int)LID - (int)RID; 641 642 // Sort arguments by their position. 643 if (const auto *LA = dyn_cast<Argument>(LV)) { 644 const auto *RA = cast<Argument>(RV); 645 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 646 return (int)LArgNo - (int)RArgNo; 647 } 648 649 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 650 const auto *RGV = cast<GlobalValue>(RV); 651 652 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 653 auto LT = GV->getLinkage(); 654 return !(GlobalValue::isPrivateLinkage(LT) || 655 GlobalValue::isInternalLinkage(LT)); 656 }; 657 658 // Use the names to distinguish the two values, but only if the 659 // names are semantically important. 660 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 661 return LGV->getName().compare(RGV->getName()); 662 } 663 664 // For instructions, compare their loop depth, and their operand count. This 665 // is pretty loose. 666 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 667 const auto *RInst = cast<Instruction>(RV); 668 669 // Compare loop depths. 670 const BasicBlock *LParent = LInst->getParent(), 671 *RParent = RInst->getParent(); 672 if (LParent != RParent) { 673 unsigned LDepth = LI->getLoopDepth(LParent), 674 RDepth = LI->getLoopDepth(RParent); 675 if (LDepth != RDepth) 676 return (int)LDepth - (int)RDepth; 677 } 678 679 // Compare the number of operands. 680 unsigned LNumOps = LInst->getNumOperands(), 681 RNumOps = RInst->getNumOperands(); 682 if (LNumOps != RNumOps) 683 return (int)LNumOps - (int)RNumOps; 684 685 for (unsigned Idx : seq(0u, LNumOps)) { 686 int Result = 687 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 688 RInst->getOperand(Idx), Depth + 1); 689 if (Result != 0) 690 return Result; 691 } 692 } 693 694 EqCacheValue.unionSets(LV, RV); 695 return 0; 696 } 697 698 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 699 // than RHS, respectively. A three-way result allows recursive comparisons to be 700 // more efficient. 701 // If the max analysis depth was reached, return None, assuming we do not know 702 // if they are equivalent for sure. 703 static Optional<int> 704 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 705 EquivalenceClasses<const Value *> &EqCacheValue, 706 const LoopInfo *const LI, const SCEV *LHS, 707 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 708 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 709 if (LHS == RHS) 710 return 0; 711 712 // Primarily, sort the SCEVs by their getSCEVType(). 713 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 714 if (LType != RType) 715 return (int)LType - (int)RType; 716 717 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 718 return 0; 719 720 if (Depth > MaxSCEVCompareDepth) 721 return None; 722 723 // Aside from the getSCEVType() ordering, the particular ordering 724 // isn't very important except that it's beneficial to be consistent, 725 // so that (a + b) and (b + a) don't end up as different expressions. 726 switch (LType) { 727 case scUnknown: { 728 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 729 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 730 731 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 732 RU->getValue(), Depth + 1); 733 if (X == 0) 734 EqCacheSCEV.unionSets(LHS, RHS); 735 return X; 736 } 737 738 case scConstant: { 739 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 740 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 741 742 // Compare constant values. 743 const APInt &LA = LC->getAPInt(); 744 const APInt &RA = RC->getAPInt(); 745 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 746 if (LBitWidth != RBitWidth) 747 return (int)LBitWidth - (int)RBitWidth; 748 return LA.ult(RA) ? -1 : 1; 749 } 750 751 case scAddRecExpr: { 752 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 753 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 754 755 // There is always a dominance between two recs that are used by one SCEV, 756 // so we can safely sort recs by loop header dominance. We require such 757 // order in getAddExpr. 758 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 759 if (LLoop != RLoop) { 760 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 761 assert(LHead != RHead && "Two loops share the same header?"); 762 if (DT.dominates(LHead, RHead)) 763 return 1; 764 else 765 assert(DT.dominates(RHead, LHead) && 766 "No dominance between recurrences used by one SCEV?"); 767 return -1; 768 } 769 770 // Addrec complexity grows with operand count. 771 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 772 if (LNumOps != RNumOps) 773 return (int)LNumOps - (int)RNumOps; 774 775 // Lexicographically compare. 776 for (unsigned i = 0; i != LNumOps; ++i) { 777 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 778 LA->getOperand(i), RA->getOperand(i), DT, 779 Depth + 1); 780 if (X != 0) 781 return X; 782 } 783 EqCacheSCEV.unionSets(LHS, RHS); 784 return 0; 785 } 786 787 case scAddExpr: 788 case scMulExpr: 789 case scSMaxExpr: 790 case scUMaxExpr: 791 case scSMinExpr: 792 case scUMinExpr: 793 case scSequentialUMinExpr: { 794 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 795 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 796 797 // Lexicographically compare n-ary expressions. 798 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 799 if (LNumOps != RNumOps) 800 return (int)LNumOps - (int)RNumOps; 801 802 for (unsigned i = 0; i != LNumOps; ++i) { 803 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 804 LC->getOperand(i), RC->getOperand(i), DT, 805 Depth + 1); 806 if (X != 0) 807 return X; 808 } 809 EqCacheSCEV.unionSets(LHS, RHS); 810 return 0; 811 } 812 813 case scUDivExpr: { 814 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 815 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 816 817 // Lexicographically compare udiv expressions. 818 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 819 RC->getLHS(), DT, Depth + 1); 820 if (X != 0) 821 return X; 822 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 823 RC->getRHS(), DT, Depth + 1); 824 if (X == 0) 825 EqCacheSCEV.unionSets(LHS, RHS); 826 return X; 827 } 828 829 case scPtrToInt: 830 case scTruncate: 831 case scZeroExtend: 832 case scSignExtend: { 833 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 834 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 835 836 // Compare cast expressions by operand. 837 auto X = 838 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 839 RC->getOperand(), DT, Depth + 1); 840 if (X == 0) 841 EqCacheSCEV.unionSets(LHS, RHS); 842 return X; 843 } 844 845 case scCouldNotCompute: 846 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 847 } 848 llvm_unreachable("Unknown SCEV kind!"); 849 } 850 851 /// Given a list of SCEV objects, order them by their complexity, and group 852 /// objects of the same complexity together by value. When this routine is 853 /// finished, we know that any duplicates in the vector are consecutive and that 854 /// complexity is monotonically increasing. 855 /// 856 /// Note that we go take special precautions to ensure that we get deterministic 857 /// results from this routine. In other words, we don't want the results of 858 /// this to depend on where the addresses of various SCEV objects happened to 859 /// land in memory. 860 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 861 LoopInfo *LI, DominatorTree &DT) { 862 if (Ops.size() < 2) return; // Noop 863 864 EquivalenceClasses<const SCEV *> EqCacheSCEV; 865 EquivalenceClasses<const Value *> EqCacheValue; 866 867 // Whether LHS has provably less complexity than RHS. 868 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 869 auto Complexity = 870 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 871 return Complexity && *Complexity < 0; 872 }; 873 if (Ops.size() == 2) { 874 // This is the common case, which also happens to be trivially simple. 875 // Special case it. 876 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 877 if (IsLessComplex(RHS, LHS)) 878 std::swap(LHS, RHS); 879 return; 880 } 881 882 // Do the rough sort by complexity. 883 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 884 return IsLessComplex(LHS, RHS); 885 }); 886 887 // Now that we are sorted by complexity, group elements of the same 888 // complexity. Note that this is, at worst, N^2, but the vector is likely to 889 // be extremely short in practice. Note that we take this approach because we 890 // do not want to depend on the addresses of the objects we are grouping. 891 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 892 const SCEV *S = Ops[i]; 893 unsigned Complexity = S->getSCEVType(); 894 895 // If there are any objects of the same complexity and same value as this 896 // one, group them. 897 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 898 if (Ops[j] == S) { // Found a duplicate. 899 // Move it to immediately after i'th element. 900 std::swap(Ops[i+1], Ops[j]); 901 ++i; // no need to rescan it. 902 if (i == e-2) return; // Done! 903 } 904 } 905 } 906 } 907 908 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 909 /// least HugeExprThreshold nodes). 910 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 911 return any_of(Ops, [](const SCEV *S) { 912 return S->getExpressionSize() >= HugeExprThreshold; 913 }); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // Simple SCEV method implementations 918 //===----------------------------------------------------------------------===// 919 920 /// Compute BC(It, K). The result has width W. Assume, K > 0. 921 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 922 ScalarEvolution &SE, 923 Type *ResultTy) { 924 // Handle the simplest case efficiently. 925 if (K == 1) 926 return SE.getTruncateOrZeroExtend(It, ResultTy); 927 928 // We are using the following formula for BC(It, K): 929 // 930 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 931 // 932 // Suppose, W is the bitwidth of the return value. We must be prepared for 933 // overflow. Hence, we must assure that the result of our computation is 934 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 935 // safe in modular arithmetic. 936 // 937 // However, this code doesn't use exactly that formula; the formula it uses 938 // is something like the following, where T is the number of factors of 2 in 939 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 940 // exponentiation: 941 // 942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 943 // 944 // This formula is trivially equivalent to the previous formula. However, 945 // this formula can be implemented much more efficiently. The trick is that 946 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 947 // arithmetic. To do exact division in modular arithmetic, all we have 948 // to do is multiply by the inverse. Therefore, this step can be done at 949 // width W. 950 // 951 // The next issue is how to safely do the division by 2^T. The way this 952 // is done is by doing the multiplication step at a width of at least W + T 953 // bits. This way, the bottom W+T bits of the product are accurate. Then, 954 // when we perform the division by 2^T (which is equivalent to a right shift 955 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 956 // truncated out after the division by 2^T. 957 // 958 // In comparison to just directly using the first formula, this technique 959 // is much more efficient; using the first formula requires W * K bits, 960 // but this formula less than W + K bits. Also, the first formula requires 961 // a division step, whereas this formula only requires multiplies and shifts. 962 // 963 // It doesn't matter whether the subtraction step is done in the calculation 964 // width or the input iteration count's width; if the subtraction overflows, 965 // the result must be zero anyway. We prefer here to do it in the width of 966 // the induction variable because it helps a lot for certain cases; CodeGen 967 // isn't smart enough to ignore the overflow, which leads to much less 968 // efficient code if the width of the subtraction is wider than the native 969 // register width. 970 // 971 // (It's possible to not widen at all by pulling out factors of 2 before 972 // the multiplication; for example, K=2 can be calculated as 973 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 974 // extra arithmetic, so it's not an obvious win, and it gets 975 // much more complicated for K > 3.) 976 977 // Protection from insane SCEVs; this bound is conservative, 978 // but it probably doesn't matter. 979 if (K > 1000) 980 return SE.getCouldNotCompute(); 981 982 unsigned W = SE.getTypeSizeInBits(ResultTy); 983 984 // Calculate K! / 2^T and T; we divide out the factors of two before 985 // multiplying for calculating K! / 2^T to avoid overflow. 986 // Other overflow doesn't matter because we only care about the bottom 987 // W bits of the result. 988 APInt OddFactorial(W, 1); 989 unsigned T = 1; 990 for (unsigned i = 3; i <= K; ++i) { 991 APInt Mult(W, i); 992 unsigned TwoFactors = Mult.countTrailingZeros(); 993 T += TwoFactors; 994 Mult.lshrInPlace(TwoFactors); 995 OddFactorial *= Mult; 996 } 997 998 // We need at least W + T bits for the multiplication step 999 unsigned CalculationBits = W + T; 1000 1001 // Calculate 2^T, at width T+W. 1002 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1003 1004 // Calculate the multiplicative inverse of K! / 2^T; 1005 // this multiplication factor will perform the exact division by 1006 // K! / 2^T. 1007 APInt Mod = APInt::getSignedMinValue(W+1); 1008 APInt MultiplyFactor = OddFactorial.zext(W+1); 1009 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1010 MultiplyFactor = MultiplyFactor.trunc(W); 1011 1012 // Calculate the product, at width T+W 1013 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1014 CalculationBits); 1015 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1016 for (unsigned i = 1; i != K; ++i) { 1017 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1018 Dividend = SE.getMulExpr(Dividend, 1019 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1020 } 1021 1022 // Divide by 2^T 1023 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1024 1025 // Truncate the result, and divide by K! / 2^T. 1026 1027 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1028 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1029 } 1030 1031 /// Return the value of this chain of recurrences at the specified iteration 1032 /// number. We can evaluate this recurrence by multiplying each element in the 1033 /// chain by the binomial coefficient corresponding to it. In other words, we 1034 /// can evaluate {A,+,B,+,C,+,D} as: 1035 /// 1036 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1037 /// 1038 /// where BC(It, k) stands for binomial coefficient. 1039 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1040 ScalarEvolution &SE) const { 1041 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1042 } 1043 1044 const SCEV * 1045 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1046 const SCEV *It, ScalarEvolution &SE) { 1047 assert(Operands.size() > 0); 1048 const SCEV *Result = Operands[0]; 1049 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1050 // The computation is correct in the face of overflow provided that the 1051 // multiplication is performed _after_ the evaluation of the binomial 1052 // coefficient. 1053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1054 if (isa<SCEVCouldNotCompute>(Coeff)) 1055 return Coeff; 1056 1057 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1058 } 1059 return Result; 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SCEV Expression folder implementations 1064 //===----------------------------------------------------------------------===// 1065 1066 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1067 unsigned Depth) { 1068 assert(Depth <= 1 && 1069 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1070 1071 // We could be called with an integer-typed operands during SCEV rewrites. 1072 // Since the operand is an integer already, just perform zext/trunc/self cast. 1073 if (!Op->getType()->isPointerTy()) 1074 return Op; 1075 1076 // What would be an ID for such a SCEV cast expression? 1077 FoldingSetNodeID ID; 1078 ID.AddInteger(scPtrToInt); 1079 ID.AddPointer(Op); 1080 1081 void *IP = nullptr; 1082 1083 // Is there already an expression for such a cast? 1084 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1085 return S; 1086 1087 // It isn't legal for optimizations to construct new ptrtoint expressions 1088 // for non-integral pointers. 1089 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1090 return getCouldNotCompute(); 1091 1092 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1093 1094 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1095 // is sufficiently wide to represent all possible pointer values. 1096 // We could theoretically teach SCEV to truncate wider pointers, but 1097 // that isn't implemented for now. 1098 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1099 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1100 return getCouldNotCompute(); 1101 1102 // If not, is this expression something we can't reduce any further? 1103 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1104 // Perform some basic constant folding. If the operand of the ptr2int cast 1105 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1106 // left as-is), but produce a zero constant. 1107 // NOTE: We could handle a more general case, but lack motivational cases. 1108 if (isa<ConstantPointerNull>(U->getValue())) 1109 return getZero(IntPtrTy); 1110 1111 // Create an explicit cast node. 1112 // We can reuse the existing insert position since if we get here, 1113 // we won't have made any changes which would invalidate it. 1114 SCEV *S = new (SCEVAllocator) 1115 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1116 UniqueSCEVs.InsertNode(S, IP); 1117 registerUser(S, Op); 1118 return S; 1119 } 1120 1121 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1122 "non-SCEVUnknown's."); 1123 1124 // Otherwise, we've got some expression that is more complex than just a 1125 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1126 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1127 // only, and the expressions must otherwise be integer-typed. 1128 // So sink the cast down to the SCEVUnknown's. 1129 1130 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1131 /// which computes a pointer-typed value, and rewrites the whole expression 1132 /// tree so that *all* the computations are done on integers, and the only 1133 /// pointer-typed operands in the expression are SCEVUnknown. 1134 class SCEVPtrToIntSinkingRewriter 1135 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1136 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1137 1138 public: 1139 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1140 1141 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1142 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1143 return Rewriter.visit(Scev); 1144 } 1145 1146 const SCEV *visit(const SCEV *S) { 1147 Type *STy = S->getType(); 1148 // If the expression is not pointer-typed, just keep it as-is. 1149 if (!STy->isPointerTy()) 1150 return S; 1151 // Else, recursively sink the cast down into it. 1152 return Base::visit(S); 1153 } 1154 1155 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1156 SmallVector<const SCEV *, 2> Operands; 1157 bool Changed = false; 1158 for (auto *Op : Expr->operands()) { 1159 Operands.push_back(visit(Op)); 1160 Changed |= Op != Operands.back(); 1161 } 1162 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1163 } 1164 1165 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1166 SmallVector<const SCEV *, 2> Operands; 1167 bool Changed = false; 1168 for (auto *Op : Expr->operands()) { 1169 Operands.push_back(visit(Op)); 1170 Changed |= Op != Operands.back(); 1171 } 1172 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1173 } 1174 1175 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1176 assert(Expr->getType()->isPointerTy() && 1177 "Should only reach pointer-typed SCEVUnknown's."); 1178 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1179 } 1180 }; 1181 1182 // And actually perform the cast sinking. 1183 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1184 assert(IntOp->getType()->isIntegerTy() && 1185 "We must have succeeded in sinking the cast, " 1186 "and ending up with an integer-typed expression!"); 1187 return IntOp; 1188 } 1189 1190 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1191 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1192 1193 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1194 if (isa<SCEVCouldNotCompute>(IntOp)) 1195 return IntOp; 1196 1197 return getTruncateOrZeroExtend(IntOp, Ty); 1198 } 1199 1200 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1201 unsigned Depth) { 1202 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1203 "This is not a truncating conversion!"); 1204 assert(isSCEVable(Ty) && 1205 "This is not a conversion to a SCEVable type!"); 1206 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1207 Ty = getEffectiveSCEVType(Ty); 1208 1209 FoldingSetNodeID ID; 1210 ID.AddInteger(scTruncate); 1211 ID.AddPointer(Op); 1212 ID.AddPointer(Ty); 1213 void *IP = nullptr; 1214 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1215 1216 // Fold if the operand is constant. 1217 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1218 return getConstant( 1219 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1220 1221 // trunc(trunc(x)) --> trunc(x) 1222 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1223 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1224 1225 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1226 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1227 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1231 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1232 1233 if (Depth > MaxCastDepth) { 1234 SCEV *S = 1235 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1236 UniqueSCEVs.InsertNode(S, IP); 1237 registerUser(S, Op); 1238 return S; 1239 } 1240 1241 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1242 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1243 // if after transforming we have at most one truncate, not counting truncates 1244 // that replace other casts. 1245 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1246 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1247 SmallVector<const SCEV *, 4> Operands; 1248 unsigned numTruncs = 0; 1249 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1250 ++i) { 1251 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1252 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1253 isa<SCEVTruncateExpr>(S)) 1254 numTruncs++; 1255 Operands.push_back(S); 1256 } 1257 if (numTruncs < 2) { 1258 if (isa<SCEVAddExpr>(Op)) 1259 return getAddExpr(Operands); 1260 else if (isa<SCEVMulExpr>(Op)) 1261 return getMulExpr(Operands); 1262 else 1263 llvm_unreachable("Unexpected SCEV type for Op."); 1264 } 1265 // Although we checked in the beginning that ID is not in the cache, it is 1266 // possible that during recursion and different modification ID was inserted 1267 // into the cache. So if we find it, just return it. 1268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1269 return S; 1270 } 1271 1272 // If the input value is a chrec scev, truncate the chrec's operands. 1273 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1274 SmallVector<const SCEV *, 4> Operands; 1275 for (const SCEV *Op : AddRec->operands()) 1276 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1277 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1278 } 1279 1280 // Return zero if truncating to known zeros. 1281 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1282 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1283 return getZero(Ty); 1284 1285 // The cast wasn't folded; create an explicit cast node. We can reuse 1286 // the existing insert position since if we get here, we won't have 1287 // made any changes which would invalidate it. 1288 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1289 Op, Ty); 1290 UniqueSCEVs.InsertNode(S, IP); 1291 registerUser(S, Op); 1292 return S; 1293 } 1294 1295 // Get the limit of a recurrence such that incrementing by Step cannot cause 1296 // signed overflow as long as the value of the recurrence within the 1297 // loop does not exceed this limit before incrementing. 1298 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1299 ICmpInst::Predicate *Pred, 1300 ScalarEvolution *SE) { 1301 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1302 if (SE->isKnownPositive(Step)) { 1303 *Pred = ICmpInst::ICMP_SLT; 1304 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1305 SE->getSignedRangeMax(Step)); 1306 } 1307 if (SE->isKnownNegative(Step)) { 1308 *Pred = ICmpInst::ICMP_SGT; 1309 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1310 SE->getSignedRangeMin(Step)); 1311 } 1312 return nullptr; 1313 } 1314 1315 // Get the limit of a recurrence such that incrementing by Step cannot cause 1316 // unsigned overflow as long as the value of the recurrence within the loop does 1317 // not exceed this limit before incrementing. 1318 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1319 ICmpInst::Predicate *Pred, 1320 ScalarEvolution *SE) { 1321 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1322 *Pred = ICmpInst::ICMP_ULT; 1323 1324 return SE->getConstant(APInt::getMinValue(BitWidth) - 1325 SE->getUnsignedRangeMax(Step)); 1326 } 1327 1328 namespace { 1329 1330 struct ExtendOpTraitsBase { 1331 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1332 unsigned); 1333 }; 1334 1335 // Used to make code generic over signed and unsigned overflow. 1336 template <typename ExtendOp> struct ExtendOpTraits { 1337 // Members present: 1338 // 1339 // static const SCEV::NoWrapFlags WrapType; 1340 // 1341 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1342 // 1343 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1344 // ICmpInst::Predicate *Pred, 1345 // ScalarEvolution *SE); 1346 }; 1347 1348 template <> 1349 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1350 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1351 1352 static const GetExtendExprTy GetExtendExpr; 1353 1354 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1355 ICmpInst::Predicate *Pred, 1356 ScalarEvolution *SE) { 1357 return getSignedOverflowLimitForStep(Step, Pred, SE); 1358 } 1359 }; 1360 1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1362 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1363 1364 template <> 1365 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1366 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1367 1368 static const GetExtendExprTy GetExtendExpr; 1369 1370 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1371 ICmpInst::Predicate *Pred, 1372 ScalarEvolution *SE) { 1373 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1374 } 1375 }; 1376 1377 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1378 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1379 1380 } // end anonymous namespace 1381 1382 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1383 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1384 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1385 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1386 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1387 // expression "Step + sext/zext(PreIncAR)" is congruent with 1388 // "sext/zext(PostIncAR)" 1389 template <typename ExtendOpTy> 1390 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1391 ScalarEvolution *SE, unsigned Depth) { 1392 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1393 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1394 1395 const Loop *L = AR->getLoop(); 1396 const SCEV *Start = AR->getStart(); 1397 const SCEV *Step = AR->getStepRecurrence(*SE); 1398 1399 // Check for a simple looking step prior to loop entry. 1400 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1401 if (!SA) 1402 return nullptr; 1403 1404 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1405 // subtraction is expensive. For this purpose, perform a quick and dirty 1406 // difference, by checking for Step in the operand list. 1407 SmallVector<const SCEV *, 4> DiffOps; 1408 for (const SCEV *Op : SA->operands()) 1409 if (Op != Step) 1410 DiffOps.push_back(Op); 1411 1412 if (DiffOps.size() == SA->getNumOperands()) 1413 return nullptr; 1414 1415 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1416 // `Step`: 1417 1418 // 1. NSW/NUW flags on the step increment. 1419 auto PreStartFlags = 1420 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1421 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1422 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1423 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1424 1425 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1426 // "S+X does not sign/unsign-overflow". 1427 // 1428 1429 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1430 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1431 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1432 return PreStart; 1433 1434 // 2. Direct overflow check on the step operation's expression. 1435 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1436 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1437 const SCEV *OperandExtendedStart = 1438 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1439 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1440 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1441 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1442 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1443 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1444 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1445 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1446 } 1447 return PreStart; 1448 } 1449 1450 // 3. Loop precondition. 1451 ICmpInst::Predicate Pred; 1452 const SCEV *OverflowLimit = 1453 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1454 1455 if (OverflowLimit && 1456 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1457 return PreStart; 1458 1459 return nullptr; 1460 } 1461 1462 // Get the normalized zero or sign extended expression for this AddRec's Start. 1463 template <typename ExtendOpTy> 1464 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1465 ScalarEvolution *SE, 1466 unsigned Depth) { 1467 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1468 1469 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1470 if (!PreStart) 1471 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1472 1473 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1474 Depth), 1475 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1476 } 1477 1478 // Try to prove away overflow by looking at "nearby" add recurrences. A 1479 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1480 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1481 // 1482 // Formally: 1483 // 1484 // {S,+,X} == {S-T,+,X} + T 1485 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1486 // 1487 // If ({S-T,+,X} + T) does not overflow ... (1) 1488 // 1489 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1490 // 1491 // If {S-T,+,X} does not overflow ... (2) 1492 // 1493 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1494 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1495 // 1496 // If (S-T)+T does not overflow ... (3) 1497 // 1498 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1499 // == {Ext(S),+,Ext(X)} == LHS 1500 // 1501 // Thus, if (1), (2) and (3) are true for some T, then 1502 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1503 // 1504 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1505 // does not overflow" restricted to the 0th iteration. Therefore we only need 1506 // to check for (1) and (2). 1507 // 1508 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1509 // is `Delta` (defined below). 1510 template <typename ExtendOpTy> 1511 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1512 const SCEV *Step, 1513 const Loop *L) { 1514 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1515 1516 // We restrict `Start` to a constant to prevent SCEV from spending too much 1517 // time here. It is correct (but more expensive) to continue with a 1518 // non-constant `Start` and do a general SCEV subtraction to compute 1519 // `PreStart` below. 1520 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1521 if (!StartC) 1522 return false; 1523 1524 APInt StartAI = StartC->getAPInt(); 1525 1526 for (unsigned Delta : {-2, -1, 1, 2}) { 1527 const SCEV *PreStart = getConstant(StartAI - Delta); 1528 1529 FoldingSetNodeID ID; 1530 ID.AddInteger(scAddRecExpr); 1531 ID.AddPointer(PreStart); 1532 ID.AddPointer(Step); 1533 ID.AddPointer(L); 1534 void *IP = nullptr; 1535 const auto *PreAR = 1536 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1537 1538 // Give up if we don't already have the add recurrence we need because 1539 // actually constructing an add recurrence is relatively expensive. 1540 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1541 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1542 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1543 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1544 DeltaS, &Pred, this); 1545 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1546 return true; 1547 } 1548 } 1549 1550 return false; 1551 } 1552 1553 // Finds an integer D for an expression (C + x + y + ...) such that the top 1554 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1555 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1556 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1557 // the (C + x + y + ...) expression is \p WholeAddExpr. 1558 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1559 const SCEVConstant *ConstantTerm, 1560 const SCEVAddExpr *WholeAddExpr) { 1561 const APInt &C = ConstantTerm->getAPInt(); 1562 const unsigned BitWidth = C.getBitWidth(); 1563 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1564 uint32_t TZ = BitWidth; 1565 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1566 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1567 if (TZ) { 1568 // Set D to be as many least significant bits of C as possible while still 1569 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1570 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1571 } 1572 return APInt(BitWidth, 0); 1573 } 1574 1575 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1576 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1577 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1578 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1579 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1580 const APInt &ConstantStart, 1581 const SCEV *Step) { 1582 const unsigned BitWidth = ConstantStart.getBitWidth(); 1583 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1584 if (TZ) 1585 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1586 : ConstantStart; 1587 return APInt(BitWidth, 0); 1588 } 1589 1590 const SCEV * 1591 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1593 "This is not an extending conversion!"); 1594 assert(isSCEVable(Ty) && 1595 "This is not a conversion to a SCEVable type!"); 1596 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1597 Ty = getEffectiveSCEVType(Ty); 1598 1599 // Fold if the operand is constant. 1600 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1601 return getConstant( 1602 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1603 1604 // zext(zext(x)) --> zext(x) 1605 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1606 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1607 1608 // Before doing any expensive analysis, check to see if we've already 1609 // computed a SCEV for this Op and Ty. 1610 FoldingSetNodeID ID; 1611 ID.AddInteger(scZeroExtend); 1612 ID.AddPointer(Op); 1613 ID.AddPointer(Ty); 1614 void *IP = nullptr; 1615 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1616 if (Depth > MaxCastDepth) { 1617 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1618 Op, Ty); 1619 UniqueSCEVs.InsertNode(S, IP); 1620 registerUser(S, Op); 1621 return S; 1622 } 1623 1624 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1625 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1626 // It's possible the bits taken off by the truncate were all zero bits. If 1627 // so, we should be able to simplify this further. 1628 const SCEV *X = ST->getOperand(); 1629 ConstantRange CR = getUnsignedRange(X); 1630 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1631 unsigned NewBits = getTypeSizeInBits(Ty); 1632 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1633 CR.zextOrTrunc(NewBits))) 1634 return getTruncateOrZeroExtend(X, Ty, Depth); 1635 } 1636 1637 // If the input value is a chrec scev, and we can prove that the value 1638 // did not overflow the old, smaller, value, we can zero extend all of the 1639 // operands (often constants). This allows analysis of something like 1640 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1642 if (AR->isAffine()) { 1643 const SCEV *Start = AR->getStart(); 1644 const SCEV *Step = AR->getStepRecurrence(*this); 1645 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1646 const Loop *L = AR->getLoop(); 1647 1648 if (!AR->hasNoUnsignedWrap()) { 1649 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1650 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1651 } 1652 1653 // If we have special knowledge that this addrec won't overflow, 1654 // we don't need to do any further analysis. 1655 if (AR->hasNoUnsignedWrap()) 1656 return getAddRecExpr( 1657 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1658 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1659 1660 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1661 // Note that this serves two purposes: It filters out loops that are 1662 // simply not analyzable, and it covers the case where this code is 1663 // being called from within backedge-taken count analysis, such that 1664 // attempting to ask for the backedge-taken count would likely result 1665 // in infinite recursion. In the later case, the analysis code will 1666 // cope with a conservative value, and it will take care to purge 1667 // that value once it has finished. 1668 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1669 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1670 // Manually compute the final value for AR, checking for overflow. 1671 1672 // Check whether the backedge-taken count can be losslessly casted to 1673 // the addrec's type. The count is always unsigned. 1674 const SCEV *CastedMaxBECount = 1675 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1676 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1677 CastedMaxBECount, MaxBECount->getType(), Depth); 1678 if (MaxBECount == RecastedMaxBECount) { 1679 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1680 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1681 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1682 SCEV::FlagAnyWrap, Depth + 1); 1683 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1684 SCEV::FlagAnyWrap, 1685 Depth + 1), 1686 WideTy, Depth + 1); 1687 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1688 const SCEV *WideMaxBECount = 1689 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1690 const SCEV *OperandExtendedAdd = 1691 getAddExpr(WideStart, 1692 getMulExpr(WideMaxBECount, 1693 getZeroExtendExpr(Step, WideTy, Depth + 1), 1694 SCEV::FlagAnyWrap, Depth + 1), 1695 SCEV::FlagAnyWrap, Depth + 1); 1696 if (ZAdd == OperandExtendedAdd) { 1697 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1698 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1699 // Return the expression with the addrec on the outside. 1700 return getAddRecExpr( 1701 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1702 Depth + 1), 1703 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1704 AR->getNoWrapFlags()); 1705 } 1706 // Similar to above, only this time treat the step value as signed. 1707 // This covers loops that count down. 1708 OperandExtendedAdd = 1709 getAddExpr(WideStart, 1710 getMulExpr(WideMaxBECount, 1711 getSignExtendExpr(Step, WideTy, Depth + 1), 1712 SCEV::FlagAnyWrap, Depth + 1), 1713 SCEV::FlagAnyWrap, Depth + 1); 1714 if (ZAdd == OperandExtendedAdd) { 1715 // Cache knowledge of AR NW, which is propagated to this AddRec. 1716 // Negative step causes unsigned wrap, but it still can't self-wrap. 1717 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1718 // Return the expression with the addrec on the outside. 1719 return getAddRecExpr( 1720 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1721 Depth + 1), 1722 getSignExtendExpr(Step, Ty, Depth + 1), L, 1723 AR->getNoWrapFlags()); 1724 } 1725 } 1726 } 1727 1728 // Normally, in the cases we can prove no-overflow via a 1729 // backedge guarding condition, we can also compute a backedge 1730 // taken count for the loop. The exceptions are assumptions and 1731 // guards present in the loop -- SCEV is not great at exploiting 1732 // these to compute max backedge taken counts, but can still use 1733 // these to prove lack of overflow. Use this fact to avoid 1734 // doing extra work that may not pay off. 1735 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1736 !AC.assumptions().empty()) { 1737 1738 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1739 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1740 if (AR->hasNoUnsignedWrap()) { 1741 // Same as nuw case above - duplicated here to avoid a compile time 1742 // issue. It's not clear that the order of checks does matter, but 1743 // it's one of two issue possible causes for a change which was 1744 // reverted. Be conservative for the moment. 1745 return getAddRecExpr( 1746 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1747 Depth + 1), 1748 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1749 AR->getNoWrapFlags()); 1750 } 1751 1752 // For a negative step, we can extend the operands iff doing so only 1753 // traverses values in the range zext([0,UINT_MAX]). 1754 if (isKnownNegative(Step)) { 1755 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1756 getSignedRangeMin(Step)); 1757 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1758 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1759 // Cache knowledge of AR NW, which is propagated to this 1760 // AddRec. Negative step causes unsigned wrap, but it 1761 // still can't self-wrap. 1762 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1763 // Return the expression with the addrec on the outside. 1764 return getAddRecExpr( 1765 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1766 Depth + 1), 1767 getSignExtendExpr(Step, Ty, Depth + 1), L, 1768 AR->getNoWrapFlags()); 1769 } 1770 } 1771 } 1772 1773 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1774 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1775 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1776 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1777 const APInt &C = SC->getAPInt(); 1778 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1779 if (D != 0) { 1780 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1781 const SCEV *SResidual = 1782 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1783 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1784 return getAddExpr(SZExtD, SZExtR, 1785 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1786 Depth + 1); 1787 } 1788 } 1789 1790 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1791 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1792 return getAddRecExpr( 1793 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1794 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1795 } 1796 } 1797 1798 // zext(A % B) --> zext(A) % zext(B) 1799 { 1800 const SCEV *LHS; 1801 const SCEV *RHS; 1802 if (matchURem(Op, LHS, RHS)) 1803 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1804 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1805 } 1806 1807 // zext(A / B) --> zext(A) / zext(B). 1808 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1809 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1810 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1811 1812 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1813 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1814 if (SA->hasNoUnsignedWrap()) { 1815 // If the addition does not unsign overflow then we can, by definition, 1816 // commute the zero extension with the addition operation. 1817 SmallVector<const SCEV *, 4> Ops; 1818 for (const auto *Op : SA->operands()) 1819 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1820 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1821 } 1822 1823 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1824 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1825 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1826 // 1827 // Often address arithmetics contain expressions like 1828 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1829 // This transformation is useful while proving that such expressions are 1830 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1831 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1832 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1833 if (D != 0) { 1834 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1835 const SCEV *SResidual = 1836 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1837 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1838 return getAddExpr(SZExtD, SZExtR, 1839 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1840 Depth + 1); 1841 } 1842 } 1843 } 1844 1845 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1846 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1847 if (SM->hasNoUnsignedWrap()) { 1848 // If the multiply does not unsign overflow then we can, by definition, 1849 // commute the zero extension with the multiply operation. 1850 SmallVector<const SCEV *, 4> Ops; 1851 for (const auto *Op : SM->operands()) 1852 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1853 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1854 } 1855 1856 // zext(2^K * (trunc X to iN)) to iM -> 1857 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1858 // 1859 // Proof: 1860 // 1861 // zext(2^K * (trunc X to iN)) to iM 1862 // = zext((trunc X to iN) << K) to iM 1863 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1864 // (because shl removes the top K bits) 1865 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1866 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1867 // 1868 if (SM->getNumOperands() == 2) 1869 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1870 if (MulLHS->getAPInt().isPowerOf2()) 1871 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1872 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1873 MulLHS->getAPInt().logBase2(); 1874 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1875 return getMulExpr( 1876 getZeroExtendExpr(MulLHS, Ty), 1877 getZeroExtendExpr( 1878 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1879 SCEV::FlagNUW, Depth + 1); 1880 } 1881 } 1882 1883 // The cast wasn't folded; create an explicit cast node. 1884 // Recompute the insert position, as it may have been invalidated. 1885 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1886 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1887 Op, Ty); 1888 UniqueSCEVs.InsertNode(S, IP); 1889 registerUser(S, Op); 1890 return S; 1891 } 1892 1893 const SCEV * 1894 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1895 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1896 "This is not an extending conversion!"); 1897 assert(isSCEVable(Ty) && 1898 "This is not a conversion to a SCEVable type!"); 1899 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1900 Ty = getEffectiveSCEVType(Ty); 1901 1902 // Fold if the operand is constant. 1903 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1904 return getConstant( 1905 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1906 1907 // sext(sext(x)) --> sext(x) 1908 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1909 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1910 1911 // sext(zext(x)) --> zext(x) 1912 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1913 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1914 1915 // Before doing any expensive analysis, check to see if we've already 1916 // computed a SCEV for this Op and Ty. 1917 FoldingSetNodeID ID; 1918 ID.AddInteger(scSignExtend); 1919 ID.AddPointer(Op); 1920 ID.AddPointer(Ty); 1921 void *IP = nullptr; 1922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1923 // Limit recursion depth. 1924 if (Depth > MaxCastDepth) { 1925 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1926 Op, Ty); 1927 UniqueSCEVs.InsertNode(S, IP); 1928 registerUser(S, Op); 1929 return S; 1930 } 1931 1932 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1933 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1934 // It's possible the bits taken off by the truncate were all sign bits. If 1935 // so, we should be able to simplify this further. 1936 const SCEV *X = ST->getOperand(); 1937 ConstantRange CR = getSignedRange(X); 1938 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1939 unsigned NewBits = getTypeSizeInBits(Ty); 1940 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1941 CR.sextOrTrunc(NewBits))) 1942 return getTruncateOrSignExtend(X, Ty, Depth); 1943 } 1944 1945 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1946 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1947 if (SA->hasNoSignedWrap()) { 1948 // If the addition does not sign overflow then we can, by definition, 1949 // commute the sign extension with the addition operation. 1950 SmallVector<const SCEV *, 4> Ops; 1951 for (const auto *Op : SA->operands()) 1952 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1953 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1954 } 1955 1956 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1957 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1958 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1959 // 1960 // For instance, this will bring two seemingly different expressions: 1961 // 1 + sext(5 + 20 * %x + 24 * %y) and 1962 // sext(6 + 20 * %x + 24 * %y) 1963 // to the same form: 1964 // 2 + sext(4 + 20 * %x + 24 * %y) 1965 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1966 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1967 if (D != 0) { 1968 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1969 const SCEV *SResidual = 1970 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1971 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1972 return getAddExpr(SSExtD, SSExtR, 1973 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1974 Depth + 1); 1975 } 1976 } 1977 } 1978 // If the input value is a chrec scev, and we can prove that the value 1979 // did not overflow the old, smaller, value, we can sign extend all of the 1980 // operands (often constants). This allows analysis of something like 1981 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1982 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1983 if (AR->isAffine()) { 1984 const SCEV *Start = AR->getStart(); 1985 const SCEV *Step = AR->getStepRecurrence(*this); 1986 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1987 const Loop *L = AR->getLoop(); 1988 1989 if (!AR->hasNoSignedWrap()) { 1990 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1991 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1992 } 1993 1994 // If we have special knowledge that this addrec won't overflow, 1995 // we don't need to do any further analysis. 1996 if (AR->hasNoSignedWrap()) 1997 return getAddRecExpr( 1998 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1999 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2000 2001 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2002 // Note that this serves two purposes: It filters out loops that are 2003 // simply not analyzable, and it covers the case where this code is 2004 // being called from within backedge-taken count analysis, such that 2005 // attempting to ask for the backedge-taken count would likely result 2006 // in infinite recursion. In the later case, the analysis code will 2007 // cope with a conservative value, and it will take care to purge 2008 // that value once it has finished. 2009 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2010 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2011 // Manually compute the final value for AR, checking for 2012 // overflow. 2013 2014 // Check whether the backedge-taken count can be losslessly casted to 2015 // the addrec's type. The count is always unsigned. 2016 const SCEV *CastedMaxBECount = 2017 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2018 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2019 CastedMaxBECount, MaxBECount->getType(), Depth); 2020 if (MaxBECount == RecastedMaxBECount) { 2021 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2022 // Check whether Start+Step*MaxBECount has no signed overflow. 2023 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2024 SCEV::FlagAnyWrap, Depth + 1); 2025 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2026 SCEV::FlagAnyWrap, 2027 Depth + 1), 2028 WideTy, Depth + 1); 2029 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2030 const SCEV *WideMaxBECount = 2031 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2032 const SCEV *OperandExtendedAdd = 2033 getAddExpr(WideStart, 2034 getMulExpr(WideMaxBECount, 2035 getSignExtendExpr(Step, WideTy, Depth + 1), 2036 SCEV::FlagAnyWrap, Depth + 1), 2037 SCEV::FlagAnyWrap, Depth + 1); 2038 if (SAdd == OperandExtendedAdd) { 2039 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2040 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2041 // Return the expression with the addrec on the outside. 2042 return getAddRecExpr( 2043 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2044 Depth + 1), 2045 getSignExtendExpr(Step, Ty, Depth + 1), L, 2046 AR->getNoWrapFlags()); 2047 } 2048 // Similar to above, only this time treat the step value as unsigned. 2049 // This covers loops that count up with an unsigned step. 2050 OperandExtendedAdd = 2051 getAddExpr(WideStart, 2052 getMulExpr(WideMaxBECount, 2053 getZeroExtendExpr(Step, WideTy, Depth + 1), 2054 SCEV::FlagAnyWrap, Depth + 1), 2055 SCEV::FlagAnyWrap, Depth + 1); 2056 if (SAdd == OperandExtendedAdd) { 2057 // If AR wraps around then 2058 // 2059 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2060 // => SAdd != OperandExtendedAdd 2061 // 2062 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2063 // (SAdd == OperandExtendedAdd => AR is NW) 2064 2065 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2066 2067 // Return the expression with the addrec on the outside. 2068 return getAddRecExpr( 2069 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2070 Depth + 1), 2071 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2072 AR->getNoWrapFlags()); 2073 } 2074 } 2075 } 2076 2077 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2078 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2079 if (AR->hasNoSignedWrap()) { 2080 // Same as nsw case above - duplicated here to avoid a compile time 2081 // issue. It's not clear that the order of checks does matter, but 2082 // it's one of two issue possible causes for a change which was 2083 // reverted. Be conservative for the moment. 2084 return getAddRecExpr( 2085 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2086 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2087 } 2088 2089 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2090 // if D + (C - D + Step * n) could be proven to not signed wrap 2091 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2092 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2093 const APInt &C = SC->getAPInt(); 2094 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2095 if (D != 0) { 2096 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2097 const SCEV *SResidual = 2098 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2099 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2100 return getAddExpr(SSExtD, SSExtR, 2101 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2102 Depth + 1); 2103 } 2104 } 2105 2106 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2107 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2108 return getAddRecExpr( 2109 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2110 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2111 } 2112 } 2113 2114 // If the input value is provably positive and we could not simplify 2115 // away the sext build a zext instead. 2116 if (isKnownNonNegative(Op)) 2117 return getZeroExtendExpr(Op, Ty, Depth + 1); 2118 2119 // The cast wasn't folded; create an explicit cast node. 2120 // Recompute the insert position, as it may have been invalidated. 2121 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2122 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2123 Op, Ty); 2124 UniqueSCEVs.InsertNode(S, IP); 2125 registerUser(S, { Op }); 2126 return S; 2127 } 2128 2129 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2130 Type *Ty) { 2131 switch (Kind) { 2132 case scTruncate: 2133 return getTruncateExpr(Op, Ty); 2134 case scZeroExtend: 2135 return getZeroExtendExpr(Op, Ty); 2136 case scSignExtend: 2137 return getSignExtendExpr(Op, Ty); 2138 case scPtrToInt: 2139 return getPtrToIntExpr(Op, Ty); 2140 default: 2141 llvm_unreachable("Not a SCEV cast expression!"); 2142 } 2143 } 2144 2145 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2146 /// unspecified bits out to the given type. 2147 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2148 Type *Ty) { 2149 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2150 "This is not an extending conversion!"); 2151 assert(isSCEVable(Ty) && 2152 "This is not a conversion to a SCEVable type!"); 2153 Ty = getEffectiveSCEVType(Ty); 2154 2155 // Sign-extend negative constants. 2156 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2157 if (SC->getAPInt().isNegative()) 2158 return getSignExtendExpr(Op, Ty); 2159 2160 // Peel off a truncate cast. 2161 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2162 const SCEV *NewOp = T->getOperand(); 2163 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2164 return getAnyExtendExpr(NewOp, Ty); 2165 return getTruncateOrNoop(NewOp, Ty); 2166 } 2167 2168 // Next try a zext cast. If the cast is folded, use it. 2169 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2170 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2171 return ZExt; 2172 2173 // Next try a sext cast. If the cast is folded, use it. 2174 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2175 if (!isa<SCEVSignExtendExpr>(SExt)) 2176 return SExt; 2177 2178 // Force the cast to be folded into the operands of an addrec. 2179 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2180 SmallVector<const SCEV *, 4> Ops; 2181 for (const SCEV *Op : AR->operands()) 2182 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2183 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2184 } 2185 2186 // If the expression is obviously signed, use the sext cast value. 2187 if (isa<SCEVSMaxExpr>(Op)) 2188 return SExt; 2189 2190 // Absent any other information, use the zext cast value. 2191 return ZExt; 2192 } 2193 2194 /// Process the given Ops list, which is a list of operands to be added under 2195 /// the given scale, update the given map. This is a helper function for 2196 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2197 /// that would form an add expression like this: 2198 /// 2199 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2200 /// 2201 /// where A and B are constants, update the map with these values: 2202 /// 2203 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2204 /// 2205 /// and add 13 + A*B*29 to AccumulatedConstant. 2206 /// This will allow getAddRecExpr to produce this: 2207 /// 2208 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2209 /// 2210 /// This form often exposes folding opportunities that are hidden in 2211 /// the original operand list. 2212 /// 2213 /// Return true iff it appears that any interesting folding opportunities 2214 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2215 /// the common case where no interesting opportunities are present, and 2216 /// is also used as a check to avoid infinite recursion. 2217 static bool 2218 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2219 SmallVectorImpl<const SCEV *> &NewOps, 2220 APInt &AccumulatedConstant, 2221 const SCEV *const *Ops, size_t NumOperands, 2222 const APInt &Scale, 2223 ScalarEvolution &SE) { 2224 bool Interesting = false; 2225 2226 // Iterate over the add operands. They are sorted, with constants first. 2227 unsigned i = 0; 2228 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2229 ++i; 2230 // Pull a buried constant out to the outside. 2231 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2232 Interesting = true; 2233 AccumulatedConstant += Scale * C->getAPInt(); 2234 } 2235 2236 // Next comes everything else. We're especially interested in multiplies 2237 // here, but they're in the middle, so just visit the rest with one loop. 2238 for (; i != NumOperands; ++i) { 2239 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2240 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2241 APInt NewScale = 2242 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2243 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2244 // A multiplication of a constant with another add; recurse. 2245 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2246 Interesting |= 2247 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2248 Add->op_begin(), Add->getNumOperands(), 2249 NewScale, SE); 2250 } else { 2251 // A multiplication of a constant with some other value. Update 2252 // the map. 2253 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2254 const SCEV *Key = SE.getMulExpr(MulOps); 2255 auto Pair = M.insert({Key, NewScale}); 2256 if (Pair.second) { 2257 NewOps.push_back(Pair.first->first); 2258 } else { 2259 Pair.first->second += NewScale; 2260 // The map already had an entry for this value, which may indicate 2261 // a folding opportunity. 2262 Interesting = true; 2263 } 2264 } 2265 } else { 2266 // An ordinary operand. Update the map. 2267 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2268 M.insert({Ops[i], Scale}); 2269 if (Pair.second) { 2270 NewOps.push_back(Pair.first->first); 2271 } else { 2272 Pair.first->second += Scale; 2273 // The map already had an entry for this value, which may indicate 2274 // a folding opportunity. 2275 Interesting = true; 2276 } 2277 } 2278 } 2279 2280 return Interesting; 2281 } 2282 2283 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2284 const SCEV *LHS, const SCEV *RHS) { 2285 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2286 SCEV::NoWrapFlags, unsigned); 2287 switch (BinOp) { 2288 default: 2289 llvm_unreachable("Unsupported binary op"); 2290 case Instruction::Add: 2291 Operation = &ScalarEvolution::getAddExpr; 2292 break; 2293 case Instruction::Sub: 2294 Operation = &ScalarEvolution::getMinusSCEV; 2295 break; 2296 case Instruction::Mul: 2297 Operation = &ScalarEvolution::getMulExpr; 2298 break; 2299 } 2300 2301 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2302 Signed ? &ScalarEvolution::getSignExtendExpr 2303 : &ScalarEvolution::getZeroExtendExpr; 2304 2305 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2306 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2307 auto *WideTy = 2308 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2309 2310 const SCEV *A = (this->*Extension)( 2311 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2312 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2313 (this->*Extension)(RHS, WideTy, 0), 2314 SCEV::FlagAnyWrap, 0); 2315 return A == B; 2316 } 2317 2318 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2319 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2320 const OverflowingBinaryOperator *OBO) { 2321 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2322 2323 if (OBO->hasNoUnsignedWrap()) 2324 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2325 if (OBO->hasNoSignedWrap()) 2326 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2327 2328 bool Deduced = false; 2329 2330 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2331 return {Flags, Deduced}; 2332 2333 if (OBO->getOpcode() != Instruction::Add && 2334 OBO->getOpcode() != Instruction::Sub && 2335 OBO->getOpcode() != Instruction::Mul) 2336 return {Flags, Deduced}; 2337 2338 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2339 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2340 2341 if (!OBO->hasNoUnsignedWrap() && 2342 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2343 /* Signed */ false, LHS, RHS)) { 2344 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2345 Deduced = true; 2346 } 2347 2348 if (!OBO->hasNoSignedWrap() && 2349 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2350 /* Signed */ true, LHS, RHS)) { 2351 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2352 Deduced = true; 2353 } 2354 2355 return {Flags, Deduced}; 2356 } 2357 2358 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2359 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2360 // can't-overflow flags for the operation if possible. 2361 static SCEV::NoWrapFlags 2362 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2363 const ArrayRef<const SCEV *> Ops, 2364 SCEV::NoWrapFlags Flags) { 2365 using namespace std::placeholders; 2366 2367 using OBO = OverflowingBinaryOperator; 2368 2369 bool CanAnalyze = 2370 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2371 (void)CanAnalyze; 2372 assert(CanAnalyze && "don't call from other places!"); 2373 2374 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2375 SCEV::NoWrapFlags SignOrUnsignWrap = 2376 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2377 2378 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2379 auto IsKnownNonNegative = [&](const SCEV *S) { 2380 return SE->isKnownNonNegative(S); 2381 }; 2382 2383 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2384 Flags = 2385 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2386 2387 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2388 2389 if (SignOrUnsignWrap != SignOrUnsignMask && 2390 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2391 isa<SCEVConstant>(Ops[0])) { 2392 2393 auto Opcode = [&] { 2394 switch (Type) { 2395 case scAddExpr: 2396 return Instruction::Add; 2397 case scMulExpr: 2398 return Instruction::Mul; 2399 default: 2400 llvm_unreachable("Unexpected SCEV op."); 2401 } 2402 }(); 2403 2404 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2405 2406 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2407 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2408 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2409 Opcode, C, OBO::NoSignedWrap); 2410 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2411 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2412 } 2413 2414 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2415 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2416 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2417 Opcode, C, OBO::NoUnsignedWrap); 2418 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2419 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2420 } 2421 } 2422 2423 // <0,+,nonnegative><nw> is also nuw 2424 // TODO: Add corresponding nsw case 2425 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2426 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2427 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2428 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2429 2430 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2431 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2432 Ops.size() == 2) { 2433 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2434 if (UDiv->getOperand(1) == Ops[1]) 2435 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2436 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2437 if (UDiv->getOperand(1) == Ops[0]) 2438 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2439 } 2440 2441 return Flags; 2442 } 2443 2444 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2445 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2446 } 2447 2448 /// Get a canonical add expression, or something simpler if possible. 2449 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2450 SCEV::NoWrapFlags OrigFlags, 2451 unsigned Depth) { 2452 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2453 "only nuw or nsw allowed"); 2454 assert(!Ops.empty() && "Cannot get empty add!"); 2455 if (Ops.size() == 1) return Ops[0]; 2456 #ifndef NDEBUG 2457 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2458 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2459 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2460 "SCEVAddExpr operand types don't match!"); 2461 unsigned NumPtrs = count_if( 2462 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2463 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2464 #endif 2465 2466 // Sort by complexity, this groups all similar expression types together. 2467 GroupByComplexity(Ops, &LI, DT); 2468 2469 // If there are any constants, fold them together. 2470 unsigned Idx = 0; 2471 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2472 ++Idx; 2473 assert(Idx < Ops.size()); 2474 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2475 // We found two constants, fold them together! 2476 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2477 if (Ops.size() == 2) return Ops[0]; 2478 Ops.erase(Ops.begin()+1); // Erase the folded element 2479 LHSC = cast<SCEVConstant>(Ops[0]); 2480 } 2481 2482 // If we are left with a constant zero being added, strip it off. 2483 if (LHSC->getValue()->isZero()) { 2484 Ops.erase(Ops.begin()); 2485 --Idx; 2486 } 2487 2488 if (Ops.size() == 1) return Ops[0]; 2489 } 2490 2491 // Delay expensive flag strengthening until necessary. 2492 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2493 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2494 }; 2495 2496 // Limit recursion calls depth. 2497 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2498 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2499 2500 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2501 // Don't strengthen flags if we have no new information. 2502 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2503 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2504 Add->setNoWrapFlags(ComputeFlags(Ops)); 2505 return S; 2506 } 2507 2508 // Okay, check to see if the same value occurs in the operand list more than 2509 // once. If so, merge them together into an multiply expression. Since we 2510 // sorted the list, these values are required to be adjacent. 2511 Type *Ty = Ops[0]->getType(); 2512 bool FoundMatch = false; 2513 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2514 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2515 // Scan ahead to count how many equal operands there are. 2516 unsigned Count = 2; 2517 while (i+Count != e && Ops[i+Count] == Ops[i]) 2518 ++Count; 2519 // Merge the values into a multiply. 2520 const SCEV *Scale = getConstant(Ty, Count); 2521 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2522 if (Ops.size() == Count) 2523 return Mul; 2524 Ops[i] = Mul; 2525 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2526 --i; e -= Count - 1; 2527 FoundMatch = true; 2528 } 2529 if (FoundMatch) 2530 return getAddExpr(Ops, OrigFlags, Depth + 1); 2531 2532 // Check for truncates. If all the operands are truncated from the same 2533 // type, see if factoring out the truncate would permit the result to be 2534 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2535 // if the contents of the resulting outer trunc fold to something simple. 2536 auto FindTruncSrcType = [&]() -> Type * { 2537 // We're ultimately looking to fold an addrec of truncs and muls of only 2538 // constants and truncs, so if we find any other types of SCEV 2539 // as operands of the addrec then we bail and return nullptr here. 2540 // Otherwise, we return the type of the operand of a trunc that we find. 2541 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2542 return T->getOperand()->getType(); 2543 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2544 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2545 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2546 return T->getOperand()->getType(); 2547 } 2548 return nullptr; 2549 }; 2550 if (auto *SrcType = FindTruncSrcType()) { 2551 SmallVector<const SCEV *, 8> LargeOps; 2552 bool Ok = true; 2553 // Check all the operands to see if they can be represented in the 2554 // source type of the truncate. 2555 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2556 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2557 if (T->getOperand()->getType() != SrcType) { 2558 Ok = false; 2559 break; 2560 } 2561 LargeOps.push_back(T->getOperand()); 2562 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2563 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2564 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2565 SmallVector<const SCEV *, 8> LargeMulOps; 2566 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2567 if (const SCEVTruncateExpr *T = 2568 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2569 if (T->getOperand()->getType() != SrcType) { 2570 Ok = false; 2571 break; 2572 } 2573 LargeMulOps.push_back(T->getOperand()); 2574 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2575 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2576 } else { 2577 Ok = false; 2578 break; 2579 } 2580 } 2581 if (Ok) 2582 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2583 } else { 2584 Ok = false; 2585 break; 2586 } 2587 } 2588 if (Ok) { 2589 // Evaluate the expression in the larger type. 2590 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2591 // If it folds to something simple, use it. Otherwise, don't. 2592 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2593 return getTruncateExpr(Fold, Ty); 2594 } 2595 } 2596 2597 if (Ops.size() == 2) { 2598 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2599 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2600 // C1). 2601 const SCEV *A = Ops[0]; 2602 const SCEV *B = Ops[1]; 2603 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2604 auto *C = dyn_cast<SCEVConstant>(A); 2605 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2606 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2607 auto C2 = C->getAPInt(); 2608 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2609 2610 APInt ConstAdd = C1 + C2; 2611 auto AddFlags = AddExpr->getNoWrapFlags(); 2612 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2613 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2614 ConstAdd.ule(C1)) { 2615 PreservedFlags = 2616 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2617 } 2618 2619 // Adding a constant with the same sign and small magnitude is NSW, if the 2620 // original AddExpr was NSW. 2621 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2622 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2623 ConstAdd.abs().ule(C1.abs())) { 2624 PreservedFlags = 2625 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2626 } 2627 2628 if (PreservedFlags != SCEV::FlagAnyWrap) { 2629 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2630 NewOps[0] = getConstant(ConstAdd); 2631 return getAddExpr(NewOps, PreservedFlags); 2632 } 2633 } 2634 } 2635 2636 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2637 if (Ops.size() == 2) { 2638 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2639 if (Mul && Mul->getNumOperands() == 2 && 2640 Mul->getOperand(0)->isAllOnesValue()) { 2641 const SCEV *X; 2642 const SCEV *Y; 2643 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2644 return getMulExpr(Y, getUDivExpr(X, Y)); 2645 } 2646 } 2647 } 2648 2649 // Skip past any other cast SCEVs. 2650 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2651 ++Idx; 2652 2653 // If there are add operands they would be next. 2654 if (Idx < Ops.size()) { 2655 bool DeletedAdd = false; 2656 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2657 // common NUW flag for expression after inlining. Other flags cannot be 2658 // preserved, because they may depend on the original order of operations. 2659 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2660 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2661 if (Ops.size() > AddOpsInlineThreshold || 2662 Add->getNumOperands() > AddOpsInlineThreshold) 2663 break; 2664 // If we have an add, expand the add operands onto the end of the operands 2665 // list. 2666 Ops.erase(Ops.begin()+Idx); 2667 Ops.append(Add->op_begin(), Add->op_end()); 2668 DeletedAdd = true; 2669 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2670 } 2671 2672 // If we deleted at least one add, we added operands to the end of the list, 2673 // and they are not necessarily sorted. Recurse to resort and resimplify 2674 // any operands we just acquired. 2675 if (DeletedAdd) 2676 return getAddExpr(Ops, CommonFlags, Depth + 1); 2677 } 2678 2679 // Skip over the add expression until we get to a multiply. 2680 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2681 ++Idx; 2682 2683 // Check to see if there are any folding opportunities present with 2684 // operands multiplied by constant values. 2685 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2686 uint64_t BitWidth = getTypeSizeInBits(Ty); 2687 DenseMap<const SCEV *, APInt> M; 2688 SmallVector<const SCEV *, 8> NewOps; 2689 APInt AccumulatedConstant(BitWidth, 0); 2690 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2691 Ops.data(), Ops.size(), 2692 APInt(BitWidth, 1), *this)) { 2693 struct APIntCompare { 2694 bool operator()(const APInt &LHS, const APInt &RHS) const { 2695 return LHS.ult(RHS); 2696 } 2697 }; 2698 2699 // Some interesting folding opportunity is present, so its worthwhile to 2700 // re-generate the operands list. Group the operands by constant scale, 2701 // to avoid multiplying by the same constant scale multiple times. 2702 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2703 for (const SCEV *NewOp : NewOps) 2704 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2705 // Re-generate the operands list. 2706 Ops.clear(); 2707 if (AccumulatedConstant != 0) 2708 Ops.push_back(getConstant(AccumulatedConstant)); 2709 for (auto &MulOp : MulOpLists) { 2710 if (MulOp.first == 1) { 2711 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2712 } else if (MulOp.first != 0) { 2713 Ops.push_back(getMulExpr( 2714 getConstant(MulOp.first), 2715 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2716 SCEV::FlagAnyWrap, Depth + 1)); 2717 } 2718 } 2719 if (Ops.empty()) 2720 return getZero(Ty); 2721 if (Ops.size() == 1) 2722 return Ops[0]; 2723 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2724 } 2725 } 2726 2727 // If we are adding something to a multiply expression, make sure the 2728 // something is not already an operand of the multiply. If so, merge it into 2729 // the multiply. 2730 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2731 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2732 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2733 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2734 if (isa<SCEVConstant>(MulOpSCEV)) 2735 continue; 2736 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2737 if (MulOpSCEV == Ops[AddOp]) { 2738 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2739 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2740 if (Mul->getNumOperands() != 2) { 2741 // If the multiply has more than two operands, we must get the 2742 // Y*Z term. 2743 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2744 Mul->op_begin()+MulOp); 2745 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2746 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2747 } 2748 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2749 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2750 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2751 SCEV::FlagAnyWrap, Depth + 1); 2752 if (Ops.size() == 2) return OuterMul; 2753 if (AddOp < Idx) { 2754 Ops.erase(Ops.begin()+AddOp); 2755 Ops.erase(Ops.begin()+Idx-1); 2756 } else { 2757 Ops.erase(Ops.begin()+Idx); 2758 Ops.erase(Ops.begin()+AddOp-1); 2759 } 2760 Ops.push_back(OuterMul); 2761 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2762 } 2763 2764 // Check this multiply against other multiplies being added together. 2765 for (unsigned OtherMulIdx = Idx+1; 2766 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2767 ++OtherMulIdx) { 2768 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2769 // If MulOp occurs in OtherMul, we can fold the two multiplies 2770 // together. 2771 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2772 OMulOp != e; ++OMulOp) 2773 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2774 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2775 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2776 if (Mul->getNumOperands() != 2) { 2777 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2778 Mul->op_begin()+MulOp); 2779 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2780 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2781 } 2782 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2783 if (OtherMul->getNumOperands() != 2) { 2784 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2785 OtherMul->op_begin()+OMulOp); 2786 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2787 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2788 } 2789 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2790 const SCEV *InnerMulSum = 2791 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2792 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2793 SCEV::FlagAnyWrap, Depth + 1); 2794 if (Ops.size() == 2) return OuterMul; 2795 Ops.erase(Ops.begin()+Idx); 2796 Ops.erase(Ops.begin()+OtherMulIdx-1); 2797 Ops.push_back(OuterMul); 2798 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2799 } 2800 } 2801 } 2802 } 2803 2804 // If there are any add recurrences in the operands list, see if any other 2805 // added values are loop invariant. If so, we can fold them into the 2806 // recurrence. 2807 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2808 ++Idx; 2809 2810 // Scan over all recurrences, trying to fold loop invariants into them. 2811 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2812 // Scan all of the other operands to this add and add them to the vector if 2813 // they are loop invariant w.r.t. the recurrence. 2814 SmallVector<const SCEV *, 8> LIOps; 2815 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2816 const Loop *AddRecLoop = AddRec->getLoop(); 2817 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2818 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2819 LIOps.push_back(Ops[i]); 2820 Ops.erase(Ops.begin()+i); 2821 --i; --e; 2822 } 2823 2824 // If we found some loop invariants, fold them into the recurrence. 2825 if (!LIOps.empty()) { 2826 // Compute nowrap flags for the addition of the loop-invariant ops and 2827 // the addrec. Temporarily push it as an operand for that purpose. These 2828 // flags are valid in the scope of the addrec only. 2829 LIOps.push_back(AddRec); 2830 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2831 LIOps.pop_back(); 2832 2833 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2834 LIOps.push_back(AddRec->getStart()); 2835 2836 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2837 2838 // It is not in general safe to propagate flags valid on an add within 2839 // the addrec scope to one outside it. We must prove that the inner 2840 // scope is guaranteed to execute if the outer one does to be able to 2841 // safely propagate. We know the program is undefined if poison is 2842 // produced on the inner scoped addrec. We also know that *for this use* 2843 // the outer scoped add can't overflow (because of the flags we just 2844 // computed for the inner scoped add) without the program being undefined. 2845 // Proving that entry to the outer scope neccesitates entry to the inner 2846 // scope, thus proves the program undefined if the flags would be violated 2847 // in the outer scope. 2848 SCEV::NoWrapFlags AddFlags = Flags; 2849 if (AddFlags != SCEV::FlagAnyWrap) { 2850 auto *DefI = getDefiningScopeBound(LIOps); 2851 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2852 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2853 AddFlags = SCEV::FlagAnyWrap; 2854 } 2855 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2856 2857 // Build the new addrec. Propagate the NUW and NSW flags if both the 2858 // outer add and the inner addrec are guaranteed to have no overflow. 2859 // Always propagate NW. 2860 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2861 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2862 2863 // If all of the other operands were loop invariant, we are done. 2864 if (Ops.size() == 1) return NewRec; 2865 2866 // Otherwise, add the folded AddRec by the non-invariant parts. 2867 for (unsigned i = 0;; ++i) 2868 if (Ops[i] == AddRec) { 2869 Ops[i] = NewRec; 2870 break; 2871 } 2872 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2873 } 2874 2875 // Okay, if there weren't any loop invariants to be folded, check to see if 2876 // there are multiple AddRec's with the same loop induction variable being 2877 // added together. If so, we can fold them. 2878 for (unsigned OtherIdx = Idx+1; 2879 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2880 ++OtherIdx) { 2881 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2882 // so that the 1st found AddRecExpr is dominated by all others. 2883 assert(DT.dominates( 2884 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2885 AddRec->getLoop()->getHeader()) && 2886 "AddRecExprs are not sorted in reverse dominance order?"); 2887 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2888 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2889 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2890 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2891 ++OtherIdx) { 2892 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2893 if (OtherAddRec->getLoop() == AddRecLoop) { 2894 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2895 i != e; ++i) { 2896 if (i >= AddRecOps.size()) { 2897 AddRecOps.append(OtherAddRec->op_begin()+i, 2898 OtherAddRec->op_end()); 2899 break; 2900 } 2901 SmallVector<const SCEV *, 2> TwoOps = { 2902 AddRecOps[i], OtherAddRec->getOperand(i)}; 2903 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2904 } 2905 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2906 } 2907 } 2908 // Step size has changed, so we cannot guarantee no self-wraparound. 2909 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2910 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2911 } 2912 } 2913 2914 // Otherwise couldn't fold anything into this recurrence. Move onto the 2915 // next one. 2916 } 2917 2918 // Okay, it looks like we really DO need an add expr. Check to see if we 2919 // already have one, otherwise create a new one. 2920 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2921 } 2922 2923 const SCEV * 2924 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2925 SCEV::NoWrapFlags Flags) { 2926 FoldingSetNodeID ID; 2927 ID.AddInteger(scAddExpr); 2928 for (const SCEV *Op : Ops) 2929 ID.AddPointer(Op); 2930 void *IP = nullptr; 2931 SCEVAddExpr *S = 2932 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2933 if (!S) { 2934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2935 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2936 S = new (SCEVAllocator) 2937 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2938 UniqueSCEVs.InsertNode(S, IP); 2939 registerUser(S, Ops); 2940 } 2941 S->setNoWrapFlags(Flags); 2942 return S; 2943 } 2944 2945 const SCEV * 2946 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2947 const Loop *L, SCEV::NoWrapFlags Flags) { 2948 FoldingSetNodeID ID; 2949 ID.AddInteger(scAddRecExpr); 2950 for (const SCEV *Op : Ops) 2951 ID.AddPointer(Op); 2952 ID.AddPointer(L); 2953 void *IP = nullptr; 2954 SCEVAddRecExpr *S = 2955 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2956 if (!S) { 2957 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2958 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2959 S = new (SCEVAllocator) 2960 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2961 UniqueSCEVs.InsertNode(S, IP); 2962 LoopUsers[L].push_back(S); 2963 registerUser(S, Ops); 2964 } 2965 setNoWrapFlags(S, Flags); 2966 return S; 2967 } 2968 2969 const SCEV * 2970 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2971 SCEV::NoWrapFlags Flags) { 2972 FoldingSetNodeID ID; 2973 ID.AddInteger(scMulExpr); 2974 for (const SCEV *Op : Ops) 2975 ID.AddPointer(Op); 2976 void *IP = nullptr; 2977 SCEVMulExpr *S = 2978 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2979 if (!S) { 2980 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2981 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2982 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2983 O, Ops.size()); 2984 UniqueSCEVs.InsertNode(S, IP); 2985 registerUser(S, Ops); 2986 } 2987 S->setNoWrapFlags(Flags); 2988 return S; 2989 } 2990 2991 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2992 uint64_t k = i*j; 2993 if (j > 1 && k / j != i) Overflow = true; 2994 return k; 2995 } 2996 2997 /// Compute the result of "n choose k", the binomial coefficient. If an 2998 /// intermediate computation overflows, Overflow will be set and the return will 2999 /// be garbage. Overflow is not cleared on absence of overflow. 3000 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3001 // We use the multiplicative formula: 3002 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3003 // At each iteration, we take the n-th term of the numeral and divide by the 3004 // (k-n)th term of the denominator. This division will always produce an 3005 // integral result, and helps reduce the chance of overflow in the 3006 // intermediate computations. However, we can still overflow even when the 3007 // final result would fit. 3008 3009 if (n == 0 || n == k) return 1; 3010 if (k > n) return 0; 3011 3012 if (k > n/2) 3013 k = n-k; 3014 3015 uint64_t r = 1; 3016 for (uint64_t i = 1; i <= k; ++i) { 3017 r = umul_ov(r, n-(i-1), Overflow); 3018 r /= i; 3019 } 3020 return r; 3021 } 3022 3023 /// Determine if any of the operands in this SCEV are a constant or if 3024 /// any of the add or multiply expressions in this SCEV contain a constant. 3025 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3026 struct FindConstantInAddMulChain { 3027 bool FoundConstant = false; 3028 3029 bool follow(const SCEV *S) { 3030 FoundConstant |= isa<SCEVConstant>(S); 3031 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3032 } 3033 3034 bool isDone() const { 3035 return FoundConstant; 3036 } 3037 }; 3038 3039 FindConstantInAddMulChain F; 3040 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3041 ST.visitAll(StartExpr); 3042 return F.FoundConstant; 3043 } 3044 3045 /// Get a canonical multiply expression, or something simpler if possible. 3046 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3047 SCEV::NoWrapFlags OrigFlags, 3048 unsigned Depth) { 3049 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3050 "only nuw or nsw allowed"); 3051 assert(!Ops.empty() && "Cannot get empty mul!"); 3052 if (Ops.size() == 1) return Ops[0]; 3053 #ifndef NDEBUG 3054 Type *ETy = Ops[0]->getType(); 3055 assert(!ETy->isPointerTy()); 3056 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3057 assert(Ops[i]->getType() == ETy && 3058 "SCEVMulExpr operand types don't match!"); 3059 #endif 3060 3061 // Sort by complexity, this groups all similar expression types together. 3062 GroupByComplexity(Ops, &LI, DT); 3063 3064 // If there are any constants, fold them together. 3065 unsigned Idx = 0; 3066 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3067 ++Idx; 3068 assert(Idx < Ops.size()); 3069 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3070 // We found two constants, fold them together! 3071 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3072 if (Ops.size() == 2) return Ops[0]; 3073 Ops.erase(Ops.begin()+1); // Erase the folded element 3074 LHSC = cast<SCEVConstant>(Ops[0]); 3075 } 3076 3077 // If we have a multiply of zero, it will always be zero. 3078 if (LHSC->getValue()->isZero()) 3079 return LHSC; 3080 3081 // If we are left with a constant one being multiplied, strip it off. 3082 if (LHSC->getValue()->isOne()) { 3083 Ops.erase(Ops.begin()); 3084 --Idx; 3085 } 3086 3087 if (Ops.size() == 1) 3088 return Ops[0]; 3089 } 3090 3091 // Delay expensive flag strengthening until necessary. 3092 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3093 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3094 }; 3095 3096 // Limit recursion calls depth. 3097 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3098 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3099 3100 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3101 // Don't strengthen flags if we have no new information. 3102 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3103 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3104 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3105 return S; 3106 } 3107 3108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3109 if (Ops.size() == 2) { 3110 // C1*(C2+V) -> C1*C2 + C1*V 3111 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3112 // If any of Add's ops are Adds or Muls with a constant, apply this 3113 // transformation as well. 3114 // 3115 // TODO: There are some cases where this transformation is not 3116 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3117 // this transformation should be narrowed down. 3118 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3119 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3120 SCEV::FlagAnyWrap, Depth + 1), 3121 getMulExpr(LHSC, Add->getOperand(1), 3122 SCEV::FlagAnyWrap, Depth + 1), 3123 SCEV::FlagAnyWrap, Depth + 1); 3124 3125 if (Ops[0]->isAllOnesValue()) { 3126 // If we have a mul by -1 of an add, try distributing the -1 among the 3127 // add operands. 3128 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3129 SmallVector<const SCEV *, 4> NewOps; 3130 bool AnyFolded = false; 3131 for (const SCEV *AddOp : Add->operands()) { 3132 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3133 Depth + 1); 3134 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3135 NewOps.push_back(Mul); 3136 } 3137 if (AnyFolded) 3138 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3139 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3140 // Negation preserves a recurrence's no self-wrap property. 3141 SmallVector<const SCEV *, 4> Operands; 3142 for (const SCEV *AddRecOp : AddRec->operands()) 3143 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3144 Depth + 1)); 3145 3146 return getAddRecExpr(Operands, AddRec->getLoop(), 3147 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3148 } 3149 } 3150 } 3151 } 3152 3153 // Skip over the add expression until we get to a multiply. 3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3155 ++Idx; 3156 3157 // If there are mul operands inline them all into this expression. 3158 if (Idx < Ops.size()) { 3159 bool DeletedMul = false; 3160 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3161 if (Ops.size() > MulOpsInlineThreshold) 3162 break; 3163 // If we have an mul, expand the mul operands onto the end of the 3164 // operands list. 3165 Ops.erase(Ops.begin()+Idx); 3166 Ops.append(Mul->op_begin(), Mul->op_end()); 3167 DeletedMul = true; 3168 } 3169 3170 // If we deleted at least one mul, we added operands to the end of the 3171 // list, and they are not necessarily sorted. Recurse to resort and 3172 // resimplify any operands we just acquired. 3173 if (DeletedMul) 3174 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3175 } 3176 3177 // If there are any add recurrences in the operands list, see if any other 3178 // added values are loop invariant. If so, we can fold them into the 3179 // recurrence. 3180 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3181 ++Idx; 3182 3183 // Scan over all recurrences, trying to fold loop invariants into them. 3184 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3185 // Scan all of the other operands to this mul and add them to the vector 3186 // if they are loop invariant w.r.t. the recurrence. 3187 SmallVector<const SCEV *, 8> LIOps; 3188 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3189 const Loop *AddRecLoop = AddRec->getLoop(); 3190 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3191 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3192 LIOps.push_back(Ops[i]); 3193 Ops.erase(Ops.begin()+i); 3194 --i; --e; 3195 } 3196 3197 // If we found some loop invariants, fold them into the recurrence. 3198 if (!LIOps.empty()) { 3199 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3200 SmallVector<const SCEV *, 4> NewOps; 3201 NewOps.reserve(AddRec->getNumOperands()); 3202 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3203 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3204 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3205 SCEV::FlagAnyWrap, Depth + 1)); 3206 3207 // Build the new addrec. Propagate the NUW and NSW flags if both the 3208 // outer mul and the inner addrec are guaranteed to have no overflow. 3209 // 3210 // No self-wrap cannot be guaranteed after changing the step size, but 3211 // will be inferred if either NUW or NSW is true. 3212 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3213 const SCEV *NewRec = getAddRecExpr( 3214 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3215 3216 // If all of the other operands were loop invariant, we are done. 3217 if (Ops.size() == 1) return NewRec; 3218 3219 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3220 for (unsigned i = 0;; ++i) 3221 if (Ops[i] == AddRec) { 3222 Ops[i] = NewRec; 3223 break; 3224 } 3225 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3226 } 3227 3228 // Okay, if there weren't any loop invariants to be folded, check to see 3229 // if there are multiple AddRec's with the same loop induction variable 3230 // being multiplied together. If so, we can fold them. 3231 3232 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3233 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3234 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3235 // ]]],+,...up to x=2n}. 3236 // Note that the arguments to choose() are always integers with values 3237 // known at compile time, never SCEV objects. 3238 // 3239 // The implementation avoids pointless extra computations when the two 3240 // addrec's are of different length (mathematically, it's equivalent to 3241 // an infinite stream of zeros on the right). 3242 bool OpsModified = false; 3243 for (unsigned OtherIdx = Idx+1; 3244 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3245 ++OtherIdx) { 3246 const SCEVAddRecExpr *OtherAddRec = 3247 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3248 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3249 continue; 3250 3251 // Limit max number of arguments to avoid creation of unreasonably big 3252 // SCEVAddRecs with very complex operands. 3253 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3254 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3255 continue; 3256 3257 bool Overflow = false; 3258 Type *Ty = AddRec->getType(); 3259 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3260 SmallVector<const SCEV*, 7> AddRecOps; 3261 for (int x = 0, xe = AddRec->getNumOperands() + 3262 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3263 SmallVector <const SCEV *, 7> SumOps; 3264 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3265 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3266 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3267 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3268 z < ze && !Overflow; ++z) { 3269 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3270 uint64_t Coeff; 3271 if (LargerThan64Bits) 3272 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3273 else 3274 Coeff = Coeff1*Coeff2; 3275 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3276 const SCEV *Term1 = AddRec->getOperand(y-z); 3277 const SCEV *Term2 = OtherAddRec->getOperand(z); 3278 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3279 SCEV::FlagAnyWrap, Depth + 1)); 3280 } 3281 } 3282 if (SumOps.empty()) 3283 SumOps.push_back(getZero(Ty)); 3284 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3285 } 3286 if (!Overflow) { 3287 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3288 SCEV::FlagAnyWrap); 3289 if (Ops.size() == 2) return NewAddRec; 3290 Ops[Idx] = NewAddRec; 3291 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3292 OpsModified = true; 3293 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3294 if (!AddRec) 3295 break; 3296 } 3297 } 3298 if (OpsModified) 3299 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3300 3301 // Otherwise couldn't fold anything into this recurrence. Move onto the 3302 // next one. 3303 } 3304 3305 // Okay, it looks like we really DO need an mul expr. Check to see if we 3306 // already have one, otherwise create a new one. 3307 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3308 } 3309 3310 /// Represents an unsigned remainder expression based on unsigned division. 3311 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3312 const SCEV *RHS) { 3313 assert(getEffectiveSCEVType(LHS->getType()) == 3314 getEffectiveSCEVType(RHS->getType()) && 3315 "SCEVURemExpr operand types don't match!"); 3316 3317 // Short-circuit easy cases 3318 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3319 // If constant is one, the result is trivial 3320 if (RHSC->getValue()->isOne()) 3321 return getZero(LHS->getType()); // X urem 1 --> 0 3322 3323 // If constant is a power of two, fold into a zext(trunc(LHS)). 3324 if (RHSC->getAPInt().isPowerOf2()) { 3325 Type *FullTy = LHS->getType(); 3326 Type *TruncTy = 3327 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3328 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3329 } 3330 } 3331 3332 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3333 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3334 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3335 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3336 } 3337 3338 /// Get a canonical unsigned division expression, or something simpler if 3339 /// possible. 3340 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3341 const SCEV *RHS) { 3342 assert(!LHS->getType()->isPointerTy() && 3343 "SCEVUDivExpr operand can't be pointer!"); 3344 assert(LHS->getType() == RHS->getType() && 3345 "SCEVUDivExpr operand types don't match!"); 3346 3347 FoldingSetNodeID ID; 3348 ID.AddInteger(scUDivExpr); 3349 ID.AddPointer(LHS); 3350 ID.AddPointer(RHS); 3351 void *IP = nullptr; 3352 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3353 return S; 3354 3355 // 0 udiv Y == 0 3356 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3357 if (LHSC->getValue()->isZero()) 3358 return LHS; 3359 3360 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3361 if (RHSC->getValue()->isOne()) 3362 return LHS; // X udiv 1 --> x 3363 // If the denominator is zero, the result of the udiv is undefined. Don't 3364 // try to analyze it, because the resolution chosen here may differ from 3365 // the resolution chosen in other parts of the compiler. 3366 if (!RHSC->getValue()->isZero()) { 3367 // Determine if the division can be folded into the operands of 3368 // its operands. 3369 // TODO: Generalize this to non-constants by using known-bits information. 3370 Type *Ty = LHS->getType(); 3371 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3372 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3373 // For non-power-of-two values, effectively round the value up to the 3374 // nearest power of two. 3375 if (!RHSC->getAPInt().isPowerOf2()) 3376 ++MaxShiftAmt; 3377 IntegerType *ExtTy = 3378 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3379 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3380 if (const SCEVConstant *Step = 3381 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3382 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3383 const APInt &StepInt = Step->getAPInt(); 3384 const APInt &DivInt = RHSC->getAPInt(); 3385 if (!StepInt.urem(DivInt) && 3386 getZeroExtendExpr(AR, ExtTy) == 3387 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3388 getZeroExtendExpr(Step, ExtTy), 3389 AR->getLoop(), SCEV::FlagAnyWrap)) { 3390 SmallVector<const SCEV *, 4> Operands; 3391 for (const SCEV *Op : AR->operands()) 3392 Operands.push_back(getUDivExpr(Op, RHS)); 3393 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3394 } 3395 /// Get a canonical UDivExpr for a recurrence. 3396 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3397 // We can currently only fold X%N if X is constant. 3398 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3399 if (StartC && !DivInt.urem(StepInt) && 3400 getZeroExtendExpr(AR, ExtTy) == 3401 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3402 getZeroExtendExpr(Step, ExtTy), 3403 AR->getLoop(), SCEV::FlagAnyWrap)) { 3404 const APInt &StartInt = StartC->getAPInt(); 3405 const APInt &StartRem = StartInt.urem(StepInt); 3406 if (StartRem != 0) { 3407 const SCEV *NewLHS = 3408 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3409 AR->getLoop(), SCEV::FlagNW); 3410 if (LHS != NewLHS) { 3411 LHS = NewLHS; 3412 3413 // Reset the ID to include the new LHS, and check if it is 3414 // already cached. 3415 ID.clear(); 3416 ID.AddInteger(scUDivExpr); 3417 ID.AddPointer(LHS); 3418 ID.AddPointer(RHS); 3419 IP = nullptr; 3420 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3421 return S; 3422 } 3423 } 3424 } 3425 } 3426 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3427 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3428 SmallVector<const SCEV *, 4> Operands; 3429 for (const SCEV *Op : M->operands()) 3430 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3431 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3432 // Find an operand that's safely divisible. 3433 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3434 const SCEV *Op = M->getOperand(i); 3435 const SCEV *Div = getUDivExpr(Op, RHSC); 3436 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3437 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3438 Operands[i] = Div; 3439 return getMulExpr(Operands); 3440 } 3441 } 3442 } 3443 3444 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3445 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3446 if (auto *DivisorConstant = 3447 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3448 bool Overflow = false; 3449 APInt NewRHS = 3450 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3451 if (Overflow) { 3452 return getConstant(RHSC->getType(), 0, false); 3453 } 3454 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3455 } 3456 } 3457 3458 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3459 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3460 SmallVector<const SCEV *, 4> Operands; 3461 for (const SCEV *Op : A->operands()) 3462 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3463 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3464 Operands.clear(); 3465 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3466 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3467 if (isa<SCEVUDivExpr>(Op) || 3468 getMulExpr(Op, RHS) != A->getOperand(i)) 3469 break; 3470 Operands.push_back(Op); 3471 } 3472 if (Operands.size() == A->getNumOperands()) 3473 return getAddExpr(Operands); 3474 } 3475 } 3476 3477 // Fold if both operands are constant. 3478 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3479 Constant *LHSCV = LHSC->getValue(); 3480 Constant *RHSCV = RHSC->getValue(); 3481 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3482 RHSCV))); 3483 } 3484 } 3485 } 3486 3487 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3488 // changes). Make sure we get a new one. 3489 IP = nullptr; 3490 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3491 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3492 LHS, RHS); 3493 UniqueSCEVs.InsertNode(S, IP); 3494 registerUser(S, {LHS, RHS}); 3495 return S; 3496 } 3497 3498 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3499 APInt A = C1->getAPInt().abs(); 3500 APInt B = C2->getAPInt().abs(); 3501 uint32_t ABW = A.getBitWidth(); 3502 uint32_t BBW = B.getBitWidth(); 3503 3504 if (ABW > BBW) 3505 B = B.zext(ABW); 3506 else if (ABW < BBW) 3507 A = A.zext(BBW); 3508 3509 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3510 } 3511 3512 /// Get a canonical unsigned division expression, or something simpler if 3513 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3514 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3515 /// it's not exact because the udiv may be clearing bits. 3516 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3517 const SCEV *RHS) { 3518 // TODO: we could try to find factors in all sorts of things, but for now we 3519 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3520 // end of this file for inspiration. 3521 3522 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3523 if (!Mul || !Mul->hasNoUnsignedWrap()) 3524 return getUDivExpr(LHS, RHS); 3525 3526 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3527 // If the mulexpr multiplies by a constant, then that constant must be the 3528 // first element of the mulexpr. 3529 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3530 if (LHSCst == RHSCst) { 3531 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3532 return getMulExpr(Operands); 3533 } 3534 3535 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3536 // that there's a factor provided by one of the other terms. We need to 3537 // check. 3538 APInt Factor = gcd(LHSCst, RHSCst); 3539 if (!Factor.isIntN(1)) { 3540 LHSCst = 3541 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3542 RHSCst = 3543 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3544 SmallVector<const SCEV *, 2> Operands; 3545 Operands.push_back(LHSCst); 3546 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3547 LHS = getMulExpr(Operands); 3548 RHS = RHSCst; 3549 Mul = dyn_cast<SCEVMulExpr>(LHS); 3550 if (!Mul) 3551 return getUDivExactExpr(LHS, RHS); 3552 } 3553 } 3554 } 3555 3556 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3557 if (Mul->getOperand(i) == RHS) { 3558 SmallVector<const SCEV *, 2> Operands; 3559 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3560 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3561 return getMulExpr(Operands); 3562 } 3563 } 3564 3565 return getUDivExpr(LHS, RHS); 3566 } 3567 3568 /// Get an add recurrence expression for the specified loop. Simplify the 3569 /// expression as much as possible. 3570 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3571 const Loop *L, 3572 SCEV::NoWrapFlags Flags) { 3573 SmallVector<const SCEV *, 4> Operands; 3574 Operands.push_back(Start); 3575 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3576 if (StepChrec->getLoop() == L) { 3577 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3578 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3579 } 3580 3581 Operands.push_back(Step); 3582 return getAddRecExpr(Operands, L, Flags); 3583 } 3584 3585 /// Get an add recurrence expression for the specified loop. Simplify the 3586 /// expression as much as possible. 3587 const SCEV * 3588 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3589 const Loop *L, SCEV::NoWrapFlags Flags) { 3590 if (Operands.size() == 1) return Operands[0]; 3591 #ifndef NDEBUG 3592 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3593 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3594 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3595 "SCEVAddRecExpr operand types don't match!"); 3596 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3597 } 3598 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3599 assert(isLoopInvariant(Operands[i], L) && 3600 "SCEVAddRecExpr operand is not loop-invariant!"); 3601 #endif 3602 3603 if (Operands.back()->isZero()) { 3604 Operands.pop_back(); 3605 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3606 } 3607 3608 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3609 // use that information to infer NUW and NSW flags. However, computing a 3610 // BE count requires calling getAddRecExpr, so we may not yet have a 3611 // meaningful BE count at this point (and if we don't, we'd be stuck 3612 // with a SCEVCouldNotCompute as the cached BE count). 3613 3614 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3615 3616 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3617 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3618 const Loop *NestedLoop = NestedAR->getLoop(); 3619 if (L->contains(NestedLoop) 3620 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3621 : (!NestedLoop->contains(L) && 3622 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3623 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3624 Operands[0] = NestedAR->getStart(); 3625 // AddRecs require their operands be loop-invariant with respect to their 3626 // loops. Don't perform this transformation if it would break this 3627 // requirement. 3628 bool AllInvariant = all_of( 3629 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3630 3631 if (AllInvariant) { 3632 // Create a recurrence for the outer loop with the same step size. 3633 // 3634 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3635 // inner recurrence has the same property. 3636 SCEV::NoWrapFlags OuterFlags = 3637 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3638 3639 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3640 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3641 return isLoopInvariant(Op, NestedLoop); 3642 }); 3643 3644 if (AllInvariant) { 3645 // Ok, both add recurrences are valid after the transformation. 3646 // 3647 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3648 // the outer recurrence has the same property. 3649 SCEV::NoWrapFlags InnerFlags = 3650 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3651 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3652 } 3653 } 3654 // Reset Operands to its original state. 3655 Operands[0] = NestedAR; 3656 } 3657 } 3658 3659 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3660 // already have one, otherwise create a new one. 3661 return getOrCreateAddRecExpr(Operands, L, Flags); 3662 } 3663 3664 const SCEV * 3665 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3666 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3667 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3668 // getSCEV(Base)->getType() has the same address space as Base->getType() 3669 // because SCEV::getType() preserves the address space. 3670 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3671 const bool AssumeInBoundsFlags = [&]() { 3672 if (!GEP->isInBounds()) 3673 return false; 3674 3675 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3676 // but to do that, we have to ensure that said flag is valid in the entire 3677 // defined scope of the SCEV. 3678 auto *GEPI = dyn_cast<Instruction>(GEP); 3679 // TODO: non-instructions have global scope. We might be able to prove 3680 // some global scope cases 3681 return GEPI && isSCEVExprNeverPoison(GEPI); 3682 }(); 3683 3684 SCEV::NoWrapFlags OffsetWrap = 3685 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3686 3687 Type *CurTy = GEP->getType(); 3688 bool FirstIter = true; 3689 SmallVector<const SCEV *, 4> Offsets; 3690 for (const SCEV *IndexExpr : IndexExprs) { 3691 // Compute the (potentially symbolic) offset in bytes for this index. 3692 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3693 // For a struct, add the member offset. 3694 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3695 unsigned FieldNo = Index->getZExtValue(); 3696 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3697 Offsets.push_back(FieldOffset); 3698 3699 // Update CurTy to the type of the field at Index. 3700 CurTy = STy->getTypeAtIndex(Index); 3701 } else { 3702 // Update CurTy to its element type. 3703 if (FirstIter) { 3704 assert(isa<PointerType>(CurTy) && 3705 "The first index of a GEP indexes a pointer"); 3706 CurTy = GEP->getSourceElementType(); 3707 FirstIter = false; 3708 } else { 3709 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3710 } 3711 // For an array, add the element offset, explicitly scaled. 3712 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3713 // Getelementptr indices are signed. 3714 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3715 3716 // Multiply the index by the element size to compute the element offset. 3717 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3718 Offsets.push_back(LocalOffset); 3719 } 3720 } 3721 3722 // Handle degenerate case of GEP without offsets. 3723 if (Offsets.empty()) 3724 return BaseExpr; 3725 3726 // Add the offsets together, assuming nsw if inbounds. 3727 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3728 // Add the base address and the offset. We cannot use the nsw flag, as the 3729 // base address is unsigned. However, if we know that the offset is 3730 // non-negative, we can use nuw. 3731 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3732 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3733 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3734 assert(BaseExpr->getType() == GEPExpr->getType() && 3735 "GEP should not change type mid-flight."); 3736 return GEPExpr; 3737 } 3738 3739 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3740 ArrayRef<const SCEV *> Ops) { 3741 FoldingSetNodeID ID; 3742 ID.AddInteger(SCEVType); 3743 for (const SCEV *Op : Ops) 3744 ID.AddPointer(Op); 3745 void *IP = nullptr; 3746 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3747 } 3748 3749 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3750 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3751 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3752 } 3753 3754 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3755 SmallVectorImpl<const SCEV *> &Ops) { 3756 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3757 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3758 if (Ops.size() == 1) return Ops[0]; 3759 #ifndef NDEBUG 3760 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3761 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3762 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3763 "Operand types don't match!"); 3764 assert(Ops[0]->getType()->isPointerTy() == 3765 Ops[i]->getType()->isPointerTy() && 3766 "min/max should be consistently pointerish"); 3767 } 3768 #endif 3769 3770 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3771 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3772 3773 // Sort by complexity, this groups all similar expression types together. 3774 GroupByComplexity(Ops, &LI, DT); 3775 3776 // Check if we have created the same expression before. 3777 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3778 return S; 3779 } 3780 3781 // If there are any constants, fold them together. 3782 unsigned Idx = 0; 3783 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3784 ++Idx; 3785 assert(Idx < Ops.size()); 3786 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3787 if (Kind == scSMaxExpr) 3788 return APIntOps::smax(LHS, RHS); 3789 else if (Kind == scSMinExpr) 3790 return APIntOps::smin(LHS, RHS); 3791 else if (Kind == scUMaxExpr) 3792 return APIntOps::umax(LHS, RHS); 3793 else if (Kind == scUMinExpr) 3794 return APIntOps::umin(LHS, RHS); 3795 llvm_unreachable("Unknown SCEV min/max opcode"); 3796 }; 3797 3798 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3799 // We found two constants, fold them together! 3800 ConstantInt *Fold = ConstantInt::get( 3801 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3802 Ops[0] = getConstant(Fold); 3803 Ops.erase(Ops.begin()+1); // Erase the folded element 3804 if (Ops.size() == 1) return Ops[0]; 3805 LHSC = cast<SCEVConstant>(Ops[0]); 3806 } 3807 3808 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3809 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3810 3811 if (IsMax ? IsMinV : IsMaxV) { 3812 // If we are left with a constant minimum(/maximum)-int, strip it off. 3813 Ops.erase(Ops.begin()); 3814 --Idx; 3815 } else if (IsMax ? IsMaxV : IsMinV) { 3816 // If we have a max(/min) with a constant maximum(/minimum)-int, 3817 // it will always be the extremum. 3818 return LHSC; 3819 } 3820 3821 if (Ops.size() == 1) return Ops[0]; 3822 } 3823 3824 // Find the first operation of the same kind 3825 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3826 ++Idx; 3827 3828 // Check to see if one of the operands is of the same kind. If so, expand its 3829 // operands onto our operand list, and recurse to simplify. 3830 if (Idx < Ops.size()) { 3831 bool DeletedAny = false; 3832 while (Ops[Idx]->getSCEVType() == Kind) { 3833 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3834 Ops.erase(Ops.begin()+Idx); 3835 Ops.append(SMME->op_begin(), SMME->op_end()); 3836 DeletedAny = true; 3837 } 3838 3839 if (DeletedAny) 3840 return getMinMaxExpr(Kind, Ops); 3841 } 3842 3843 // Okay, check to see if the same value occurs in the operand list twice. If 3844 // so, delete one. Since we sorted the list, these values are required to 3845 // be adjacent. 3846 llvm::CmpInst::Predicate GEPred = 3847 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3848 llvm::CmpInst::Predicate LEPred = 3849 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3850 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3851 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3852 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3853 if (Ops[i] == Ops[i + 1] || 3854 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3855 // X op Y op Y --> X op Y 3856 // X op Y --> X, if we know X, Y are ordered appropriately 3857 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3858 --i; 3859 --e; 3860 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3861 Ops[i + 1])) { 3862 // X op Y --> Y, if we know X, Y are ordered appropriately 3863 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3864 --i; 3865 --e; 3866 } 3867 } 3868 3869 if (Ops.size() == 1) return Ops[0]; 3870 3871 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3872 3873 // Okay, it looks like we really DO need an expr. Check to see if we 3874 // already have one, otherwise create a new one. 3875 FoldingSetNodeID ID; 3876 ID.AddInteger(Kind); 3877 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3878 ID.AddPointer(Ops[i]); 3879 void *IP = nullptr; 3880 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3881 if (ExistingSCEV) 3882 return ExistingSCEV; 3883 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3884 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3885 SCEV *S = new (SCEVAllocator) 3886 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3887 3888 UniqueSCEVs.InsertNode(S, IP); 3889 registerUser(S, Ops); 3890 return S; 3891 } 3892 3893 namespace { 3894 3895 class SCEVSequentialMinMaxDeduplicatingVisitor final 3896 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3897 Optional<const SCEV *>> { 3898 using RetVal = Optional<const SCEV *>; 3899 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3900 3901 ScalarEvolution &SE; 3902 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3903 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3904 SmallPtrSet<const SCEV *, 16> SeenOps; 3905 3906 bool canRecurseInto(SCEVTypes Kind) const { 3907 // We can only recurse into the SCEV expression of the same effective type 3908 // as the type of our root SCEV expression. 3909 return RootKind == Kind || NonSequentialRootKind == Kind; 3910 }; 3911 3912 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3913 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3914 "Only for min/max expressions."); 3915 SCEVTypes Kind = S->getSCEVType(); 3916 3917 if (!canRecurseInto(Kind)) 3918 return S; 3919 3920 auto *NAry = cast<SCEVNAryExpr>(S); 3921 SmallVector<const SCEV *> NewOps; 3922 bool Changed = 3923 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3924 3925 if (!Changed) 3926 return S; 3927 if (NewOps.empty()) 3928 return None; 3929 3930 return isa<SCEVSequentialMinMaxExpr>(S) 3931 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3932 : SE.getMinMaxExpr(Kind, NewOps); 3933 } 3934 3935 RetVal visit(const SCEV *S) { 3936 // Has the whole operand been seen already? 3937 if (!SeenOps.insert(S).second) 3938 return None; 3939 return Base::visit(S); 3940 } 3941 3942 public: 3943 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3944 SCEVTypes RootKind) 3945 : SE(SE), RootKind(RootKind), 3946 NonSequentialRootKind( 3947 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3948 RootKind)) {} 3949 3950 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3951 SmallVectorImpl<const SCEV *> &NewOps) { 3952 bool Changed = false; 3953 SmallVector<const SCEV *> Ops; 3954 Ops.reserve(OrigOps.size()); 3955 3956 for (const SCEV *Op : OrigOps) { 3957 RetVal NewOp = visit(Op); 3958 if (NewOp != Op) 3959 Changed = true; 3960 if (NewOp) 3961 Ops.emplace_back(*NewOp); 3962 } 3963 3964 if (Changed) 3965 NewOps = std::move(Ops); 3966 return Changed; 3967 } 3968 3969 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3970 3971 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3972 3973 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3974 3975 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3976 3977 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3978 3979 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3980 3981 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3982 3983 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3984 3985 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3986 3987 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3988 return visitAnyMinMaxExpr(Expr); 3989 } 3990 3991 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4008 4009 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4010 }; 4011 4012 } // namespace 4013 4014 const SCEV * 4015 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4016 SmallVectorImpl<const SCEV *> &Ops) { 4017 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4018 "Not a SCEVSequentialMinMaxExpr!"); 4019 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4020 if (Ops.size() == 1) 4021 return Ops[0]; 4022 if (Ops.size() == 2 && 4023 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4024 return getMinMaxExpr( 4025 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4026 Ops); 4027 #ifndef NDEBUG 4028 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4029 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4030 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4031 "Operand types don't match!"); 4032 assert(Ops[0]->getType()->isPointerTy() == 4033 Ops[i]->getType()->isPointerTy() && 4034 "min/max should be consistently pointerish"); 4035 } 4036 #endif 4037 4038 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4039 // so we can *NOT* do any kind of sorting of the expressions! 4040 4041 // Check if we have created the same expression before. 4042 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4043 return S; 4044 4045 // FIXME: there are *some* simplifications that we can do here. 4046 4047 // Keep only the first instance of an operand. 4048 { 4049 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4050 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4051 if (Changed) 4052 return getSequentialMinMaxExpr(Kind, Ops); 4053 } 4054 4055 // Check to see if one of the operands is of the same kind. If so, expand its 4056 // operands onto our operand list, and recurse to simplify. 4057 { 4058 unsigned Idx = 0; 4059 bool DeletedAny = false; 4060 while (Idx < Ops.size()) { 4061 if (Ops[Idx]->getSCEVType() != Kind) { 4062 ++Idx; 4063 continue; 4064 } 4065 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4066 Ops.erase(Ops.begin() + Idx); 4067 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4068 DeletedAny = true; 4069 } 4070 4071 if (DeletedAny) 4072 return getSequentialMinMaxExpr(Kind, Ops); 4073 } 4074 4075 // Okay, it looks like we really DO need an expr. Check to see if we 4076 // already have one, otherwise create a new one. 4077 FoldingSetNodeID ID; 4078 ID.AddInteger(Kind); 4079 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4080 ID.AddPointer(Ops[i]); 4081 void *IP = nullptr; 4082 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4083 if (ExistingSCEV) 4084 return ExistingSCEV; 4085 4086 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4087 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4088 SCEV *S = new (SCEVAllocator) 4089 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4090 4091 UniqueSCEVs.InsertNode(S, IP); 4092 registerUser(S, Ops); 4093 return S; 4094 } 4095 4096 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4097 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4098 return getSMaxExpr(Ops); 4099 } 4100 4101 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4102 return getMinMaxExpr(scSMaxExpr, Ops); 4103 } 4104 4105 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4106 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4107 return getUMaxExpr(Ops); 4108 } 4109 4110 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4111 return getMinMaxExpr(scUMaxExpr, Ops); 4112 } 4113 4114 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4115 const SCEV *RHS) { 4116 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4117 return getSMinExpr(Ops); 4118 } 4119 4120 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4121 return getMinMaxExpr(scSMinExpr, Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4125 bool Sequential) { 4126 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4127 return getUMinExpr(Ops, Sequential); 4128 } 4129 4130 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4131 bool Sequential) { 4132 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4133 : getMinMaxExpr(scUMinExpr, Ops); 4134 } 4135 4136 const SCEV * 4137 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4138 ScalableVectorType *ScalableTy) { 4139 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4140 Constant *One = ConstantInt::get(IntTy, 1); 4141 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4142 // Note that the expression we created is the final expression, we don't 4143 // want to simplify it any further Also, if we call a normal getSCEV(), 4144 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4145 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4146 } 4147 4148 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4149 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4150 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4151 // We can bypass creating a target-independent constant expression and then 4152 // folding it back into a ConstantInt. This is just a compile-time 4153 // optimization. 4154 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4155 } 4156 4157 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4158 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4159 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4160 // We can bypass creating a target-independent constant expression and then 4161 // folding it back into a ConstantInt. This is just a compile-time 4162 // optimization. 4163 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4164 } 4165 4166 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4167 StructType *STy, 4168 unsigned FieldNo) { 4169 // We can bypass creating a target-independent constant expression and then 4170 // folding it back into a ConstantInt. This is just a compile-time 4171 // optimization. 4172 return getConstant( 4173 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4174 } 4175 4176 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4177 // Don't attempt to do anything other than create a SCEVUnknown object 4178 // here. createSCEV only calls getUnknown after checking for all other 4179 // interesting possibilities, and any other code that calls getUnknown 4180 // is doing so in order to hide a value from SCEV canonicalization. 4181 4182 FoldingSetNodeID ID; 4183 ID.AddInteger(scUnknown); 4184 ID.AddPointer(V); 4185 void *IP = nullptr; 4186 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4187 assert(cast<SCEVUnknown>(S)->getValue() == V && 4188 "Stale SCEVUnknown in uniquing map!"); 4189 return S; 4190 } 4191 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4192 FirstUnknown); 4193 FirstUnknown = cast<SCEVUnknown>(S); 4194 UniqueSCEVs.InsertNode(S, IP); 4195 return S; 4196 } 4197 4198 //===----------------------------------------------------------------------===// 4199 // Basic SCEV Analysis and PHI Idiom Recognition Code 4200 // 4201 4202 /// Test if values of the given type are analyzable within the SCEV 4203 /// framework. This primarily includes integer types, and it can optionally 4204 /// include pointer types if the ScalarEvolution class has access to 4205 /// target-specific information. 4206 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4207 // Integers and pointers are always SCEVable. 4208 return Ty->isIntOrPtrTy(); 4209 } 4210 4211 /// Return the size in bits of the specified type, for which isSCEVable must 4212 /// return true. 4213 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4214 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4215 if (Ty->isPointerTy()) 4216 return getDataLayout().getIndexTypeSizeInBits(Ty); 4217 return getDataLayout().getTypeSizeInBits(Ty); 4218 } 4219 4220 /// Return a type with the same bitwidth as the given type and which represents 4221 /// how SCEV will treat the given type, for which isSCEVable must return 4222 /// true. For pointer types, this is the pointer index sized integer type. 4223 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4224 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4225 4226 if (Ty->isIntegerTy()) 4227 return Ty; 4228 4229 // The only other support type is pointer. 4230 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4231 return getDataLayout().getIndexType(Ty); 4232 } 4233 4234 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4235 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4236 } 4237 4238 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4239 const SCEV *B) { 4240 /// For a valid use point to exist, the defining scope of one operand 4241 /// must dominate the other. 4242 bool PreciseA, PreciseB; 4243 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4244 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4245 if (!PreciseA || !PreciseB) 4246 // Can't tell. 4247 return false; 4248 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4249 DT.dominates(ScopeB, ScopeA); 4250 } 4251 4252 4253 const SCEV *ScalarEvolution::getCouldNotCompute() { 4254 return CouldNotCompute.get(); 4255 } 4256 4257 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4258 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4259 auto *SU = dyn_cast<SCEVUnknown>(S); 4260 return SU && SU->getValue() == nullptr; 4261 }); 4262 4263 return !ContainsNulls; 4264 } 4265 4266 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4267 HasRecMapType::iterator I = HasRecMap.find(S); 4268 if (I != HasRecMap.end()) 4269 return I->second; 4270 4271 bool FoundAddRec = 4272 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4273 HasRecMap.insert({S, FoundAddRec}); 4274 return FoundAddRec; 4275 } 4276 4277 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4278 /// by the value and offset from any ValueOffsetPair in the set. 4279 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4280 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4281 if (SI == ExprValueMap.end()) 4282 return None; 4283 #ifndef NDEBUG 4284 if (VerifySCEVMap) { 4285 // Check there is no dangling Value in the set returned. 4286 for (Value *V : SI->second) 4287 assert(ValueExprMap.count(V)); 4288 } 4289 #endif 4290 return SI->second.getArrayRef(); 4291 } 4292 4293 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4294 /// cannot be used separately. eraseValueFromMap should be used to remove 4295 /// V from ValueExprMap and ExprValueMap at the same time. 4296 void ScalarEvolution::eraseValueFromMap(Value *V) { 4297 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4298 if (I != ValueExprMap.end()) { 4299 auto EVIt = ExprValueMap.find(I->second); 4300 bool Removed = EVIt->second.remove(V); 4301 (void) Removed; 4302 assert(Removed && "Value not in ExprValueMap?"); 4303 ValueExprMap.erase(I); 4304 } 4305 } 4306 4307 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4308 // A recursive query may have already computed the SCEV. It should be 4309 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4310 // inferred nowrap flags. 4311 auto It = ValueExprMap.find_as(V); 4312 if (It == ValueExprMap.end()) { 4313 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4314 ExprValueMap[S].insert(V); 4315 } 4316 } 4317 4318 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4319 /// create a new one. 4320 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4321 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4322 4323 const SCEV *S = getExistingSCEV(V); 4324 if (S == nullptr) { 4325 S = createSCEV(V); 4326 // During PHI resolution, it is possible to create two SCEVs for the same 4327 // V, so it is needed to double check whether V->S is inserted into 4328 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4329 std::pair<ValueExprMapType::iterator, bool> Pair = 4330 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4331 if (Pair.second) 4332 ExprValueMap[S].insert(V); 4333 } 4334 return S; 4335 } 4336 4337 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4338 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4339 4340 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4341 if (I != ValueExprMap.end()) { 4342 const SCEV *S = I->second; 4343 assert(checkValidity(S) && 4344 "existing SCEV has not been properly invalidated"); 4345 return S; 4346 } 4347 return nullptr; 4348 } 4349 4350 /// Return a SCEV corresponding to -V = -1*V 4351 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4352 SCEV::NoWrapFlags Flags) { 4353 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4354 return getConstant( 4355 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4356 4357 Type *Ty = V->getType(); 4358 Ty = getEffectiveSCEVType(Ty); 4359 return getMulExpr(V, getMinusOne(Ty), Flags); 4360 } 4361 4362 /// If Expr computes ~A, return A else return nullptr 4363 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4364 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4365 if (!Add || Add->getNumOperands() != 2 || 4366 !Add->getOperand(0)->isAllOnesValue()) 4367 return nullptr; 4368 4369 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4370 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4371 !AddRHS->getOperand(0)->isAllOnesValue()) 4372 return nullptr; 4373 4374 return AddRHS->getOperand(1); 4375 } 4376 4377 /// Return a SCEV corresponding to ~V = -1-V 4378 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4379 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4380 4381 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4382 return getConstant( 4383 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4384 4385 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4386 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4387 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4388 SmallVector<const SCEV *, 2> MatchedOperands; 4389 for (const SCEV *Operand : MME->operands()) { 4390 const SCEV *Matched = MatchNotExpr(Operand); 4391 if (!Matched) 4392 return (const SCEV *)nullptr; 4393 MatchedOperands.push_back(Matched); 4394 } 4395 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4396 MatchedOperands); 4397 }; 4398 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4399 return Replaced; 4400 } 4401 4402 Type *Ty = V->getType(); 4403 Ty = getEffectiveSCEVType(Ty); 4404 return getMinusSCEV(getMinusOne(Ty), V); 4405 } 4406 4407 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4408 assert(P->getType()->isPointerTy()); 4409 4410 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4411 // The base of an AddRec is the first operand. 4412 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4413 Ops[0] = removePointerBase(Ops[0]); 4414 // Don't try to transfer nowrap flags for now. We could in some cases 4415 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4416 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4417 } 4418 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4419 // The base of an Add is the pointer operand. 4420 SmallVector<const SCEV *> Ops{Add->operands()}; 4421 const SCEV **PtrOp = nullptr; 4422 for (const SCEV *&AddOp : Ops) { 4423 if (AddOp->getType()->isPointerTy()) { 4424 assert(!PtrOp && "Cannot have multiple pointer ops"); 4425 PtrOp = &AddOp; 4426 } 4427 } 4428 *PtrOp = removePointerBase(*PtrOp); 4429 // Don't try to transfer nowrap flags for now. We could in some cases 4430 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4431 return getAddExpr(Ops); 4432 } 4433 // Any other expression must be a pointer base. 4434 return getZero(P->getType()); 4435 } 4436 4437 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4438 SCEV::NoWrapFlags Flags, 4439 unsigned Depth) { 4440 // Fast path: X - X --> 0. 4441 if (LHS == RHS) 4442 return getZero(LHS->getType()); 4443 4444 // If we subtract two pointers with different pointer bases, bail. 4445 // Eventually, we're going to add an assertion to getMulExpr that we 4446 // can't multiply by a pointer. 4447 if (RHS->getType()->isPointerTy()) { 4448 if (!LHS->getType()->isPointerTy() || 4449 getPointerBase(LHS) != getPointerBase(RHS)) 4450 return getCouldNotCompute(); 4451 LHS = removePointerBase(LHS); 4452 RHS = removePointerBase(RHS); 4453 } 4454 4455 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4456 // makes it so that we cannot make much use of NUW. 4457 auto AddFlags = SCEV::FlagAnyWrap; 4458 const bool RHSIsNotMinSigned = 4459 !getSignedRangeMin(RHS).isMinSignedValue(); 4460 if (hasFlags(Flags, SCEV::FlagNSW)) { 4461 // Let M be the minimum representable signed value. Then (-1)*RHS 4462 // signed-wraps if and only if RHS is M. That can happen even for 4463 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4464 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4465 // (-1)*RHS, we need to prove that RHS != M. 4466 // 4467 // If LHS is non-negative and we know that LHS - RHS does not 4468 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4469 // either by proving that RHS > M or that LHS >= 0. 4470 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4471 AddFlags = SCEV::FlagNSW; 4472 } 4473 } 4474 4475 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4476 // RHS is NSW and LHS >= 0. 4477 // 4478 // The difficulty here is that the NSW flag may have been proven 4479 // relative to a loop that is to be found in a recurrence in LHS and 4480 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4481 // larger scope than intended. 4482 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4483 4484 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4485 } 4486 4487 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4488 unsigned Depth) { 4489 Type *SrcTy = V->getType(); 4490 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4491 "Cannot truncate or zero extend with non-integer arguments!"); 4492 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4493 return V; // No conversion 4494 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4495 return getTruncateExpr(V, Ty, Depth); 4496 return getZeroExtendExpr(V, Ty, Depth); 4497 } 4498 4499 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4500 unsigned Depth) { 4501 Type *SrcTy = V->getType(); 4502 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4503 "Cannot truncate or zero extend with non-integer arguments!"); 4504 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4505 return V; // No conversion 4506 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4507 return getTruncateExpr(V, Ty, Depth); 4508 return getSignExtendExpr(V, Ty, Depth); 4509 } 4510 4511 const SCEV * 4512 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4513 Type *SrcTy = V->getType(); 4514 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4515 "Cannot noop or zero extend with non-integer arguments!"); 4516 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4517 "getNoopOrZeroExtend cannot truncate!"); 4518 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4519 return V; // No conversion 4520 return getZeroExtendExpr(V, Ty); 4521 } 4522 4523 const SCEV * 4524 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4525 Type *SrcTy = V->getType(); 4526 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4527 "Cannot noop or sign extend with non-integer arguments!"); 4528 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4529 "getNoopOrSignExtend cannot truncate!"); 4530 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4531 return V; // No conversion 4532 return getSignExtendExpr(V, Ty); 4533 } 4534 4535 const SCEV * 4536 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4537 Type *SrcTy = V->getType(); 4538 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4539 "Cannot noop or any extend with non-integer arguments!"); 4540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4541 "getNoopOrAnyExtend cannot truncate!"); 4542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4543 return V; // No conversion 4544 return getAnyExtendExpr(V, Ty); 4545 } 4546 4547 const SCEV * 4548 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4549 Type *SrcTy = V->getType(); 4550 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4551 "Cannot truncate or noop with non-integer arguments!"); 4552 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4553 "getTruncateOrNoop cannot extend!"); 4554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4555 return V; // No conversion 4556 return getTruncateExpr(V, Ty); 4557 } 4558 4559 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4560 const SCEV *RHS) { 4561 const SCEV *PromotedLHS = LHS; 4562 const SCEV *PromotedRHS = RHS; 4563 4564 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4565 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4566 else 4567 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4568 4569 return getUMaxExpr(PromotedLHS, PromotedRHS); 4570 } 4571 4572 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4573 const SCEV *RHS, 4574 bool Sequential) { 4575 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4576 return getUMinFromMismatchedTypes(Ops, Sequential); 4577 } 4578 4579 const SCEV * 4580 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4581 bool Sequential) { 4582 assert(!Ops.empty() && "At least one operand must be!"); 4583 // Trivial case. 4584 if (Ops.size() == 1) 4585 return Ops[0]; 4586 4587 // Find the max type first. 4588 Type *MaxType = nullptr; 4589 for (auto *S : Ops) 4590 if (MaxType) 4591 MaxType = getWiderType(MaxType, S->getType()); 4592 else 4593 MaxType = S->getType(); 4594 assert(MaxType && "Failed to find maximum type!"); 4595 4596 // Extend all ops to max type. 4597 SmallVector<const SCEV *, 2> PromotedOps; 4598 for (auto *S : Ops) 4599 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4600 4601 // Generate umin. 4602 return getUMinExpr(PromotedOps, Sequential); 4603 } 4604 4605 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4606 // A pointer operand may evaluate to a nonpointer expression, such as null. 4607 if (!V->getType()->isPointerTy()) 4608 return V; 4609 4610 while (true) { 4611 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4612 V = AddRec->getStart(); 4613 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4614 const SCEV *PtrOp = nullptr; 4615 for (const SCEV *AddOp : Add->operands()) { 4616 if (AddOp->getType()->isPointerTy()) { 4617 assert(!PtrOp && "Cannot have multiple pointer ops"); 4618 PtrOp = AddOp; 4619 } 4620 } 4621 assert(PtrOp && "Must have pointer op"); 4622 V = PtrOp; 4623 } else // Not something we can look further into. 4624 return V; 4625 } 4626 } 4627 4628 /// Push users of the given Instruction onto the given Worklist. 4629 static void PushDefUseChildren(Instruction *I, 4630 SmallVectorImpl<Instruction *> &Worklist, 4631 SmallPtrSetImpl<Instruction *> &Visited) { 4632 // Push the def-use children onto the Worklist stack. 4633 for (User *U : I->users()) { 4634 auto *UserInsn = cast<Instruction>(U); 4635 if (Visited.insert(UserInsn).second) 4636 Worklist.push_back(UserInsn); 4637 } 4638 } 4639 4640 namespace { 4641 4642 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4643 /// expression in case its Loop is L. If it is not L then 4644 /// if IgnoreOtherLoops is true then use AddRec itself 4645 /// otherwise rewrite cannot be done. 4646 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4647 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4648 public: 4649 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4650 bool IgnoreOtherLoops = true) { 4651 SCEVInitRewriter Rewriter(L, SE); 4652 const SCEV *Result = Rewriter.visit(S); 4653 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4654 return SE.getCouldNotCompute(); 4655 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4656 ? SE.getCouldNotCompute() 4657 : Result; 4658 } 4659 4660 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4661 if (!SE.isLoopInvariant(Expr, L)) 4662 SeenLoopVariantSCEVUnknown = true; 4663 return Expr; 4664 } 4665 4666 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4667 // Only re-write AddRecExprs for this loop. 4668 if (Expr->getLoop() == L) 4669 return Expr->getStart(); 4670 SeenOtherLoops = true; 4671 return Expr; 4672 } 4673 4674 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4675 4676 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4677 4678 private: 4679 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4680 : SCEVRewriteVisitor(SE), L(L) {} 4681 4682 const Loop *L; 4683 bool SeenLoopVariantSCEVUnknown = false; 4684 bool SeenOtherLoops = false; 4685 }; 4686 4687 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4688 /// increment expression in case its Loop is L. If it is not L then 4689 /// use AddRec itself. 4690 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4691 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4692 public: 4693 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4694 SCEVPostIncRewriter Rewriter(L, SE); 4695 const SCEV *Result = Rewriter.visit(S); 4696 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4697 ? SE.getCouldNotCompute() 4698 : Result; 4699 } 4700 4701 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4702 if (!SE.isLoopInvariant(Expr, L)) 4703 SeenLoopVariantSCEVUnknown = true; 4704 return Expr; 4705 } 4706 4707 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4708 // Only re-write AddRecExprs for this loop. 4709 if (Expr->getLoop() == L) 4710 return Expr->getPostIncExpr(SE); 4711 SeenOtherLoops = true; 4712 return Expr; 4713 } 4714 4715 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4716 4717 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4718 4719 private: 4720 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4721 : SCEVRewriteVisitor(SE), L(L) {} 4722 4723 const Loop *L; 4724 bool SeenLoopVariantSCEVUnknown = false; 4725 bool SeenOtherLoops = false; 4726 }; 4727 4728 /// This class evaluates the compare condition by matching it against the 4729 /// condition of loop latch. If there is a match we assume a true value 4730 /// for the condition while building SCEV nodes. 4731 class SCEVBackedgeConditionFolder 4732 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4733 public: 4734 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4735 ScalarEvolution &SE) { 4736 bool IsPosBECond = false; 4737 Value *BECond = nullptr; 4738 if (BasicBlock *Latch = L->getLoopLatch()) { 4739 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4740 if (BI && BI->isConditional()) { 4741 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4742 "Both outgoing branches should not target same header!"); 4743 BECond = BI->getCondition(); 4744 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4745 } else { 4746 return S; 4747 } 4748 } 4749 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4750 return Rewriter.visit(S); 4751 } 4752 4753 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4754 const SCEV *Result = Expr; 4755 bool InvariantF = SE.isLoopInvariant(Expr, L); 4756 4757 if (!InvariantF) { 4758 Instruction *I = cast<Instruction>(Expr->getValue()); 4759 switch (I->getOpcode()) { 4760 case Instruction::Select: { 4761 SelectInst *SI = cast<SelectInst>(I); 4762 Optional<const SCEV *> Res = 4763 compareWithBackedgeCondition(SI->getCondition()); 4764 if (Res.hasValue()) { 4765 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4766 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4767 } 4768 break; 4769 } 4770 default: { 4771 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4772 if (Res.hasValue()) 4773 Result = Res.getValue(); 4774 break; 4775 } 4776 } 4777 } 4778 return Result; 4779 } 4780 4781 private: 4782 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4783 bool IsPosBECond, ScalarEvolution &SE) 4784 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4785 IsPositiveBECond(IsPosBECond) {} 4786 4787 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4788 4789 const Loop *L; 4790 /// Loop back condition. 4791 Value *BackedgeCond = nullptr; 4792 /// Set to true if loop back is on positive branch condition. 4793 bool IsPositiveBECond; 4794 }; 4795 4796 Optional<const SCEV *> 4797 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4798 4799 // If value matches the backedge condition for loop latch, 4800 // then return a constant evolution node based on loopback 4801 // branch taken. 4802 if (BackedgeCond == IC) 4803 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4804 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4805 return None; 4806 } 4807 4808 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4809 public: 4810 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4811 ScalarEvolution &SE) { 4812 SCEVShiftRewriter Rewriter(L, SE); 4813 const SCEV *Result = Rewriter.visit(S); 4814 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4815 } 4816 4817 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4818 // Only allow AddRecExprs for this loop. 4819 if (!SE.isLoopInvariant(Expr, L)) 4820 Valid = false; 4821 return Expr; 4822 } 4823 4824 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4825 if (Expr->getLoop() == L && Expr->isAffine()) 4826 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4827 Valid = false; 4828 return Expr; 4829 } 4830 4831 bool isValid() { return Valid; } 4832 4833 private: 4834 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4835 : SCEVRewriteVisitor(SE), L(L) {} 4836 4837 const Loop *L; 4838 bool Valid = true; 4839 }; 4840 4841 } // end anonymous namespace 4842 4843 SCEV::NoWrapFlags 4844 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4845 if (!AR->isAffine()) 4846 return SCEV::FlagAnyWrap; 4847 4848 using OBO = OverflowingBinaryOperator; 4849 4850 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4851 4852 if (!AR->hasNoSignedWrap()) { 4853 ConstantRange AddRecRange = getSignedRange(AR); 4854 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4855 4856 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4857 Instruction::Add, IncRange, OBO::NoSignedWrap); 4858 if (NSWRegion.contains(AddRecRange)) 4859 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4860 } 4861 4862 if (!AR->hasNoUnsignedWrap()) { 4863 ConstantRange AddRecRange = getUnsignedRange(AR); 4864 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4865 4866 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4867 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4868 if (NUWRegion.contains(AddRecRange)) 4869 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4870 } 4871 4872 return Result; 4873 } 4874 4875 SCEV::NoWrapFlags 4876 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4877 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4878 4879 if (AR->hasNoSignedWrap()) 4880 return Result; 4881 4882 if (!AR->isAffine()) 4883 return Result; 4884 4885 const SCEV *Step = AR->getStepRecurrence(*this); 4886 const Loop *L = AR->getLoop(); 4887 4888 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4889 // Note that this serves two purposes: It filters out loops that are 4890 // simply not analyzable, and it covers the case where this code is 4891 // being called from within backedge-taken count analysis, such that 4892 // attempting to ask for the backedge-taken count would likely result 4893 // in infinite recursion. In the later case, the analysis code will 4894 // cope with a conservative value, and it will take care to purge 4895 // that value once it has finished. 4896 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4897 4898 // Normally, in the cases we can prove no-overflow via a 4899 // backedge guarding condition, we can also compute a backedge 4900 // taken count for the loop. The exceptions are assumptions and 4901 // guards present in the loop -- SCEV is not great at exploiting 4902 // these to compute max backedge taken counts, but can still use 4903 // these to prove lack of overflow. Use this fact to avoid 4904 // doing extra work that may not pay off. 4905 4906 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4907 AC.assumptions().empty()) 4908 return Result; 4909 4910 // If the backedge is guarded by a comparison with the pre-inc value the 4911 // addrec is safe. Also, if the entry is guarded by a comparison with the 4912 // start value and the backedge is guarded by a comparison with the post-inc 4913 // value, the addrec is safe. 4914 ICmpInst::Predicate Pred; 4915 const SCEV *OverflowLimit = 4916 getSignedOverflowLimitForStep(Step, &Pred, this); 4917 if (OverflowLimit && 4918 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4919 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4920 Result = setFlags(Result, SCEV::FlagNSW); 4921 } 4922 return Result; 4923 } 4924 SCEV::NoWrapFlags 4925 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4926 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4927 4928 if (AR->hasNoUnsignedWrap()) 4929 return Result; 4930 4931 if (!AR->isAffine()) 4932 return Result; 4933 4934 const SCEV *Step = AR->getStepRecurrence(*this); 4935 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4936 const Loop *L = AR->getLoop(); 4937 4938 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4939 // Note that this serves two purposes: It filters out loops that are 4940 // simply not analyzable, and it covers the case where this code is 4941 // being called from within backedge-taken count analysis, such that 4942 // attempting to ask for the backedge-taken count would likely result 4943 // in infinite recursion. In the later case, the analysis code will 4944 // cope with a conservative value, and it will take care to purge 4945 // that value once it has finished. 4946 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4947 4948 // Normally, in the cases we can prove no-overflow via a 4949 // backedge guarding condition, we can also compute a backedge 4950 // taken count for the loop. The exceptions are assumptions and 4951 // guards present in the loop -- SCEV is not great at exploiting 4952 // these to compute max backedge taken counts, but can still use 4953 // these to prove lack of overflow. Use this fact to avoid 4954 // doing extra work that may not pay off. 4955 4956 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4957 AC.assumptions().empty()) 4958 return Result; 4959 4960 // If the backedge is guarded by a comparison with the pre-inc value the 4961 // addrec is safe. Also, if the entry is guarded by a comparison with the 4962 // start value and the backedge is guarded by a comparison with the post-inc 4963 // value, the addrec is safe. 4964 if (isKnownPositive(Step)) { 4965 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4966 getUnsignedRangeMax(Step)); 4967 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4968 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4969 Result = setFlags(Result, SCEV::FlagNUW); 4970 } 4971 } 4972 4973 return Result; 4974 } 4975 4976 namespace { 4977 4978 /// Represents an abstract binary operation. This may exist as a 4979 /// normal instruction or constant expression, or may have been 4980 /// derived from an expression tree. 4981 struct BinaryOp { 4982 unsigned Opcode; 4983 Value *LHS; 4984 Value *RHS; 4985 bool IsNSW = false; 4986 bool IsNUW = false; 4987 4988 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4989 /// constant expression. 4990 Operator *Op = nullptr; 4991 4992 explicit BinaryOp(Operator *Op) 4993 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4994 Op(Op) { 4995 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4996 IsNSW = OBO->hasNoSignedWrap(); 4997 IsNUW = OBO->hasNoUnsignedWrap(); 4998 } 4999 } 5000 5001 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5002 bool IsNUW = false) 5003 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5004 }; 5005 5006 } // end anonymous namespace 5007 5008 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5009 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5010 auto *Op = dyn_cast<Operator>(V); 5011 if (!Op) 5012 return None; 5013 5014 // Implementation detail: all the cleverness here should happen without 5015 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5016 // SCEV expressions when possible, and we should not break that. 5017 5018 switch (Op->getOpcode()) { 5019 case Instruction::Add: 5020 case Instruction::Sub: 5021 case Instruction::Mul: 5022 case Instruction::UDiv: 5023 case Instruction::URem: 5024 case Instruction::And: 5025 case Instruction::Or: 5026 case Instruction::AShr: 5027 case Instruction::Shl: 5028 return BinaryOp(Op); 5029 5030 case Instruction::Xor: 5031 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5032 // If the RHS of the xor is a signmask, then this is just an add. 5033 // Instcombine turns add of signmask into xor as a strength reduction step. 5034 if (RHSC->getValue().isSignMask()) 5035 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5036 // Binary `xor` is a bit-wise `add`. 5037 if (V->getType()->isIntegerTy(1)) 5038 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5039 return BinaryOp(Op); 5040 5041 case Instruction::LShr: 5042 // Turn logical shift right of a constant into a unsigned divide. 5043 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5044 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5045 5046 // If the shift count is not less than the bitwidth, the result of 5047 // the shift is undefined. Don't try to analyze it, because the 5048 // resolution chosen here may differ from the resolution chosen in 5049 // other parts of the compiler. 5050 if (SA->getValue().ult(BitWidth)) { 5051 Constant *X = 5052 ConstantInt::get(SA->getContext(), 5053 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5054 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5055 } 5056 } 5057 return BinaryOp(Op); 5058 5059 case Instruction::ExtractValue: { 5060 auto *EVI = cast<ExtractValueInst>(Op); 5061 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5062 break; 5063 5064 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5065 if (!WO) 5066 break; 5067 5068 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5069 bool Signed = WO->isSigned(); 5070 // TODO: Should add nuw/nsw flags for mul as well. 5071 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5072 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5073 5074 // Now that we know that all uses of the arithmetic-result component of 5075 // CI are guarded by the overflow check, we can go ahead and pretend 5076 // that the arithmetic is non-overflowing. 5077 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5078 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5079 } 5080 5081 default: 5082 break; 5083 } 5084 5085 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5086 // semantics as a Sub, return a binary sub expression. 5087 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5088 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5089 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5090 5091 return None; 5092 } 5093 5094 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5095 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5096 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5097 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5098 /// follows one of the following patterns: 5099 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5100 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5101 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5102 /// we return the type of the truncation operation, and indicate whether the 5103 /// truncated type should be treated as signed/unsigned by setting 5104 /// \p Signed to true/false, respectively. 5105 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5106 bool &Signed, ScalarEvolution &SE) { 5107 // The case where Op == SymbolicPHI (that is, with no type conversions on 5108 // the way) is handled by the regular add recurrence creating logic and 5109 // would have already been triggered in createAddRecForPHI. Reaching it here 5110 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5111 // because one of the other operands of the SCEVAddExpr updating this PHI is 5112 // not invariant). 5113 // 5114 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5115 // this case predicates that allow us to prove that Op == SymbolicPHI will 5116 // be added. 5117 if (Op == SymbolicPHI) 5118 return nullptr; 5119 5120 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5121 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5122 if (SourceBits != NewBits) 5123 return nullptr; 5124 5125 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5126 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5127 if (!SExt && !ZExt) 5128 return nullptr; 5129 const SCEVTruncateExpr *Trunc = 5130 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5131 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5132 if (!Trunc) 5133 return nullptr; 5134 const SCEV *X = Trunc->getOperand(); 5135 if (X != SymbolicPHI) 5136 return nullptr; 5137 Signed = SExt != nullptr; 5138 return Trunc->getType(); 5139 } 5140 5141 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5142 if (!PN->getType()->isIntegerTy()) 5143 return nullptr; 5144 const Loop *L = LI.getLoopFor(PN->getParent()); 5145 if (!L || L->getHeader() != PN->getParent()) 5146 return nullptr; 5147 return L; 5148 } 5149 5150 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5151 // computation that updates the phi follows the following pattern: 5152 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5153 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5154 // If so, try to see if it can be rewritten as an AddRecExpr under some 5155 // Predicates. If successful, return them as a pair. Also cache the results 5156 // of the analysis. 5157 // 5158 // Example usage scenario: 5159 // Say the Rewriter is called for the following SCEV: 5160 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5161 // where: 5162 // %X = phi i64 (%Start, %BEValue) 5163 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5164 // and call this function with %SymbolicPHI = %X. 5165 // 5166 // The analysis will find that the value coming around the backedge has 5167 // the following SCEV: 5168 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5169 // Upon concluding that this matches the desired pattern, the function 5170 // will return the pair {NewAddRec, SmallPredsVec} where: 5171 // NewAddRec = {%Start,+,%Step} 5172 // SmallPredsVec = {P1, P2, P3} as follows: 5173 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5174 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5175 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5176 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5177 // under the predicates {P1,P2,P3}. 5178 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5179 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5180 // 5181 // TODO's: 5182 // 5183 // 1) Extend the Induction descriptor to also support inductions that involve 5184 // casts: When needed (namely, when we are called in the context of the 5185 // vectorizer induction analysis), a Set of cast instructions will be 5186 // populated by this method, and provided back to isInductionPHI. This is 5187 // needed to allow the vectorizer to properly record them to be ignored by 5188 // the cost model and to avoid vectorizing them (otherwise these casts, 5189 // which are redundant under the runtime overflow checks, will be 5190 // vectorized, which can be costly). 5191 // 5192 // 2) Support additional induction/PHISCEV patterns: We also want to support 5193 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5194 // after the induction update operation (the induction increment): 5195 // 5196 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5197 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5198 // 5199 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5200 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5201 // 5202 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5203 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5204 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5205 SmallVector<const SCEVPredicate *, 3> Predicates; 5206 5207 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5208 // return an AddRec expression under some predicate. 5209 5210 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5211 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5212 assert(L && "Expecting an integer loop header phi"); 5213 5214 // The loop may have multiple entrances or multiple exits; we can analyze 5215 // this phi as an addrec if it has a unique entry value and a unique 5216 // backedge value. 5217 Value *BEValueV = nullptr, *StartValueV = nullptr; 5218 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5219 Value *V = PN->getIncomingValue(i); 5220 if (L->contains(PN->getIncomingBlock(i))) { 5221 if (!BEValueV) { 5222 BEValueV = V; 5223 } else if (BEValueV != V) { 5224 BEValueV = nullptr; 5225 break; 5226 } 5227 } else if (!StartValueV) { 5228 StartValueV = V; 5229 } else if (StartValueV != V) { 5230 StartValueV = nullptr; 5231 break; 5232 } 5233 } 5234 if (!BEValueV || !StartValueV) 5235 return None; 5236 5237 const SCEV *BEValue = getSCEV(BEValueV); 5238 5239 // If the value coming around the backedge is an add with the symbolic 5240 // value we just inserted, possibly with casts that we can ignore under 5241 // an appropriate runtime guard, then we found a simple induction variable! 5242 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5243 if (!Add) 5244 return None; 5245 5246 // If there is a single occurrence of the symbolic value, possibly 5247 // casted, replace it with a recurrence. 5248 unsigned FoundIndex = Add->getNumOperands(); 5249 Type *TruncTy = nullptr; 5250 bool Signed; 5251 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5252 if ((TruncTy = 5253 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5254 if (FoundIndex == e) { 5255 FoundIndex = i; 5256 break; 5257 } 5258 5259 if (FoundIndex == Add->getNumOperands()) 5260 return None; 5261 5262 // Create an add with everything but the specified operand. 5263 SmallVector<const SCEV *, 8> Ops; 5264 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5265 if (i != FoundIndex) 5266 Ops.push_back(Add->getOperand(i)); 5267 const SCEV *Accum = getAddExpr(Ops); 5268 5269 // The runtime checks will not be valid if the step amount is 5270 // varying inside the loop. 5271 if (!isLoopInvariant(Accum, L)) 5272 return None; 5273 5274 // *** Part2: Create the predicates 5275 5276 // Analysis was successful: we have a phi-with-cast pattern for which we 5277 // can return an AddRec expression under the following predicates: 5278 // 5279 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5280 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5281 // P2: An Equal predicate that guarantees that 5282 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5283 // P3: An Equal predicate that guarantees that 5284 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5285 // 5286 // As we next prove, the above predicates guarantee that: 5287 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5288 // 5289 // 5290 // More formally, we want to prove that: 5291 // Expr(i+1) = Start + (i+1) * Accum 5292 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5293 // 5294 // Given that: 5295 // 1) Expr(0) = Start 5296 // 2) Expr(1) = Start + Accum 5297 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5298 // 3) Induction hypothesis (step i): 5299 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5300 // 5301 // Proof: 5302 // Expr(i+1) = 5303 // = Start + (i+1)*Accum 5304 // = (Start + i*Accum) + Accum 5305 // = Expr(i) + Accum 5306 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5307 // :: from step i 5308 // 5309 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5310 // 5311 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5312 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5313 // + Accum :: from P3 5314 // 5315 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5316 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5317 // 5318 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5319 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5320 // 5321 // By induction, the same applies to all iterations 1<=i<n: 5322 // 5323 5324 // Create a truncated addrec for which we will add a no overflow check (P1). 5325 const SCEV *StartVal = getSCEV(StartValueV); 5326 const SCEV *PHISCEV = 5327 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5328 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5329 5330 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5331 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5332 // will be constant. 5333 // 5334 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5335 // add P1. 5336 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5337 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5338 Signed ? SCEVWrapPredicate::IncrementNSSW 5339 : SCEVWrapPredicate::IncrementNUSW; 5340 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5341 Predicates.push_back(AddRecPred); 5342 } 5343 5344 // Create the Equal Predicates P2,P3: 5345 5346 // It is possible that the predicates P2 and/or P3 are computable at 5347 // compile time due to StartVal and/or Accum being constants. 5348 // If either one is, then we can check that now and escape if either P2 5349 // or P3 is false. 5350 5351 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5352 // for each of StartVal and Accum 5353 auto getExtendedExpr = [&](const SCEV *Expr, 5354 bool CreateSignExtend) -> const SCEV * { 5355 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5356 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5357 const SCEV *ExtendedExpr = 5358 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5359 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5360 return ExtendedExpr; 5361 }; 5362 5363 // Given: 5364 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5365 // = getExtendedExpr(Expr) 5366 // Determine whether the predicate P: Expr == ExtendedExpr 5367 // is known to be false at compile time 5368 auto PredIsKnownFalse = [&](const SCEV *Expr, 5369 const SCEV *ExtendedExpr) -> bool { 5370 return Expr != ExtendedExpr && 5371 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5372 }; 5373 5374 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5375 if (PredIsKnownFalse(StartVal, StartExtended)) { 5376 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5377 return None; 5378 } 5379 5380 // The Step is always Signed (because the overflow checks are either 5381 // NSSW or NUSW) 5382 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5383 if (PredIsKnownFalse(Accum, AccumExtended)) { 5384 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5385 return None; 5386 } 5387 5388 auto AppendPredicate = [&](const SCEV *Expr, 5389 const SCEV *ExtendedExpr) -> void { 5390 if (Expr != ExtendedExpr && 5391 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5392 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5393 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5394 Predicates.push_back(Pred); 5395 } 5396 }; 5397 5398 AppendPredicate(StartVal, StartExtended); 5399 AppendPredicate(Accum, AccumExtended); 5400 5401 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5402 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5403 // into NewAR if it will also add the runtime overflow checks specified in 5404 // Predicates. 5405 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5406 5407 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5408 std::make_pair(NewAR, Predicates); 5409 // Remember the result of the analysis for this SCEV at this locayyytion. 5410 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5411 return PredRewrite; 5412 } 5413 5414 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5415 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5416 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5417 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5418 if (!L) 5419 return None; 5420 5421 // Check to see if we already analyzed this PHI. 5422 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5423 if (I != PredicatedSCEVRewrites.end()) { 5424 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5425 I->second; 5426 // Analysis was done before and failed to create an AddRec: 5427 if (Rewrite.first == SymbolicPHI) 5428 return None; 5429 // Analysis was done before and succeeded to create an AddRec under 5430 // a predicate: 5431 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5432 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5433 return Rewrite; 5434 } 5435 5436 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5437 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5438 5439 // Record in the cache that the analysis failed 5440 if (!Rewrite) { 5441 SmallVector<const SCEVPredicate *, 3> Predicates; 5442 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5443 return None; 5444 } 5445 5446 return Rewrite; 5447 } 5448 5449 // FIXME: This utility is currently required because the Rewriter currently 5450 // does not rewrite this expression: 5451 // {0, +, (sext ix (trunc iy to ix) to iy)} 5452 // into {0, +, %step}, 5453 // even when the following Equal predicate exists: 5454 // "%step == (sext ix (trunc iy to ix) to iy)". 5455 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5456 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5457 if (AR1 == AR2) 5458 return true; 5459 5460 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5461 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5462 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5463 return false; 5464 return true; 5465 }; 5466 5467 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5468 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5469 return false; 5470 return true; 5471 } 5472 5473 /// A helper function for createAddRecFromPHI to handle simple cases. 5474 /// 5475 /// This function tries to find an AddRec expression for the simplest (yet most 5476 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5477 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5478 /// technique for finding the AddRec expression. 5479 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5480 Value *BEValueV, 5481 Value *StartValueV) { 5482 const Loop *L = LI.getLoopFor(PN->getParent()); 5483 assert(L && L->getHeader() == PN->getParent()); 5484 assert(BEValueV && StartValueV); 5485 5486 auto BO = MatchBinaryOp(BEValueV, DT); 5487 if (!BO) 5488 return nullptr; 5489 5490 if (BO->Opcode != Instruction::Add) 5491 return nullptr; 5492 5493 const SCEV *Accum = nullptr; 5494 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5495 Accum = getSCEV(BO->RHS); 5496 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5497 Accum = getSCEV(BO->LHS); 5498 5499 if (!Accum) 5500 return nullptr; 5501 5502 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5503 if (BO->IsNUW) 5504 Flags = setFlags(Flags, SCEV::FlagNUW); 5505 if (BO->IsNSW) 5506 Flags = setFlags(Flags, SCEV::FlagNSW); 5507 5508 const SCEV *StartVal = getSCEV(StartValueV); 5509 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5510 insertValueToMap(PN, PHISCEV); 5511 5512 // We can add Flags to the post-inc expression only if we 5513 // know that it is *undefined behavior* for BEValueV to 5514 // overflow. 5515 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5516 assert(isLoopInvariant(Accum, L) && 5517 "Accum is defined outside L, but is not invariant?"); 5518 if (isAddRecNeverPoison(BEInst, L)) 5519 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5520 } 5521 5522 return PHISCEV; 5523 } 5524 5525 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5526 const Loop *L = LI.getLoopFor(PN->getParent()); 5527 if (!L || L->getHeader() != PN->getParent()) 5528 return nullptr; 5529 5530 // The loop may have multiple entrances or multiple exits; we can analyze 5531 // this phi as an addrec if it has a unique entry value and a unique 5532 // backedge value. 5533 Value *BEValueV = nullptr, *StartValueV = nullptr; 5534 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5535 Value *V = PN->getIncomingValue(i); 5536 if (L->contains(PN->getIncomingBlock(i))) { 5537 if (!BEValueV) { 5538 BEValueV = V; 5539 } else if (BEValueV != V) { 5540 BEValueV = nullptr; 5541 break; 5542 } 5543 } else if (!StartValueV) { 5544 StartValueV = V; 5545 } else if (StartValueV != V) { 5546 StartValueV = nullptr; 5547 break; 5548 } 5549 } 5550 if (!BEValueV || !StartValueV) 5551 return nullptr; 5552 5553 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5554 "PHI node already processed?"); 5555 5556 // First, try to find AddRec expression without creating a fictituos symbolic 5557 // value for PN. 5558 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5559 return S; 5560 5561 // Handle PHI node value symbolically. 5562 const SCEV *SymbolicName = getUnknown(PN); 5563 insertValueToMap(PN, SymbolicName); 5564 5565 // Using this symbolic name for the PHI, analyze the value coming around 5566 // the back-edge. 5567 const SCEV *BEValue = getSCEV(BEValueV); 5568 5569 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5570 // has a special value for the first iteration of the loop. 5571 5572 // If the value coming around the backedge is an add with the symbolic 5573 // value we just inserted, then we found a simple induction variable! 5574 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5575 // If there is a single occurrence of the symbolic value, replace it 5576 // with a recurrence. 5577 unsigned FoundIndex = Add->getNumOperands(); 5578 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5579 if (Add->getOperand(i) == SymbolicName) 5580 if (FoundIndex == e) { 5581 FoundIndex = i; 5582 break; 5583 } 5584 5585 if (FoundIndex != Add->getNumOperands()) { 5586 // Create an add with everything but the specified operand. 5587 SmallVector<const SCEV *, 8> Ops; 5588 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5589 if (i != FoundIndex) 5590 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5591 L, *this)); 5592 const SCEV *Accum = getAddExpr(Ops); 5593 5594 // This is not a valid addrec if the step amount is varying each 5595 // loop iteration, but is not itself an addrec in this loop. 5596 if (isLoopInvariant(Accum, L) || 5597 (isa<SCEVAddRecExpr>(Accum) && 5598 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5599 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5600 5601 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5602 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5603 if (BO->IsNUW) 5604 Flags = setFlags(Flags, SCEV::FlagNUW); 5605 if (BO->IsNSW) 5606 Flags = setFlags(Flags, SCEV::FlagNSW); 5607 } 5608 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5609 // If the increment is an inbounds GEP, then we know the address 5610 // space cannot be wrapped around. We cannot make any guarantee 5611 // about signed or unsigned overflow because pointers are 5612 // unsigned but we may have a negative index from the base 5613 // pointer. We can guarantee that no unsigned wrap occurs if the 5614 // indices form a positive value. 5615 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5616 Flags = setFlags(Flags, SCEV::FlagNW); 5617 5618 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5619 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5620 Flags = setFlags(Flags, SCEV::FlagNUW); 5621 } 5622 5623 // We cannot transfer nuw and nsw flags from subtraction 5624 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5625 // for instance. 5626 } 5627 5628 const SCEV *StartVal = getSCEV(StartValueV); 5629 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5630 5631 // Okay, for the entire analysis of this edge we assumed the PHI 5632 // to be symbolic. We now need to go back and purge all of the 5633 // entries for the scalars that use the symbolic expression. 5634 forgetMemoizedResults(SymbolicName); 5635 insertValueToMap(PN, PHISCEV); 5636 5637 // We can add Flags to the post-inc expression only if we 5638 // know that it is *undefined behavior* for BEValueV to 5639 // overflow. 5640 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5641 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5642 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5643 5644 return PHISCEV; 5645 } 5646 } 5647 } else { 5648 // Otherwise, this could be a loop like this: 5649 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5650 // In this case, j = {1,+,1} and BEValue is j. 5651 // Because the other in-value of i (0) fits the evolution of BEValue 5652 // i really is an addrec evolution. 5653 // 5654 // We can generalize this saying that i is the shifted value of BEValue 5655 // by one iteration: 5656 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5657 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5658 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5659 if (Shifted != getCouldNotCompute() && 5660 Start != getCouldNotCompute()) { 5661 const SCEV *StartVal = getSCEV(StartValueV); 5662 if (Start == StartVal) { 5663 // Okay, for the entire analysis of this edge we assumed the PHI 5664 // to be symbolic. We now need to go back and purge all of the 5665 // entries for the scalars that use the symbolic expression. 5666 forgetMemoizedResults(SymbolicName); 5667 insertValueToMap(PN, Shifted); 5668 return Shifted; 5669 } 5670 } 5671 } 5672 5673 // Remove the temporary PHI node SCEV that has been inserted while intending 5674 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5675 // as it will prevent later (possibly simpler) SCEV expressions to be added 5676 // to the ValueExprMap. 5677 eraseValueFromMap(PN); 5678 5679 return nullptr; 5680 } 5681 5682 // Checks if the SCEV S is available at BB. S is considered available at BB 5683 // if S can be materialized at BB without introducing a fault. 5684 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5685 BasicBlock *BB) { 5686 struct CheckAvailable { 5687 bool TraversalDone = false; 5688 bool Available = true; 5689 5690 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5691 BasicBlock *BB = nullptr; 5692 DominatorTree &DT; 5693 5694 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5695 : L(L), BB(BB), DT(DT) {} 5696 5697 bool setUnavailable() { 5698 TraversalDone = true; 5699 Available = false; 5700 return false; 5701 } 5702 5703 bool follow(const SCEV *S) { 5704 switch (S->getSCEVType()) { 5705 case scConstant: 5706 case scPtrToInt: 5707 case scTruncate: 5708 case scZeroExtend: 5709 case scSignExtend: 5710 case scAddExpr: 5711 case scMulExpr: 5712 case scUMaxExpr: 5713 case scSMaxExpr: 5714 case scUMinExpr: 5715 case scSMinExpr: 5716 case scSequentialUMinExpr: 5717 // These expressions are available if their operand(s) is/are. 5718 return true; 5719 5720 case scAddRecExpr: { 5721 // We allow add recurrences that are on the loop BB is in, or some 5722 // outer loop. This guarantees availability because the value of the 5723 // add recurrence at BB is simply the "current" value of the induction 5724 // variable. We can relax this in the future; for instance an add 5725 // recurrence on a sibling dominating loop is also available at BB. 5726 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5727 if (L && (ARLoop == L || ARLoop->contains(L))) 5728 return true; 5729 5730 return setUnavailable(); 5731 } 5732 5733 case scUnknown: { 5734 // For SCEVUnknown, we check for simple dominance. 5735 const auto *SU = cast<SCEVUnknown>(S); 5736 Value *V = SU->getValue(); 5737 5738 if (isa<Argument>(V)) 5739 return false; 5740 5741 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5742 return false; 5743 5744 return setUnavailable(); 5745 } 5746 5747 case scUDivExpr: 5748 case scCouldNotCompute: 5749 // We do not try to smart about these at all. 5750 return setUnavailable(); 5751 } 5752 llvm_unreachable("Unknown SCEV kind!"); 5753 } 5754 5755 bool isDone() { return TraversalDone; } 5756 }; 5757 5758 CheckAvailable CA(L, BB, DT); 5759 SCEVTraversal<CheckAvailable> ST(CA); 5760 5761 ST.visitAll(S); 5762 return CA.Available; 5763 } 5764 5765 // Try to match a control flow sequence that branches out at BI and merges back 5766 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5767 // match. 5768 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5769 Value *&C, Value *&LHS, Value *&RHS) { 5770 C = BI->getCondition(); 5771 5772 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5773 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5774 5775 if (!LeftEdge.isSingleEdge()) 5776 return false; 5777 5778 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5779 5780 Use &LeftUse = Merge->getOperandUse(0); 5781 Use &RightUse = Merge->getOperandUse(1); 5782 5783 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5784 LHS = LeftUse; 5785 RHS = RightUse; 5786 return true; 5787 } 5788 5789 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5790 LHS = RightUse; 5791 RHS = LeftUse; 5792 return true; 5793 } 5794 5795 return false; 5796 } 5797 5798 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5799 auto IsReachable = 5800 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5801 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5802 const Loop *L = LI.getLoopFor(PN->getParent()); 5803 5804 // We don't want to break LCSSA, even in a SCEV expression tree. 5805 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5806 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5807 return nullptr; 5808 5809 // Try to match 5810 // 5811 // br %cond, label %left, label %right 5812 // left: 5813 // br label %merge 5814 // right: 5815 // br label %merge 5816 // merge: 5817 // V = phi [ %x, %left ], [ %y, %right ] 5818 // 5819 // as "select %cond, %x, %y" 5820 5821 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5822 assert(IDom && "At least the entry block should dominate PN"); 5823 5824 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5825 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5826 5827 if (BI && BI->isConditional() && 5828 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5829 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5830 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5831 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5832 } 5833 5834 return nullptr; 5835 } 5836 5837 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5838 if (const SCEV *S = createAddRecFromPHI(PN)) 5839 return S; 5840 5841 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5842 return S; 5843 5844 // If the PHI has a single incoming value, follow that value, unless the 5845 // PHI's incoming blocks are in a different loop, in which case doing so 5846 // risks breaking LCSSA form. Instcombine would normally zap these, but 5847 // it doesn't have DominatorTree information, so it may miss cases. 5848 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5849 if (LI.replacementPreservesLCSSAForm(PN, V)) 5850 return getSCEV(V); 5851 5852 // If it's not a loop phi, we can't handle it yet. 5853 return getUnknown(PN); 5854 } 5855 5856 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5857 SCEVTypes RootKind) { 5858 struct FindClosure { 5859 const SCEV *OperandToFind; 5860 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5861 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5862 5863 bool Found = false; 5864 5865 bool canRecurseInto(SCEVTypes Kind) const { 5866 // We can only recurse into the SCEV expression of the same effective type 5867 // as the type of our root SCEV expression, and into zero-extensions. 5868 return RootKind == Kind || NonSequentialRootKind == Kind || 5869 scZeroExtend == Kind; 5870 }; 5871 5872 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5873 : OperandToFind(OperandToFind), RootKind(RootKind), 5874 NonSequentialRootKind( 5875 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5876 RootKind)) {} 5877 5878 bool follow(const SCEV *S) { 5879 Found = S == OperandToFind; 5880 5881 return !isDone() && canRecurseInto(S->getSCEVType()); 5882 } 5883 5884 bool isDone() const { return Found; } 5885 }; 5886 5887 FindClosure FC(OperandToFind, RootKind); 5888 visitAll(Root, FC); 5889 return FC.Found; 5890 } 5891 5892 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5893 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5894 // Try to match some simple smax or umax patterns. 5895 auto *ICI = Cond; 5896 5897 Value *LHS = ICI->getOperand(0); 5898 Value *RHS = ICI->getOperand(1); 5899 5900 switch (ICI->getPredicate()) { 5901 case ICmpInst::ICMP_SLT: 5902 case ICmpInst::ICMP_SLE: 5903 case ICmpInst::ICMP_ULT: 5904 case ICmpInst::ICMP_ULE: 5905 std::swap(LHS, RHS); 5906 LLVM_FALLTHROUGH; 5907 case ICmpInst::ICMP_SGT: 5908 case ICmpInst::ICMP_SGE: 5909 case ICmpInst::ICMP_UGT: 5910 case ICmpInst::ICMP_UGE: 5911 // a > b ? a+x : b+x -> max(a, b)+x 5912 // a > b ? b+x : a+x -> min(a, b)+x 5913 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5914 bool Signed = ICI->isSigned(); 5915 const SCEV *LA = getSCEV(TrueVal); 5916 const SCEV *RA = getSCEV(FalseVal); 5917 const SCEV *LS = getSCEV(LHS); 5918 const SCEV *RS = getSCEV(RHS); 5919 if (LA->getType()->isPointerTy()) { 5920 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5921 // Need to make sure we can't produce weird expressions involving 5922 // negated pointers. 5923 if (LA == LS && RA == RS) 5924 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5925 if (LA == RS && RA == LS) 5926 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5927 } 5928 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5929 if (Op->getType()->isPointerTy()) { 5930 Op = getLosslessPtrToIntExpr(Op); 5931 if (isa<SCEVCouldNotCompute>(Op)) 5932 return Op; 5933 } 5934 if (Signed) 5935 Op = getNoopOrSignExtend(Op, I->getType()); 5936 else 5937 Op = getNoopOrZeroExtend(Op, I->getType()); 5938 return Op; 5939 }; 5940 LS = CoerceOperand(LS); 5941 RS = CoerceOperand(RS); 5942 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5943 break; 5944 const SCEV *LDiff = getMinusSCEV(LA, LS); 5945 const SCEV *RDiff = getMinusSCEV(RA, RS); 5946 if (LDiff == RDiff) 5947 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5948 LDiff); 5949 LDiff = getMinusSCEV(LA, RS); 5950 RDiff = getMinusSCEV(RA, LS); 5951 if (LDiff == RDiff) 5952 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5953 LDiff); 5954 } 5955 break; 5956 case ICmpInst::ICMP_NE: 5957 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 5958 std::swap(TrueVal, FalseVal); 5959 LLVM_FALLTHROUGH; 5960 case ICmpInst::ICMP_EQ: 5961 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 5962 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5963 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5964 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5965 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 5966 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 5967 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 5968 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 5969 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 5970 return getAddExpr(getUMaxExpr(X, C), Y); 5971 } 5972 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 5973 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 5974 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 5975 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 5976 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 5977 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 5978 const SCEV *X = getSCEV(LHS); 5979 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 5980 X = ZExt->getOperand(); 5981 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 5982 const SCEV *FalseValExpr = getSCEV(FalseVal); 5983 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 5984 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 5985 /*Sequential=*/true); 5986 } 5987 } 5988 break; 5989 default: 5990 break; 5991 } 5992 5993 return getUnknown(I); 5994 } 5995 5996 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 5997 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 5998 // For now, only deal with i1-typed `select`s. 5999 if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) || 6000 !TrueVal->getType()->isIntegerTy(1) || 6001 !FalseVal->getType()->isIntegerTy(1)) 6002 return getUnknown(V); 6003 6004 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6005 // --> C + (umin_seq cond, x - C) 6006 // 6007 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6008 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6009 // --> C + (umin_seq ~cond, x - C) 6010 if (isa<ConstantInt>(TrueVal) || isa<ConstantInt>(FalseVal)) { 6011 const SCEV *CondExpr = getSCEV(Cond); 6012 const SCEV *TrueExpr = getSCEV(TrueVal); 6013 const SCEV *FalseExpr = getSCEV(FalseVal); 6014 const SCEV *X, *C; 6015 if (isa<ConstantInt>(TrueVal)) { 6016 CondExpr = getNotSCEV(CondExpr); 6017 X = FalseExpr; 6018 C = TrueExpr; 6019 } else { 6020 X = TrueExpr; 6021 C = FalseExpr; 6022 } 6023 return getAddExpr( 6024 C, getUMinExpr(CondExpr, getMinusSCEV(X, C), /*Sequential=*/true)); 6025 } 6026 6027 return getUnknown(V); 6028 } 6029 6030 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6031 Value *TrueVal, 6032 Value *FalseVal) { 6033 // Handle "constant" branch or select. This can occur for instance when a 6034 // loop pass transforms an inner loop and moves on to process the outer loop. 6035 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6036 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6037 6038 if (auto *I = dyn_cast<Instruction>(V)) { 6039 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6040 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6041 I, ICI, TrueVal, FalseVal); 6042 if (!isa<SCEVUnknown>(S)) 6043 return S; 6044 } 6045 } 6046 6047 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6048 } 6049 6050 /// Expand GEP instructions into add and multiply operations. This allows them 6051 /// to be analyzed by regular SCEV code. 6052 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6053 // Don't attempt to analyze GEPs over unsized objects. 6054 if (!GEP->getSourceElementType()->isSized()) 6055 return getUnknown(GEP); 6056 6057 SmallVector<const SCEV *, 4> IndexExprs; 6058 for (Value *Index : GEP->indices()) 6059 IndexExprs.push_back(getSCEV(Index)); 6060 return getGEPExpr(GEP, IndexExprs); 6061 } 6062 6063 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6064 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6065 return C->getAPInt().countTrailingZeros(); 6066 6067 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6068 return GetMinTrailingZeros(I->getOperand()); 6069 6070 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6071 return std::min(GetMinTrailingZeros(T->getOperand()), 6072 (uint32_t)getTypeSizeInBits(T->getType())); 6073 6074 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6075 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6076 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6077 ? getTypeSizeInBits(E->getType()) 6078 : OpRes; 6079 } 6080 6081 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6082 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6083 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6084 ? getTypeSizeInBits(E->getType()) 6085 : OpRes; 6086 } 6087 6088 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6089 // The result is the min of all operands results. 6090 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6091 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6092 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6093 return MinOpRes; 6094 } 6095 6096 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6097 // The result is the sum of all operands results. 6098 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6099 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6100 for (unsigned i = 1, e = M->getNumOperands(); 6101 SumOpRes != BitWidth && i != e; ++i) 6102 SumOpRes = 6103 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6104 return SumOpRes; 6105 } 6106 6107 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6108 // The result is the min of all operands results. 6109 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6110 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6111 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6112 return MinOpRes; 6113 } 6114 6115 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6116 // The result is the min of all operands results. 6117 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6118 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6119 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6120 return MinOpRes; 6121 } 6122 6123 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6124 // The result is the min of all operands results. 6125 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6126 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6127 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6128 return MinOpRes; 6129 } 6130 6131 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6132 // For a SCEVUnknown, ask ValueTracking. 6133 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6134 return Known.countMinTrailingZeros(); 6135 } 6136 6137 // SCEVUDivExpr 6138 return 0; 6139 } 6140 6141 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6142 auto I = MinTrailingZerosCache.find(S); 6143 if (I != MinTrailingZerosCache.end()) 6144 return I->second; 6145 6146 uint32_t Result = GetMinTrailingZerosImpl(S); 6147 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6148 assert(InsertPair.second && "Should insert a new key"); 6149 return InsertPair.first->second; 6150 } 6151 6152 /// Helper method to assign a range to V from metadata present in the IR. 6153 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6154 if (Instruction *I = dyn_cast<Instruction>(V)) 6155 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6156 return getConstantRangeFromMetadata(*MD); 6157 6158 return None; 6159 } 6160 6161 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6162 SCEV::NoWrapFlags Flags) { 6163 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6164 AddRec->setNoWrapFlags(Flags); 6165 UnsignedRanges.erase(AddRec); 6166 SignedRanges.erase(AddRec); 6167 } 6168 } 6169 6170 ConstantRange ScalarEvolution:: 6171 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6172 const DataLayout &DL = getDataLayout(); 6173 6174 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6175 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6176 6177 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6178 // use information about the trip count to improve our available range. Note 6179 // that the trip count independent cases are already handled by known bits. 6180 // WARNING: The definition of recurrence used here is subtly different than 6181 // the one used by AddRec (and thus most of this file). Step is allowed to 6182 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6183 // and other addrecs in the same loop (for non-affine addrecs). The code 6184 // below intentionally handles the case where step is not loop invariant. 6185 auto *P = dyn_cast<PHINode>(U->getValue()); 6186 if (!P) 6187 return FullSet; 6188 6189 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6190 // even the values that are not available in these blocks may come from them, 6191 // and this leads to false-positive recurrence test. 6192 for (auto *Pred : predecessors(P->getParent())) 6193 if (!DT.isReachableFromEntry(Pred)) 6194 return FullSet; 6195 6196 BinaryOperator *BO; 6197 Value *Start, *Step; 6198 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6199 return FullSet; 6200 6201 // If we found a recurrence in reachable code, we must be in a loop. Note 6202 // that BO might be in some subloop of L, and that's completely okay. 6203 auto *L = LI.getLoopFor(P->getParent()); 6204 assert(L && L->getHeader() == P->getParent()); 6205 if (!L->contains(BO->getParent())) 6206 // NOTE: This bailout should be an assert instead. However, asserting 6207 // the condition here exposes a case where LoopFusion is querying SCEV 6208 // with malformed loop information during the midst of the transform. 6209 // There doesn't appear to be an obvious fix, so for the moment bailout 6210 // until the caller issue can be fixed. PR49566 tracks the bug. 6211 return FullSet; 6212 6213 // TODO: Extend to other opcodes such as mul, and div 6214 switch (BO->getOpcode()) { 6215 default: 6216 return FullSet; 6217 case Instruction::AShr: 6218 case Instruction::LShr: 6219 case Instruction::Shl: 6220 break; 6221 }; 6222 6223 if (BO->getOperand(0) != P) 6224 // TODO: Handle the power function forms some day. 6225 return FullSet; 6226 6227 unsigned TC = getSmallConstantMaxTripCount(L); 6228 if (!TC || TC >= BitWidth) 6229 return FullSet; 6230 6231 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6232 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6233 assert(KnownStart.getBitWidth() == BitWidth && 6234 KnownStep.getBitWidth() == BitWidth); 6235 6236 // Compute total shift amount, being careful of overflow and bitwidths. 6237 auto MaxShiftAmt = KnownStep.getMaxValue(); 6238 APInt TCAP(BitWidth, TC-1); 6239 bool Overflow = false; 6240 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6241 if (Overflow) 6242 return FullSet; 6243 6244 switch (BO->getOpcode()) { 6245 default: 6246 llvm_unreachable("filtered out above"); 6247 case Instruction::AShr: { 6248 // For each ashr, three cases: 6249 // shift = 0 => unchanged value 6250 // saturation => 0 or -1 6251 // other => a value closer to zero (of the same sign) 6252 // Thus, the end value is closer to zero than the start. 6253 auto KnownEnd = KnownBits::ashr(KnownStart, 6254 KnownBits::makeConstant(TotalShift)); 6255 if (KnownStart.isNonNegative()) 6256 // Analogous to lshr (simply not yet canonicalized) 6257 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6258 KnownStart.getMaxValue() + 1); 6259 if (KnownStart.isNegative()) 6260 // End >=u Start && End <=s Start 6261 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6262 KnownEnd.getMaxValue() + 1); 6263 break; 6264 } 6265 case Instruction::LShr: { 6266 // For each lshr, three cases: 6267 // shift = 0 => unchanged value 6268 // saturation => 0 6269 // other => a smaller positive number 6270 // Thus, the low end of the unsigned range is the last value produced. 6271 auto KnownEnd = KnownBits::lshr(KnownStart, 6272 KnownBits::makeConstant(TotalShift)); 6273 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6274 KnownStart.getMaxValue() + 1); 6275 } 6276 case Instruction::Shl: { 6277 // Iff no bits are shifted out, value increases on every shift. 6278 auto KnownEnd = KnownBits::shl(KnownStart, 6279 KnownBits::makeConstant(TotalShift)); 6280 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6281 return ConstantRange(KnownStart.getMinValue(), 6282 KnownEnd.getMaxValue() + 1); 6283 break; 6284 } 6285 }; 6286 return FullSet; 6287 } 6288 6289 /// Determine the range for a particular SCEV. If SignHint is 6290 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6291 /// with a "cleaner" unsigned (resp. signed) representation. 6292 const ConstantRange & 6293 ScalarEvolution::getRangeRef(const SCEV *S, 6294 ScalarEvolution::RangeSignHint SignHint) { 6295 DenseMap<const SCEV *, ConstantRange> &Cache = 6296 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6297 : SignedRanges; 6298 ConstantRange::PreferredRangeType RangeType = 6299 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6300 ? ConstantRange::Unsigned : ConstantRange::Signed; 6301 6302 // See if we've computed this range already. 6303 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6304 if (I != Cache.end()) 6305 return I->second; 6306 6307 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6308 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6309 6310 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6311 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6312 using OBO = OverflowingBinaryOperator; 6313 6314 // If the value has known zeros, the maximum value will have those known zeros 6315 // as well. 6316 uint32_t TZ = GetMinTrailingZeros(S); 6317 if (TZ != 0) { 6318 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6319 ConservativeResult = 6320 ConstantRange(APInt::getMinValue(BitWidth), 6321 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6322 else 6323 ConservativeResult = ConstantRange( 6324 APInt::getSignedMinValue(BitWidth), 6325 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6326 } 6327 6328 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6329 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6330 unsigned WrapType = OBO::AnyWrap; 6331 if (Add->hasNoSignedWrap()) 6332 WrapType |= OBO::NoSignedWrap; 6333 if (Add->hasNoUnsignedWrap()) 6334 WrapType |= OBO::NoUnsignedWrap; 6335 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6336 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6337 WrapType, RangeType); 6338 return setRange(Add, SignHint, 6339 ConservativeResult.intersectWith(X, RangeType)); 6340 } 6341 6342 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6343 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6344 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6345 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6346 return setRange(Mul, SignHint, 6347 ConservativeResult.intersectWith(X, RangeType)); 6348 } 6349 6350 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6351 Intrinsic::ID ID; 6352 switch (S->getSCEVType()) { 6353 case scUMaxExpr: 6354 ID = Intrinsic::umax; 6355 break; 6356 case scSMaxExpr: 6357 ID = Intrinsic::smax; 6358 break; 6359 case scUMinExpr: 6360 case scSequentialUMinExpr: 6361 ID = Intrinsic::umin; 6362 break; 6363 case scSMinExpr: 6364 ID = Intrinsic::smin; 6365 break; 6366 default: 6367 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6368 } 6369 6370 const auto *NAry = cast<SCEVNAryExpr>(S); 6371 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6372 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6373 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6374 return setRange(S, SignHint, 6375 ConservativeResult.intersectWith(X, RangeType)); 6376 } 6377 6378 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6379 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6380 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6381 return setRange(UDiv, SignHint, 6382 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6383 } 6384 6385 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6386 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6387 return setRange(ZExt, SignHint, 6388 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6389 RangeType)); 6390 } 6391 6392 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6393 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6394 return setRange(SExt, SignHint, 6395 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6396 RangeType)); 6397 } 6398 6399 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6400 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6401 return setRange(PtrToInt, SignHint, X); 6402 } 6403 6404 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6405 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6406 return setRange(Trunc, SignHint, 6407 ConservativeResult.intersectWith(X.truncate(BitWidth), 6408 RangeType)); 6409 } 6410 6411 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6412 // If there's no unsigned wrap, the value will never be less than its 6413 // initial value. 6414 if (AddRec->hasNoUnsignedWrap()) { 6415 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6416 if (!UnsignedMinValue.isZero()) 6417 ConservativeResult = ConservativeResult.intersectWith( 6418 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6419 } 6420 6421 // If there's no signed wrap, and all the operands except initial value have 6422 // the same sign or zero, the value won't ever be: 6423 // 1: smaller than initial value if operands are non negative, 6424 // 2: bigger than initial value if operands are non positive. 6425 // For both cases, value can not cross signed min/max boundary. 6426 if (AddRec->hasNoSignedWrap()) { 6427 bool AllNonNeg = true; 6428 bool AllNonPos = true; 6429 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6430 if (!isKnownNonNegative(AddRec->getOperand(i))) 6431 AllNonNeg = false; 6432 if (!isKnownNonPositive(AddRec->getOperand(i))) 6433 AllNonPos = false; 6434 } 6435 if (AllNonNeg) 6436 ConservativeResult = ConservativeResult.intersectWith( 6437 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6438 APInt::getSignedMinValue(BitWidth)), 6439 RangeType); 6440 else if (AllNonPos) 6441 ConservativeResult = ConservativeResult.intersectWith( 6442 ConstantRange::getNonEmpty( 6443 APInt::getSignedMinValue(BitWidth), 6444 getSignedRangeMax(AddRec->getStart()) + 1), 6445 RangeType); 6446 } 6447 6448 // TODO: non-affine addrec 6449 if (AddRec->isAffine()) { 6450 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6451 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6452 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6453 auto RangeFromAffine = getRangeForAffineAR( 6454 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6455 BitWidth); 6456 ConservativeResult = 6457 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6458 6459 auto RangeFromFactoring = getRangeViaFactoring( 6460 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6461 BitWidth); 6462 ConservativeResult = 6463 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6464 } 6465 6466 // Now try symbolic BE count and more powerful methods. 6467 if (UseExpensiveRangeSharpening) { 6468 const SCEV *SymbolicMaxBECount = 6469 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6470 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6471 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6472 AddRec->hasNoSelfWrap()) { 6473 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6474 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6475 ConservativeResult = 6476 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6477 } 6478 } 6479 } 6480 6481 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6482 } 6483 6484 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6485 6486 // Check if the IR explicitly contains !range metadata. 6487 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6488 if (MDRange.hasValue()) 6489 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6490 RangeType); 6491 6492 // Use facts about recurrences in the underlying IR. Note that add 6493 // recurrences are AddRecExprs and thus don't hit this path. This 6494 // primarily handles shift recurrences. 6495 auto CR = getRangeForUnknownRecurrence(U); 6496 ConservativeResult = ConservativeResult.intersectWith(CR); 6497 6498 // See if ValueTracking can give us a useful range. 6499 const DataLayout &DL = getDataLayout(); 6500 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6501 if (Known.getBitWidth() != BitWidth) 6502 Known = Known.zextOrTrunc(BitWidth); 6503 6504 // ValueTracking may be able to compute a tighter result for the number of 6505 // sign bits than for the value of those sign bits. 6506 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6507 if (U->getType()->isPointerTy()) { 6508 // If the pointer size is larger than the index size type, this can cause 6509 // NS to be larger than BitWidth. So compensate for this. 6510 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6511 int ptrIdxDiff = ptrSize - BitWidth; 6512 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6513 NS -= ptrIdxDiff; 6514 } 6515 6516 if (NS > 1) { 6517 // If we know any of the sign bits, we know all of the sign bits. 6518 if (!Known.Zero.getHiBits(NS).isZero()) 6519 Known.Zero.setHighBits(NS); 6520 if (!Known.One.getHiBits(NS).isZero()) 6521 Known.One.setHighBits(NS); 6522 } 6523 6524 if (Known.getMinValue() != Known.getMaxValue() + 1) 6525 ConservativeResult = ConservativeResult.intersectWith( 6526 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6527 RangeType); 6528 if (NS > 1) 6529 ConservativeResult = ConservativeResult.intersectWith( 6530 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6531 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6532 RangeType); 6533 6534 // A range of Phi is a subset of union of all ranges of its input. 6535 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) 6536 if (!PendingPhiRanges.count(Phi)) 6537 sharpenPhiSCCRange(Phi, ConservativeResult, SignHint); 6538 6539 return setRange(U, SignHint, std::move(ConservativeResult)); 6540 } 6541 6542 return setRange(S, SignHint, std::move(ConservativeResult)); 6543 } 6544 6545 bool ScalarEvolution::collectSCC(const PHINode *Phi, 6546 SmallVectorImpl<const PHINode *> &SCC) const { 6547 assert(SCC.empty() && "Precondition: SCC should be empty."); 6548 auto Bail = [&]() { 6549 SCC.clear(); 6550 SCC.push_back(Phi); 6551 return false; 6552 }; 6553 SmallPtrSet<const PHINode *, 4> Reachable; 6554 { 6555 // First, find all PHI nodes that are reachable from Phi. 6556 SmallVector<const PHINode *, 4> Worklist; 6557 Reachable.insert(Phi); 6558 Worklist.push_back(Phi); 6559 while (!Worklist.empty()) { 6560 if (Reachable.size() > MaxPhiSCCAnalysisSize) 6561 // Too many nodes to process. Assume that SCC is composed of Phi alone. 6562 return Bail(); 6563 auto *Curr = Worklist.pop_back_val(); 6564 for (auto &Op : Curr->operands()) { 6565 if (auto *PhiOp = dyn_cast<PHINode>(&*Op)) { 6566 if (PendingPhiRanges.count(PhiOp)) 6567 // Do not want to deal with this situation, so conservatively bail. 6568 return Bail(); 6569 if (Reachable.insert(PhiOp).second) 6570 Worklist.push_back(PhiOp); 6571 } 6572 } 6573 } 6574 } 6575 { 6576 // Out of reachable nodes, find those from which Phi is also reachable. This 6577 // defines a SCC. 6578 SmallVector<const PHINode *, 4> Worklist; 6579 SmallPtrSet<const PHINode *, 4> SCCSet; 6580 SCCSet.insert(Phi); 6581 SCC.push_back(Phi); 6582 Worklist.push_back(Phi); 6583 while (!Worklist.empty()) { 6584 auto *Curr = Worklist.pop_back_val(); 6585 for (auto *User : Curr->users()) 6586 if (auto *PN = dyn_cast<PHINode>(User)) 6587 if (Reachable.count(PN) && SCCSet.insert(PN).second) { 6588 Worklist.push_back(PN); 6589 SCC.push_back(PN); 6590 } 6591 } 6592 } 6593 return true; 6594 } 6595 6596 void 6597 ScalarEvolution::sharpenPhiSCCRange(const PHINode *Phi, 6598 ConstantRange &ConservativeResult, 6599 ScalarEvolution::RangeSignHint SignHint) { 6600 // Collect strongly connected component (further on - SCC ) composed of Phis. 6601 // Analyze all values that are incoming to this SCC (we call them roots). 6602 // All SCC elements have range that is not wider than union of ranges of 6603 // roots. 6604 SmallVector<const PHINode *, 8> SCC; 6605 if (collectSCC(Phi, SCC)) 6606 ++NumFoundPhiSCCs; 6607 6608 // Collect roots: inputs of SCC nodes that come from outside of SCC. 6609 SmallPtrSet<Value *, 4> Roots; 6610 const SmallPtrSet<const PHINode *, 8> SCCSet(SCC.begin(), SCC.end()); 6611 for (auto *PN : SCC) 6612 for (auto &Op : PN->operands()) { 6613 auto *PhiInput = dyn_cast<PHINode>(Op); 6614 if (!PhiInput || !SCCSet.count(PhiInput)) 6615 Roots.insert(Op); 6616 } 6617 6618 // Mark SCC elements as pending to avoid infinite recursion if there is a 6619 // cyclic dependency through some instruction that is not a PHI. 6620 for (auto *PN : SCC) { 6621 bool Inserted = PendingPhiRanges.insert(PN).second; 6622 assert(Inserted && "PHI is already pending?"); 6623 (void)Inserted; 6624 } 6625 6626 auto BitWidth = ConservativeResult.getBitWidth(); 6627 ConstantRange RangeFromRoots(BitWidth, /*isFullSet=*/false); 6628 for (auto *Root : Roots) { 6629 auto OpRange = getRangeRef(getSCEV(Root), SignHint); 6630 RangeFromRoots = RangeFromRoots.unionWith(OpRange); 6631 // No point to continue if we already have a full set. 6632 if (RangeFromRoots.isFullSet()) 6633 break; 6634 } 6635 ConstantRange::PreferredRangeType RangeType = 6636 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6637 : ConstantRange::Signed; 6638 ConservativeResult = 6639 ConservativeResult.intersectWith(RangeFromRoots, RangeType); 6640 6641 DenseMap<const SCEV *, ConstantRange> &Cache = 6642 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6643 : SignedRanges; 6644 // Entire SCC has the same range. 6645 for (auto *PN : SCC) { 6646 bool Erased = PendingPhiRanges.erase(PN); 6647 assert(Erased && "Failed to erase Phi properly?"); 6648 (void)Erased; 6649 auto *PNSCEV = getSCEV(const_cast<PHINode *>(PN)); 6650 auto I = Cache.find(PNSCEV); 6651 if (I == Cache.end()) 6652 setRange(PNSCEV, SignHint, ConservativeResult); 6653 else { 6654 auto SharpenedRange = 6655 I->second.intersectWith(ConservativeResult, RangeType); 6656 setRange(PNSCEV, SignHint, SharpenedRange); 6657 } 6658 } 6659 } 6660 6661 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6662 // values that the expression can take. Initially, the expression has a value 6663 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6664 // argument defines if we treat Step as signed or unsigned. 6665 static ConstantRange getRangeForAffineARHelper(APInt Step, 6666 const ConstantRange &StartRange, 6667 const APInt &MaxBECount, 6668 unsigned BitWidth, bool Signed) { 6669 // If either Step or MaxBECount is 0, then the expression won't change, and we 6670 // just need to return the initial range. 6671 if (Step == 0 || MaxBECount == 0) 6672 return StartRange; 6673 6674 // If we don't know anything about the initial value (i.e. StartRange is 6675 // FullRange), then we don't know anything about the final range either. 6676 // Return FullRange. 6677 if (StartRange.isFullSet()) 6678 return ConstantRange::getFull(BitWidth); 6679 6680 // If Step is signed and negative, then we use its absolute value, but we also 6681 // note that we're moving in the opposite direction. 6682 bool Descending = Signed && Step.isNegative(); 6683 6684 if (Signed) 6685 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6686 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6687 // This equations hold true due to the well-defined wrap-around behavior of 6688 // APInt. 6689 Step = Step.abs(); 6690 6691 // Check if Offset is more than full span of BitWidth. If it is, the 6692 // expression is guaranteed to overflow. 6693 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6694 return ConstantRange::getFull(BitWidth); 6695 6696 // Offset is by how much the expression can change. Checks above guarantee no 6697 // overflow here. 6698 APInt Offset = Step * MaxBECount; 6699 6700 // Minimum value of the final range will match the minimal value of StartRange 6701 // if the expression is increasing and will be decreased by Offset otherwise. 6702 // Maximum value of the final range will match the maximal value of StartRange 6703 // if the expression is decreasing and will be increased by Offset otherwise. 6704 APInt StartLower = StartRange.getLower(); 6705 APInt StartUpper = StartRange.getUpper() - 1; 6706 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6707 : (StartUpper + std::move(Offset)); 6708 6709 // It's possible that the new minimum/maximum value will fall into the initial 6710 // range (due to wrap around). This means that the expression can take any 6711 // value in this bitwidth, and we have to return full range. 6712 if (StartRange.contains(MovedBoundary)) 6713 return ConstantRange::getFull(BitWidth); 6714 6715 APInt NewLower = 6716 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6717 APInt NewUpper = 6718 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6719 NewUpper += 1; 6720 6721 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6722 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6723 } 6724 6725 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6726 const SCEV *Step, 6727 const SCEV *MaxBECount, 6728 unsigned BitWidth) { 6729 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6730 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6731 "Precondition!"); 6732 6733 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6734 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6735 6736 // First, consider step signed. 6737 ConstantRange StartSRange = getSignedRange(Start); 6738 ConstantRange StepSRange = getSignedRange(Step); 6739 6740 // If Step can be both positive and negative, we need to find ranges for the 6741 // maximum absolute step values in both directions and union them. 6742 ConstantRange SR = 6743 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6744 MaxBECountValue, BitWidth, /* Signed = */ true); 6745 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6746 StartSRange, MaxBECountValue, 6747 BitWidth, /* Signed = */ true)); 6748 6749 // Next, consider step unsigned. 6750 ConstantRange UR = getRangeForAffineARHelper( 6751 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6752 MaxBECountValue, BitWidth, /* Signed = */ false); 6753 6754 // Finally, intersect signed and unsigned ranges. 6755 return SR.intersectWith(UR, ConstantRange::Smallest); 6756 } 6757 6758 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6759 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6760 ScalarEvolution::RangeSignHint SignHint) { 6761 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6762 assert(AddRec->hasNoSelfWrap() && 6763 "This only works for non-self-wrapping AddRecs!"); 6764 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6765 const SCEV *Step = AddRec->getStepRecurrence(*this); 6766 // Only deal with constant step to save compile time. 6767 if (!isa<SCEVConstant>(Step)) 6768 return ConstantRange::getFull(BitWidth); 6769 // Let's make sure that we can prove that we do not self-wrap during 6770 // MaxBECount iterations. We need this because MaxBECount is a maximum 6771 // iteration count estimate, and we might infer nw from some exit for which we 6772 // do not know max exit count (or any other side reasoning). 6773 // TODO: Turn into assert at some point. 6774 if (getTypeSizeInBits(MaxBECount->getType()) > 6775 getTypeSizeInBits(AddRec->getType())) 6776 return ConstantRange::getFull(BitWidth); 6777 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6778 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6779 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6780 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6781 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6782 MaxItersWithoutWrap)) 6783 return ConstantRange::getFull(BitWidth); 6784 6785 ICmpInst::Predicate LEPred = 6786 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6787 ICmpInst::Predicate GEPred = 6788 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6789 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6790 6791 // We know that there is no self-wrap. Let's take Start and End values and 6792 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6793 // the iteration. They either lie inside the range [Min(Start, End), 6794 // Max(Start, End)] or outside it: 6795 // 6796 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6797 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6798 // 6799 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6800 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6801 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6802 // Start <= End and step is positive, or Start >= End and step is negative. 6803 const SCEV *Start = AddRec->getStart(); 6804 ConstantRange StartRange = getRangeRef(Start, SignHint); 6805 ConstantRange EndRange = getRangeRef(End, SignHint); 6806 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6807 // If they already cover full iteration space, we will know nothing useful 6808 // even if we prove what we want to prove. 6809 if (RangeBetween.isFullSet()) 6810 return RangeBetween; 6811 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6812 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6813 : RangeBetween.isWrappedSet(); 6814 if (IsWrappedSet) 6815 return ConstantRange::getFull(BitWidth); 6816 6817 if (isKnownPositive(Step) && 6818 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6819 return RangeBetween; 6820 else if (isKnownNegative(Step) && 6821 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6822 return RangeBetween; 6823 return ConstantRange::getFull(BitWidth); 6824 } 6825 6826 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6827 const SCEV *Step, 6828 const SCEV *MaxBECount, 6829 unsigned BitWidth) { 6830 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6831 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6832 6833 struct SelectPattern { 6834 Value *Condition = nullptr; 6835 APInt TrueValue; 6836 APInt FalseValue; 6837 6838 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6839 const SCEV *S) { 6840 Optional<unsigned> CastOp; 6841 APInt Offset(BitWidth, 0); 6842 6843 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6844 "Should be!"); 6845 6846 // Peel off a constant offset: 6847 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6848 // In the future we could consider being smarter here and handle 6849 // {Start+Step,+,Step} too. 6850 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6851 return; 6852 6853 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6854 S = SA->getOperand(1); 6855 } 6856 6857 // Peel off a cast operation 6858 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6859 CastOp = SCast->getSCEVType(); 6860 S = SCast->getOperand(); 6861 } 6862 6863 using namespace llvm::PatternMatch; 6864 6865 auto *SU = dyn_cast<SCEVUnknown>(S); 6866 const APInt *TrueVal, *FalseVal; 6867 if (!SU || 6868 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6869 m_APInt(FalseVal)))) { 6870 Condition = nullptr; 6871 return; 6872 } 6873 6874 TrueValue = *TrueVal; 6875 FalseValue = *FalseVal; 6876 6877 // Re-apply the cast we peeled off earlier 6878 if (CastOp.hasValue()) 6879 switch (*CastOp) { 6880 default: 6881 llvm_unreachable("Unknown SCEV cast type!"); 6882 6883 case scTruncate: 6884 TrueValue = TrueValue.trunc(BitWidth); 6885 FalseValue = FalseValue.trunc(BitWidth); 6886 break; 6887 case scZeroExtend: 6888 TrueValue = TrueValue.zext(BitWidth); 6889 FalseValue = FalseValue.zext(BitWidth); 6890 break; 6891 case scSignExtend: 6892 TrueValue = TrueValue.sext(BitWidth); 6893 FalseValue = FalseValue.sext(BitWidth); 6894 break; 6895 } 6896 6897 // Re-apply the constant offset we peeled off earlier 6898 TrueValue += Offset; 6899 FalseValue += Offset; 6900 } 6901 6902 bool isRecognized() { return Condition != nullptr; } 6903 }; 6904 6905 SelectPattern StartPattern(*this, BitWidth, Start); 6906 if (!StartPattern.isRecognized()) 6907 return ConstantRange::getFull(BitWidth); 6908 6909 SelectPattern StepPattern(*this, BitWidth, Step); 6910 if (!StepPattern.isRecognized()) 6911 return ConstantRange::getFull(BitWidth); 6912 6913 if (StartPattern.Condition != StepPattern.Condition) { 6914 // We don't handle this case today; but we could, by considering four 6915 // possibilities below instead of two. I'm not sure if there are cases where 6916 // that will help over what getRange already does, though. 6917 return ConstantRange::getFull(BitWidth); 6918 } 6919 6920 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6921 // construct arbitrary general SCEV expressions here. This function is called 6922 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6923 // say) can end up caching a suboptimal value. 6924 6925 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6926 // C2352 and C2512 (otherwise it isn't needed). 6927 6928 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6929 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6930 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6931 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6932 6933 ConstantRange TrueRange = 6934 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6935 ConstantRange FalseRange = 6936 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6937 6938 return TrueRange.unionWith(FalseRange); 6939 } 6940 6941 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6942 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6943 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6944 6945 // Return early if there are no flags to propagate to the SCEV. 6946 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6947 if (BinOp->hasNoUnsignedWrap()) 6948 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6949 if (BinOp->hasNoSignedWrap()) 6950 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6951 if (Flags == SCEV::FlagAnyWrap) 6952 return SCEV::FlagAnyWrap; 6953 6954 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6955 } 6956 6957 const Instruction * 6958 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6959 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6960 return &*AddRec->getLoop()->getHeader()->begin(); 6961 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6962 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6963 return I; 6964 return nullptr; 6965 } 6966 6967 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6968 /// \p Ops remains unmodified. 6969 static void collectUniqueOps(const SCEV *S, 6970 SmallVectorImpl<const SCEV *> &Ops) { 6971 SmallPtrSet<const SCEV *, 4> Unique; 6972 auto InsertUnique = [&](const SCEV *S) { 6973 if (Unique.insert(S).second) 6974 Ops.push_back(S); 6975 }; 6976 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6977 for (auto *Op : S2->operands()) 6978 InsertUnique(Op); 6979 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6980 for (auto *Op : S2->operands()) 6981 InsertUnique(Op); 6982 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6983 for (auto *Op : S2->operands()) 6984 InsertUnique(Op); 6985 } 6986 6987 const Instruction * 6988 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6989 bool &Precise) { 6990 Precise = true; 6991 // Do a bounded search of the def relation of the requested SCEVs. 6992 SmallSet<const SCEV *, 16> Visited; 6993 SmallVector<const SCEV *> Worklist; 6994 auto pushOp = [&](const SCEV *S) { 6995 if (!Visited.insert(S).second) 6996 return; 6997 // Threshold of 30 here is arbitrary. 6998 if (Visited.size() > 30) { 6999 Precise = false; 7000 return; 7001 } 7002 Worklist.push_back(S); 7003 }; 7004 7005 for (auto *S : Ops) 7006 pushOp(S); 7007 7008 const Instruction *Bound = nullptr; 7009 while (!Worklist.empty()) { 7010 auto *S = Worklist.pop_back_val(); 7011 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7012 if (!Bound || DT.dominates(Bound, DefI)) 7013 Bound = DefI; 7014 } else { 7015 SmallVector<const SCEV *, 4> Ops; 7016 collectUniqueOps(S, Ops); 7017 for (auto *Op : Ops) 7018 pushOp(Op); 7019 } 7020 } 7021 return Bound ? Bound : &*F.getEntryBlock().begin(); 7022 } 7023 7024 const Instruction * 7025 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7026 bool Discard; 7027 return getDefiningScopeBound(Ops, Discard); 7028 } 7029 7030 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7031 const Instruction *B) { 7032 if (A->getParent() == B->getParent() && 7033 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7034 B->getIterator())) 7035 return true; 7036 7037 auto *BLoop = LI.getLoopFor(B->getParent()); 7038 if (BLoop && BLoop->getHeader() == B->getParent() && 7039 BLoop->getLoopPreheader() == A->getParent() && 7040 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7041 A->getParent()->end()) && 7042 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7043 B->getIterator())) 7044 return true; 7045 return false; 7046 } 7047 7048 7049 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7050 // Only proceed if we can prove that I does not yield poison. 7051 if (!programUndefinedIfPoison(I)) 7052 return false; 7053 7054 // At this point we know that if I is executed, then it does not wrap 7055 // according to at least one of NSW or NUW. If I is not executed, then we do 7056 // not know if the calculation that I represents would wrap. Multiple 7057 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7058 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7059 // derived from other instructions that map to the same SCEV. We cannot make 7060 // that guarantee for cases where I is not executed. So we need to find a 7061 // upper bound on the defining scope for the SCEV, and prove that I is 7062 // executed every time we enter that scope. When the bounding scope is a 7063 // loop (the common case), this is equivalent to proving I executes on every 7064 // iteration of that loop. 7065 SmallVector<const SCEV *> SCEVOps; 7066 for (const Use &Op : I->operands()) { 7067 // I could be an extractvalue from a call to an overflow intrinsic. 7068 // TODO: We can do better here in some cases. 7069 if (isSCEVable(Op->getType())) 7070 SCEVOps.push_back(getSCEV(Op)); 7071 } 7072 auto *DefI = getDefiningScopeBound(SCEVOps); 7073 return isGuaranteedToTransferExecutionTo(DefI, I); 7074 } 7075 7076 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7077 // If we know that \c I can never be poison period, then that's enough. 7078 if (isSCEVExprNeverPoison(I)) 7079 return true; 7080 7081 // For an add recurrence specifically, we assume that infinite loops without 7082 // side effects are undefined behavior, and then reason as follows: 7083 // 7084 // If the add recurrence is poison in any iteration, it is poison on all 7085 // future iterations (since incrementing poison yields poison). If the result 7086 // of the add recurrence is fed into the loop latch condition and the loop 7087 // does not contain any throws or exiting blocks other than the latch, we now 7088 // have the ability to "choose" whether the backedge is taken or not (by 7089 // choosing a sufficiently evil value for the poison feeding into the branch) 7090 // for every iteration including and after the one in which \p I first became 7091 // poison. There are two possibilities (let's call the iteration in which \p 7092 // I first became poison as K): 7093 // 7094 // 1. In the set of iterations including and after K, the loop body executes 7095 // no side effects. In this case executing the backege an infinte number 7096 // of times will yield undefined behavior. 7097 // 7098 // 2. In the set of iterations including and after K, the loop body executes 7099 // at least one side effect. In this case, that specific instance of side 7100 // effect is control dependent on poison, which also yields undefined 7101 // behavior. 7102 7103 auto *ExitingBB = L->getExitingBlock(); 7104 auto *LatchBB = L->getLoopLatch(); 7105 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7106 return false; 7107 7108 SmallPtrSet<const Instruction *, 16> Pushed; 7109 SmallVector<const Instruction *, 8> PoisonStack; 7110 7111 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7112 // things that are known to be poison under that assumption go on the 7113 // PoisonStack. 7114 Pushed.insert(I); 7115 PoisonStack.push_back(I); 7116 7117 bool LatchControlDependentOnPoison = false; 7118 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7119 const Instruction *Poison = PoisonStack.pop_back_val(); 7120 7121 for (auto *PoisonUser : Poison->users()) { 7122 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7123 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7124 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7125 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7126 assert(BI->isConditional() && "Only possibility!"); 7127 if (BI->getParent() == LatchBB) { 7128 LatchControlDependentOnPoison = true; 7129 break; 7130 } 7131 } 7132 } 7133 } 7134 7135 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7136 } 7137 7138 ScalarEvolution::LoopProperties 7139 ScalarEvolution::getLoopProperties(const Loop *L) { 7140 using LoopProperties = ScalarEvolution::LoopProperties; 7141 7142 auto Itr = LoopPropertiesCache.find(L); 7143 if (Itr == LoopPropertiesCache.end()) { 7144 auto HasSideEffects = [](Instruction *I) { 7145 if (auto *SI = dyn_cast<StoreInst>(I)) 7146 return !SI->isSimple(); 7147 7148 return I->mayThrow() || I->mayWriteToMemory(); 7149 }; 7150 7151 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7152 /*HasNoSideEffects*/ true}; 7153 7154 for (auto *BB : L->getBlocks()) 7155 for (auto &I : *BB) { 7156 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7157 LP.HasNoAbnormalExits = false; 7158 if (HasSideEffects(&I)) 7159 LP.HasNoSideEffects = false; 7160 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7161 break; // We're already as pessimistic as we can get. 7162 } 7163 7164 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7165 assert(InsertPair.second && "We just checked!"); 7166 Itr = InsertPair.first; 7167 } 7168 7169 return Itr->second; 7170 } 7171 7172 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7173 // A mustprogress loop without side effects must be finite. 7174 // TODO: The check used here is very conservative. It's only *specific* 7175 // side effects which are well defined in infinite loops. 7176 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7177 } 7178 7179 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7180 if (!isSCEVable(V->getType())) 7181 return getUnknown(V); 7182 7183 if (Instruction *I = dyn_cast<Instruction>(V)) { 7184 // Don't attempt to analyze instructions in blocks that aren't 7185 // reachable. Such instructions don't matter, and they aren't required 7186 // to obey basic rules for definitions dominating uses which this 7187 // analysis depends on. 7188 if (!DT.isReachableFromEntry(I->getParent())) 7189 return getUnknown(UndefValue::get(V->getType())); 7190 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7191 return getConstant(CI); 7192 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7193 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7194 else if (!isa<ConstantExpr>(V)) 7195 return getUnknown(V); 7196 7197 Operator *U = cast<Operator>(V); 7198 if (auto BO = MatchBinaryOp(U, DT)) { 7199 switch (BO->Opcode) { 7200 case Instruction::Add: { 7201 // The simple thing to do would be to just call getSCEV on both operands 7202 // and call getAddExpr with the result. However if we're looking at a 7203 // bunch of things all added together, this can be quite inefficient, 7204 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7205 // Instead, gather up all the operands and make a single getAddExpr call. 7206 // LLVM IR canonical form means we need only traverse the left operands. 7207 SmallVector<const SCEV *, 4> AddOps; 7208 do { 7209 if (BO->Op) { 7210 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7211 AddOps.push_back(OpSCEV); 7212 break; 7213 } 7214 7215 // If a NUW or NSW flag can be applied to the SCEV for this 7216 // addition, then compute the SCEV for this addition by itself 7217 // with a separate call to getAddExpr. We need to do that 7218 // instead of pushing the operands of the addition onto AddOps, 7219 // since the flags are only known to apply to this particular 7220 // addition - they may not apply to other additions that can be 7221 // formed with operands from AddOps. 7222 const SCEV *RHS = getSCEV(BO->RHS); 7223 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7224 if (Flags != SCEV::FlagAnyWrap) { 7225 const SCEV *LHS = getSCEV(BO->LHS); 7226 if (BO->Opcode == Instruction::Sub) 7227 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7228 else 7229 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7230 break; 7231 } 7232 } 7233 7234 if (BO->Opcode == Instruction::Sub) 7235 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7236 else 7237 AddOps.push_back(getSCEV(BO->RHS)); 7238 7239 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7240 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7241 NewBO->Opcode != Instruction::Sub)) { 7242 AddOps.push_back(getSCEV(BO->LHS)); 7243 break; 7244 } 7245 BO = NewBO; 7246 } while (true); 7247 7248 return getAddExpr(AddOps); 7249 } 7250 7251 case Instruction::Mul: { 7252 SmallVector<const SCEV *, 4> MulOps; 7253 do { 7254 if (BO->Op) { 7255 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7256 MulOps.push_back(OpSCEV); 7257 break; 7258 } 7259 7260 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7261 if (Flags != SCEV::FlagAnyWrap) { 7262 MulOps.push_back( 7263 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7264 break; 7265 } 7266 } 7267 7268 MulOps.push_back(getSCEV(BO->RHS)); 7269 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7270 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7271 MulOps.push_back(getSCEV(BO->LHS)); 7272 break; 7273 } 7274 BO = NewBO; 7275 } while (true); 7276 7277 return getMulExpr(MulOps); 7278 } 7279 case Instruction::UDiv: 7280 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7281 case Instruction::URem: 7282 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7283 case Instruction::Sub: { 7284 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7285 if (BO->Op) 7286 Flags = getNoWrapFlagsFromUB(BO->Op); 7287 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7288 } 7289 case Instruction::And: 7290 // For an expression like x&255 that merely masks off the high bits, 7291 // use zext(trunc(x)) as the SCEV expression. 7292 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7293 if (CI->isZero()) 7294 return getSCEV(BO->RHS); 7295 if (CI->isMinusOne()) 7296 return getSCEV(BO->LHS); 7297 const APInt &A = CI->getValue(); 7298 7299 // Instcombine's ShrinkDemandedConstant may strip bits out of 7300 // constants, obscuring what would otherwise be a low-bits mask. 7301 // Use computeKnownBits to compute what ShrinkDemandedConstant 7302 // knew about to reconstruct a low-bits mask value. 7303 unsigned LZ = A.countLeadingZeros(); 7304 unsigned TZ = A.countTrailingZeros(); 7305 unsigned BitWidth = A.getBitWidth(); 7306 KnownBits Known(BitWidth); 7307 computeKnownBits(BO->LHS, Known, getDataLayout(), 7308 0, &AC, nullptr, &DT); 7309 7310 APInt EffectiveMask = 7311 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7312 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7313 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7314 const SCEV *LHS = getSCEV(BO->LHS); 7315 const SCEV *ShiftedLHS = nullptr; 7316 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7317 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7318 // For an expression like (x * 8) & 8, simplify the multiply. 7319 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7320 unsigned GCD = std::min(MulZeros, TZ); 7321 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7322 SmallVector<const SCEV*, 4> MulOps; 7323 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7324 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7325 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7326 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7327 } 7328 } 7329 if (!ShiftedLHS) 7330 ShiftedLHS = getUDivExpr(LHS, MulCount); 7331 return getMulExpr( 7332 getZeroExtendExpr( 7333 getTruncateExpr(ShiftedLHS, 7334 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7335 BO->LHS->getType()), 7336 MulCount); 7337 } 7338 } 7339 // Binary `and` is a bit-wise `umin`. 7340 if (BO->LHS->getType()->isIntegerTy(1)) 7341 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7342 break; 7343 7344 case Instruction::Or: 7345 // If the RHS of the Or is a constant, we may have something like: 7346 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7347 // optimizations will transparently handle this case. 7348 // 7349 // In order for this transformation to be safe, the LHS must be of the 7350 // form X*(2^n) and the Or constant must be less than 2^n. 7351 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7352 const SCEV *LHS = getSCEV(BO->LHS); 7353 const APInt &CIVal = CI->getValue(); 7354 if (GetMinTrailingZeros(LHS) >= 7355 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7356 // Build a plain add SCEV. 7357 return getAddExpr(LHS, getSCEV(CI), 7358 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7359 } 7360 } 7361 // Binary `or` is a bit-wise `umax`. 7362 if (BO->LHS->getType()->isIntegerTy(1)) 7363 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7364 break; 7365 7366 case Instruction::Xor: 7367 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7368 // If the RHS of xor is -1, then this is a not operation. 7369 if (CI->isMinusOne()) 7370 return getNotSCEV(getSCEV(BO->LHS)); 7371 7372 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7373 // This is a variant of the check for xor with -1, and it handles 7374 // the case where instcombine has trimmed non-demanded bits out 7375 // of an xor with -1. 7376 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7377 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7378 if (LBO->getOpcode() == Instruction::And && 7379 LCI->getValue() == CI->getValue()) 7380 if (const SCEVZeroExtendExpr *Z = 7381 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7382 Type *UTy = BO->LHS->getType(); 7383 const SCEV *Z0 = Z->getOperand(); 7384 Type *Z0Ty = Z0->getType(); 7385 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7386 7387 // If C is a low-bits mask, the zero extend is serving to 7388 // mask off the high bits. Complement the operand and 7389 // re-apply the zext. 7390 if (CI->getValue().isMask(Z0TySize)) 7391 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7392 7393 // If C is a single bit, it may be in the sign-bit position 7394 // before the zero-extend. In this case, represent the xor 7395 // using an add, which is equivalent, and re-apply the zext. 7396 APInt Trunc = CI->getValue().trunc(Z0TySize); 7397 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7398 Trunc.isSignMask()) 7399 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7400 UTy); 7401 } 7402 } 7403 break; 7404 7405 case Instruction::Shl: 7406 // Turn shift left of a constant amount into a multiply. 7407 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7408 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7409 7410 // If the shift count is not less than the bitwidth, the result of 7411 // the shift is undefined. Don't try to analyze it, because the 7412 // resolution chosen here may differ from the resolution chosen in 7413 // other parts of the compiler. 7414 if (SA->getValue().uge(BitWidth)) 7415 break; 7416 7417 // We can safely preserve the nuw flag in all cases. It's also safe to 7418 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7419 // requires special handling. It can be preserved as long as we're not 7420 // left shifting by bitwidth - 1. 7421 auto Flags = SCEV::FlagAnyWrap; 7422 if (BO->Op) { 7423 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7424 if ((MulFlags & SCEV::FlagNSW) && 7425 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7426 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7427 if (MulFlags & SCEV::FlagNUW) 7428 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7429 } 7430 7431 Constant *X = ConstantInt::get( 7432 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7433 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7434 } 7435 break; 7436 7437 case Instruction::AShr: { 7438 // AShr X, C, where C is a constant. 7439 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7440 if (!CI) 7441 break; 7442 7443 Type *OuterTy = BO->LHS->getType(); 7444 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7445 // If the shift count is not less than the bitwidth, the result of 7446 // the shift is undefined. Don't try to analyze it, because the 7447 // resolution chosen here may differ from the resolution chosen in 7448 // other parts of the compiler. 7449 if (CI->getValue().uge(BitWidth)) 7450 break; 7451 7452 if (CI->isZero()) 7453 return getSCEV(BO->LHS); // shift by zero --> noop 7454 7455 uint64_t AShrAmt = CI->getZExtValue(); 7456 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7457 7458 Operator *L = dyn_cast<Operator>(BO->LHS); 7459 if (L && L->getOpcode() == Instruction::Shl) { 7460 // X = Shl A, n 7461 // Y = AShr X, m 7462 // Both n and m are constant. 7463 7464 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7465 if (L->getOperand(1) == BO->RHS) 7466 // For a two-shift sext-inreg, i.e. n = m, 7467 // use sext(trunc(x)) as the SCEV expression. 7468 return getSignExtendExpr( 7469 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7470 7471 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7472 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7473 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7474 if (ShlAmt > AShrAmt) { 7475 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7476 // expression. We already checked that ShlAmt < BitWidth, so 7477 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7478 // ShlAmt - AShrAmt < Amt. 7479 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7480 ShlAmt - AShrAmt); 7481 return getSignExtendExpr( 7482 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7483 getConstant(Mul)), OuterTy); 7484 } 7485 } 7486 } 7487 break; 7488 } 7489 } 7490 } 7491 7492 switch (U->getOpcode()) { 7493 case Instruction::Trunc: 7494 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7495 7496 case Instruction::ZExt: 7497 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7498 7499 case Instruction::SExt: 7500 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7501 // The NSW flag of a subtract does not always survive the conversion to 7502 // A + (-1)*B. By pushing sign extension onto its operands we are much 7503 // more likely to preserve NSW and allow later AddRec optimisations. 7504 // 7505 // NOTE: This is effectively duplicating this logic from getSignExtend: 7506 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7507 // but by that point the NSW information has potentially been lost. 7508 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7509 Type *Ty = U->getType(); 7510 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7511 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7512 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7513 } 7514 } 7515 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7516 7517 case Instruction::BitCast: 7518 // BitCasts are no-op casts so we just eliminate the cast. 7519 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7520 return getSCEV(U->getOperand(0)); 7521 break; 7522 7523 case Instruction::PtrToInt: { 7524 // Pointer to integer cast is straight-forward, so do model it. 7525 const SCEV *Op = getSCEV(U->getOperand(0)); 7526 Type *DstIntTy = U->getType(); 7527 // But only if effective SCEV (integer) type is wide enough to represent 7528 // all possible pointer values. 7529 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7530 if (isa<SCEVCouldNotCompute>(IntOp)) 7531 return getUnknown(V); 7532 return IntOp; 7533 } 7534 case Instruction::IntToPtr: 7535 // Just don't deal with inttoptr casts. 7536 return getUnknown(V); 7537 7538 case Instruction::SDiv: 7539 // If both operands are non-negative, this is just an udiv. 7540 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7541 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7542 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7543 break; 7544 7545 case Instruction::SRem: 7546 // If both operands are non-negative, this is just an urem. 7547 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7548 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7549 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7550 break; 7551 7552 case Instruction::GetElementPtr: 7553 return createNodeForGEP(cast<GEPOperator>(U)); 7554 7555 case Instruction::PHI: 7556 return createNodeForPHI(cast<PHINode>(U)); 7557 7558 case Instruction::Select: 7559 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7560 U->getOperand(2)); 7561 7562 case Instruction::Call: 7563 case Instruction::Invoke: 7564 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7565 return getSCEV(RV); 7566 7567 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7568 switch (II->getIntrinsicID()) { 7569 case Intrinsic::abs: 7570 return getAbsExpr( 7571 getSCEV(II->getArgOperand(0)), 7572 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7573 case Intrinsic::umax: 7574 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7575 getSCEV(II->getArgOperand(1))); 7576 case Intrinsic::umin: 7577 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7578 getSCEV(II->getArgOperand(1))); 7579 case Intrinsic::smax: 7580 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7581 getSCEV(II->getArgOperand(1))); 7582 case Intrinsic::smin: 7583 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7584 getSCEV(II->getArgOperand(1))); 7585 case Intrinsic::usub_sat: { 7586 const SCEV *X = getSCEV(II->getArgOperand(0)); 7587 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7588 const SCEV *ClampedY = getUMinExpr(X, Y); 7589 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7590 } 7591 case Intrinsic::uadd_sat: { 7592 const SCEV *X = getSCEV(II->getArgOperand(0)); 7593 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7594 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7595 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7596 } 7597 case Intrinsic::start_loop_iterations: 7598 // A start_loop_iterations is just equivalent to the first operand for 7599 // SCEV purposes. 7600 return getSCEV(II->getArgOperand(0)); 7601 default: 7602 break; 7603 } 7604 } 7605 break; 7606 } 7607 7608 return getUnknown(V); 7609 } 7610 7611 //===----------------------------------------------------------------------===// 7612 // Iteration Count Computation Code 7613 // 7614 7615 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7616 bool Extend) { 7617 if (isa<SCEVCouldNotCompute>(ExitCount)) 7618 return getCouldNotCompute(); 7619 7620 auto *ExitCountType = ExitCount->getType(); 7621 assert(ExitCountType->isIntegerTy()); 7622 7623 if (!Extend) 7624 return getAddExpr(ExitCount, getOne(ExitCountType)); 7625 7626 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7627 1 + ExitCountType->getScalarSizeInBits()); 7628 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7629 getOne(WiderType)); 7630 } 7631 7632 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7633 if (!ExitCount) 7634 return 0; 7635 7636 ConstantInt *ExitConst = ExitCount->getValue(); 7637 7638 // Guard against huge trip counts. 7639 if (ExitConst->getValue().getActiveBits() > 32) 7640 return 0; 7641 7642 // In case of integer overflow, this returns 0, which is correct. 7643 return ((unsigned)ExitConst->getZExtValue()) + 1; 7644 } 7645 7646 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7647 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7648 return getConstantTripCount(ExitCount); 7649 } 7650 7651 unsigned 7652 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7653 const BasicBlock *ExitingBlock) { 7654 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7655 assert(L->isLoopExiting(ExitingBlock) && 7656 "Exiting block must actually branch out of the loop!"); 7657 const SCEVConstant *ExitCount = 7658 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7659 return getConstantTripCount(ExitCount); 7660 } 7661 7662 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7663 const auto *MaxExitCount = 7664 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7665 return getConstantTripCount(MaxExitCount); 7666 } 7667 7668 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7669 // We can't infer from Array in Irregular Loop. 7670 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7671 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7672 return getCouldNotCompute(); 7673 7674 // FIXME: To make the scene more typical, we only analysis loops that have 7675 // one exiting block and that block must be the latch. To make it easier to 7676 // capture loops that have memory access and memory access will be executed 7677 // in each iteration. 7678 const BasicBlock *LoopLatch = L->getLoopLatch(); 7679 assert(LoopLatch && "See defination of simplify form loop."); 7680 if (L->getExitingBlock() != LoopLatch) 7681 return getCouldNotCompute(); 7682 7683 const DataLayout &DL = getDataLayout(); 7684 SmallVector<const SCEV *> InferCountColl; 7685 for (auto *BB : L->getBlocks()) { 7686 // Go here, we can know that Loop is a single exiting and simplified form 7687 // loop. Make sure that infer from Memory Operation in those BBs must be 7688 // executed in loop. First step, we can make sure that max execution time 7689 // of MemAccessBB in loop represents latch max excution time. 7690 // If MemAccessBB does not dom Latch, skip. 7691 // Entry 7692 // │ 7693 // ┌─────▼─────┐ 7694 // │Loop Header◄─────┐ 7695 // └──┬──────┬─┘ │ 7696 // │ │ │ 7697 // ┌────────▼──┐ ┌─▼─────┐ │ 7698 // │MemAccessBB│ │OtherBB│ │ 7699 // └────────┬──┘ └─┬─────┘ │ 7700 // │ │ │ 7701 // ┌─▼──────▼─┐ │ 7702 // │Loop Latch├─────┘ 7703 // └────┬─────┘ 7704 // ▼ 7705 // Exit 7706 if (!DT.dominates(BB, LoopLatch)) 7707 continue; 7708 7709 for (Instruction &Inst : *BB) { 7710 // Find Memory Operation Instruction. 7711 auto *GEP = getLoadStorePointerOperand(&Inst); 7712 if (!GEP) 7713 continue; 7714 7715 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7716 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7717 if (!ElemSize) 7718 continue; 7719 7720 // Use a existing polynomial recurrence on the trip count. 7721 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7722 if (!AddRec) 7723 continue; 7724 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7725 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7726 if (!ArrBase || !Step) 7727 continue; 7728 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7729 7730 // Only handle { %array + step }, 7731 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7732 if (AddRec->getStart() != ArrBase) 7733 continue; 7734 7735 // Memory operation pattern which have gaps. 7736 // Or repeat memory opreation. 7737 // And index of GEP wraps arround. 7738 if (Step->getAPInt().getActiveBits() > 32 || 7739 Step->getAPInt().getZExtValue() != 7740 ElemSize->getAPInt().getZExtValue() || 7741 Step->isZero() || Step->getAPInt().isNegative()) 7742 continue; 7743 7744 // Only infer from stack array which has certain size. 7745 // Make sure alloca instruction is not excuted in loop. 7746 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7747 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7748 continue; 7749 7750 // Make sure only handle normal array. 7751 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7752 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7753 if (!Ty || !ArrSize || !ArrSize->isOne()) 7754 continue; 7755 7756 // FIXME: Since gep indices are silently zext to the indexing type, 7757 // we will have a narrow gep index which wraps around rather than 7758 // increasing strictly, we shoule ensure that step is increasing 7759 // strictly by the loop iteration. 7760 // Now we can infer a max execution time by MemLength/StepLength. 7761 const SCEV *MemSize = 7762 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7763 auto *MaxExeCount = 7764 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7765 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7766 continue; 7767 7768 // If the loop reaches the maximum number of executions, we can not 7769 // access bytes starting outside the statically allocated size without 7770 // being immediate UB. But it is allowed to enter loop header one more 7771 // time. 7772 auto *InferCount = dyn_cast<SCEVConstant>( 7773 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7774 // Discard the maximum number of execution times under 32bits. 7775 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7776 continue; 7777 7778 InferCountColl.push_back(InferCount); 7779 } 7780 } 7781 7782 if (InferCountColl.size() == 0) 7783 return getCouldNotCompute(); 7784 7785 return getUMinFromMismatchedTypes(InferCountColl); 7786 } 7787 7788 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7789 SmallVector<BasicBlock *, 8> ExitingBlocks; 7790 L->getExitingBlocks(ExitingBlocks); 7791 7792 Optional<unsigned> Res = None; 7793 for (auto *ExitingBB : ExitingBlocks) { 7794 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7795 if (!Res) 7796 Res = Multiple; 7797 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7798 } 7799 return Res.getValueOr(1); 7800 } 7801 7802 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7803 const SCEV *ExitCount) { 7804 if (ExitCount == getCouldNotCompute()) 7805 return 1; 7806 7807 // Get the trip count 7808 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7809 7810 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7811 if (!TC) 7812 // Attempt to factor more general cases. Returns the greatest power of 7813 // two divisor. If overflow happens, the trip count expression is still 7814 // divisible by the greatest power of 2 divisor returned. 7815 return 1U << std::min((uint32_t)31, 7816 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7817 7818 ConstantInt *Result = TC->getValue(); 7819 7820 // Guard against huge trip counts (this requires checking 7821 // for zero to handle the case where the trip count == -1 and the 7822 // addition wraps). 7823 if (!Result || Result->getValue().getActiveBits() > 32 || 7824 Result->getValue().getActiveBits() == 0) 7825 return 1; 7826 7827 return (unsigned)Result->getZExtValue(); 7828 } 7829 7830 /// Returns the largest constant divisor of the trip count of this loop as a 7831 /// normal unsigned value, if possible. This means that the actual trip count is 7832 /// always a multiple of the returned value (don't forget the trip count could 7833 /// very well be zero as well!). 7834 /// 7835 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7836 /// multiple of a constant (which is also the case if the trip count is simply 7837 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7838 /// if the trip count is very large (>= 2^32). 7839 /// 7840 /// As explained in the comments for getSmallConstantTripCount, this assumes 7841 /// that control exits the loop via ExitingBlock. 7842 unsigned 7843 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7844 const BasicBlock *ExitingBlock) { 7845 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7846 assert(L->isLoopExiting(ExitingBlock) && 7847 "Exiting block must actually branch out of the loop!"); 7848 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7849 return getSmallConstantTripMultiple(L, ExitCount); 7850 } 7851 7852 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7853 const BasicBlock *ExitingBlock, 7854 ExitCountKind Kind) { 7855 switch (Kind) { 7856 case Exact: 7857 case SymbolicMaximum: 7858 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7859 case ConstantMaximum: 7860 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7861 }; 7862 llvm_unreachable("Invalid ExitCountKind!"); 7863 } 7864 7865 const SCEV * 7866 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7867 SmallVector<const SCEVPredicate *, 4> &Preds) { 7868 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7869 } 7870 7871 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7872 ExitCountKind Kind) { 7873 switch (Kind) { 7874 case Exact: 7875 return getBackedgeTakenInfo(L).getExact(L, this); 7876 case ConstantMaximum: 7877 return getBackedgeTakenInfo(L).getConstantMax(this); 7878 case SymbolicMaximum: 7879 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7880 }; 7881 llvm_unreachable("Invalid ExitCountKind!"); 7882 } 7883 7884 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7885 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7886 } 7887 7888 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7889 static void PushLoopPHIs(const Loop *L, 7890 SmallVectorImpl<Instruction *> &Worklist, 7891 SmallPtrSetImpl<Instruction *> &Visited) { 7892 BasicBlock *Header = L->getHeader(); 7893 7894 // Push all Loop-header PHIs onto the Worklist stack. 7895 for (PHINode &PN : Header->phis()) 7896 if (Visited.insert(&PN).second) 7897 Worklist.push_back(&PN); 7898 } 7899 7900 const ScalarEvolution::BackedgeTakenInfo & 7901 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7902 auto &BTI = getBackedgeTakenInfo(L); 7903 if (BTI.hasFullInfo()) 7904 return BTI; 7905 7906 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7907 7908 if (!Pair.second) 7909 return Pair.first->second; 7910 7911 BackedgeTakenInfo Result = 7912 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7913 7914 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7915 } 7916 7917 ScalarEvolution::BackedgeTakenInfo & 7918 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7919 // Initially insert an invalid entry for this loop. If the insertion 7920 // succeeds, proceed to actually compute a backedge-taken count and 7921 // update the value. The temporary CouldNotCompute value tells SCEV 7922 // code elsewhere that it shouldn't attempt to request a new 7923 // backedge-taken count, which could result in infinite recursion. 7924 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7925 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7926 if (!Pair.second) 7927 return Pair.first->second; 7928 7929 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7930 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7931 // must be cleared in this scope. 7932 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7933 7934 // In product build, there are no usage of statistic. 7935 (void)NumTripCountsComputed; 7936 (void)NumTripCountsNotComputed; 7937 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7938 const SCEV *BEExact = Result.getExact(L, this); 7939 if (BEExact != getCouldNotCompute()) { 7940 assert(isLoopInvariant(BEExact, L) && 7941 isLoopInvariant(Result.getConstantMax(this), L) && 7942 "Computed backedge-taken count isn't loop invariant for loop!"); 7943 ++NumTripCountsComputed; 7944 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7945 isa<PHINode>(L->getHeader()->begin())) { 7946 // Only count loops that have phi nodes as not being computable. 7947 ++NumTripCountsNotComputed; 7948 } 7949 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7950 7951 // Now that we know more about the trip count for this loop, forget any 7952 // existing SCEV values for PHI nodes in this loop since they are only 7953 // conservative estimates made without the benefit of trip count 7954 // information. This invalidation is not necessary for correctness, and is 7955 // only done to produce more precise results. 7956 if (Result.hasAnyInfo()) { 7957 // Invalidate any expression using an addrec in this loop. 7958 SmallVector<const SCEV *, 8> ToForget; 7959 auto LoopUsersIt = LoopUsers.find(L); 7960 if (LoopUsersIt != LoopUsers.end()) 7961 append_range(ToForget, LoopUsersIt->second); 7962 forgetMemoizedResults(ToForget); 7963 7964 // Invalidate constant-evolved loop header phis. 7965 for (PHINode &PN : L->getHeader()->phis()) 7966 ConstantEvolutionLoopExitValue.erase(&PN); 7967 } 7968 7969 // Re-lookup the insert position, since the call to 7970 // computeBackedgeTakenCount above could result in a 7971 // recusive call to getBackedgeTakenInfo (on a different 7972 // loop), which would invalidate the iterator computed 7973 // earlier. 7974 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7975 } 7976 7977 void ScalarEvolution::forgetAllLoops() { 7978 // This method is intended to forget all info about loops. It should 7979 // invalidate caches as if the following happened: 7980 // - The trip counts of all loops have changed arbitrarily 7981 // - Every llvm::Value has been updated in place to produce a different 7982 // result. 7983 BackedgeTakenCounts.clear(); 7984 PredicatedBackedgeTakenCounts.clear(); 7985 BECountUsers.clear(); 7986 LoopPropertiesCache.clear(); 7987 ConstantEvolutionLoopExitValue.clear(); 7988 ValueExprMap.clear(); 7989 ValuesAtScopes.clear(); 7990 ValuesAtScopesUsers.clear(); 7991 LoopDispositions.clear(); 7992 BlockDispositions.clear(); 7993 UnsignedRanges.clear(); 7994 SignedRanges.clear(); 7995 ExprValueMap.clear(); 7996 HasRecMap.clear(); 7997 MinTrailingZerosCache.clear(); 7998 PredicatedSCEVRewrites.clear(); 7999 } 8000 8001 void ScalarEvolution::forgetLoop(const Loop *L) { 8002 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8003 SmallVector<Instruction *, 32> Worklist; 8004 SmallPtrSet<Instruction *, 16> Visited; 8005 SmallVector<const SCEV *, 16> ToForget; 8006 8007 // Iterate over all the loops and sub-loops to drop SCEV information. 8008 while (!LoopWorklist.empty()) { 8009 auto *CurrL = LoopWorklist.pop_back_val(); 8010 8011 // Drop any stored trip count value. 8012 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8013 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8014 8015 // Drop information about predicated SCEV rewrites for this loop. 8016 for (auto I = PredicatedSCEVRewrites.begin(); 8017 I != PredicatedSCEVRewrites.end();) { 8018 std::pair<const SCEV *, const Loop *> Entry = I->first; 8019 if (Entry.second == CurrL) 8020 PredicatedSCEVRewrites.erase(I++); 8021 else 8022 ++I; 8023 } 8024 8025 auto LoopUsersItr = LoopUsers.find(CurrL); 8026 if (LoopUsersItr != LoopUsers.end()) { 8027 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8028 LoopUsersItr->second.end()); 8029 } 8030 8031 // Drop information about expressions based on loop-header PHIs. 8032 PushLoopPHIs(CurrL, Worklist, Visited); 8033 8034 while (!Worklist.empty()) { 8035 Instruction *I = Worklist.pop_back_val(); 8036 8037 ValueExprMapType::iterator It = 8038 ValueExprMap.find_as(static_cast<Value *>(I)); 8039 if (It != ValueExprMap.end()) { 8040 eraseValueFromMap(It->first); 8041 ToForget.push_back(It->second); 8042 if (PHINode *PN = dyn_cast<PHINode>(I)) 8043 ConstantEvolutionLoopExitValue.erase(PN); 8044 } 8045 8046 PushDefUseChildren(I, Worklist, Visited); 8047 } 8048 8049 LoopPropertiesCache.erase(CurrL); 8050 // Forget all contained loops too, to avoid dangling entries in the 8051 // ValuesAtScopes map. 8052 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8053 } 8054 forgetMemoizedResults(ToForget); 8055 } 8056 8057 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8058 while (Loop *Parent = L->getParentLoop()) 8059 L = Parent; 8060 forgetLoop(L); 8061 } 8062 8063 void ScalarEvolution::forgetValue(Value *V) { 8064 Instruction *I = dyn_cast<Instruction>(V); 8065 if (!I) return; 8066 8067 // Drop information about expressions based on loop-header PHIs. 8068 SmallVector<Instruction *, 16> Worklist; 8069 SmallPtrSet<Instruction *, 8> Visited; 8070 SmallVector<const SCEV *, 8> ToForget; 8071 Worklist.push_back(I); 8072 Visited.insert(I); 8073 8074 while (!Worklist.empty()) { 8075 I = Worklist.pop_back_val(); 8076 ValueExprMapType::iterator It = 8077 ValueExprMap.find_as(static_cast<Value *>(I)); 8078 if (It != ValueExprMap.end()) { 8079 eraseValueFromMap(It->first); 8080 ToForget.push_back(It->second); 8081 if (PHINode *PN = dyn_cast<PHINode>(I)) 8082 ConstantEvolutionLoopExitValue.erase(PN); 8083 } 8084 8085 PushDefUseChildren(I, Worklist, Visited); 8086 } 8087 forgetMemoizedResults(ToForget); 8088 } 8089 8090 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8091 LoopDispositions.clear(); 8092 } 8093 8094 /// Get the exact loop backedge taken count considering all loop exits. A 8095 /// computable result can only be returned for loops with all exiting blocks 8096 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8097 /// is never skipped. This is a valid assumption as long as the loop exits via 8098 /// that test. For precise results, it is the caller's responsibility to specify 8099 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8100 const SCEV * 8101 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8102 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8103 // If any exits were not computable, the loop is not computable. 8104 if (!isComplete() || ExitNotTaken.empty()) 8105 return SE->getCouldNotCompute(); 8106 8107 const BasicBlock *Latch = L->getLoopLatch(); 8108 // All exiting blocks we have collected must dominate the only backedge. 8109 if (!Latch) 8110 return SE->getCouldNotCompute(); 8111 8112 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8113 // count is simply a minimum out of all these calculated exit counts. 8114 SmallVector<const SCEV *, 2> Ops; 8115 for (auto &ENT : ExitNotTaken) { 8116 const SCEV *BECount = ENT.ExactNotTaken; 8117 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8118 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8119 "We should only have known counts for exiting blocks that dominate " 8120 "latch!"); 8121 8122 Ops.push_back(BECount); 8123 8124 if (Preds) 8125 for (auto *P : ENT.Predicates) 8126 Preds->push_back(P); 8127 8128 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8129 "Predicate should be always true!"); 8130 } 8131 8132 return SE->getUMinFromMismatchedTypes(Ops); 8133 } 8134 8135 /// Get the exact not taken count for this loop exit. 8136 const SCEV * 8137 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8138 ScalarEvolution *SE) const { 8139 for (auto &ENT : ExitNotTaken) 8140 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8141 return ENT.ExactNotTaken; 8142 8143 return SE->getCouldNotCompute(); 8144 } 8145 8146 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8147 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8148 for (auto &ENT : ExitNotTaken) 8149 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8150 return ENT.MaxNotTaken; 8151 8152 return SE->getCouldNotCompute(); 8153 } 8154 8155 /// getConstantMax - Get the constant max backedge taken count for the loop. 8156 const SCEV * 8157 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8158 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8159 return !ENT.hasAlwaysTruePredicate(); 8160 }; 8161 8162 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8163 return SE->getCouldNotCompute(); 8164 8165 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8166 isa<SCEVConstant>(getConstantMax())) && 8167 "No point in having a non-constant max backedge taken count!"); 8168 return getConstantMax(); 8169 } 8170 8171 const SCEV * 8172 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8173 ScalarEvolution *SE) { 8174 if (!SymbolicMax) 8175 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8176 return SymbolicMax; 8177 } 8178 8179 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8180 ScalarEvolution *SE) const { 8181 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8182 return !ENT.hasAlwaysTruePredicate(); 8183 }; 8184 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8185 } 8186 8187 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8188 : ExitLimit(E, E, false, None) { 8189 } 8190 8191 ScalarEvolution::ExitLimit::ExitLimit( 8192 const SCEV *E, const SCEV *M, bool MaxOrZero, 8193 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8194 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8195 // If we prove the max count is zero, so is the symbolic bound. This happens 8196 // in practice due to differences in a) how context sensitive we've chosen 8197 // to be and b) how we reason about bounds impied by UB. 8198 if (MaxNotTaken->isZero()) 8199 ExactNotTaken = MaxNotTaken; 8200 8201 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8202 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8203 "Exact is not allowed to be less precise than Max"); 8204 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8205 isa<SCEVConstant>(MaxNotTaken)) && 8206 "No point in having a non-constant max backedge taken count!"); 8207 for (auto *PredSet : PredSetList) 8208 for (auto *P : *PredSet) 8209 addPredicate(P); 8210 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8211 "Backedge count should be int"); 8212 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8213 "Max backedge count should be int"); 8214 } 8215 8216 ScalarEvolution::ExitLimit::ExitLimit( 8217 const SCEV *E, const SCEV *M, bool MaxOrZero, 8218 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8219 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8220 } 8221 8222 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8223 bool MaxOrZero) 8224 : ExitLimit(E, M, MaxOrZero, None) { 8225 } 8226 8227 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8228 /// computable exit into a persistent ExitNotTakenInfo array. 8229 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8230 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8231 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8232 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8233 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8234 8235 ExitNotTaken.reserve(ExitCounts.size()); 8236 std::transform( 8237 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8238 [&](const EdgeExitInfo &EEI) { 8239 BasicBlock *ExitBB = EEI.first; 8240 const ExitLimit &EL = EEI.second; 8241 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8242 EL.Predicates); 8243 }); 8244 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8245 isa<SCEVConstant>(ConstantMax)) && 8246 "No point in having a non-constant max backedge taken count!"); 8247 } 8248 8249 /// Compute the number of times the backedge of the specified loop will execute. 8250 ScalarEvolution::BackedgeTakenInfo 8251 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8252 bool AllowPredicates) { 8253 SmallVector<BasicBlock *, 8> ExitingBlocks; 8254 L->getExitingBlocks(ExitingBlocks); 8255 8256 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8257 8258 SmallVector<EdgeExitInfo, 4> ExitCounts; 8259 bool CouldComputeBECount = true; 8260 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8261 const SCEV *MustExitMaxBECount = nullptr; 8262 const SCEV *MayExitMaxBECount = nullptr; 8263 bool MustExitMaxOrZero = false; 8264 8265 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8266 // and compute maxBECount. 8267 // Do a union of all the predicates here. 8268 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8269 BasicBlock *ExitBB = ExitingBlocks[i]; 8270 8271 // We canonicalize untaken exits to br (constant), ignore them so that 8272 // proving an exit untaken doesn't negatively impact our ability to reason 8273 // about the loop as whole. 8274 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8275 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8276 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8277 if (ExitIfTrue == CI->isZero()) 8278 continue; 8279 } 8280 8281 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8282 8283 assert((AllowPredicates || EL.Predicates.empty()) && 8284 "Predicated exit limit when predicates are not allowed!"); 8285 8286 // 1. For each exit that can be computed, add an entry to ExitCounts. 8287 // CouldComputeBECount is true only if all exits can be computed. 8288 if (EL.ExactNotTaken == getCouldNotCompute()) 8289 // We couldn't compute an exact value for this exit, so 8290 // we won't be able to compute an exact value for the loop. 8291 CouldComputeBECount = false; 8292 else 8293 ExitCounts.emplace_back(ExitBB, EL); 8294 8295 // 2. Derive the loop's MaxBECount from each exit's max number of 8296 // non-exiting iterations. Partition the loop exits into two kinds: 8297 // LoopMustExits and LoopMayExits. 8298 // 8299 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8300 // is a LoopMayExit. If any computable LoopMustExit is found, then 8301 // MaxBECount is the minimum EL.MaxNotTaken of computable 8302 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8303 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8304 // computable EL.MaxNotTaken. 8305 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8306 DT.dominates(ExitBB, Latch)) { 8307 if (!MustExitMaxBECount) { 8308 MustExitMaxBECount = EL.MaxNotTaken; 8309 MustExitMaxOrZero = EL.MaxOrZero; 8310 } else { 8311 MustExitMaxBECount = 8312 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8313 } 8314 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8315 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8316 MayExitMaxBECount = EL.MaxNotTaken; 8317 else { 8318 MayExitMaxBECount = 8319 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8320 } 8321 } 8322 } 8323 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8324 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8325 // The loop backedge will be taken the maximum or zero times if there's 8326 // a single exit that must be taken the maximum or zero times. 8327 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8328 8329 // Remember which SCEVs are used in exit limits for invalidation purposes. 8330 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8331 // and MaxBECount, which must be SCEVConstant. 8332 for (const auto &Pair : ExitCounts) 8333 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8334 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8335 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8336 MaxBECount, MaxOrZero); 8337 } 8338 8339 ScalarEvolution::ExitLimit 8340 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8341 bool AllowPredicates) { 8342 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8343 // If our exiting block does not dominate the latch, then its connection with 8344 // loop's exit limit may be far from trivial. 8345 const BasicBlock *Latch = L->getLoopLatch(); 8346 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8347 return getCouldNotCompute(); 8348 8349 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8350 Instruction *Term = ExitingBlock->getTerminator(); 8351 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8352 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8353 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8354 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8355 "It should have one successor in loop and one exit block!"); 8356 // Proceed to the next level to examine the exit condition expression. 8357 return computeExitLimitFromCond( 8358 L, BI->getCondition(), ExitIfTrue, 8359 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8360 } 8361 8362 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8363 // For switch, make sure that there is a single exit from the loop. 8364 BasicBlock *Exit = nullptr; 8365 for (auto *SBB : successors(ExitingBlock)) 8366 if (!L->contains(SBB)) { 8367 if (Exit) // Multiple exit successors. 8368 return getCouldNotCompute(); 8369 Exit = SBB; 8370 } 8371 assert(Exit && "Exiting block must have at least one exit"); 8372 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8373 /*ControlsExit=*/IsOnlyExit); 8374 } 8375 8376 return getCouldNotCompute(); 8377 } 8378 8379 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8380 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8381 bool ControlsExit, bool AllowPredicates) { 8382 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8383 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8384 ControlsExit, AllowPredicates); 8385 } 8386 8387 Optional<ScalarEvolution::ExitLimit> 8388 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8389 bool ExitIfTrue, bool ControlsExit, 8390 bool AllowPredicates) { 8391 (void)this->L; 8392 (void)this->ExitIfTrue; 8393 (void)this->AllowPredicates; 8394 8395 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8396 this->AllowPredicates == AllowPredicates && 8397 "Variance in assumed invariant key components!"); 8398 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8399 if (Itr == TripCountMap.end()) 8400 return None; 8401 return Itr->second; 8402 } 8403 8404 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8405 bool ExitIfTrue, 8406 bool ControlsExit, 8407 bool AllowPredicates, 8408 const ExitLimit &EL) { 8409 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8410 this->AllowPredicates == AllowPredicates && 8411 "Variance in assumed invariant key components!"); 8412 8413 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8414 assert(InsertResult.second && "Expected successful insertion!"); 8415 (void)InsertResult; 8416 (void)ExitIfTrue; 8417 } 8418 8419 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8420 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8421 bool ControlsExit, bool AllowPredicates) { 8422 8423 if (auto MaybeEL = 8424 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8425 return *MaybeEL; 8426 8427 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8428 ControlsExit, AllowPredicates); 8429 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8430 return EL; 8431 } 8432 8433 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8434 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8435 bool ControlsExit, bool AllowPredicates) { 8436 // Handle BinOp conditions (And, Or). 8437 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8438 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8439 return *LimitFromBinOp; 8440 8441 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8442 // Proceed to the next level to examine the icmp. 8443 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8444 ExitLimit EL = 8445 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8446 if (EL.hasFullInfo() || !AllowPredicates) 8447 return EL; 8448 8449 // Try again, but use SCEV predicates this time. 8450 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8451 /*AllowPredicates=*/true); 8452 } 8453 8454 // Check for a constant condition. These are normally stripped out by 8455 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8456 // preserve the CFG and is temporarily leaving constant conditions 8457 // in place. 8458 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8459 if (ExitIfTrue == !CI->getZExtValue()) 8460 // The backedge is always taken. 8461 return getCouldNotCompute(); 8462 else 8463 // The backedge is never taken. 8464 return getZero(CI->getType()); 8465 } 8466 8467 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8468 // with a constant step, we can form an equivalent icmp predicate and figure 8469 // out how many iterations will be taken before we exit. 8470 const WithOverflowInst *WO; 8471 const APInt *C; 8472 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8473 match(WO->getRHS(), m_APInt(C))) { 8474 ConstantRange NWR = 8475 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8476 WO->getNoWrapKind()); 8477 CmpInst::Predicate Pred; 8478 APInt NewRHSC, Offset; 8479 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8480 if (!ExitIfTrue) 8481 Pred = ICmpInst::getInversePredicate(Pred); 8482 auto *LHS = getSCEV(WO->getLHS()); 8483 if (Offset != 0) 8484 LHS = getAddExpr(LHS, getConstant(Offset)); 8485 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8486 ControlsExit, AllowPredicates); 8487 if (EL.hasAnyInfo()) return EL; 8488 } 8489 8490 // If it's not an integer or pointer comparison then compute it the hard way. 8491 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8492 } 8493 8494 Optional<ScalarEvolution::ExitLimit> 8495 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8496 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8497 bool ControlsExit, bool AllowPredicates) { 8498 // Check if the controlling expression for this loop is an And or Or. 8499 Value *Op0, *Op1; 8500 bool IsAnd = false; 8501 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8502 IsAnd = true; 8503 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8504 IsAnd = false; 8505 else 8506 return None; 8507 8508 // EitherMayExit is true in these two cases: 8509 // br (and Op0 Op1), loop, exit 8510 // br (or Op0 Op1), exit, loop 8511 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8512 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8513 ControlsExit && !EitherMayExit, 8514 AllowPredicates); 8515 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8516 ControlsExit && !EitherMayExit, 8517 AllowPredicates); 8518 8519 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8520 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8521 if (isa<ConstantInt>(Op1)) 8522 return Op1 == NeutralElement ? EL0 : EL1; 8523 if (isa<ConstantInt>(Op0)) 8524 return Op0 == NeutralElement ? EL1 : EL0; 8525 8526 const SCEV *BECount = getCouldNotCompute(); 8527 const SCEV *MaxBECount = getCouldNotCompute(); 8528 if (EitherMayExit) { 8529 // Both conditions must be same for the loop to continue executing. 8530 // Choose the less conservative count. 8531 if (EL0.ExactNotTaken != getCouldNotCompute() && 8532 EL1.ExactNotTaken != getCouldNotCompute()) { 8533 BECount = getUMinFromMismatchedTypes( 8534 EL0.ExactNotTaken, EL1.ExactNotTaken, 8535 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8536 8537 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8538 // it should have been simplified to zero (see the condition (3) above) 8539 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8540 BECount->isZero()); 8541 } 8542 if (EL0.MaxNotTaken == getCouldNotCompute()) 8543 MaxBECount = EL1.MaxNotTaken; 8544 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8545 MaxBECount = EL0.MaxNotTaken; 8546 else 8547 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8548 } else { 8549 // Both conditions must be same at the same time for the loop to exit. 8550 // For now, be conservative. 8551 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8552 BECount = EL0.ExactNotTaken; 8553 } 8554 8555 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8556 // to be more aggressive when computing BECount than when computing 8557 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8558 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8559 // to not. 8560 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8561 !isa<SCEVCouldNotCompute>(BECount)) 8562 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8563 8564 return ExitLimit(BECount, MaxBECount, false, 8565 { &EL0.Predicates, &EL1.Predicates }); 8566 } 8567 8568 ScalarEvolution::ExitLimit 8569 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8570 ICmpInst *ExitCond, 8571 bool ExitIfTrue, 8572 bool ControlsExit, 8573 bool AllowPredicates) { 8574 // If the condition was exit on true, convert the condition to exit on false 8575 ICmpInst::Predicate Pred; 8576 if (!ExitIfTrue) 8577 Pred = ExitCond->getPredicate(); 8578 else 8579 Pred = ExitCond->getInversePredicate(); 8580 const ICmpInst::Predicate OriginalPred = Pred; 8581 8582 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8583 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8584 8585 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8586 AllowPredicates); 8587 if (EL.hasAnyInfo()) return EL; 8588 8589 auto *ExhaustiveCount = 8590 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8591 8592 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8593 return ExhaustiveCount; 8594 8595 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8596 ExitCond->getOperand(1), L, OriginalPred); 8597 } 8598 ScalarEvolution::ExitLimit 8599 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8600 ICmpInst::Predicate Pred, 8601 const SCEV *LHS, const SCEV *RHS, 8602 bool ControlsExit, 8603 bool AllowPredicates) { 8604 8605 // Try to evaluate any dependencies out of the loop. 8606 LHS = getSCEVAtScope(LHS, L); 8607 RHS = getSCEVAtScope(RHS, L); 8608 8609 // At this point, we would like to compute how many iterations of the 8610 // loop the predicate will return true for these inputs. 8611 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8612 // If there is a loop-invariant, force it into the RHS. 8613 std::swap(LHS, RHS); 8614 Pred = ICmpInst::getSwappedPredicate(Pred); 8615 } 8616 8617 bool ControllingFiniteLoop = 8618 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8619 // Simplify the operands before analyzing them. 8620 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8621 (EnableFiniteLoopControl ? ControllingFiniteLoop 8622 : false)); 8623 8624 // If we have a comparison of a chrec against a constant, try to use value 8625 // ranges to answer this query. 8626 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8627 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8628 if (AddRec->getLoop() == L) { 8629 // Form the constant range. 8630 ConstantRange CompRange = 8631 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8632 8633 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8634 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8635 } 8636 8637 // If this loop must exit based on this condition (or execute undefined 8638 // behaviour), and we can prove the test sequence produced must repeat 8639 // the same values on self-wrap of the IV, then we can infer that IV 8640 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8641 // loop. 8642 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8643 // TODO: We can peel off any functions which are invertible *in L*. Loop 8644 // invariant terms are effectively constants for our purposes here. 8645 auto *InnerLHS = LHS; 8646 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8647 InnerLHS = ZExt->getOperand(); 8648 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8649 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8650 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8651 StrideC && StrideC->getAPInt().isPowerOf2()) { 8652 auto Flags = AR->getNoWrapFlags(); 8653 Flags = setFlags(Flags, SCEV::FlagNW); 8654 SmallVector<const SCEV*> Operands{AR->operands()}; 8655 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8656 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8657 } 8658 } 8659 } 8660 8661 switch (Pred) { 8662 case ICmpInst::ICMP_NE: { // while (X != Y) 8663 // Convert to: while (X-Y != 0) 8664 if (LHS->getType()->isPointerTy()) { 8665 LHS = getLosslessPtrToIntExpr(LHS); 8666 if (isa<SCEVCouldNotCompute>(LHS)) 8667 return LHS; 8668 } 8669 if (RHS->getType()->isPointerTy()) { 8670 RHS = getLosslessPtrToIntExpr(RHS); 8671 if (isa<SCEVCouldNotCompute>(RHS)) 8672 return RHS; 8673 } 8674 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8675 AllowPredicates); 8676 if (EL.hasAnyInfo()) return EL; 8677 break; 8678 } 8679 case ICmpInst::ICMP_EQ: { // while (X == Y) 8680 // Convert to: while (X-Y == 0) 8681 if (LHS->getType()->isPointerTy()) { 8682 LHS = getLosslessPtrToIntExpr(LHS); 8683 if (isa<SCEVCouldNotCompute>(LHS)) 8684 return LHS; 8685 } 8686 if (RHS->getType()->isPointerTy()) { 8687 RHS = getLosslessPtrToIntExpr(RHS); 8688 if (isa<SCEVCouldNotCompute>(RHS)) 8689 return RHS; 8690 } 8691 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8692 if (EL.hasAnyInfo()) return EL; 8693 break; 8694 } 8695 case ICmpInst::ICMP_SLT: 8696 case ICmpInst::ICMP_ULT: { // while (X < Y) 8697 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8698 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8699 AllowPredicates); 8700 if (EL.hasAnyInfo()) return EL; 8701 break; 8702 } 8703 case ICmpInst::ICMP_SGT: 8704 case ICmpInst::ICMP_UGT: { // while (X > Y) 8705 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8706 ExitLimit EL = 8707 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8708 AllowPredicates); 8709 if (EL.hasAnyInfo()) return EL; 8710 break; 8711 } 8712 default: 8713 break; 8714 } 8715 8716 return getCouldNotCompute(); 8717 } 8718 8719 ScalarEvolution::ExitLimit 8720 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8721 SwitchInst *Switch, 8722 BasicBlock *ExitingBlock, 8723 bool ControlsExit) { 8724 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8725 8726 // Give up if the exit is the default dest of a switch. 8727 if (Switch->getDefaultDest() == ExitingBlock) 8728 return getCouldNotCompute(); 8729 8730 assert(L->contains(Switch->getDefaultDest()) && 8731 "Default case must not exit the loop!"); 8732 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8733 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8734 8735 // while (X != Y) --> while (X-Y != 0) 8736 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8737 if (EL.hasAnyInfo()) 8738 return EL; 8739 8740 return getCouldNotCompute(); 8741 } 8742 8743 static ConstantInt * 8744 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8745 ScalarEvolution &SE) { 8746 const SCEV *InVal = SE.getConstant(C); 8747 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8748 assert(isa<SCEVConstant>(Val) && 8749 "Evaluation of SCEV at constant didn't fold correctly?"); 8750 return cast<SCEVConstant>(Val)->getValue(); 8751 } 8752 8753 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8754 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8755 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8756 if (!RHS) 8757 return getCouldNotCompute(); 8758 8759 const BasicBlock *Latch = L->getLoopLatch(); 8760 if (!Latch) 8761 return getCouldNotCompute(); 8762 8763 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8764 if (!Predecessor) 8765 return getCouldNotCompute(); 8766 8767 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8768 // Return LHS in OutLHS and shift_opt in OutOpCode. 8769 auto MatchPositiveShift = 8770 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8771 8772 using namespace PatternMatch; 8773 8774 ConstantInt *ShiftAmt; 8775 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8776 OutOpCode = Instruction::LShr; 8777 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8778 OutOpCode = Instruction::AShr; 8779 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8780 OutOpCode = Instruction::Shl; 8781 else 8782 return false; 8783 8784 return ShiftAmt->getValue().isStrictlyPositive(); 8785 }; 8786 8787 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8788 // 8789 // loop: 8790 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8791 // %iv.shifted = lshr i32 %iv, <positive constant> 8792 // 8793 // Return true on a successful match. Return the corresponding PHI node (%iv 8794 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8795 auto MatchShiftRecurrence = 8796 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8797 Optional<Instruction::BinaryOps> PostShiftOpCode; 8798 8799 { 8800 Instruction::BinaryOps OpC; 8801 Value *V; 8802 8803 // If we encounter a shift instruction, "peel off" the shift operation, 8804 // and remember that we did so. Later when we inspect %iv's backedge 8805 // value, we will make sure that the backedge value uses the same 8806 // operation. 8807 // 8808 // Note: the peeled shift operation does not have to be the same 8809 // instruction as the one feeding into the PHI's backedge value. We only 8810 // really care about it being the same *kind* of shift instruction -- 8811 // that's all that is required for our later inferences to hold. 8812 if (MatchPositiveShift(LHS, V, OpC)) { 8813 PostShiftOpCode = OpC; 8814 LHS = V; 8815 } 8816 } 8817 8818 PNOut = dyn_cast<PHINode>(LHS); 8819 if (!PNOut || PNOut->getParent() != L->getHeader()) 8820 return false; 8821 8822 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8823 Value *OpLHS; 8824 8825 return 8826 // The backedge value for the PHI node must be a shift by a positive 8827 // amount 8828 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8829 8830 // of the PHI node itself 8831 OpLHS == PNOut && 8832 8833 // and the kind of shift should be match the kind of shift we peeled 8834 // off, if any. 8835 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8836 }; 8837 8838 PHINode *PN; 8839 Instruction::BinaryOps OpCode; 8840 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8841 return getCouldNotCompute(); 8842 8843 const DataLayout &DL = getDataLayout(); 8844 8845 // The key rationale for this optimization is that for some kinds of shift 8846 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8847 // within a finite number of iterations. If the condition guarding the 8848 // backedge (in the sense that the backedge is taken if the condition is true) 8849 // is false for the value the shift recurrence stabilizes to, then we know 8850 // that the backedge is taken only a finite number of times. 8851 8852 ConstantInt *StableValue = nullptr; 8853 switch (OpCode) { 8854 default: 8855 llvm_unreachable("Impossible case!"); 8856 8857 case Instruction::AShr: { 8858 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8859 // bitwidth(K) iterations. 8860 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8861 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8862 Predecessor->getTerminator(), &DT); 8863 auto *Ty = cast<IntegerType>(RHS->getType()); 8864 if (Known.isNonNegative()) 8865 StableValue = ConstantInt::get(Ty, 0); 8866 else if (Known.isNegative()) 8867 StableValue = ConstantInt::get(Ty, -1, true); 8868 else 8869 return getCouldNotCompute(); 8870 8871 break; 8872 } 8873 case Instruction::LShr: 8874 case Instruction::Shl: 8875 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8876 // stabilize to 0 in at most bitwidth(K) iterations. 8877 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8878 break; 8879 } 8880 8881 auto *Result = 8882 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8883 assert(Result->getType()->isIntegerTy(1) && 8884 "Otherwise cannot be an operand to a branch instruction"); 8885 8886 if (Result->isZeroValue()) { 8887 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8888 const SCEV *UpperBound = 8889 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8890 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8891 } 8892 8893 return getCouldNotCompute(); 8894 } 8895 8896 /// Return true if we can constant fold an instruction of the specified type, 8897 /// assuming that all operands were constants. 8898 static bool CanConstantFold(const Instruction *I) { 8899 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8900 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8901 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8902 return true; 8903 8904 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8905 if (const Function *F = CI->getCalledFunction()) 8906 return canConstantFoldCallTo(CI, F); 8907 return false; 8908 } 8909 8910 /// Determine whether this instruction can constant evolve within this loop 8911 /// assuming its operands can all constant evolve. 8912 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8913 // An instruction outside of the loop can't be derived from a loop PHI. 8914 if (!L->contains(I)) return false; 8915 8916 if (isa<PHINode>(I)) { 8917 // We don't currently keep track of the control flow needed to evaluate 8918 // PHIs, so we cannot handle PHIs inside of loops. 8919 return L->getHeader() == I->getParent(); 8920 } 8921 8922 // If we won't be able to constant fold this expression even if the operands 8923 // are constants, bail early. 8924 return CanConstantFold(I); 8925 } 8926 8927 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8928 /// recursing through each instruction operand until reaching a loop header phi. 8929 static PHINode * 8930 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8931 DenseMap<Instruction *, PHINode *> &PHIMap, 8932 unsigned Depth) { 8933 if (Depth > MaxConstantEvolvingDepth) 8934 return nullptr; 8935 8936 // Otherwise, we can evaluate this instruction if all of its operands are 8937 // constant or derived from a PHI node themselves. 8938 PHINode *PHI = nullptr; 8939 for (Value *Op : UseInst->operands()) { 8940 if (isa<Constant>(Op)) continue; 8941 8942 Instruction *OpInst = dyn_cast<Instruction>(Op); 8943 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8944 8945 PHINode *P = dyn_cast<PHINode>(OpInst); 8946 if (!P) 8947 // If this operand is already visited, reuse the prior result. 8948 // We may have P != PHI if this is the deepest point at which the 8949 // inconsistent paths meet. 8950 P = PHIMap.lookup(OpInst); 8951 if (!P) { 8952 // Recurse and memoize the results, whether a phi is found or not. 8953 // This recursive call invalidates pointers into PHIMap. 8954 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8955 PHIMap[OpInst] = P; 8956 } 8957 if (!P) 8958 return nullptr; // Not evolving from PHI 8959 if (PHI && PHI != P) 8960 return nullptr; // Evolving from multiple different PHIs. 8961 PHI = P; 8962 } 8963 // This is a expression evolving from a constant PHI! 8964 return PHI; 8965 } 8966 8967 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8968 /// in the loop that V is derived from. We allow arbitrary operations along the 8969 /// way, but the operands of an operation must either be constants or a value 8970 /// derived from a constant PHI. If this expression does not fit with these 8971 /// constraints, return null. 8972 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8973 Instruction *I = dyn_cast<Instruction>(V); 8974 if (!I || !canConstantEvolve(I, L)) return nullptr; 8975 8976 if (PHINode *PN = dyn_cast<PHINode>(I)) 8977 return PN; 8978 8979 // Record non-constant instructions contained by the loop. 8980 DenseMap<Instruction *, PHINode *> PHIMap; 8981 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8982 } 8983 8984 /// EvaluateExpression - Given an expression that passes the 8985 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8986 /// in the loop has the value PHIVal. If we can't fold this expression for some 8987 /// reason, return null. 8988 static Constant *EvaluateExpression(Value *V, const Loop *L, 8989 DenseMap<Instruction *, Constant *> &Vals, 8990 const DataLayout &DL, 8991 const TargetLibraryInfo *TLI) { 8992 // Convenient constant check, but redundant for recursive calls. 8993 if (Constant *C = dyn_cast<Constant>(V)) return C; 8994 Instruction *I = dyn_cast<Instruction>(V); 8995 if (!I) return nullptr; 8996 8997 if (Constant *C = Vals.lookup(I)) return C; 8998 8999 // An instruction inside the loop depends on a value outside the loop that we 9000 // weren't given a mapping for, or a value such as a call inside the loop. 9001 if (!canConstantEvolve(I, L)) return nullptr; 9002 9003 // An unmapped PHI can be due to a branch or another loop inside this loop, 9004 // or due to this not being the initial iteration through a loop where we 9005 // couldn't compute the evolution of this particular PHI last time. 9006 if (isa<PHINode>(I)) return nullptr; 9007 9008 std::vector<Constant*> Operands(I->getNumOperands()); 9009 9010 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9011 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9012 if (!Operand) { 9013 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9014 if (!Operands[i]) return nullptr; 9015 continue; 9016 } 9017 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9018 Vals[Operand] = C; 9019 if (!C) return nullptr; 9020 Operands[i] = C; 9021 } 9022 9023 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9024 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9025 Operands[1], DL, TLI); 9026 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9027 if (!LI->isVolatile()) 9028 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9029 } 9030 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9031 } 9032 9033 9034 // If every incoming value to PN except the one for BB is a specific Constant, 9035 // return that, else return nullptr. 9036 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9037 Constant *IncomingVal = nullptr; 9038 9039 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9040 if (PN->getIncomingBlock(i) == BB) 9041 continue; 9042 9043 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9044 if (!CurrentVal) 9045 return nullptr; 9046 9047 if (IncomingVal != CurrentVal) { 9048 if (IncomingVal) 9049 return nullptr; 9050 IncomingVal = CurrentVal; 9051 } 9052 } 9053 9054 return IncomingVal; 9055 } 9056 9057 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9058 /// in the header of its containing loop, we know the loop executes a 9059 /// constant number of times, and the PHI node is just a recurrence 9060 /// involving constants, fold it. 9061 Constant * 9062 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9063 const APInt &BEs, 9064 const Loop *L) { 9065 auto I = ConstantEvolutionLoopExitValue.find(PN); 9066 if (I != ConstantEvolutionLoopExitValue.end()) 9067 return I->second; 9068 9069 if (BEs.ugt(MaxBruteForceIterations)) 9070 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9071 9072 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9073 9074 DenseMap<Instruction *, Constant *> CurrentIterVals; 9075 BasicBlock *Header = L->getHeader(); 9076 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9077 9078 BasicBlock *Latch = L->getLoopLatch(); 9079 if (!Latch) 9080 return nullptr; 9081 9082 for (PHINode &PHI : Header->phis()) { 9083 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9084 CurrentIterVals[&PHI] = StartCST; 9085 } 9086 if (!CurrentIterVals.count(PN)) 9087 return RetVal = nullptr; 9088 9089 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9090 9091 // Execute the loop symbolically to determine the exit value. 9092 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9093 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9094 9095 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9096 unsigned IterationNum = 0; 9097 const DataLayout &DL = getDataLayout(); 9098 for (; ; ++IterationNum) { 9099 if (IterationNum == NumIterations) 9100 return RetVal = CurrentIterVals[PN]; // Got exit value! 9101 9102 // Compute the value of the PHIs for the next iteration. 9103 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9104 DenseMap<Instruction *, Constant *> NextIterVals; 9105 Constant *NextPHI = 9106 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9107 if (!NextPHI) 9108 return nullptr; // Couldn't evaluate! 9109 NextIterVals[PN] = NextPHI; 9110 9111 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9112 9113 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9114 // cease to be able to evaluate one of them or if they stop evolving, 9115 // because that doesn't necessarily prevent us from computing PN. 9116 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9117 for (const auto &I : CurrentIterVals) { 9118 PHINode *PHI = dyn_cast<PHINode>(I.first); 9119 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9120 PHIsToCompute.emplace_back(PHI, I.second); 9121 } 9122 // We use two distinct loops because EvaluateExpression may invalidate any 9123 // iterators into CurrentIterVals. 9124 for (const auto &I : PHIsToCompute) { 9125 PHINode *PHI = I.first; 9126 Constant *&NextPHI = NextIterVals[PHI]; 9127 if (!NextPHI) { // Not already computed. 9128 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9129 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9130 } 9131 if (NextPHI != I.second) 9132 StoppedEvolving = false; 9133 } 9134 9135 // If all entries in CurrentIterVals == NextIterVals then we can stop 9136 // iterating, the loop can't continue to change. 9137 if (StoppedEvolving) 9138 return RetVal = CurrentIterVals[PN]; 9139 9140 CurrentIterVals.swap(NextIterVals); 9141 } 9142 } 9143 9144 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9145 Value *Cond, 9146 bool ExitWhen) { 9147 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9148 if (!PN) return getCouldNotCompute(); 9149 9150 // If the loop is canonicalized, the PHI will have exactly two entries. 9151 // That's the only form we support here. 9152 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9153 9154 DenseMap<Instruction *, Constant *> CurrentIterVals; 9155 BasicBlock *Header = L->getHeader(); 9156 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9157 9158 BasicBlock *Latch = L->getLoopLatch(); 9159 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9160 9161 for (PHINode &PHI : Header->phis()) { 9162 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9163 CurrentIterVals[&PHI] = StartCST; 9164 } 9165 if (!CurrentIterVals.count(PN)) 9166 return getCouldNotCompute(); 9167 9168 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9169 // the loop symbolically to determine when the condition gets a value of 9170 // "ExitWhen". 9171 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9172 const DataLayout &DL = getDataLayout(); 9173 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9174 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9175 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9176 9177 // Couldn't symbolically evaluate. 9178 if (!CondVal) return getCouldNotCompute(); 9179 9180 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9181 ++NumBruteForceTripCountsComputed; 9182 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9183 } 9184 9185 // Update all the PHI nodes for the next iteration. 9186 DenseMap<Instruction *, Constant *> NextIterVals; 9187 9188 // Create a list of which PHIs we need to compute. We want to do this before 9189 // calling EvaluateExpression on them because that may invalidate iterators 9190 // into CurrentIterVals. 9191 SmallVector<PHINode *, 8> PHIsToCompute; 9192 for (const auto &I : CurrentIterVals) { 9193 PHINode *PHI = dyn_cast<PHINode>(I.first); 9194 if (!PHI || PHI->getParent() != Header) continue; 9195 PHIsToCompute.push_back(PHI); 9196 } 9197 for (PHINode *PHI : PHIsToCompute) { 9198 Constant *&NextPHI = NextIterVals[PHI]; 9199 if (NextPHI) continue; // Already computed! 9200 9201 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9202 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9203 } 9204 CurrentIterVals.swap(NextIterVals); 9205 } 9206 9207 // Too many iterations were needed to evaluate. 9208 return getCouldNotCompute(); 9209 } 9210 9211 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9212 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9213 ValuesAtScopes[V]; 9214 // Check to see if we've folded this expression at this loop before. 9215 for (auto &LS : Values) 9216 if (LS.first == L) 9217 return LS.second ? LS.second : V; 9218 9219 Values.emplace_back(L, nullptr); 9220 9221 // Otherwise compute it. 9222 const SCEV *C = computeSCEVAtScope(V, L); 9223 for (auto &LS : reverse(ValuesAtScopes[V])) 9224 if (LS.first == L) { 9225 LS.second = C; 9226 if (!isa<SCEVConstant>(C)) 9227 ValuesAtScopesUsers[C].push_back({L, V}); 9228 break; 9229 } 9230 return C; 9231 } 9232 9233 /// This builds up a Constant using the ConstantExpr interface. That way, we 9234 /// will return Constants for objects which aren't represented by a 9235 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9236 /// Returns NULL if the SCEV isn't representable as a Constant. 9237 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9238 switch (V->getSCEVType()) { 9239 case scCouldNotCompute: 9240 case scAddRecExpr: 9241 return nullptr; 9242 case scConstant: 9243 return cast<SCEVConstant>(V)->getValue(); 9244 case scUnknown: 9245 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9246 case scSignExtend: { 9247 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9248 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9249 return ConstantExpr::getSExt(CastOp, SS->getType()); 9250 return nullptr; 9251 } 9252 case scZeroExtend: { 9253 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9254 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9255 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9256 return nullptr; 9257 } 9258 case scPtrToInt: { 9259 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9260 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9261 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9262 9263 return nullptr; 9264 } 9265 case scTruncate: { 9266 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9267 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9268 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9269 return nullptr; 9270 } 9271 case scAddExpr: { 9272 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9273 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9274 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9275 unsigned AS = PTy->getAddressSpace(); 9276 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9277 C = ConstantExpr::getBitCast(C, DestPtrTy); 9278 } 9279 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9280 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9281 if (!C2) 9282 return nullptr; 9283 9284 // First pointer! 9285 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9286 unsigned AS = C2->getType()->getPointerAddressSpace(); 9287 std::swap(C, C2); 9288 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9289 // The offsets have been converted to bytes. We can add bytes to an 9290 // i8* by GEP with the byte count in the first index. 9291 C = ConstantExpr::getBitCast(C, DestPtrTy); 9292 } 9293 9294 // Don't bother trying to sum two pointers. We probably can't 9295 // statically compute a load that results from it anyway. 9296 if (C2->getType()->isPointerTy()) 9297 return nullptr; 9298 9299 if (C->getType()->isPointerTy()) { 9300 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9301 C, C2); 9302 } else { 9303 C = ConstantExpr::getAdd(C, C2); 9304 } 9305 } 9306 return C; 9307 } 9308 return nullptr; 9309 } 9310 case scMulExpr: { 9311 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9312 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9313 // Don't bother with pointers at all. 9314 if (C->getType()->isPointerTy()) 9315 return nullptr; 9316 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9317 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9318 if (!C2 || C2->getType()->isPointerTy()) 9319 return nullptr; 9320 C = ConstantExpr::getMul(C, C2); 9321 } 9322 return C; 9323 } 9324 return nullptr; 9325 } 9326 case scUDivExpr: { 9327 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9328 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9329 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9330 if (LHS->getType() == RHS->getType()) 9331 return ConstantExpr::getUDiv(LHS, RHS); 9332 return nullptr; 9333 } 9334 case scSMaxExpr: 9335 case scUMaxExpr: 9336 case scSMinExpr: 9337 case scUMinExpr: 9338 case scSequentialUMinExpr: 9339 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9340 } 9341 llvm_unreachable("Unknown SCEV kind!"); 9342 } 9343 9344 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9345 if (isa<SCEVConstant>(V)) return V; 9346 9347 // If this instruction is evolved from a constant-evolving PHI, compute the 9348 // exit value from the loop without using SCEVs. 9349 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9350 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9351 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9352 const Loop *CurrLoop = this->LI[I->getParent()]; 9353 // Looking for loop exit value. 9354 if (CurrLoop && CurrLoop->getParentLoop() == L && 9355 PN->getParent() == CurrLoop->getHeader()) { 9356 // Okay, there is no closed form solution for the PHI node. Check 9357 // to see if the loop that contains it has a known backedge-taken 9358 // count. If so, we may be able to force computation of the exit 9359 // value. 9360 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9361 // This trivial case can show up in some degenerate cases where 9362 // the incoming IR has not yet been fully simplified. 9363 if (BackedgeTakenCount->isZero()) { 9364 Value *InitValue = nullptr; 9365 bool MultipleInitValues = false; 9366 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9367 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9368 if (!InitValue) 9369 InitValue = PN->getIncomingValue(i); 9370 else if (InitValue != PN->getIncomingValue(i)) { 9371 MultipleInitValues = true; 9372 break; 9373 } 9374 } 9375 } 9376 if (!MultipleInitValues && InitValue) 9377 return getSCEV(InitValue); 9378 } 9379 // Do we have a loop invariant value flowing around the backedge 9380 // for a loop which must execute the backedge? 9381 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9382 isKnownPositive(BackedgeTakenCount) && 9383 PN->getNumIncomingValues() == 2) { 9384 9385 unsigned InLoopPred = 9386 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9387 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9388 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9389 return getSCEV(BackedgeVal); 9390 } 9391 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9392 // Okay, we know how many times the containing loop executes. If 9393 // this is a constant evolving PHI node, get the final value at 9394 // the specified iteration number. 9395 Constant *RV = getConstantEvolutionLoopExitValue( 9396 PN, BTCC->getAPInt(), CurrLoop); 9397 if (RV) return getSCEV(RV); 9398 } 9399 } 9400 9401 // If there is a single-input Phi, evaluate it at our scope. If we can 9402 // prove that this replacement does not break LCSSA form, use new value. 9403 if (PN->getNumOperands() == 1) { 9404 const SCEV *Input = getSCEV(PN->getOperand(0)); 9405 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9406 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9407 // for the simplest case just support constants. 9408 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9409 } 9410 } 9411 9412 // Okay, this is an expression that we cannot symbolically evaluate 9413 // into a SCEV. Check to see if it's possible to symbolically evaluate 9414 // the arguments into constants, and if so, try to constant propagate the 9415 // result. This is particularly useful for computing loop exit values. 9416 if (CanConstantFold(I)) { 9417 SmallVector<Constant *, 4> Operands; 9418 bool MadeImprovement = false; 9419 for (Value *Op : I->operands()) { 9420 if (Constant *C = dyn_cast<Constant>(Op)) { 9421 Operands.push_back(C); 9422 continue; 9423 } 9424 9425 // If any of the operands is non-constant and if they are 9426 // non-integer and non-pointer, don't even try to analyze them 9427 // with scev techniques. 9428 if (!isSCEVable(Op->getType())) 9429 return V; 9430 9431 const SCEV *OrigV = getSCEV(Op); 9432 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9433 MadeImprovement |= OrigV != OpV; 9434 9435 Constant *C = BuildConstantFromSCEV(OpV); 9436 if (!C) return V; 9437 if (C->getType() != Op->getType()) 9438 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9439 Op->getType(), 9440 false), 9441 C, Op->getType()); 9442 Operands.push_back(C); 9443 } 9444 9445 // Check to see if getSCEVAtScope actually made an improvement. 9446 if (MadeImprovement) { 9447 Constant *C = nullptr; 9448 const DataLayout &DL = getDataLayout(); 9449 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9450 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9451 Operands[1], DL, &TLI); 9452 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9453 if (!Load->isVolatile()) 9454 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9455 DL); 9456 } else 9457 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9458 if (!C) return V; 9459 return getSCEV(C); 9460 } 9461 } 9462 } 9463 9464 // This is some other type of SCEVUnknown, just return it. 9465 return V; 9466 } 9467 9468 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9469 const auto *Comm = cast<SCEVNAryExpr>(V); 9470 // Avoid performing the look-up in the common case where the specified 9471 // expression has no loop-variant portions. 9472 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9473 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9474 if (OpAtScope != Comm->getOperand(i)) { 9475 // Okay, at least one of these operands is loop variant but might be 9476 // foldable. Build a new instance of the folded commutative expression. 9477 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9478 Comm->op_begin()+i); 9479 NewOps.push_back(OpAtScope); 9480 9481 for (++i; i != e; ++i) { 9482 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9483 NewOps.push_back(OpAtScope); 9484 } 9485 if (isa<SCEVAddExpr>(Comm)) 9486 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9487 if (isa<SCEVMulExpr>(Comm)) 9488 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9489 if (isa<SCEVMinMaxExpr>(Comm)) 9490 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9491 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9492 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9493 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9494 } 9495 } 9496 // If we got here, all operands are loop invariant. 9497 return Comm; 9498 } 9499 9500 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9501 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9502 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9503 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9504 return Div; // must be loop invariant 9505 return getUDivExpr(LHS, RHS); 9506 } 9507 9508 // If this is a loop recurrence for a loop that does not contain L, then we 9509 // are dealing with the final value computed by the loop. 9510 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9511 // First, attempt to evaluate each operand. 9512 // Avoid performing the look-up in the common case where the specified 9513 // expression has no loop-variant portions. 9514 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9515 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9516 if (OpAtScope == AddRec->getOperand(i)) 9517 continue; 9518 9519 // Okay, at least one of these operands is loop variant but might be 9520 // foldable. Build a new instance of the folded commutative expression. 9521 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9522 AddRec->op_begin()+i); 9523 NewOps.push_back(OpAtScope); 9524 for (++i; i != e; ++i) 9525 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9526 9527 const SCEV *FoldedRec = 9528 getAddRecExpr(NewOps, AddRec->getLoop(), 9529 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9530 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9531 // The addrec may be folded to a nonrecurrence, for example, if the 9532 // induction variable is multiplied by zero after constant folding. Go 9533 // ahead and return the folded value. 9534 if (!AddRec) 9535 return FoldedRec; 9536 break; 9537 } 9538 9539 // If the scope is outside the addrec's loop, evaluate it by using the 9540 // loop exit value of the addrec. 9541 if (!AddRec->getLoop()->contains(L)) { 9542 // To evaluate this recurrence, we need to know how many times the AddRec 9543 // loop iterates. Compute this now. 9544 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9545 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9546 9547 // Then, evaluate the AddRec. 9548 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9549 } 9550 9551 return AddRec; 9552 } 9553 9554 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9555 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9556 if (Op == Cast->getOperand()) 9557 return Cast; // must be loop invariant 9558 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9559 } 9560 9561 llvm_unreachable("Unknown SCEV type!"); 9562 } 9563 9564 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9565 return getSCEVAtScope(getSCEV(V), L); 9566 } 9567 9568 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9569 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9570 return stripInjectiveFunctions(ZExt->getOperand()); 9571 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9572 return stripInjectiveFunctions(SExt->getOperand()); 9573 return S; 9574 } 9575 9576 /// Finds the minimum unsigned root of the following equation: 9577 /// 9578 /// A * X = B (mod N) 9579 /// 9580 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9581 /// A and B isn't important. 9582 /// 9583 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9584 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9585 ScalarEvolution &SE) { 9586 uint32_t BW = A.getBitWidth(); 9587 assert(BW == SE.getTypeSizeInBits(B->getType())); 9588 assert(A != 0 && "A must be non-zero."); 9589 9590 // 1. D = gcd(A, N) 9591 // 9592 // The gcd of A and N may have only one prime factor: 2. The number of 9593 // trailing zeros in A is its multiplicity 9594 uint32_t Mult2 = A.countTrailingZeros(); 9595 // D = 2^Mult2 9596 9597 // 2. Check if B is divisible by D. 9598 // 9599 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9600 // is not less than multiplicity of this prime factor for D. 9601 if (SE.GetMinTrailingZeros(B) < Mult2) 9602 return SE.getCouldNotCompute(); 9603 9604 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9605 // modulo (N / D). 9606 // 9607 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9608 // (N / D) in general. The inverse itself always fits into BW bits, though, 9609 // so we immediately truncate it. 9610 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9611 APInt Mod(BW + 1, 0); 9612 Mod.setBit(BW - Mult2); // Mod = N / D 9613 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9614 9615 // 4. Compute the minimum unsigned root of the equation: 9616 // I * (B / D) mod (N / D) 9617 // To simplify the computation, we factor out the divide by D: 9618 // (I * B mod N) / D 9619 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9620 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9621 } 9622 9623 /// For a given quadratic addrec, generate coefficients of the corresponding 9624 /// quadratic equation, multiplied by a common value to ensure that they are 9625 /// integers. 9626 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9627 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9628 /// were multiplied by, and BitWidth is the bit width of the original addrec 9629 /// coefficients. 9630 /// This function returns None if the addrec coefficients are not compile- 9631 /// time constants. 9632 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9633 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9634 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9635 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9636 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9637 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9638 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9639 << *AddRec << '\n'); 9640 9641 // We currently can only solve this if the coefficients are constants. 9642 if (!LC || !MC || !NC) { 9643 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9644 return None; 9645 } 9646 9647 APInt L = LC->getAPInt(); 9648 APInt M = MC->getAPInt(); 9649 APInt N = NC->getAPInt(); 9650 assert(!N.isZero() && "This is not a quadratic addrec"); 9651 9652 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9653 unsigned NewWidth = BitWidth + 1; 9654 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9655 << BitWidth << '\n'); 9656 // The sign-extension (as opposed to a zero-extension) here matches the 9657 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9658 N = N.sext(NewWidth); 9659 M = M.sext(NewWidth); 9660 L = L.sext(NewWidth); 9661 9662 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9663 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9664 // L+M, L+2M+N, L+3M+3N, ... 9665 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9666 // 9667 // The equation Acc = 0 is then 9668 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9669 // In a quadratic form it becomes: 9670 // N n^2 + (2M-N) n + 2L = 0. 9671 9672 APInt A = N; 9673 APInt B = 2 * M - A; 9674 APInt C = 2 * L; 9675 APInt T = APInt(NewWidth, 2); 9676 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9677 << "x + " << C << ", coeff bw: " << NewWidth 9678 << ", multiplied by " << T << '\n'); 9679 return std::make_tuple(A, B, C, T, BitWidth); 9680 } 9681 9682 /// Helper function to compare optional APInts: 9683 /// (a) if X and Y both exist, return min(X, Y), 9684 /// (b) if neither X nor Y exist, return None, 9685 /// (c) if exactly one of X and Y exists, return that value. 9686 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9687 if (X.hasValue() && Y.hasValue()) { 9688 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9689 APInt XW = X->sextOrSelf(W); 9690 APInt YW = Y->sextOrSelf(W); 9691 return XW.slt(YW) ? *X : *Y; 9692 } 9693 if (!X.hasValue() && !Y.hasValue()) 9694 return None; 9695 return X.hasValue() ? *X : *Y; 9696 } 9697 9698 /// Helper function to truncate an optional APInt to a given BitWidth. 9699 /// When solving addrec-related equations, it is preferable to return a value 9700 /// that has the same bit width as the original addrec's coefficients. If the 9701 /// solution fits in the original bit width, truncate it (except for i1). 9702 /// Returning a value of a different bit width may inhibit some optimizations. 9703 /// 9704 /// In general, a solution to a quadratic equation generated from an addrec 9705 /// may require BW+1 bits, where BW is the bit width of the addrec's 9706 /// coefficients. The reason is that the coefficients of the quadratic 9707 /// equation are BW+1 bits wide (to avoid truncation when converting from 9708 /// the addrec to the equation). 9709 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9710 if (!X.hasValue()) 9711 return None; 9712 unsigned W = X->getBitWidth(); 9713 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9714 return X->trunc(BitWidth); 9715 return X; 9716 } 9717 9718 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9719 /// iterations. The values L, M, N are assumed to be signed, and they 9720 /// should all have the same bit widths. 9721 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9722 /// where BW is the bit width of the addrec's coefficients. 9723 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9724 /// returned as such, otherwise the bit width of the returned value may 9725 /// be greater than BW. 9726 /// 9727 /// This function returns None if 9728 /// (a) the addrec coefficients are not constant, or 9729 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9730 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9731 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9732 static Optional<APInt> 9733 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9734 APInt A, B, C, M; 9735 unsigned BitWidth; 9736 auto T = GetQuadraticEquation(AddRec); 9737 if (!T.hasValue()) 9738 return None; 9739 9740 std::tie(A, B, C, M, BitWidth) = *T; 9741 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9742 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9743 if (!X.hasValue()) 9744 return None; 9745 9746 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9747 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9748 if (!V->isZero()) 9749 return None; 9750 9751 return TruncIfPossible(X, BitWidth); 9752 } 9753 9754 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9755 /// iterations. The values M, N are assumed to be signed, and they 9756 /// should all have the same bit widths. 9757 /// Find the least n such that c(n) does not belong to the given range, 9758 /// while c(n-1) does. 9759 /// 9760 /// This function returns None if 9761 /// (a) the addrec coefficients are not constant, or 9762 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9763 /// bounds of the range. 9764 static Optional<APInt> 9765 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9766 const ConstantRange &Range, ScalarEvolution &SE) { 9767 assert(AddRec->getOperand(0)->isZero() && 9768 "Starting value of addrec should be 0"); 9769 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9770 << Range << ", addrec " << *AddRec << '\n'); 9771 // This case is handled in getNumIterationsInRange. Here we can assume that 9772 // we start in the range. 9773 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9774 "Addrec's initial value should be in range"); 9775 9776 APInt A, B, C, M; 9777 unsigned BitWidth; 9778 auto T = GetQuadraticEquation(AddRec); 9779 if (!T.hasValue()) 9780 return None; 9781 9782 // Be careful about the return value: there can be two reasons for not 9783 // returning an actual number. First, if no solutions to the equations 9784 // were found, and second, if the solutions don't leave the given range. 9785 // The first case means that the actual solution is "unknown", the second 9786 // means that it's known, but not valid. If the solution is unknown, we 9787 // cannot make any conclusions. 9788 // Return a pair: the optional solution and a flag indicating if the 9789 // solution was found. 9790 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9791 // Solve for signed overflow and unsigned overflow, pick the lower 9792 // solution. 9793 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9794 << Bound << " (before multiplying by " << M << ")\n"); 9795 Bound *= M; // The quadratic equation multiplier. 9796 9797 Optional<APInt> SO = None; 9798 if (BitWidth > 1) { 9799 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9800 "signed overflow\n"); 9801 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9802 } 9803 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9804 "unsigned overflow\n"); 9805 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9806 BitWidth+1); 9807 9808 auto LeavesRange = [&] (const APInt &X) { 9809 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9810 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9811 if (Range.contains(V0->getValue())) 9812 return false; 9813 // X should be at least 1, so X-1 is non-negative. 9814 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9815 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9816 if (Range.contains(V1->getValue())) 9817 return true; 9818 return false; 9819 }; 9820 9821 // If SolveQuadraticEquationWrap returns None, it means that there can 9822 // be a solution, but the function failed to find it. We cannot treat it 9823 // as "no solution". 9824 if (!SO.hasValue() || !UO.hasValue()) 9825 return { None, false }; 9826 9827 // Check the smaller value first to see if it leaves the range. 9828 // At this point, both SO and UO must have values. 9829 Optional<APInt> Min = MinOptional(SO, UO); 9830 if (LeavesRange(*Min)) 9831 return { Min, true }; 9832 Optional<APInt> Max = Min == SO ? UO : SO; 9833 if (LeavesRange(*Max)) 9834 return { Max, true }; 9835 9836 // Solutions were found, but were eliminated, hence the "true". 9837 return { None, true }; 9838 }; 9839 9840 std::tie(A, B, C, M, BitWidth) = *T; 9841 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9842 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9843 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9844 auto SL = SolveForBoundary(Lower); 9845 auto SU = SolveForBoundary(Upper); 9846 // If any of the solutions was unknown, no meaninigful conclusions can 9847 // be made. 9848 if (!SL.second || !SU.second) 9849 return None; 9850 9851 // Claim: The correct solution is not some value between Min and Max. 9852 // 9853 // Justification: Assuming that Min and Max are different values, one of 9854 // them is when the first signed overflow happens, the other is when the 9855 // first unsigned overflow happens. Crossing the range boundary is only 9856 // possible via an overflow (treating 0 as a special case of it, modeling 9857 // an overflow as crossing k*2^W for some k). 9858 // 9859 // The interesting case here is when Min was eliminated as an invalid 9860 // solution, but Max was not. The argument is that if there was another 9861 // overflow between Min and Max, it would also have been eliminated if 9862 // it was considered. 9863 // 9864 // For a given boundary, it is possible to have two overflows of the same 9865 // type (signed/unsigned) without having the other type in between: this 9866 // can happen when the vertex of the parabola is between the iterations 9867 // corresponding to the overflows. This is only possible when the two 9868 // overflows cross k*2^W for the same k. In such case, if the second one 9869 // left the range (and was the first one to do so), the first overflow 9870 // would have to enter the range, which would mean that either we had left 9871 // the range before or that we started outside of it. Both of these cases 9872 // are contradictions. 9873 // 9874 // Claim: In the case where SolveForBoundary returns None, the correct 9875 // solution is not some value between the Max for this boundary and the 9876 // Min of the other boundary. 9877 // 9878 // Justification: Assume that we had such Max_A and Min_B corresponding 9879 // to range boundaries A and B and such that Max_A < Min_B. If there was 9880 // a solution between Max_A and Min_B, it would have to be caused by an 9881 // overflow corresponding to either A or B. It cannot correspond to B, 9882 // since Min_B is the first occurrence of such an overflow. If it 9883 // corresponded to A, it would have to be either a signed or an unsigned 9884 // overflow that is larger than both eliminated overflows for A. But 9885 // between the eliminated overflows and this overflow, the values would 9886 // cover the entire value space, thus crossing the other boundary, which 9887 // is a contradiction. 9888 9889 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9890 } 9891 9892 ScalarEvolution::ExitLimit 9893 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9894 bool AllowPredicates) { 9895 9896 // This is only used for loops with a "x != y" exit test. The exit condition 9897 // is now expressed as a single expression, V = x-y. So the exit test is 9898 // effectively V != 0. We know and take advantage of the fact that this 9899 // expression only being used in a comparison by zero context. 9900 9901 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9902 // If the value is a constant 9903 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9904 // If the value is already zero, the branch will execute zero times. 9905 if (C->getValue()->isZero()) return C; 9906 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9907 } 9908 9909 const SCEVAddRecExpr *AddRec = 9910 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9911 9912 if (!AddRec && AllowPredicates) 9913 // Try to make this an AddRec using runtime tests, in the first X 9914 // iterations of this loop, where X is the SCEV expression found by the 9915 // algorithm below. 9916 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9917 9918 if (!AddRec || AddRec->getLoop() != L) 9919 return getCouldNotCompute(); 9920 9921 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9922 // the quadratic equation to solve it. 9923 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9924 // We can only use this value if the chrec ends up with an exact zero 9925 // value at this index. When solving for "X*X != 5", for example, we 9926 // should not accept a root of 2. 9927 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9928 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9929 return ExitLimit(R, R, false, Predicates); 9930 } 9931 return getCouldNotCompute(); 9932 } 9933 9934 // Otherwise we can only handle this if it is affine. 9935 if (!AddRec->isAffine()) 9936 return getCouldNotCompute(); 9937 9938 // If this is an affine expression, the execution count of this branch is 9939 // the minimum unsigned root of the following equation: 9940 // 9941 // Start + Step*N = 0 (mod 2^BW) 9942 // 9943 // equivalent to: 9944 // 9945 // Step*N = -Start (mod 2^BW) 9946 // 9947 // where BW is the common bit width of Start and Step. 9948 9949 // Get the initial value for the loop. 9950 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9951 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9952 9953 // For now we handle only constant steps. 9954 // 9955 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9956 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9957 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9958 // We have not yet seen any such cases. 9959 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9960 if (!StepC || StepC->getValue()->isZero()) 9961 return getCouldNotCompute(); 9962 9963 // For positive steps (counting up until unsigned overflow): 9964 // N = -Start/Step (as unsigned) 9965 // For negative steps (counting down to zero): 9966 // N = Start/-Step 9967 // First compute the unsigned distance from zero in the direction of Step. 9968 bool CountDown = StepC->getAPInt().isNegative(); 9969 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9970 9971 // Handle unitary steps, which cannot wraparound. 9972 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9973 // N = Distance (as unsigned) 9974 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9975 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9976 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9977 9978 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9979 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9980 // case, and see if we can improve the bound. 9981 // 9982 // Explicitly handling this here is necessary because getUnsignedRange 9983 // isn't context-sensitive; it doesn't know that we only care about the 9984 // range inside the loop. 9985 const SCEV *Zero = getZero(Distance->getType()); 9986 const SCEV *One = getOne(Distance->getType()); 9987 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9988 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9989 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9990 // as "unsigned_max(Distance + 1) - 1". 9991 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9992 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9993 } 9994 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9995 } 9996 9997 // If the condition controls loop exit (the loop exits only if the expression 9998 // is true) and the addition is no-wrap we can use unsigned divide to 9999 // compute the backedge count. In this case, the step may not divide the 10000 // distance, but we don't care because if the condition is "missed" the loop 10001 // will have undefined behavior due to wrapping. 10002 if (ControlsExit && AddRec->hasNoSelfWrap() && 10003 loopHasNoAbnormalExits(AddRec->getLoop())) { 10004 const SCEV *Exact = 10005 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10006 const SCEV *Max = getCouldNotCompute(); 10007 if (Exact != getCouldNotCompute()) { 10008 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10009 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10010 } 10011 return ExitLimit(Exact, Max, false, Predicates); 10012 } 10013 10014 // Solve the general equation. 10015 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10016 getNegativeSCEV(Start), *this); 10017 10018 const SCEV *M = E; 10019 if (E != getCouldNotCompute()) { 10020 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10021 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10022 } 10023 return ExitLimit(E, M, false, Predicates); 10024 } 10025 10026 ScalarEvolution::ExitLimit 10027 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10028 // Loops that look like: while (X == 0) are very strange indeed. We don't 10029 // handle them yet except for the trivial case. This could be expanded in the 10030 // future as needed. 10031 10032 // If the value is a constant, check to see if it is known to be non-zero 10033 // already. If so, the backedge will execute zero times. 10034 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10035 if (!C->getValue()->isZero()) 10036 return getZero(C->getType()); 10037 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10038 } 10039 10040 // We could implement others, but I really doubt anyone writes loops like 10041 // this, and if they did, they would already be constant folded. 10042 return getCouldNotCompute(); 10043 } 10044 10045 std::pair<const BasicBlock *, const BasicBlock *> 10046 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10047 const { 10048 // If the block has a unique predecessor, then there is no path from the 10049 // predecessor to the block that does not go through the direct edge 10050 // from the predecessor to the block. 10051 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10052 return {Pred, BB}; 10053 10054 // A loop's header is defined to be a block that dominates the loop. 10055 // If the header has a unique predecessor outside the loop, it must be 10056 // a block that has exactly one successor that can reach the loop. 10057 if (const Loop *L = LI.getLoopFor(BB)) 10058 return {L->getLoopPredecessor(), L->getHeader()}; 10059 10060 return {nullptr, nullptr}; 10061 } 10062 10063 /// SCEV structural equivalence is usually sufficient for testing whether two 10064 /// expressions are equal, however for the purposes of looking for a condition 10065 /// guarding a loop, it can be useful to be a little more general, since a 10066 /// front-end may have replicated the controlling expression. 10067 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10068 // Quick check to see if they are the same SCEV. 10069 if (A == B) return true; 10070 10071 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10072 // Not all instructions that are "identical" compute the same value. For 10073 // instance, two distinct alloca instructions allocating the same type are 10074 // identical and do not read memory; but compute distinct values. 10075 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10076 }; 10077 10078 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10079 // two different instructions with the same value. Check for this case. 10080 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10081 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10082 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10083 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10084 if (ComputesEqualValues(AI, BI)) 10085 return true; 10086 10087 // Otherwise assume they may have a different value. 10088 return false; 10089 } 10090 10091 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10092 const SCEV *&LHS, const SCEV *&RHS, 10093 unsigned Depth, 10094 bool ControllingFiniteLoop) { 10095 bool Changed = false; 10096 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10097 // '0 != 0'. 10098 auto TrivialCase = [&](bool TriviallyTrue) { 10099 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10100 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10101 return true; 10102 }; 10103 // If we hit the max recursion limit bail out. 10104 if (Depth >= 3) 10105 return false; 10106 10107 // Canonicalize a constant to the right side. 10108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10109 // Check for both operands constant. 10110 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10111 if (ConstantExpr::getICmp(Pred, 10112 LHSC->getValue(), 10113 RHSC->getValue())->isNullValue()) 10114 return TrivialCase(false); 10115 else 10116 return TrivialCase(true); 10117 } 10118 // Otherwise swap the operands to put the constant on the right. 10119 std::swap(LHS, RHS); 10120 Pred = ICmpInst::getSwappedPredicate(Pred); 10121 Changed = true; 10122 } 10123 10124 // If we're comparing an addrec with a value which is loop-invariant in the 10125 // addrec's loop, put the addrec on the left. Also make a dominance check, 10126 // as both operands could be addrecs loop-invariant in each other's loop. 10127 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10128 const Loop *L = AR->getLoop(); 10129 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10130 std::swap(LHS, RHS); 10131 Pred = ICmpInst::getSwappedPredicate(Pred); 10132 Changed = true; 10133 } 10134 } 10135 10136 // If there's a constant operand, canonicalize comparisons with boundary 10137 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10138 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10139 const APInt &RA = RC->getAPInt(); 10140 10141 bool SimplifiedByConstantRange = false; 10142 10143 if (!ICmpInst::isEquality(Pred)) { 10144 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10145 if (ExactCR.isFullSet()) 10146 return TrivialCase(true); 10147 else if (ExactCR.isEmptySet()) 10148 return TrivialCase(false); 10149 10150 APInt NewRHS; 10151 CmpInst::Predicate NewPred; 10152 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10153 ICmpInst::isEquality(NewPred)) { 10154 // We were able to convert an inequality to an equality. 10155 Pred = NewPred; 10156 RHS = getConstant(NewRHS); 10157 Changed = SimplifiedByConstantRange = true; 10158 } 10159 } 10160 10161 if (!SimplifiedByConstantRange) { 10162 switch (Pred) { 10163 default: 10164 break; 10165 case ICmpInst::ICMP_EQ: 10166 case ICmpInst::ICMP_NE: 10167 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10168 if (!RA) 10169 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10170 if (const SCEVMulExpr *ME = 10171 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10172 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10173 ME->getOperand(0)->isAllOnesValue()) { 10174 RHS = AE->getOperand(1); 10175 LHS = ME->getOperand(1); 10176 Changed = true; 10177 } 10178 break; 10179 10180 10181 // The "Should have been caught earlier!" messages refer to the fact 10182 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10183 // should have fired on the corresponding cases, and canonicalized the 10184 // check to trivial case. 10185 10186 case ICmpInst::ICMP_UGE: 10187 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10188 Pred = ICmpInst::ICMP_UGT; 10189 RHS = getConstant(RA - 1); 10190 Changed = true; 10191 break; 10192 case ICmpInst::ICMP_ULE: 10193 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10194 Pred = ICmpInst::ICMP_ULT; 10195 RHS = getConstant(RA + 1); 10196 Changed = true; 10197 break; 10198 case ICmpInst::ICMP_SGE: 10199 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10200 Pred = ICmpInst::ICMP_SGT; 10201 RHS = getConstant(RA - 1); 10202 Changed = true; 10203 break; 10204 case ICmpInst::ICMP_SLE: 10205 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10206 Pred = ICmpInst::ICMP_SLT; 10207 RHS = getConstant(RA + 1); 10208 Changed = true; 10209 break; 10210 } 10211 } 10212 } 10213 10214 // Check for obvious equality. 10215 if (HasSameValue(LHS, RHS)) { 10216 if (ICmpInst::isTrueWhenEqual(Pred)) 10217 return TrivialCase(true); 10218 if (ICmpInst::isFalseWhenEqual(Pred)) 10219 return TrivialCase(false); 10220 } 10221 10222 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10223 // adding or subtracting 1 from one of the operands. This can be done for 10224 // one of two reasons: 10225 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10226 // 2) The loop is finite, with this comparison controlling the exit. Since the 10227 // loop is finite, the bound cannot include the corresponding boundary 10228 // (otherwise it would loop forever). 10229 switch (Pred) { 10230 case ICmpInst::ICMP_SLE: 10231 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10232 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10233 SCEV::FlagNSW); 10234 Pred = ICmpInst::ICMP_SLT; 10235 Changed = true; 10236 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10237 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10238 SCEV::FlagNSW); 10239 Pred = ICmpInst::ICMP_SLT; 10240 Changed = true; 10241 } 10242 break; 10243 case ICmpInst::ICMP_SGE: 10244 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10245 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10246 SCEV::FlagNSW); 10247 Pred = ICmpInst::ICMP_SGT; 10248 Changed = true; 10249 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10250 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10251 SCEV::FlagNSW); 10252 Pred = ICmpInst::ICMP_SGT; 10253 Changed = true; 10254 } 10255 break; 10256 case ICmpInst::ICMP_ULE: 10257 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10258 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10259 SCEV::FlagNUW); 10260 Pred = ICmpInst::ICMP_ULT; 10261 Changed = true; 10262 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10263 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10264 Pred = ICmpInst::ICMP_ULT; 10265 Changed = true; 10266 } 10267 break; 10268 case ICmpInst::ICMP_UGE: 10269 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10270 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10271 Pred = ICmpInst::ICMP_UGT; 10272 Changed = true; 10273 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10274 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10275 SCEV::FlagNUW); 10276 Pred = ICmpInst::ICMP_UGT; 10277 Changed = true; 10278 } 10279 break; 10280 default: 10281 break; 10282 } 10283 10284 // TODO: More simplifications are possible here. 10285 10286 // Recursively simplify until we either hit a recursion limit or nothing 10287 // changes. 10288 if (Changed) 10289 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10290 ControllingFiniteLoop); 10291 10292 return Changed; 10293 } 10294 10295 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10296 return getSignedRangeMax(S).isNegative(); 10297 } 10298 10299 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10300 return getSignedRangeMin(S).isStrictlyPositive(); 10301 } 10302 10303 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10304 return !getSignedRangeMin(S).isNegative(); 10305 } 10306 10307 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10308 return !getSignedRangeMax(S).isStrictlyPositive(); 10309 } 10310 10311 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10312 return getUnsignedRangeMin(S) != 0; 10313 } 10314 10315 std::pair<const SCEV *, const SCEV *> 10316 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10317 // Compute SCEV on entry of loop L. 10318 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10319 if (Start == getCouldNotCompute()) 10320 return { Start, Start }; 10321 // Compute post increment SCEV for loop L. 10322 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10323 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10324 return { Start, PostInc }; 10325 } 10326 10327 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10328 const SCEV *LHS, const SCEV *RHS) { 10329 // First collect all loops. 10330 SmallPtrSet<const Loop *, 8> LoopsUsed; 10331 getUsedLoops(LHS, LoopsUsed); 10332 getUsedLoops(RHS, LoopsUsed); 10333 10334 if (LoopsUsed.empty()) 10335 return false; 10336 10337 // Domination relationship must be a linear order on collected loops. 10338 #ifndef NDEBUG 10339 for (auto *L1 : LoopsUsed) 10340 for (auto *L2 : LoopsUsed) 10341 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10342 DT.dominates(L2->getHeader(), L1->getHeader())) && 10343 "Domination relationship is not a linear order"); 10344 #endif 10345 10346 const Loop *MDL = 10347 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10348 [&](const Loop *L1, const Loop *L2) { 10349 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10350 }); 10351 10352 // Get init and post increment value for LHS. 10353 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10354 // if LHS contains unknown non-invariant SCEV then bail out. 10355 if (SplitLHS.first == getCouldNotCompute()) 10356 return false; 10357 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10358 // Get init and post increment value for RHS. 10359 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10360 // if RHS contains unknown non-invariant SCEV then bail out. 10361 if (SplitRHS.first == getCouldNotCompute()) 10362 return false; 10363 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10364 // It is possible that init SCEV contains an invariant load but it does 10365 // not dominate MDL and is not available at MDL loop entry, so we should 10366 // check it here. 10367 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10368 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10369 return false; 10370 10371 // It seems backedge guard check is faster than entry one so in some cases 10372 // it can speed up whole estimation by short circuit 10373 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10374 SplitRHS.second) && 10375 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10376 } 10377 10378 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10379 const SCEV *LHS, const SCEV *RHS) { 10380 // Canonicalize the inputs first. 10381 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10382 10383 if (isKnownViaInduction(Pred, LHS, RHS)) 10384 return true; 10385 10386 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10387 return true; 10388 10389 // Otherwise see what can be done with some simple reasoning. 10390 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10391 } 10392 10393 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10394 const SCEV *LHS, 10395 const SCEV *RHS) { 10396 if (isKnownPredicate(Pred, LHS, RHS)) 10397 return true; 10398 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10399 return false; 10400 return None; 10401 } 10402 10403 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10404 const SCEV *LHS, const SCEV *RHS, 10405 const Instruction *CtxI) { 10406 // TODO: Analyze guards and assumes from Context's block. 10407 return isKnownPredicate(Pred, LHS, RHS) || 10408 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10409 } 10410 10411 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10412 const SCEV *LHS, 10413 const SCEV *RHS, 10414 const Instruction *CtxI) { 10415 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10416 if (KnownWithoutContext) 10417 return KnownWithoutContext; 10418 10419 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10420 return true; 10421 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10422 ICmpInst::getInversePredicate(Pred), 10423 LHS, RHS)) 10424 return false; 10425 return None; 10426 } 10427 10428 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10429 const SCEVAddRecExpr *LHS, 10430 const SCEV *RHS) { 10431 const Loop *L = LHS->getLoop(); 10432 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10433 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10434 } 10435 10436 Optional<ScalarEvolution::MonotonicPredicateType> 10437 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10438 ICmpInst::Predicate Pred) { 10439 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10440 10441 #ifndef NDEBUG 10442 // Verify an invariant: inverting the predicate should turn a monotonically 10443 // increasing change to a monotonically decreasing one, and vice versa. 10444 if (Result) { 10445 auto ResultSwapped = 10446 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10447 10448 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10449 assert(ResultSwapped.getValue() != Result.getValue() && 10450 "monotonicity should flip as we flip the predicate"); 10451 } 10452 #endif 10453 10454 return Result; 10455 } 10456 10457 Optional<ScalarEvolution::MonotonicPredicateType> 10458 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10459 ICmpInst::Predicate Pred) { 10460 // A zero step value for LHS means the induction variable is essentially a 10461 // loop invariant value. We don't really depend on the predicate actually 10462 // flipping from false to true (for increasing predicates, and the other way 10463 // around for decreasing predicates), all we care about is that *if* the 10464 // predicate changes then it only changes from false to true. 10465 // 10466 // A zero step value in itself is not very useful, but there may be places 10467 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10468 // as general as possible. 10469 10470 // Only handle LE/LT/GE/GT predicates. 10471 if (!ICmpInst::isRelational(Pred)) 10472 return None; 10473 10474 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10475 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10476 "Should be greater or less!"); 10477 10478 // Check that AR does not wrap. 10479 if (ICmpInst::isUnsigned(Pred)) { 10480 if (!LHS->hasNoUnsignedWrap()) 10481 return None; 10482 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10483 } else { 10484 assert(ICmpInst::isSigned(Pred) && 10485 "Relational predicate is either signed or unsigned!"); 10486 if (!LHS->hasNoSignedWrap()) 10487 return None; 10488 10489 const SCEV *Step = LHS->getStepRecurrence(*this); 10490 10491 if (isKnownNonNegative(Step)) 10492 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10493 10494 if (isKnownNonPositive(Step)) 10495 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10496 10497 return None; 10498 } 10499 } 10500 10501 Optional<ScalarEvolution::LoopInvariantPredicate> 10502 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10503 const SCEV *LHS, const SCEV *RHS, 10504 const Loop *L) { 10505 10506 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10507 if (!isLoopInvariant(RHS, L)) { 10508 if (!isLoopInvariant(LHS, L)) 10509 return None; 10510 10511 std::swap(LHS, RHS); 10512 Pred = ICmpInst::getSwappedPredicate(Pred); 10513 } 10514 10515 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10516 if (!ArLHS || ArLHS->getLoop() != L) 10517 return None; 10518 10519 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10520 if (!MonotonicType) 10521 return None; 10522 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10523 // true as the loop iterates, and the backedge is control dependent on 10524 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10525 // 10526 // * if the predicate was false in the first iteration then the predicate 10527 // is never evaluated again, since the loop exits without taking the 10528 // backedge. 10529 // * if the predicate was true in the first iteration then it will 10530 // continue to be true for all future iterations since it is 10531 // monotonically increasing. 10532 // 10533 // For both the above possibilities, we can replace the loop varying 10534 // predicate with its value on the first iteration of the loop (which is 10535 // loop invariant). 10536 // 10537 // A similar reasoning applies for a monotonically decreasing predicate, by 10538 // replacing true with false and false with true in the above two bullets. 10539 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10540 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10541 10542 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10543 return None; 10544 10545 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10546 } 10547 10548 Optional<ScalarEvolution::LoopInvariantPredicate> 10549 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10550 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10551 const Instruction *CtxI, const SCEV *MaxIter) { 10552 // Try to prove the following set of facts: 10553 // - The predicate is monotonic in the iteration space. 10554 // - If the check does not fail on the 1st iteration: 10555 // - No overflow will happen during first MaxIter iterations; 10556 // - It will not fail on the MaxIter'th iteration. 10557 // If the check does fail on the 1st iteration, we leave the loop and no 10558 // other checks matter. 10559 10560 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10561 if (!isLoopInvariant(RHS, L)) { 10562 if (!isLoopInvariant(LHS, L)) 10563 return None; 10564 10565 std::swap(LHS, RHS); 10566 Pred = ICmpInst::getSwappedPredicate(Pred); 10567 } 10568 10569 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10570 if (!AR || AR->getLoop() != L) 10571 return None; 10572 10573 // The predicate must be relational (i.e. <, <=, >=, >). 10574 if (!ICmpInst::isRelational(Pred)) 10575 return None; 10576 10577 // TODO: Support steps other than +/- 1. 10578 const SCEV *Step = AR->getStepRecurrence(*this); 10579 auto *One = getOne(Step->getType()); 10580 auto *MinusOne = getNegativeSCEV(One); 10581 if (Step != One && Step != MinusOne) 10582 return None; 10583 10584 // Type mismatch here means that MaxIter is potentially larger than max 10585 // unsigned value in start type, which mean we cannot prove no wrap for the 10586 // indvar. 10587 if (AR->getType() != MaxIter->getType()) 10588 return None; 10589 10590 // Value of IV on suggested last iteration. 10591 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10592 // Does it still meet the requirement? 10593 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10594 return None; 10595 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10596 // not exceed max unsigned value of this type), this effectively proves 10597 // that there is no wrap during the iteration. To prove that there is no 10598 // signed/unsigned wrap, we need to check that 10599 // Start <= Last for step = 1 or Start >= Last for step = -1. 10600 ICmpInst::Predicate NoOverflowPred = 10601 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10602 if (Step == MinusOne) 10603 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10604 const SCEV *Start = AR->getStart(); 10605 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10606 return None; 10607 10608 // Everything is fine. 10609 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10610 } 10611 10612 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10613 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10614 if (HasSameValue(LHS, RHS)) 10615 return ICmpInst::isTrueWhenEqual(Pred); 10616 10617 // This code is split out from isKnownPredicate because it is called from 10618 // within isLoopEntryGuardedByCond. 10619 10620 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10621 const ConstantRange &RangeRHS) { 10622 return RangeLHS.icmp(Pred, RangeRHS); 10623 }; 10624 10625 // The check at the top of the function catches the case where the values are 10626 // known to be equal. 10627 if (Pred == CmpInst::ICMP_EQ) 10628 return false; 10629 10630 if (Pred == CmpInst::ICMP_NE) { 10631 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10632 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10633 return true; 10634 auto *Diff = getMinusSCEV(LHS, RHS); 10635 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10636 } 10637 10638 if (CmpInst::isSigned(Pred)) 10639 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10640 10641 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10642 } 10643 10644 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10645 const SCEV *LHS, 10646 const SCEV *RHS) { 10647 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10648 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10649 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10650 // OutC1 and OutC2. 10651 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10652 APInt &OutC1, APInt &OutC2, 10653 SCEV::NoWrapFlags ExpectedFlags) { 10654 const SCEV *XNonConstOp, *XConstOp; 10655 const SCEV *YNonConstOp, *YConstOp; 10656 SCEV::NoWrapFlags XFlagsPresent; 10657 SCEV::NoWrapFlags YFlagsPresent; 10658 10659 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10660 XConstOp = getZero(X->getType()); 10661 XNonConstOp = X; 10662 XFlagsPresent = ExpectedFlags; 10663 } 10664 if (!isa<SCEVConstant>(XConstOp) || 10665 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10666 return false; 10667 10668 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10669 YConstOp = getZero(Y->getType()); 10670 YNonConstOp = Y; 10671 YFlagsPresent = ExpectedFlags; 10672 } 10673 10674 if (!isa<SCEVConstant>(YConstOp) || 10675 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10676 return false; 10677 10678 if (YNonConstOp != XNonConstOp) 10679 return false; 10680 10681 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10682 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10683 10684 return true; 10685 }; 10686 10687 APInt C1; 10688 APInt C2; 10689 10690 switch (Pred) { 10691 default: 10692 break; 10693 10694 case ICmpInst::ICMP_SGE: 10695 std::swap(LHS, RHS); 10696 LLVM_FALLTHROUGH; 10697 case ICmpInst::ICMP_SLE: 10698 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10699 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10700 return true; 10701 10702 break; 10703 10704 case ICmpInst::ICMP_SGT: 10705 std::swap(LHS, RHS); 10706 LLVM_FALLTHROUGH; 10707 case ICmpInst::ICMP_SLT: 10708 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10709 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10710 return true; 10711 10712 break; 10713 10714 case ICmpInst::ICMP_UGE: 10715 std::swap(LHS, RHS); 10716 LLVM_FALLTHROUGH; 10717 case ICmpInst::ICMP_ULE: 10718 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10719 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10720 return true; 10721 10722 break; 10723 10724 case ICmpInst::ICMP_UGT: 10725 std::swap(LHS, RHS); 10726 LLVM_FALLTHROUGH; 10727 case ICmpInst::ICMP_ULT: 10728 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10729 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10730 return true; 10731 break; 10732 } 10733 10734 return false; 10735 } 10736 10737 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10738 const SCEV *LHS, 10739 const SCEV *RHS) { 10740 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10741 return false; 10742 10743 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10744 // the stack can result in exponential time complexity. 10745 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10746 10747 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10748 // 10749 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10750 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10751 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10752 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10753 // use isKnownPredicate later if needed. 10754 return isKnownNonNegative(RHS) && 10755 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10756 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10757 } 10758 10759 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10760 ICmpInst::Predicate Pred, 10761 const SCEV *LHS, const SCEV *RHS) { 10762 // No need to even try if we know the module has no guards. 10763 if (!HasGuards) 10764 return false; 10765 10766 return any_of(*BB, [&](const Instruction &I) { 10767 using namespace llvm::PatternMatch; 10768 10769 Value *Condition; 10770 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10771 m_Value(Condition))) && 10772 isImpliedCond(Pred, LHS, RHS, Condition, false); 10773 }); 10774 } 10775 10776 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10777 /// protected by a conditional between LHS and RHS. This is used to 10778 /// to eliminate casts. 10779 bool 10780 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10781 ICmpInst::Predicate Pred, 10782 const SCEV *LHS, const SCEV *RHS) { 10783 // Interpret a null as meaning no loop, where there is obviously no guard 10784 // (interprocedural conditions notwithstanding). 10785 if (!L) return true; 10786 10787 if (VerifyIR) 10788 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10789 "This cannot be done on broken IR!"); 10790 10791 10792 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10793 return true; 10794 10795 BasicBlock *Latch = L->getLoopLatch(); 10796 if (!Latch) 10797 return false; 10798 10799 BranchInst *LoopContinuePredicate = 10800 dyn_cast<BranchInst>(Latch->getTerminator()); 10801 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10802 isImpliedCond(Pred, LHS, RHS, 10803 LoopContinuePredicate->getCondition(), 10804 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10805 return true; 10806 10807 // We don't want more than one activation of the following loops on the stack 10808 // -- that can lead to O(n!) time complexity. 10809 if (WalkingBEDominatingConds) 10810 return false; 10811 10812 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10813 10814 // See if we can exploit a trip count to prove the predicate. 10815 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10816 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10817 if (LatchBECount != getCouldNotCompute()) { 10818 // We know that Latch branches back to the loop header exactly 10819 // LatchBECount times. This means the backdege condition at Latch is 10820 // equivalent to "{0,+,1} u< LatchBECount". 10821 Type *Ty = LatchBECount->getType(); 10822 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10823 const SCEV *LoopCounter = 10824 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10825 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10826 LatchBECount)) 10827 return true; 10828 } 10829 10830 // Check conditions due to any @llvm.assume intrinsics. 10831 for (auto &AssumeVH : AC.assumptions()) { 10832 if (!AssumeVH) 10833 continue; 10834 auto *CI = cast<CallInst>(AssumeVH); 10835 if (!DT.dominates(CI, Latch->getTerminator())) 10836 continue; 10837 10838 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10839 return true; 10840 } 10841 10842 // If the loop is not reachable from the entry block, we risk running into an 10843 // infinite loop as we walk up into the dom tree. These loops do not matter 10844 // anyway, so we just return a conservative answer when we see them. 10845 if (!DT.isReachableFromEntry(L->getHeader())) 10846 return false; 10847 10848 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10849 return true; 10850 10851 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10852 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10853 assert(DTN && "should reach the loop header before reaching the root!"); 10854 10855 BasicBlock *BB = DTN->getBlock(); 10856 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10857 return true; 10858 10859 BasicBlock *PBB = BB->getSinglePredecessor(); 10860 if (!PBB) 10861 continue; 10862 10863 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10864 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10865 continue; 10866 10867 Value *Condition = ContinuePredicate->getCondition(); 10868 10869 // If we have an edge `E` within the loop body that dominates the only 10870 // latch, the condition guarding `E` also guards the backedge. This 10871 // reasoning works only for loops with a single latch. 10872 10873 BasicBlockEdge DominatingEdge(PBB, BB); 10874 if (DominatingEdge.isSingleEdge()) { 10875 // We're constructively (and conservatively) enumerating edges within the 10876 // loop body that dominate the latch. The dominator tree better agree 10877 // with us on this: 10878 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10879 10880 if (isImpliedCond(Pred, LHS, RHS, Condition, 10881 BB != ContinuePredicate->getSuccessor(0))) 10882 return true; 10883 } 10884 } 10885 10886 return false; 10887 } 10888 10889 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10890 ICmpInst::Predicate Pred, 10891 const SCEV *LHS, 10892 const SCEV *RHS) { 10893 if (VerifyIR) 10894 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10895 "This cannot be done on broken IR!"); 10896 10897 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10898 // the facts (a >= b && a != b) separately. A typical situation is when the 10899 // non-strict comparison is known from ranges and non-equality is known from 10900 // dominating predicates. If we are proving strict comparison, we always try 10901 // to prove non-equality and non-strict comparison separately. 10902 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10903 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10904 bool ProvedNonStrictComparison = false; 10905 bool ProvedNonEquality = false; 10906 10907 auto SplitAndProve = 10908 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10909 if (!ProvedNonStrictComparison) 10910 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10911 if (!ProvedNonEquality) 10912 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10913 if (ProvedNonStrictComparison && ProvedNonEquality) 10914 return true; 10915 return false; 10916 }; 10917 10918 if (ProvingStrictComparison) { 10919 auto ProofFn = [&](ICmpInst::Predicate P) { 10920 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10921 }; 10922 if (SplitAndProve(ProofFn)) 10923 return true; 10924 } 10925 10926 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10927 auto ProveViaGuard = [&](const BasicBlock *Block) { 10928 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10929 return true; 10930 if (ProvingStrictComparison) { 10931 auto ProofFn = [&](ICmpInst::Predicate P) { 10932 return isImpliedViaGuard(Block, P, LHS, RHS); 10933 }; 10934 if (SplitAndProve(ProofFn)) 10935 return true; 10936 } 10937 return false; 10938 }; 10939 10940 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10941 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10942 const Instruction *CtxI = &BB->front(); 10943 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10944 return true; 10945 if (ProvingStrictComparison) { 10946 auto ProofFn = [&](ICmpInst::Predicate P) { 10947 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10948 }; 10949 if (SplitAndProve(ProofFn)) 10950 return true; 10951 } 10952 return false; 10953 }; 10954 10955 // Starting at the block's predecessor, climb up the predecessor chain, as long 10956 // as there are predecessors that can be found that have unique successors 10957 // leading to the original block. 10958 const Loop *ContainingLoop = LI.getLoopFor(BB); 10959 const BasicBlock *PredBB; 10960 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10961 PredBB = ContainingLoop->getLoopPredecessor(); 10962 else 10963 PredBB = BB->getSinglePredecessor(); 10964 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10965 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10966 if (ProveViaGuard(Pair.first)) 10967 return true; 10968 10969 const BranchInst *LoopEntryPredicate = 10970 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10971 if (!LoopEntryPredicate || 10972 LoopEntryPredicate->isUnconditional()) 10973 continue; 10974 10975 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10976 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10977 return true; 10978 } 10979 10980 // Check conditions due to any @llvm.assume intrinsics. 10981 for (auto &AssumeVH : AC.assumptions()) { 10982 if (!AssumeVH) 10983 continue; 10984 auto *CI = cast<CallInst>(AssumeVH); 10985 if (!DT.dominates(CI, BB)) 10986 continue; 10987 10988 if (ProveViaCond(CI->getArgOperand(0), false)) 10989 return true; 10990 } 10991 10992 return false; 10993 } 10994 10995 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10996 ICmpInst::Predicate Pred, 10997 const SCEV *LHS, 10998 const SCEV *RHS) { 10999 // Interpret a null as meaning no loop, where there is obviously no guard 11000 // (interprocedural conditions notwithstanding). 11001 if (!L) 11002 return false; 11003 11004 // Both LHS and RHS must be available at loop entry. 11005 assert(isAvailableAtLoopEntry(LHS, L) && 11006 "LHS is not available at Loop Entry"); 11007 assert(isAvailableAtLoopEntry(RHS, L) && 11008 "RHS is not available at Loop Entry"); 11009 11010 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11011 return true; 11012 11013 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11014 } 11015 11016 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11017 const SCEV *RHS, 11018 const Value *FoundCondValue, bool Inverse, 11019 const Instruction *CtxI) { 11020 // False conditions implies anything. Do not bother analyzing it further. 11021 if (FoundCondValue == 11022 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11023 return true; 11024 11025 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11026 return false; 11027 11028 auto ClearOnExit = 11029 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11030 11031 // Recursively handle And and Or conditions. 11032 const Value *Op0, *Op1; 11033 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11034 if (!Inverse) 11035 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11036 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11037 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11038 if (Inverse) 11039 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11040 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11041 } 11042 11043 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11044 if (!ICI) return false; 11045 11046 // Now that we found a conditional branch that dominates the loop or controls 11047 // the loop latch. Check to see if it is the comparison we are looking for. 11048 ICmpInst::Predicate FoundPred; 11049 if (Inverse) 11050 FoundPred = ICI->getInversePredicate(); 11051 else 11052 FoundPred = ICI->getPredicate(); 11053 11054 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11055 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11056 11057 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11058 } 11059 11060 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11061 const SCEV *RHS, 11062 ICmpInst::Predicate FoundPred, 11063 const SCEV *FoundLHS, const SCEV *FoundRHS, 11064 const Instruction *CtxI) { 11065 // Balance the types. 11066 if (getTypeSizeInBits(LHS->getType()) < 11067 getTypeSizeInBits(FoundLHS->getType())) { 11068 // For unsigned and equality predicates, try to prove that both found 11069 // operands fit into narrow unsigned range. If so, try to prove facts in 11070 // narrow types. 11071 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11072 !FoundRHS->getType()->isPointerTy()) { 11073 auto *NarrowType = LHS->getType(); 11074 auto *WideType = FoundLHS->getType(); 11075 auto BitWidth = getTypeSizeInBits(NarrowType); 11076 const SCEV *MaxValue = getZeroExtendExpr( 11077 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11078 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11079 MaxValue) && 11080 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11081 MaxValue)) { 11082 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11083 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11084 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11085 TruncFoundRHS, CtxI)) 11086 return true; 11087 } 11088 } 11089 11090 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11091 return false; 11092 if (CmpInst::isSigned(Pred)) { 11093 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11094 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11095 } else { 11096 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11097 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11098 } 11099 } else if (getTypeSizeInBits(LHS->getType()) > 11100 getTypeSizeInBits(FoundLHS->getType())) { 11101 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11102 return false; 11103 if (CmpInst::isSigned(FoundPred)) { 11104 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11105 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11106 } else { 11107 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11108 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11109 } 11110 } 11111 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11112 FoundRHS, CtxI); 11113 } 11114 11115 bool ScalarEvolution::isImpliedCondBalancedTypes( 11116 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11117 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11118 const Instruction *CtxI) { 11119 assert(getTypeSizeInBits(LHS->getType()) == 11120 getTypeSizeInBits(FoundLHS->getType()) && 11121 "Types should be balanced!"); 11122 // Canonicalize the query to match the way instcombine will have 11123 // canonicalized the comparison. 11124 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11125 if (LHS == RHS) 11126 return CmpInst::isTrueWhenEqual(Pred); 11127 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11128 if (FoundLHS == FoundRHS) 11129 return CmpInst::isFalseWhenEqual(FoundPred); 11130 11131 // Check to see if we can make the LHS or RHS match. 11132 if (LHS == FoundRHS || RHS == FoundLHS) { 11133 if (isa<SCEVConstant>(RHS)) { 11134 std::swap(FoundLHS, FoundRHS); 11135 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11136 } else { 11137 std::swap(LHS, RHS); 11138 Pred = ICmpInst::getSwappedPredicate(Pred); 11139 } 11140 } 11141 11142 // Check whether the found predicate is the same as the desired predicate. 11143 if (FoundPred == Pred) 11144 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11145 11146 // Check whether swapping the found predicate makes it the same as the 11147 // desired predicate. 11148 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11149 // We can write the implication 11150 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11151 // using one of the following ways: 11152 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11153 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11154 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11155 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11156 // Forms 1. and 2. require swapping the operands of one condition. Don't 11157 // do this if it would break canonical constant/addrec ordering. 11158 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11159 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11160 CtxI); 11161 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11162 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11163 11164 // There's no clear preference between forms 3. and 4., try both. Avoid 11165 // forming getNotSCEV of pointer values as the resulting subtract is 11166 // not legal. 11167 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11168 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11169 FoundLHS, FoundRHS, CtxI)) 11170 return true; 11171 11172 if (!FoundLHS->getType()->isPointerTy() && 11173 !FoundRHS->getType()->isPointerTy() && 11174 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11175 getNotSCEV(FoundRHS), CtxI)) 11176 return true; 11177 11178 return false; 11179 } 11180 11181 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11182 CmpInst::Predicate P2) { 11183 assert(P1 != P2 && "Handled earlier!"); 11184 return CmpInst::isRelational(P2) && 11185 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11186 }; 11187 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11188 // Unsigned comparison is the same as signed comparison when both the 11189 // operands are non-negative or negative. 11190 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11191 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11192 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11193 // Create local copies that we can freely swap and canonicalize our 11194 // conditions to "le/lt". 11195 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11196 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11197 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11198 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11199 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11200 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11201 std::swap(CanonicalLHS, CanonicalRHS); 11202 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11203 } 11204 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11205 "Must be!"); 11206 assert((ICmpInst::isLT(CanonicalFoundPred) || 11207 ICmpInst::isLE(CanonicalFoundPred)) && 11208 "Must be!"); 11209 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11210 // Use implication: 11211 // x <u y && y >=s 0 --> x <s y. 11212 // If we can prove the left part, the right part is also proven. 11213 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11214 CanonicalRHS, CanonicalFoundLHS, 11215 CanonicalFoundRHS); 11216 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11217 // Use implication: 11218 // x <s y && y <s 0 --> x <u y. 11219 // If we can prove the left part, the right part is also proven. 11220 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11221 CanonicalRHS, CanonicalFoundLHS, 11222 CanonicalFoundRHS); 11223 } 11224 11225 // Check if we can make progress by sharpening ranges. 11226 if (FoundPred == ICmpInst::ICMP_NE && 11227 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11228 11229 const SCEVConstant *C = nullptr; 11230 const SCEV *V = nullptr; 11231 11232 if (isa<SCEVConstant>(FoundLHS)) { 11233 C = cast<SCEVConstant>(FoundLHS); 11234 V = FoundRHS; 11235 } else { 11236 C = cast<SCEVConstant>(FoundRHS); 11237 V = FoundLHS; 11238 } 11239 11240 // The guarding predicate tells us that C != V. If the known range 11241 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11242 // range we consider has to correspond to same signedness as the 11243 // predicate we're interested in folding. 11244 11245 APInt Min = ICmpInst::isSigned(Pred) ? 11246 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11247 11248 if (Min == C->getAPInt()) { 11249 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11250 // This is true even if (Min + 1) wraps around -- in case of 11251 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11252 11253 APInt SharperMin = Min + 1; 11254 11255 switch (Pred) { 11256 case ICmpInst::ICMP_SGE: 11257 case ICmpInst::ICMP_UGE: 11258 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11259 // RHS, we're done. 11260 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11261 CtxI)) 11262 return true; 11263 LLVM_FALLTHROUGH; 11264 11265 case ICmpInst::ICMP_SGT: 11266 case ICmpInst::ICMP_UGT: 11267 // We know from the range information that (V `Pred` Min || 11268 // V == Min). We know from the guarding condition that !(V 11269 // == Min). This gives us 11270 // 11271 // V `Pred` Min || V == Min && !(V == Min) 11272 // => V `Pred` Min 11273 // 11274 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11275 11276 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11277 return true; 11278 break; 11279 11280 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11281 case ICmpInst::ICMP_SLE: 11282 case ICmpInst::ICMP_ULE: 11283 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11284 LHS, V, getConstant(SharperMin), CtxI)) 11285 return true; 11286 LLVM_FALLTHROUGH; 11287 11288 case ICmpInst::ICMP_SLT: 11289 case ICmpInst::ICMP_ULT: 11290 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11291 LHS, V, getConstant(Min), CtxI)) 11292 return true; 11293 break; 11294 11295 default: 11296 // No change 11297 break; 11298 } 11299 } 11300 } 11301 11302 // Check whether the actual condition is beyond sufficient. 11303 if (FoundPred == ICmpInst::ICMP_EQ) 11304 if (ICmpInst::isTrueWhenEqual(Pred)) 11305 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11306 return true; 11307 if (Pred == ICmpInst::ICMP_NE) 11308 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11309 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11310 return true; 11311 11312 // Otherwise assume the worst. 11313 return false; 11314 } 11315 11316 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11317 const SCEV *&L, const SCEV *&R, 11318 SCEV::NoWrapFlags &Flags) { 11319 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11320 if (!AE || AE->getNumOperands() != 2) 11321 return false; 11322 11323 L = AE->getOperand(0); 11324 R = AE->getOperand(1); 11325 Flags = AE->getNoWrapFlags(); 11326 return true; 11327 } 11328 11329 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11330 const SCEV *Less) { 11331 // We avoid subtracting expressions here because this function is usually 11332 // fairly deep in the call stack (i.e. is called many times). 11333 11334 // X - X = 0. 11335 if (More == Less) 11336 return APInt(getTypeSizeInBits(More->getType()), 0); 11337 11338 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11339 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11340 const auto *MAR = cast<SCEVAddRecExpr>(More); 11341 11342 if (LAR->getLoop() != MAR->getLoop()) 11343 return None; 11344 11345 // We look at affine expressions only; not for correctness but to keep 11346 // getStepRecurrence cheap. 11347 if (!LAR->isAffine() || !MAR->isAffine()) 11348 return None; 11349 11350 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11351 return None; 11352 11353 Less = LAR->getStart(); 11354 More = MAR->getStart(); 11355 11356 // fall through 11357 } 11358 11359 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11360 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11361 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11362 return M - L; 11363 } 11364 11365 SCEV::NoWrapFlags Flags; 11366 const SCEV *LLess = nullptr, *RLess = nullptr; 11367 const SCEV *LMore = nullptr, *RMore = nullptr; 11368 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11369 // Compare (X + C1) vs X. 11370 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11371 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11372 if (RLess == More) 11373 return -(C1->getAPInt()); 11374 11375 // Compare X vs (X + C2). 11376 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11377 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11378 if (RMore == Less) 11379 return C2->getAPInt(); 11380 11381 // Compare (X + C1) vs (X + C2). 11382 if (C1 && C2 && RLess == RMore) 11383 return C2->getAPInt() - C1->getAPInt(); 11384 11385 return None; 11386 } 11387 11388 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11389 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11390 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11391 // Try to recognize the following pattern: 11392 // 11393 // FoundRHS = ... 11394 // ... 11395 // loop: 11396 // FoundLHS = {Start,+,W} 11397 // context_bb: // Basic block from the same loop 11398 // known(Pred, FoundLHS, FoundRHS) 11399 // 11400 // If some predicate is known in the context of a loop, it is also known on 11401 // each iteration of this loop, including the first iteration. Therefore, in 11402 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11403 // prove the original pred using this fact. 11404 if (!CtxI) 11405 return false; 11406 const BasicBlock *ContextBB = CtxI->getParent(); 11407 // Make sure AR varies in the context block. 11408 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11409 const Loop *L = AR->getLoop(); 11410 // Make sure that context belongs to the loop and executes on 1st iteration 11411 // (if it ever executes at all). 11412 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11413 return false; 11414 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11415 return false; 11416 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11417 } 11418 11419 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11420 const Loop *L = AR->getLoop(); 11421 // Make sure that context belongs to the loop and executes on 1st iteration 11422 // (if it ever executes at all). 11423 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11424 return false; 11425 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11426 return false; 11427 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11428 } 11429 11430 return false; 11431 } 11432 11433 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11434 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11435 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11436 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11437 return false; 11438 11439 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11440 if (!AddRecLHS) 11441 return false; 11442 11443 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11444 if (!AddRecFoundLHS) 11445 return false; 11446 11447 // We'd like to let SCEV reason about control dependencies, so we constrain 11448 // both the inequalities to be about add recurrences on the same loop. This 11449 // way we can use isLoopEntryGuardedByCond later. 11450 11451 const Loop *L = AddRecFoundLHS->getLoop(); 11452 if (L != AddRecLHS->getLoop()) 11453 return false; 11454 11455 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11456 // 11457 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11458 // ... (2) 11459 // 11460 // Informal proof for (2), assuming (1) [*]: 11461 // 11462 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11463 // 11464 // Then 11465 // 11466 // FoundLHS s< FoundRHS s< INT_MIN - C 11467 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11468 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11469 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11470 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11471 // <=> FoundLHS + C s< FoundRHS + C 11472 // 11473 // [*]: (1) can be proved by ruling out overflow. 11474 // 11475 // [**]: This can be proved by analyzing all the four possibilities: 11476 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11477 // (A s>= 0, B s>= 0). 11478 // 11479 // Note: 11480 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11481 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11482 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11483 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11484 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11485 // C)". 11486 11487 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11488 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11489 if (!LDiff || !RDiff || *LDiff != *RDiff) 11490 return false; 11491 11492 if (LDiff->isMinValue()) 11493 return true; 11494 11495 APInt FoundRHSLimit; 11496 11497 if (Pred == CmpInst::ICMP_ULT) { 11498 FoundRHSLimit = -(*RDiff); 11499 } else { 11500 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11501 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11502 } 11503 11504 // Try to prove (1) or (2), as needed. 11505 return isAvailableAtLoopEntry(FoundRHS, L) && 11506 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11507 getConstant(FoundRHSLimit)); 11508 } 11509 11510 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11511 const SCEV *LHS, const SCEV *RHS, 11512 const SCEV *FoundLHS, 11513 const SCEV *FoundRHS, unsigned Depth) { 11514 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11515 11516 auto ClearOnExit = make_scope_exit([&]() { 11517 if (LPhi) { 11518 bool Erased = PendingMerges.erase(LPhi); 11519 assert(Erased && "Failed to erase LPhi!"); 11520 (void)Erased; 11521 } 11522 if (RPhi) { 11523 bool Erased = PendingMerges.erase(RPhi); 11524 assert(Erased && "Failed to erase RPhi!"); 11525 (void)Erased; 11526 } 11527 }); 11528 11529 // Find respective Phis and check that they are not being pending. 11530 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11531 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11532 if (!PendingMerges.insert(Phi).second) 11533 return false; 11534 LPhi = Phi; 11535 } 11536 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11537 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11538 // If we detect a loop of Phi nodes being processed by this method, for 11539 // example: 11540 // 11541 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11542 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11543 // 11544 // we don't want to deal with a case that complex, so return conservative 11545 // answer false. 11546 if (!PendingMerges.insert(Phi).second) 11547 return false; 11548 RPhi = Phi; 11549 } 11550 11551 // If none of LHS, RHS is a Phi, nothing to do here. 11552 if (!LPhi && !RPhi) 11553 return false; 11554 11555 // If there is a SCEVUnknown Phi we are interested in, make it left. 11556 if (!LPhi) { 11557 std::swap(LHS, RHS); 11558 std::swap(FoundLHS, FoundRHS); 11559 std::swap(LPhi, RPhi); 11560 Pred = ICmpInst::getSwappedPredicate(Pred); 11561 } 11562 11563 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11564 const BasicBlock *LBB = LPhi->getParent(); 11565 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11566 11567 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11568 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11569 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11570 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11571 }; 11572 11573 if (RPhi && RPhi->getParent() == LBB) { 11574 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11575 // If we compare two Phis from the same block, and for each entry block 11576 // the predicate is true for incoming values from this block, then the 11577 // predicate is also true for the Phis. 11578 for (const BasicBlock *IncBB : predecessors(LBB)) { 11579 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11580 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11581 if (!ProvedEasily(L, R)) 11582 return false; 11583 } 11584 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11585 // Case two: RHS is also a Phi from the same basic block, and it is an 11586 // AddRec. It means that there is a loop which has both AddRec and Unknown 11587 // PHIs, for it we can compare incoming values of AddRec from above the loop 11588 // and latch with their respective incoming values of LPhi. 11589 // TODO: Generalize to handle loops with many inputs in a header. 11590 if (LPhi->getNumIncomingValues() != 2) return false; 11591 11592 auto *RLoop = RAR->getLoop(); 11593 auto *Predecessor = RLoop->getLoopPredecessor(); 11594 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11595 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11596 if (!ProvedEasily(L1, RAR->getStart())) 11597 return false; 11598 auto *Latch = RLoop->getLoopLatch(); 11599 assert(Latch && "Loop with AddRec with no latch?"); 11600 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11601 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11602 return false; 11603 } else { 11604 // In all other cases go over inputs of LHS and compare each of them to RHS, 11605 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11606 // At this point RHS is either a non-Phi, or it is a Phi from some block 11607 // different from LBB. 11608 for (const BasicBlock *IncBB : predecessors(LBB)) { 11609 // Check that RHS is available in this block. 11610 if (!dominates(RHS, IncBB)) 11611 return false; 11612 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11613 // Make sure L does not refer to a value from a potentially previous 11614 // iteration of a loop. 11615 if (!properlyDominates(L, IncBB)) 11616 return false; 11617 if (!ProvedEasily(L, RHS)) 11618 return false; 11619 } 11620 } 11621 return true; 11622 } 11623 11624 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11625 const SCEV *LHS, 11626 const SCEV *RHS, 11627 const SCEV *FoundLHS, 11628 const SCEV *FoundRHS) { 11629 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11630 // sure that we are dealing with same LHS. 11631 if (RHS == FoundRHS) { 11632 std::swap(LHS, RHS); 11633 std::swap(FoundLHS, FoundRHS); 11634 Pred = ICmpInst::getSwappedPredicate(Pred); 11635 } 11636 if (LHS != FoundLHS) 11637 return false; 11638 11639 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11640 if (!SUFoundRHS) 11641 return false; 11642 11643 Value *Shiftee, *ShiftValue; 11644 11645 using namespace PatternMatch; 11646 if (match(SUFoundRHS->getValue(), 11647 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11648 auto *ShifteeS = getSCEV(Shiftee); 11649 // Prove one of the following: 11650 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11651 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11652 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11653 // ---> LHS <s RHS 11654 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11655 // ---> LHS <=s RHS 11656 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11657 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11658 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11659 if (isKnownNonNegative(ShifteeS)) 11660 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11661 } 11662 11663 return false; 11664 } 11665 11666 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11667 const SCEV *LHS, const SCEV *RHS, 11668 const SCEV *FoundLHS, 11669 const SCEV *FoundRHS, 11670 const Instruction *CtxI) { 11671 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11672 return true; 11673 11674 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11675 return true; 11676 11677 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11678 return true; 11679 11680 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11681 CtxI)) 11682 return true; 11683 11684 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11685 FoundLHS, FoundRHS); 11686 } 11687 11688 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11689 template <typename MinMaxExprType> 11690 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11691 const SCEV *Candidate) { 11692 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11693 if (!MinMaxExpr) 11694 return false; 11695 11696 return is_contained(MinMaxExpr->operands(), Candidate); 11697 } 11698 11699 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11700 ICmpInst::Predicate Pred, 11701 const SCEV *LHS, const SCEV *RHS) { 11702 // If both sides are affine addrecs for the same loop, with equal 11703 // steps, and we know the recurrences don't wrap, then we only 11704 // need to check the predicate on the starting values. 11705 11706 if (!ICmpInst::isRelational(Pred)) 11707 return false; 11708 11709 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11710 if (!LAR) 11711 return false; 11712 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11713 if (!RAR) 11714 return false; 11715 if (LAR->getLoop() != RAR->getLoop()) 11716 return false; 11717 if (!LAR->isAffine() || !RAR->isAffine()) 11718 return false; 11719 11720 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11721 return false; 11722 11723 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11724 SCEV::FlagNSW : SCEV::FlagNUW; 11725 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11726 return false; 11727 11728 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11729 } 11730 11731 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11732 /// expression? 11733 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11734 ICmpInst::Predicate Pred, 11735 const SCEV *LHS, const SCEV *RHS) { 11736 switch (Pred) { 11737 default: 11738 return false; 11739 11740 case ICmpInst::ICMP_SGE: 11741 std::swap(LHS, RHS); 11742 LLVM_FALLTHROUGH; 11743 case ICmpInst::ICMP_SLE: 11744 return 11745 // min(A, ...) <= A 11746 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11747 // A <= max(A, ...) 11748 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11749 11750 case ICmpInst::ICMP_UGE: 11751 std::swap(LHS, RHS); 11752 LLVM_FALLTHROUGH; 11753 case ICmpInst::ICMP_ULE: 11754 return 11755 // min(A, ...) <= A 11756 // FIXME: what about umin_seq? 11757 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11758 // A <= max(A, ...) 11759 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11760 } 11761 11762 llvm_unreachable("covered switch fell through?!"); 11763 } 11764 11765 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11766 const SCEV *LHS, const SCEV *RHS, 11767 const SCEV *FoundLHS, 11768 const SCEV *FoundRHS, 11769 unsigned Depth) { 11770 assert(getTypeSizeInBits(LHS->getType()) == 11771 getTypeSizeInBits(RHS->getType()) && 11772 "LHS and RHS have different sizes?"); 11773 assert(getTypeSizeInBits(FoundLHS->getType()) == 11774 getTypeSizeInBits(FoundRHS->getType()) && 11775 "FoundLHS and FoundRHS have different sizes?"); 11776 // We want to avoid hurting the compile time with analysis of too big trees. 11777 if (Depth > MaxSCEVOperationsImplicationDepth) 11778 return false; 11779 11780 // We only want to work with GT comparison so far. 11781 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11782 Pred = CmpInst::getSwappedPredicate(Pred); 11783 std::swap(LHS, RHS); 11784 std::swap(FoundLHS, FoundRHS); 11785 } 11786 11787 // For unsigned, try to reduce it to corresponding signed comparison. 11788 if (Pred == ICmpInst::ICMP_UGT) 11789 // We can replace unsigned predicate with its signed counterpart if all 11790 // involved values are non-negative. 11791 // TODO: We could have better support for unsigned. 11792 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11793 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11794 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11795 // use this fact to prove that LHS and RHS are non-negative. 11796 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11797 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11798 FoundRHS) && 11799 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11800 FoundRHS)) 11801 Pred = ICmpInst::ICMP_SGT; 11802 } 11803 11804 if (Pred != ICmpInst::ICMP_SGT) 11805 return false; 11806 11807 auto GetOpFromSExt = [&](const SCEV *S) { 11808 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11809 return Ext->getOperand(); 11810 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11811 // the constant in some cases. 11812 return S; 11813 }; 11814 11815 // Acquire values from extensions. 11816 auto *OrigLHS = LHS; 11817 auto *OrigFoundLHS = FoundLHS; 11818 LHS = GetOpFromSExt(LHS); 11819 FoundLHS = GetOpFromSExt(FoundLHS); 11820 11821 // Is the SGT predicate can be proved trivially or using the found context. 11822 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11823 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11824 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11825 FoundRHS, Depth + 1); 11826 }; 11827 11828 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11829 // We want to avoid creation of any new non-constant SCEV. Since we are 11830 // going to compare the operands to RHS, we should be certain that we don't 11831 // need any size extensions for this. So let's decline all cases when the 11832 // sizes of types of LHS and RHS do not match. 11833 // TODO: Maybe try to get RHS from sext to catch more cases? 11834 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11835 return false; 11836 11837 // Should not overflow. 11838 if (!LHSAddExpr->hasNoSignedWrap()) 11839 return false; 11840 11841 auto *LL = LHSAddExpr->getOperand(0); 11842 auto *LR = LHSAddExpr->getOperand(1); 11843 auto *MinusOne = getMinusOne(RHS->getType()); 11844 11845 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11846 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11847 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11848 }; 11849 // Try to prove the following rule: 11850 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11851 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11852 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11853 return true; 11854 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11855 Value *LL, *LR; 11856 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11857 11858 using namespace llvm::PatternMatch; 11859 11860 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11861 // Rules for division. 11862 // We are going to perform some comparisons with Denominator and its 11863 // derivative expressions. In general case, creating a SCEV for it may 11864 // lead to a complex analysis of the entire graph, and in particular it 11865 // can request trip count recalculation for the same loop. This would 11866 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11867 // this, we only want to create SCEVs that are constants in this section. 11868 // So we bail if Denominator is not a constant. 11869 if (!isa<ConstantInt>(LR)) 11870 return false; 11871 11872 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11873 11874 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11875 // then a SCEV for the numerator already exists and matches with FoundLHS. 11876 auto *Numerator = getExistingSCEV(LL); 11877 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11878 return false; 11879 11880 // Make sure that the numerator matches with FoundLHS and the denominator 11881 // is positive. 11882 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11883 return false; 11884 11885 auto *DTy = Denominator->getType(); 11886 auto *FRHSTy = FoundRHS->getType(); 11887 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11888 // One of types is a pointer and another one is not. We cannot extend 11889 // them properly to a wider type, so let us just reject this case. 11890 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11891 // to avoid this check. 11892 return false; 11893 11894 // Given that: 11895 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11896 auto *WTy = getWiderType(DTy, FRHSTy); 11897 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11898 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11899 11900 // Try to prove the following rule: 11901 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11902 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11903 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11904 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11905 if (isKnownNonPositive(RHS) && 11906 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11907 return true; 11908 11909 // Try to prove the following rule: 11910 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11911 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11912 // If we divide it by Denominator > 2, then: 11913 // 1. If FoundLHS is negative, then the result is 0. 11914 // 2. If FoundLHS is non-negative, then the result is non-negative. 11915 // Anyways, the result is non-negative. 11916 auto *MinusOne = getMinusOne(WTy); 11917 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11918 if (isKnownNegative(RHS) && 11919 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11920 return true; 11921 } 11922 } 11923 11924 // If our expression contained SCEVUnknown Phis, and we split it down and now 11925 // need to prove something for them, try to prove the predicate for every 11926 // possible incoming values of those Phis. 11927 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11928 return true; 11929 11930 return false; 11931 } 11932 11933 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11934 const SCEV *LHS, const SCEV *RHS) { 11935 // zext x u<= sext x, sext x s<= zext x 11936 switch (Pred) { 11937 case ICmpInst::ICMP_SGE: 11938 std::swap(LHS, RHS); 11939 LLVM_FALLTHROUGH; 11940 case ICmpInst::ICMP_SLE: { 11941 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11942 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11943 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11944 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11945 return true; 11946 break; 11947 } 11948 case ICmpInst::ICMP_UGE: 11949 std::swap(LHS, RHS); 11950 LLVM_FALLTHROUGH; 11951 case ICmpInst::ICMP_ULE: { 11952 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11953 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11954 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11955 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11956 return true; 11957 break; 11958 } 11959 default: 11960 break; 11961 }; 11962 return false; 11963 } 11964 11965 bool 11966 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11967 const SCEV *LHS, const SCEV *RHS) { 11968 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11969 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11970 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11971 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11972 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11973 } 11974 11975 bool 11976 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11977 const SCEV *LHS, const SCEV *RHS, 11978 const SCEV *FoundLHS, 11979 const SCEV *FoundRHS) { 11980 switch (Pred) { 11981 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11982 case ICmpInst::ICMP_EQ: 11983 case ICmpInst::ICMP_NE: 11984 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11985 return true; 11986 break; 11987 case ICmpInst::ICMP_SLT: 11988 case ICmpInst::ICMP_SLE: 11989 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11990 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11991 return true; 11992 break; 11993 case ICmpInst::ICMP_SGT: 11994 case ICmpInst::ICMP_SGE: 11995 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11996 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11997 return true; 11998 break; 11999 case ICmpInst::ICMP_ULT: 12000 case ICmpInst::ICMP_ULE: 12001 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12002 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12003 return true; 12004 break; 12005 case ICmpInst::ICMP_UGT: 12006 case ICmpInst::ICMP_UGE: 12007 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12008 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12009 return true; 12010 break; 12011 } 12012 12013 // Maybe it can be proved via operations? 12014 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12015 return true; 12016 12017 return false; 12018 } 12019 12020 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12021 const SCEV *LHS, 12022 const SCEV *RHS, 12023 const SCEV *FoundLHS, 12024 const SCEV *FoundRHS) { 12025 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12026 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12027 // reduce the compile time impact of this optimization. 12028 return false; 12029 12030 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12031 if (!Addend) 12032 return false; 12033 12034 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12035 12036 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12037 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12038 ConstantRange FoundLHSRange = 12039 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12040 12041 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12042 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12043 12044 // We can also compute the range of values for `LHS` that satisfy the 12045 // consequent, "`LHS` `Pred` `RHS`": 12046 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12047 // The antecedent implies the consequent if every value of `LHS` that 12048 // satisfies the antecedent also satisfies the consequent. 12049 return LHSRange.icmp(Pred, ConstRHS); 12050 } 12051 12052 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12053 bool IsSigned) { 12054 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12055 12056 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12057 const SCEV *One = getOne(Stride->getType()); 12058 12059 if (IsSigned) { 12060 APInt MaxRHS = getSignedRangeMax(RHS); 12061 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12062 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12063 12064 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12065 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12066 } 12067 12068 APInt MaxRHS = getUnsignedRangeMax(RHS); 12069 APInt MaxValue = APInt::getMaxValue(BitWidth); 12070 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12071 12072 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12073 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12074 } 12075 12076 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12077 bool IsSigned) { 12078 12079 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12080 const SCEV *One = getOne(Stride->getType()); 12081 12082 if (IsSigned) { 12083 APInt MinRHS = getSignedRangeMin(RHS); 12084 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12085 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12086 12087 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12088 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12089 } 12090 12091 APInt MinRHS = getUnsignedRangeMin(RHS); 12092 APInt MinValue = APInt::getMinValue(BitWidth); 12093 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12094 12095 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12096 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12097 } 12098 12099 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12100 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12101 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12102 // expression fixes the case of N=0. 12103 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12104 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12105 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12106 } 12107 12108 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12109 const SCEV *Stride, 12110 const SCEV *End, 12111 unsigned BitWidth, 12112 bool IsSigned) { 12113 // The logic in this function assumes we can represent a positive stride. 12114 // If we can't, the backedge-taken count must be zero. 12115 if (IsSigned && BitWidth == 1) 12116 return getZero(Stride->getType()); 12117 12118 // This code has only been closely audited for negative strides in the 12119 // unsigned comparison case, it may be correct for signed comparison, but 12120 // that needs to be established. 12121 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12122 "Stride is expected strictly positive for signed case!"); 12123 12124 // Calculate the maximum backedge count based on the range of values 12125 // permitted by Start, End, and Stride. 12126 APInt MinStart = 12127 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12128 12129 APInt MinStride = 12130 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12131 12132 // We assume either the stride is positive, or the backedge-taken count 12133 // is zero. So force StrideForMaxBECount to be at least one. 12134 APInt One(BitWidth, 1); 12135 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12136 : APIntOps::umax(One, MinStride); 12137 12138 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12139 : APInt::getMaxValue(BitWidth); 12140 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12141 12142 // Although End can be a MAX expression we estimate MaxEnd considering only 12143 // the case End = RHS of the loop termination condition. This is safe because 12144 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12145 // taken count. 12146 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12147 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12148 12149 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12150 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12151 : APIntOps::umax(MaxEnd, MinStart); 12152 12153 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12154 getConstant(StrideForMaxBECount) /* Step */); 12155 } 12156 12157 ScalarEvolution::ExitLimit 12158 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12159 const Loop *L, bool IsSigned, 12160 bool ControlsExit, bool AllowPredicates) { 12161 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12162 12163 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12164 bool PredicatedIV = false; 12165 12166 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12167 // Can we prove this loop *must* be UB if overflow of IV occurs? 12168 // Reasoning goes as follows: 12169 // * Suppose the IV did self wrap. 12170 // * If Stride evenly divides the iteration space, then once wrap 12171 // occurs, the loop must revisit the same values. 12172 // * We know that RHS is invariant, and that none of those values 12173 // caused this exit to be taken previously. Thus, this exit is 12174 // dynamically dead. 12175 // * If this is the sole exit, then a dead exit implies the loop 12176 // must be infinite if there are no abnormal exits. 12177 // * If the loop were infinite, then it must either not be mustprogress 12178 // or have side effects. Otherwise, it must be UB. 12179 // * It can't (by assumption), be UB so we have contradicted our 12180 // premise and can conclude the IV did not in fact self-wrap. 12181 if (!isLoopInvariant(RHS, L)) 12182 return false; 12183 12184 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12185 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12186 return false; 12187 12188 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12189 return false; 12190 12191 return loopIsFiniteByAssumption(L); 12192 }; 12193 12194 if (!IV) { 12195 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12196 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12197 if (AR && AR->getLoop() == L && AR->isAffine()) { 12198 auto canProveNUW = [&]() { 12199 if (!isLoopInvariant(RHS, L)) 12200 return false; 12201 12202 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12203 // We need the sequence defined by AR to strictly increase in the 12204 // unsigned integer domain for the logic below to hold. 12205 return false; 12206 12207 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12208 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12209 // If RHS <=u Limit, then there must exist a value V in the sequence 12210 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12211 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12212 // overflow occurs. This limit also implies that a signed comparison 12213 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12214 // the high bits on both sides must be zero. 12215 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12216 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12217 Limit = Limit.zext(OuterBitWidth); 12218 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12219 }; 12220 auto Flags = AR->getNoWrapFlags(); 12221 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12222 Flags = setFlags(Flags, SCEV::FlagNUW); 12223 12224 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12225 if (AR->hasNoUnsignedWrap()) { 12226 // Emulate what getZeroExtendExpr would have done during construction 12227 // if we'd been able to infer the fact just above at that time. 12228 const SCEV *Step = AR->getStepRecurrence(*this); 12229 Type *Ty = ZExt->getType(); 12230 auto *S = getAddRecExpr( 12231 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12232 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12233 IV = dyn_cast<SCEVAddRecExpr>(S); 12234 } 12235 } 12236 } 12237 } 12238 12239 12240 if (!IV && AllowPredicates) { 12241 // Try to make this an AddRec using runtime tests, in the first X 12242 // iterations of this loop, where X is the SCEV expression found by the 12243 // algorithm below. 12244 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12245 PredicatedIV = true; 12246 } 12247 12248 // Avoid weird loops 12249 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12250 return getCouldNotCompute(); 12251 12252 // A precondition of this method is that the condition being analyzed 12253 // reaches an exiting branch which dominates the latch. Given that, we can 12254 // assume that an increment which violates the nowrap specification and 12255 // produces poison must cause undefined behavior when the resulting poison 12256 // value is branched upon and thus we can conclude that the backedge is 12257 // taken no more often than would be required to produce that poison value. 12258 // Note that a well defined loop can exit on the iteration which violates 12259 // the nowrap specification if there is another exit (either explicit or 12260 // implicit/exceptional) which causes the loop to execute before the 12261 // exiting instruction we're analyzing would trigger UB. 12262 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12263 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12264 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12265 12266 const SCEV *Stride = IV->getStepRecurrence(*this); 12267 12268 bool PositiveStride = isKnownPositive(Stride); 12269 12270 // Avoid negative or zero stride values. 12271 if (!PositiveStride) { 12272 // We can compute the correct backedge taken count for loops with unknown 12273 // strides if we can prove that the loop is not an infinite loop with side 12274 // effects. Here's the loop structure we are trying to handle - 12275 // 12276 // i = start 12277 // do { 12278 // A[i] = i; 12279 // i += s; 12280 // } while (i < end); 12281 // 12282 // The backedge taken count for such loops is evaluated as - 12283 // (max(end, start + stride) - start - 1) /u stride 12284 // 12285 // The additional preconditions that we need to check to prove correctness 12286 // of the above formula is as follows - 12287 // 12288 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12289 // NoWrap flag). 12290 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12291 // no side effects within the loop) 12292 // c) loop has a single static exit (with no abnormal exits) 12293 // 12294 // Precondition a) implies that if the stride is negative, this is a single 12295 // trip loop. The backedge taken count formula reduces to zero in this case. 12296 // 12297 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12298 // then a zero stride means the backedge can't be taken without executing 12299 // undefined behavior. 12300 // 12301 // The positive stride case is the same as isKnownPositive(Stride) returning 12302 // true (original behavior of the function). 12303 // 12304 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12305 !loopHasNoAbnormalExits(L)) 12306 return getCouldNotCompute(); 12307 12308 // This bailout is protecting the logic in computeMaxBECountForLT which 12309 // has not yet been sufficiently auditted or tested with negative strides. 12310 // We used to filter out all known-non-positive cases here, we're in the 12311 // process of being less restrictive bit by bit. 12312 if (IsSigned && isKnownNonPositive(Stride)) 12313 return getCouldNotCompute(); 12314 12315 if (!isKnownNonZero(Stride)) { 12316 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12317 // if it might eventually be greater than start and if so, on which 12318 // iteration. We can't even produce a useful upper bound. 12319 if (!isLoopInvariant(RHS, L)) 12320 return getCouldNotCompute(); 12321 12322 // We allow a potentially zero stride, but we need to divide by stride 12323 // below. Since the loop can't be infinite and this check must control 12324 // the sole exit, we can infer the exit must be taken on the first 12325 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12326 // we know the numerator in the divides below must be zero, so we can 12327 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12328 // and produce the right result. 12329 // FIXME: Handle the case where Stride is poison? 12330 auto wouldZeroStrideBeUB = [&]() { 12331 // Proof by contradiction. Suppose the stride were zero. If we can 12332 // prove that the backedge *is* taken on the first iteration, then since 12333 // we know this condition controls the sole exit, we must have an 12334 // infinite loop. We can't have a (well defined) infinite loop per 12335 // check just above. 12336 // Note: The (Start - Stride) term is used to get the start' term from 12337 // (start' + stride,+,stride). Remember that we only care about the 12338 // result of this expression when stride == 0 at runtime. 12339 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12340 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12341 }; 12342 if (!wouldZeroStrideBeUB()) { 12343 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12344 } 12345 } 12346 } else if (!Stride->isOne() && !NoWrap) { 12347 auto isUBOnWrap = [&]() { 12348 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12349 // follows trivially from the fact that every (un)signed-wrapped, but 12350 // not self-wrapped value must be LT than the last value before 12351 // (un)signed wrap. Since we know that last value didn't exit, nor 12352 // will any smaller one. 12353 return canAssumeNoSelfWrap(IV); 12354 }; 12355 12356 // Avoid proven overflow cases: this will ensure that the backedge taken 12357 // count will not generate any unsigned overflow. Relaxed no-overflow 12358 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12359 // undefined behaviors like the case of C language. 12360 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12361 return getCouldNotCompute(); 12362 } 12363 12364 // On all paths just preceeding, we established the following invariant: 12365 // IV can be assumed not to overflow up to and including the exiting 12366 // iteration. We proved this in one of two ways: 12367 // 1) We can show overflow doesn't occur before the exiting iteration 12368 // 1a) canIVOverflowOnLT, and b) step of one 12369 // 2) We can show that if overflow occurs, the loop must execute UB 12370 // before any possible exit. 12371 // Note that we have not yet proved RHS invariant (in general). 12372 12373 const SCEV *Start = IV->getStart(); 12374 12375 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12376 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12377 // Use integer-typed versions for actual computation; we can't subtract 12378 // pointers in general. 12379 const SCEV *OrigStart = Start; 12380 const SCEV *OrigRHS = RHS; 12381 if (Start->getType()->isPointerTy()) { 12382 Start = getLosslessPtrToIntExpr(Start); 12383 if (isa<SCEVCouldNotCompute>(Start)) 12384 return Start; 12385 } 12386 if (RHS->getType()->isPointerTy()) { 12387 RHS = getLosslessPtrToIntExpr(RHS); 12388 if (isa<SCEVCouldNotCompute>(RHS)) 12389 return RHS; 12390 } 12391 12392 // When the RHS is not invariant, we do not know the end bound of the loop and 12393 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12394 // calculate the MaxBECount, given the start, stride and max value for the end 12395 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12396 // checked above). 12397 if (!isLoopInvariant(RHS, L)) { 12398 const SCEV *MaxBECount = computeMaxBECountForLT( 12399 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12400 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12401 false /*MaxOrZero*/, Predicates); 12402 } 12403 12404 // We use the expression (max(End,Start)-Start)/Stride to describe the 12405 // backedge count, as if the backedge is taken at least once max(End,Start) 12406 // is End and so the result is as above, and if not max(End,Start) is Start 12407 // so we get a backedge count of zero. 12408 const SCEV *BECount = nullptr; 12409 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12410 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12411 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12412 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12413 // Can we prove (max(RHS,Start) > Start - Stride? 12414 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12415 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12416 // In this case, we can use a refined formula for computing backedge taken 12417 // count. The general formula remains: 12418 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12419 // We want to use the alternate formula: 12420 // "((End - 1) - (Start - Stride)) /u Stride" 12421 // Let's do a quick case analysis to show these are equivalent under 12422 // our precondition that max(RHS,Start) > Start - Stride. 12423 // * For RHS <= Start, the backedge-taken count must be zero. 12424 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12425 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12426 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12427 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12428 // this to the stride of 1 case. 12429 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12430 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12431 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12432 // "((RHS - (Start - Stride) - 1) /u Stride". 12433 // Our preconditions trivially imply no overflow in that form. 12434 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12435 const SCEV *Numerator = 12436 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12437 BECount = getUDivExpr(Numerator, Stride); 12438 } 12439 12440 const SCEV *BECountIfBackedgeTaken = nullptr; 12441 if (!BECount) { 12442 auto canProveRHSGreaterThanEqualStart = [&]() { 12443 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12444 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12445 return true; 12446 12447 // (RHS > Start - 1) implies RHS >= Start. 12448 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12449 // "Start - 1" doesn't overflow. 12450 // * For signed comparison, if Start - 1 does overflow, it's equal 12451 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12452 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12453 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12454 // 12455 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12456 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12457 auto *StartMinusOne = getAddExpr(OrigStart, 12458 getMinusOne(OrigStart->getType())); 12459 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12460 }; 12461 12462 // If we know that RHS >= Start in the context of loop, then we know that 12463 // max(RHS, Start) = RHS at this point. 12464 const SCEV *End; 12465 if (canProveRHSGreaterThanEqualStart()) { 12466 End = RHS; 12467 } else { 12468 // If RHS < Start, the backedge will be taken zero times. So in 12469 // general, we can write the backedge-taken count as: 12470 // 12471 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12472 // 12473 // We convert it to the following to make it more convenient for SCEV: 12474 // 12475 // ceil(max(RHS, Start) - Start) / Stride 12476 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12477 12478 // See what would happen if we assume the backedge is taken. This is 12479 // used to compute MaxBECount. 12480 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12481 } 12482 12483 // At this point, we know: 12484 // 12485 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12486 // 2. The index variable doesn't overflow. 12487 // 12488 // Therefore, we know N exists such that 12489 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12490 // doesn't overflow. 12491 // 12492 // Using this information, try to prove whether the addition in 12493 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12494 const SCEV *One = getOne(Stride->getType()); 12495 bool MayAddOverflow = [&] { 12496 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12497 if (StrideC->getAPInt().isPowerOf2()) { 12498 // Suppose Stride is a power of two, and Start/End are unsigned 12499 // integers. Let UMAX be the largest representable unsigned 12500 // integer. 12501 // 12502 // By the preconditions of this function, we know 12503 // "(Start + Stride * N) >= End", and this doesn't overflow. 12504 // As a formula: 12505 // 12506 // End <= (Start + Stride * N) <= UMAX 12507 // 12508 // Subtracting Start from all the terms: 12509 // 12510 // End - Start <= Stride * N <= UMAX - Start 12511 // 12512 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12513 // 12514 // End - Start <= Stride * N <= UMAX 12515 // 12516 // Stride * N is a multiple of Stride. Therefore, 12517 // 12518 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12519 // 12520 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12521 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12522 // 12523 // End - Start <= Stride * N <= UMAX - Stride - 1 12524 // 12525 // Dropping the middle term: 12526 // 12527 // End - Start <= UMAX - Stride - 1 12528 // 12529 // Adding Stride - 1 to both sides: 12530 // 12531 // (End - Start) + (Stride - 1) <= UMAX 12532 // 12533 // In other words, the addition doesn't have unsigned overflow. 12534 // 12535 // A similar proof works if we treat Start/End as signed values. 12536 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12537 // use signed max instead of unsigned max. Note that we're trying 12538 // to prove a lack of unsigned overflow in either case. 12539 return false; 12540 } 12541 } 12542 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12543 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12544 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12545 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12546 // 12547 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12548 return false; 12549 } 12550 return true; 12551 }(); 12552 12553 const SCEV *Delta = getMinusSCEV(End, Start); 12554 if (!MayAddOverflow) { 12555 // floor((D + (S - 1)) / S) 12556 // We prefer this formulation if it's legal because it's fewer operations. 12557 BECount = 12558 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12559 } else { 12560 BECount = getUDivCeilSCEV(Delta, Stride); 12561 } 12562 } 12563 12564 const SCEV *MaxBECount; 12565 bool MaxOrZero = false; 12566 if (isa<SCEVConstant>(BECount)) { 12567 MaxBECount = BECount; 12568 } else if (BECountIfBackedgeTaken && 12569 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12570 // If we know exactly how many times the backedge will be taken if it's 12571 // taken at least once, then the backedge count will either be that or 12572 // zero. 12573 MaxBECount = BECountIfBackedgeTaken; 12574 MaxOrZero = true; 12575 } else { 12576 MaxBECount = computeMaxBECountForLT( 12577 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12578 } 12579 12580 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12581 !isa<SCEVCouldNotCompute>(BECount)) 12582 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12583 12584 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12585 } 12586 12587 ScalarEvolution::ExitLimit 12588 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12589 const Loop *L, bool IsSigned, 12590 bool ControlsExit, bool AllowPredicates) { 12591 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12592 // We handle only IV > Invariant 12593 if (!isLoopInvariant(RHS, L)) 12594 return getCouldNotCompute(); 12595 12596 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12597 if (!IV && AllowPredicates) 12598 // Try to make this an AddRec using runtime tests, in the first X 12599 // iterations of this loop, where X is the SCEV expression found by the 12600 // algorithm below. 12601 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12602 12603 // Avoid weird loops 12604 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12605 return getCouldNotCompute(); 12606 12607 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12608 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12609 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12610 12611 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12612 12613 // Avoid negative or zero stride values 12614 if (!isKnownPositive(Stride)) 12615 return getCouldNotCompute(); 12616 12617 // Avoid proven overflow cases: this will ensure that the backedge taken count 12618 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12619 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12620 // behaviors like the case of C language. 12621 if (!Stride->isOne() && !NoWrap) 12622 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12623 return getCouldNotCompute(); 12624 12625 const SCEV *Start = IV->getStart(); 12626 const SCEV *End = RHS; 12627 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12628 // If we know that Start >= RHS in the context of loop, then we know that 12629 // min(RHS, Start) = RHS at this point. 12630 if (isLoopEntryGuardedByCond( 12631 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12632 End = RHS; 12633 else 12634 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12635 } 12636 12637 if (Start->getType()->isPointerTy()) { 12638 Start = getLosslessPtrToIntExpr(Start); 12639 if (isa<SCEVCouldNotCompute>(Start)) 12640 return Start; 12641 } 12642 if (End->getType()->isPointerTy()) { 12643 End = getLosslessPtrToIntExpr(End); 12644 if (isa<SCEVCouldNotCompute>(End)) 12645 return End; 12646 } 12647 12648 // Compute ((Start - End) + (Stride - 1)) / Stride. 12649 // FIXME: This can overflow. Holding off on fixing this for now; 12650 // howManyGreaterThans will hopefully be gone soon. 12651 const SCEV *One = getOne(Stride->getType()); 12652 const SCEV *BECount = getUDivExpr( 12653 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12654 12655 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12656 : getUnsignedRangeMax(Start); 12657 12658 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12659 : getUnsignedRangeMin(Stride); 12660 12661 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12662 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12663 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12664 12665 // Although End can be a MIN expression we estimate MinEnd considering only 12666 // the case End = RHS. This is safe because in the other case (Start - End) 12667 // is zero, leading to a zero maximum backedge taken count. 12668 APInt MinEnd = 12669 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12670 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12671 12672 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12673 ? BECount 12674 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12675 getConstant(MinStride)); 12676 12677 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12678 MaxBECount = BECount; 12679 12680 return ExitLimit(BECount, MaxBECount, false, Predicates); 12681 } 12682 12683 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12684 ScalarEvolution &SE) const { 12685 if (Range.isFullSet()) // Infinite loop. 12686 return SE.getCouldNotCompute(); 12687 12688 // If the start is a non-zero constant, shift the range to simplify things. 12689 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12690 if (!SC->getValue()->isZero()) { 12691 SmallVector<const SCEV *, 4> Operands(operands()); 12692 Operands[0] = SE.getZero(SC->getType()); 12693 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12694 getNoWrapFlags(FlagNW)); 12695 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12696 return ShiftedAddRec->getNumIterationsInRange( 12697 Range.subtract(SC->getAPInt()), SE); 12698 // This is strange and shouldn't happen. 12699 return SE.getCouldNotCompute(); 12700 } 12701 12702 // The only time we can solve this is when we have all constant indices. 12703 // Otherwise, we cannot determine the overflow conditions. 12704 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12705 return SE.getCouldNotCompute(); 12706 12707 // Okay at this point we know that all elements of the chrec are constants and 12708 // that the start element is zero. 12709 12710 // First check to see if the range contains zero. If not, the first 12711 // iteration exits. 12712 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12713 if (!Range.contains(APInt(BitWidth, 0))) 12714 return SE.getZero(getType()); 12715 12716 if (isAffine()) { 12717 // If this is an affine expression then we have this situation: 12718 // Solve {0,+,A} in Range === Ax in Range 12719 12720 // We know that zero is in the range. If A is positive then we know that 12721 // the upper value of the range must be the first possible exit value. 12722 // If A is negative then the lower of the range is the last possible loop 12723 // value. Also note that we already checked for a full range. 12724 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12725 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12726 12727 // The exit value should be (End+A)/A. 12728 APInt ExitVal = (End + A).udiv(A); 12729 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12730 12731 // Evaluate at the exit value. If we really did fall out of the valid 12732 // range, then we computed our trip count, otherwise wrap around or other 12733 // things must have happened. 12734 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12735 if (Range.contains(Val->getValue())) 12736 return SE.getCouldNotCompute(); // Something strange happened 12737 12738 // Ensure that the previous value is in the range. 12739 assert(Range.contains( 12740 EvaluateConstantChrecAtConstant(this, 12741 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12742 "Linear scev computation is off in a bad way!"); 12743 return SE.getConstant(ExitValue); 12744 } 12745 12746 if (isQuadratic()) { 12747 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12748 return SE.getConstant(S.getValue()); 12749 } 12750 12751 return SE.getCouldNotCompute(); 12752 } 12753 12754 const SCEVAddRecExpr * 12755 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12756 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12757 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12758 // but in this case we cannot guarantee that the value returned will be an 12759 // AddRec because SCEV does not have a fixed point where it stops 12760 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12761 // may happen if we reach arithmetic depth limit while simplifying. So we 12762 // construct the returned value explicitly. 12763 SmallVector<const SCEV *, 3> Ops; 12764 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12765 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12766 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12767 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12768 // We know that the last operand is not a constant zero (otherwise it would 12769 // have been popped out earlier). This guarantees us that if the result has 12770 // the same last operand, then it will also not be popped out, meaning that 12771 // the returned value will be an AddRec. 12772 const SCEV *Last = getOperand(getNumOperands() - 1); 12773 assert(!Last->isZero() && "Recurrency with zero step?"); 12774 Ops.push_back(Last); 12775 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12776 SCEV::FlagAnyWrap)); 12777 } 12778 12779 // Return true when S contains at least an undef value. 12780 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12781 return SCEVExprContains(S, [](const SCEV *S) { 12782 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12783 return isa<UndefValue>(SU->getValue()); 12784 return false; 12785 }); 12786 } 12787 12788 /// Return the size of an element read or written by Inst. 12789 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12790 Type *Ty; 12791 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12792 Ty = Store->getValueOperand()->getType(); 12793 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12794 Ty = Load->getType(); 12795 else 12796 return nullptr; 12797 12798 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12799 return getSizeOfExpr(ETy, Ty); 12800 } 12801 12802 //===----------------------------------------------------------------------===// 12803 // SCEVCallbackVH Class Implementation 12804 //===----------------------------------------------------------------------===// 12805 12806 void ScalarEvolution::SCEVCallbackVH::deleted() { 12807 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12808 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12809 SE->ConstantEvolutionLoopExitValue.erase(PN); 12810 SE->eraseValueFromMap(getValPtr()); 12811 // this now dangles! 12812 } 12813 12814 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12815 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12816 12817 // Forget all the expressions associated with users of the old value, 12818 // so that future queries will recompute the expressions using the new 12819 // value. 12820 Value *Old = getValPtr(); 12821 SmallVector<User *, 16> Worklist(Old->users()); 12822 SmallPtrSet<User *, 8> Visited; 12823 while (!Worklist.empty()) { 12824 User *U = Worklist.pop_back_val(); 12825 // Deleting the Old value will cause this to dangle. Postpone 12826 // that until everything else is done. 12827 if (U == Old) 12828 continue; 12829 if (!Visited.insert(U).second) 12830 continue; 12831 if (PHINode *PN = dyn_cast<PHINode>(U)) 12832 SE->ConstantEvolutionLoopExitValue.erase(PN); 12833 SE->eraseValueFromMap(U); 12834 llvm::append_range(Worklist, U->users()); 12835 } 12836 // Delete the Old value. 12837 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12838 SE->ConstantEvolutionLoopExitValue.erase(PN); 12839 SE->eraseValueFromMap(Old); 12840 // this now dangles! 12841 } 12842 12843 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12844 : CallbackVH(V), SE(se) {} 12845 12846 //===----------------------------------------------------------------------===// 12847 // ScalarEvolution Class Implementation 12848 //===----------------------------------------------------------------------===// 12849 12850 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12851 AssumptionCache &AC, DominatorTree &DT, 12852 LoopInfo &LI) 12853 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12854 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12855 LoopDispositions(64), BlockDispositions(64) { 12856 // To use guards for proving predicates, we need to scan every instruction in 12857 // relevant basic blocks, and not just terminators. Doing this is a waste of 12858 // time if the IR does not actually contain any calls to 12859 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12860 // 12861 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12862 // to _add_ guards to the module when there weren't any before, and wants 12863 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12864 // efficient in lieu of being smart in that rather obscure case. 12865 12866 auto *GuardDecl = F.getParent()->getFunction( 12867 Intrinsic::getName(Intrinsic::experimental_guard)); 12868 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12869 } 12870 12871 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12872 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12873 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12874 ValueExprMap(std::move(Arg.ValueExprMap)), 12875 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12876 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12877 PendingMerges(std::move(Arg.PendingMerges)), 12878 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12879 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12880 PredicatedBackedgeTakenCounts( 12881 std::move(Arg.PredicatedBackedgeTakenCounts)), 12882 BECountUsers(std::move(Arg.BECountUsers)), 12883 ConstantEvolutionLoopExitValue( 12884 std::move(Arg.ConstantEvolutionLoopExitValue)), 12885 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12886 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12887 LoopDispositions(std::move(Arg.LoopDispositions)), 12888 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12889 BlockDispositions(std::move(Arg.BlockDispositions)), 12890 SCEVUsers(std::move(Arg.SCEVUsers)), 12891 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12892 SignedRanges(std::move(Arg.SignedRanges)), 12893 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12894 UniquePreds(std::move(Arg.UniquePreds)), 12895 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12896 LoopUsers(std::move(Arg.LoopUsers)), 12897 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12898 FirstUnknown(Arg.FirstUnknown) { 12899 Arg.FirstUnknown = nullptr; 12900 } 12901 12902 ScalarEvolution::~ScalarEvolution() { 12903 // Iterate through all the SCEVUnknown instances and call their 12904 // destructors, so that they release their references to their values. 12905 for (SCEVUnknown *U = FirstUnknown; U;) { 12906 SCEVUnknown *Tmp = U; 12907 U = U->Next; 12908 Tmp->~SCEVUnknown(); 12909 } 12910 FirstUnknown = nullptr; 12911 12912 ExprValueMap.clear(); 12913 ValueExprMap.clear(); 12914 HasRecMap.clear(); 12915 BackedgeTakenCounts.clear(); 12916 PredicatedBackedgeTakenCounts.clear(); 12917 12918 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12919 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12920 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12921 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12922 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12923 } 12924 12925 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12926 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12927 } 12928 12929 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12930 const Loop *L) { 12931 // Print all inner loops first 12932 for (Loop *I : *L) 12933 PrintLoopInfo(OS, SE, I); 12934 12935 OS << "Loop "; 12936 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12937 OS << ": "; 12938 12939 SmallVector<BasicBlock *, 8> ExitingBlocks; 12940 L->getExitingBlocks(ExitingBlocks); 12941 if (ExitingBlocks.size() != 1) 12942 OS << "<multiple exits> "; 12943 12944 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12945 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12946 else 12947 OS << "Unpredictable backedge-taken count.\n"; 12948 12949 if (ExitingBlocks.size() > 1) 12950 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12951 OS << " exit count for " << ExitingBlock->getName() << ": " 12952 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12953 } 12954 12955 OS << "Loop "; 12956 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12957 OS << ": "; 12958 12959 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12960 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12961 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12962 OS << ", actual taken count either this or zero."; 12963 } else { 12964 OS << "Unpredictable max backedge-taken count. "; 12965 } 12966 12967 OS << "\n" 12968 "Loop "; 12969 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12970 OS << ": "; 12971 12972 SmallVector<const SCEVPredicate *, 4> Preds; 12973 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12974 if (!isa<SCEVCouldNotCompute>(PBT)) { 12975 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12976 OS << " Predicates:\n"; 12977 for (auto *P : Preds) 12978 P->print(OS, 4); 12979 } else { 12980 OS << "Unpredictable predicated backedge-taken count. "; 12981 } 12982 OS << "\n"; 12983 12984 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12985 OS << "Loop "; 12986 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12987 OS << ": "; 12988 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12989 } 12990 } 12991 12992 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12993 switch (LD) { 12994 case ScalarEvolution::LoopVariant: 12995 return "Variant"; 12996 case ScalarEvolution::LoopInvariant: 12997 return "Invariant"; 12998 case ScalarEvolution::LoopComputable: 12999 return "Computable"; 13000 } 13001 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13002 } 13003 13004 void ScalarEvolution::print(raw_ostream &OS) const { 13005 // ScalarEvolution's implementation of the print method is to print 13006 // out SCEV values of all instructions that are interesting. Doing 13007 // this potentially causes it to create new SCEV objects though, 13008 // which technically conflicts with the const qualifier. This isn't 13009 // observable from outside the class though, so casting away the 13010 // const isn't dangerous. 13011 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13012 13013 if (ClassifyExpressions) { 13014 OS << "Classifying expressions for: "; 13015 F.printAsOperand(OS, /*PrintType=*/false); 13016 OS << "\n"; 13017 for (Instruction &I : instructions(F)) 13018 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13019 OS << I << '\n'; 13020 OS << " --> "; 13021 const SCEV *SV = SE.getSCEV(&I); 13022 SV->print(OS); 13023 if (!isa<SCEVCouldNotCompute>(SV)) { 13024 OS << " U: "; 13025 SE.getUnsignedRange(SV).print(OS); 13026 OS << " S: "; 13027 SE.getSignedRange(SV).print(OS); 13028 } 13029 13030 const Loop *L = LI.getLoopFor(I.getParent()); 13031 13032 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13033 if (AtUse != SV) { 13034 OS << " --> "; 13035 AtUse->print(OS); 13036 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13037 OS << " U: "; 13038 SE.getUnsignedRange(AtUse).print(OS); 13039 OS << " S: "; 13040 SE.getSignedRange(AtUse).print(OS); 13041 } 13042 } 13043 13044 if (L) { 13045 OS << "\t\t" "Exits: "; 13046 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13047 if (!SE.isLoopInvariant(ExitValue, L)) { 13048 OS << "<<Unknown>>"; 13049 } else { 13050 OS << *ExitValue; 13051 } 13052 13053 bool First = true; 13054 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13055 if (First) { 13056 OS << "\t\t" "LoopDispositions: { "; 13057 First = false; 13058 } else { 13059 OS << ", "; 13060 } 13061 13062 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13063 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13064 } 13065 13066 for (auto *InnerL : depth_first(L)) { 13067 if (InnerL == L) 13068 continue; 13069 if (First) { 13070 OS << "\t\t" "LoopDispositions: { "; 13071 First = false; 13072 } else { 13073 OS << ", "; 13074 } 13075 13076 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13077 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13078 } 13079 13080 OS << " }"; 13081 } 13082 13083 OS << "\n"; 13084 } 13085 } 13086 13087 OS << "Determining loop execution counts for: "; 13088 F.printAsOperand(OS, /*PrintType=*/false); 13089 OS << "\n"; 13090 for (Loop *I : LI) 13091 PrintLoopInfo(OS, &SE, I); 13092 } 13093 13094 ScalarEvolution::LoopDisposition 13095 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13096 auto &Values = LoopDispositions[S]; 13097 for (auto &V : Values) { 13098 if (V.getPointer() == L) 13099 return V.getInt(); 13100 } 13101 Values.emplace_back(L, LoopVariant); 13102 LoopDisposition D = computeLoopDisposition(S, L); 13103 auto &Values2 = LoopDispositions[S]; 13104 for (auto &V : llvm::reverse(Values2)) { 13105 if (V.getPointer() == L) { 13106 V.setInt(D); 13107 break; 13108 } 13109 } 13110 return D; 13111 } 13112 13113 ScalarEvolution::LoopDisposition 13114 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13115 switch (S->getSCEVType()) { 13116 case scConstant: 13117 return LoopInvariant; 13118 case scPtrToInt: 13119 case scTruncate: 13120 case scZeroExtend: 13121 case scSignExtend: 13122 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13123 case scAddRecExpr: { 13124 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13125 13126 // If L is the addrec's loop, it's computable. 13127 if (AR->getLoop() == L) 13128 return LoopComputable; 13129 13130 // Add recurrences are never invariant in the function-body (null loop). 13131 if (!L) 13132 return LoopVariant; 13133 13134 // Everything that is not defined at loop entry is variant. 13135 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13136 return LoopVariant; 13137 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13138 " dominate the contained loop's header?"); 13139 13140 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13141 if (AR->getLoop()->contains(L)) 13142 return LoopInvariant; 13143 13144 // This recurrence is variant w.r.t. L if any of its operands 13145 // are variant. 13146 for (auto *Op : AR->operands()) 13147 if (!isLoopInvariant(Op, L)) 13148 return LoopVariant; 13149 13150 // Otherwise it's loop-invariant. 13151 return LoopInvariant; 13152 } 13153 case scAddExpr: 13154 case scMulExpr: 13155 case scUMaxExpr: 13156 case scSMaxExpr: 13157 case scUMinExpr: 13158 case scSMinExpr: 13159 case scSequentialUMinExpr: { 13160 bool HasVarying = false; 13161 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13162 LoopDisposition D = getLoopDisposition(Op, L); 13163 if (D == LoopVariant) 13164 return LoopVariant; 13165 if (D == LoopComputable) 13166 HasVarying = true; 13167 } 13168 return HasVarying ? LoopComputable : LoopInvariant; 13169 } 13170 case scUDivExpr: { 13171 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13172 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13173 if (LD == LoopVariant) 13174 return LoopVariant; 13175 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13176 if (RD == LoopVariant) 13177 return LoopVariant; 13178 return (LD == LoopInvariant && RD == LoopInvariant) ? 13179 LoopInvariant : LoopComputable; 13180 } 13181 case scUnknown: 13182 // All non-instruction values are loop invariant. All instructions are loop 13183 // invariant if they are not contained in the specified loop. 13184 // Instructions are never considered invariant in the function body 13185 // (null loop) because they are defined within the "loop". 13186 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13187 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13188 return LoopInvariant; 13189 case scCouldNotCompute: 13190 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13191 } 13192 llvm_unreachable("Unknown SCEV kind!"); 13193 } 13194 13195 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13196 return getLoopDisposition(S, L) == LoopInvariant; 13197 } 13198 13199 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13200 return getLoopDisposition(S, L) == LoopComputable; 13201 } 13202 13203 ScalarEvolution::BlockDisposition 13204 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13205 auto &Values = BlockDispositions[S]; 13206 for (auto &V : Values) { 13207 if (V.getPointer() == BB) 13208 return V.getInt(); 13209 } 13210 Values.emplace_back(BB, DoesNotDominateBlock); 13211 BlockDisposition D = computeBlockDisposition(S, BB); 13212 auto &Values2 = BlockDispositions[S]; 13213 for (auto &V : llvm::reverse(Values2)) { 13214 if (V.getPointer() == BB) { 13215 V.setInt(D); 13216 break; 13217 } 13218 } 13219 return D; 13220 } 13221 13222 ScalarEvolution::BlockDisposition 13223 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13224 switch (S->getSCEVType()) { 13225 case scConstant: 13226 return ProperlyDominatesBlock; 13227 case scPtrToInt: 13228 case scTruncate: 13229 case scZeroExtend: 13230 case scSignExtend: 13231 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13232 case scAddRecExpr: { 13233 // This uses a "dominates" query instead of "properly dominates" query 13234 // to test for proper dominance too, because the instruction which 13235 // produces the addrec's value is a PHI, and a PHI effectively properly 13236 // dominates its entire containing block. 13237 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13238 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13239 return DoesNotDominateBlock; 13240 13241 // Fall through into SCEVNAryExpr handling. 13242 LLVM_FALLTHROUGH; 13243 } 13244 case scAddExpr: 13245 case scMulExpr: 13246 case scUMaxExpr: 13247 case scSMaxExpr: 13248 case scUMinExpr: 13249 case scSMinExpr: 13250 case scSequentialUMinExpr: { 13251 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13252 bool Proper = true; 13253 for (const SCEV *NAryOp : NAry->operands()) { 13254 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13255 if (D == DoesNotDominateBlock) 13256 return DoesNotDominateBlock; 13257 if (D == DominatesBlock) 13258 Proper = false; 13259 } 13260 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13261 } 13262 case scUDivExpr: { 13263 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13264 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13265 BlockDisposition LD = getBlockDisposition(LHS, BB); 13266 if (LD == DoesNotDominateBlock) 13267 return DoesNotDominateBlock; 13268 BlockDisposition RD = getBlockDisposition(RHS, BB); 13269 if (RD == DoesNotDominateBlock) 13270 return DoesNotDominateBlock; 13271 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13272 ProperlyDominatesBlock : DominatesBlock; 13273 } 13274 case scUnknown: 13275 if (Instruction *I = 13276 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13277 if (I->getParent() == BB) 13278 return DominatesBlock; 13279 if (DT.properlyDominates(I->getParent(), BB)) 13280 return ProperlyDominatesBlock; 13281 return DoesNotDominateBlock; 13282 } 13283 return ProperlyDominatesBlock; 13284 case scCouldNotCompute: 13285 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13286 } 13287 llvm_unreachable("Unknown SCEV kind!"); 13288 } 13289 13290 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13291 return getBlockDisposition(S, BB) >= DominatesBlock; 13292 } 13293 13294 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13295 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13296 } 13297 13298 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13299 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13300 } 13301 13302 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13303 bool Predicated) { 13304 auto &BECounts = 13305 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13306 auto It = BECounts.find(L); 13307 if (It != BECounts.end()) { 13308 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13309 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13310 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13311 assert(UserIt != BECountUsers.end()); 13312 UserIt->second.erase({L, Predicated}); 13313 } 13314 } 13315 BECounts.erase(It); 13316 } 13317 } 13318 13319 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13320 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13321 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13322 13323 while (!Worklist.empty()) { 13324 const SCEV *Curr = Worklist.pop_back_val(); 13325 auto Users = SCEVUsers.find(Curr); 13326 if (Users != SCEVUsers.end()) 13327 for (auto *User : Users->second) 13328 if (ToForget.insert(User).second) 13329 Worklist.push_back(User); 13330 } 13331 13332 for (auto *S : ToForget) 13333 forgetMemoizedResultsImpl(S); 13334 13335 for (auto I = PredicatedSCEVRewrites.begin(); 13336 I != PredicatedSCEVRewrites.end();) { 13337 std::pair<const SCEV *, const Loop *> Entry = I->first; 13338 if (ToForget.count(Entry.first)) 13339 PredicatedSCEVRewrites.erase(I++); 13340 else 13341 ++I; 13342 } 13343 } 13344 13345 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13346 LoopDispositions.erase(S); 13347 BlockDispositions.erase(S); 13348 UnsignedRanges.erase(S); 13349 SignedRanges.erase(S); 13350 HasRecMap.erase(S); 13351 MinTrailingZerosCache.erase(S); 13352 13353 auto ExprIt = ExprValueMap.find(S); 13354 if (ExprIt != ExprValueMap.end()) { 13355 for (Value *V : ExprIt->second) { 13356 auto ValueIt = ValueExprMap.find_as(V); 13357 if (ValueIt != ValueExprMap.end()) 13358 ValueExprMap.erase(ValueIt); 13359 } 13360 ExprValueMap.erase(ExprIt); 13361 } 13362 13363 auto ScopeIt = ValuesAtScopes.find(S); 13364 if (ScopeIt != ValuesAtScopes.end()) { 13365 for (const auto &Pair : ScopeIt->second) 13366 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13367 erase_value(ValuesAtScopesUsers[Pair.second], 13368 std::make_pair(Pair.first, S)); 13369 ValuesAtScopes.erase(ScopeIt); 13370 } 13371 13372 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13373 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13374 for (const auto &Pair : ScopeUserIt->second) 13375 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13376 ValuesAtScopesUsers.erase(ScopeUserIt); 13377 } 13378 13379 auto BEUsersIt = BECountUsers.find(S); 13380 if (BEUsersIt != BECountUsers.end()) { 13381 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13382 auto Copy = BEUsersIt->second; 13383 for (const auto &Pair : Copy) 13384 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13385 BECountUsers.erase(BEUsersIt); 13386 } 13387 } 13388 13389 void 13390 ScalarEvolution::getUsedLoops(const SCEV *S, 13391 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13392 struct FindUsedLoops { 13393 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13394 : LoopsUsed(LoopsUsed) {} 13395 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13396 bool follow(const SCEV *S) { 13397 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13398 LoopsUsed.insert(AR->getLoop()); 13399 return true; 13400 } 13401 13402 bool isDone() const { return false; } 13403 }; 13404 13405 FindUsedLoops F(LoopsUsed); 13406 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13407 } 13408 13409 static void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, 13410 Function &F) { 13411 SmallVector<BasicBlock *> Worklist; 13412 Worklist.push_back(&F.getEntryBlock()); 13413 while (!Worklist.empty()) { 13414 BasicBlock *BB = Worklist.pop_back_val(); 13415 if (!Reachable.insert(BB).second) 13416 continue; 13417 13418 const APInt *Cond; 13419 BasicBlock *TrueBB, *FalseBB; 13420 if (match(BB->getTerminator(), 13421 m_Br(m_APInt(Cond), m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) 13422 Worklist.push_back(Cond->isOne() ? TrueBB : FalseBB); 13423 else 13424 append_range(Worklist, successors(BB)); 13425 } 13426 } 13427 13428 void ScalarEvolution::verify() const { 13429 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13430 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13431 13432 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13433 13434 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13435 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13436 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13437 13438 const SCEV *visitConstant(const SCEVConstant *Constant) { 13439 return SE.getConstant(Constant->getAPInt()); 13440 } 13441 13442 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13443 return SE.getUnknown(Expr->getValue()); 13444 } 13445 13446 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13447 return SE.getCouldNotCompute(); 13448 } 13449 }; 13450 13451 SCEVMapper SCM(SE2); 13452 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13453 getReachableBlocks(ReachableBlocks, F); 13454 13455 while (!LoopStack.empty()) { 13456 auto *L = LoopStack.pop_back_val(); 13457 llvm::append_range(LoopStack, *L); 13458 13459 // Only verify BECounts in reachable loops. For an unreachable loop, 13460 // any BECount is legal. 13461 if (!ReachableBlocks.contains(L->getHeader())) 13462 continue; 13463 13464 auto *CurBECount = SCM.visit( 13465 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13466 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13467 13468 if (CurBECount == SE2.getCouldNotCompute() || 13469 NewBECount == SE2.getCouldNotCompute()) { 13470 // NB! This situation is legal, but is very suspicious -- whatever pass 13471 // change the loop to make a trip count go from could not compute to 13472 // computable or vice-versa *should have* invalidated SCEV. However, we 13473 // choose not to assert here (for now) since we don't want false 13474 // positives. 13475 continue; 13476 } 13477 13478 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13479 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13480 // not propagate undef aggressively). This means we can (and do) fail 13481 // verification in cases where a transform makes the trip count of a loop 13482 // go from "undef" to "undef+1" (say). The transform is fine, since in 13483 // both cases the loop iterates "undef" times, but SCEV thinks we 13484 // increased the trip count of the loop by 1 incorrectly. 13485 continue; 13486 } 13487 13488 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13489 SE.getTypeSizeInBits(NewBECount->getType())) 13490 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13491 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13492 SE.getTypeSizeInBits(NewBECount->getType())) 13493 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13494 13495 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13496 13497 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13498 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13499 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13500 dbgs() << "Old: " << *CurBECount << "\n"; 13501 dbgs() << "New: " << *NewBECount << "\n"; 13502 dbgs() << "Delta: " << *Delta << "\n"; 13503 std::abort(); 13504 } 13505 } 13506 13507 // Collect all valid loops currently in LoopInfo. 13508 SmallPtrSet<Loop *, 32> ValidLoops; 13509 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13510 while (!Worklist.empty()) { 13511 Loop *L = Worklist.pop_back_val(); 13512 if (ValidLoops.insert(L).second) 13513 Worklist.append(L->begin(), L->end()); 13514 } 13515 for (auto &KV : ValueExprMap) { 13516 #ifndef NDEBUG 13517 // Check for SCEV expressions referencing invalid/deleted loops. 13518 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13519 assert(ValidLoops.contains(AR->getLoop()) && 13520 "AddRec references invalid loop"); 13521 } 13522 #endif 13523 13524 // Check that the value is also part of the reverse map. 13525 auto It = ExprValueMap.find(KV.second); 13526 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13527 dbgs() << "Value " << *KV.first 13528 << " is in ValueExprMap but not in ExprValueMap\n"; 13529 std::abort(); 13530 } 13531 } 13532 13533 for (const auto &KV : ExprValueMap) { 13534 for (Value *V : KV.second) { 13535 auto It = ValueExprMap.find_as(V); 13536 if (It == ValueExprMap.end()) { 13537 dbgs() << "Value " << *V 13538 << " is in ExprValueMap but not in ValueExprMap\n"; 13539 std::abort(); 13540 } 13541 if (It->second != KV.first) { 13542 dbgs() << "Value " << *V << " mapped to " << *It->second 13543 << " rather than " << *KV.first << "\n"; 13544 std::abort(); 13545 } 13546 } 13547 } 13548 13549 // Verify integrity of SCEV users. 13550 for (const auto &S : UniqueSCEVs) { 13551 SmallVector<const SCEV *, 4> Ops; 13552 collectUniqueOps(&S, Ops); 13553 for (const auto *Op : Ops) { 13554 // We do not store dependencies of constants. 13555 if (isa<SCEVConstant>(Op)) 13556 continue; 13557 auto It = SCEVUsers.find(Op); 13558 if (It != SCEVUsers.end() && It->second.count(&S)) 13559 continue; 13560 dbgs() << "Use of operand " << *Op << " by user " << S 13561 << " is not being tracked!\n"; 13562 std::abort(); 13563 } 13564 } 13565 13566 // Verify integrity of ValuesAtScopes users. 13567 for (const auto &ValueAndVec : ValuesAtScopes) { 13568 const SCEV *Value = ValueAndVec.first; 13569 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13570 const Loop *L = LoopAndValueAtScope.first; 13571 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13572 if (!isa<SCEVConstant>(ValueAtScope)) { 13573 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13574 if (It != ValuesAtScopesUsers.end() && 13575 is_contained(It->second, std::make_pair(L, Value))) 13576 continue; 13577 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13578 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13579 std::abort(); 13580 } 13581 } 13582 } 13583 13584 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13585 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13586 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13587 const Loop *L = LoopAndValue.first; 13588 const SCEV *Value = LoopAndValue.second; 13589 assert(!isa<SCEVConstant>(Value)); 13590 auto It = ValuesAtScopes.find(Value); 13591 if (It != ValuesAtScopes.end() && 13592 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13593 continue; 13594 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13595 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13596 std::abort(); 13597 } 13598 } 13599 13600 // Verify integrity of BECountUsers. 13601 auto VerifyBECountUsers = [&](bool Predicated) { 13602 auto &BECounts = 13603 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13604 for (const auto &LoopAndBEInfo : BECounts) { 13605 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13606 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13607 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13608 if (UserIt != BECountUsers.end() && 13609 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13610 continue; 13611 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13612 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13613 std::abort(); 13614 } 13615 } 13616 } 13617 }; 13618 VerifyBECountUsers(/* Predicated */ false); 13619 VerifyBECountUsers(/* Predicated */ true); 13620 } 13621 13622 bool ScalarEvolution::invalidate( 13623 Function &F, const PreservedAnalyses &PA, 13624 FunctionAnalysisManager::Invalidator &Inv) { 13625 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13626 // of its dependencies is invalidated. 13627 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13628 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13629 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13630 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13631 Inv.invalidate<LoopAnalysis>(F, PA); 13632 } 13633 13634 AnalysisKey ScalarEvolutionAnalysis::Key; 13635 13636 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13637 FunctionAnalysisManager &AM) { 13638 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13639 AM.getResult<AssumptionAnalysis>(F), 13640 AM.getResult<DominatorTreeAnalysis>(F), 13641 AM.getResult<LoopAnalysis>(F)); 13642 } 13643 13644 PreservedAnalyses 13645 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13646 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13647 return PreservedAnalyses::all(); 13648 } 13649 13650 PreservedAnalyses 13651 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13652 // For compatibility with opt's -analyze feature under legacy pass manager 13653 // which was not ported to NPM. This keeps tests using 13654 // update_analyze_test_checks.py working. 13655 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13656 << F.getName() << "':\n"; 13657 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13658 return PreservedAnalyses::all(); 13659 } 13660 13661 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13662 "Scalar Evolution Analysis", false, true) 13663 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13664 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13665 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13666 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13667 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13668 "Scalar Evolution Analysis", false, true) 13669 13670 char ScalarEvolutionWrapperPass::ID = 0; 13671 13672 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13673 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13674 } 13675 13676 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13677 SE.reset(new ScalarEvolution( 13678 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13679 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13680 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13681 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13682 return false; 13683 } 13684 13685 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13686 13687 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13688 SE->print(OS); 13689 } 13690 13691 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13692 if (!VerifySCEV) 13693 return; 13694 13695 SE->verify(); 13696 } 13697 13698 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13699 AU.setPreservesAll(); 13700 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13701 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13702 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13703 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13704 } 13705 13706 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13707 const SCEV *RHS) { 13708 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13709 } 13710 13711 const SCEVPredicate * 13712 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13713 const SCEV *LHS, const SCEV *RHS) { 13714 FoldingSetNodeID ID; 13715 assert(LHS->getType() == RHS->getType() && 13716 "Type mismatch between LHS and RHS"); 13717 // Unique this node based on the arguments 13718 ID.AddInteger(SCEVPredicate::P_Compare); 13719 ID.AddInteger(Pred); 13720 ID.AddPointer(LHS); 13721 ID.AddPointer(RHS); 13722 void *IP = nullptr; 13723 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13724 return S; 13725 SCEVComparePredicate *Eq = new (SCEVAllocator) 13726 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13727 UniquePreds.InsertNode(Eq, IP); 13728 return Eq; 13729 } 13730 13731 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13732 const SCEVAddRecExpr *AR, 13733 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13734 FoldingSetNodeID ID; 13735 // Unique this node based on the arguments 13736 ID.AddInteger(SCEVPredicate::P_Wrap); 13737 ID.AddPointer(AR); 13738 ID.AddInteger(AddedFlags); 13739 void *IP = nullptr; 13740 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13741 return S; 13742 auto *OF = new (SCEVAllocator) 13743 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13744 UniquePreds.InsertNode(OF, IP); 13745 return OF; 13746 } 13747 13748 namespace { 13749 13750 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13751 public: 13752 13753 /// Rewrites \p S in the context of a loop L and the SCEV predication 13754 /// infrastructure. 13755 /// 13756 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13757 /// equivalences present in \p Pred. 13758 /// 13759 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13760 /// \p NewPreds such that the result will be an AddRecExpr. 13761 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13762 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13763 const SCEVPredicate *Pred) { 13764 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13765 return Rewriter.visit(S); 13766 } 13767 13768 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13769 if (Pred) { 13770 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13771 for (auto *Pred : U->getPredicates()) 13772 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13773 if (IPred->getLHS() == Expr && 13774 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13775 return IPred->getRHS(); 13776 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13777 if (IPred->getLHS() == Expr && 13778 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13779 return IPred->getRHS(); 13780 } 13781 } 13782 return convertToAddRecWithPreds(Expr); 13783 } 13784 13785 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13786 const SCEV *Operand = visit(Expr->getOperand()); 13787 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13788 if (AR && AR->getLoop() == L && AR->isAffine()) { 13789 // This couldn't be folded because the operand didn't have the nuw 13790 // flag. Add the nusw flag as an assumption that we could make. 13791 const SCEV *Step = AR->getStepRecurrence(SE); 13792 Type *Ty = Expr->getType(); 13793 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13794 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13795 SE.getSignExtendExpr(Step, Ty), L, 13796 AR->getNoWrapFlags()); 13797 } 13798 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13799 } 13800 13801 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13802 const SCEV *Operand = visit(Expr->getOperand()); 13803 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13804 if (AR && AR->getLoop() == L && AR->isAffine()) { 13805 // This couldn't be folded because the operand didn't have the nsw 13806 // flag. Add the nssw flag as an assumption that we could make. 13807 const SCEV *Step = AR->getStepRecurrence(SE); 13808 Type *Ty = Expr->getType(); 13809 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13810 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13811 SE.getSignExtendExpr(Step, Ty), L, 13812 AR->getNoWrapFlags()); 13813 } 13814 return SE.getSignExtendExpr(Operand, Expr->getType()); 13815 } 13816 13817 private: 13818 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13819 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13820 const SCEVPredicate *Pred) 13821 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13822 13823 bool addOverflowAssumption(const SCEVPredicate *P) { 13824 if (!NewPreds) { 13825 // Check if we've already made this assumption. 13826 return Pred && Pred->implies(P); 13827 } 13828 NewPreds->insert(P); 13829 return true; 13830 } 13831 13832 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13833 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13834 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13835 return addOverflowAssumption(A); 13836 } 13837 13838 // If \p Expr represents a PHINode, we try to see if it can be represented 13839 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13840 // to add this predicate as a runtime overflow check, we return the AddRec. 13841 // If \p Expr does not meet these conditions (is not a PHI node, or we 13842 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13843 // return \p Expr. 13844 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13845 if (!isa<PHINode>(Expr->getValue())) 13846 return Expr; 13847 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13848 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13849 if (!PredicatedRewrite) 13850 return Expr; 13851 for (auto *P : PredicatedRewrite->second){ 13852 // Wrap predicates from outer loops are not supported. 13853 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13854 if (L != WP->getExpr()->getLoop()) 13855 return Expr; 13856 } 13857 if (!addOverflowAssumption(P)) 13858 return Expr; 13859 } 13860 return PredicatedRewrite->first; 13861 } 13862 13863 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13864 const SCEVPredicate *Pred; 13865 const Loop *L; 13866 }; 13867 13868 } // end anonymous namespace 13869 13870 const SCEV * 13871 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13872 const SCEVPredicate &Preds) { 13873 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13874 } 13875 13876 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13877 const SCEV *S, const Loop *L, 13878 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13879 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13880 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13881 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13882 13883 if (!AddRec) 13884 return nullptr; 13885 13886 // Since the transformation was successful, we can now transfer the SCEV 13887 // predicates. 13888 for (auto *P : TransformPreds) 13889 Preds.insert(P); 13890 13891 return AddRec; 13892 } 13893 13894 /// SCEV predicates 13895 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13896 SCEVPredicateKind Kind) 13897 : FastID(ID), Kind(Kind) {} 13898 13899 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13900 const ICmpInst::Predicate Pred, 13901 const SCEV *LHS, const SCEV *RHS) 13902 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13903 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13904 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13905 } 13906 13907 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13908 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13909 13910 if (!Op) 13911 return false; 13912 13913 if (Pred != ICmpInst::ICMP_EQ) 13914 return false; 13915 13916 return Op->LHS == LHS && Op->RHS == RHS; 13917 } 13918 13919 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13920 13921 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13922 if (Pred == ICmpInst::ICMP_EQ) 13923 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13924 else 13925 OS.indent(Depth) << "Compare predicate: " << *LHS 13926 << " " << CmpInst::getPredicateName(Pred) << ") " 13927 << *RHS << "\n"; 13928 13929 } 13930 13931 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13932 const SCEVAddRecExpr *AR, 13933 IncrementWrapFlags Flags) 13934 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13935 13936 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13937 13938 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13939 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13940 13941 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13942 } 13943 13944 bool SCEVWrapPredicate::isAlwaysTrue() const { 13945 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13946 IncrementWrapFlags IFlags = Flags; 13947 13948 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13949 IFlags = clearFlags(IFlags, IncrementNSSW); 13950 13951 return IFlags == IncrementAnyWrap; 13952 } 13953 13954 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13955 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13956 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13957 OS << "<nusw>"; 13958 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13959 OS << "<nssw>"; 13960 OS << "\n"; 13961 } 13962 13963 SCEVWrapPredicate::IncrementWrapFlags 13964 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13965 ScalarEvolution &SE) { 13966 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13967 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13968 13969 // We can safely transfer the NSW flag as NSSW. 13970 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13971 ImpliedFlags = IncrementNSSW; 13972 13973 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13974 // If the increment is positive, the SCEV NUW flag will also imply the 13975 // WrapPredicate NUSW flag. 13976 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13977 if (Step->getValue()->getValue().isNonNegative()) 13978 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13979 } 13980 13981 return ImpliedFlags; 13982 } 13983 13984 /// Union predicates don't get cached so create a dummy set ID for it. 13985 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 13986 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 13987 for (auto *P : Preds) 13988 add(P); 13989 } 13990 13991 bool SCEVUnionPredicate::isAlwaysTrue() const { 13992 return all_of(Preds, 13993 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13994 } 13995 13996 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13997 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13998 return all_of(Set->Preds, 13999 [this](const SCEVPredicate *I) { return this->implies(I); }); 14000 14001 return any_of(Preds, 14002 [N](const SCEVPredicate *I) { return I->implies(N); }); 14003 } 14004 14005 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14006 for (auto Pred : Preds) 14007 Pred->print(OS, Depth); 14008 } 14009 14010 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14011 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14012 for (auto Pred : Set->Preds) 14013 add(Pred); 14014 return; 14015 } 14016 14017 Preds.push_back(N); 14018 } 14019 14020 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14021 Loop &L) 14022 : SE(SE), L(L) { 14023 SmallVector<const SCEVPredicate*, 4> Empty; 14024 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14025 } 14026 14027 void ScalarEvolution::registerUser(const SCEV *User, 14028 ArrayRef<const SCEV *> Ops) { 14029 for (auto *Op : Ops) 14030 // We do not expect that forgetting cached data for SCEVConstants will ever 14031 // open any prospects for sharpening or introduce any correctness issues, 14032 // so we don't bother storing their dependencies. 14033 if (!isa<SCEVConstant>(Op)) 14034 SCEVUsers[Op].insert(User); 14035 } 14036 14037 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14038 const SCEV *Expr = SE.getSCEV(V); 14039 RewriteEntry &Entry = RewriteMap[Expr]; 14040 14041 // If we already have an entry and the version matches, return it. 14042 if (Entry.second && Generation == Entry.first) 14043 return Entry.second; 14044 14045 // We found an entry but it's stale. Rewrite the stale entry 14046 // according to the current predicate. 14047 if (Entry.second) 14048 Expr = Entry.second; 14049 14050 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14051 Entry = {Generation, NewSCEV}; 14052 14053 return NewSCEV; 14054 } 14055 14056 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14057 if (!BackedgeCount) { 14058 SmallVector<const SCEVPredicate *, 4> Preds; 14059 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14060 for (auto *P : Preds) 14061 addPredicate(*P); 14062 } 14063 return BackedgeCount; 14064 } 14065 14066 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14067 if (Preds->implies(&Pred)) 14068 return; 14069 14070 auto &OldPreds = Preds->getPredicates(); 14071 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14072 NewPreds.push_back(&Pred); 14073 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14074 updateGeneration(); 14075 } 14076 14077 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14078 return *Preds; 14079 } 14080 14081 void PredicatedScalarEvolution::updateGeneration() { 14082 // If the generation number wrapped recompute everything. 14083 if (++Generation == 0) { 14084 for (auto &II : RewriteMap) { 14085 const SCEV *Rewritten = II.second.second; 14086 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14087 } 14088 } 14089 } 14090 14091 void PredicatedScalarEvolution::setNoOverflow( 14092 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14093 const SCEV *Expr = getSCEV(V); 14094 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14095 14096 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14097 14098 // Clear the statically implied flags. 14099 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14100 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14101 14102 auto II = FlagsMap.insert({V, Flags}); 14103 if (!II.second) 14104 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14105 } 14106 14107 bool PredicatedScalarEvolution::hasNoOverflow( 14108 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14109 const SCEV *Expr = getSCEV(V); 14110 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14111 14112 Flags = SCEVWrapPredicate::clearFlags( 14113 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14114 14115 auto II = FlagsMap.find(V); 14116 14117 if (II != FlagsMap.end()) 14118 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14119 14120 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14121 } 14122 14123 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14124 const SCEV *Expr = this->getSCEV(V); 14125 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14126 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14127 14128 if (!New) 14129 return nullptr; 14130 14131 for (auto *P : NewPreds) 14132 addPredicate(*P); 14133 14134 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14135 return New; 14136 } 14137 14138 PredicatedScalarEvolution::PredicatedScalarEvolution( 14139 const PredicatedScalarEvolution &Init) 14140 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14141 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14142 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14143 for (auto I : Init.FlagsMap) 14144 FlagsMap.insert(I); 14145 } 14146 14147 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14148 // For each block. 14149 for (auto *BB : L.getBlocks()) 14150 for (auto &I : *BB) { 14151 if (!SE.isSCEVable(I.getType())) 14152 continue; 14153 14154 auto *Expr = SE.getSCEV(&I); 14155 auto II = RewriteMap.find(Expr); 14156 14157 if (II == RewriteMap.end()) 14158 continue; 14159 14160 // Don't print things that are not interesting. 14161 if (II->second.second == Expr) 14162 continue; 14163 14164 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14165 OS.indent(Depth + 2) << *Expr << "\n"; 14166 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14167 } 14168 } 14169 14170 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14171 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14172 // for URem with constant power-of-2 second operands. 14173 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14174 // 4, A / B becomes X / 8). 14175 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14176 const SCEV *&RHS) { 14177 // Try to match 'zext (trunc A to iB) to iY', which is used 14178 // for URem with constant power-of-2 second operands. Make sure the size of 14179 // the operand A matches the size of the whole expressions. 14180 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14181 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14182 LHS = Trunc->getOperand(); 14183 // Bail out if the type of the LHS is larger than the type of the 14184 // expression for now. 14185 if (getTypeSizeInBits(LHS->getType()) > 14186 getTypeSizeInBits(Expr->getType())) 14187 return false; 14188 if (LHS->getType() != Expr->getType()) 14189 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14190 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14191 << getTypeSizeInBits(Trunc->getType())); 14192 return true; 14193 } 14194 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14195 if (Add == nullptr || Add->getNumOperands() != 2) 14196 return false; 14197 14198 const SCEV *A = Add->getOperand(1); 14199 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14200 14201 if (Mul == nullptr) 14202 return false; 14203 14204 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14205 // (SomeExpr + (-(SomeExpr / B) * B)). 14206 if (Expr == getURemExpr(A, B)) { 14207 LHS = A; 14208 RHS = B; 14209 return true; 14210 } 14211 return false; 14212 }; 14213 14214 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14215 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14216 return MatchURemWithDivisor(Mul->getOperand(1)) || 14217 MatchURemWithDivisor(Mul->getOperand(2)); 14218 14219 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14220 if (Mul->getNumOperands() == 2) 14221 return MatchURemWithDivisor(Mul->getOperand(1)) || 14222 MatchURemWithDivisor(Mul->getOperand(0)) || 14223 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14224 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14225 return false; 14226 } 14227 14228 const SCEV * 14229 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14230 SmallVector<BasicBlock*, 16> ExitingBlocks; 14231 L->getExitingBlocks(ExitingBlocks); 14232 14233 // Form an expression for the maximum exit count possible for this loop. We 14234 // merge the max and exact information to approximate a version of 14235 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14236 SmallVector<const SCEV*, 4> ExitCounts; 14237 for (BasicBlock *ExitingBB : ExitingBlocks) { 14238 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14239 if (isa<SCEVCouldNotCompute>(ExitCount)) 14240 ExitCount = getExitCount(L, ExitingBB, 14241 ScalarEvolution::ConstantMaximum); 14242 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14243 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14244 "We should only have known counts for exiting blocks that " 14245 "dominate latch!"); 14246 ExitCounts.push_back(ExitCount); 14247 } 14248 } 14249 if (ExitCounts.empty()) 14250 return getCouldNotCompute(); 14251 return getUMinFromMismatchedTypes(ExitCounts); 14252 } 14253 14254 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14255 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14256 /// replacement is loop invariant in the loop of the AddRec. 14257 /// 14258 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14259 /// supported. 14260 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14261 const DenseMap<const SCEV *, const SCEV *> ⤅ 14262 14263 public: 14264 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14265 DenseMap<const SCEV *, const SCEV *> &M) 14266 : SCEVRewriteVisitor(SE), Map(M) {} 14267 14268 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14269 14270 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14271 auto I = Map.find(Expr); 14272 if (I == Map.end()) 14273 return Expr; 14274 return I->second; 14275 } 14276 14277 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14278 auto I = Map.find(Expr); 14279 if (I == Map.end()) 14280 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14281 Expr); 14282 return I->second; 14283 } 14284 }; 14285 14286 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14287 SmallVector<const SCEV *> ExprsToRewrite; 14288 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14289 const SCEV *RHS, 14290 DenseMap<const SCEV *, const SCEV *> 14291 &RewriteMap) { 14292 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14293 // replacement SCEV which isn't directly implied by the structure of that 14294 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14295 // legal. See the scoping rules for flags in the header to understand why. 14296 14297 // If LHS is a constant, apply information to the other expression. 14298 if (isa<SCEVConstant>(LHS)) { 14299 std::swap(LHS, RHS); 14300 Predicate = CmpInst::getSwappedPredicate(Predicate); 14301 } 14302 14303 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14304 // create this form when combining two checks of the form (X u< C2 + C1) and 14305 // (X >=u C1). 14306 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14307 &ExprsToRewrite]() { 14308 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14309 if (!AddExpr || AddExpr->getNumOperands() != 2) 14310 return false; 14311 14312 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14313 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14314 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14315 if (!C1 || !C2 || !LHSUnknown) 14316 return false; 14317 14318 auto ExactRegion = 14319 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14320 .sub(C1->getAPInt()); 14321 14322 // Bail out, unless we have a non-wrapping, monotonic range. 14323 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14324 return false; 14325 auto I = RewriteMap.find(LHSUnknown); 14326 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14327 RewriteMap[LHSUnknown] = getUMaxExpr( 14328 getConstant(ExactRegion.getUnsignedMin()), 14329 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14330 ExprsToRewrite.push_back(LHSUnknown); 14331 return true; 14332 }; 14333 if (MatchRangeCheckIdiom()) 14334 return; 14335 14336 // If we have LHS == 0, check if LHS is computing a property of some unknown 14337 // SCEV %v which we can rewrite %v to express explicitly. 14338 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14339 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14340 RHSC->getValue()->isNullValue()) { 14341 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14342 // explicitly express that. 14343 const SCEV *URemLHS = nullptr; 14344 const SCEV *URemRHS = nullptr; 14345 if (matchURem(LHS, URemLHS, URemRHS)) { 14346 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14347 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14348 RewriteMap[LHSUnknown] = Multiple; 14349 ExprsToRewrite.push_back(LHSUnknown); 14350 return; 14351 } 14352 } 14353 } 14354 14355 // Do not apply information for constants or if RHS contains an AddRec. 14356 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14357 return; 14358 14359 // If RHS is SCEVUnknown, make sure the information is applied to it. 14360 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14361 std::swap(LHS, RHS); 14362 Predicate = CmpInst::getSwappedPredicate(Predicate); 14363 } 14364 14365 // Limit to expressions that can be rewritten. 14366 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14367 return; 14368 14369 // Check whether LHS has already been rewritten. In that case we want to 14370 // chain further rewrites onto the already rewritten value. 14371 auto I = RewriteMap.find(LHS); 14372 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14373 14374 const SCEV *RewrittenRHS = nullptr; 14375 switch (Predicate) { 14376 case CmpInst::ICMP_ULT: 14377 RewrittenRHS = 14378 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14379 break; 14380 case CmpInst::ICMP_SLT: 14381 RewrittenRHS = 14382 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14383 break; 14384 case CmpInst::ICMP_ULE: 14385 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14386 break; 14387 case CmpInst::ICMP_SLE: 14388 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14389 break; 14390 case CmpInst::ICMP_UGT: 14391 RewrittenRHS = 14392 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14393 break; 14394 case CmpInst::ICMP_SGT: 14395 RewrittenRHS = 14396 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14397 break; 14398 case CmpInst::ICMP_UGE: 14399 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14400 break; 14401 case CmpInst::ICMP_SGE: 14402 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14403 break; 14404 case CmpInst::ICMP_EQ: 14405 if (isa<SCEVConstant>(RHS)) 14406 RewrittenRHS = RHS; 14407 break; 14408 case CmpInst::ICMP_NE: 14409 if (isa<SCEVConstant>(RHS) && 14410 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14411 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14412 break; 14413 default: 14414 break; 14415 } 14416 14417 if (RewrittenRHS) { 14418 RewriteMap[LHS] = RewrittenRHS; 14419 if (LHS == RewrittenLHS) 14420 ExprsToRewrite.push_back(LHS); 14421 } 14422 }; 14423 // First, collect conditions from dominating branches. Starting at the loop 14424 // predecessor, climb up the predecessor chain, as long as there are 14425 // predecessors that can be found that have unique successors leading to the 14426 // original header. 14427 // TODO: share this logic with isLoopEntryGuardedByCond. 14428 SmallVector<std::pair<Value *, bool>> Terms; 14429 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14430 L->getLoopPredecessor(), L->getHeader()); 14431 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14432 14433 const BranchInst *LoopEntryPredicate = 14434 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14435 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14436 continue; 14437 14438 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14439 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14440 } 14441 14442 // Now apply the information from the collected conditions to RewriteMap. 14443 // Conditions are processed in reverse order, so the earliest conditions is 14444 // processed first. This ensures the SCEVs with the shortest dependency chains 14445 // are constructed first. 14446 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14447 for (auto &E : reverse(Terms)) { 14448 bool EnterIfTrue = E.second; 14449 SmallVector<Value *, 8> Worklist; 14450 SmallPtrSet<Value *, 8> Visited; 14451 Worklist.push_back(E.first); 14452 while (!Worklist.empty()) { 14453 Value *Cond = Worklist.pop_back_val(); 14454 if (!Visited.insert(Cond).second) 14455 continue; 14456 14457 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14458 auto Predicate = 14459 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14460 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14461 getSCEV(Cmp->getOperand(1)), RewriteMap); 14462 continue; 14463 } 14464 14465 Value *L, *R; 14466 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14467 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14468 Worklist.push_back(L); 14469 Worklist.push_back(R); 14470 } 14471 } 14472 } 14473 14474 // Also collect information from assumptions dominating the loop. 14475 for (auto &AssumeVH : AC.assumptions()) { 14476 if (!AssumeVH) 14477 continue; 14478 auto *AssumeI = cast<CallInst>(AssumeVH); 14479 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14480 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14481 continue; 14482 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14483 getSCEV(Cmp->getOperand(1)), RewriteMap); 14484 } 14485 14486 if (RewriteMap.empty()) 14487 return Expr; 14488 14489 // Now that all rewrite information is collect, rewrite the collected 14490 // expressions with the information in the map. This applies information to 14491 // sub-expressions. 14492 if (ExprsToRewrite.size() > 1) { 14493 for (const SCEV *Expr : ExprsToRewrite) { 14494 const SCEV *RewriteTo = RewriteMap[Expr]; 14495 RewriteMap.erase(Expr); 14496 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14497 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14498 } 14499 } 14500 14501 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14502 return Rewriter.visit(Expr); 14503 } 14504