1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->getNoWrapFlags(FlagNUW)) 161 OS << "nuw><"; 162 if (AR->getNoWrapFlags(FlagNSW)) 163 OS << "nsw><"; 164 if (AR->getNoWrapFlags(FlagNW) && 165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 166 OS << "nw><"; 167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 168 OS << ">"; 169 return; 170 } 171 case scAddExpr: 172 case scMulExpr: 173 case scUMaxExpr: 174 case scSMaxExpr: { 175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 176 const char *OpStr = 0; 177 switch (NAry->getSCEVType()) { 178 case scAddExpr: OpStr = " + "; break; 179 case scMulExpr: OpStr = " * "; break; 180 case scUMaxExpr: OpStr = " umax "; break; 181 case scSMaxExpr: OpStr = " smax "; break; 182 } 183 OS << "("; 184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 185 I != E; ++I) { 186 OS << **I; 187 if (llvm::next(I) != E) 188 OS << OpStr; 189 } 190 OS << ")"; 191 return; 192 } 193 case scUDivExpr: { 194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 196 return; 197 } 198 case scUnknown: { 199 const SCEVUnknown *U = cast<SCEVUnknown>(this); 200 Type *AllocTy; 201 if (U->isSizeOf(AllocTy)) { 202 OS << "sizeof(" << *AllocTy << ")"; 203 return; 204 } 205 if (U->isAlignOf(AllocTy)) { 206 OS << "alignof(" << *AllocTy << ")"; 207 return; 208 } 209 210 Type *CTy; 211 Constant *FieldNo; 212 if (U->isOffsetOf(CTy, FieldNo)) { 213 OS << "offsetof(" << *CTy << ", "; 214 WriteAsOperand(OS, FieldNo, false); 215 OS << ")"; 216 return; 217 } 218 219 // Otherwise just print it normally. 220 WriteAsOperand(OS, U->getValue(), false); 221 return; 222 } 223 case scCouldNotCompute: 224 OS << "***COULDNOTCOMPUTE***"; 225 return; 226 default: break; 227 } 228 llvm_unreachable("Unknown SCEV kind!"); 229 } 230 231 Type *SCEV::getType() const { 232 switch (getSCEVType()) { 233 case scConstant: 234 return cast<SCEVConstant>(this)->getType(); 235 case scTruncate: 236 case scZeroExtend: 237 case scSignExtend: 238 return cast<SCEVCastExpr>(this)->getType(); 239 case scAddRecExpr: 240 case scMulExpr: 241 case scUMaxExpr: 242 case scSMaxExpr: 243 return cast<SCEVNAryExpr>(this)->getType(); 244 case scAddExpr: 245 return cast<SCEVAddExpr>(this)->getType(); 246 case scUDivExpr: 247 return cast<SCEVUDivExpr>(this)->getType(); 248 case scUnknown: 249 return cast<SCEVUnknown>(this)->getType(); 250 case scCouldNotCompute: 251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 252 return 0; 253 default: break; 254 } 255 llvm_unreachable("Unknown SCEV kind!"); 256 return 0; 257 } 258 259 bool SCEV::isZero() const { 260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 261 return SC->getValue()->isZero(); 262 return false; 263 } 264 265 bool SCEV::isOne() const { 266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 267 return SC->getValue()->isOne(); 268 return false; 269 } 270 271 bool SCEV::isAllOnesValue() const { 272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 273 return SC->getValue()->isAllOnesValue(); 274 return false; 275 } 276 277 SCEVCouldNotCompute::SCEVCouldNotCompute() : 278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 279 280 bool SCEVCouldNotCompute::classof(const SCEV *S) { 281 return S->getSCEVType() == scCouldNotCompute; 282 } 283 284 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 285 FoldingSetNodeID ID; 286 ID.AddInteger(scConstant); 287 ID.AddPointer(V); 288 void *IP = 0; 289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 291 UniqueSCEVs.InsertNode(S, IP); 292 return S; 293 } 294 295 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 296 return getConstant(ConstantInt::get(getContext(), Val)); 297 } 298 299 const SCEV * 300 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 302 return getConstant(ConstantInt::get(ITy, V, isSigned)); 303 } 304 305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 306 unsigned SCEVTy, const SCEV *op, Type *ty) 307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 308 309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 310 const SCEV *op, Type *ty) 311 : SCEVCastExpr(ID, scTruncate, op, ty) { 312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 313 (Ty->isIntegerTy() || Ty->isPointerTy()) && 314 "Cannot truncate non-integer value!"); 315 } 316 317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 318 const SCEV *op, Type *ty) 319 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 321 (Ty->isIntegerTy() || Ty->isPointerTy()) && 322 "Cannot zero extend non-integer value!"); 323 } 324 325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 326 const SCEV *op, Type *ty) 327 : SCEVCastExpr(ID, scSignExtend, op, ty) { 328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 329 (Ty->isIntegerTy() || Ty->isPointerTy()) && 330 "Cannot sign extend non-integer value!"); 331 } 332 333 void SCEVUnknown::deleted() { 334 // Clear this SCEVUnknown from various maps. 335 SE->forgetMemoizedResults(this); 336 337 // Remove this SCEVUnknown from the uniquing map. 338 SE->UniqueSCEVs.RemoveNode(this); 339 340 // Release the value. 341 setValPtr(0); 342 } 343 344 void SCEVUnknown::allUsesReplacedWith(Value *New) { 345 // Clear this SCEVUnknown from various maps. 346 SE->forgetMemoizedResults(this); 347 348 // Remove this SCEVUnknown from the uniquing map. 349 SE->UniqueSCEVs.RemoveNode(this); 350 351 // Update this SCEVUnknown to point to the new value. This is needed 352 // because there may still be outstanding SCEVs which still point to 353 // this SCEVUnknown. 354 setValPtr(New); 355 } 356 357 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 359 if (VCE->getOpcode() == Instruction::PtrToInt) 360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 361 if (CE->getOpcode() == Instruction::GetElementPtr && 362 CE->getOperand(0)->isNullValue() && 363 CE->getNumOperands() == 2) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 365 if (CI->isOne()) { 366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 367 ->getElementType(); 368 return true; 369 } 370 371 return false; 372 } 373 374 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 376 if (VCE->getOpcode() == Instruction::PtrToInt) 377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 378 if (CE->getOpcode() == Instruction::GetElementPtr && 379 CE->getOperand(0)->isNullValue()) { 380 Type *Ty = 381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 382 if (StructType *STy = dyn_cast<StructType>(Ty)) 383 if (!STy->isPacked() && 384 CE->getNumOperands() == 3 && 385 CE->getOperand(1)->isNullValue()) { 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 387 if (CI->isOne() && 388 STy->getNumElements() == 2 && 389 STy->getElementType(0)->isIntegerTy(1)) { 390 AllocTy = STy->getElementType(1); 391 return true; 392 } 393 } 394 } 395 396 return false; 397 } 398 399 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 401 if (VCE->getOpcode() == Instruction::PtrToInt) 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 403 if (CE->getOpcode() == Instruction::GetElementPtr && 404 CE->getNumOperands() == 3 && 405 CE->getOperand(0)->isNullValue() && 406 CE->getOperand(1)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 // Ignore vector types here so that ScalarEvolutionExpander doesn't 410 // emit getelementptrs that index into vectors. 411 if (Ty->isStructTy() || Ty->isArrayTy()) { 412 CTy = Ty; 413 FieldNo = CE->getOperand(2); 414 return true; 415 } 416 } 417 418 return false; 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 class SCEVComplexityCompare { 430 const LoopInfo *const LI; 431 public: 432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 433 434 // Return true or false if LHS is less than, or at least RHS, respectively. 435 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 436 return compare(LHS, RHS) < 0; 437 } 438 439 // Return negative, zero, or positive, if LHS is less than, equal to, or 440 // greater than RHS, respectively. A three-way result allows recursive 441 // comparisons to be more efficient. 442 int compare(const SCEV *LHS, const SCEV *RHS) const { 443 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 444 if (LHS == RHS) 445 return 0; 446 447 // Primarily, sort the SCEVs by their getSCEVType(). 448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 449 if (LType != RType) 450 return (int)LType - (int)RType; 451 452 // Aside from the getSCEVType() ordering, the particular ordering 453 // isn't very important except that it's beneficial to be consistent, 454 // so that (a + b) and (b + a) don't end up as different expressions. 455 switch (LType) { 456 case scUnknown: { 457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 459 460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 461 // not as complete as it could be. 462 const Value *LV = LU->getValue(), *RV = RU->getValue(); 463 464 // Order pointer values after integer values. This helps SCEVExpander 465 // form GEPs. 466 bool LIsPointer = LV->getType()->isPointerTy(), 467 RIsPointer = RV->getType()->isPointerTy(); 468 if (LIsPointer != RIsPointer) 469 return (int)LIsPointer - (int)RIsPointer; 470 471 // Compare getValueID values. 472 unsigned LID = LV->getValueID(), 473 RID = RV->getValueID(); 474 if (LID != RID) 475 return (int)LID - (int)RID; 476 477 // Sort arguments by their position. 478 if (const Argument *LA = dyn_cast<Argument>(LV)) { 479 const Argument *RA = cast<Argument>(RV); 480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 481 return (int)LArgNo - (int)RArgNo; 482 } 483 484 // For instructions, compare their loop depth, and their operand 485 // count. This is pretty loose. 486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 487 const Instruction *RInst = cast<Instruction>(RV); 488 489 // Compare loop depths. 490 const BasicBlock *LParent = LInst->getParent(), 491 *RParent = RInst->getParent(); 492 if (LParent != RParent) { 493 unsigned LDepth = LI->getLoopDepth(LParent), 494 RDepth = LI->getLoopDepth(RParent); 495 if (LDepth != RDepth) 496 return (int)LDepth - (int)RDepth; 497 } 498 499 // Compare the number of operands. 500 unsigned LNumOps = LInst->getNumOperands(), 501 RNumOps = RInst->getNumOperands(); 502 return (int)LNumOps - (int)RNumOps; 503 } 504 505 return 0; 506 } 507 508 case scConstant: { 509 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 510 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 511 512 // Compare constant values. 513 const APInt &LA = LC->getValue()->getValue(); 514 const APInt &RA = RC->getValue()->getValue(); 515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 516 if (LBitWidth != RBitWidth) 517 return (int)LBitWidth - (int)RBitWidth; 518 return LA.ult(RA) ? -1 : 1; 519 } 520 521 case scAddRecExpr: { 522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 524 525 // Compare addrec loop depths. 526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 527 if (LLoop != RLoop) { 528 unsigned LDepth = LLoop->getLoopDepth(), 529 RDepth = RLoop->getLoopDepth(); 530 if (LDepth != RDepth) 531 return (int)LDepth - (int)RDepth; 532 } 533 534 // Addrec complexity grows with operand count. 535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 536 if (LNumOps != RNumOps) 537 return (int)LNumOps - (int)RNumOps; 538 539 // Lexicographically compare. 540 for (unsigned i = 0; i != LNumOps; ++i) { 541 long X = compare(LA->getOperand(i), RA->getOperand(i)); 542 if (X != 0) 543 return X; 544 } 545 546 return 0; 547 } 548 549 case scAddExpr: 550 case scMulExpr: 551 case scSMaxExpr: 552 case scUMaxExpr: { 553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 555 556 // Lexicographically compare n-ary expressions. 557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 558 for (unsigned i = 0; i != LNumOps; ++i) { 559 if (i >= RNumOps) 560 return 1; 561 long X = compare(LC->getOperand(i), RC->getOperand(i)); 562 if (X != 0) 563 return X; 564 } 565 return (int)LNumOps - (int)RNumOps; 566 } 567 568 case scUDivExpr: { 569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 571 572 // Lexicographically compare udiv expressions. 573 long X = compare(LC->getLHS(), RC->getLHS()); 574 if (X != 0) 575 return X; 576 return compare(LC->getRHS(), RC->getRHS()); 577 } 578 579 case scTruncate: 580 case scZeroExtend: 581 case scSignExtend: { 582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 584 585 // Compare cast expressions by operand. 586 return compare(LC->getOperand(), RC->getOperand()); 587 } 588 589 default: 590 break; 591 } 592 593 llvm_unreachable("Unknown SCEV kind!"); 594 return 0; 595 } 596 }; 597 } 598 599 /// GroupByComplexity - Given a list of SCEV objects, order them by their 600 /// complexity, and group objects of the same complexity together by value. 601 /// When this routine is finished, we know that any duplicates in the vector are 602 /// consecutive and that complexity is monotonically increasing. 603 /// 604 /// Note that we go take special precautions to ensure that we get deterministic 605 /// results from this routine. In other words, we don't want the results of 606 /// this to depend on where the addresses of various SCEV objects happened to 607 /// land in memory. 608 /// 609 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 610 LoopInfo *LI) { 611 if (Ops.size() < 2) return; // Noop 612 if (Ops.size() == 2) { 613 // This is the common case, which also happens to be trivially simple. 614 // Special case it. 615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 616 if (SCEVComplexityCompare(LI)(RHS, LHS)) 617 std::swap(LHS, RHS); 618 return; 619 } 620 621 // Do the rough sort by complexity. 622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 623 624 // Now that we are sorted by complexity, group elements of the same 625 // complexity. Note that this is, at worst, N^2, but the vector is likely to 626 // be extremely short in practice. Note that we take this approach because we 627 // do not want to depend on the addresses of the objects we are grouping. 628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 629 const SCEV *S = Ops[i]; 630 unsigned Complexity = S->getSCEVType(); 631 632 // If there are any objects of the same complexity and same value as this 633 // one, group them. 634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 635 if (Ops[j] == S) { // Found a duplicate. 636 // Move it to immediately after i'th element. 637 std::swap(Ops[i+1], Ops[j]); 638 ++i; // no need to rescan it. 639 if (i == e-2) return; // Done! 640 } 641 } 642 } 643 } 644 645 646 647 //===----------------------------------------------------------------------===// 648 // Simple SCEV method implementations 649 //===----------------------------------------------------------------------===// 650 651 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 652 /// Assume, K > 0. 653 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 654 ScalarEvolution &SE, 655 Type *ResultTy) { 656 // Handle the simplest case efficiently. 657 if (K == 1) 658 return SE.getTruncateOrZeroExtend(It, ResultTy); 659 660 // We are using the following formula for BC(It, K): 661 // 662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 663 // 664 // Suppose, W is the bitwidth of the return value. We must be prepared for 665 // overflow. Hence, we must assure that the result of our computation is 666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 667 // safe in modular arithmetic. 668 // 669 // However, this code doesn't use exactly that formula; the formula it uses 670 // is something like the following, where T is the number of factors of 2 in 671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 672 // exponentiation: 673 // 674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 675 // 676 // This formula is trivially equivalent to the previous formula. However, 677 // this formula can be implemented much more efficiently. The trick is that 678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 679 // arithmetic. To do exact division in modular arithmetic, all we have 680 // to do is multiply by the inverse. Therefore, this step can be done at 681 // width W. 682 // 683 // The next issue is how to safely do the division by 2^T. The way this 684 // is done is by doing the multiplication step at a width of at least W + T 685 // bits. This way, the bottom W+T bits of the product are accurate. Then, 686 // when we perform the division by 2^T (which is equivalent to a right shift 687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 688 // truncated out after the division by 2^T. 689 // 690 // In comparison to just directly using the first formula, this technique 691 // is much more efficient; using the first formula requires W * K bits, 692 // but this formula less than W + K bits. Also, the first formula requires 693 // a division step, whereas this formula only requires multiplies and shifts. 694 // 695 // It doesn't matter whether the subtraction step is done in the calculation 696 // width or the input iteration count's width; if the subtraction overflows, 697 // the result must be zero anyway. We prefer here to do it in the width of 698 // the induction variable because it helps a lot for certain cases; CodeGen 699 // isn't smart enough to ignore the overflow, which leads to much less 700 // efficient code if the width of the subtraction is wider than the native 701 // register width. 702 // 703 // (It's possible to not widen at all by pulling out factors of 2 before 704 // the multiplication; for example, K=2 can be calculated as 705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 706 // extra arithmetic, so it's not an obvious win, and it gets 707 // much more complicated for K > 3.) 708 709 // Protection from insane SCEVs; this bound is conservative, 710 // but it probably doesn't matter. 711 if (K > 1000) 712 return SE.getCouldNotCompute(); 713 714 unsigned W = SE.getTypeSizeInBits(ResultTy); 715 716 // Calculate K! / 2^T and T; we divide out the factors of two before 717 // multiplying for calculating K! / 2^T to avoid overflow. 718 // Other overflow doesn't matter because we only care about the bottom 719 // W bits of the result. 720 APInt OddFactorial(W, 1); 721 unsigned T = 1; 722 for (unsigned i = 3; i <= K; ++i) { 723 APInt Mult(W, i); 724 unsigned TwoFactors = Mult.countTrailingZeros(); 725 T += TwoFactors; 726 Mult = Mult.lshr(TwoFactors); 727 OddFactorial *= Mult; 728 } 729 730 // We need at least W + T bits for the multiplication step 731 unsigned CalculationBits = W + T; 732 733 // Calculate 2^T, at width T+W. 734 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 735 736 // Calculate the multiplicative inverse of K! / 2^T; 737 // this multiplication factor will perform the exact division by 738 // K! / 2^T. 739 APInt Mod = APInt::getSignedMinValue(W+1); 740 APInt MultiplyFactor = OddFactorial.zext(W+1); 741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 742 MultiplyFactor = MultiplyFactor.trunc(W); 743 744 // Calculate the product, at width T+W 745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 746 CalculationBits); 747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 748 for (unsigned i = 1; i != K; ++i) { 749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 750 Dividend = SE.getMulExpr(Dividend, 751 SE.getTruncateOrZeroExtend(S, CalculationTy)); 752 } 753 754 // Divide by 2^T 755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 756 757 // Truncate the result, and divide by K! / 2^T. 758 759 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 760 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 761 } 762 763 /// evaluateAtIteration - Return the value of this chain of recurrences at 764 /// the specified iteration number. We can evaluate this recurrence by 765 /// multiplying each element in the chain by the binomial coefficient 766 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 767 /// 768 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 769 /// 770 /// where BC(It, k) stands for binomial coefficient. 771 /// 772 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 773 ScalarEvolution &SE) const { 774 const SCEV *Result = getStart(); 775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 776 // The computation is correct in the face of overflow provided that the 777 // multiplication is performed _after_ the evaluation of the binomial 778 // coefficient. 779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 780 if (isa<SCEVCouldNotCompute>(Coeff)) 781 return Coeff; 782 783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 784 } 785 return Result; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // SCEV Expression folder implementations 790 //===----------------------------------------------------------------------===// 791 792 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 793 Type *Ty) { 794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 795 "This is not a truncating conversion!"); 796 assert(isSCEVable(Ty) && 797 "This is not a conversion to a SCEVable type!"); 798 Ty = getEffectiveSCEVType(Ty); 799 800 FoldingSetNodeID ID; 801 ID.AddInteger(scTruncate); 802 ID.AddPointer(Op); 803 ID.AddPointer(Ty); 804 void *IP = 0; 805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 806 807 // Fold if the operand is constant. 808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 809 return getConstant( 810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 811 getEffectiveSCEVType(Ty)))); 812 813 // trunc(trunc(x)) --> trunc(x) 814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 815 return getTruncateExpr(ST->getOperand(), Ty); 816 817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 819 return getTruncateOrSignExtend(SS->getOperand(), Ty); 820 821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 824 825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 826 // eliminate all the truncates. 827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 828 SmallVector<const SCEV *, 4> Operands; 829 bool hasTrunc = false; 830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 832 hasTrunc = isa<SCEVTruncateExpr>(S); 833 Operands.push_back(S); 834 } 835 if (!hasTrunc) 836 return getAddExpr(Operands); 837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 838 } 839 840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 841 // eliminate all the truncates. 842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 843 SmallVector<const SCEV *, 4> Operands; 844 bool hasTrunc = false; 845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 847 hasTrunc = isa<SCEVTruncateExpr>(S); 848 Operands.push_back(S); 849 } 850 if (!hasTrunc) 851 return getMulExpr(Operands); 852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 853 } 854 855 // If the input value is a chrec scev, truncate the chrec's operands. 856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 857 SmallVector<const SCEV *, 4> Operands; 858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 861 } 862 863 // As a special case, fold trunc(undef) to undef. We don't want to 864 // know too much about SCEVUnknowns, but this special case is handy 865 // and harmless. 866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 867 if (isa<UndefValue>(U->getValue())) 868 return getSCEV(UndefValue::get(Ty)); 869 870 // The cast wasn't folded; create an explicit cast node. We can reuse 871 // the existing insert position since if we get here, we won't have 872 // made any changes which would invalidate it. 873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 874 Op, Ty); 875 UniqueSCEVs.InsertNode(S, IP); 876 return S; 877 } 878 879 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 880 Type *Ty) { 881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 882 "This is not an extending conversion!"); 883 assert(isSCEVable(Ty) && 884 "This is not a conversion to a SCEVable type!"); 885 Ty = getEffectiveSCEVType(Ty); 886 887 // Fold if the operand is constant. 888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 889 return getConstant( 890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 891 getEffectiveSCEVType(Ty)))); 892 893 // zext(zext(x)) --> zext(x) 894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 895 return getZeroExtendExpr(SZ->getOperand(), Ty); 896 897 // Before doing any expensive analysis, check to see if we've already 898 // computed a SCEV for this Op and Ty. 899 FoldingSetNodeID ID; 900 ID.AddInteger(scZeroExtend); 901 ID.AddPointer(Op); 902 ID.AddPointer(Ty); 903 void *IP = 0; 904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 905 906 // zext(trunc(x)) --> zext(x) or x or trunc(x) 907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 908 // It's possible the bits taken off by the truncate were all zero bits. If 909 // so, we should be able to simplify this further. 910 const SCEV *X = ST->getOperand(); 911 ConstantRange CR = getUnsignedRange(X); 912 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 913 unsigned NewBits = getTypeSizeInBits(Ty); 914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 915 CR.zextOrTrunc(NewBits))) 916 return getTruncateOrZeroExtend(X, Ty); 917 } 918 919 // If the input value is a chrec scev, and we can prove that the value 920 // did not overflow the old, smaller, value, we can zero extend all of the 921 // operands (often constants). This allows analysis of something like 922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 924 if (AR->isAffine()) { 925 const SCEV *Start = AR->getStart(); 926 const SCEV *Step = AR->getStepRecurrence(*this); 927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 928 const Loop *L = AR->getLoop(); 929 930 // If we have special knowledge that this addrec won't overflow, 931 // we don't need to do any further analysis. 932 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 933 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 934 getZeroExtendExpr(Step, Ty), 935 L, AR->getNoWrapFlags()); 936 937 // Check whether the backedge-taken count is SCEVCouldNotCompute. 938 // Note that this serves two purposes: It filters out loops that are 939 // simply not analyzable, and it covers the case where this code is 940 // being called from within backedge-taken count analysis, such that 941 // attempting to ask for the backedge-taken count would likely result 942 // in infinite recursion. In the later case, the analysis code will 943 // cope with a conservative value, and it will take care to purge 944 // that value once it has finished. 945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 947 // Manually compute the final value for AR, checking for 948 // overflow. 949 950 // Check whether the backedge-taken count can be losslessly casted to 951 // the addrec's type. The count is always unsigned. 952 const SCEV *CastedMaxBECount = 953 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 954 const SCEV *RecastedMaxBECount = 955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 956 if (MaxBECount == RecastedMaxBECount) { 957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 958 // Check whether Start+Step*MaxBECount has no unsigned overflow. 959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 960 const SCEV *Add = getAddExpr(Start, ZMul); 961 const SCEV *OperandExtendedAdd = 962 getAddExpr(getZeroExtendExpr(Start, WideTy), 963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 964 getZeroExtendExpr(Step, WideTy))); 965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 966 // Cache knowledge of AR NUW, which is propagated to this AddRec. 967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 968 // Return the expression with the addrec on the outside. 969 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 970 getZeroExtendExpr(Step, Ty), 971 L, AR->getNoWrapFlags()); 972 } 973 // Similar to above, only this time treat the step value as signed. 974 // This covers loops that count down. 975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 976 Add = getAddExpr(Start, SMul); 977 OperandExtendedAdd = 978 getAddExpr(getZeroExtendExpr(Start, WideTy), 979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 980 getSignExtendExpr(Step, WideTy))); 981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 982 // Cache knowledge of AR NW, which is propagated to this AddRec. 983 // Negative step causes unsigned wrap, but it still can't self-wrap. 984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 985 // Return the expression with the addrec on the outside. 986 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 987 getSignExtendExpr(Step, Ty), 988 L, AR->getNoWrapFlags()); 989 } 990 } 991 992 // If the backedge is guarded by a comparison with the pre-inc value 993 // the addrec is safe. Also, if the entry is guarded by a comparison 994 // with the start value and the backedge is guarded by a comparison 995 // with the post-inc value, the addrec is safe. 996 if (isKnownPositive(Step)) { 997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 998 getUnsignedRange(Step).getUnsignedMax()); 999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1002 AR->getPostIncExpr(*this), N))) { 1003 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getZeroExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1016 AR->getPostIncExpr(*this), N))) { 1017 // Cache knowledge of AR NW, which is propagated to this AddRec. 1018 // Negative step causes unsigned wrap, but it still can't self-wrap. 1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1020 // Return the expression with the addrec on the outside. 1021 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1022 getSignExtendExpr(Step, Ty), 1023 L, AR->getNoWrapFlags()); 1024 } 1025 } 1026 } 1027 } 1028 1029 // The cast wasn't folded; create an explicit cast node. 1030 // Recompute the insert position, as it may have been invalidated. 1031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1033 Op, Ty); 1034 UniqueSCEVs.InsertNode(S, IP); 1035 return S; 1036 } 1037 1038 // Get the limit of a recurrence such that incrementing by Step cannot cause 1039 // signed overflow as long as the value of the recurrence within the loop does 1040 // not exceed this limit before incrementing. 1041 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1042 ICmpInst::Predicate *Pred, 1043 ScalarEvolution *SE) { 1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1045 if (SE->isKnownPositive(Step)) { 1046 *Pred = ICmpInst::ICMP_SLT; 1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1048 SE->getSignedRange(Step).getSignedMax()); 1049 } 1050 if (SE->isKnownNegative(Step)) { 1051 *Pred = ICmpInst::ICMP_SGT; 1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1053 SE->getSignedRange(Step).getSignedMin()); 1054 } 1055 return 0; 1056 } 1057 1058 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1059 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1060 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1061 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1062 // result, the expression "Step + sext(PreIncAR)" is congruent with 1063 // "sext(PostIncAR)" 1064 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1065 Type *Ty, 1066 ScalarEvolution *SE) { 1067 const Loop *L = AR->getLoop(); 1068 const SCEV *Start = AR->getStart(); 1069 const SCEV *Step = AR->getStepRecurrence(*SE); 1070 1071 // Check for a simple looking step prior to loop entry. 1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step) 1074 return 0; 1075 1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1077 // same three conditions that getSignExtendedExpr checks. 1078 1079 // 1. NSW flags on the step increment. 1080 const SCEV *PreStart = SA->getOperand(1); 1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1083 1084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1085 return PreStart; 1086 1087 // 2. Direct overflow check on the step operation's expression. 1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1090 const SCEV *OperandExtendedStart = 1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1092 SE->getSignExtendExpr(Step, WideTy)); 1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1094 // Cache knowledge of PreAR NSW. 1095 if (PreAR) 1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1097 // FIXME: this optimization needs a unit test 1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1099 return PreStart; 1100 } 1101 1102 // 3. Loop precondition. 1103 ICmpInst::Predicate Pred; 1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1105 1106 if (OverflowLimit && 1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1108 return PreStart; 1109 } 1110 return 0; 1111 } 1112 1113 // Get the normalized sign-extended expression for this AddRec's Start. 1114 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1115 Type *Ty, 1116 ScalarEvolution *SE) { 1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1118 if (!PreStart) 1119 return SE->getSignExtendExpr(AR->getStart(), Ty); 1120 1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1122 SE->getSignExtendExpr(PreStart, Ty)); 1123 } 1124 1125 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1126 Type *Ty) { 1127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1128 "This is not an extending conversion!"); 1129 assert(isSCEVable(Ty) && 1130 "This is not a conversion to a SCEVable type!"); 1131 Ty = getEffectiveSCEVType(Ty); 1132 1133 // Fold if the operand is constant. 1134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1135 return getConstant( 1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1137 getEffectiveSCEVType(Ty)))); 1138 1139 // sext(sext(x)) --> sext(x) 1140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1141 return getSignExtendExpr(SS->getOperand(), Ty); 1142 1143 // sext(zext(x)) --> zext(x) 1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1145 return getZeroExtendExpr(SZ->getOperand(), Ty); 1146 1147 // Before doing any expensive analysis, check to see if we've already 1148 // computed a SCEV for this Op and Ty. 1149 FoldingSetNodeID ID; 1150 ID.AddInteger(scSignExtend); 1151 ID.AddPointer(Op); 1152 ID.AddPointer(Ty); 1153 void *IP = 0; 1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1155 1156 // If the input value is provably positive, build a zext instead. 1157 if (isKnownNonNegative(Op)) 1158 return getZeroExtendExpr(Op, Ty); 1159 1160 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1162 // It's possible the bits taken off by the truncate were all sign bits. If 1163 // so, we should be able to simplify this further. 1164 const SCEV *X = ST->getOperand(); 1165 ConstantRange CR = getSignedRange(X); 1166 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1167 unsigned NewBits = getTypeSizeInBits(Ty); 1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1169 CR.sextOrTrunc(NewBits))) 1170 return getTruncateOrSignExtend(X, Ty); 1171 } 1172 1173 // If the input value is a chrec scev, and we can prove that the value 1174 // did not overflow the old, smaller, value, we can sign extend all of the 1175 // operands (often constants). This allows analysis of something like 1176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1178 if (AR->isAffine()) { 1179 const SCEV *Start = AR->getStart(); 1180 const SCEV *Step = AR->getStepRecurrence(*this); 1181 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1182 const Loop *L = AR->getLoop(); 1183 1184 // If we have special knowledge that this addrec won't overflow, 1185 // we don't need to do any further analysis. 1186 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1188 getSignExtendExpr(Step, Ty), 1189 L, SCEV::FlagNSW); 1190 1191 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1192 // Note that this serves two purposes: It filters out loops that are 1193 // simply not analyzable, and it covers the case where this code is 1194 // being called from within backedge-taken count analysis, such that 1195 // attempting to ask for the backedge-taken count would likely result 1196 // in infinite recursion. In the later case, the analysis code will 1197 // cope with a conservative value, and it will take care to purge 1198 // that value once it has finished. 1199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1201 // Manually compute the final value for AR, checking for 1202 // overflow. 1203 1204 // Check whether the backedge-taken count can be losslessly casted to 1205 // the addrec's type. The count is always unsigned. 1206 const SCEV *CastedMaxBECount = 1207 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1208 const SCEV *RecastedMaxBECount = 1209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1210 if (MaxBECount == RecastedMaxBECount) { 1211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1212 // Check whether Start+Step*MaxBECount has no signed overflow. 1213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1214 const SCEV *Add = getAddExpr(Start, SMul); 1215 const SCEV *OperandExtendedAdd = 1216 getAddExpr(getSignExtendExpr(Start, WideTy), 1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1218 getSignExtendExpr(Step, WideTy))); 1219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1220 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1222 // Return the expression with the addrec on the outside. 1223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1224 getSignExtendExpr(Step, Ty), 1225 L, AR->getNoWrapFlags()); 1226 } 1227 // Similar to above, only this time treat the step value as unsigned. 1228 // This covers loops that count up with an unsigned step. 1229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1230 Add = getAddExpr(Start, UMul); 1231 OperandExtendedAdd = 1232 getAddExpr(getSignExtendExpr(Start, WideTy), 1233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1234 getZeroExtendExpr(Step, WideTy))); 1235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1236 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1238 // Return the expression with the addrec on the outside. 1239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1240 getZeroExtendExpr(Step, Ty), 1241 L, AR->getNoWrapFlags()); 1242 } 1243 } 1244 1245 // If the backedge is guarded by a comparison with the pre-inc value 1246 // the addrec is safe. Also, if the entry is guarded by a comparison 1247 // with the start value and the backedge is guarded by a comparison 1248 // with the post-inc value, the addrec is safe. 1249 ICmpInst::Predicate Pred; 1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1251 if (OverflowLimit && 1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1255 OverflowLimit)))) { 1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1259 getSignExtendExpr(Step, Ty), 1260 L, AR->getNoWrapFlags()); 1261 } 1262 } 1263 } 1264 1265 // The cast wasn't folded; create an explicit cast node. 1266 // Recompute the insert position, as it may have been invalidated. 1267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1269 Op, Ty); 1270 UniqueSCEVs.InsertNode(S, IP); 1271 return S; 1272 } 1273 1274 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1275 /// unspecified bits out to the given type. 1276 /// 1277 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1278 Type *Ty) { 1279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1280 "This is not an extending conversion!"); 1281 assert(isSCEVable(Ty) && 1282 "This is not a conversion to a SCEVable type!"); 1283 Ty = getEffectiveSCEVType(Ty); 1284 1285 // Sign-extend negative constants. 1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1287 if (SC->getValue()->getValue().isNegative()) 1288 return getSignExtendExpr(Op, Ty); 1289 1290 // Peel off a truncate cast. 1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1292 const SCEV *NewOp = T->getOperand(); 1293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1294 return getAnyExtendExpr(NewOp, Ty); 1295 return getTruncateOrNoop(NewOp, Ty); 1296 } 1297 1298 // Next try a zext cast. If the cast is folded, use it. 1299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1300 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1301 return ZExt; 1302 1303 // Next try a sext cast. If the cast is folded, use it. 1304 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1305 if (!isa<SCEVSignExtendExpr>(SExt)) 1306 return SExt; 1307 1308 // Force the cast to be folded into the operands of an addrec. 1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1310 SmallVector<const SCEV *, 4> Ops; 1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1312 I != E; ++I) 1313 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1315 } 1316 1317 // As a special case, fold anyext(undef) to undef. We don't want to 1318 // know too much about SCEVUnknowns, but this special case is handy 1319 // and harmless. 1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1321 if (isa<UndefValue>(U->getValue())) 1322 return getSCEV(UndefValue::get(Ty)); 1323 1324 // If the expression is obviously signed, use the sext cast value. 1325 if (isa<SCEVSMaxExpr>(Op)) 1326 return SExt; 1327 1328 // Absent any other information, use the zext cast value. 1329 return ZExt; 1330 } 1331 1332 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1333 /// a list of operands to be added under the given scale, update the given 1334 /// map. This is a helper function for getAddRecExpr. As an example of 1335 /// what it does, given a sequence of operands that would form an add 1336 /// expression like this: 1337 /// 1338 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1339 /// 1340 /// where A and B are constants, update the map with these values: 1341 /// 1342 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1343 /// 1344 /// and add 13 + A*B*29 to AccumulatedConstant. 1345 /// This will allow getAddRecExpr to produce this: 1346 /// 1347 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1348 /// 1349 /// This form often exposes folding opportunities that are hidden in 1350 /// the original operand list. 1351 /// 1352 /// Return true iff it appears that any interesting folding opportunities 1353 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1354 /// the common case where no interesting opportunities are present, and 1355 /// is also used as a check to avoid infinite recursion. 1356 /// 1357 static bool 1358 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1359 SmallVector<const SCEV *, 8> &NewOps, 1360 APInt &AccumulatedConstant, 1361 const SCEV *const *Ops, size_t NumOperands, 1362 const APInt &Scale, 1363 ScalarEvolution &SE) { 1364 bool Interesting = false; 1365 1366 // Iterate over the add operands. They are sorted, with constants first. 1367 unsigned i = 0; 1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1369 ++i; 1370 // Pull a buried constant out to the outside. 1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1372 Interesting = true; 1373 AccumulatedConstant += Scale * C->getValue()->getValue(); 1374 } 1375 1376 // Next comes everything else. We're especially interested in multiplies 1377 // here, but they're in the middle, so just visit the rest with one loop. 1378 for (; i != NumOperands; ++i) { 1379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1381 APInt NewScale = 1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1384 // A multiplication of a constant with another add; recurse. 1385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1386 Interesting |= 1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1388 Add->op_begin(), Add->getNumOperands(), 1389 NewScale, SE); 1390 } else { 1391 // A multiplication of a constant with some other value. Update 1392 // the map. 1393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1394 const SCEV *Key = SE.getMulExpr(MulOps); 1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1396 M.insert(std::make_pair(Key, NewScale)); 1397 if (Pair.second) { 1398 NewOps.push_back(Pair.first->first); 1399 } else { 1400 Pair.first->second += NewScale; 1401 // The map already had an entry for this value, which may indicate 1402 // a folding opportunity. 1403 Interesting = true; 1404 } 1405 } 1406 } else { 1407 // An ordinary operand. Update the map. 1408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1409 M.insert(std::make_pair(Ops[i], Scale)); 1410 if (Pair.second) { 1411 NewOps.push_back(Pair.first->first); 1412 } else { 1413 Pair.first->second += Scale; 1414 // The map already had an entry for this value, which may indicate 1415 // a folding opportunity. 1416 Interesting = true; 1417 } 1418 } 1419 } 1420 1421 return Interesting; 1422 } 1423 1424 namespace { 1425 struct APIntCompare { 1426 bool operator()(const APInt &LHS, const APInt &RHS) const { 1427 return LHS.ult(RHS); 1428 } 1429 }; 1430 } 1431 1432 /// getAddExpr - Get a canonical add expression, or something simpler if 1433 /// possible. 1434 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1435 SCEV::NoWrapFlags Flags) { 1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1437 "only nuw or nsw allowed"); 1438 assert(!Ops.empty() && "Cannot get empty add!"); 1439 if (Ops.size() == 1) return Ops[0]; 1440 #ifndef NDEBUG 1441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1442 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1444 "SCEVAddExpr operand types don't match!"); 1445 #endif 1446 1447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1448 // And vice-versa. 1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1452 bool All = true; 1453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1454 E = Ops.end(); I != E; ++I) 1455 if (!isKnownNonNegative(*I)) { 1456 All = false; 1457 break; 1458 } 1459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1460 } 1461 1462 // Sort by complexity, this groups all similar expression types together. 1463 GroupByComplexity(Ops, LI); 1464 1465 // If there are any constants, fold them together. 1466 unsigned Idx = 0; 1467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1468 ++Idx; 1469 assert(Idx < Ops.size()); 1470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1471 // We found two constants, fold them together! 1472 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1473 RHSC->getValue()->getValue()); 1474 if (Ops.size() == 2) return Ops[0]; 1475 Ops.erase(Ops.begin()+1); // Erase the folded element 1476 LHSC = cast<SCEVConstant>(Ops[0]); 1477 } 1478 1479 // If we are left with a constant zero being added, strip it off. 1480 if (LHSC->getValue()->isZero()) { 1481 Ops.erase(Ops.begin()); 1482 --Idx; 1483 } 1484 1485 if (Ops.size() == 1) return Ops[0]; 1486 } 1487 1488 // Okay, check to see if the same value occurs in the operand list more than 1489 // once. If so, merge them together into an multiply expression. Since we 1490 // sorted the list, these values are required to be adjacent. 1491 Type *Ty = Ops[0]->getType(); 1492 bool FoundMatch = false; 1493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1495 // Scan ahead to count how many equal operands there are. 1496 unsigned Count = 2; 1497 while (i+Count != e && Ops[i+Count] == Ops[i]) 1498 ++Count; 1499 // Merge the values into a multiply. 1500 const SCEV *Scale = getConstant(Ty, Count); 1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1502 if (Ops.size() == Count) 1503 return Mul; 1504 Ops[i] = Mul; 1505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1506 --i; e -= Count - 1; 1507 FoundMatch = true; 1508 } 1509 if (FoundMatch) 1510 return getAddExpr(Ops, Flags); 1511 1512 // Check for truncates. If all the operands are truncated from the same 1513 // type, see if factoring out the truncate would permit the result to be 1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1515 // if the contents of the resulting outer trunc fold to something simple. 1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1518 Type *DstType = Trunc->getType(); 1519 Type *SrcType = Trunc->getOperand()->getType(); 1520 SmallVector<const SCEV *, 8> LargeOps; 1521 bool Ok = true; 1522 // Check all the operands to see if they can be represented in the 1523 // source type of the truncate. 1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1526 if (T->getOperand()->getType() != SrcType) { 1527 Ok = false; 1528 break; 1529 } 1530 LargeOps.push_back(T->getOperand()); 1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1532 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1534 SmallVector<const SCEV *, 8> LargeMulOps; 1535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1536 if (const SCEVTruncateExpr *T = 1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1538 if (T->getOperand()->getType() != SrcType) { 1539 Ok = false; 1540 break; 1541 } 1542 LargeMulOps.push_back(T->getOperand()); 1543 } else if (const SCEVConstant *C = 1544 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1546 } else { 1547 Ok = false; 1548 break; 1549 } 1550 } 1551 if (Ok) 1552 LargeOps.push_back(getMulExpr(LargeMulOps)); 1553 } else { 1554 Ok = false; 1555 break; 1556 } 1557 } 1558 if (Ok) { 1559 // Evaluate the expression in the larger type. 1560 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1561 // If it folds to something simple, use it. Otherwise, don't. 1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1563 return getTruncateExpr(Fold, DstType); 1564 } 1565 } 1566 1567 // Skip past any other cast SCEVs. 1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1569 ++Idx; 1570 1571 // If there are add operands they would be next. 1572 if (Idx < Ops.size()) { 1573 bool DeletedAdd = false; 1574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1575 // If we have an add, expand the add operands onto the end of the operands 1576 // list. 1577 Ops.erase(Ops.begin()+Idx); 1578 Ops.append(Add->op_begin(), Add->op_end()); 1579 DeletedAdd = true; 1580 } 1581 1582 // If we deleted at least one add, we added operands to the end of the list, 1583 // and they are not necessarily sorted. Recurse to resort and resimplify 1584 // any operands we just acquired. 1585 if (DeletedAdd) 1586 return getAddExpr(Ops); 1587 } 1588 1589 // Skip over the add expression until we get to a multiply. 1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1591 ++Idx; 1592 1593 // Check to see if there are any folding opportunities present with 1594 // operands multiplied by constant values. 1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1596 uint64_t BitWidth = getTypeSizeInBits(Ty); 1597 DenseMap<const SCEV *, APInt> M; 1598 SmallVector<const SCEV *, 8> NewOps; 1599 APInt AccumulatedConstant(BitWidth, 0); 1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1601 Ops.data(), Ops.size(), 1602 APInt(BitWidth, 1), *this)) { 1603 // Some interesting folding opportunity is present, so its worthwhile to 1604 // re-generate the operands list. Group the operands by constant scale, 1605 // to avoid multiplying by the same constant scale multiple times. 1606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1608 E = NewOps.end(); I != E; ++I) 1609 MulOpLists[M.find(*I)->second].push_back(*I); 1610 // Re-generate the operands list. 1611 Ops.clear(); 1612 if (AccumulatedConstant != 0) 1613 Ops.push_back(getConstant(AccumulatedConstant)); 1614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1616 if (I->first != 0) 1617 Ops.push_back(getMulExpr(getConstant(I->first), 1618 getAddExpr(I->second))); 1619 if (Ops.empty()) 1620 return getConstant(Ty, 0); 1621 if (Ops.size() == 1) 1622 return Ops[0]; 1623 return getAddExpr(Ops); 1624 } 1625 } 1626 1627 // If we are adding something to a multiply expression, make sure the 1628 // something is not already an operand of the multiply. If so, merge it into 1629 // the multiply. 1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1634 if (isa<SCEVConstant>(MulOpSCEV)) 1635 continue; 1636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1637 if (MulOpSCEV == Ops[AddOp]) { 1638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1640 if (Mul->getNumOperands() != 2) { 1641 // If the multiply has more than two operands, we must get the 1642 // Y*Z term. 1643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1644 Mul->op_begin()+MulOp); 1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1646 InnerMul = getMulExpr(MulOps); 1647 } 1648 const SCEV *One = getConstant(Ty, 1); 1649 const SCEV *AddOne = getAddExpr(One, InnerMul); 1650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1651 if (Ops.size() == 2) return OuterMul; 1652 if (AddOp < Idx) { 1653 Ops.erase(Ops.begin()+AddOp); 1654 Ops.erase(Ops.begin()+Idx-1); 1655 } else { 1656 Ops.erase(Ops.begin()+Idx); 1657 Ops.erase(Ops.begin()+AddOp-1); 1658 } 1659 Ops.push_back(OuterMul); 1660 return getAddExpr(Ops); 1661 } 1662 1663 // Check this multiply against other multiplies being added together. 1664 for (unsigned OtherMulIdx = Idx+1; 1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1666 ++OtherMulIdx) { 1667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1668 // If MulOp occurs in OtherMul, we can fold the two multiplies 1669 // together. 1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1671 OMulOp != e; ++OMulOp) 1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1675 if (Mul->getNumOperands() != 2) { 1676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1677 Mul->op_begin()+MulOp); 1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1679 InnerMul1 = getMulExpr(MulOps); 1680 } 1681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1682 if (OtherMul->getNumOperands() != 2) { 1683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1684 OtherMul->op_begin()+OMulOp); 1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1686 InnerMul2 = getMulExpr(MulOps); 1687 } 1688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1690 if (Ops.size() == 2) return OuterMul; 1691 Ops.erase(Ops.begin()+Idx); 1692 Ops.erase(Ops.begin()+OtherMulIdx-1); 1693 Ops.push_back(OuterMul); 1694 return getAddExpr(Ops); 1695 } 1696 } 1697 } 1698 } 1699 1700 // If there are any add recurrences in the operands list, see if any other 1701 // added values are loop invariant. If so, we can fold them into the 1702 // recurrence. 1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1704 ++Idx; 1705 1706 // Scan over all recurrences, trying to fold loop invariants into them. 1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1708 // Scan all of the other operands to this add and add them to the vector if 1709 // they are loop invariant w.r.t. the recurrence. 1710 SmallVector<const SCEV *, 8> LIOps; 1711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1712 const Loop *AddRecLoop = AddRec->getLoop(); 1713 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1714 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1715 LIOps.push_back(Ops[i]); 1716 Ops.erase(Ops.begin()+i); 1717 --i; --e; 1718 } 1719 1720 // If we found some loop invariants, fold them into the recurrence. 1721 if (!LIOps.empty()) { 1722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1723 LIOps.push_back(AddRec->getStart()); 1724 1725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1726 AddRec->op_end()); 1727 AddRecOps[0] = getAddExpr(LIOps); 1728 1729 // Build the new addrec. Propagate the NUW and NSW flags if both the 1730 // outer add and the inner addrec are guaranteed to have no overflow. 1731 // Always propagate NW. 1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1734 1735 // If all of the other operands were loop invariant, we are done. 1736 if (Ops.size() == 1) return NewRec; 1737 1738 // Otherwise, add the folded AddRec by the non-invariant parts. 1739 for (unsigned i = 0;; ++i) 1740 if (Ops[i] == AddRec) { 1741 Ops[i] = NewRec; 1742 break; 1743 } 1744 return getAddExpr(Ops); 1745 } 1746 1747 // Okay, if there weren't any loop invariants to be folded, check to see if 1748 // there are multiple AddRec's with the same loop induction variable being 1749 // added together. If so, we can fold them. 1750 for (unsigned OtherIdx = Idx+1; 1751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1752 ++OtherIdx) 1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1756 AddRec->op_end()); 1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1758 ++OtherIdx) 1759 if (const SCEVAddRecExpr *OtherAddRec = 1760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1761 if (OtherAddRec->getLoop() == AddRecLoop) { 1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1763 i != e; ++i) { 1764 if (i >= AddRecOps.size()) { 1765 AddRecOps.append(OtherAddRec->op_begin()+i, 1766 OtherAddRec->op_end()); 1767 break; 1768 } 1769 AddRecOps[i] = getAddExpr(AddRecOps[i], 1770 OtherAddRec->getOperand(i)); 1771 } 1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1773 } 1774 // Step size has changed, so we cannot guarantee no self-wraparound. 1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1776 return getAddExpr(Ops); 1777 } 1778 1779 // Otherwise couldn't fold anything into this recurrence. Move onto the 1780 // next one. 1781 } 1782 1783 // Okay, it looks like we really DO need an add expr. Check to see if we 1784 // already have one, otherwise create a new one. 1785 FoldingSetNodeID ID; 1786 ID.AddInteger(scAddExpr); 1787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1788 ID.AddPointer(Ops[i]); 1789 void *IP = 0; 1790 SCEVAddExpr *S = 1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1792 if (!S) { 1793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1796 O, Ops.size()); 1797 UniqueSCEVs.InsertNode(S, IP); 1798 } 1799 S->setNoWrapFlags(Flags); 1800 return S; 1801 } 1802 1803 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1804 /// possible. 1805 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1806 SCEV::NoWrapFlags Flags) { 1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1808 "only nuw or nsw allowed"); 1809 assert(!Ops.empty() && "Cannot get empty mul!"); 1810 if (Ops.size() == 1) return Ops[0]; 1811 #ifndef NDEBUG 1812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1813 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1815 "SCEVMulExpr operand types don't match!"); 1816 #endif 1817 1818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1819 // And vice-versa. 1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1823 bool All = true; 1824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1825 E = Ops.end(); I != E; ++I) 1826 if (!isKnownNonNegative(*I)) { 1827 All = false; 1828 break; 1829 } 1830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1831 } 1832 1833 // Sort by complexity, this groups all similar expression types together. 1834 GroupByComplexity(Ops, LI); 1835 1836 // If there are any constants, fold them together. 1837 unsigned Idx = 0; 1838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1839 1840 // C1*(C2+V) -> C1*C2 + C1*V 1841 if (Ops.size() == 2) 1842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1843 if (Add->getNumOperands() == 2 && 1844 isa<SCEVConstant>(Add->getOperand(0))) 1845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1846 getMulExpr(LHSC, Add->getOperand(1))); 1847 1848 ++Idx; 1849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1850 // We found two constants, fold them together! 1851 ConstantInt *Fold = ConstantInt::get(getContext(), 1852 LHSC->getValue()->getValue() * 1853 RHSC->getValue()->getValue()); 1854 Ops[0] = getConstant(Fold); 1855 Ops.erase(Ops.begin()+1); // Erase the folded element 1856 if (Ops.size() == 1) return Ops[0]; 1857 LHSC = cast<SCEVConstant>(Ops[0]); 1858 } 1859 1860 // If we are left with a constant one being multiplied, strip it off. 1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1862 Ops.erase(Ops.begin()); 1863 --Idx; 1864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1865 // If we have a multiply of zero, it will always be zero. 1866 return Ops[0]; 1867 } else if (Ops[0]->isAllOnesValue()) { 1868 // If we have a mul by -1 of an add, try distributing the -1 among the 1869 // add operands. 1870 if (Ops.size() == 2) { 1871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1872 SmallVector<const SCEV *, 4> NewOps; 1873 bool AnyFolded = false; 1874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1875 E = Add->op_end(); I != E; ++I) { 1876 const SCEV *Mul = getMulExpr(Ops[0], *I); 1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1878 NewOps.push_back(Mul); 1879 } 1880 if (AnyFolded) 1881 return getAddExpr(NewOps); 1882 } 1883 else if (const SCEVAddRecExpr * 1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1885 // Negation preserves a recurrence's no self-wrap property. 1886 SmallVector<const SCEV *, 4> Operands; 1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1888 E = AddRec->op_end(); I != E; ++I) { 1889 Operands.push_back(getMulExpr(Ops[0], *I)); 1890 } 1891 return getAddRecExpr(Operands, AddRec->getLoop(), 1892 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1893 } 1894 } 1895 } 1896 1897 if (Ops.size() == 1) 1898 return Ops[0]; 1899 } 1900 1901 // Skip over the add expression until we get to a multiply. 1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1903 ++Idx; 1904 1905 // If there are mul operands inline them all into this expression. 1906 if (Idx < Ops.size()) { 1907 bool DeletedMul = false; 1908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1909 // If we have an mul, expand the mul operands onto the end of the operands 1910 // list. 1911 Ops.erase(Ops.begin()+Idx); 1912 Ops.append(Mul->op_begin(), Mul->op_end()); 1913 DeletedMul = true; 1914 } 1915 1916 // If we deleted at least one mul, we added operands to the end of the list, 1917 // and they are not necessarily sorted. Recurse to resort and resimplify 1918 // any operands we just acquired. 1919 if (DeletedMul) 1920 return getMulExpr(Ops); 1921 } 1922 1923 // If there are any add recurrences in the operands list, see if any other 1924 // added values are loop invariant. If so, we can fold them into the 1925 // recurrence. 1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1927 ++Idx; 1928 1929 // Scan over all recurrences, trying to fold loop invariants into them. 1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1931 // Scan all of the other operands to this mul and add them to the vector if 1932 // they are loop invariant w.r.t. the recurrence. 1933 SmallVector<const SCEV *, 8> LIOps; 1934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1935 const Loop *AddRecLoop = AddRec->getLoop(); 1936 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1937 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1938 LIOps.push_back(Ops[i]); 1939 Ops.erase(Ops.begin()+i); 1940 --i; --e; 1941 } 1942 1943 // If we found some loop invariants, fold them into the recurrence. 1944 if (!LIOps.empty()) { 1945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1946 SmallVector<const SCEV *, 4> NewOps; 1947 NewOps.reserve(AddRec->getNumOperands()); 1948 const SCEV *Scale = getMulExpr(LIOps); 1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1951 1952 // Build the new addrec. Propagate the NUW and NSW flags if both the 1953 // outer mul and the inner addrec are guaranteed to have no overflow. 1954 // 1955 // No self-wrap cannot be guaranteed after changing the step size, but 1956 // will be inferred if either NUW or NSW is true. 1957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 1959 1960 // If all of the other operands were loop invariant, we are done. 1961 if (Ops.size() == 1) return NewRec; 1962 1963 // Otherwise, multiply the folded AddRec by the non-invariant parts. 1964 for (unsigned i = 0;; ++i) 1965 if (Ops[i] == AddRec) { 1966 Ops[i] = NewRec; 1967 break; 1968 } 1969 return getMulExpr(Ops); 1970 } 1971 1972 // Okay, if there weren't any loop invariants to be folded, check to see if 1973 // there are multiple AddRec's with the same loop induction variable being 1974 // multiplied together. If so, we can fold them. 1975 for (unsigned OtherIdx = Idx+1; 1976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1977 ++OtherIdx) { 1978 bool Retry = false; 1979 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1980 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L> 1981 // 1982 // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2 1983 // Given an equation of the form x + y*It + z*It^2 (above), we want to 1984 // express it in terms of {X,+,Y,+,Z}. 1985 // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2. 1986 // Rearranging, X = x, Y = y+z, Z = 2z. 1987 // 1988 // x = A*C, y = (A*D + B*C), z = B*D. 1989 // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D. 1990 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1991 ++OtherIdx) 1992 if (const SCEVAddRecExpr *OtherAddRec = 1993 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1994 if (OtherAddRec->getLoop() == AddRecLoop) { 1995 const SCEV *A = AddRec->getStart(); 1996 const SCEV *B = AddRec->getStepRecurrence(*this); 1997 const SCEV *C = OtherAddRec->getStart(); 1998 const SCEV *D = OtherAddRec->getStepRecurrence(*this); 1999 const SCEV *NewStart = getMulExpr(A, C); 2000 const SCEV *BD = getMulExpr(B, D); 2001 const SCEV *NewStep = getAddExpr(getMulExpr(A, D), 2002 getMulExpr(B, C), BD); 2003 const SCEV *NewSecondOrderStep = 2004 getMulExpr(BD, getConstant(BD->getType(), 2)); 2005 2006 // This can happen when AddRec or OtherAddRec have >3 operands. 2007 // TODO: support these add-recs. 2008 if (isLoopInvariant(NewStart, AddRecLoop) && 2009 isLoopInvariant(NewStep, AddRecLoop) && 2010 isLoopInvariant(NewSecondOrderStep, AddRecLoop)) { 2011 SmallVector<const SCEV *, 3> AddRecOps; 2012 AddRecOps.push_back(NewStart); 2013 AddRecOps.push_back(NewStep); 2014 AddRecOps.push_back(NewSecondOrderStep); 2015 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, 2016 AddRec->getLoop(), 2017 SCEV::FlagAnyWrap); 2018 if (Ops.size() == 2) return NewAddRec; 2019 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 2020 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2021 Retry = true; 2022 } 2023 } 2024 if (Retry) 2025 return getMulExpr(Ops); 2026 } 2027 } 2028 2029 // Otherwise couldn't fold anything into this recurrence. Move onto the 2030 // next one. 2031 } 2032 2033 // Okay, it looks like we really DO need an mul expr. Check to see if we 2034 // already have one, otherwise create a new one. 2035 FoldingSetNodeID ID; 2036 ID.AddInteger(scMulExpr); 2037 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2038 ID.AddPointer(Ops[i]); 2039 void *IP = 0; 2040 SCEVMulExpr *S = 2041 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2042 if (!S) { 2043 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2044 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2045 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2046 O, Ops.size()); 2047 UniqueSCEVs.InsertNode(S, IP); 2048 } 2049 S->setNoWrapFlags(Flags); 2050 return S; 2051 } 2052 2053 /// getUDivExpr - Get a canonical unsigned division expression, or something 2054 /// simpler if possible. 2055 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2056 const SCEV *RHS) { 2057 assert(getEffectiveSCEVType(LHS->getType()) == 2058 getEffectiveSCEVType(RHS->getType()) && 2059 "SCEVUDivExpr operand types don't match!"); 2060 2061 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2062 if (RHSC->getValue()->equalsInt(1)) 2063 return LHS; // X udiv 1 --> x 2064 // If the denominator is zero, the result of the udiv is undefined. Don't 2065 // try to analyze it, because the resolution chosen here may differ from 2066 // the resolution chosen in other parts of the compiler. 2067 if (!RHSC->getValue()->isZero()) { 2068 // Determine if the division can be folded into the operands of 2069 // its operands. 2070 // TODO: Generalize this to non-constants by using known-bits information. 2071 Type *Ty = LHS->getType(); 2072 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2073 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2074 // For non-power-of-two values, effectively round the value up to the 2075 // nearest power of two. 2076 if (!RHSC->getValue()->getValue().isPowerOf2()) 2077 ++MaxShiftAmt; 2078 IntegerType *ExtTy = 2079 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2080 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2081 if (const SCEVConstant *Step = 2082 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2083 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2084 const APInt &StepInt = Step->getValue()->getValue(); 2085 const APInt &DivInt = RHSC->getValue()->getValue(); 2086 if (!StepInt.urem(DivInt) && 2087 getZeroExtendExpr(AR, ExtTy) == 2088 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2089 getZeroExtendExpr(Step, ExtTy), 2090 AR->getLoop(), SCEV::FlagAnyWrap)) { 2091 SmallVector<const SCEV *, 4> Operands; 2092 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2093 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2094 return getAddRecExpr(Operands, AR->getLoop(), 2095 SCEV::FlagNW); 2096 } 2097 /// Get a canonical UDivExpr for a recurrence. 2098 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2099 // We can currently only fold X%N if X is constant. 2100 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2101 if (StartC && !DivInt.urem(StepInt) && 2102 getZeroExtendExpr(AR, ExtTy) == 2103 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2104 getZeroExtendExpr(Step, ExtTy), 2105 AR->getLoop(), SCEV::FlagAnyWrap)) { 2106 const APInt &StartInt = StartC->getValue()->getValue(); 2107 const APInt &StartRem = StartInt.urem(StepInt); 2108 if (StartRem != 0) 2109 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2110 AR->getLoop(), SCEV::FlagNW); 2111 } 2112 } 2113 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2114 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2115 SmallVector<const SCEV *, 4> Operands; 2116 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2117 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2118 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2119 // Find an operand that's safely divisible. 2120 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2121 const SCEV *Op = M->getOperand(i); 2122 const SCEV *Div = getUDivExpr(Op, RHSC); 2123 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2124 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2125 M->op_end()); 2126 Operands[i] = Div; 2127 return getMulExpr(Operands); 2128 } 2129 } 2130 } 2131 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2132 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2133 SmallVector<const SCEV *, 4> Operands; 2134 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2135 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2136 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2137 Operands.clear(); 2138 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2139 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2140 if (isa<SCEVUDivExpr>(Op) || 2141 getMulExpr(Op, RHS) != A->getOperand(i)) 2142 break; 2143 Operands.push_back(Op); 2144 } 2145 if (Operands.size() == A->getNumOperands()) 2146 return getAddExpr(Operands); 2147 } 2148 } 2149 2150 // Fold if both operands are constant. 2151 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2152 Constant *LHSCV = LHSC->getValue(); 2153 Constant *RHSCV = RHSC->getValue(); 2154 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2155 RHSCV))); 2156 } 2157 } 2158 } 2159 2160 FoldingSetNodeID ID; 2161 ID.AddInteger(scUDivExpr); 2162 ID.AddPointer(LHS); 2163 ID.AddPointer(RHS); 2164 void *IP = 0; 2165 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2166 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2167 LHS, RHS); 2168 UniqueSCEVs.InsertNode(S, IP); 2169 return S; 2170 } 2171 2172 2173 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2174 /// Simplify the expression as much as possible. 2175 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2176 const Loop *L, 2177 SCEV::NoWrapFlags Flags) { 2178 SmallVector<const SCEV *, 4> Operands; 2179 Operands.push_back(Start); 2180 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2181 if (StepChrec->getLoop() == L) { 2182 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2183 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2184 } 2185 2186 Operands.push_back(Step); 2187 return getAddRecExpr(Operands, L, Flags); 2188 } 2189 2190 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2191 /// Simplify the expression as much as possible. 2192 const SCEV * 2193 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2194 const Loop *L, SCEV::NoWrapFlags Flags) { 2195 if (Operands.size() == 1) return Operands[0]; 2196 #ifndef NDEBUG 2197 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2198 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2199 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2200 "SCEVAddRecExpr operand types don't match!"); 2201 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2202 assert(isLoopInvariant(Operands[i], L) && 2203 "SCEVAddRecExpr operand is not loop-invariant!"); 2204 #endif 2205 2206 if (Operands.back()->isZero()) { 2207 Operands.pop_back(); 2208 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2209 } 2210 2211 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2212 // use that information to infer NUW and NSW flags. However, computing a 2213 // BE count requires calling getAddRecExpr, so we may not yet have a 2214 // meaningful BE count at this point (and if we don't, we'd be stuck 2215 // with a SCEVCouldNotCompute as the cached BE count). 2216 2217 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2218 // And vice-versa. 2219 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2220 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2221 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2222 bool All = true; 2223 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2224 E = Operands.end(); I != E; ++I) 2225 if (!isKnownNonNegative(*I)) { 2226 All = false; 2227 break; 2228 } 2229 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2230 } 2231 2232 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2233 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2234 const Loop *NestedLoop = NestedAR->getLoop(); 2235 if (L->contains(NestedLoop) ? 2236 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2237 (!NestedLoop->contains(L) && 2238 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2239 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2240 NestedAR->op_end()); 2241 Operands[0] = NestedAR->getStart(); 2242 // AddRecs require their operands be loop-invariant with respect to their 2243 // loops. Don't perform this transformation if it would break this 2244 // requirement. 2245 bool AllInvariant = true; 2246 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2247 if (!isLoopInvariant(Operands[i], L)) { 2248 AllInvariant = false; 2249 break; 2250 } 2251 if (AllInvariant) { 2252 // Create a recurrence for the outer loop with the same step size. 2253 // 2254 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2255 // inner recurrence has the same property. 2256 SCEV::NoWrapFlags OuterFlags = 2257 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2258 2259 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2260 AllInvariant = true; 2261 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2262 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2263 AllInvariant = false; 2264 break; 2265 } 2266 if (AllInvariant) { 2267 // Ok, both add recurrences are valid after the transformation. 2268 // 2269 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2270 // the outer recurrence has the same property. 2271 SCEV::NoWrapFlags InnerFlags = 2272 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2273 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2274 } 2275 } 2276 // Reset Operands to its original state. 2277 Operands[0] = NestedAR; 2278 } 2279 } 2280 2281 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2282 // already have one, otherwise create a new one. 2283 FoldingSetNodeID ID; 2284 ID.AddInteger(scAddRecExpr); 2285 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2286 ID.AddPointer(Operands[i]); 2287 ID.AddPointer(L); 2288 void *IP = 0; 2289 SCEVAddRecExpr *S = 2290 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2291 if (!S) { 2292 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2293 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2294 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2295 O, Operands.size(), L); 2296 UniqueSCEVs.InsertNode(S, IP); 2297 } 2298 S->setNoWrapFlags(Flags); 2299 return S; 2300 } 2301 2302 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2303 const SCEV *RHS) { 2304 SmallVector<const SCEV *, 2> Ops; 2305 Ops.push_back(LHS); 2306 Ops.push_back(RHS); 2307 return getSMaxExpr(Ops); 2308 } 2309 2310 const SCEV * 2311 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2312 assert(!Ops.empty() && "Cannot get empty smax!"); 2313 if (Ops.size() == 1) return Ops[0]; 2314 #ifndef NDEBUG 2315 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2316 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2317 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2318 "SCEVSMaxExpr operand types don't match!"); 2319 #endif 2320 2321 // Sort by complexity, this groups all similar expression types together. 2322 GroupByComplexity(Ops, LI); 2323 2324 // If there are any constants, fold them together. 2325 unsigned Idx = 0; 2326 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2327 ++Idx; 2328 assert(Idx < Ops.size()); 2329 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2330 // We found two constants, fold them together! 2331 ConstantInt *Fold = ConstantInt::get(getContext(), 2332 APIntOps::smax(LHSC->getValue()->getValue(), 2333 RHSC->getValue()->getValue())); 2334 Ops[0] = getConstant(Fold); 2335 Ops.erase(Ops.begin()+1); // Erase the folded element 2336 if (Ops.size() == 1) return Ops[0]; 2337 LHSC = cast<SCEVConstant>(Ops[0]); 2338 } 2339 2340 // If we are left with a constant minimum-int, strip it off. 2341 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2342 Ops.erase(Ops.begin()); 2343 --Idx; 2344 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2345 // If we have an smax with a constant maximum-int, it will always be 2346 // maximum-int. 2347 return Ops[0]; 2348 } 2349 2350 if (Ops.size() == 1) return Ops[0]; 2351 } 2352 2353 // Find the first SMax 2354 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2355 ++Idx; 2356 2357 // Check to see if one of the operands is an SMax. If so, expand its operands 2358 // onto our operand list, and recurse to simplify. 2359 if (Idx < Ops.size()) { 2360 bool DeletedSMax = false; 2361 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2362 Ops.erase(Ops.begin()+Idx); 2363 Ops.append(SMax->op_begin(), SMax->op_end()); 2364 DeletedSMax = true; 2365 } 2366 2367 if (DeletedSMax) 2368 return getSMaxExpr(Ops); 2369 } 2370 2371 // Okay, check to see if the same value occurs in the operand list twice. If 2372 // so, delete one. Since we sorted the list, these values are required to 2373 // be adjacent. 2374 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2375 // X smax Y smax Y --> X smax Y 2376 // X smax Y --> X, if X is always greater than Y 2377 if (Ops[i] == Ops[i+1] || 2378 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2379 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2380 --i; --e; 2381 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2382 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2383 --i; --e; 2384 } 2385 2386 if (Ops.size() == 1) return Ops[0]; 2387 2388 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2389 2390 // Okay, it looks like we really DO need an smax expr. Check to see if we 2391 // already have one, otherwise create a new one. 2392 FoldingSetNodeID ID; 2393 ID.AddInteger(scSMaxExpr); 2394 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2395 ID.AddPointer(Ops[i]); 2396 void *IP = 0; 2397 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2398 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2399 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2400 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2401 O, Ops.size()); 2402 UniqueSCEVs.InsertNode(S, IP); 2403 return S; 2404 } 2405 2406 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2407 const SCEV *RHS) { 2408 SmallVector<const SCEV *, 2> Ops; 2409 Ops.push_back(LHS); 2410 Ops.push_back(RHS); 2411 return getUMaxExpr(Ops); 2412 } 2413 2414 const SCEV * 2415 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2416 assert(!Ops.empty() && "Cannot get empty umax!"); 2417 if (Ops.size() == 1) return Ops[0]; 2418 #ifndef NDEBUG 2419 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2420 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2421 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2422 "SCEVUMaxExpr operand types don't match!"); 2423 #endif 2424 2425 // Sort by complexity, this groups all similar expression types together. 2426 GroupByComplexity(Ops, LI); 2427 2428 // If there are any constants, fold them together. 2429 unsigned Idx = 0; 2430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2431 ++Idx; 2432 assert(Idx < Ops.size()); 2433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2434 // We found two constants, fold them together! 2435 ConstantInt *Fold = ConstantInt::get(getContext(), 2436 APIntOps::umax(LHSC->getValue()->getValue(), 2437 RHSC->getValue()->getValue())); 2438 Ops[0] = getConstant(Fold); 2439 Ops.erase(Ops.begin()+1); // Erase the folded element 2440 if (Ops.size() == 1) return Ops[0]; 2441 LHSC = cast<SCEVConstant>(Ops[0]); 2442 } 2443 2444 // If we are left with a constant minimum-int, strip it off. 2445 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2446 Ops.erase(Ops.begin()); 2447 --Idx; 2448 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2449 // If we have an umax with a constant maximum-int, it will always be 2450 // maximum-int. 2451 return Ops[0]; 2452 } 2453 2454 if (Ops.size() == 1) return Ops[0]; 2455 } 2456 2457 // Find the first UMax 2458 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2459 ++Idx; 2460 2461 // Check to see if one of the operands is a UMax. If so, expand its operands 2462 // onto our operand list, and recurse to simplify. 2463 if (Idx < Ops.size()) { 2464 bool DeletedUMax = false; 2465 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2466 Ops.erase(Ops.begin()+Idx); 2467 Ops.append(UMax->op_begin(), UMax->op_end()); 2468 DeletedUMax = true; 2469 } 2470 2471 if (DeletedUMax) 2472 return getUMaxExpr(Ops); 2473 } 2474 2475 // Okay, check to see if the same value occurs in the operand list twice. If 2476 // so, delete one. Since we sorted the list, these values are required to 2477 // be adjacent. 2478 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2479 // X umax Y umax Y --> X umax Y 2480 // X umax Y --> X, if X is always greater than Y 2481 if (Ops[i] == Ops[i+1] || 2482 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2483 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2484 --i; --e; 2485 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2486 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2487 --i; --e; 2488 } 2489 2490 if (Ops.size() == 1) return Ops[0]; 2491 2492 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2493 2494 // Okay, it looks like we really DO need a umax expr. Check to see if we 2495 // already have one, otherwise create a new one. 2496 FoldingSetNodeID ID; 2497 ID.AddInteger(scUMaxExpr); 2498 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2499 ID.AddPointer(Ops[i]); 2500 void *IP = 0; 2501 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2502 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2503 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2504 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2505 O, Ops.size()); 2506 UniqueSCEVs.InsertNode(S, IP); 2507 return S; 2508 } 2509 2510 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2511 const SCEV *RHS) { 2512 // ~smax(~x, ~y) == smin(x, y). 2513 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2514 } 2515 2516 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2517 const SCEV *RHS) { 2518 // ~umax(~x, ~y) == umin(x, y) 2519 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2520 } 2521 2522 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2523 // If we have TargetData, we can bypass creating a target-independent 2524 // constant expression and then folding it back into a ConstantInt. 2525 // This is just a compile-time optimization. 2526 if (TD) 2527 return getConstant(TD->getIntPtrType(getContext()), 2528 TD->getTypeAllocSize(AllocTy)); 2529 2530 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2531 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2532 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2533 C = Folded; 2534 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2535 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2536 } 2537 2538 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2539 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2540 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2541 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2542 C = Folded; 2543 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2544 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2545 } 2546 2547 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2548 unsigned FieldNo) { 2549 // If we have TargetData, we can bypass creating a target-independent 2550 // constant expression and then folding it back into a ConstantInt. 2551 // This is just a compile-time optimization. 2552 if (TD) 2553 return getConstant(TD->getIntPtrType(getContext()), 2554 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2555 2556 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2557 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2558 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2559 C = Folded; 2560 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2561 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2562 } 2563 2564 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2565 Constant *FieldNo) { 2566 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2567 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2568 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2569 C = Folded; 2570 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2571 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2572 } 2573 2574 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2575 // Don't attempt to do anything other than create a SCEVUnknown object 2576 // here. createSCEV only calls getUnknown after checking for all other 2577 // interesting possibilities, and any other code that calls getUnknown 2578 // is doing so in order to hide a value from SCEV canonicalization. 2579 2580 FoldingSetNodeID ID; 2581 ID.AddInteger(scUnknown); 2582 ID.AddPointer(V); 2583 void *IP = 0; 2584 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2585 assert(cast<SCEVUnknown>(S)->getValue() == V && 2586 "Stale SCEVUnknown in uniquing map!"); 2587 return S; 2588 } 2589 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2590 FirstUnknown); 2591 FirstUnknown = cast<SCEVUnknown>(S); 2592 UniqueSCEVs.InsertNode(S, IP); 2593 return S; 2594 } 2595 2596 //===----------------------------------------------------------------------===// 2597 // Basic SCEV Analysis and PHI Idiom Recognition Code 2598 // 2599 2600 /// isSCEVable - Test if values of the given type are analyzable within 2601 /// the SCEV framework. This primarily includes integer types, and it 2602 /// can optionally include pointer types if the ScalarEvolution class 2603 /// has access to target-specific information. 2604 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2605 // Integers and pointers are always SCEVable. 2606 return Ty->isIntegerTy() || Ty->isPointerTy(); 2607 } 2608 2609 /// getTypeSizeInBits - Return the size in bits of the specified type, 2610 /// for which isSCEVable must return true. 2611 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2612 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2613 2614 // If we have a TargetData, use it! 2615 if (TD) 2616 return TD->getTypeSizeInBits(Ty); 2617 2618 // Integer types have fixed sizes. 2619 if (Ty->isIntegerTy()) 2620 return Ty->getPrimitiveSizeInBits(); 2621 2622 // The only other support type is pointer. Without TargetData, conservatively 2623 // assume pointers are 64-bit. 2624 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2625 return 64; 2626 } 2627 2628 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2629 /// the given type and which represents how SCEV will treat the given 2630 /// type, for which isSCEVable must return true. For pointer types, 2631 /// this is the pointer-sized integer type. 2632 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2633 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2634 2635 if (Ty->isIntegerTy()) 2636 return Ty; 2637 2638 // The only other support type is pointer. 2639 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2640 if (TD) return TD->getIntPtrType(getContext()); 2641 2642 // Without TargetData, conservatively assume pointers are 64-bit. 2643 return Type::getInt64Ty(getContext()); 2644 } 2645 2646 const SCEV *ScalarEvolution::getCouldNotCompute() { 2647 return &CouldNotCompute; 2648 } 2649 2650 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2651 /// expression and create a new one. 2652 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2653 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2654 2655 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2656 if (I != ValueExprMap.end()) return I->second; 2657 const SCEV *S = createSCEV(V); 2658 2659 // The process of creating a SCEV for V may have caused other SCEVs 2660 // to have been created, so it's necessary to insert the new entry 2661 // from scratch, rather than trying to remember the insert position 2662 // above. 2663 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2664 return S; 2665 } 2666 2667 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2668 /// 2669 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2670 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2671 return getConstant( 2672 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2673 2674 Type *Ty = V->getType(); 2675 Ty = getEffectiveSCEVType(Ty); 2676 return getMulExpr(V, 2677 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2678 } 2679 2680 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2681 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2682 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2683 return getConstant( 2684 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2685 2686 Type *Ty = V->getType(); 2687 Ty = getEffectiveSCEVType(Ty); 2688 const SCEV *AllOnes = 2689 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2690 return getMinusSCEV(AllOnes, V); 2691 } 2692 2693 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2694 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2695 SCEV::NoWrapFlags Flags) { 2696 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2697 2698 // Fast path: X - X --> 0. 2699 if (LHS == RHS) 2700 return getConstant(LHS->getType(), 0); 2701 2702 // X - Y --> X + -Y 2703 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2704 } 2705 2706 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2707 /// input value to the specified type. If the type must be extended, it is zero 2708 /// extended. 2709 const SCEV * 2710 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2711 Type *SrcTy = V->getType(); 2712 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2713 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2714 "Cannot truncate or zero extend with non-integer arguments!"); 2715 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2716 return V; // No conversion 2717 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2718 return getTruncateExpr(V, Ty); 2719 return getZeroExtendExpr(V, Ty); 2720 } 2721 2722 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2723 /// input value to the specified type. If the type must be extended, it is sign 2724 /// extended. 2725 const SCEV * 2726 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2727 Type *Ty) { 2728 Type *SrcTy = V->getType(); 2729 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2730 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2731 "Cannot truncate or zero extend with non-integer arguments!"); 2732 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2733 return V; // No conversion 2734 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2735 return getTruncateExpr(V, Ty); 2736 return getSignExtendExpr(V, Ty); 2737 } 2738 2739 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2740 /// input value to the specified type. If the type must be extended, it is zero 2741 /// extended. The conversion must not be narrowing. 2742 const SCEV * 2743 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2744 Type *SrcTy = V->getType(); 2745 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2746 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2747 "Cannot noop or zero extend with non-integer arguments!"); 2748 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2749 "getNoopOrZeroExtend cannot truncate!"); 2750 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2751 return V; // No conversion 2752 return getZeroExtendExpr(V, Ty); 2753 } 2754 2755 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2756 /// input value to the specified type. If the type must be extended, it is sign 2757 /// extended. The conversion must not be narrowing. 2758 const SCEV * 2759 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2760 Type *SrcTy = V->getType(); 2761 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2762 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2763 "Cannot noop or sign extend with non-integer arguments!"); 2764 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2765 "getNoopOrSignExtend cannot truncate!"); 2766 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2767 return V; // No conversion 2768 return getSignExtendExpr(V, Ty); 2769 } 2770 2771 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2772 /// the input value to the specified type. If the type must be extended, 2773 /// it is extended with unspecified bits. The conversion must not be 2774 /// narrowing. 2775 const SCEV * 2776 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2777 Type *SrcTy = V->getType(); 2778 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2779 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2780 "Cannot noop or any extend with non-integer arguments!"); 2781 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2782 "getNoopOrAnyExtend cannot truncate!"); 2783 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2784 return V; // No conversion 2785 return getAnyExtendExpr(V, Ty); 2786 } 2787 2788 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2789 /// input value to the specified type. The conversion must not be widening. 2790 const SCEV * 2791 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2792 Type *SrcTy = V->getType(); 2793 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2794 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2795 "Cannot truncate or noop with non-integer arguments!"); 2796 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2797 "getTruncateOrNoop cannot extend!"); 2798 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2799 return V; // No conversion 2800 return getTruncateExpr(V, Ty); 2801 } 2802 2803 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2804 /// the types using zero-extension, and then perform a umax operation 2805 /// with them. 2806 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2807 const SCEV *RHS) { 2808 const SCEV *PromotedLHS = LHS; 2809 const SCEV *PromotedRHS = RHS; 2810 2811 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2812 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2813 else 2814 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2815 2816 return getUMaxExpr(PromotedLHS, PromotedRHS); 2817 } 2818 2819 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2820 /// the types using zero-extension, and then perform a umin operation 2821 /// with them. 2822 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2823 const SCEV *RHS) { 2824 const SCEV *PromotedLHS = LHS; 2825 const SCEV *PromotedRHS = RHS; 2826 2827 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2828 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2829 else 2830 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2831 2832 return getUMinExpr(PromotedLHS, PromotedRHS); 2833 } 2834 2835 /// getPointerBase - Transitively follow the chain of pointer-type operands 2836 /// until reaching a SCEV that does not have a single pointer operand. This 2837 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2838 /// but corner cases do exist. 2839 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2840 // A pointer operand may evaluate to a nonpointer expression, such as null. 2841 if (!V->getType()->isPointerTy()) 2842 return V; 2843 2844 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2845 return getPointerBase(Cast->getOperand()); 2846 } 2847 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2848 const SCEV *PtrOp = 0; 2849 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2850 I != E; ++I) { 2851 if ((*I)->getType()->isPointerTy()) { 2852 // Cannot find the base of an expression with multiple pointer operands. 2853 if (PtrOp) 2854 return V; 2855 PtrOp = *I; 2856 } 2857 } 2858 if (!PtrOp) 2859 return V; 2860 return getPointerBase(PtrOp); 2861 } 2862 return V; 2863 } 2864 2865 /// PushDefUseChildren - Push users of the given Instruction 2866 /// onto the given Worklist. 2867 static void 2868 PushDefUseChildren(Instruction *I, 2869 SmallVectorImpl<Instruction *> &Worklist) { 2870 // Push the def-use children onto the Worklist stack. 2871 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2872 UI != UE; ++UI) 2873 Worklist.push_back(cast<Instruction>(*UI)); 2874 } 2875 2876 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2877 /// instructions that depend on the given instruction and removes them from 2878 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2879 /// resolution. 2880 void 2881 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2882 SmallVector<Instruction *, 16> Worklist; 2883 PushDefUseChildren(PN, Worklist); 2884 2885 SmallPtrSet<Instruction *, 8> Visited; 2886 Visited.insert(PN); 2887 while (!Worklist.empty()) { 2888 Instruction *I = Worklist.pop_back_val(); 2889 if (!Visited.insert(I)) continue; 2890 2891 ValueExprMapType::iterator It = 2892 ValueExprMap.find(static_cast<Value *>(I)); 2893 if (It != ValueExprMap.end()) { 2894 const SCEV *Old = It->second; 2895 2896 // Short-circuit the def-use traversal if the symbolic name 2897 // ceases to appear in expressions. 2898 if (Old != SymName && !hasOperand(Old, SymName)) 2899 continue; 2900 2901 // SCEVUnknown for a PHI either means that it has an unrecognized 2902 // structure, it's a PHI that's in the progress of being computed 2903 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2904 // additional loop trip count information isn't going to change anything. 2905 // In the second case, createNodeForPHI will perform the necessary 2906 // updates on its own when it gets to that point. In the third, we do 2907 // want to forget the SCEVUnknown. 2908 if (!isa<PHINode>(I) || 2909 !isa<SCEVUnknown>(Old) || 2910 (I != PN && Old == SymName)) { 2911 forgetMemoizedResults(Old); 2912 ValueExprMap.erase(It); 2913 } 2914 } 2915 2916 PushDefUseChildren(I, Worklist); 2917 } 2918 } 2919 2920 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2921 /// a loop header, making it a potential recurrence, or it doesn't. 2922 /// 2923 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2924 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2925 if (L->getHeader() == PN->getParent()) { 2926 // The loop may have multiple entrances or multiple exits; we can analyze 2927 // this phi as an addrec if it has a unique entry value and a unique 2928 // backedge value. 2929 Value *BEValueV = 0, *StartValueV = 0; 2930 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2931 Value *V = PN->getIncomingValue(i); 2932 if (L->contains(PN->getIncomingBlock(i))) { 2933 if (!BEValueV) { 2934 BEValueV = V; 2935 } else if (BEValueV != V) { 2936 BEValueV = 0; 2937 break; 2938 } 2939 } else if (!StartValueV) { 2940 StartValueV = V; 2941 } else if (StartValueV != V) { 2942 StartValueV = 0; 2943 break; 2944 } 2945 } 2946 if (BEValueV && StartValueV) { 2947 // While we are analyzing this PHI node, handle its value symbolically. 2948 const SCEV *SymbolicName = getUnknown(PN); 2949 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2950 "PHI node already processed?"); 2951 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2952 2953 // Using this symbolic name for the PHI, analyze the value coming around 2954 // the back-edge. 2955 const SCEV *BEValue = getSCEV(BEValueV); 2956 2957 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2958 // has a special value for the first iteration of the loop. 2959 2960 // If the value coming around the backedge is an add with the symbolic 2961 // value we just inserted, then we found a simple induction variable! 2962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2963 // If there is a single occurrence of the symbolic value, replace it 2964 // with a recurrence. 2965 unsigned FoundIndex = Add->getNumOperands(); 2966 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2967 if (Add->getOperand(i) == SymbolicName) 2968 if (FoundIndex == e) { 2969 FoundIndex = i; 2970 break; 2971 } 2972 2973 if (FoundIndex != Add->getNumOperands()) { 2974 // Create an add with everything but the specified operand. 2975 SmallVector<const SCEV *, 8> Ops; 2976 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2977 if (i != FoundIndex) 2978 Ops.push_back(Add->getOperand(i)); 2979 const SCEV *Accum = getAddExpr(Ops); 2980 2981 // This is not a valid addrec if the step amount is varying each 2982 // loop iteration, but is not itself an addrec in this loop. 2983 if (isLoopInvariant(Accum, L) || 2984 (isa<SCEVAddRecExpr>(Accum) && 2985 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2986 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 2987 2988 // If the increment doesn't overflow, then neither the addrec nor 2989 // the post-increment will overflow. 2990 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2991 if (OBO->hasNoUnsignedWrap()) 2992 Flags = setFlags(Flags, SCEV::FlagNUW); 2993 if (OBO->hasNoSignedWrap()) 2994 Flags = setFlags(Flags, SCEV::FlagNSW); 2995 } else if (const GEPOperator *GEP = 2996 dyn_cast<GEPOperator>(BEValueV)) { 2997 // If the increment is an inbounds GEP, then we know the address 2998 // space cannot be wrapped around. We cannot make any guarantee 2999 // about signed or unsigned overflow because pointers are 3000 // unsigned but we may have a negative index from the base 3001 // pointer. 3002 if (GEP->isInBounds()) 3003 Flags = setFlags(Flags, SCEV::FlagNW); 3004 } 3005 3006 const SCEV *StartVal = getSCEV(StartValueV); 3007 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3008 3009 // Since the no-wrap flags are on the increment, they apply to the 3010 // post-incremented value as well. 3011 if (isLoopInvariant(Accum, L)) 3012 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3013 Accum, L, Flags); 3014 3015 // Okay, for the entire analysis of this edge we assumed the PHI 3016 // to be symbolic. We now need to go back and purge all of the 3017 // entries for the scalars that use the symbolic expression. 3018 ForgetSymbolicName(PN, SymbolicName); 3019 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3020 return PHISCEV; 3021 } 3022 } 3023 } else if (const SCEVAddRecExpr *AddRec = 3024 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3025 // Otherwise, this could be a loop like this: 3026 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3027 // In this case, j = {1,+,1} and BEValue is j. 3028 // Because the other in-value of i (0) fits the evolution of BEValue 3029 // i really is an addrec evolution. 3030 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3031 const SCEV *StartVal = getSCEV(StartValueV); 3032 3033 // If StartVal = j.start - j.stride, we can use StartVal as the 3034 // initial step of the addrec evolution. 3035 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3036 AddRec->getOperand(1))) { 3037 // FIXME: For constant StartVal, we should be able to infer 3038 // no-wrap flags. 3039 const SCEV *PHISCEV = 3040 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3041 SCEV::FlagAnyWrap); 3042 3043 // Okay, for the entire analysis of this edge we assumed the PHI 3044 // to be symbolic. We now need to go back and purge all of the 3045 // entries for the scalars that use the symbolic expression. 3046 ForgetSymbolicName(PN, SymbolicName); 3047 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3048 return PHISCEV; 3049 } 3050 } 3051 } 3052 } 3053 } 3054 3055 // If the PHI has a single incoming value, follow that value, unless the 3056 // PHI's incoming blocks are in a different loop, in which case doing so 3057 // risks breaking LCSSA form. Instcombine would normally zap these, but 3058 // it doesn't have DominatorTree information, so it may miss cases. 3059 if (Value *V = SimplifyInstruction(PN, TD, DT)) 3060 if (LI->replacementPreservesLCSSAForm(PN, V)) 3061 return getSCEV(V); 3062 3063 // If it's not a loop phi, we can't handle it yet. 3064 return getUnknown(PN); 3065 } 3066 3067 /// createNodeForGEP - Expand GEP instructions into add and multiply 3068 /// operations. This allows them to be analyzed by regular SCEV code. 3069 /// 3070 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3071 3072 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3073 // Add expression, because the Instruction may be guarded by control flow 3074 // and the no-overflow bits may not be valid for the expression in any 3075 // context. 3076 bool isInBounds = GEP->isInBounds(); 3077 3078 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3079 Value *Base = GEP->getOperand(0); 3080 // Don't attempt to analyze GEPs over unsized objects. 3081 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3082 return getUnknown(GEP); 3083 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3084 gep_type_iterator GTI = gep_type_begin(GEP); 3085 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3086 E = GEP->op_end(); 3087 I != E; ++I) { 3088 Value *Index = *I; 3089 // Compute the (potentially symbolic) offset in bytes for this index. 3090 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3091 // For a struct, add the member offset. 3092 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3093 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3094 3095 // Add the field offset to the running total offset. 3096 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3097 } else { 3098 // For an array, add the element offset, explicitly scaled. 3099 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3100 const SCEV *IndexS = getSCEV(Index); 3101 // Getelementptr indices are signed. 3102 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3103 3104 // Multiply the index by the element size to compute the element offset. 3105 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3106 isInBounds ? SCEV::FlagNSW : 3107 SCEV::FlagAnyWrap); 3108 3109 // Add the element offset to the running total offset. 3110 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3111 } 3112 } 3113 3114 // Get the SCEV for the GEP base. 3115 const SCEV *BaseS = getSCEV(Base); 3116 3117 // Add the total offset from all the GEP indices to the base. 3118 return getAddExpr(BaseS, TotalOffset, 3119 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3120 } 3121 3122 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3123 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3124 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3125 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3126 uint32_t 3127 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3128 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3129 return C->getValue()->getValue().countTrailingZeros(); 3130 3131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3132 return std::min(GetMinTrailingZeros(T->getOperand()), 3133 (uint32_t)getTypeSizeInBits(T->getType())); 3134 3135 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3136 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3137 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3138 getTypeSizeInBits(E->getType()) : OpRes; 3139 } 3140 3141 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3142 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3143 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3144 getTypeSizeInBits(E->getType()) : OpRes; 3145 } 3146 3147 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3148 // The result is the min of all operands results. 3149 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3150 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3151 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3152 return MinOpRes; 3153 } 3154 3155 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3156 // The result is the sum of all operands results. 3157 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3158 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3159 for (unsigned i = 1, e = M->getNumOperands(); 3160 SumOpRes != BitWidth && i != e; ++i) 3161 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3162 BitWidth); 3163 return SumOpRes; 3164 } 3165 3166 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3167 // The result is the min of all operands results. 3168 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3169 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3170 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3171 return MinOpRes; 3172 } 3173 3174 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3175 // The result is the min of all operands results. 3176 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3177 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3178 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3179 return MinOpRes; 3180 } 3181 3182 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3183 // The result is the min of all operands results. 3184 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3185 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3186 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3187 return MinOpRes; 3188 } 3189 3190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3191 // For a SCEVUnknown, ask ValueTracking. 3192 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3193 APInt Mask = APInt::getAllOnesValue(BitWidth); 3194 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3195 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3196 return Zeros.countTrailingOnes(); 3197 } 3198 3199 // SCEVUDivExpr 3200 return 0; 3201 } 3202 3203 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3204 /// 3205 ConstantRange 3206 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3207 // See if we've computed this range already. 3208 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3209 if (I != UnsignedRanges.end()) 3210 return I->second; 3211 3212 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3213 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3214 3215 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3216 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3217 3218 // If the value has known zeros, the maximum unsigned value will have those 3219 // known zeros as well. 3220 uint32_t TZ = GetMinTrailingZeros(S); 3221 if (TZ != 0) 3222 ConservativeResult = 3223 ConstantRange(APInt::getMinValue(BitWidth), 3224 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3225 3226 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3227 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3228 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3229 X = X.add(getUnsignedRange(Add->getOperand(i))); 3230 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3231 } 3232 3233 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3234 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3235 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3236 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3237 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3238 } 3239 3240 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3241 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3242 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3243 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3244 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3245 } 3246 3247 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3248 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3249 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3250 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3251 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3252 } 3253 3254 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3255 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3256 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3257 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3258 } 3259 3260 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3261 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3262 return setUnsignedRange(ZExt, 3263 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3264 } 3265 3266 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3267 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3268 return setUnsignedRange(SExt, 3269 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3270 } 3271 3272 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3273 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3274 return setUnsignedRange(Trunc, 3275 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3276 } 3277 3278 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3279 // If there's no unsigned wrap, the value will never be less than its 3280 // initial value. 3281 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3282 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3283 if (!C->getValue()->isZero()) 3284 ConservativeResult = 3285 ConservativeResult.intersectWith( 3286 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3287 3288 // TODO: non-affine addrec 3289 if (AddRec->isAffine()) { 3290 Type *Ty = AddRec->getType(); 3291 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3292 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3293 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3294 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3295 3296 const SCEV *Start = AddRec->getStart(); 3297 const SCEV *Step = AddRec->getStepRecurrence(*this); 3298 3299 ConstantRange StartRange = getUnsignedRange(Start); 3300 ConstantRange StepRange = getSignedRange(Step); 3301 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3302 ConstantRange EndRange = 3303 StartRange.add(MaxBECountRange.multiply(StepRange)); 3304 3305 // Check for overflow. This must be done with ConstantRange arithmetic 3306 // because we could be called from within the ScalarEvolution overflow 3307 // checking code. 3308 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3309 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3310 ConstantRange ExtMaxBECountRange = 3311 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3312 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3313 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3314 ExtEndRange) 3315 return setUnsignedRange(AddRec, ConservativeResult); 3316 3317 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3318 EndRange.getUnsignedMin()); 3319 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3320 EndRange.getUnsignedMax()); 3321 if (Min.isMinValue() && Max.isMaxValue()) 3322 return setUnsignedRange(AddRec, ConservativeResult); 3323 return setUnsignedRange(AddRec, 3324 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3325 } 3326 } 3327 3328 return setUnsignedRange(AddRec, ConservativeResult); 3329 } 3330 3331 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3332 // For a SCEVUnknown, ask ValueTracking. 3333 APInt Mask = APInt::getAllOnesValue(BitWidth); 3334 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3335 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3336 if (Ones == ~Zeros + 1) 3337 return setUnsignedRange(U, ConservativeResult); 3338 return setUnsignedRange(U, 3339 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3340 } 3341 3342 return setUnsignedRange(S, ConservativeResult); 3343 } 3344 3345 /// getSignedRange - Determine the signed range for a particular SCEV. 3346 /// 3347 ConstantRange 3348 ScalarEvolution::getSignedRange(const SCEV *S) { 3349 // See if we've computed this range already. 3350 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3351 if (I != SignedRanges.end()) 3352 return I->second; 3353 3354 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3355 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3356 3357 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3358 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3359 3360 // If the value has known zeros, the maximum signed value will have those 3361 // known zeros as well. 3362 uint32_t TZ = GetMinTrailingZeros(S); 3363 if (TZ != 0) 3364 ConservativeResult = 3365 ConstantRange(APInt::getSignedMinValue(BitWidth), 3366 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3367 3368 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3369 ConstantRange X = getSignedRange(Add->getOperand(0)); 3370 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3371 X = X.add(getSignedRange(Add->getOperand(i))); 3372 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3373 } 3374 3375 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3376 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3377 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3378 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3379 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3380 } 3381 3382 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3383 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3384 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3385 X = X.smax(getSignedRange(SMax->getOperand(i))); 3386 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3387 } 3388 3389 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3390 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3391 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3392 X = X.umax(getSignedRange(UMax->getOperand(i))); 3393 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3394 } 3395 3396 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3397 ConstantRange X = getSignedRange(UDiv->getLHS()); 3398 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3399 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3400 } 3401 3402 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3403 ConstantRange X = getSignedRange(ZExt->getOperand()); 3404 return setSignedRange(ZExt, 3405 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3406 } 3407 3408 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3409 ConstantRange X = getSignedRange(SExt->getOperand()); 3410 return setSignedRange(SExt, 3411 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3412 } 3413 3414 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3415 ConstantRange X = getSignedRange(Trunc->getOperand()); 3416 return setSignedRange(Trunc, 3417 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3418 } 3419 3420 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3421 // If there's no signed wrap, and all the operands have the same sign or 3422 // zero, the value won't ever change sign. 3423 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3424 bool AllNonNeg = true; 3425 bool AllNonPos = true; 3426 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3427 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3428 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3429 } 3430 if (AllNonNeg) 3431 ConservativeResult = ConservativeResult.intersectWith( 3432 ConstantRange(APInt(BitWidth, 0), 3433 APInt::getSignedMinValue(BitWidth))); 3434 else if (AllNonPos) 3435 ConservativeResult = ConservativeResult.intersectWith( 3436 ConstantRange(APInt::getSignedMinValue(BitWidth), 3437 APInt(BitWidth, 1))); 3438 } 3439 3440 // TODO: non-affine addrec 3441 if (AddRec->isAffine()) { 3442 Type *Ty = AddRec->getType(); 3443 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3444 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3445 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3446 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3447 3448 const SCEV *Start = AddRec->getStart(); 3449 const SCEV *Step = AddRec->getStepRecurrence(*this); 3450 3451 ConstantRange StartRange = getSignedRange(Start); 3452 ConstantRange StepRange = getSignedRange(Step); 3453 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3454 ConstantRange EndRange = 3455 StartRange.add(MaxBECountRange.multiply(StepRange)); 3456 3457 // Check for overflow. This must be done with ConstantRange arithmetic 3458 // because we could be called from within the ScalarEvolution overflow 3459 // checking code. 3460 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3461 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3462 ConstantRange ExtMaxBECountRange = 3463 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3464 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3465 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3466 ExtEndRange) 3467 return setSignedRange(AddRec, ConservativeResult); 3468 3469 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3470 EndRange.getSignedMin()); 3471 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3472 EndRange.getSignedMax()); 3473 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3474 return setSignedRange(AddRec, ConservativeResult); 3475 return setSignedRange(AddRec, 3476 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3477 } 3478 } 3479 3480 return setSignedRange(AddRec, ConservativeResult); 3481 } 3482 3483 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3484 // For a SCEVUnknown, ask ValueTracking. 3485 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3486 return setSignedRange(U, ConservativeResult); 3487 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3488 if (NS == 1) 3489 return setSignedRange(U, ConservativeResult); 3490 return setSignedRange(U, ConservativeResult.intersectWith( 3491 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3492 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3493 } 3494 3495 return setSignedRange(S, ConservativeResult); 3496 } 3497 3498 /// createSCEV - We know that there is no SCEV for the specified value. 3499 /// Analyze the expression. 3500 /// 3501 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3502 if (!isSCEVable(V->getType())) 3503 return getUnknown(V); 3504 3505 unsigned Opcode = Instruction::UserOp1; 3506 if (Instruction *I = dyn_cast<Instruction>(V)) { 3507 Opcode = I->getOpcode(); 3508 3509 // Don't attempt to analyze instructions in blocks that aren't 3510 // reachable. Such instructions don't matter, and they aren't required 3511 // to obey basic rules for definitions dominating uses which this 3512 // analysis depends on. 3513 if (!DT->isReachableFromEntry(I->getParent())) 3514 return getUnknown(V); 3515 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3516 Opcode = CE->getOpcode(); 3517 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3518 return getConstant(CI); 3519 else if (isa<ConstantPointerNull>(V)) 3520 return getConstant(V->getType(), 0); 3521 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3522 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3523 else 3524 return getUnknown(V); 3525 3526 Operator *U = cast<Operator>(V); 3527 switch (Opcode) { 3528 case Instruction::Add: { 3529 // The simple thing to do would be to just call getSCEV on both operands 3530 // and call getAddExpr with the result. However if we're looking at a 3531 // bunch of things all added together, this can be quite inefficient, 3532 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3533 // Instead, gather up all the operands and make a single getAddExpr call. 3534 // LLVM IR canonical form means we need only traverse the left operands. 3535 SmallVector<const SCEV *, 4> AddOps; 3536 AddOps.push_back(getSCEV(U->getOperand(1))); 3537 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3538 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3539 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3540 break; 3541 U = cast<Operator>(Op); 3542 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3543 if (Opcode == Instruction::Sub) 3544 AddOps.push_back(getNegativeSCEV(Op1)); 3545 else 3546 AddOps.push_back(Op1); 3547 } 3548 AddOps.push_back(getSCEV(U->getOperand(0))); 3549 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3550 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V); 3551 if (OBO->hasNoSignedWrap()) 3552 setFlags(Flags, SCEV::FlagNSW); 3553 if (OBO->hasNoUnsignedWrap()) 3554 setFlags(Flags, SCEV::FlagNUW); 3555 return getAddExpr(AddOps, Flags); 3556 } 3557 case Instruction::Mul: { 3558 // See the Add code above. 3559 SmallVector<const SCEV *, 4> MulOps; 3560 MulOps.push_back(getSCEV(U->getOperand(1))); 3561 for (Value *Op = U->getOperand(0); 3562 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3563 Op = U->getOperand(0)) { 3564 U = cast<Operator>(Op); 3565 MulOps.push_back(getSCEV(U->getOperand(1))); 3566 } 3567 MulOps.push_back(getSCEV(U->getOperand(0))); 3568 return getMulExpr(MulOps); 3569 } 3570 case Instruction::UDiv: 3571 return getUDivExpr(getSCEV(U->getOperand(0)), 3572 getSCEV(U->getOperand(1))); 3573 case Instruction::Sub: 3574 return getMinusSCEV(getSCEV(U->getOperand(0)), 3575 getSCEV(U->getOperand(1))); 3576 case Instruction::And: 3577 // For an expression like x&255 that merely masks off the high bits, 3578 // use zext(trunc(x)) as the SCEV expression. 3579 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3580 if (CI->isNullValue()) 3581 return getSCEV(U->getOperand(1)); 3582 if (CI->isAllOnesValue()) 3583 return getSCEV(U->getOperand(0)); 3584 const APInt &A = CI->getValue(); 3585 3586 // Instcombine's ShrinkDemandedConstant may strip bits out of 3587 // constants, obscuring what would otherwise be a low-bits mask. 3588 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3589 // knew about to reconstruct a low-bits mask value. 3590 unsigned LZ = A.countLeadingZeros(); 3591 unsigned BitWidth = A.getBitWidth(); 3592 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3593 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3594 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3595 3596 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3597 3598 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3599 return 3600 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3601 IntegerType::get(getContext(), BitWidth - LZ)), 3602 U->getType()); 3603 } 3604 break; 3605 3606 case Instruction::Or: 3607 // If the RHS of the Or is a constant, we may have something like: 3608 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3609 // optimizations will transparently handle this case. 3610 // 3611 // In order for this transformation to be safe, the LHS must be of the 3612 // form X*(2^n) and the Or constant must be less than 2^n. 3613 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3614 const SCEV *LHS = getSCEV(U->getOperand(0)); 3615 const APInt &CIVal = CI->getValue(); 3616 if (GetMinTrailingZeros(LHS) >= 3617 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3618 // Build a plain add SCEV. 3619 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3620 // If the LHS of the add was an addrec and it has no-wrap flags, 3621 // transfer the no-wrap flags, since an or won't introduce a wrap. 3622 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3623 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3624 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3625 OldAR->getNoWrapFlags()); 3626 } 3627 return S; 3628 } 3629 } 3630 break; 3631 case Instruction::Xor: 3632 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3633 // If the RHS of the xor is a signbit, then this is just an add. 3634 // Instcombine turns add of signbit into xor as a strength reduction step. 3635 if (CI->getValue().isSignBit()) 3636 return getAddExpr(getSCEV(U->getOperand(0)), 3637 getSCEV(U->getOperand(1))); 3638 3639 // If the RHS of xor is -1, then this is a not operation. 3640 if (CI->isAllOnesValue()) 3641 return getNotSCEV(getSCEV(U->getOperand(0))); 3642 3643 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3644 // This is a variant of the check for xor with -1, and it handles 3645 // the case where instcombine has trimmed non-demanded bits out 3646 // of an xor with -1. 3647 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3648 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3649 if (BO->getOpcode() == Instruction::And && 3650 LCI->getValue() == CI->getValue()) 3651 if (const SCEVZeroExtendExpr *Z = 3652 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3653 Type *UTy = U->getType(); 3654 const SCEV *Z0 = Z->getOperand(); 3655 Type *Z0Ty = Z0->getType(); 3656 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3657 3658 // If C is a low-bits mask, the zero extend is serving to 3659 // mask off the high bits. Complement the operand and 3660 // re-apply the zext. 3661 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3662 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3663 3664 // If C is a single bit, it may be in the sign-bit position 3665 // before the zero-extend. In this case, represent the xor 3666 // using an add, which is equivalent, and re-apply the zext. 3667 APInt Trunc = CI->getValue().trunc(Z0TySize); 3668 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3669 Trunc.isSignBit()) 3670 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3671 UTy); 3672 } 3673 } 3674 break; 3675 3676 case Instruction::Shl: 3677 // Turn shift left of a constant amount into a multiply. 3678 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3679 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3680 3681 // If the shift count is not less than the bitwidth, the result of 3682 // the shift is undefined. Don't try to analyze it, because the 3683 // resolution chosen here may differ from the resolution chosen in 3684 // other parts of the compiler. 3685 if (SA->getValue().uge(BitWidth)) 3686 break; 3687 3688 Constant *X = ConstantInt::get(getContext(), 3689 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3690 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3691 } 3692 break; 3693 3694 case Instruction::LShr: 3695 // Turn logical shift right of a constant into a unsigned divide. 3696 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3697 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3698 3699 // If the shift count is not less than the bitwidth, the result of 3700 // the shift is undefined. Don't try to analyze it, because the 3701 // resolution chosen here may differ from the resolution chosen in 3702 // other parts of the compiler. 3703 if (SA->getValue().uge(BitWidth)) 3704 break; 3705 3706 Constant *X = ConstantInt::get(getContext(), 3707 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3708 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3709 } 3710 break; 3711 3712 case Instruction::AShr: 3713 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3714 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3715 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3716 if (L->getOpcode() == Instruction::Shl && 3717 L->getOperand(1) == U->getOperand(1)) { 3718 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3719 3720 // If the shift count is not less than the bitwidth, the result of 3721 // the shift is undefined. Don't try to analyze it, because the 3722 // resolution chosen here may differ from the resolution chosen in 3723 // other parts of the compiler. 3724 if (CI->getValue().uge(BitWidth)) 3725 break; 3726 3727 uint64_t Amt = BitWidth - CI->getZExtValue(); 3728 if (Amt == BitWidth) 3729 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3730 return 3731 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3732 IntegerType::get(getContext(), 3733 Amt)), 3734 U->getType()); 3735 } 3736 break; 3737 3738 case Instruction::Trunc: 3739 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3740 3741 case Instruction::ZExt: 3742 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3743 3744 case Instruction::SExt: 3745 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3746 3747 case Instruction::BitCast: 3748 // BitCasts are no-op casts so we just eliminate the cast. 3749 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3750 return getSCEV(U->getOperand(0)); 3751 break; 3752 3753 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3754 // lead to pointer expressions which cannot safely be expanded to GEPs, 3755 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3756 // simplifying integer expressions. 3757 3758 case Instruction::GetElementPtr: 3759 return createNodeForGEP(cast<GEPOperator>(U)); 3760 3761 case Instruction::PHI: 3762 return createNodeForPHI(cast<PHINode>(U)); 3763 3764 case Instruction::Select: 3765 // This could be a smax or umax that was lowered earlier. 3766 // Try to recover it. 3767 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3768 Value *LHS = ICI->getOperand(0); 3769 Value *RHS = ICI->getOperand(1); 3770 switch (ICI->getPredicate()) { 3771 case ICmpInst::ICMP_SLT: 3772 case ICmpInst::ICMP_SLE: 3773 std::swap(LHS, RHS); 3774 // fall through 3775 case ICmpInst::ICMP_SGT: 3776 case ICmpInst::ICMP_SGE: 3777 // a >s b ? a+x : b+x -> smax(a, b)+x 3778 // a >s b ? b+x : a+x -> smin(a, b)+x 3779 if (LHS->getType() == U->getType()) { 3780 const SCEV *LS = getSCEV(LHS); 3781 const SCEV *RS = getSCEV(RHS); 3782 const SCEV *LA = getSCEV(U->getOperand(1)); 3783 const SCEV *RA = getSCEV(U->getOperand(2)); 3784 const SCEV *LDiff = getMinusSCEV(LA, LS); 3785 const SCEV *RDiff = getMinusSCEV(RA, RS); 3786 if (LDiff == RDiff) 3787 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3788 LDiff = getMinusSCEV(LA, RS); 3789 RDiff = getMinusSCEV(RA, LS); 3790 if (LDiff == RDiff) 3791 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3792 } 3793 break; 3794 case ICmpInst::ICMP_ULT: 3795 case ICmpInst::ICMP_ULE: 3796 std::swap(LHS, RHS); 3797 // fall through 3798 case ICmpInst::ICMP_UGT: 3799 case ICmpInst::ICMP_UGE: 3800 // a >u b ? a+x : b+x -> umax(a, b)+x 3801 // a >u b ? b+x : a+x -> umin(a, b)+x 3802 if (LHS->getType() == U->getType()) { 3803 const SCEV *LS = getSCEV(LHS); 3804 const SCEV *RS = getSCEV(RHS); 3805 const SCEV *LA = getSCEV(U->getOperand(1)); 3806 const SCEV *RA = getSCEV(U->getOperand(2)); 3807 const SCEV *LDiff = getMinusSCEV(LA, LS); 3808 const SCEV *RDiff = getMinusSCEV(RA, RS); 3809 if (LDiff == RDiff) 3810 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3811 LDiff = getMinusSCEV(LA, RS); 3812 RDiff = getMinusSCEV(RA, LS); 3813 if (LDiff == RDiff) 3814 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3815 } 3816 break; 3817 case ICmpInst::ICMP_NE: 3818 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3819 if (LHS->getType() == U->getType() && 3820 isa<ConstantInt>(RHS) && 3821 cast<ConstantInt>(RHS)->isZero()) { 3822 const SCEV *One = getConstant(LHS->getType(), 1); 3823 const SCEV *LS = getSCEV(LHS); 3824 const SCEV *LA = getSCEV(U->getOperand(1)); 3825 const SCEV *RA = getSCEV(U->getOperand(2)); 3826 const SCEV *LDiff = getMinusSCEV(LA, LS); 3827 const SCEV *RDiff = getMinusSCEV(RA, One); 3828 if (LDiff == RDiff) 3829 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3830 } 3831 break; 3832 case ICmpInst::ICMP_EQ: 3833 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3834 if (LHS->getType() == U->getType() && 3835 isa<ConstantInt>(RHS) && 3836 cast<ConstantInt>(RHS)->isZero()) { 3837 const SCEV *One = getConstant(LHS->getType(), 1); 3838 const SCEV *LS = getSCEV(LHS); 3839 const SCEV *LA = getSCEV(U->getOperand(1)); 3840 const SCEV *RA = getSCEV(U->getOperand(2)); 3841 const SCEV *LDiff = getMinusSCEV(LA, One); 3842 const SCEV *RDiff = getMinusSCEV(RA, LS); 3843 if (LDiff == RDiff) 3844 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3845 } 3846 break; 3847 default: 3848 break; 3849 } 3850 } 3851 3852 default: // We cannot analyze this expression. 3853 break; 3854 } 3855 3856 return getUnknown(V); 3857 } 3858 3859 3860 3861 //===----------------------------------------------------------------------===// 3862 // Iteration Count Computation Code 3863 // 3864 3865 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3866 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown 3867 /// or not constant. Will also return 0 if the maximum trip count is very large 3868 /// (>= 2^32) 3869 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 3870 BasicBlock *ExitBlock) { 3871 const SCEVConstant *ExitCount = 3872 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock)); 3873 if (!ExitCount) 3874 return 0; 3875 3876 ConstantInt *ExitConst = ExitCount->getValue(); 3877 3878 // Guard against huge trip counts. 3879 if (ExitConst->getValue().getActiveBits() > 32) 3880 return 0; 3881 3882 // In case of integer overflow, this returns 0, which is correct. 3883 return ((unsigned)ExitConst->getZExtValue()) + 1; 3884 } 3885 3886 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3887 /// trip count of this loop as a normal unsigned value, if possible. This 3888 /// means that the actual trip count is always a multiple of the returned 3889 /// value (don't forget the trip count could very well be zero as well!). 3890 /// 3891 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3892 /// multiple of a constant (which is also the case if the trip count is simply 3893 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3894 /// if the trip count is very large (>= 2^32). 3895 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 3896 BasicBlock *ExitBlock) { 3897 const SCEV *ExitCount = getExitCount(L, ExitBlock); 3898 if (ExitCount == getCouldNotCompute()) 3899 return 1; 3900 3901 // Get the trip count from the BE count by adding 1. 3902 const SCEV *TCMul = getAddExpr(ExitCount, 3903 getConstant(ExitCount->getType(), 1)); 3904 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3905 // to factor simple cases. 3906 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3907 TCMul = Mul->getOperand(0); 3908 3909 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3910 if (!MulC) 3911 return 1; 3912 3913 ConstantInt *Result = MulC->getValue(); 3914 3915 // Guard against huge trip counts. 3916 if (!Result || Result->getValue().getActiveBits() > 32) 3917 return 1; 3918 3919 return (unsigned)Result->getZExtValue(); 3920 } 3921 3922 // getExitCount - Get the expression for the number of loop iterations for which 3923 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 3924 // SCEVCouldNotCompute. 3925 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 3926 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 3927 } 3928 3929 /// getBackedgeTakenCount - If the specified loop has a predictable 3930 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3931 /// object. The backedge-taken count is the number of times the loop header 3932 /// will be branched to from within the loop. This is one less than the 3933 /// trip count of the loop, since it doesn't count the first iteration, 3934 /// when the header is branched to from outside the loop. 3935 /// 3936 /// Note that it is not valid to call this method on a loop without a 3937 /// loop-invariant backedge-taken count (see 3938 /// hasLoopInvariantBackedgeTakenCount). 3939 /// 3940 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3941 return getBackedgeTakenInfo(L).getExact(this); 3942 } 3943 3944 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3945 /// return the least SCEV value that is known never to be less than the 3946 /// actual backedge taken count. 3947 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3948 return getBackedgeTakenInfo(L).getMax(this); 3949 } 3950 3951 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3952 /// onto the given Worklist. 3953 static void 3954 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3955 BasicBlock *Header = L->getHeader(); 3956 3957 // Push all Loop-header PHIs onto the Worklist stack. 3958 for (BasicBlock::iterator I = Header->begin(); 3959 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3960 Worklist.push_back(PN); 3961 } 3962 3963 const ScalarEvolution::BackedgeTakenInfo & 3964 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3965 // Initially insert an invalid entry for this loop. If the insertion 3966 // succeeds, proceed to actually compute a backedge-taken count and 3967 // update the value. The temporary CouldNotCompute value tells SCEV 3968 // code elsewhere that it shouldn't attempt to request a new 3969 // backedge-taken count, which could result in infinite recursion. 3970 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3971 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 3972 if (!Pair.second) 3973 return Pair.first->second; 3974 3975 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 3976 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 3977 // must be cleared in this scope. 3978 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 3979 3980 if (Result.getExact(this) != getCouldNotCompute()) { 3981 assert(isLoopInvariant(Result.getExact(this), L) && 3982 isLoopInvariant(Result.getMax(this), L) && 3983 "Computed backedge-taken count isn't loop invariant for loop!"); 3984 ++NumTripCountsComputed; 3985 } 3986 else if (Result.getMax(this) == getCouldNotCompute() && 3987 isa<PHINode>(L->getHeader()->begin())) { 3988 // Only count loops that have phi nodes as not being computable. 3989 ++NumTripCountsNotComputed; 3990 } 3991 3992 // Now that we know more about the trip count for this loop, forget any 3993 // existing SCEV values for PHI nodes in this loop since they are only 3994 // conservative estimates made without the benefit of trip count 3995 // information. This is similar to the code in forgetLoop, except that 3996 // it handles SCEVUnknown PHI nodes specially. 3997 if (Result.hasAnyInfo()) { 3998 SmallVector<Instruction *, 16> Worklist; 3999 PushLoopPHIs(L, Worklist); 4000 4001 SmallPtrSet<Instruction *, 8> Visited; 4002 while (!Worklist.empty()) { 4003 Instruction *I = Worklist.pop_back_val(); 4004 if (!Visited.insert(I)) continue; 4005 4006 ValueExprMapType::iterator It = 4007 ValueExprMap.find(static_cast<Value *>(I)); 4008 if (It != ValueExprMap.end()) { 4009 const SCEV *Old = It->second; 4010 4011 // SCEVUnknown for a PHI either means that it has an unrecognized 4012 // structure, or it's a PHI that's in the progress of being computed 4013 // by createNodeForPHI. In the former case, additional loop trip 4014 // count information isn't going to change anything. In the later 4015 // case, createNodeForPHI will perform the necessary updates on its 4016 // own when it gets to that point. 4017 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4018 forgetMemoizedResults(Old); 4019 ValueExprMap.erase(It); 4020 } 4021 if (PHINode *PN = dyn_cast<PHINode>(I)) 4022 ConstantEvolutionLoopExitValue.erase(PN); 4023 } 4024 4025 PushDefUseChildren(I, Worklist); 4026 } 4027 } 4028 4029 // Re-lookup the insert position, since the call to 4030 // ComputeBackedgeTakenCount above could result in a 4031 // recusive call to getBackedgeTakenInfo (on a different 4032 // loop), which would invalidate the iterator computed 4033 // earlier. 4034 return BackedgeTakenCounts.find(L)->second = Result; 4035 } 4036 4037 /// forgetLoop - This method should be called by the client when it has 4038 /// changed a loop in a way that may effect ScalarEvolution's ability to 4039 /// compute a trip count, or if the loop is deleted. 4040 void ScalarEvolution::forgetLoop(const Loop *L) { 4041 // Drop any stored trip count value. 4042 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4043 BackedgeTakenCounts.find(L); 4044 if (BTCPos != BackedgeTakenCounts.end()) { 4045 BTCPos->second.clear(); 4046 BackedgeTakenCounts.erase(BTCPos); 4047 } 4048 4049 // Drop information about expressions based on loop-header PHIs. 4050 SmallVector<Instruction *, 16> Worklist; 4051 PushLoopPHIs(L, Worklist); 4052 4053 SmallPtrSet<Instruction *, 8> Visited; 4054 while (!Worklist.empty()) { 4055 Instruction *I = Worklist.pop_back_val(); 4056 if (!Visited.insert(I)) continue; 4057 4058 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4059 if (It != ValueExprMap.end()) { 4060 forgetMemoizedResults(It->second); 4061 ValueExprMap.erase(It); 4062 if (PHINode *PN = dyn_cast<PHINode>(I)) 4063 ConstantEvolutionLoopExitValue.erase(PN); 4064 } 4065 4066 PushDefUseChildren(I, Worklist); 4067 } 4068 4069 // Forget all contained loops too, to avoid dangling entries in the 4070 // ValuesAtScopes map. 4071 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4072 forgetLoop(*I); 4073 } 4074 4075 /// forgetValue - This method should be called by the client when it has 4076 /// changed a value in a way that may effect its value, or which may 4077 /// disconnect it from a def-use chain linking it to a loop. 4078 void ScalarEvolution::forgetValue(Value *V) { 4079 Instruction *I = dyn_cast<Instruction>(V); 4080 if (!I) return; 4081 4082 // Drop information about expressions based on loop-header PHIs. 4083 SmallVector<Instruction *, 16> Worklist; 4084 Worklist.push_back(I); 4085 4086 SmallPtrSet<Instruction *, 8> Visited; 4087 while (!Worklist.empty()) { 4088 I = Worklist.pop_back_val(); 4089 if (!Visited.insert(I)) continue; 4090 4091 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4092 if (It != ValueExprMap.end()) { 4093 forgetMemoizedResults(It->second); 4094 ValueExprMap.erase(It); 4095 if (PHINode *PN = dyn_cast<PHINode>(I)) 4096 ConstantEvolutionLoopExitValue.erase(PN); 4097 } 4098 4099 PushDefUseChildren(I, Worklist); 4100 } 4101 } 4102 4103 /// getExact - Get the exact loop backedge taken count considering all loop 4104 /// exits. If all exits are computable, this is the minimum computed count. 4105 const SCEV * 4106 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4107 // If any exits were not computable, the loop is not computable. 4108 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4109 4110 // We need at least one computable exit. 4111 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4112 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4113 4114 const SCEV *BECount = 0; 4115 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4116 ENT != 0; ENT = ENT->getNextExit()) { 4117 4118 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4119 4120 if (!BECount) 4121 BECount = ENT->ExactNotTaken; 4122 else 4123 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken); 4124 } 4125 assert(BECount && "Invalid not taken count for loop exit"); 4126 return BECount; 4127 } 4128 4129 /// getExact - Get the exact not taken count for this loop exit. 4130 const SCEV * 4131 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4132 ScalarEvolution *SE) const { 4133 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4134 ENT != 0; ENT = ENT->getNextExit()) { 4135 4136 if (ENT->ExitingBlock == ExitingBlock) 4137 return ENT->ExactNotTaken; 4138 } 4139 return SE->getCouldNotCompute(); 4140 } 4141 4142 /// getMax - Get the max backedge taken count for the loop. 4143 const SCEV * 4144 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4145 return Max ? Max : SE->getCouldNotCompute(); 4146 } 4147 4148 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4149 /// computable exit into a persistent ExitNotTakenInfo array. 4150 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4151 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4152 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4153 4154 if (!Complete) 4155 ExitNotTaken.setIncomplete(); 4156 4157 unsigned NumExits = ExitCounts.size(); 4158 if (NumExits == 0) return; 4159 4160 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4161 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4162 if (NumExits == 1) return; 4163 4164 // Handle the rare case of multiple computable exits. 4165 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4166 4167 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4168 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4169 PrevENT->setNextExit(ENT); 4170 ENT->ExitingBlock = ExitCounts[i].first; 4171 ENT->ExactNotTaken = ExitCounts[i].second; 4172 } 4173 } 4174 4175 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4176 void ScalarEvolution::BackedgeTakenInfo::clear() { 4177 ExitNotTaken.ExitingBlock = 0; 4178 ExitNotTaken.ExactNotTaken = 0; 4179 delete[] ExitNotTaken.getNextExit(); 4180 } 4181 4182 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4183 /// of the specified loop will execute. 4184 ScalarEvolution::BackedgeTakenInfo 4185 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4186 SmallVector<BasicBlock *, 8> ExitingBlocks; 4187 L->getExitingBlocks(ExitingBlocks); 4188 4189 // Examine all exits and pick the most conservative values. 4190 const SCEV *MaxBECount = getCouldNotCompute(); 4191 bool CouldComputeBECount = true; 4192 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4193 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4194 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4195 if (EL.Exact == getCouldNotCompute()) 4196 // We couldn't compute an exact value for this exit, so 4197 // we won't be able to compute an exact value for the loop. 4198 CouldComputeBECount = false; 4199 else 4200 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4201 4202 if (MaxBECount == getCouldNotCompute()) 4203 MaxBECount = EL.Max; 4204 else if (EL.Max != getCouldNotCompute()) 4205 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max); 4206 } 4207 4208 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4209 } 4210 4211 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4212 /// loop will execute if it exits via the specified block. 4213 ScalarEvolution::ExitLimit 4214 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4215 4216 // Okay, we've chosen an exiting block. See what condition causes us to 4217 // exit at this block. 4218 // 4219 // FIXME: we should be able to handle switch instructions (with a single exit) 4220 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4221 if (ExitBr == 0) return getCouldNotCompute(); 4222 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4223 4224 // At this point, we know we have a conditional branch that determines whether 4225 // the loop is exited. However, we don't know if the branch is executed each 4226 // time through the loop. If not, then the execution count of the branch will 4227 // not be equal to the trip count of the loop. 4228 // 4229 // Currently we check for this by checking to see if the Exit branch goes to 4230 // the loop header. If so, we know it will always execute the same number of 4231 // times as the loop. We also handle the case where the exit block *is* the 4232 // loop header. This is common for un-rotated loops. 4233 // 4234 // If both of those tests fail, walk up the unique predecessor chain to the 4235 // header, stopping if there is an edge that doesn't exit the loop. If the 4236 // header is reached, the execution count of the branch will be equal to the 4237 // trip count of the loop. 4238 // 4239 // More extensive analysis could be done to handle more cases here. 4240 // 4241 if (ExitBr->getSuccessor(0) != L->getHeader() && 4242 ExitBr->getSuccessor(1) != L->getHeader() && 4243 ExitBr->getParent() != L->getHeader()) { 4244 // The simple checks failed, try climbing the unique predecessor chain 4245 // up to the header. 4246 bool Ok = false; 4247 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4248 BasicBlock *Pred = BB->getUniquePredecessor(); 4249 if (!Pred) 4250 return getCouldNotCompute(); 4251 TerminatorInst *PredTerm = Pred->getTerminator(); 4252 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4253 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4254 if (PredSucc == BB) 4255 continue; 4256 // If the predecessor has a successor that isn't BB and isn't 4257 // outside the loop, assume the worst. 4258 if (L->contains(PredSucc)) 4259 return getCouldNotCompute(); 4260 } 4261 if (Pred == L->getHeader()) { 4262 Ok = true; 4263 break; 4264 } 4265 BB = Pred; 4266 } 4267 if (!Ok) 4268 return getCouldNotCompute(); 4269 } 4270 4271 // Proceed to the next level to examine the exit condition expression. 4272 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4273 ExitBr->getSuccessor(0), 4274 ExitBr->getSuccessor(1)); 4275 } 4276 4277 /// ComputeExitLimitFromCond - Compute the number of times the 4278 /// backedge of the specified loop will execute if its exit condition 4279 /// were a conditional branch of ExitCond, TBB, and FBB. 4280 ScalarEvolution::ExitLimit 4281 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4282 Value *ExitCond, 4283 BasicBlock *TBB, 4284 BasicBlock *FBB) { 4285 // Check if the controlling expression for this loop is an And or Or. 4286 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4287 if (BO->getOpcode() == Instruction::And) { 4288 // Recurse on the operands of the and. 4289 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4290 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4291 const SCEV *BECount = getCouldNotCompute(); 4292 const SCEV *MaxBECount = getCouldNotCompute(); 4293 if (L->contains(TBB)) { 4294 // Both conditions must be true for the loop to continue executing. 4295 // Choose the less conservative count. 4296 if (EL0.Exact == getCouldNotCompute() || 4297 EL1.Exact == getCouldNotCompute()) 4298 BECount = getCouldNotCompute(); 4299 else 4300 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4301 if (EL0.Max == getCouldNotCompute()) 4302 MaxBECount = EL1.Max; 4303 else if (EL1.Max == getCouldNotCompute()) 4304 MaxBECount = EL0.Max; 4305 else 4306 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4307 } else { 4308 // Both conditions must be true at the same time for the loop to exit. 4309 // For now, be conservative. 4310 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4311 if (EL0.Max == EL1.Max) 4312 MaxBECount = EL0.Max; 4313 if (EL0.Exact == EL1.Exact) 4314 BECount = EL0.Exact; 4315 } 4316 4317 return ExitLimit(BECount, MaxBECount); 4318 } 4319 if (BO->getOpcode() == Instruction::Or) { 4320 // Recurse on the operands of the or. 4321 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4322 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4323 const SCEV *BECount = getCouldNotCompute(); 4324 const SCEV *MaxBECount = getCouldNotCompute(); 4325 if (L->contains(FBB)) { 4326 // Both conditions must be false for the loop to continue executing. 4327 // Choose the less conservative count. 4328 if (EL0.Exact == getCouldNotCompute() || 4329 EL1.Exact == getCouldNotCompute()) 4330 BECount = getCouldNotCompute(); 4331 else 4332 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4333 if (EL0.Max == getCouldNotCompute()) 4334 MaxBECount = EL1.Max; 4335 else if (EL1.Max == getCouldNotCompute()) 4336 MaxBECount = EL0.Max; 4337 else 4338 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4339 } else { 4340 // Both conditions must be false at the same time for the loop to exit. 4341 // For now, be conservative. 4342 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4343 if (EL0.Max == EL1.Max) 4344 MaxBECount = EL0.Max; 4345 if (EL0.Exact == EL1.Exact) 4346 BECount = EL0.Exact; 4347 } 4348 4349 return ExitLimit(BECount, MaxBECount); 4350 } 4351 } 4352 4353 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4354 // Proceed to the next level to examine the icmp. 4355 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4356 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4357 4358 // Check for a constant condition. These are normally stripped out by 4359 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4360 // preserve the CFG and is temporarily leaving constant conditions 4361 // in place. 4362 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4363 if (L->contains(FBB) == !CI->getZExtValue()) 4364 // The backedge is always taken. 4365 return getCouldNotCompute(); 4366 else 4367 // The backedge is never taken. 4368 return getConstant(CI->getType(), 0); 4369 } 4370 4371 // If it's not an integer or pointer comparison then compute it the hard way. 4372 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4373 } 4374 4375 /// ComputeExitLimitFromICmp - Compute the number of times the 4376 /// backedge of the specified loop will execute if its exit condition 4377 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4378 ScalarEvolution::ExitLimit 4379 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4380 ICmpInst *ExitCond, 4381 BasicBlock *TBB, 4382 BasicBlock *FBB) { 4383 4384 // If the condition was exit on true, convert the condition to exit on false 4385 ICmpInst::Predicate Cond; 4386 if (!L->contains(FBB)) 4387 Cond = ExitCond->getPredicate(); 4388 else 4389 Cond = ExitCond->getInversePredicate(); 4390 4391 // Handle common loops like: for (X = "string"; *X; ++X) 4392 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4393 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4394 ExitLimit ItCnt = 4395 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4396 if (ItCnt.hasAnyInfo()) 4397 return ItCnt; 4398 } 4399 4400 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4401 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4402 4403 // Try to evaluate any dependencies out of the loop. 4404 LHS = getSCEVAtScope(LHS, L); 4405 RHS = getSCEVAtScope(RHS, L); 4406 4407 // At this point, we would like to compute how many iterations of the 4408 // loop the predicate will return true for these inputs. 4409 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4410 // If there is a loop-invariant, force it into the RHS. 4411 std::swap(LHS, RHS); 4412 Cond = ICmpInst::getSwappedPredicate(Cond); 4413 } 4414 4415 // Simplify the operands before analyzing them. 4416 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4417 4418 // If we have a comparison of a chrec against a constant, try to use value 4419 // ranges to answer this query. 4420 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4421 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4422 if (AddRec->getLoop() == L) { 4423 // Form the constant range. 4424 ConstantRange CompRange( 4425 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4426 4427 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4428 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4429 } 4430 4431 switch (Cond) { 4432 case ICmpInst::ICMP_NE: { // while (X != Y) 4433 // Convert to: while (X-Y != 0) 4434 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4435 if (EL.hasAnyInfo()) return EL; 4436 break; 4437 } 4438 case ICmpInst::ICMP_EQ: { // while (X == Y) 4439 // Convert to: while (X-Y == 0) 4440 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4441 if (EL.hasAnyInfo()) return EL; 4442 break; 4443 } 4444 case ICmpInst::ICMP_SLT: { 4445 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4446 if (EL.hasAnyInfo()) return EL; 4447 break; 4448 } 4449 case ICmpInst::ICMP_SGT: { 4450 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4451 getNotSCEV(RHS), L, true); 4452 if (EL.hasAnyInfo()) return EL; 4453 break; 4454 } 4455 case ICmpInst::ICMP_ULT: { 4456 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4457 if (EL.hasAnyInfo()) return EL; 4458 break; 4459 } 4460 case ICmpInst::ICMP_UGT: { 4461 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4462 getNotSCEV(RHS), L, false); 4463 if (EL.hasAnyInfo()) return EL; 4464 break; 4465 } 4466 default: 4467 #if 0 4468 dbgs() << "ComputeBackedgeTakenCount "; 4469 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4470 dbgs() << "[unsigned] "; 4471 dbgs() << *LHS << " " 4472 << Instruction::getOpcodeName(Instruction::ICmp) 4473 << " " << *RHS << "\n"; 4474 #endif 4475 break; 4476 } 4477 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4478 } 4479 4480 static ConstantInt * 4481 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4482 ScalarEvolution &SE) { 4483 const SCEV *InVal = SE.getConstant(C); 4484 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4485 assert(isa<SCEVConstant>(Val) && 4486 "Evaluation of SCEV at constant didn't fold correctly?"); 4487 return cast<SCEVConstant>(Val)->getValue(); 4488 } 4489 4490 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4491 /// and a GEP expression (missing the pointer index) indexing into it, return 4492 /// the addressed element of the initializer or null if the index expression is 4493 /// invalid. 4494 static Constant * 4495 GetAddressedElementFromGlobal(GlobalVariable *GV, 4496 const std::vector<ConstantInt*> &Indices) { 4497 Constant *Init = GV->getInitializer(); 4498 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4499 uint64_t Idx = Indices[i]->getZExtValue(); 4500 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4501 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4502 Init = cast<Constant>(CS->getOperand(Idx)); 4503 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4504 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4505 Init = cast<Constant>(CA->getOperand(Idx)); 4506 } else if (isa<ConstantAggregateZero>(Init)) { 4507 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 4508 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4509 Init = Constant::getNullValue(STy->getElementType(Idx)); 4510 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4511 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4512 Init = Constant::getNullValue(ATy->getElementType()); 4513 } else { 4514 llvm_unreachable("Unknown constant aggregate type!"); 4515 } 4516 return 0; 4517 } else { 4518 return 0; // Unknown initializer type 4519 } 4520 } 4521 return Init; 4522 } 4523 4524 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4525 /// 'icmp op load X, cst', try to see if we can compute the backedge 4526 /// execution count. 4527 ScalarEvolution::ExitLimit 4528 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4529 LoadInst *LI, 4530 Constant *RHS, 4531 const Loop *L, 4532 ICmpInst::Predicate predicate) { 4533 4534 if (LI->isVolatile()) return getCouldNotCompute(); 4535 4536 // Check to see if the loaded pointer is a getelementptr of a global. 4537 // TODO: Use SCEV instead of manually grubbing with GEPs. 4538 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4539 if (!GEP) return getCouldNotCompute(); 4540 4541 // Make sure that it is really a constant global we are gepping, with an 4542 // initializer, and make sure the first IDX is really 0. 4543 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4544 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4545 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4546 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4547 return getCouldNotCompute(); 4548 4549 // Okay, we allow one non-constant index into the GEP instruction. 4550 Value *VarIdx = 0; 4551 std::vector<ConstantInt*> Indexes; 4552 unsigned VarIdxNum = 0; 4553 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4554 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4555 Indexes.push_back(CI); 4556 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4557 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4558 VarIdx = GEP->getOperand(i); 4559 VarIdxNum = i-2; 4560 Indexes.push_back(0); 4561 } 4562 4563 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4564 // Check to see if X is a loop variant variable value now. 4565 const SCEV *Idx = getSCEV(VarIdx); 4566 Idx = getSCEVAtScope(Idx, L); 4567 4568 // We can only recognize very limited forms of loop index expressions, in 4569 // particular, only affine AddRec's like {C1,+,C2}. 4570 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4571 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4572 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4573 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4574 return getCouldNotCompute(); 4575 4576 unsigned MaxSteps = MaxBruteForceIterations; 4577 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4578 ConstantInt *ItCst = ConstantInt::get( 4579 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4580 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4581 4582 // Form the GEP offset. 4583 Indexes[VarIdxNum] = Val; 4584 4585 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4586 if (Result == 0) break; // Cannot compute! 4587 4588 // Evaluate the condition for this iteration. 4589 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4590 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4591 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4592 #if 0 4593 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4594 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4595 << "***\n"; 4596 #endif 4597 ++NumArrayLenItCounts; 4598 return getConstant(ItCst); // Found terminating iteration! 4599 } 4600 } 4601 return getCouldNotCompute(); 4602 } 4603 4604 4605 /// CanConstantFold - Return true if we can constant fold an instruction of the 4606 /// specified type, assuming that all operands were constants. 4607 static bool CanConstantFold(const Instruction *I) { 4608 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4609 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4610 return true; 4611 4612 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4613 if (const Function *F = CI->getCalledFunction()) 4614 return canConstantFoldCallTo(F); 4615 return false; 4616 } 4617 4618 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4619 /// in the loop that V is derived from. We allow arbitrary operations along the 4620 /// way, but the operands of an operation must either be constants or a value 4621 /// derived from a constant PHI. If this expression does not fit with these 4622 /// constraints, return null. 4623 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4624 // If this is not an instruction, or if this is an instruction outside of the 4625 // loop, it can't be derived from a loop PHI. 4626 Instruction *I = dyn_cast<Instruction>(V); 4627 if (I == 0 || !L->contains(I)) return 0; 4628 4629 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4630 if (L->getHeader() == I->getParent()) 4631 return PN; 4632 else 4633 // We don't currently keep track of the control flow needed to evaluate 4634 // PHIs, so we cannot handle PHIs inside of loops. 4635 return 0; 4636 } 4637 4638 // If we won't be able to constant fold this expression even if the operands 4639 // are constants, return early. 4640 if (!CanConstantFold(I)) return 0; 4641 4642 // Otherwise, we can evaluate this instruction if all of its operands are 4643 // constant or derived from a PHI node themselves. 4644 PHINode *PHI = 0; 4645 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4646 if (!isa<Constant>(I->getOperand(Op))) { 4647 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4648 if (P == 0) return 0; // Not evolving from PHI 4649 if (PHI == 0) 4650 PHI = P; 4651 else if (PHI != P) 4652 return 0; // Evolving from multiple different PHIs. 4653 } 4654 4655 // This is a expression evolving from a constant PHI! 4656 return PHI; 4657 } 4658 4659 /// EvaluateExpression - Given an expression that passes the 4660 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4661 /// in the loop has the value PHIVal. If we can't fold this expression for some 4662 /// reason, return null. 4663 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4664 const TargetData *TD) { 4665 if (isa<PHINode>(V)) return PHIVal; 4666 if (Constant *C = dyn_cast<Constant>(V)) return C; 4667 Instruction *I = cast<Instruction>(V); 4668 4669 std::vector<Constant*> Operands(I->getNumOperands()); 4670 4671 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4672 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4673 if (Operands[i] == 0) return 0; 4674 } 4675 4676 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4677 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4678 Operands[1], TD); 4679 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD); 4680 } 4681 4682 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4683 /// in the header of its containing loop, we know the loop executes a 4684 /// constant number of times, and the PHI node is just a recurrence 4685 /// involving constants, fold it. 4686 Constant * 4687 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4688 const APInt &BEs, 4689 const Loop *L) { 4690 DenseMap<PHINode*, Constant*>::const_iterator I = 4691 ConstantEvolutionLoopExitValue.find(PN); 4692 if (I != ConstantEvolutionLoopExitValue.end()) 4693 return I->second; 4694 4695 if (BEs.ugt(MaxBruteForceIterations)) 4696 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4697 4698 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4699 4700 // Since the loop is canonicalized, the PHI node must have two entries. One 4701 // entry must be a constant (coming in from outside of the loop), and the 4702 // second must be derived from the same PHI. 4703 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4704 Constant *StartCST = 4705 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4706 if (StartCST == 0) 4707 return RetVal = 0; // Must be a constant. 4708 4709 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4710 if (getConstantEvolvingPHI(BEValue, L) != PN && 4711 !isa<Constant>(BEValue)) 4712 return RetVal = 0; // Not derived from same PHI. 4713 4714 // Execute the loop symbolically to determine the exit value. 4715 if (BEs.getActiveBits() >= 32) 4716 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4717 4718 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4719 unsigned IterationNum = 0; 4720 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4721 if (IterationNum == NumIterations) 4722 return RetVal = PHIVal; // Got exit value! 4723 4724 // Compute the value of the PHI node for the next iteration. 4725 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4726 if (NextPHI == PHIVal) 4727 return RetVal = NextPHI; // Stopped evolving! 4728 if (NextPHI == 0) 4729 return 0; // Couldn't evaluate! 4730 PHIVal = NextPHI; 4731 } 4732 } 4733 4734 /// ComputeExitCountExhaustively - If the loop is known to execute a 4735 /// constant number of times (the condition evolves only from constants), 4736 /// try to evaluate a few iterations of the loop until we get the exit 4737 /// condition gets a value of ExitWhen (true or false). If we cannot 4738 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4739 const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4740 Value *Cond, 4741 bool ExitWhen) { 4742 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4743 if (PN == 0) return getCouldNotCompute(); 4744 4745 // If the loop is canonicalized, the PHI will have exactly two entries. 4746 // That's the only form we support here. 4747 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4748 4749 // One entry must be a constant (coming in from outside of the loop), and the 4750 // second must be derived from the same PHI. 4751 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4752 Constant *StartCST = 4753 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4754 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4755 4756 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4757 if (getConstantEvolvingPHI(BEValue, L) != PN && 4758 !isa<Constant>(BEValue)) 4759 return getCouldNotCompute(); // Not derived from same PHI. 4760 4761 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4762 // the loop symbolically to determine when the condition gets a value of 4763 // "ExitWhen". 4764 unsigned IterationNum = 0; 4765 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4766 for (Constant *PHIVal = StartCST; 4767 IterationNum != MaxIterations; ++IterationNum) { 4768 ConstantInt *CondVal = 4769 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4770 4771 // Couldn't symbolically evaluate. 4772 if (!CondVal) return getCouldNotCompute(); 4773 4774 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4775 ++NumBruteForceTripCountsComputed; 4776 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4777 } 4778 4779 // Compute the value of the PHI node for the next iteration. 4780 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4781 if (NextPHI == 0 || NextPHI == PHIVal) 4782 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4783 PHIVal = NextPHI; 4784 } 4785 4786 // Too many iterations were needed to evaluate. 4787 return getCouldNotCompute(); 4788 } 4789 4790 /// getSCEVAtScope - Return a SCEV expression for the specified value 4791 /// at the specified scope in the program. The L value specifies a loop 4792 /// nest to evaluate the expression at, where null is the top-level or a 4793 /// specified loop is immediately inside of the loop. 4794 /// 4795 /// This method can be used to compute the exit value for a variable defined 4796 /// in a loop by querying what the value will hold in the parent loop. 4797 /// 4798 /// In the case that a relevant loop exit value cannot be computed, the 4799 /// original value V is returned. 4800 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4801 // Check to see if we've folded this expression at this loop before. 4802 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4803 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4804 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4805 if (!Pair.second) 4806 return Pair.first->second ? Pair.first->second : V; 4807 4808 // Otherwise compute it. 4809 const SCEV *C = computeSCEVAtScope(V, L); 4810 ValuesAtScopes[V][L] = C; 4811 return C; 4812 } 4813 4814 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4815 if (isa<SCEVConstant>(V)) return V; 4816 4817 // If this instruction is evolved from a constant-evolving PHI, compute the 4818 // exit value from the loop without using SCEVs. 4819 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4820 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4821 const Loop *LI = (*this->LI)[I->getParent()]; 4822 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4823 if (PHINode *PN = dyn_cast<PHINode>(I)) 4824 if (PN->getParent() == LI->getHeader()) { 4825 // Okay, there is no closed form solution for the PHI node. Check 4826 // to see if the loop that contains it has a known backedge-taken 4827 // count. If so, we may be able to force computation of the exit 4828 // value. 4829 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4830 if (const SCEVConstant *BTCC = 4831 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4832 // Okay, we know how many times the containing loop executes. If 4833 // this is a constant evolving PHI node, get the final value at 4834 // the specified iteration number. 4835 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4836 BTCC->getValue()->getValue(), 4837 LI); 4838 if (RV) return getSCEV(RV); 4839 } 4840 } 4841 4842 // Okay, this is an expression that we cannot symbolically evaluate 4843 // into a SCEV. Check to see if it's possible to symbolically evaluate 4844 // the arguments into constants, and if so, try to constant propagate the 4845 // result. This is particularly useful for computing loop exit values. 4846 if (CanConstantFold(I)) { 4847 SmallVector<Constant *, 4> Operands; 4848 bool MadeImprovement = false; 4849 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4850 Value *Op = I->getOperand(i); 4851 if (Constant *C = dyn_cast<Constant>(Op)) { 4852 Operands.push_back(C); 4853 continue; 4854 } 4855 4856 // If any of the operands is non-constant and if they are 4857 // non-integer and non-pointer, don't even try to analyze them 4858 // with scev techniques. 4859 if (!isSCEVable(Op->getType())) 4860 return V; 4861 4862 const SCEV *OrigV = getSCEV(Op); 4863 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4864 MadeImprovement |= OrigV != OpV; 4865 4866 Constant *C = 0; 4867 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4868 C = SC->getValue(); 4869 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4870 C = dyn_cast<Constant>(SU->getValue()); 4871 if (!C) return V; 4872 if (C->getType() != Op->getType()) 4873 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4874 Op->getType(), 4875 false), 4876 C, Op->getType()); 4877 Operands.push_back(C); 4878 } 4879 4880 // Check to see if getSCEVAtScope actually made an improvement. 4881 if (MadeImprovement) { 4882 Constant *C = 0; 4883 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4884 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4885 Operands[0], Operands[1], TD); 4886 else 4887 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4888 Operands, TD); 4889 if (!C) return V; 4890 return getSCEV(C); 4891 } 4892 } 4893 } 4894 4895 // This is some other type of SCEVUnknown, just return it. 4896 return V; 4897 } 4898 4899 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4900 // Avoid performing the look-up in the common case where the specified 4901 // expression has no loop-variant portions. 4902 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4903 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4904 if (OpAtScope != Comm->getOperand(i)) { 4905 // Okay, at least one of these operands is loop variant but might be 4906 // foldable. Build a new instance of the folded commutative expression. 4907 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4908 Comm->op_begin()+i); 4909 NewOps.push_back(OpAtScope); 4910 4911 for (++i; i != e; ++i) { 4912 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4913 NewOps.push_back(OpAtScope); 4914 } 4915 if (isa<SCEVAddExpr>(Comm)) 4916 return getAddExpr(NewOps); 4917 if (isa<SCEVMulExpr>(Comm)) 4918 return getMulExpr(NewOps); 4919 if (isa<SCEVSMaxExpr>(Comm)) 4920 return getSMaxExpr(NewOps); 4921 if (isa<SCEVUMaxExpr>(Comm)) 4922 return getUMaxExpr(NewOps); 4923 llvm_unreachable("Unknown commutative SCEV type!"); 4924 } 4925 } 4926 // If we got here, all operands are loop invariant. 4927 return Comm; 4928 } 4929 4930 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4931 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4932 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4933 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4934 return Div; // must be loop invariant 4935 return getUDivExpr(LHS, RHS); 4936 } 4937 4938 // If this is a loop recurrence for a loop that does not contain L, then we 4939 // are dealing with the final value computed by the loop. 4940 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4941 // First, attempt to evaluate each operand. 4942 // Avoid performing the look-up in the common case where the specified 4943 // expression has no loop-variant portions. 4944 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4945 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4946 if (OpAtScope == AddRec->getOperand(i)) 4947 continue; 4948 4949 // Okay, at least one of these operands is loop variant but might be 4950 // foldable. Build a new instance of the folded commutative expression. 4951 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4952 AddRec->op_begin()+i); 4953 NewOps.push_back(OpAtScope); 4954 for (++i; i != e; ++i) 4955 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4956 4957 const SCEV *FoldedRec = 4958 getAddRecExpr(NewOps, AddRec->getLoop(), 4959 AddRec->getNoWrapFlags(SCEV::FlagNW)); 4960 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 4961 // The addrec may be folded to a nonrecurrence, for example, if the 4962 // induction variable is multiplied by zero after constant folding. Go 4963 // ahead and return the folded value. 4964 if (!AddRec) 4965 return FoldedRec; 4966 break; 4967 } 4968 4969 // If the scope is outside the addrec's loop, evaluate it by using the 4970 // loop exit value of the addrec. 4971 if (!AddRec->getLoop()->contains(L)) { 4972 // To evaluate this recurrence, we need to know how many times the AddRec 4973 // loop iterates. Compute this now. 4974 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4975 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4976 4977 // Then, evaluate the AddRec. 4978 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4979 } 4980 4981 return AddRec; 4982 } 4983 4984 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4985 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4986 if (Op == Cast->getOperand()) 4987 return Cast; // must be loop invariant 4988 return getZeroExtendExpr(Op, Cast->getType()); 4989 } 4990 4991 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4992 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4993 if (Op == Cast->getOperand()) 4994 return Cast; // must be loop invariant 4995 return getSignExtendExpr(Op, Cast->getType()); 4996 } 4997 4998 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4999 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5000 if (Op == Cast->getOperand()) 5001 return Cast; // must be loop invariant 5002 return getTruncateExpr(Op, Cast->getType()); 5003 } 5004 5005 llvm_unreachable("Unknown SCEV type!"); 5006 return 0; 5007 } 5008 5009 /// getSCEVAtScope - This is a convenience function which does 5010 /// getSCEVAtScope(getSCEV(V), L). 5011 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5012 return getSCEVAtScope(getSCEV(V), L); 5013 } 5014 5015 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5016 /// following equation: 5017 /// 5018 /// A * X = B (mod N) 5019 /// 5020 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5021 /// A and B isn't important. 5022 /// 5023 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5024 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5025 ScalarEvolution &SE) { 5026 uint32_t BW = A.getBitWidth(); 5027 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5028 assert(A != 0 && "A must be non-zero."); 5029 5030 // 1. D = gcd(A, N) 5031 // 5032 // The gcd of A and N may have only one prime factor: 2. The number of 5033 // trailing zeros in A is its multiplicity 5034 uint32_t Mult2 = A.countTrailingZeros(); 5035 // D = 2^Mult2 5036 5037 // 2. Check if B is divisible by D. 5038 // 5039 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5040 // is not less than multiplicity of this prime factor for D. 5041 if (B.countTrailingZeros() < Mult2) 5042 return SE.getCouldNotCompute(); 5043 5044 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5045 // modulo (N / D). 5046 // 5047 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5048 // bit width during computations. 5049 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5050 APInt Mod(BW + 1, 0); 5051 Mod.setBit(BW - Mult2); // Mod = N / D 5052 APInt I = AD.multiplicativeInverse(Mod); 5053 5054 // 4. Compute the minimum unsigned root of the equation: 5055 // I * (B / D) mod (N / D) 5056 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5057 5058 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5059 // bits. 5060 return SE.getConstant(Result.trunc(BW)); 5061 } 5062 5063 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5064 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5065 /// might be the same) or two SCEVCouldNotCompute objects. 5066 /// 5067 static std::pair<const SCEV *,const SCEV *> 5068 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5069 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5070 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5071 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5072 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5073 5074 // We currently can only solve this if the coefficients are constants. 5075 if (!LC || !MC || !NC) { 5076 const SCEV *CNC = SE.getCouldNotCompute(); 5077 return std::make_pair(CNC, CNC); 5078 } 5079 5080 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5081 const APInt &L = LC->getValue()->getValue(); 5082 const APInt &M = MC->getValue()->getValue(); 5083 const APInt &N = NC->getValue()->getValue(); 5084 APInt Two(BitWidth, 2); 5085 APInt Four(BitWidth, 4); 5086 5087 { 5088 using namespace APIntOps; 5089 const APInt& C = L; 5090 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5091 // The B coefficient is M-N/2 5092 APInt B(M); 5093 B -= sdiv(N,Two); 5094 5095 // The A coefficient is N/2 5096 APInt A(N.sdiv(Two)); 5097 5098 // Compute the B^2-4ac term. 5099 APInt SqrtTerm(B); 5100 SqrtTerm *= B; 5101 SqrtTerm -= Four * (A * C); 5102 5103 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5104 // integer value or else APInt::sqrt() will assert. 5105 APInt SqrtVal(SqrtTerm.sqrt()); 5106 5107 // Compute the two solutions for the quadratic formula. 5108 // The divisions must be performed as signed divisions. 5109 APInt NegB(-B); 5110 APInt TwoA( A << 1 ); 5111 if (TwoA.isMinValue()) { 5112 const SCEV *CNC = SE.getCouldNotCompute(); 5113 return std::make_pair(CNC, CNC); 5114 } 5115 5116 LLVMContext &Context = SE.getContext(); 5117 5118 ConstantInt *Solution1 = 5119 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5120 ConstantInt *Solution2 = 5121 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5122 5123 return std::make_pair(SE.getConstant(Solution1), 5124 SE.getConstant(Solution2)); 5125 } // end APIntOps namespace 5126 } 5127 5128 /// HowFarToZero - Return the number of times a backedge comparing the specified 5129 /// value to zero will execute. If not computable, return CouldNotCompute. 5130 /// 5131 /// This is only used for loops with a "x != y" exit test. The exit condition is 5132 /// now expressed as a single expression, V = x-y. So the exit test is 5133 /// effectively V != 0. We know and take advantage of the fact that this 5134 /// expression only being used in a comparison by zero context. 5135 ScalarEvolution::ExitLimit 5136 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5137 // If the value is a constant 5138 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5139 // If the value is already zero, the branch will execute zero times. 5140 if (C->getValue()->isZero()) return C; 5141 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5142 } 5143 5144 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5145 if (!AddRec || AddRec->getLoop() != L) 5146 return getCouldNotCompute(); 5147 5148 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5149 // the quadratic equation to solve it. 5150 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5151 std::pair<const SCEV *,const SCEV *> Roots = 5152 SolveQuadraticEquation(AddRec, *this); 5153 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5154 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5155 if (R1 && R2) { 5156 #if 0 5157 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5158 << " sol#2: " << *R2 << "\n"; 5159 #endif 5160 // Pick the smallest positive root value. 5161 if (ConstantInt *CB = 5162 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5163 R1->getValue(), 5164 R2->getValue()))) { 5165 if (CB->getZExtValue() == false) 5166 std::swap(R1, R2); // R1 is the minimum root now. 5167 5168 // We can only use this value if the chrec ends up with an exact zero 5169 // value at this index. When solving for "X*X != 5", for example, we 5170 // should not accept a root of 2. 5171 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5172 if (Val->isZero()) 5173 return R1; // We found a quadratic root! 5174 } 5175 } 5176 return getCouldNotCompute(); 5177 } 5178 5179 // Otherwise we can only handle this if it is affine. 5180 if (!AddRec->isAffine()) 5181 return getCouldNotCompute(); 5182 5183 // If this is an affine expression, the execution count of this branch is 5184 // the minimum unsigned root of the following equation: 5185 // 5186 // Start + Step*N = 0 (mod 2^BW) 5187 // 5188 // equivalent to: 5189 // 5190 // Step*N = -Start (mod 2^BW) 5191 // 5192 // where BW is the common bit width of Start and Step. 5193 5194 // Get the initial value for the loop. 5195 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5196 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5197 5198 // For now we handle only constant steps. 5199 // 5200 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5201 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5202 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5203 // We have not yet seen any such cases. 5204 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5205 if (StepC == 0) 5206 return getCouldNotCompute(); 5207 5208 // For positive steps (counting up until unsigned overflow): 5209 // N = -Start/Step (as unsigned) 5210 // For negative steps (counting down to zero): 5211 // N = Start/-Step 5212 // First compute the unsigned distance from zero in the direction of Step. 5213 bool CountDown = StepC->getValue()->getValue().isNegative(); 5214 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5215 5216 // Handle unitary steps, which cannot wraparound. 5217 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5218 // N = Distance (as unsigned) 5219 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) 5220 return Distance; 5221 5222 // If the recurrence is known not to wraparound, unsigned divide computes the 5223 // back edge count. We know that the value will either become zero (and thus 5224 // the loop terminates), that the loop will terminate through some other exit 5225 // condition first, or that the loop has undefined behavior. This means 5226 // we can't "miss" the exit value, even with nonunit stride. 5227 // 5228 // FIXME: Prove that loops always exhibits *acceptable* undefined 5229 // behavior. Loops must exhibit defined behavior until a wrapped value is 5230 // actually used. So the trip count computed by udiv could be smaller than the 5231 // number of well-defined iterations. 5232 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) 5233 // FIXME: We really want an "isexact" bit for udiv. 5234 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5235 5236 // Then, try to solve the above equation provided that Start is constant. 5237 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5238 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5239 -StartC->getValue()->getValue(), 5240 *this); 5241 return getCouldNotCompute(); 5242 } 5243 5244 /// HowFarToNonZero - Return the number of times a backedge checking the 5245 /// specified value for nonzero will execute. If not computable, return 5246 /// CouldNotCompute 5247 ScalarEvolution::ExitLimit 5248 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5249 // Loops that look like: while (X == 0) are very strange indeed. We don't 5250 // handle them yet except for the trivial case. This could be expanded in the 5251 // future as needed. 5252 5253 // If the value is a constant, check to see if it is known to be non-zero 5254 // already. If so, the backedge will execute zero times. 5255 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5256 if (!C->getValue()->isNullValue()) 5257 return getConstant(C->getType(), 0); 5258 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5259 } 5260 5261 // We could implement others, but I really doubt anyone writes loops like 5262 // this, and if they did, they would already be constant folded. 5263 return getCouldNotCompute(); 5264 } 5265 5266 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5267 /// (which may not be an immediate predecessor) which has exactly one 5268 /// successor from which BB is reachable, or null if no such block is 5269 /// found. 5270 /// 5271 std::pair<BasicBlock *, BasicBlock *> 5272 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5273 // If the block has a unique predecessor, then there is no path from the 5274 // predecessor to the block that does not go through the direct edge 5275 // from the predecessor to the block. 5276 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5277 return std::make_pair(Pred, BB); 5278 5279 // A loop's header is defined to be a block that dominates the loop. 5280 // If the header has a unique predecessor outside the loop, it must be 5281 // a block that has exactly one successor that can reach the loop. 5282 if (Loop *L = LI->getLoopFor(BB)) 5283 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5284 5285 return std::pair<BasicBlock *, BasicBlock *>(); 5286 } 5287 5288 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5289 /// testing whether two expressions are equal, however for the purposes of 5290 /// looking for a condition guarding a loop, it can be useful to be a little 5291 /// more general, since a front-end may have replicated the controlling 5292 /// expression. 5293 /// 5294 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5295 // Quick check to see if they are the same SCEV. 5296 if (A == B) return true; 5297 5298 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5299 // two different instructions with the same value. Check for this case. 5300 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5301 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5302 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5303 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5304 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5305 return true; 5306 5307 // Otherwise assume they may have a different value. 5308 return false; 5309 } 5310 5311 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5312 /// predicate Pred. Return true iff any changes were made. 5313 /// 5314 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5315 const SCEV *&LHS, const SCEV *&RHS) { 5316 bool Changed = false; 5317 5318 // Canonicalize a constant to the right side. 5319 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5320 // Check for both operands constant. 5321 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5322 if (ConstantExpr::getICmp(Pred, 5323 LHSC->getValue(), 5324 RHSC->getValue())->isNullValue()) 5325 goto trivially_false; 5326 else 5327 goto trivially_true; 5328 } 5329 // Otherwise swap the operands to put the constant on the right. 5330 std::swap(LHS, RHS); 5331 Pred = ICmpInst::getSwappedPredicate(Pred); 5332 Changed = true; 5333 } 5334 5335 // If we're comparing an addrec with a value which is loop-invariant in the 5336 // addrec's loop, put the addrec on the left. Also make a dominance check, 5337 // as both operands could be addrecs loop-invariant in each other's loop. 5338 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5339 const Loop *L = AR->getLoop(); 5340 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5341 std::swap(LHS, RHS); 5342 Pred = ICmpInst::getSwappedPredicate(Pred); 5343 Changed = true; 5344 } 5345 } 5346 5347 // If there's a constant operand, canonicalize comparisons with boundary 5348 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5349 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5350 const APInt &RA = RC->getValue()->getValue(); 5351 switch (Pred) { 5352 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5353 case ICmpInst::ICMP_EQ: 5354 case ICmpInst::ICMP_NE: 5355 break; 5356 case ICmpInst::ICMP_UGE: 5357 if ((RA - 1).isMinValue()) { 5358 Pred = ICmpInst::ICMP_NE; 5359 RHS = getConstant(RA - 1); 5360 Changed = true; 5361 break; 5362 } 5363 if (RA.isMaxValue()) { 5364 Pred = ICmpInst::ICMP_EQ; 5365 Changed = true; 5366 break; 5367 } 5368 if (RA.isMinValue()) goto trivially_true; 5369 5370 Pred = ICmpInst::ICMP_UGT; 5371 RHS = getConstant(RA - 1); 5372 Changed = true; 5373 break; 5374 case ICmpInst::ICMP_ULE: 5375 if ((RA + 1).isMaxValue()) { 5376 Pred = ICmpInst::ICMP_NE; 5377 RHS = getConstant(RA + 1); 5378 Changed = true; 5379 break; 5380 } 5381 if (RA.isMinValue()) { 5382 Pred = ICmpInst::ICMP_EQ; 5383 Changed = true; 5384 break; 5385 } 5386 if (RA.isMaxValue()) goto trivially_true; 5387 5388 Pred = ICmpInst::ICMP_ULT; 5389 RHS = getConstant(RA + 1); 5390 Changed = true; 5391 break; 5392 case ICmpInst::ICMP_SGE: 5393 if ((RA - 1).isMinSignedValue()) { 5394 Pred = ICmpInst::ICMP_NE; 5395 RHS = getConstant(RA - 1); 5396 Changed = true; 5397 break; 5398 } 5399 if (RA.isMaxSignedValue()) { 5400 Pred = ICmpInst::ICMP_EQ; 5401 Changed = true; 5402 break; 5403 } 5404 if (RA.isMinSignedValue()) goto trivially_true; 5405 5406 Pred = ICmpInst::ICMP_SGT; 5407 RHS = getConstant(RA - 1); 5408 Changed = true; 5409 break; 5410 case ICmpInst::ICMP_SLE: 5411 if ((RA + 1).isMaxSignedValue()) { 5412 Pred = ICmpInst::ICMP_NE; 5413 RHS = getConstant(RA + 1); 5414 Changed = true; 5415 break; 5416 } 5417 if (RA.isMinSignedValue()) { 5418 Pred = ICmpInst::ICMP_EQ; 5419 Changed = true; 5420 break; 5421 } 5422 if (RA.isMaxSignedValue()) goto trivially_true; 5423 5424 Pred = ICmpInst::ICMP_SLT; 5425 RHS = getConstant(RA + 1); 5426 Changed = true; 5427 break; 5428 case ICmpInst::ICMP_UGT: 5429 if (RA.isMinValue()) { 5430 Pred = ICmpInst::ICMP_NE; 5431 Changed = true; 5432 break; 5433 } 5434 if ((RA + 1).isMaxValue()) { 5435 Pred = ICmpInst::ICMP_EQ; 5436 RHS = getConstant(RA + 1); 5437 Changed = true; 5438 break; 5439 } 5440 if (RA.isMaxValue()) goto trivially_false; 5441 break; 5442 case ICmpInst::ICMP_ULT: 5443 if (RA.isMaxValue()) { 5444 Pred = ICmpInst::ICMP_NE; 5445 Changed = true; 5446 break; 5447 } 5448 if ((RA - 1).isMinValue()) { 5449 Pred = ICmpInst::ICMP_EQ; 5450 RHS = getConstant(RA - 1); 5451 Changed = true; 5452 break; 5453 } 5454 if (RA.isMinValue()) goto trivially_false; 5455 break; 5456 case ICmpInst::ICMP_SGT: 5457 if (RA.isMinSignedValue()) { 5458 Pred = ICmpInst::ICMP_NE; 5459 Changed = true; 5460 break; 5461 } 5462 if ((RA + 1).isMaxSignedValue()) { 5463 Pred = ICmpInst::ICMP_EQ; 5464 RHS = getConstant(RA + 1); 5465 Changed = true; 5466 break; 5467 } 5468 if (RA.isMaxSignedValue()) goto trivially_false; 5469 break; 5470 case ICmpInst::ICMP_SLT: 5471 if (RA.isMaxSignedValue()) { 5472 Pred = ICmpInst::ICMP_NE; 5473 Changed = true; 5474 break; 5475 } 5476 if ((RA - 1).isMinSignedValue()) { 5477 Pred = ICmpInst::ICMP_EQ; 5478 RHS = getConstant(RA - 1); 5479 Changed = true; 5480 break; 5481 } 5482 if (RA.isMinSignedValue()) goto trivially_false; 5483 break; 5484 } 5485 } 5486 5487 // Check for obvious equality. 5488 if (HasSameValue(LHS, RHS)) { 5489 if (ICmpInst::isTrueWhenEqual(Pred)) 5490 goto trivially_true; 5491 if (ICmpInst::isFalseWhenEqual(Pred)) 5492 goto trivially_false; 5493 } 5494 5495 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5496 // adding or subtracting 1 from one of the operands. 5497 switch (Pred) { 5498 case ICmpInst::ICMP_SLE: 5499 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5500 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5501 SCEV::FlagNSW); 5502 Pred = ICmpInst::ICMP_SLT; 5503 Changed = true; 5504 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5505 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5506 SCEV::FlagNSW); 5507 Pred = ICmpInst::ICMP_SLT; 5508 Changed = true; 5509 } 5510 break; 5511 case ICmpInst::ICMP_SGE: 5512 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5513 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5514 SCEV::FlagNSW); 5515 Pred = ICmpInst::ICMP_SGT; 5516 Changed = true; 5517 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5518 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5519 SCEV::FlagNSW); 5520 Pred = ICmpInst::ICMP_SGT; 5521 Changed = true; 5522 } 5523 break; 5524 case ICmpInst::ICMP_ULE: 5525 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5526 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5527 SCEV::FlagNUW); 5528 Pred = ICmpInst::ICMP_ULT; 5529 Changed = true; 5530 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5531 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5532 SCEV::FlagNUW); 5533 Pred = ICmpInst::ICMP_ULT; 5534 Changed = true; 5535 } 5536 break; 5537 case ICmpInst::ICMP_UGE: 5538 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5539 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5540 SCEV::FlagNUW); 5541 Pred = ICmpInst::ICMP_UGT; 5542 Changed = true; 5543 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5544 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5545 SCEV::FlagNUW); 5546 Pred = ICmpInst::ICMP_UGT; 5547 Changed = true; 5548 } 5549 break; 5550 default: 5551 break; 5552 } 5553 5554 // TODO: More simplifications are possible here. 5555 5556 return Changed; 5557 5558 trivially_true: 5559 // Return 0 == 0. 5560 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5561 Pred = ICmpInst::ICMP_EQ; 5562 return true; 5563 5564 trivially_false: 5565 // Return 0 != 0. 5566 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5567 Pred = ICmpInst::ICMP_NE; 5568 return true; 5569 } 5570 5571 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5572 return getSignedRange(S).getSignedMax().isNegative(); 5573 } 5574 5575 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5576 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5577 } 5578 5579 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5580 return !getSignedRange(S).getSignedMin().isNegative(); 5581 } 5582 5583 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5584 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5585 } 5586 5587 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5588 return isKnownNegative(S) || isKnownPositive(S); 5589 } 5590 5591 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5592 const SCEV *LHS, const SCEV *RHS) { 5593 // Canonicalize the inputs first. 5594 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5595 5596 // If LHS or RHS is an addrec, check to see if the condition is true in 5597 // every iteration of the loop. 5598 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5599 if (isLoopEntryGuardedByCond( 5600 AR->getLoop(), Pred, AR->getStart(), RHS) && 5601 isLoopBackedgeGuardedByCond( 5602 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5603 return true; 5604 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5605 if (isLoopEntryGuardedByCond( 5606 AR->getLoop(), Pred, LHS, AR->getStart()) && 5607 isLoopBackedgeGuardedByCond( 5608 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5609 return true; 5610 5611 // Otherwise see what can be done with known constant ranges. 5612 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5613 } 5614 5615 bool 5616 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5617 const SCEV *LHS, const SCEV *RHS) { 5618 if (HasSameValue(LHS, RHS)) 5619 return ICmpInst::isTrueWhenEqual(Pred); 5620 5621 // This code is split out from isKnownPredicate because it is called from 5622 // within isLoopEntryGuardedByCond. 5623 switch (Pred) { 5624 default: 5625 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5626 break; 5627 case ICmpInst::ICMP_SGT: 5628 Pred = ICmpInst::ICMP_SLT; 5629 std::swap(LHS, RHS); 5630 case ICmpInst::ICMP_SLT: { 5631 ConstantRange LHSRange = getSignedRange(LHS); 5632 ConstantRange RHSRange = getSignedRange(RHS); 5633 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5634 return true; 5635 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5636 return false; 5637 break; 5638 } 5639 case ICmpInst::ICMP_SGE: 5640 Pred = ICmpInst::ICMP_SLE; 5641 std::swap(LHS, RHS); 5642 case ICmpInst::ICMP_SLE: { 5643 ConstantRange LHSRange = getSignedRange(LHS); 5644 ConstantRange RHSRange = getSignedRange(RHS); 5645 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5646 return true; 5647 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5648 return false; 5649 break; 5650 } 5651 case ICmpInst::ICMP_UGT: 5652 Pred = ICmpInst::ICMP_ULT; 5653 std::swap(LHS, RHS); 5654 case ICmpInst::ICMP_ULT: { 5655 ConstantRange LHSRange = getUnsignedRange(LHS); 5656 ConstantRange RHSRange = getUnsignedRange(RHS); 5657 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5658 return true; 5659 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5660 return false; 5661 break; 5662 } 5663 case ICmpInst::ICMP_UGE: 5664 Pred = ICmpInst::ICMP_ULE; 5665 std::swap(LHS, RHS); 5666 case ICmpInst::ICMP_ULE: { 5667 ConstantRange LHSRange = getUnsignedRange(LHS); 5668 ConstantRange RHSRange = getUnsignedRange(RHS); 5669 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5670 return true; 5671 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5672 return false; 5673 break; 5674 } 5675 case ICmpInst::ICMP_NE: { 5676 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5677 return true; 5678 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5679 return true; 5680 5681 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5682 if (isKnownNonZero(Diff)) 5683 return true; 5684 break; 5685 } 5686 case ICmpInst::ICMP_EQ: 5687 // The check at the top of the function catches the case where 5688 // the values are known to be equal. 5689 break; 5690 } 5691 return false; 5692 } 5693 5694 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5695 /// protected by a conditional between LHS and RHS. This is used to 5696 /// to eliminate casts. 5697 bool 5698 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5699 ICmpInst::Predicate Pred, 5700 const SCEV *LHS, const SCEV *RHS) { 5701 // Interpret a null as meaning no loop, where there is obviously no guard 5702 // (interprocedural conditions notwithstanding). 5703 if (!L) return true; 5704 5705 BasicBlock *Latch = L->getLoopLatch(); 5706 if (!Latch) 5707 return false; 5708 5709 BranchInst *LoopContinuePredicate = 5710 dyn_cast<BranchInst>(Latch->getTerminator()); 5711 if (!LoopContinuePredicate || 5712 LoopContinuePredicate->isUnconditional()) 5713 return false; 5714 5715 return isImpliedCond(Pred, LHS, RHS, 5716 LoopContinuePredicate->getCondition(), 5717 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5718 } 5719 5720 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5721 /// by a conditional between LHS and RHS. This is used to help avoid max 5722 /// expressions in loop trip counts, and to eliminate casts. 5723 bool 5724 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5725 ICmpInst::Predicate Pred, 5726 const SCEV *LHS, const SCEV *RHS) { 5727 // Interpret a null as meaning no loop, where there is obviously no guard 5728 // (interprocedural conditions notwithstanding). 5729 if (!L) return false; 5730 5731 // Starting at the loop predecessor, climb up the predecessor chain, as long 5732 // as there are predecessors that can be found that have unique successors 5733 // leading to the original header. 5734 for (std::pair<BasicBlock *, BasicBlock *> 5735 Pair(L->getLoopPredecessor(), L->getHeader()); 5736 Pair.first; 5737 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5738 5739 BranchInst *LoopEntryPredicate = 5740 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5741 if (!LoopEntryPredicate || 5742 LoopEntryPredicate->isUnconditional()) 5743 continue; 5744 5745 if (isImpliedCond(Pred, LHS, RHS, 5746 LoopEntryPredicate->getCondition(), 5747 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5748 return true; 5749 } 5750 5751 return false; 5752 } 5753 5754 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5755 /// and RHS is true whenever the given Cond value evaluates to true. 5756 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5757 const SCEV *LHS, const SCEV *RHS, 5758 Value *FoundCondValue, 5759 bool Inverse) { 5760 // Recursively handle And and Or conditions. 5761 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5762 if (BO->getOpcode() == Instruction::And) { 5763 if (!Inverse) 5764 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5765 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5766 } else if (BO->getOpcode() == Instruction::Or) { 5767 if (Inverse) 5768 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5769 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5770 } 5771 } 5772 5773 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5774 if (!ICI) return false; 5775 5776 // Bail if the ICmp's operands' types are wider than the needed type 5777 // before attempting to call getSCEV on them. This avoids infinite 5778 // recursion, since the analysis of widening casts can require loop 5779 // exit condition information for overflow checking, which would 5780 // lead back here. 5781 if (getTypeSizeInBits(LHS->getType()) < 5782 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5783 return false; 5784 5785 // Now that we found a conditional branch that dominates the loop, check to 5786 // see if it is the comparison we are looking for. 5787 ICmpInst::Predicate FoundPred; 5788 if (Inverse) 5789 FoundPred = ICI->getInversePredicate(); 5790 else 5791 FoundPred = ICI->getPredicate(); 5792 5793 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5794 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5795 5796 // Balance the types. The case where FoundLHS' type is wider than 5797 // LHS' type is checked for above. 5798 if (getTypeSizeInBits(LHS->getType()) > 5799 getTypeSizeInBits(FoundLHS->getType())) { 5800 if (CmpInst::isSigned(Pred)) { 5801 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5802 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5803 } else { 5804 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5805 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5806 } 5807 } 5808 5809 // Canonicalize the query to match the way instcombine will have 5810 // canonicalized the comparison. 5811 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5812 if (LHS == RHS) 5813 return CmpInst::isTrueWhenEqual(Pred); 5814 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5815 if (FoundLHS == FoundRHS) 5816 return CmpInst::isFalseWhenEqual(Pred); 5817 5818 // Check to see if we can make the LHS or RHS match. 5819 if (LHS == FoundRHS || RHS == FoundLHS) { 5820 if (isa<SCEVConstant>(RHS)) { 5821 std::swap(FoundLHS, FoundRHS); 5822 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5823 } else { 5824 std::swap(LHS, RHS); 5825 Pred = ICmpInst::getSwappedPredicate(Pred); 5826 } 5827 } 5828 5829 // Check whether the found predicate is the same as the desired predicate. 5830 if (FoundPred == Pred) 5831 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5832 5833 // Check whether swapping the found predicate makes it the same as the 5834 // desired predicate. 5835 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5836 if (isa<SCEVConstant>(RHS)) 5837 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5838 else 5839 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5840 RHS, LHS, FoundLHS, FoundRHS); 5841 } 5842 5843 // Check whether the actual condition is beyond sufficient. 5844 if (FoundPred == ICmpInst::ICMP_EQ) 5845 if (ICmpInst::isTrueWhenEqual(Pred)) 5846 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5847 return true; 5848 if (Pred == ICmpInst::ICMP_NE) 5849 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5850 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5851 return true; 5852 5853 // Otherwise assume the worst. 5854 return false; 5855 } 5856 5857 /// isImpliedCondOperands - Test whether the condition described by Pred, 5858 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5859 /// and FoundRHS is true. 5860 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5861 const SCEV *LHS, const SCEV *RHS, 5862 const SCEV *FoundLHS, 5863 const SCEV *FoundRHS) { 5864 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5865 FoundLHS, FoundRHS) || 5866 // ~x < ~y --> x > y 5867 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5868 getNotSCEV(FoundRHS), 5869 getNotSCEV(FoundLHS)); 5870 } 5871 5872 /// isImpliedCondOperandsHelper - Test whether the condition described by 5873 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5874 /// FoundLHS, and FoundRHS is true. 5875 bool 5876 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5877 const SCEV *LHS, const SCEV *RHS, 5878 const SCEV *FoundLHS, 5879 const SCEV *FoundRHS) { 5880 switch (Pred) { 5881 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5882 case ICmpInst::ICMP_EQ: 5883 case ICmpInst::ICMP_NE: 5884 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5885 return true; 5886 break; 5887 case ICmpInst::ICMP_SLT: 5888 case ICmpInst::ICMP_SLE: 5889 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5890 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5891 return true; 5892 break; 5893 case ICmpInst::ICMP_SGT: 5894 case ICmpInst::ICMP_SGE: 5895 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5896 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5897 return true; 5898 break; 5899 case ICmpInst::ICMP_ULT: 5900 case ICmpInst::ICMP_ULE: 5901 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5902 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5903 return true; 5904 break; 5905 case ICmpInst::ICMP_UGT: 5906 case ICmpInst::ICMP_UGE: 5907 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5908 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5909 return true; 5910 break; 5911 } 5912 5913 return false; 5914 } 5915 5916 /// getBECount - Subtract the end and start values and divide by the step, 5917 /// rounding up, to get the number of times the backedge is executed. Return 5918 /// CouldNotCompute if an intermediate computation overflows. 5919 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5920 const SCEV *End, 5921 const SCEV *Step, 5922 bool NoWrap) { 5923 assert(!isKnownNegative(Step) && 5924 "This code doesn't handle negative strides yet!"); 5925 5926 Type *Ty = Start->getType(); 5927 5928 // When Start == End, we have an exact BECount == 0. Short-circuit this case 5929 // here because SCEV may not be able to determine that the unsigned division 5930 // after rounding is zero. 5931 if (Start == End) 5932 return getConstant(Ty, 0); 5933 5934 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5935 const SCEV *Diff = getMinusSCEV(End, Start); 5936 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5937 5938 // Add an adjustment to the difference between End and Start so that 5939 // the division will effectively round up. 5940 const SCEV *Add = getAddExpr(Diff, RoundUp); 5941 5942 if (!NoWrap) { 5943 // Check Add for unsigned overflow. 5944 // TODO: More sophisticated things could be done here. 5945 Type *WideTy = IntegerType::get(getContext(), 5946 getTypeSizeInBits(Ty) + 1); 5947 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5948 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5949 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5950 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5951 return getCouldNotCompute(); 5952 } 5953 5954 return getUDivExpr(Add, Step); 5955 } 5956 5957 /// HowManyLessThans - Return the number of times a backedge containing the 5958 /// specified less-than comparison will execute. If not computable, return 5959 /// CouldNotCompute. 5960 ScalarEvolution::ExitLimit 5961 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5962 const Loop *L, bool isSigned) { 5963 // Only handle: "ADDREC < LoopInvariant". 5964 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5965 5966 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5967 if (!AddRec || AddRec->getLoop() != L) 5968 return getCouldNotCompute(); 5969 5970 // Check to see if we have a flag which makes analysis easy. 5971 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) : 5972 AddRec->getNoWrapFlags(SCEV::FlagNUW); 5973 5974 if (AddRec->isAffine()) { 5975 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5976 const SCEV *Step = AddRec->getStepRecurrence(*this); 5977 5978 if (Step->isZero()) 5979 return getCouldNotCompute(); 5980 if (Step->isOne()) { 5981 // With unit stride, the iteration never steps past the limit value. 5982 } else if (isKnownPositive(Step)) { 5983 // Test whether a positive iteration can step past the limit 5984 // value and past the maximum value for its type in a single step. 5985 // Note that it's not sufficient to check NoWrap here, because even 5986 // though the value after a wrap is undefined, it's not undefined 5987 // behavior, so if wrap does occur, the loop could either terminate or 5988 // loop infinitely, but in either case, the loop is guaranteed to 5989 // iterate at least until the iteration where the wrapping occurs. 5990 const SCEV *One = getConstant(Step->getType(), 1); 5991 if (isSigned) { 5992 APInt Max = APInt::getSignedMaxValue(BitWidth); 5993 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5994 .slt(getSignedRange(RHS).getSignedMax())) 5995 return getCouldNotCompute(); 5996 } else { 5997 APInt Max = APInt::getMaxValue(BitWidth); 5998 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5999 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6000 return getCouldNotCompute(); 6001 } 6002 } else 6003 // TODO: Handle negative strides here and below. 6004 return getCouldNotCompute(); 6005 6006 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6007 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6008 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6009 // treat m-n as signed nor unsigned due to overflow possibility. 6010 6011 // First, we get the value of the LHS in the first iteration: n 6012 const SCEV *Start = AddRec->getOperand(0); 6013 6014 // Determine the minimum constant start value. 6015 const SCEV *MinStart = getConstant(isSigned ? 6016 getSignedRange(Start).getSignedMin() : 6017 getUnsignedRange(Start).getUnsignedMin()); 6018 6019 // If we know that the condition is true in order to enter the loop, 6020 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6021 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6022 // the division must round up. 6023 const SCEV *End = RHS; 6024 if (!isLoopEntryGuardedByCond(L, 6025 isSigned ? ICmpInst::ICMP_SLT : 6026 ICmpInst::ICMP_ULT, 6027 getMinusSCEV(Start, Step), RHS)) 6028 End = isSigned ? getSMaxExpr(RHS, Start) 6029 : getUMaxExpr(RHS, Start); 6030 6031 // Determine the maximum constant end value. 6032 const SCEV *MaxEnd = getConstant(isSigned ? 6033 getSignedRange(End).getSignedMax() : 6034 getUnsignedRange(End).getUnsignedMax()); 6035 6036 // If MaxEnd is within a step of the maximum integer value in its type, 6037 // adjust it down to the minimum value which would produce the same effect. 6038 // This allows the subsequent ceiling division of (N+(step-1))/step to 6039 // compute the correct value. 6040 const SCEV *StepMinusOne = getMinusSCEV(Step, 6041 getConstant(Step->getType(), 1)); 6042 MaxEnd = isSigned ? 6043 getSMinExpr(MaxEnd, 6044 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6045 StepMinusOne)) : 6046 getUMinExpr(MaxEnd, 6047 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6048 StepMinusOne)); 6049 6050 // Finally, we subtract these two values and divide, rounding up, to get 6051 // the number of times the backedge is executed. 6052 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6053 6054 // The maximum backedge count is similar, except using the minimum start 6055 // value and the maximum end value. 6056 // If we already have an exact constant BECount, use it instead. 6057 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6058 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6059 6060 // If the stride is nonconstant, and NoWrap == true, then 6061 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6062 // exact BECount and invalid MaxBECount, which should be avoided to catch 6063 // more optimization opportunities. 6064 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6065 MaxBECount = BECount; 6066 6067 return ExitLimit(BECount, MaxBECount); 6068 } 6069 6070 return getCouldNotCompute(); 6071 } 6072 6073 /// getNumIterationsInRange - Return the number of iterations of this loop that 6074 /// produce values in the specified constant range. Another way of looking at 6075 /// this is that it returns the first iteration number where the value is not in 6076 /// the condition, thus computing the exit count. If the iteration count can't 6077 /// be computed, an instance of SCEVCouldNotCompute is returned. 6078 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6079 ScalarEvolution &SE) const { 6080 if (Range.isFullSet()) // Infinite loop. 6081 return SE.getCouldNotCompute(); 6082 6083 // If the start is a non-zero constant, shift the range to simplify things. 6084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6085 if (!SC->getValue()->isZero()) { 6086 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6087 Operands[0] = SE.getConstant(SC->getType(), 0); 6088 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6089 getNoWrapFlags(FlagNW)); 6090 if (const SCEVAddRecExpr *ShiftedAddRec = 6091 dyn_cast<SCEVAddRecExpr>(Shifted)) 6092 return ShiftedAddRec->getNumIterationsInRange( 6093 Range.subtract(SC->getValue()->getValue()), SE); 6094 // This is strange and shouldn't happen. 6095 return SE.getCouldNotCompute(); 6096 } 6097 6098 // The only time we can solve this is when we have all constant indices. 6099 // Otherwise, we cannot determine the overflow conditions. 6100 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6101 if (!isa<SCEVConstant>(getOperand(i))) 6102 return SE.getCouldNotCompute(); 6103 6104 6105 // Okay at this point we know that all elements of the chrec are constants and 6106 // that the start element is zero. 6107 6108 // First check to see if the range contains zero. If not, the first 6109 // iteration exits. 6110 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6111 if (!Range.contains(APInt(BitWidth, 0))) 6112 return SE.getConstant(getType(), 0); 6113 6114 if (isAffine()) { 6115 // If this is an affine expression then we have this situation: 6116 // Solve {0,+,A} in Range === Ax in Range 6117 6118 // We know that zero is in the range. If A is positive then we know that 6119 // the upper value of the range must be the first possible exit value. 6120 // If A is negative then the lower of the range is the last possible loop 6121 // value. Also note that we already checked for a full range. 6122 APInt One(BitWidth,1); 6123 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6124 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6125 6126 // The exit value should be (End+A)/A. 6127 APInt ExitVal = (End + A).udiv(A); 6128 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6129 6130 // Evaluate at the exit value. If we really did fall out of the valid 6131 // range, then we computed our trip count, otherwise wrap around or other 6132 // things must have happened. 6133 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6134 if (Range.contains(Val->getValue())) 6135 return SE.getCouldNotCompute(); // Something strange happened 6136 6137 // Ensure that the previous value is in the range. This is a sanity check. 6138 assert(Range.contains( 6139 EvaluateConstantChrecAtConstant(this, 6140 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6141 "Linear scev computation is off in a bad way!"); 6142 return SE.getConstant(ExitValue); 6143 } else if (isQuadratic()) { 6144 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6145 // quadratic equation to solve it. To do this, we must frame our problem in 6146 // terms of figuring out when zero is crossed, instead of when 6147 // Range.getUpper() is crossed. 6148 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6149 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6150 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6151 // getNoWrapFlags(FlagNW) 6152 FlagAnyWrap); 6153 6154 // Next, solve the constructed addrec 6155 std::pair<const SCEV *,const SCEV *> Roots = 6156 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6157 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6158 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6159 if (R1) { 6160 // Pick the smallest positive root value. 6161 if (ConstantInt *CB = 6162 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6163 R1->getValue(), R2->getValue()))) { 6164 if (CB->getZExtValue() == false) 6165 std::swap(R1, R2); // R1 is the minimum root now. 6166 6167 // Make sure the root is not off by one. The returned iteration should 6168 // not be in the range, but the previous one should be. When solving 6169 // for "X*X < 5", for example, we should not return a root of 2. 6170 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6171 R1->getValue(), 6172 SE); 6173 if (Range.contains(R1Val->getValue())) { 6174 // The next iteration must be out of the range... 6175 ConstantInt *NextVal = 6176 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6177 6178 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6179 if (!Range.contains(R1Val->getValue())) 6180 return SE.getConstant(NextVal); 6181 return SE.getCouldNotCompute(); // Something strange happened 6182 } 6183 6184 // If R1 was not in the range, then it is a good return value. Make 6185 // sure that R1-1 WAS in the range though, just in case. 6186 ConstantInt *NextVal = 6187 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6188 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6189 if (Range.contains(R1Val->getValue())) 6190 return R1; 6191 return SE.getCouldNotCompute(); // Something strange happened 6192 } 6193 } 6194 } 6195 6196 return SE.getCouldNotCompute(); 6197 } 6198 6199 6200 6201 //===----------------------------------------------------------------------===// 6202 // SCEVCallbackVH Class Implementation 6203 //===----------------------------------------------------------------------===// 6204 6205 void ScalarEvolution::SCEVCallbackVH::deleted() { 6206 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6207 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6208 SE->ConstantEvolutionLoopExitValue.erase(PN); 6209 SE->ValueExprMap.erase(getValPtr()); 6210 // this now dangles! 6211 } 6212 6213 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6214 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6215 6216 // Forget all the expressions associated with users of the old value, 6217 // so that future queries will recompute the expressions using the new 6218 // value. 6219 Value *Old = getValPtr(); 6220 SmallVector<User *, 16> Worklist; 6221 SmallPtrSet<User *, 8> Visited; 6222 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6223 UI != UE; ++UI) 6224 Worklist.push_back(*UI); 6225 while (!Worklist.empty()) { 6226 User *U = Worklist.pop_back_val(); 6227 // Deleting the Old value will cause this to dangle. Postpone 6228 // that until everything else is done. 6229 if (U == Old) 6230 continue; 6231 if (!Visited.insert(U)) 6232 continue; 6233 if (PHINode *PN = dyn_cast<PHINode>(U)) 6234 SE->ConstantEvolutionLoopExitValue.erase(PN); 6235 SE->ValueExprMap.erase(U); 6236 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6237 UI != UE; ++UI) 6238 Worklist.push_back(*UI); 6239 } 6240 // Delete the Old value. 6241 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6242 SE->ConstantEvolutionLoopExitValue.erase(PN); 6243 SE->ValueExprMap.erase(Old); 6244 // this now dangles! 6245 } 6246 6247 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6248 : CallbackVH(V), SE(se) {} 6249 6250 //===----------------------------------------------------------------------===// 6251 // ScalarEvolution Class Implementation 6252 //===----------------------------------------------------------------------===// 6253 6254 ScalarEvolution::ScalarEvolution() 6255 : FunctionPass(ID), FirstUnknown(0) { 6256 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6257 } 6258 6259 bool ScalarEvolution::runOnFunction(Function &F) { 6260 this->F = &F; 6261 LI = &getAnalysis<LoopInfo>(); 6262 TD = getAnalysisIfAvailable<TargetData>(); 6263 DT = &getAnalysis<DominatorTree>(); 6264 return false; 6265 } 6266 6267 void ScalarEvolution::releaseMemory() { 6268 // Iterate through all the SCEVUnknown instances and call their 6269 // destructors, so that they release their references to their values. 6270 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6271 U->~SCEVUnknown(); 6272 FirstUnknown = 0; 6273 6274 ValueExprMap.clear(); 6275 6276 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6277 // that a loop had multiple computable exits. 6278 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6279 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6280 I != E; ++I) { 6281 I->second.clear(); 6282 } 6283 6284 BackedgeTakenCounts.clear(); 6285 ConstantEvolutionLoopExitValue.clear(); 6286 ValuesAtScopes.clear(); 6287 LoopDispositions.clear(); 6288 BlockDispositions.clear(); 6289 UnsignedRanges.clear(); 6290 SignedRanges.clear(); 6291 UniqueSCEVs.clear(); 6292 SCEVAllocator.Reset(); 6293 } 6294 6295 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6296 AU.setPreservesAll(); 6297 AU.addRequiredTransitive<LoopInfo>(); 6298 AU.addRequiredTransitive<DominatorTree>(); 6299 } 6300 6301 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6302 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6303 } 6304 6305 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6306 const Loop *L) { 6307 // Print all inner loops first 6308 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6309 PrintLoopInfo(OS, SE, *I); 6310 6311 OS << "Loop "; 6312 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6313 OS << ": "; 6314 6315 SmallVector<BasicBlock *, 8> ExitBlocks; 6316 L->getExitBlocks(ExitBlocks); 6317 if (ExitBlocks.size() != 1) 6318 OS << "<multiple exits> "; 6319 6320 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6321 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6322 } else { 6323 OS << "Unpredictable backedge-taken count. "; 6324 } 6325 6326 OS << "\n" 6327 "Loop "; 6328 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6329 OS << ": "; 6330 6331 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6332 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6333 } else { 6334 OS << "Unpredictable max backedge-taken count. "; 6335 } 6336 6337 OS << "\n"; 6338 } 6339 6340 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6341 // ScalarEvolution's implementation of the print method is to print 6342 // out SCEV values of all instructions that are interesting. Doing 6343 // this potentially causes it to create new SCEV objects though, 6344 // which technically conflicts with the const qualifier. This isn't 6345 // observable from outside the class though, so casting away the 6346 // const isn't dangerous. 6347 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6348 6349 OS << "Classifying expressions for: "; 6350 WriteAsOperand(OS, F, /*PrintType=*/false); 6351 OS << "\n"; 6352 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6353 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6354 OS << *I << '\n'; 6355 OS << " --> "; 6356 const SCEV *SV = SE.getSCEV(&*I); 6357 SV->print(OS); 6358 6359 const Loop *L = LI->getLoopFor((*I).getParent()); 6360 6361 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6362 if (AtUse != SV) { 6363 OS << " --> "; 6364 AtUse->print(OS); 6365 } 6366 6367 if (L) { 6368 OS << "\t\t" "Exits: "; 6369 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6370 if (!SE.isLoopInvariant(ExitValue, L)) { 6371 OS << "<<Unknown>>"; 6372 } else { 6373 OS << *ExitValue; 6374 } 6375 } 6376 6377 OS << "\n"; 6378 } 6379 6380 OS << "Determining loop execution counts for: "; 6381 WriteAsOperand(OS, F, /*PrintType=*/false); 6382 OS << "\n"; 6383 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6384 PrintLoopInfo(OS, &SE, *I); 6385 } 6386 6387 ScalarEvolution::LoopDisposition 6388 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6389 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6390 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6391 Values.insert(std::make_pair(L, LoopVariant)); 6392 if (!Pair.second) 6393 return Pair.first->second; 6394 6395 LoopDisposition D = computeLoopDisposition(S, L); 6396 return LoopDispositions[S][L] = D; 6397 } 6398 6399 ScalarEvolution::LoopDisposition 6400 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6401 switch (S->getSCEVType()) { 6402 case scConstant: 6403 return LoopInvariant; 6404 case scTruncate: 6405 case scZeroExtend: 6406 case scSignExtend: 6407 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6408 case scAddRecExpr: { 6409 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6410 6411 // If L is the addrec's loop, it's computable. 6412 if (AR->getLoop() == L) 6413 return LoopComputable; 6414 6415 // Add recurrences are never invariant in the function-body (null loop). 6416 if (!L) 6417 return LoopVariant; 6418 6419 // This recurrence is variant w.r.t. L if L contains AR's loop. 6420 if (L->contains(AR->getLoop())) 6421 return LoopVariant; 6422 6423 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6424 if (AR->getLoop()->contains(L)) 6425 return LoopInvariant; 6426 6427 // This recurrence is variant w.r.t. L if any of its operands 6428 // are variant. 6429 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6430 I != E; ++I) 6431 if (!isLoopInvariant(*I, L)) 6432 return LoopVariant; 6433 6434 // Otherwise it's loop-invariant. 6435 return LoopInvariant; 6436 } 6437 case scAddExpr: 6438 case scMulExpr: 6439 case scUMaxExpr: 6440 case scSMaxExpr: { 6441 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6442 bool HasVarying = false; 6443 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6444 I != E; ++I) { 6445 LoopDisposition D = getLoopDisposition(*I, L); 6446 if (D == LoopVariant) 6447 return LoopVariant; 6448 if (D == LoopComputable) 6449 HasVarying = true; 6450 } 6451 return HasVarying ? LoopComputable : LoopInvariant; 6452 } 6453 case scUDivExpr: { 6454 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6455 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6456 if (LD == LoopVariant) 6457 return LoopVariant; 6458 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6459 if (RD == LoopVariant) 6460 return LoopVariant; 6461 return (LD == LoopInvariant && RD == LoopInvariant) ? 6462 LoopInvariant : LoopComputable; 6463 } 6464 case scUnknown: 6465 // All non-instruction values are loop invariant. All instructions are loop 6466 // invariant if they are not contained in the specified loop. 6467 // Instructions are never considered invariant in the function body 6468 // (null loop) because they are defined within the "loop". 6469 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6470 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6471 return LoopInvariant; 6472 case scCouldNotCompute: 6473 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6474 return LoopVariant; 6475 default: break; 6476 } 6477 llvm_unreachable("Unknown SCEV kind!"); 6478 return LoopVariant; 6479 } 6480 6481 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6482 return getLoopDisposition(S, L) == LoopInvariant; 6483 } 6484 6485 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6486 return getLoopDisposition(S, L) == LoopComputable; 6487 } 6488 6489 ScalarEvolution::BlockDisposition 6490 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6491 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6492 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6493 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6494 if (!Pair.second) 6495 return Pair.first->second; 6496 6497 BlockDisposition D = computeBlockDisposition(S, BB); 6498 return BlockDispositions[S][BB] = D; 6499 } 6500 6501 ScalarEvolution::BlockDisposition 6502 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6503 switch (S->getSCEVType()) { 6504 case scConstant: 6505 return ProperlyDominatesBlock; 6506 case scTruncate: 6507 case scZeroExtend: 6508 case scSignExtend: 6509 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6510 case scAddRecExpr: { 6511 // This uses a "dominates" query instead of "properly dominates" query 6512 // to test for proper dominance too, because the instruction which 6513 // produces the addrec's value is a PHI, and a PHI effectively properly 6514 // dominates its entire containing block. 6515 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6516 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6517 return DoesNotDominateBlock; 6518 } 6519 // FALL THROUGH into SCEVNAryExpr handling. 6520 case scAddExpr: 6521 case scMulExpr: 6522 case scUMaxExpr: 6523 case scSMaxExpr: { 6524 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6525 bool Proper = true; 6526 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6527 I != E; ++I) { 6528 BlockDisposition D = getBlockDisposition(*I, BB); 6529 if (D == DoesNotDominateBlock) 6530 return DoesNotDominateBlock; 6531 if (D == DominatesBlock) 6532 Proper = false; 6533 } 6534 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6535 } 6536 case scUDivExpr: { 6537 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6538 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6539 BlockDisposition LD = getBlockDisposition(LHS, BB); 6540 if (LD == DoesNotDominateBlock) 6541 return DoesNotDominateBlock; 6542 BlockDisposition RD = getBlockDisposition(RHS, BB); 6543 if (RD == DoesNotDominateBlock) 6544 return DoesNotDominateBlock; 6545 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6546 ProperlyDominatesBlock : DominatesBlock; 6547 } 6548 case scUnknown: 6549 if (Instruction *I = 6550 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6551 if (I->getParent() == BB) 6552 return DominatesBlock; 6553 if (DT->properlyDominates(I->getParent(), BB)) 6554 return ProperlyDominatesBlock; 6555 return DoesNotDominateBlock; 6556 } 6557 return ProperlyDominatesBlock; 6558 case scCouldNotCompute: 6559 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6560 return DoesNotDominateBlock; 6561 default: break; 6562 } 6563 llvm_unreachable("Unknown SCEV kind!"); 6564 return DoesNotDominateBlock; 6565 } 6566 6567 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6568 return getBlockDisposition(S, BB) >= DominatesBlock; 6569 } 6570 6571 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6572 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6573 } 6574 6575 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6576 switch (S->getSCEVType()) { 6577 case scConstant: 6578 return false; 6579 case scTruncate: 6580 case scZeroExtend: 6581 case scSignExtend: { 6582 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6583 const SCEV *CastOp = Cast->getOperand(); 6584 return Op == CastOp || hasOperand(CastOp, Op); 6585 } 6586 case scAddRecExpr: 6587 case scAddExpr: 6588 case scMulExpr: 6589 case scUMaxExpr: 6590 case scSMaxExpr: { 6591 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6592 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6593 I != E; ++I) { 6594 const SCEV *NAryOp = *I; 6595 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6596 return true; 6597 } 6598 return false; 6599 } 6600 case scUDivExpr: { 6601 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6602 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6603 return LHS == Op || hasOperand(LHS, Op) || 6604 RHS == Op || hasOperand(RHS, Op); 6605 } 6606 case scUnknown: 6607 return false; 6608 case scCouldNotCompute: 6609 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6610 return false; 6611 default: break; 6612 } 6613 llvm_unreachable("Unknown SCEV kind!"); 6614 return false; 6615 } 6616 6617 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6618 ValuesAtScopes.erase(S); 6619 LoopDispositions.erase(S); 6620 BlockDispositions.erase(S); 6621 UnsignedRanges.erase(S); 6622 SignedRanges.erase(S); 6623 } 6624