1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/CallSite.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/KnownBits.h" 122 #include "llvm/Support/SaveAndRestore.h" 123 #include "llvm/Support/raw_ostream.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <climits> 127 #include <cstddef> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <map> 131 #include <memory> 132 #include <tuple> 133 #include <utility> 134 #include <vector> 135 136 using namespace llvm; 137 138 #define DEBUG_TYPE "scalar-evolution" 139 140 STATISTIC(NumArrayLenItCounts, 141 "Number of trip counts computed with array length"); 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::desc("Maximum number of iterations SCEV will " 152 "symbolically execute a constant " 153 "derived loop"), 154 cl::init(100)); 155 156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 157 static cl::opt<bool> VerifySCEV( 158 "verify-scev", cl::Hidden, 159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 160 static cl::opt<bool> 161 VerifySCEVMap("verify-scev-maps", cl::Hidden, 162 cl::desc("Verify no dangling value in ScalarEvolution's " 163 "ExprValueMap (slow)")); 164 165 static cl::opt<bool> VerifyIR( 166 "scev-verify-ir", cl::Hidden, 167 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 168 cl::init(false)); 169 170 static cl::opt<unsigned> MulOpsInlineThreshold( 171 "scev-mulops-inline-threshold", cl::Hidden, 172 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 173 cl::init(32)); 174 175 static cl::opt<unsigned> AddOpsInlineThreshold( 176 "scev-addops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining addition operands into a SCEV"), 178 cl::init(500)); 179 180 static cl::opt<unsigned> MaxSCEVCompareDepth( 181 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 182 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 183 cl::init(32)); 184 185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 186 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 188 cl::init(2)); 189 190 static cl::opt<unsigned> MaxValueCompareDepth( 191 "scalar-evolution-max-value-compare-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive value complexity comparisons"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> 196 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive arithmetics"), 198 cl::init(32)); 199 200 static cl::opt<unsigned> MaxConstantEvolvingDepth( 201 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 203 204 static cl::opt<unsigned> 205 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive SExt/ZExt"), 207 cl::init(8)); 208 209 static cl::opt<unsigned> 210 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 211 cl::desc("Max coefficients in AddRec during evolving"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 216 cl::desc("Size of the expression which is considered huge"), 217 cl::init(4096)); 218 219 //===----------------------------------------------------------------------===// 220 // SCEV class definitions 221 //===----------------------------------------------------------------------===// 222 223 //===----------------------------------------------------------------------===// 224 // Implementation of the SCEV class. 225 // 226 227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 228 LLVM_DUMP_METHOD void SCEV::dump() const { 229 print(dbgs()); 230 dbgs() << '\n'; 231 } 232 #endif 233 234 void SCEV::print(raw_ostream &OS) const { 235 switch (static_cast<SCEVTypes>(getSCEVType())) { 236 case scConstant: 237 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 238 return; 239 case scTruncate: { 240 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 241 const SCEV *Op = Trunc->getOperand(); 242 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 243 << *Trunc->getType() << ")"; 244 return; 245 } 246 case scZeroExtend: { 247 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 248 const SCEV *Op = ZExt->getOperand(); 249 OS << "(zext " << *Op->getType() << " " << *Op << " to " 250 << *ZExt->getType() << ")"; 251 return; 252 } 253 case scSignExtend: { 254 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 255 const SCEV *Op = SExt->getOperand(); 256 OS << "(sext " << *Op->getType() << " " << *Op << " to " 257 << *SExt->getType() << ")"; 258 return; 259 } 260 case scAddRecExpr: { 261 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 262 OS << "{" << *AR->getOperand(0); 263 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 264 OS << ",+," << *AR->getOperand(i); 265 OS << "}<"; 266 if (AR->hasNoUnsignedWrap()) 267 OS << "nuw><"; 268 if (AR->hasNoSignedWrap()) 269 OS << "nsw><"; 270 if (AR->hasNoSelfWrap() && 271 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 272 OS << "nw><"; 273 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 274 OS << ">"; 275 return; 276 } 277 case scAddExpr: 278 case scMulExpr: 279 case scUMaxExpr: 280 case scSMaxExpr: { 281 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 282 const char *OpStr = nullptr; 283 switch (NAry->getSCEVType()) { 284 case scAddExpr: OpStr = " + "; break; 285 case scMulExpr: OpStr = " * "; break; 286 case scUMaxExpr: OpStr = " umax "; break; 287 case scSMaxExpr: OpStr = " smax "; break; 288 } 289 OS << "("; 290 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 291 I != E; ++I) { 292 OS << **I; 293 if (std::next(I) != E) 294 OS << OpStr; 295 } 296 OS << ")"; 297 switch (NAry->getSCEVType()) { 298 case scAddExpr: 299 case scMulExpr: 300 if (NAry->hasNoUnsignedWrap()) 301 OS << "<nuw>"; 302 if (NAry->hasNoSignedWrap()) 303 OS << "<nsw>"; 304 } 305 return; 306 } 307 case scUDivExpr: { 308 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 309 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 310 return; 311 } 312 case scUnknown: { 313 const SCEVUnknown *U = cast<SCEVUnknown>(this); 314 Type *AllocTy; 315 if (U->isSizeOf(AllocTy)) { 316 OS << "sizeof(" << *AllocTy << ")"; 317 return; 318 } 319 if (U->isAlignOf(AllocTy)) { 320 OS << "alignof(" << *AllocTy << ")"; 321 return; 322 } 323 324 Type *CTy; 325 Constant *FieldNo; 326 if (U->isOffsetOf(CTy, FieldNo)) { 327 OS << "offsetof(" << *CTy << ", "; 328 FieldNo->printAsOperand(OS, false); 329 OS << ")"; 330 return; 331 } 332 333 // Otherwise just print it normally. 334 U->getValue()->printAsOperand(OS, false); 335 return; 336 } 337 case scCouldNotCompute: 338 OS << "***COULDNOTCOMPUTE***"; 339 return; 340 } 341 llvm_unreachable("Unknown SCEV kind!"); 342 } 343 344 Type *SCEV::getType() const { 345 switch (static_cast<SCEVTypes>(getSCEVType())) { 346 case scConstant: 347 return cast<SCEVConstant>(this)->getType(); 348 case scTruncate: 349 case scZeroExtend: 350 case scSignExtend: 351 return cast<SCEVCastExpr>(this)->getType(); 352 case scAddRecExpr: 353 case scMulExpr: 354 case scUMaxExpr: 355 case scSMaxExpr: 356 return cast<SCEVNAryExpr>(this)->getType(); 357 case scAddExpr: 358 return cast<SCEVAddExpr>(this)->getType(); 359 case scUDivExpr: 360 return cast<SCEVUDivExpr>(this)->getType(); 361 case scUnknown: 362 return cast<SCEVUnknown>(this)->getType(); 363 case scCouldNotCompute: 364 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 365 } 366 llvm_unreachable("Unknown SCEV kind!"); 367 } 368 369 bool SCEV::isZero() const { 370 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 371 return SC->getValue()->isZero(); 372 return false; 373 } 374 375 bool SCEV::isOne() const { 376 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 377 return SC->getValue()->isOne(); 378 return false; 379 } 380 381 bool SCEV::isAllOnesValue() const { 382 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 383 return SC->getValue()->isMinusOne(); 384 return false; 385 } 386 387 bool SCEV::isNonConstantNegative() const { 388 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 389 if (!Mul) return false; 390 391 // If there is a constant factor, it will be first. 392 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 393 if (!SC) return false; 394 395 // Return true if the value is negative, this matches things like (-42 * V). 396 return SC->getAPInt().isNegative(); 397 } 398 399 SCEVCouldNotCompute::SCEVCouldNotCompute() : 400 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 401 402 bool SCEVCouldNotCompute::classof(const SCEV *S) { 403 return S->getSCEVType() == scCouldNotCompute; 404 } 405 406 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 407 FoldingSetNodeID ID; 408 ID.AddInteger(scConstant); 409 ID.AddPointer(V); 410 void *IP = nullptr; 411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 412 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 413 UniqueSCEVs.InsertNode(S, IP); 414 return S; 415 } 416 417 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 418 return getConstant(ConstantInt::get(getContext(), Val)); 419 } 420 421 const SCEV * 422 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 423 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 424 return getConstant(ConstantInt::get(ITy, V, isSigned)); 425 } 426 427 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 428 unsigned SCEVTy, const SCEV *op, Type *ty) 429 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 430 431 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 432 const SCEV *op, Type *ty) 433 : SCEVCastExpr(ID, scTruncate, op, ty) { 434 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 435 "Cannot truncate non-integer value!"); 436 } 437 438 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 439 const SCEV *op, Type *ty) 440 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 441 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 442 "Cannot zero extend non-integer value!"); 443 } 444 445 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 446 const SCEV *op, Type *ty) 447 : SCEVCastExpr(ID, scSignExtend, op, ty) { 448 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 449 "Cannot sign extend non-integer value!"); 450 } 451 452 void SCEVUnknown::deleted() { 453 // Clear this SCEVUnknown from various maps. 454 SE->forgetMemoizedResults(this); 455 456 // Remove this SCEVUnknown from the uniquing map. 457 SE->UniqueSCEVs.RemoveNode(this); 458 459 // Release the value. 460 setValPtr(nullptr); 461 } 462 463 void SCEVUnknown::allUsesReplacedWith(Value *New) { 464 // Remove this SCEVUnknown from the uniquing map. 465 SE->UniqueSCEVs.RemoveNode(this); 466 467 // Update this SCEVUnknown to point to the new value. This is needed 468 // because there may still be outstanding SCEVs which still point to 469 // this SCEVUnknown. 470 setValPtr(New); 471 } 472 473 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 474 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 475 if (VCE->getOpcode() == Instruction::PtrToInt) 476 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 477 if (CE->getOpcode() == Instruction::GetElementPtr && 478 CE->getOperand(0)->isNullValue() && 479 CE->getNumOperands() == 2) 480 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 481 if (CI->isOne()) { 482 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 483 ->getElementType(); 484 return true; 485 } 486 487 return false; 488 } 489 490 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 491 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 492 if (VCE->getOpcode() == Instruction::PtrToInt) 493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 494 if (CE->getOpcode() == Instruction::GetElementPtr && 495 CE->getOperand(0)->isNullValue()) { 496 Type *Ty = 497 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 498 if (StructType *STy = dyn_cast<StructType>(Ty)) 499 if (!STy->isPacked() && 500 CE->getNumOperands() == 3 && 501 CE->getOperand(1)->isNullValue()) { 502 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 503 if (CI->isOne() && 504 STy->getNumElements() == 2 && 505 STy->getElementType(0)->isIntegerTy(1)) { 506 AllocTy = STy->getElementType(1); 507 return true; 508 } 509 } 510 } 511 512 return false; 513 } 514 515 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 516 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 517 if (VCE->getOpcode() == Instruction::PtrToInt) 518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 519 if (CE->getOpcode() == Instruction::GetElementPtr && 520 CE->getNumOperands() == 3 && 521 CE->getOperand(0)->isNullValue() && 522 CE->getOperand(1)->isNullValue()) { 523 Type *Ty = 524 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 525 // Ignore vector types here so that ScalarEvolutionExpander doesn't 526 // emit getelementptrs that index into vectors. 527 if (Ty->isStructTy() || Ty->isArrayTy()) { 528 CTy = Ty; 529 FieldNo = CE->getOperand(2); 530 return true; 531 } 532 } 533 534 return false; 535 } 536 537 //===----------------------------------------------------------------------===// 538 // SCEV Utilities 539 //===----------------------------------------------------------------------===// 540 541 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 542 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 543 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 544 /// have been previously deemed to be "equally complex" by this routine. It is 545 /// intended to avoid exponential time complexity in cases like: 546 /// 547 /// %a = f(%x, %y) 548 /// %b = f(%a, %a) 549 /// %c = f(%b, %b) 550 /// 551 /// %d = f(%x, %y) 552 /// %e = f(%d, %d) 553 /// %f = f(%e, %e) 554 /// 555 /// CompareValueComplexity(%f, %c) 556 /// 557 /// Since we do not continue running this routine on expression trees once we 558 /// have seen unequal values, there is no need to track them in the cache. 559 static int 560 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 561 const LoopInfo *const LI, Value *LV, Value *RV, 562 unsigned Depth) { 563 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 564 return 0; 565 566 // Order pointer values after integer values. This helps SCEVExpander form 567 // GEPs. 568 bool LIsPointer = LV->getType()->isPointerTy(), 569 RIsPointer = RV->getType()->isPointerTy(); 570 if (LIsPointer != RIsPointer) 571 return (int)LIsPointer - (int)RIsPointer; 572 573 // Compare getValueID values. 574 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 575 if (LID != RID) 576 return (int)LID - (int)RID; 577 578 // Sort arguments by their position. 579 if (const auto *LA = dyn_cast<Argument>(LV)) { 580 const auto *RA = cast<Argument>(RV); 581 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 582 return (int)LArgNo - (int)RArgNo; 583 } 584 585 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 586 const auto *RGV = cast<GlobalValue>(RV); 587 588 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 589 auto LT = GV->getLinkage(); 590 return !(GlobalValue::isPrivateLinkage(LT) || 591 GlobalValue::isInternalLinkage(LT)); 592 }; 593 594 // Use the names to distinguish the two values, but only if the 595 // names are semantically important. 596 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 597 return LGV->getName().compare(RGV->getName()); 598 } 599 600 // For instructions, compare their loop depth, and their operand count. This 601 // is pretty loose. 602 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 603 const auto *RInst = cast<Instruction>(RV); 604 605 // Compare loop depths. 606 const BasicBlock *LParent = LInst->getParent(), 607 *RParent = RInst->getParent(); 608 if (LParent != RParent) { 609 unsigned LDepth = LI->getLoopDepth(LParent), 610 RDepth = LI->getLoopDepth(RParent); 611 if (LDepth != RDepth) 612 return (int)LDepth - (int)RDepth; 613 } 614 615 // Compare the number of operands. 616 unsigned LNumOps = LInst->getNumOperands(), 617 RNumOps = RInst->getNumOperands(); 618 if (LNumOps != RNumOps) 619 return (int)LNumOps - (int)RNumOps; 620 621 for (unsigned Idx : seq(0u, LNumOps)) { 622 int Result = 623 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 624 RInst->getOperand(Idx), Depth + 1); 625 if (Result != 0) 626 return Result; 627 } 628 } 629 630 EqCacheValue.unionSets(LV, RV); 631 return 0; 632 } 633 634 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 635 // than RHS, respectively. A three-way result allows recursive comparisons to be 636 // more efficient. 637 static int CompareSCEVComplexity( 638 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 639 EquivalenceClasses<const Value *> &EqCacheValue, 640 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 641 DominatorTree &DT, unsigned Depth = 0) { 642 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 643 if (LHS == RHS) 644 return 0; 645 646 // Primarily, sort the SCEVs by their getSCEVType(). 647 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 648 if (LType != RType) 649 return (int)LType - (int)RType; 650 651 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 652 return 0; 653 // Aside from the getSCEVType() ordering, the particular ordering 654 // isn't very important except that it's beneficial to be consistent, 655 // so that (a + b) and (b + a) don't end up as different expressions. 656 switch (static_cast<SCEVTypes>(LType)) { 657 case scUnknown: { 658 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 659 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 660 661 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 662 RU->getValue(), Depth + 1); 663 if (X == 0) 664 EqCacheSCEV.unionSets(LHS, RHS); 665 return X; 666 } 667 668 case scConstant: { 669 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 670 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 671 672 // Compare constant values. 673 const APInt &LA = LC->getAPInt(); 674 const APInt &RA = RC->getAPInt(); 675 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 676 if (LBitWidth != RBitWidth) 677 return (int)LBitWidth - (int)RBitWidth; 678 return LA.ult(RA) ? -1 : 1; 679 } 680 681 case scAddRecExpr: { 682 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 683 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 684 685 // There is always a dominance between two recs that are used by one SCEV, 686 // so we can safely sort recs by loop header dominance. We require such 687 // order in getAddExpr. 688 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 689 if (LLoop != RLoop) { 690 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 691 assert(LHead != RHead && "Two loops share the same header?"); 692 if (DT.dominates(LHead, RHead)) 693 return 1; 694 else 695 assert(DT.dominates(RHead, LHead) && 696 "No dominance between recurrences used by one SCEV?"); 697 return -1; 698 } 699 700 // Addrec complexity grows with operand count. 701 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 702 if (LNumOps != RNumOps) 703 return (int)LNumOps - (int)RNumOps; 704 705 // Lexicographically compare. 706 for (unsigned i = 0; i != LNumOps; ++i) { 707 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 708 LA->getOperand(i), RA->getOperand(i), DT, 709 Depth + 1); 710 if (X != 0) 711 return X; 712 } 713 EqCacheSCEV.unionSets(LHS, RHS); 714 return 0; 715 } 716 717 case scAddExpr: 718 case scMulExpr: 719 case scSMaxExpr: 720 case scUMaxExpr: { 721 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 722 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 723 724 // Lexicographically compare n-ary expressions. 725 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 726 if (LNumOps != RNumOps) 727 return (int)LNumOps - (int)RNumOps; 728 729 for (unsigned i = 0; i != LNumOps; ++i) { 730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 731 LC->getOperand(i), RC->getOperand(i), DT, 732 Depth + 1); 733 if (X != 0) 734 return X; 735 } 736 EqCacheSCEV.unionSets(LHS, RHS); 737 return 0; 738 } 739 740 case scUDivExpr: { 741 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 742 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 743 744 // Lexicographically compare udiv expressions. 745 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 746 RC->getLHS(), DT, Depth + 1); 747 if (X != 0) 748 return X; 749 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 750 RC->getRHS(), DT, Depth + 1); 751 if (X == 0) 752 EqCacheSCEV.unionSets(LHS, RHS); 753 return X; 754 } 755 756 case scTruncate: 757 case scZeroExtend: 758 case scSignExtend: { 759 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 760 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 761 762 // Compare cast expressions by operand. 763 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 764 LC->getOperand(), RC->getOperand(), DT, 765 Depth + 1); 766 if (X == 0) 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return X; 769 } 770 771 case scCouldNotCompute: 772 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 773 } 774 llvm_unreachable("Unknown SCEV kind!"); 775 } 776 777 /// Given a list of SCEV objects, order them by their complexity, and group 778 /// objects of the same complexity together by value. When this routine is 779 /// finished, we know that any duplicates in the vector are consecutive and that 780 /// complexity is monotonically increasing. 781 /// 782 /// Note that we go take special precautions to ensure that we get deterministic 783 /// results from this routine. In other words, we don't want the results of 784 /// this to depend on where the addresses of various SCEV objects happened to 785 /// land in memory. 786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 787 LoopInfo *LI, DominatorTree &DT) { 788 if (Ops.size() < 2) return; // Noop 789 790 EquivalenceClasses<const SCEV *> EqCacheSCEV; 791 EquivalenceClasses<const Value *> EqCacheValue; 792 if (Ops.size() == 2) { 793 // This is the common case, which also happens to be trivially simple. 794 // Special case it. 795 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 796 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 797 std::swap(LHS, RHS); 798 return; 799 } 800 801 // Do the rough sort by complexity. 802 std::stable_sort(Ops.begin(), Ops.end(), 803 [&](const SCEV *LHS, const SCEV *RHS) { 804 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 805 LHS, RHS, DT) < 0; 806 }); 807 808 // Now that we are sorted by complexity, group elements of the same 809 // complexity. Note that this is, at worst, N^2, but the vector is likely to 810 // be extremely short in practice. Note that we take this approach because we 811 // do not want to depend on the addresses of the objects we are grouping. 812 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 813 const SCEV *S = Ops[i]; 814 unsigned Complexity = S->getSCEVType(); 815 816 // If there are any objects of the same complexity and same value as this 817 // one, group them. 818 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 819 if (Ops[j] == S) { // Found a duplicate. 820 // Move it to immediately after i'th element. 821 std::swap(Ops[i+1], Ops[j]); 822 ++i; // no need to rescan it. 823 if (i == e-2) return; // Done! 824 } 825 } 826 } 827 } 828 829 // Returns the size of the SCEV S. 830 static inline int sizeOfSCEV(const SCEV *S) { 831 struct FindSCEVSize { 832 int Size = 0; 833 834 FindSCEVSize() = default; 835 836 bool follow(const SCEV *S) { 837 ++Size; 838 // Keep looking at all operands of S. 839 return true; 840 } 841 842 bool isDone() const { 843 return false; 844 } 845 }; 846 847 FindSCEVSize F; 848 SCEVTraversal<FindSCEVSize> ST(F); 849 ST.visitAll(S); 850 return F.Size; 851 } 852 853 /// Returns true if the subtree of \p S contains at least HugeExprThreshold 854 /// nodes. 855 static bool isHugeExpression(const SCEV *S) { 856 return S->getExpressionSize() >= HugeExprThreshold; 857 } 858 859 /// Returns true of \p Ops contains a huge SCEV (see definition above). 860 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 861 return any_of(Ops, isHugeExpression); 862 } 863 864 namespace { 865 866 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 867 public: 868 // Computes the Quotient and Remainder of the division of Numerator by 869 // Denominator. 870 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 871 const SCEV *Denominator, const SCEV **Quotient, 872 const SCEV **Remainder) { 873 assert(Numerator && Denominator && "Uninitialized SCEV"); 874 875 SCEVDivision D(SE, Numerator, Denominator); 876 877 // Check for the trivial case here to avoid having to check for it in the 878 // rest of the code. 879 if (Numerator == Denominator) { 880 *Quotient = D.One; 881 *Remainder = D.Zero; 882 return; 883 } 884 885 if (Numerator->isZero()) { 886 *Quotient = D.Zero; 887 *Remainder = D.Zero; 888 return; 889 } 890 891 // A simple case when N/1. The quotient is N. 892 if (Denominator->isOne()) { 893 *Quotient = Numerator; 894 *Remainder = D.Zero; 895 return; 896 } 897 898 // Split the Denominator when it is a product. 899 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 900 const SCEV *Q, *R; 901 *Quotient = Numerator; 902 for (const SCEV *Op : T->operands()) { 903 divide(SE, *Quotient, Op, &Q, &R); 904 *Quotient = Q; 905 906 // Bail out when the Numerator is not divisible by one of the terms of 907 // the Denominator. 908 if (!R->isZero()) { 909 *Quotient = D.Zero; 910 *Remainder = Numerator; 911 return; 912 } 913 } 914 *Remainder = D.Zero; 915 return; 916 } 917 918 D.visit(Numerator); 919 *Quotient = D.Quotient; 920 *Remainder = D.Remainder; 921 } 922 923 // Except in the trivial case described above, we do not know how to divide 924 // Expr by Denominator for the following functions with empty implementation. 925 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 926 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 927 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 928 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 929 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 930 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 931 void visitUnknown(const SCEVUnknown *Numerator) {} 932 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 933 934 void visitConstant(const SCEVConstant *Numerator) { 935 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 936 APInt NumeratorVal = Numerator->getAPInt(); 937 APInt DenominatorVal = D->getAPInt(); 938 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 939 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 940 941 if (NumeratorBW > DenominatorBW) 942 DenominatorVal = DenominatorVal.sext(NumeratorBW); 943 else if (NumeratorBW < DenominatorBW) 944 NumeratorVal = NumeratorVal.sext(DenominatorBW); 945 946 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 947 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 948 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 949 Quotient = SE.getConstant(QuotientVal); 950 Remainder = SE.getConstant(RemainderVal); 951 return; 952 } 953 } 954 955 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 956 const SCEV *StartQ, *StartR, *StepQ, *StepR; 957 if (!Numerator->isAffine()) 958 return cannotDivide(Numerator); 959 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 960 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 961 // Bail out if the types do not match. 962 Type *Ty = Denominator->getType(); 963 if (Ty != StartQ->getType() || Ty != StartR->getType() || 964 Ty != StepQ->getType() || Ty != StepR->getType()) 965 return cannotDivide(Numerator); 966 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 967 Numerator->getNoWrapFlags()); 968 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 969 Numerator->getNoWrapFlags()); 970 } 971 972 void visitAddExpr(const SCEVAddExpr *Numerator) { 973 SmallVector<const SCEV *, 2> Qs, Rs; 974 Type *Ty = Denominator->getType(); 975 976 for (const SCEV *Op : Numerator->operands()) { 977 const SCEV *Q, *R; 978 divide(SE, Op, Denominator, &Q, &R); 979 980 // Bail out if types do not match. 981 if (Ty != Q->getType() || Ty != R->getType()) 982 return cannotDivide(Numerator); 983 984 Qs.push_back(Q); 985 Rs.push_back(R); 986 } 987 988 if (Qs.size() == 1) { 989 Quotient = Qs[0]; 990 Remainder = Rs[0]; 991 return; 992 } 993 994 Quotient = SE.getAddExpr(Qs); 995 Remainder = SE.getAddExpr(Rs); 996 } 997 998 void visitMulExpr(const SCEVMulExpr *Numerator) { 999 SmallVector<const SCEV *, 2> Qs; 1000 Type *Ty = Denominator->getType(); 1001 1002 bool FoundDenominatorTerm = false; 1003 for (const SCEV *Op : Numerator->operands()) { 1004 // Bail out if types do not match. 1005 if (Ty != Op->getType()) 1006 return cannotDivide(Numerator); 1007 1008 if (FoundDenominatorTerm) { 1009 Qs.push_back(Op); 1010 continue; 1011 } 1012 1013 // Check whether Denominator divides one of the product operands. 1014 const SCEV *Q, *R; 1015 divide(SE, Op, Denominator, &Q, &R); 1016 if (!R->isZero()) { 1017 Qs.push_back(Op); 1018 continue; 1019 } 1020 1021 // Bail out if types do not match. 1022 if (Ty != Q->getType()) 1023 return cannotDivide(Numerator); 1024 1025 FoundDenominatorTerm = true; 1026 Qs.push_back(Q); 1027 } 1028 1029 if (FoundDenominatorTerm) { 1030 Remainder = Zero; 1031 if (Qs.size() == 1) 1032 Quotient = Qs[0]; 1033 else 1034 Quotient = SE.getMulExpr(Qs); 1035 return; 1036 } 1037 1038 if (!isa<SCEVUnknown>(Denominator)) 1039 return cannotDivide(Numerator); 1040 1041 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1042 ValueToValueMap RewriteMap; 1043 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1044 cast<SCEVConstant>(Zero)->getValue(); 1045 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1046 1047 if (Remainder->isZero()) { 1048 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1049 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1050 cast<SCEVConstant>(One)->getValue(); 1051 Quotient = 1052 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1053 return; 1054 } 1055 1056 // Quotient is (Numerator - Remainder) divided by Denominator. 1057 const SCEV *Q, *R; 1058 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1059 // This SCEV does not seem to simplify: fail the division here. 1060 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1061 return cannotDivide(Numerator); 1062 divide(SE, Diff, Denominator, &Q, &R); 1063 if (R != Zero) 1064 return cannotDivide(Numerator); 1065 Quotient = Q; 1066 } 1067 1068 private: 1069 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1070 const SCEV *Denominator) 1071 : SE(S), Denominator(Denominator) { 1072 Zero = SE.getZero(Denominator->getType()); 1073 One = SE.getOne(Denominator->getType()); 1074 1075 // We generally do not know how to divide Expr by Denominator. We 1076 // initialize the division to a "cannot divide" state to simplify the rest 1077 // of the code. 1078 cannotDivide(Numerator); 1079 } 1080 1081 // Convenience function for giving up on the division. We set the quotient to 1082 // be equal to zero and the remainder to be equal to the numerator. 1083 void cannotDivide(const SCEV *Numerator) { 1084 Quotient = Zero; 1085 Remainder = Numerator; 1086 } 1087 1088 ScalarEvolution &SE; 1089 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1090 }; 1091 1092 } // end anonymous namespace 1093 1094 //===----------------------------------------------------------------------===// 1095 // Simple SCEV method implementations 1096 //===----------------------------------------------------------------------===// 1097 1098 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1099 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1100 ScalarEvolution &SE, 1101 Type *ResultTy) { 1102 // Handle the simplest case efficiently. 1103 if (K == 1) 1104 return SE.getTruncateOrZeroExtend(It, ResultTy); 1105 1106 // We are using the following formula for BC(It, K): 1107 // 1108 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1109 // 1110 // Suppose, W is the bitwidth of the return value. We must be prepared for 1111 // overflow. Hence, we must assure that the result of our computation is 1112 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1113 // safe in modular arithmetic. 1114 // 1115 // However, this code doesn't use exactly that formula; the formula it uses 1116 // is something like the following, where T is the number of factors of 2 in 1117 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1118 // exponentiation: 1119 // 1120 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1121 // 1122 // This formula is trivially equivalent to the previous formula. However, 1123 // this formula can be implemented much more efficiently. The trick is that 1124 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1125 // arithmetic. To do exact division in modular arithmetic, all we have 1126 // to do is multiply by the inverse. Therefore, this step can be done at 1127 // width W. 1128 // 1129 // The next issue is how to safely do the division by 2^T. The way this 1130 // is done is by doing the multiplication step at a width of at least W + T 1131 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1132 // when we perform the division by 2^T (which is equivalent to a right shift 1133 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1134 // truncated out after the division by 2^T. 1135 // 1136 // In comparison to just directly using the first formula, this technique 1137 // is much more efficient; using the first formula requires W * K bits, 1138 // but this formula less than W + K bits. Also, the first formula requires 1139 // a division step, whereas this formula only requires multiplies and shifts. 1140 // 1141 // It doesn't matter whether the subtraction step is done in the calculation 1142 // width or the input iteration count's width; if the subtraction overflows, 1143 // the result must be zero anyway. We prefer here to do it in the width of 1144 // the induction variable because it helps a lot for certain cases; CodeGen 1145 // isn't smart enough to ignore the overflow, which leads to much less 1146 // efficient code if the width of the subtraction is wider than the native 1147 // register width. 1148 // 1149 // (It's possible to not widen at all by pulling out factors of 2 before 1150 // the multiplication; for example, K=2 can be calculated as 1151 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1152 // extra arithmetic, so it's not an obvious win, and it gets 1153 // much more complicated for K > 3.) 1154 1155 // Protection from insane SCEVs; this bound is conservative, 1156 // but it probably doesn't matter. 1157 if (K > 1000) 1158 return SE.getCouldNotCompute(); 1159 1160 unsigned W = SE.getTypeSizeInBits(ResultTy); 1161 1162 // Calculate K! / 2^T and T; we divide out the factors of two before 1163 // multiplying for calculating K! / 2^T to avoid overflow. 1164 // Other overflow doesn't matter because we only care about the bottom 1165 // W bits of the result. 1166 APInt OddFactorial(W, 1); 1167 unsigned T = 1; 1168 for (unsigned i = 3; i <= K; ++i) { 1169 APInt Mult(W, i); 1170 unsigned TwoFactors = Mult.countTrailingZeros(); 1171 T += TwoFactors; 1172 Mult.lshrInPlace(TwoFactors); 1173 OddFactorial *= Mult; 1174 } 1175 1176 // We need at least W + T bits for the multiplication step 1177 unsigned CalculationBits = W + T; 1178 1179 // Calculate 2^T, at width T+W. 1180 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1181 1182 // Calculate the multiplicative inverse of K! / 2^T; 1183 // this multiplication factor will perform the exact division by 1184 // K! / 2^T. 1185 APInt Mod = APInt::getSignedMinValue(W+1); 1186 APInt MultiplyFactor = OddFactorial.zext(W+1); 1187 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1188 MultiplyFactor = MultiplyFactor.trunc(W); 1189 1190 // Calculate the product, at width T+W 1191 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1192 CalculationBits); 1193 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1194 for (unsigned i = 1; i != K; ++i) { 1195 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1196 Dividend = SE.getMulExpr(Dividend, 1197 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1198 } 1199 1200 // Divide by 2^T 1201 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1202 1203 // Truncate the result, and divide by K! / 2^T. 1204 1205 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1206 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1207 } 1208 1209 /// Return the value of this chain of recurrences at the specified iteration 1210 /// number. We can evaluate this recurrence by multiplying each element in the 1211 /// chain by the binomial coefficient corresponding to it. In other words, we 1212 /// can evaluate {A,+,B,+,C,+,D} as: 1213 /// 1214 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1215 /// 1216 /// where BC(It, k) stands for binomial coefficient. 1217 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1218 ScalarEvolution &SE) const { 1219 const SCEV *Result = getStart(); 1220 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1221 // The computation is correct in the face of overflow provided that the 1222 // multiplication is performed _after_ the evaluation of the binomial 1223 // coefficient. 1224 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1225 if (isa<SCEVCouldNotCompute>(Coeff)) 1226 return Coeff; 1227 1228 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1229 } 1230 return Result; 1231 } 1232 1233 //===----------------------------------------------------------------------===// 1234 // SCEV Expression folder implementations 1235 //===----------------------------------------------------------------------===// 1236 1237 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1238 Type *Ty) { 1239 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1240 "This is not a truncating conversion!"); 1241 assert(isSCEVable(Ty) && 1242 "This is not a conversion to a SCEVable type!"); 1243 Ty = getEffectiveSCEVType(Ty); 1244 1245 FoldingSetNodeID ID; 1246 ID.AddInteger(scTruncate); 1247 ID.AddPointer(Op); 1248 ID.AddPointer(Ty); 1249 void *IP = nullptr; 1250 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1251 1252 // Fold if the operand is constant. 1253 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1254 return getConstant( 1255 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1256 1257 // trunc(trunc(x)) --> trunc(x) 1258 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1259 return getTruncateExpr(ST->getOperand(), Ty); 1260 1261 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1262 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1263 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1264 1265 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1266 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1267 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1268 1269 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1270 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1271 // if after transforming we have at most one truncate, not counting truncates 1272 // that replace other casts. 1273 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1274 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1275 SmallVector<const SCEV *, 4> Operands; 1276 unsigned numTruncs = 0; 1277 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1278 ++i) { 1279 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty); 1280 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1281 numTruncs++; 1282 Operands.push_back(S); 1283 } 1284 if (numTruncs < 2) { 1285 if (isa<SCEVAddExpr>(Op)) 1286 return getAddExpr(Operands); 1287 else if (isa<SCEVMulExpr>(Op)) 1288 return getMulExpr(Operands); 1289 else 1290 llvm_unreachable("Unexpected SCEV type for Op."); 1291 } 1292 // Although we checked in the beginning that ID is not in the cache, it is 1293 // possible that during recursion and different modification ID was inserted 1294 // into the cache. So if we find it, just return it. 1295 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1296 return S; 1297 } 1298 1299 // If the input value is a chrec scev, truncate the chrec's operands. 1300 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1301 SmallVector<const SCEV *, 4> Operands; 1302 for (const SCEV *Op : AddRec->operands()) 1303 Operands.push_back(getTruncateExpr(Op, Ty)); 1304 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1305 } 1306 1307 // The cast wasn't folded; create an explicit cast node. We can reuse 1308 // the existing insert position since if we get here, we won't have 1309 // made any changes which would invalidate it. 1310 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1311 Op, Ty); 1312 UniqueSCEVs.InsertNode(S, IP); 1313 addToLoopUseLists(S); 1314 return S; 1315 } 1316 1317 // Get the limit of a recurrence such that incrementing by Step cannot cause 1318 // signed overflow as long as the value of the recurrence within the 1319 // loop does not exceed this limit before incrementing. 1320 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1321 ICmpInst::Predicate *Pred, 1322 ScalarEvolution *SE) { 1323 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1324 if (SE->isKnownPositive(Step)) { 1325 *Pred = ICmpInst::ICMP_SLT; 1326 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1327 SE->getSignedRangeMax(Step)); 1328 } 1329 if (SE->isKnownNegative(Step)) { 1330 *Pred = ICmpInst::ICMP_SGT; 1331 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1332 SE->getSignedRangeMin(Step)); 1333 } 1334 return nullptr; 1335 } 1336 1337 // Get the limit of a recurrence such that incrementing by Step cannot cause 1338 // unsigned overflow as long as the value of the recurrence within the loop does 1339 // not exceed this limit before incrementing. 1340 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1344 *Pred = ICmpInst::ICMP_ULT; 1345 1346 return SE->getConstant(APInt::getMinValue(BitWidth) - 1347 SE->getUnsignedRangeMax(Step)); 1348 } 1349 1350 namespace { 1351 1352 struct ExtendOpTraitsBase { 1353 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1354 unsigned); 1355 }; 1356 1357 // Used to make code generic over signed and unsigned overflow. 1358 template <typename ExtendOp> struct ExtendOpTraits { 1359 // Members present: 1360 // 1361 // static const SCEV::NoWrapFlags WrapType; 1362 // 1363 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1364 // 1365 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1366 // ICmpInst::Predicate *Pred, 1367 // ScalarEvolution *SE); 1368 }; 1369 1370 template <> 1371 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1372 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1373 1374 static const GetExtendExprTy GetExtendExpr; 1375 1376 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1377 ICmpInst::Predicate *Pred, 1378 ScalarEvolution *SE) { 1379 return getSignedOverflowLimitForStep(Step, Pred, SE); 1380 } 1381 }; 1382 1383 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1384 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1385 1386 template <> 1387 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1388 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1389 1390 static const GetExtendExprTy GetExtendExpr; 1391 1392 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1393 ICmpInst::Predicate *Pred, 1394 ScalarEvolution *SE) { 1395 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1396 } 1397 }; 1398 1399 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1400 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1401 1402 } // end anonymous namespace 1403 1404 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1405 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1406 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1407 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1408 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1409 // expression "Step + sext/zext(PreIncAR)" is congruent with 1410 // "sext/zext(PostIncAR)" 1411 template <typename ExtendOpTy> 1412 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1413 ScalarEvolution *SE, unsigned Depth) { 1414 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1415 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1416 1417 const Loop *L = AR->getLoop(); 1418 const SCEV *Start = AR->getStart(); 1419 const SCEV *Step = AR->getStepRecurrence(*SE); 1420 1421 // Check for a simple looking step prior to loop entry. 1422 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1423 if (!SA) 1424 return nullptr; 1425 1426 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1427 // subtraction is expensive. For this purpose, perform a quick and dirty 1428 // difference, by checking for Step in the operand list. 1429 SmallVector<const SCEV *, 4> DiffOps; 1430 for (const SCEV *Op : SA->operands()) 1431 if (Op != Step) 1432 DiffOps.push_back(Op); 1433 1434 if (DiffOps.size() == SA->getNumOperands()) 1435 return nullptr; 1436 1437 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1438 // `Step`: 1439 1440 // 1. NSW/NUW flags on the step increment. 1441 auto PreStartFlags = 1442 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1443 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1444 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1445 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1446 1447 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1448 // "S+X does not sign/unsign-overflow". 1449 // 1450 1451 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1452 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1453 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1454 return PreStart; 1455 1456 // 2. Direct overflow check on the step operation's expression. 1457 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1458 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1459 const SCEV *OperandExtendedStart = 1460 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1461 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1462 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1463 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1464 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1465 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1466 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1467 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1468 } 1469 return PreStart; 1470 } 1471 1472 // 3. Loop precondition. 1473 ICmpInst::Predicate Pred; 1474 const SCEV *OverflowLimit = 1475 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1476 1477 if (OverflowLimit && 1478 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1479 return PreStart; 1480 1481 return nullptr; 1482 } 1483 1484 // Get the normalized zero or sign extended expression for this AddRec's Start. 1485 template <typename ExtendOpTy> 1486 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1487 ScalarEvolution *SE, 1488 unsigned Depth) { 1489 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1490 1491 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1492 if (!PreStart) 1493 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1494 1495 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1496 Depth), 1497 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1498 } 1499 1500 // Try to prove away overflow by looking at "nearby" add recurrences. A 1501 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1502 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1503 // 1504 // Formally: 1505 // 1506 // {S,+,X} == {S-T,+,X} + T 1507 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1508 // 1509 // If ({S-T,+,X} + T) does not overflow ... (1) 1510 // 1511 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1512 // 1513 // If {S-T,+,X} does not overflow ... (2) 1514 // 1515 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1516 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1517 // 1518 // If (S-T)+T does not overflow ... (3) 1519 // 1520 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1521 // == {Ext(S),+,Ext(X)} == LHS 1522 // 1523 // Thus, if (1), (2) and (3) are true for some T, then 1524 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1525 // 1526 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1527 // does not overflow" restricted to the 0th iteration. Therefore we only need 1528 // to check for (1) and (2). 1529 // 1530 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1531 // is `Delta` (defined below). 1532 template <typename ExtendOpTy> 1533 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1534 const SCEV *Step, 1535 const Loop *L) { 1536 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1537 1538 // We restrict `Start` to a constant to prevent SCEV from spending too much 1539 // time here. It is correct (but more expensive) to continue with a 1540 // non-constant `Start` and do a general SCEV subtraction to compute 1541 // `PreStart` below. 1542 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1543 if (!StartC) 1544 return false; 1545 1546 APInt StartAI = StartC->getAPInt(); 1547 1548 for (unsigned Delta : {-2, -1, 1, 2}) { 1549 const SCEV *PreStart = getConstant(StartAI - Delta); 1550 1551 FoldingSetNodeID ID; 1552 ID.AddInteger(scAddRecExpr); 1553 ID.AddPointer(PreStart); 1554 ID.AddPointer(Step); 1555 ID.AddPointer(L); 1556 void *IP = nullptr; 1557 const auto *PreAR = 1558 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1559 1560 // Give up if we don't already have the add recurrence we need because 1561 // actually constructing an add recurrence is relatively expensive. 1562 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1563 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1564 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1565 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1566 DeltaS, &Pred, this); 1567 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1568 return true; 1569 } 1570 } 1571 1572 return false; 1573 } 1574 1575 // Finds an integer D for an expression (C + x + y + ...) such that the top 1576 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1577 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1578 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1579 // the (C + x + y + ...) expression is \p WholeAddExpr. 1580 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1581 const SCEVConstant *ConstantTerm, 1582 const SCEVAddExpr *WholeAddExpr) { 1583 const APInt C = ConstantTerm->getAPInt(); 1584 const unsigned BitWidth = C.getBitWidth(); 1585 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1586 uint32_t TZ = BitWidth; 1587 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1588 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1589 if (TZ) { 1590 // Set D to be as many least significant bits of C as possible while still 1591 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1592 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1593 } 1594 return APInt(BitWidth, 0); 1595 } 1596 1597 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1598 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1599 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1600 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1601 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1602 const APInt &ConstantStart, 1603 const SCEV *Step) { 1604 const unsigned BitWidth = ConstantStart.getBitWidth(); 1605 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1606 if (TZ) 1607 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1608 : ConstantStart; 1609 return APInt(BitWidth, 0); 1610 } 1611 1612 const SCEV * 1613 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1614 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1615 "This is not an extending conversion!"); 1616 assert(isSCEVable(Ty) && 1617 "This is not a conversion to a SCEVable type!"); 1618 Ty = getEffectiveSCEVType(Ty); 1619 1620 // Fold if the operand is constant. 1621 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1622 return getConstant( 1623 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1624 1625 // zext(zext(x)) --> zext(x) 1626 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1627 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1628 1629 // Before doing any expensive analysis, check to see if we've already 1630 // computed a SCEV for this Op and Ty. 1631 FoldingSetNodeID ID; 1632 ID.AddInteger(scZeroExtend); 1633 ID.AddPointer(Op); 1634 ID.AddPointer(Ty); 1635 void *IP = nullptr; 1636 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1637 if (Depth > MaxExtDepth) { 1638 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1639 Op, Ty); 1640 UniqueSCEVs.InsertNode(S, IP); 1641 addToLoopUseLists(S); 1642 return S; 1643 } 1644 1645 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1646 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1647 // It's possible the bits taken off by the truncate were all zero bits. If 1648 // so, we should be able to simplify this further. 1649 const SCEV *X = ST->getOperand(); 1650 ConstantRange CR = getUnsignedRange(X); 1651 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1652 unsigned NewBits = getTypeSizeInBits(Ty); 1653 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1654 CR.zextOrTrunc(NewBits))) 1655 return getTruncateOrZeroExtend(X, Ty); 1656 } 1657 1658 // If the input value is a chrec scev, and we can prove that the value 1659 // did not overflow the old, smaller, value, we can zero extend all of the 1660 // operands (often constants). This allows analysis of something like 1661 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1663 if (AR->isAffine()) { 1664 const SCEV *Start = AR->getStart(); 1665 const SCEV *Step = AR->getStepRecurrence(*this); 1666 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1667 const Loop *L = AR->getLoop(); 1668 1669 if (!AR->hasNoUnsignedWrap()) { 1670 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1671 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1672 } 1673 1674 // If we have special knowledge that this addrec won't overflow, 1675 // we don't need to do any further analysis. 1676 if (AR->hasNoUnsignedWrap()) 1677 return getAddRecExpr( 1678 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1679 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1680 1681 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1682 // Note that this serves two purposes: It filters out loops that are 1683 // simply not analyzable, and it covers the case where this code is 1684 // being called from within backedge-taken count analysis, such that 1685 // attempting to ask for the backedge-taken count would likely result 1686 // in infinite recursion. In the later case, the analysis code will 1687 // cope with a conservative value, and it will take care to purge 1688 // that value once it has finished. 1689 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1690 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1691 // Manually compute the final value for AR, checking for 1692 // overflow. 1693 1694 // Check whether the backedge-taken count can be losslessly casted to 1695 // the addrec's type. The count is always unsigned. 1696 const SCEV *CastedMaxBECount = 1697 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1698 const SCEV *RecastedMaxBECount = 1699 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1700 if (MaxBECount == RecastedMaxBECount) { 1701 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1702 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1703 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1704 SCEV::FlagAnyWrap, Depth + 1); 1705 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1706 SCEV::FlagAnyWrap, 1707 Depth + 1), 1708 WideTy, Depth + 1); 1709 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1710 const SCEV *WideMaxBECount = 1711 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1712 const SCEV *OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getZeroExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1720 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1721 // Return the expression with the addrec on the outside. 1722 return getAddRecExpr( 1723 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1724 Depth + 1), 1725 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1726 AR->getNoWrapFlags()); 1727 } 1728 // Similar to above, only this time treat the step value as signed. 1729 // This covers loops that count down. 1730 OperandExtendedAdd = 1731 getAddExpr(WideStart, 1732 getMulExpr(WideMaxBECount, 1733 getSignExtendExpr(Step, WideTy, Depth + 1), 1734 SCEV::FlagAnyWrap, Depth + 1), 1735 SCEV::FlagAnyWrap, Depth + 1); 1736 if (ZAdd == OperandExtendedAdd) { 1737 // Cache knowledge of AR NW, which is propagated to this AddRec. 1738 // Negative step causes unsigned wrap, but it still can't self-wrap. 1739 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1740 // Return the expression with the addrec on the outside. 1741 return getAddRecExpr( 1742 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1743 Depth + 1), 1744 getSignExtendExpr(Step, Ty, Depth + 1), L, 1745 AR->getNoWrapFlags()); 1746 } 1747 } 1748 } 1749 1750 // Normally, in the cases we can prove no-overflow via a 1751 // backedge guarding condition, we can also compute a backedge 1752 // taken count for the loop. The exceptions are assumptions and 1753 // guards present in the loop -- SCEV is not great at exploiting 1754 // these to compute max backedge taken counts, but can still use 1755 // these to prove lack of overflow. Use this fact to avoid 1756 // doing extra work that may not pay off. 1757 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1758 !AC.assumptions().empty()) { 1759 // If the backedge is guarded by a comparison with the pre-inc 1760 // value the addrec is safe. Also, if the entry is guarded by 1761 // a comparison with the start value and the backedge is 1762 // guarded by a comparison with the post-inc value, the addrec 1763 // is safe. 1764 if (isKnownPositive(Step)) { 1765 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1766 getUnsignedRangeMax(Step)); 1767 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1768 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1769 // Cache knowledge of AR NUW, which is propagated to this 1770 // AddRec. 1771 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1772 // Return the expression with the addrec on the outside. 1773 return getAddRecExpr( 1774 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1775 Depth + 1), 1776 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1777 AR->getNoWrapFlags()); 1778 } 1779 } else if (isKnownNegative(Step)) { 1780 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1781 getSignedRangeMin(Step)); 1782 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1783 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1784 // Cache knowledge of AR NW, which is propagated to this 1785 // AddRec. Negative step causes unsigned wrap, but it 1786 // still can't self-wrap. 1787 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1788 // Return the expression with the addrec on the outside. 1789 return getAddRecExpr( 1790 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1791 Depth + 1), 1792 getSignExtendExpr(Step, Ty, Depth + 1), L, 1793 AR->getNoWrapFlags()); 1794 } 1795 } 1796 } 1797 1798 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1799 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1800 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1801 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1802 const APInt &C = SC->getAPInt(); 1803 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1804 if (D != 0) { 1805 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1806 const SCEV *SResidual = 1807 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1808 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1809 return getAddExpr(SZExtD, SZExtR, 1810 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1811 Depth + 1); 1812 } 1813 } 1814 1815 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1816 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1817 return getAddRecExpr( 1818 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1819 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1820 } 1821 } 1822 1823 // zext(A % B) --> zext(A) % zext(B) 1824 { 1825 const SCEV *LHS; 1826 const SCEV *RHS; 1827 if (matchURem(Op, LHS, RHS)) 1828 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1829 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1830 } 1831 1832 // zext(A / B) --> zext(A) / zext(B). 1833 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1834 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1835 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1836 1837 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1838 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1839 if (SA->hasNoUnsignedWrap()) { 1840 // If the addition does not unsign overflow then we can, by definition, 1841 // commute the zero extension with the addition operation. 1842 SmallVector<const SCEV *, 4> Ops; 1843 for (const auto *Op : SA->operands()) 1844 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1845 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1846 } 1847 1848 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1849 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1850 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1851 // 1852 // Often address arithmetics contain expressions like 1853 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1854 // This transformation is useful while proving that such expressions are 1855 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1856 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1857 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1858 if (D != 0) { 1859 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1860 const SCEV *SResidual = 1861 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1862 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1863 return getAddExpr(SZExtD, SZExtR, 1864 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1865 Depth + 1); 1866 } 1867 } 1868 } 1869 1870 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1871 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1872 if (SM->hasNoUnsignedWrap()) { 1873 // If the multiply does not unsign overflow then we can, by definition, 1874 // commute the zero extension with the multiply operation. 1875 SmallVector<const SCEV *, 4> Ops; 1876 for (const auto *Op : SM->operands()) 1877 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1878 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1879 } 1880 1881 // zext(2^K * (trunc X to iN)) to iM -> 1882 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1883 // 1884 // Proof: 1885 // 1886 // zext(2^K * (trunc X to iN)) to iM 1887 // = zext((trunc X to iN) << K) to iM 1888 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1889 // (because shl removes the top K bits) 1890 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1891 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1892 // 1893 if (SM->getNumOperands() == 2) 1894 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1895 if (MulLHS->getAPInt().isPowerOf2()) 1896 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1897 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1898 MulLHS->getAPInt().logBase2(); 1899 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1900 return getMulExpr( 1901 getZeroExtendExpr(MulLHS, Ty), 1902 getZeroExtendExpr( 1903 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1904 SCEV::FlagNUW, Depth + 1); 1905 } 1906 } 1907 1908 // The cast wasn't folded; create an explicit cast node. 1909 // Recompute the insert position, as it may have been invalidated. 1910 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1911 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 const SCEV * 1919 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1920 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1921 "This is not an extending conversion!"); 1922 assert(isSCEVable(Ty) && 1923 "This is not a conversion to a SCEVable type!"); 1924 Ty = getEffectiveSCEVType(Ty); 1925 1926 // Fold if the operand is constant. 1927 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1928 return getConstant( 1929 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1930 1931 // sext(sext(x)) --> sext(x) 1932 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1933 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1934 1935 // sext(zext(x)) --> zext(x) 1936 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1937 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1938 1939 // Before doing any expensive analysis, check to see if we've already 1940 // computed a SCEV for this Op and Ty. 1941 FoldingSetNodeID ID; 1942 ID.AddInteger(scSignExtend); 1943 ID.AddPointer(Op); 1944 ID.AddPointer(Ty); 1945 void *IP = nullptr; 1946 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1947 // Limit recursion depth. 1948 if (Depth > MaxExtDepth) { 1949 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1950 Op, Ty); 1951 UniqueSCEVs.InsertNode(S, IP); 1952 addToLoopUseLists(S); 1953 return S; 1954 } 1955 1956 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1957 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1958 // It's possible the bits taken off by the truncate were all sign bits. If 1959 // so, we should be able to simplify this further. 1960 const SCEV *X = ST->getOperand(); 1961 ConstantRange CR = getSignedRange(X); 1962 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1963 unsigned NewBits = getTypeSizeInBits(Ty); 1964 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1965 CR.sextOrTrunc(NewBits))) 1966 return getTruncateOrSignExtend(X, Ty); 1967 } 1968 1969 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1970 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1971 if (SA->hasNoSignedWrap()) { 1972 // If the addition does not sign overflow then we can, by definition, 1973 // commute the sign extension with the addition operation. 1974 SmallVector<const SCEV *, 4> Ops; 1975 for (const auto *Op : SA->operands()) 1976 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1977 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1978 } 1979 1980 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1981 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1982 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1983 // 1984 // For instance, this will bring two seemingly different expressions: 1985 // 1 + sext(5 + 20 * %x + 24 * %y) and 1986 // sext(6 + 20 * %x + 24 * %y) 1987 // to the same form: 1988 // 2 + sext(4 + 20 * %x + 24 * %y) 1989 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1990 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1991 if (D != 0) { 1992 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1993 const SCEV *SResidual = 1994 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1995 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1996 return getAddExpr(SSExtD, SSExtR, 1997 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1998 Depth + 1); 1999 } 2000 } 2001 } 2002 // If the input value is a chrec scev, and we can prove that the value 2003 // did not overflow the old, smaller, value, we can sign extend all of the 2004 // operands (often constants). This allows analysis of something like 2005 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 2006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 2007 if (AR->isAffine()) { 2008 const SCEV *Start = AR->getStart(); 2009 const SCEV *Step = AR->getStepRecurrence(*this); 2010 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 2011 const Loop *L = AR->getLoop(); 2012 2013 if (!AR->hasNoSignedWrap()) { 2014 auto NewFlags = proveNoWrapViaConstantRanges(AR); 2015 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 2016 } 2017 2018 // If we have special knowledge that this addrec won't overflow, 2019 // we don't need to do any further analysis. 2020 if (AR->hasNoSignedWrap()) 2021 return getAddRecExpr( 2022 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2023 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2024 2025 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2026 // Note that this serves two purposes: It filters out loops that are 2027 // simply not analyzable, and it covers the case where this code is 2028 // being called from within backedge-taken count analysis, such that 2029 // attempting to ask for the backedge-taken count would likely result 2030 // in infinite recursion. In the later case, the analysis code will 2031 // cope with a conservative value, and it will take care to purge 2032 // that value once it has finished. 2033 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 2034 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2035 // Manually compute the final value for AR, checking for 2036 // overflow. 2037 2038 // Check whether the backedge-taken count can be losslessly casted to 2039 // the addrec's type. The count is always unsigned. 2040 const SCEV *CastedMaxBECount = 2041 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 2042 const SCEV *RecastedMaxBECount = 2043 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 2044 if (MaxBECount == RecastedMaxBECount) { 2045 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2046 // Check whether Start+Step*MaxBECount has no signed overflow. 2047 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2048 SCEV::FlagAnyWrap, Depth + 1); 2049 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2050 SCEV::FlagAnyWrap, 2051 Depth + 1), 2052 WideTy, Depth + 1); 2053 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2054 const SCEV *WideMaxBECount = 2055 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2056 const SCEV *OperandExtendedAdd = 2057 getAddExpr(WideStart, 2058 getMulExpr(WideMaxBECount, 2059 getSignExtendExpr(Step, WideTy, Depth + 1), 2060 SCEV::FlagAnyWrap, Depth + 1), 2061 SCEV::FlagAnyWrap, Depth + 1); 2062 if (SAdd == OperandExtendedAdd) { 2063 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2064 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2065 // Return the expression with the addrec on the outside. 2066 return getAddRecExpr( 2067 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2068 Depth + 1), 2069 getSignExtendExpr(Step, Ty, Depth + 1), L, 2070 AR->getNoWrapFlags()); 2071 } 2072 // Similar to above, only this time treat the step value as unsigned. 2073 // This covers loops that count up with an unsigned step. 2074 OperandExtendedAdd = 2075 getAddExpr(WideStart, 2076 getMulExpr(WideMaxBECount, 2077 getZeroExtendExpr(Step, WideTy, Depth + 1), 2078 SCEV::FlagAnyWrap, Depth + 1), 2079 SCEV::FlagAnyWrap, Depth + 1); 2080 if (SAdd == OperandExtendedAdd) { 2081 // If AR wraps around then 2082 // 2083 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2084 // => SAdd != OperandExtendedAdd 2085 // 2086 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2087 // (SAdd == OperandExtendedAdd => AR is NW) 2088 2089 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 2090 2091 // Return the expression with the addrec on the outside. 2092 return getAddRecExpr( 2093 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2094 Depth + 1), 2095 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2096 AR->getNoWrapFlags()); 2097 } 2098 } 2099 } 2100 2101 // Normally, in the cases we can prove no-overflow via a 2102 // backedge guarding condition, we can also compute a backedge 2103 // taken count for the loop. The exceptions are assumptions and 2104 // guards present in the loop -- SCEV is not great at exploiting 2105 // these to compute max backedge taken counts, but can still use 2106 // these to prove lack of overflow. Use this fact to avoid 2107 // doing extra work that may not pay off. 2108 2109 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2110 !AC.assumptions().empty()) { 2111 // If the backedge is guarded by a comparison with the pre-inc 2112 // value the addrec is safe. Also, if the entry is guarded by 2113 // a comparison with the start value and the backedge is 2114 // guarded by a comparison with the post-inc value, the addrec 2115 // is safe. 2116 ICmpInst::Predicate Pred; 2117 const SCEV *OverflowLimit = 2118 getSignedOverflowLimitForStep(Step, &Pred, this); 2119 if (OverflowLimit && 2120 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2121 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2122 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2123 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2124 return getAddRecExpr( 2125 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2126 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2127 } 2128 } 2129 2130 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2131 // if D + (C - D + Step * n) could be proven to not signed wrap 2132 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2133 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2134 const APInt &C = SC->getAPInt(); 2135 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2136 if (D != 0) { 2137 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2138 const SCEV *SResidual = 2139 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2140 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2141 return getAddExpr(SSExtD, SSExtR, 2142 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2143 Depth + 1); 2144 } 2145 } 2146 2147 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2148 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2149 return getAddRecExpr( 2150 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2151 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2152 } 2153 } 2154 2155 // If the input value is provably positive and we could not simplify 2156 // away the sext build a zext instead. 2157 if (isKnownNonNegative(Op)) 2158 return getZeroExtendExpr(Op, Ty, Depth + 1); 2159 2160 // The cast wasn't folded; create an explicit cast node. 2161 // Recompute the insert position, as it may have been invalidated. 2162 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2163 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2164 Op, Ty); 2165 UniqueSCEVs.InsertNode(S, IP); 2166 addToLoopUseLists(S); 2167 return S; 2168 } 2169 2170 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2171 /// unspecified bits out to the given type. 2172 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2173 Type *Ty) { 2174 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2175 "This is not an extending conversion!"); 2176 assert(isSCEVable(Ty) && 2177 "This is not a conversion to a SCEVable type!"); 2178 Ty = getEffectiveSCEVType(Ty); 2179 2180 // Sign-extend negative constants. 2181 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2182 if (SC->getAPInt().isNegative()) 2183 return getSignExtendExpr(Op, Ty); 2184 2185 // Peel off a truncate cast. 2186 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2187 const SCEV *NewOp = T->getOperand(); 2188 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2189 return getAnyExtendExpr(NewOp, Ty); 2190 return getTruncateOrNoop(NewOp, Ty); 2191 } 2192 2193 // Next try a zext cast. If the cast is folded, use it. 2194 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2195 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2196 return ZExt; 2197 2198 // Next try a sext cast. If the cast is folded, use it. 2199 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2200 if (!isa<SCEVSignExtendExpr>(SExt)) 2201 return SExt; 2202 2203 // Force the cast to be folded into the operands of an addrec. 2204 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2205 SmallVector<const SCEV *, 4> Ops; 2206 for (const SCEV *Op : AR->operands()) 2207 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2208 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2209 } 2210 2211 // If the expression is obviously signed, use the sext cast value. 2212 if (isa<SCEVSMaxExpr>(Op)) 2213 return SExt; 2214 2215 // Absent any other information, use the zext cast value. 2216 return ZExt; 2217 } 2218 2219 /// Process the given Ops list, which is a list of operands to be added under 2220 /// the given scale, update the given map. This is a helper function for 2221 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2222 /// that would form an add expression like this: 2223 /// 2224 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2225 /// 2226 /// where A and B are constants, update the map with these values: 2227 /// 2228 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2229 /// 2230 /// and add 13 + A*B*29 to AccumulatedConstant. 2231 /// This will allow getAddRecExpr to produce this: 2232 /// 2233 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2234 /// 2235 /// This form often exposes folding opportunities that are hidden in 2236 /// the original operand list. 2237 /// 2238 /// Return true iff it appears that any interesting folding opportunities 2239 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2240 /// the common case where no interesting opportunities are present, and 2241 /// is also used as a check to avoid infinite recursion. 2242 static bool 2243 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2244 SmallVectorImpl<const SCEV *> &NewOps, 2245 APInt &AccumulatedConstant, 2246 const SCEV *const *Ops, size_t NumOperands, 2247 const APInt &Scale, 2248 ScalarEvolution &SE) { 2249 bool Interesting = false; 2250 2251 // Iterate over the add operands. They are sorted, with constants first. 2252 unsigned i = 0; 2253 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2254 ++i; 2255 // Pull a buried constant out to the outside. 2256 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2257 Interesting = true; 2258 AccumulatedConstant += Scale * C->getAPInt(); 2259 } 2260 2261 // Next comes everything else. We're especially interested in multiplies 2262 // here, but they're in the middle, so just visit the rest with one loop. 2263 for (; i != NumOperands; ++i) { 2264 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2265 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2266 APInt NewScale = 2267 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2268 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2269 // A multiplication of a constant with another add; recurse. 2270 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2271 Interesting |= 2272 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2273 Add->op_begin(), Add->getNumOperands(), 2274 NewScale, SE); 2275 } else { 2276 // A multiplication of a constant with some other value. Update 2277 // the map. 2278 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2279 const SCEV *Key = SE.getMulExpr(MulOps); 2280 auto Pair = M.insert({Key, NewScale}); 2281 if (Pair.second) { 2282 NewOps.push_back(Pair.first->first); 2283 } else { 2284 Pair.first->second += NewScale; 2285 // The map already had an entry for this value, which may indicate 2286 // a folding opportunity. 2287 Interesting = true; 2288 } 2289 } 2290 } else { 2291 // An ordinary operand. Update the map. 2292 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2293 M.insert({Ops[i], Scale}); 2294 if (Pair.second) { 2295 NewOps.push_back(Pair.first->first); 2296 } else { 2297 Pair.first->second += Scale; 2298 // The map already had an entry for this value, which may indicate 2299 // a folding opportunity. 2300 Interesting = true; 2301 } 2302 } 2303 } 2304 2305 return Interesting; 2306 } 2307 2308 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2309 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2310 // can't-overflow flags for the operation if possible. 2311 static SCEV::NoWrapFlags 2312 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2313 const ArrayRef<const SCEV *> Ops, 2314 SCEV::NoWrapFlags Flags) { 2315 using namespace std::placeholders; 2316 2317 using OBO = OverflowingBinaryOperator; 2318 2319 bool CanAnalyze = 2320 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2321 (void)CanAnalyze; 2322 assert(CanAnalyze && "don't call from other places!"); 2323 2324 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2325 SCEV::NoWrapFlags SignOrUnsignWrap = 2326 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2327 2328 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2329 auto IsKnownNonNegative = [&](const SCEV *S) { 2330 return SE->isKnownNonNegative(S); 2331 }; 2332 2333 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2334 Flags = 2335 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2336 2337 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2338 2339 if (SignOrUnsignWrap != SignOrUnsignMask && 2340 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2341 isa<SCEVConstant>(Ops[0])) { 2342 2343 auto Opcode = [&] { 2344 switch (Type) { 2345 case scAddExpr: 2346 return Instruction::Add; 2347 case scMulExpr: 2348 return Instruction::Mul; 2349 default: 2350 llvm_unreachable("Unexpected SCEV op."); 2351 } 2352 }(); 2353 2354 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2355 2356 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2357 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2358 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2359 Opcode, C, OBO::NoSignedWrap); 2360 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2361 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2362 } 2363 2364 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2365 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2366 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2367 Opcode, C, OBO::NoUnsignedWrap); 2368 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2369 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2370 } 2371 } 2372 2373 return Flags; 2374 } 2375 2376 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2377 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2378 } 2379 2380 /// Get a canonical add expression, or something simpler if possible. 2381 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2382 SCEV::NoWrapFlags Flags, 2383 unsigned Depth) { 2384 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2385 "only nuw or nsw allowed"); 2386 assert(!Ops.empty() && "Cannot get empty add!"); 2387 if (Ops.size() == 1) return Ops[0]; 2388 #ifndef NDEBUG 2389 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2390 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2391 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2392 "SCEVAddExpr operand types don't match!"); 2393 #endif 2394 2395 // Sort by complexity, this groups all similar expression types together. 2396 GroupByComplexity(Ops, &LI, DT); 2397 2398 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2399 2400 // If there are any constants, fold them together. 2401 unsigned Idx = 0; 2402 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2403 ++Idx; 2404 assert(Idx < Ops.size()); 2405 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2406 // We found two constants, fold them together! 2407 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2408 if (Ops.size() == 2) return Ops[0]; 2409 Ops.erase(Ops.begin()+1); // Erase the folded element 2410 LHSC = cast<SCEVConstant>(Ops[0]); 2411 } 2412 2413 // If we are left with a constant zero being added, strip it off. 2414 if (LHSC->getValue()->isZero()) { 2415 Ops.erase(Ops.begin()); 2416 --Idx; 2417 } 2418 2419 if (Ops.size() == 1) return Ops[0]; 2420 } 2421 2422 // Limit recursion calls depth. 2423 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2424 return getOrCreateAddExpr(Ops, Flags); 2425 2426 // Okay, check to see if the same value occurs in the operand list more than 2427 // once. If so, merge them together into an multiply expression. Since we 2428 // sorted the list, these values are required to be adjacent. 2429 Type *Ty = Ops[0]->getType(); 2430 bool FoundMatch = false; 2431 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2432 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2433 // Scan ahead to count how many equal operands there are. 2434 unsigned Count = 2; 2435 while (i+Count != e && Ops[i+Count] == Ops[i]) 2436 ++Count; 2437 // Merge the values into a multiply. 2438 const SCEV *Scale = getConstant(Ty, Count); 2439 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2440 if (Ops.size() == Count) 2441 return Mul; 2442 Ops[i] = Mul; 2443 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2444 --i; e -= Count - 1; 2445 FoundMatch = true; 2446 } 2447 if (FoundMatch) 2448 return getAddExpr(Ops, Flags, Depth + 1); 2449 2450 // Check for truncates. If all the operands are truncated from the same 2451 // type, see if factoring out the truncate would permit the result to be 2452 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2453 // if the contents of the resulting outer trunc fold to something simple. 2454 auto FindTruncSrcType = [&]() -> Type * { 2455 // We're ultimately looking to fold an addrec of truncs and muls of only 2456 // constants and truncs, so if we find any other types of SCEV 2457 // as operands of the addrec then we bail and return nullptr here. 2458 // Otherwise, we return the type of the operand of a trunc that we find. 2459 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2460 return T->getOperand()->getType(); 2461 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2462 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2463 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2464 return T->getOperand()->getType(); 2465 } 2466 return nullptr; 2467 }; 2468 if (auto *SrcType = FindTruncSrcType()) { 2469 SmallVector<const SCEV *, 8> LargeOps; 2470 bool Ok = true; 2471 // Check all the operands to see if they can be represented in the 2472 // source type of the truncate. 2473 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2474 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2475 if (T->getOperand()->getType() != SrcType) { 2476 Ok = false; 2477 break; 2478 } 2479 LargeOps.push_back(T->getOperand()); 2480 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2481 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2482 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2483 SmallVector<const SCEV *, 8> LargeMulOps; 2484 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2485 if (const SCEVTruncateExpr *T = 2486 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2487 if (T->getOperand()->getType() != SrcType) { 2488 Ok = false; 2489 break; 2490 } 2491 LargeMulOps.push_back(T->getOperand()); 2492 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2493 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2494 } else { 2495 Ok = false; 2496 break; 2497 } 2498 } 2499 if (Ok) 2500 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2501 } else { 2502 Ok = false; 2503 break; 2504 } 2505 } 2506 if (Ok) { 2507 // Evaluate the expression in the larger type. 2508 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2509 // If it folds to something simple, use it. Otherwise, don't. 2510 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2511 return getTruncateExpr(Fold, Ty); 2512 } 2513 } 2514 2515 // Skip past any other cast SCEVs. 2516 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2517 ++Idx; 2518 2519 // If there are add operands they would be next. 2520 if (Idx < Ops.size()) { 2521 bool DeletedAdd = false; 2522 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2523 if (Ops.size() > AddOpsInlineThreshold || 2524 Add->getNumOperands() > AddOpsInlineThreshold) 2525 break; 2526 // If we have an add, expand the add operands onto the end of the operands 2527 // list. 2528 Ops.erase(Ops.begin()+Idx); 2529 Ops.append(Add->op_begin(), Add->op_end()); 2530 DeletedAdd = true; 2531 } 2532 2533 // If we deleted at least one add, we added operands to the end of the list, 2534 // and they are not necessarily sorted. Recurse to resort and resimplify 2535 // any operands we just acquired. 2536 if (DeletedAdd) 2537 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2538 } 2539 2540 // Skip over the add expression until we get to a multiply. 2541 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2542 ++Idx; 2543 2544 // Check to see if there are any folding opportunities present with 2545 // operands multiplied by constant values. 2546 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2547 uint64_t BitWidth = getTypeSizeInBits(Ty); 2548 DenseMap<const SCEV *, APInt> M; 2549 SmallVector<const SCEV *, 8> NewOps; 2550 APInt AccumulatedConstant(BitWidth, 0); 2551 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2552 Ops.data(), Ops.size(), 2553 APInt(BitWidth, 1), *this)) { 2554 struct APIntCompare { 2555 bool operator()(const APInt &LHS, const APInt &RHS) const { 2556 return LHS.ult(RHS); 2557 } 2558 }; 2559 2560 // Some interesting folding opportunity is present, so its worthwhile to 2561 // re-generate the operands list. Group the operands by constant scale, 2562 // to avoid multiplying by the same constant scale multiple times. 2563 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2564 for (const SCEV *NewOp : NewOps) 2565 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2566 // Re-generate the operands list. 2567 Ops.clear(); 2568 if (AccumulatedConstant != 0) 2569 Ops.push_back(getConstant(AccumulatedConstant)); 2570 for (auto &MulOp : MulOpLists) 2571 if (MulOp.first != 0) 2572 Ops.push_back(getMulExpr( 2573 getConstant(MulOp.first), 2574 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2575 SCEV::FlagAnyWrap, Depth + 1)); 2576 if (Ops.empty()) 2577 return getZero(Ty); 2578 if (Ops.size() == 1) 2579 return Ops[0]; 2580 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2581 } 2582 } 2583 2584 // If we are adding something to a multiply expression, make sure the 2585 // something is not already an operand of the multiply. If so, merge it into 2586 // the multiply. 2587 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2588 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2589 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2590 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2591 if (isa<SCEVConstant>(MulOpSCEV)) 2592 continue; 2593 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2594 if (MulOpSCEV == Ops[AddOp]) { 2595 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2596 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2597 if (Mul->getNumOperands() != 2) { 2598 // If the multiply has more than two operands, we must get the 2599 // Y*Z term. 2600 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2601 Mul->op_begin()+MulOp); 2602 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2603 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2604 } 2605 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2606 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2607 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2608 SCEV::FlagAnyWrap, Depth + 1); 2609 if (Ops.size() == 2) return OuterMul; 2610 if (AddOp < Idx) { 2611 Ops.erase(Ops.begin()+AddOp); 2612 Ops.erase(Ops.begin()+Idx-1); 2613 } else { 2614 Ops.erase(Ops.begin()+Idx); 2615 Ops.erase(Ops.begin()+AddOp-1); 2616 } 2617 Ops.push_back(OuterMul); 2618 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2619 } 2620 2621 // Check this multiply against other multiplies being added together. 2622 for (unsigned OtherMulIdx = Idx+1; 2623 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2624 ++OtherMulIdx) { 2625 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2626 // If MulOp occurs in OtherMul, we can fold the two multiplies 2627 // together. 2628 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2629 OMulOp != e; ++OMulOp) 2630 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2631 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2632 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2633 if (Mul->getNumOperands() != 2) { 2634 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2635 Mul->op_begin()+MulOp); 2636 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2637 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2638 } 2639 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2640 if (OtherMul->getNumOperands() != 2) { 2641 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2642 OtherMul->op_begin()+OMulOp); 2643 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2644 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2645 } 2646 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2647 const SCEV *InnerMulSum = 2648 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2649 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2650 SCEV::FlagAnyWrap, Depth + 1); 2651 if (Ops.size() == 2) return OuterMul; 2652 Ops.erase(Ops.begin()+Idx); 2653 Ops.erase(Ops.begin()+OtherMulIdx-1); 2654 Ops.push_back(OuterMul); 2655 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2656 } 2657 } 2658 } 2659 } 2660 2661 // If there are any add recurrences in the operands list, see if any other 2662 // added values are loop invariant. If so, we can fold them into the 2663 // recurrence. 2664 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2665 ++Idx; 2666 2667 // Scan over all recurrences, trying to fold loop invariants into them. 2668 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2669 // Scan all of the other operands to this add and add them to the vector if 2670 // they are loop invariant w.r.t. the recurrence. 2671 SmallVector<const SCEV *, 8> LIOps; 2672 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2673 const Loop *AddRecLoop = AddRec->getLoop(); 2674 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2675 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2676 LIOps.push_back(Ops[i]); 2677 Ops.erase(Ops.begin()+i); 2678 --i; --e; 2679 } 2680 2681 // If we found some loop invariants, fold them into the recurrence. 2682 if (!LIOps.empty()) { 2683 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2684 LIOps.push_back(AddRec->getStart()); 2685 2686 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2687 AddRec->op_end()); 2688 // This follows from the fact that the no-wrap flags on the outer add 2689 // expression are applicable on the 0th iteration, when the add recurrence 2690 // will be equal to its start value. 2691 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2692 2693 // Build the new addrec. Propagate the NUW and NSW flags if both the 2694 // outer add and the inner addrec are guaranteed to have no overflow. 2695 // Always propagate NW. 2696 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2697 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2698 2699 // If all of the other operands were loop invariant, we are done. 2700 if (Ops.size() == 1) return NewRec; 2701 2702 // Otherwise, add the folded AddRec by the non-invariant parts. 2703 for (unsigned i = 0;; ++i) 2704 if (Ops[i] == AddRec) { 2705 Ops[i] = NewRec; 2706 break; 2707 } 2708 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2709 } 2710 2711 // Okay, if there weren't any loop invariants to be folded, check to see if 2712 // there are multiple AddRec's with the same loop induction variable being 2713 // added together. If so, we can fold them. 2714 for (unsigned OtherIdx = Idx+1; 2715 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2716 ++OtherIdx) { 2717 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2718 // so that the 1st found AddRecExpr is dominated by all others. 2719 assert(DT.dominates( 2720 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2721 AddRec->getLoop()->getHeader()) && 2722 "AddRecExprs are not sorted in reverse dominance order?"); 2723 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2724 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2726 AddRec->op_end()); 2727 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2728 ++OtherIdx) { 2729 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2730 if (OtherAddRec->getLoop() == AddRecLoop) { 2731 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2732 i != e; ++i) { 2733 if (i >= AddRecOps.size()) { 2734 AddRecOps.append(OtherAddRec->op_begin()+i, 2735 OtherAddRec->op_end()); 2736 break; 2737 } 2738 SmallVector<const SCEV *, 2> TwoOps = { 2739 AddRecOps[i], OtherAddRec->getOperand(i)}; 2740 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2741 } 2742 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2743 } 2744 } 2745 // Step size has changed, so we cannot guarantee no self-wraparound. 2746 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2747 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2748 } 2749 } 2750 2751 // Otherwise couldn't fold anything into this recurrence. Move onto the 2752 // next one. 2753 } 2754 2755 // Okay, it looks like we really DO need an add expr. Check to see if we 2756 // already have one, otherwise create a new one. 2757 return getOrCreateAddExpr(Ops, Flags); 2758 } 2759 2760 const SCEV * 2761 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2762 SCEV::NoWrapFlags Flags) { 2763 FoldingSetNodeID ID; 2764 ID.AddInteger(scAddExpr); 2765 for (const SCEV *Op : Ops) 2766 ID.AddPointer(Op); 2767 void *IP = nullptr; 2768 SCEVAddExpr *S = 2769 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2770 if (!S) { 2771 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2772 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2773 S = new (SCEVAllocator) 2774 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2775 UniqueSCEVs.InsertNode(S, IP); 2776 addToLoopUseLists(S); 2777 } 2778 S->setNoWrapFlags(Flags); 2779 return S; 2780 } 2781 2782 const SCEV * 2783 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2784 const Loop *L, SCEV::NoWrapFlags Flags) { 2785 FoldingSetNodeID ID; 2786 ID.AddInteger(scAddRecExpr); 2787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2788 ID.AddPointer(Ops[i]); 2789 ID.AddPointer(L); 2790 void *IP = nullptr; 2791 SCEVAddRecExpr *S = 2792 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2793 if (!S) { 2794 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2795 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2796 S = new (SCEVAllocator) 2797 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2798 UniqueSCEVs.InsertNode(S, IP); 2799 addToLoopUseLists(S); 2800 } 2801 S->setNoWrapFlags(Flags); 2802 return S; 2803 } 2804 2805 const SCEV * 2806 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2807 SCEV::NoWrapFlags Flags) { 2808 FoldingSetNodeID ID; 2809 ID.AddInteger(scMulExpr); 2810 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2811 ID.AddPointer(Ops[i]); 2812 void *IP = nullptr; 2813 SCEVMulExpr *S = 2814 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2815 if (!S) { 2816 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2817 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2818 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2819 O, Ops.size()); 2820 UniqueSCEVs.InsertNode(S, IP); 2821 addToLoopUseLists(S); 2822 } 2823 S->setNoWrapFlags(Flags); 2824 return S; 2825 } 2826 2827 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2828 uint64_t k = i*j; 2829 if (j > 1 && k / j != i) Overflow = true; 2830 return k; 2831 } 2832 2833 /// Compute the result of "n choose k", the binomial coefficient. If an 2834 /// intermediate computation overflows, Overflow will be set and the return will 2835 /// be garbage. Overflow is not cleared on absence of overflow. 2836 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2837 // We use the multiplicative formula: 2838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2839 // At each iteration, we take the n-th term of the numeral and divide by the 2840 // (k-n)th term of the denominator. This division will always produce an 2841 // integral result, and helps reduce the chance of overflow in the 2842 // intermediate computations. However, we can still overflow even when the 2843 // final result would fit. 2844 2845 if (n == 0 || n == k) return 1; 2846 if (k > n) return 0; 2847 2848 if (k > n/2) 2849 k = n-k; 2850 2851 uint64_t r = 1; 2852 for (uint64_t i = 1; i <= k; ++i) { 2853 r = umul_ov(r, n-(i-1), Overflow); 2854 r /= i; 2855 } 2856 return r; 2857 } 2858 2859 /// Determine if any of the operands in this SCEV are a constant or if 2860 /// any of the add or multiply expressions in this SCEV contain a constant. 2861 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2862 struct FindConstantInAddMulChain { 2863 bool FoundConstant = false; 2864 2865 bool follow(const SCEV *S) { 2866 FoundConstant |= isa<SCEVConstant>(S); 2867 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2868 } 2869 2870 bool isDone() const { 2871 return FoundConstant; 2872 } 2873 }; 2874 2875 FindConstantInAddMulChain F; 2876 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2877 ST.visitAll(StartExpr); 2878 return F.FoundConstant; 2879 } 2880 2881 /// Get a canonical multiply expression, or something simpler if possible. 2882 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2883 SCEV::NoWrapFlags Flags, 2884 unsigned Depth) { 2885 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2886 "only nuw or nsw allowed"); 2887 assert(!Ops.empty() && "Cannot get empty mul!"); 2888 if (Ops.size() == 1) return Ops[0]; 2889 #ifndef NDEBUG 2890 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2891 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2892 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2893 "SCEVMulExpr operand types don't match!"); 2894 #endif 2895 2896 // Sort by complexity, this groups all similar expression types together. 2897 GroupByComplexity(Ops, &LI, DT); 2898 2899 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2900 2901 // Limit recursion calls depth. 2902 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2903 return getOrCreateMulExpr(Ops, Flags); 2904 2905 // If there are any constants, fold them together. 2906 unsigned Idx = 0; 2907 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2908 2909 if (Ops.size() == 2) 2910 // C1*(C2+V) -> C1*C2 + C1*V 2911 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2912 // If any of Add's ops are Adds or Muls with a constant, apply this 2913 // transformation as well. 2914 // 2915 // TODO: There are some cases where this transformation is not 2916 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2917 // this transformation should be narrowed down. 2918 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2919 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2920 SCEV::FlagAnyWrap, Depth + 1), 2921 getMulExpr(LHSC, Add->getOperand(1), 2922 SCEV::FlagAnyWrap, Depth + 1), 2923 SCEV::FlagAnyWrap, Depth + 1); 2924 2925 ++Idx; 2926 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2927 // We found two constants, fold them together! 2928 ConstantInt *Fold = 2929 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2930 Ops[0] = getConstant(Fold); 2931 Ops.erase(Ops.begin()+1); // Erase the folded element 2932 if (Ops.size() == 1) return Ops[0]; 2933 LHSC = cast<SCEVConstant>(Ops[0]); 2934 } 2935 2936 // If we are left with a constant one being multiplied, strip it off. 2937 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2938 Ops.erase(Ops.begin()); 2939 --Idx; 2940 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2941 // If we have a multiply of zero, it will always be zero. 2942 return Ops[0]; 2943 } else if (Ops[0]->isAllOnesValue()) { 2944 // If we have a mul by -1 of an add, try distributing the -1 among the 2945 // add operands. 2946 if (Ops.size() == 2) { 2947 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2948 SmallVector<const SCEV *, 4> NewOps; 2949 bool AnyFolded = false; 2950 for (const SCEV *AddOp : Add->operands()) { 2951 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2952 Depth + 1); 2953 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2954 NewOps.push_back(Mul); 2955 } 2956 if (AnyFolded) 2957 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2958 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2959 // Negation preserves a recurrence's no self-wrap property. 2960 SmallVector<const SCEV *, 4> Operands; 2961 for (const SCEV *AddRecOp : AddRec->operands()) 2962 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2963 Depth + 1)); 2964 2965 return getAddRecExpr(Operands, AddRec->getLoop(), 2966 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2967 } 2968 } 2969 } 2970 2971 if (Ops.size() == 1) 2972 return Ops[0]; 2973 } 2974 2975 // Skip over the add expression until we get to a multiply. 2976 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2977 ++Idx; 2978 2979 // If there are mul operands inline them all into this expression. 2980 if (Idx < Ops.size()) { 2981 bool DeletedMul = false; 2982 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2983 if (Ops.size() > MulOpsInlineThreshold) 2984 break; 2985 // If we have an mul, expand the mul operands onto the end of the 2986 // operands list. 2987 Ops.erase(Ops.begin()+Idx); 2988 Ops.append(Mul->op_begin(), Mul->op_end()); 2989 DeletedMul = true; 2990 } 2991 2992 // If we deleted at least one mul, we added operands to the end of the 2993 // list, and they are not necessarily sorted. Recurse to resort and 2994 // resimplify any operands we just acquired. 2995 if (DeletedMul) 2996 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2997 } 2998 2999 // If there are any add recurrences in the operands list, see if any other 3000 // added values are loop invariant. If so, we can fold them into the 3001 // recurrence. 3002 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3003 ++Idx; 3004 3005 // Scan over all recurrences, trying to fold loop invariants into them. 3006 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3007 // Scan all of the other operands to this mul and add them to the vector 3008 // if they are loop invariant w.r.t. the recurrence. 3009 SmallVector<const SCEV *, 8> LIOps; 3010 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3011 const Loop *AddRecLoop = AddRec->getLoop(); 3012 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3013 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3014 LIOps.push_back(Ops[i]); 3015 Ops.erase(Ops.begin()+i); 3016 --i; --e; 3017 } 3018 3019 // If we found some loop invariants, fold them into the recurrence. 3020 if (!LIOps.empty()) { 3021 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3022 SmallVector<const SCEV *, 4> NewOps; 3023 NewOps.reserve(AddRec->getNumOperands()); 3024 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3025 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3026 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3027 SCEV::FlagAnyWrap, Depth + 1)); 3028 3029 // Build the new addrec. Propagate the NUW and NSW flags if both the 3030 // outer mul and the inner addrec are guaranteed to have no overflow. 3031 // 3032 // No self-wrap cannot be guaranteed after changing the step size, but 3033 // will be inferred if either NUW or NSW is true. 3034 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 3035 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 3036 3037 // If all of the other operands were loop invariant, we are done. 3038 if (Ops.size() == 1) return NewRec; 3039 3040 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3041 for (unsigned i = 0;; ++i) 3042 if (Ops[i] == AddRec) { 3043 Ops[i] = NewRec; 3044 break; 3045 } 3046 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3047 } 3048 3049 // Okay, if there weren't any loop invariants to be folded, check to see 3050 // if there are multiple AddRec's with the same loop induction variable 3051 // being multiplied together. If so, we can fold them. 3052 3053 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3054 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3055 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3056 // ]]],+,...up to x=2n}. 3057 // Note that the arguments to choose() are always integers with values 3058 // known at compile time, never SCEV objects. 3059 // 3060 // The implementation avoids pointless extra computations when the two 3061 // addrec's are of different length (mathematically, it's equivalent to 3062 // an infinite stream of zeros on the right). 3063 bool OpsModified = false; 3064 for (unsigned OtherIdx = Idx+1; 3065 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3066 ++OtherIdx) { 3067 const SCEVAddRecExpr *OtherAddRec = 3068 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3069 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3070 continue; 3071 3072 // Limit max number of arguments to avoid creation of unreasonably big 3073 // SCEVAddRecs with very complex operands. 3074 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3075 MaxAddRecSize || isHugeExpression(AddRec) || 3076 isHugeExpression(OtherAddRec)) 3077 continue; 3078 3079 bool Overflow = false; 3080 Type *Ty = AddRec->getType(); 3081 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3082 SmallVector<const SCEV*, 7> AddRecOps; 3083 for (int x = 0, xe = AddRec->getNumOperands() + 3084 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3085 SmallVector <const SCEV *, 7> SumOps; 3086 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3087 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3088 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3089 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3090 z < ze && !Overflow; ++z) { 3091 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3092 uint64_t Coeff; 3093 if (LargerThan64Bits) 3094 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3095 else 3096 Coeff = Coeff1*Coeff2; 3097 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3098 const SCEV *Term1 = AddRec->getOperand(y-z); 3099 const SCEV *Term2 = OtherAddRec->getOperand(z); 3100 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3101 SCEV::FlagAnyWrap, Depth + 1)); 3102 } 3103 } 3104 if (SumOps.empty()) 3105 SumOps.push_back(getZero(Ty)); 3106 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3107 } 3108 if (!Overflow) { 3109 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3110 SCEV::FlagAnyWrap); 3111 if (Ops.size() == 2) return NewAddRec; 3112 Ops[Idx] = NewAddRec; 3113 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3114 OpsModified = true; 3115 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3116 if (!AddRec) 3117 break; 3118 } 3119 } 3120 if (OpsModified) 3121 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3122 3123 // Otherwise couldn't fold anything into this recurrence. Move onto the 3124 // next one. 3125 } 3126 3127 // Okay, it looks like we really DO need an mul expr. Check to see if we 3128 // already have one, otherwise create a new one. 3129 return getOrCreateMulExpr(Ops, Flags); 3130 } 3131 3132 /// Represents an unsigned remainder expression based on unsigned division. 3133 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3134 const SCEV *RHS) { 3135 assert(getEffectiveSCEVType(LHS->getType()) == 3136 getEffectiveSCEVType(RHS->getType()) && 3137 "SCEVURemExpr operand types don't match!"); 3138 3139 // Short-circuit easy cases 3140 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3141 // If constant is one, the result is trivial 3142 if (RHSC->getValue()->isOne()) 3143 return getZero(LHS->getType()); // X urem 1 --> 0 3144 3145 // If constant is a power of two, fold into a zext(trunc(LHS)). 3146 if (RHSC->getAPInt().isPowerOf2()) { 3147 Type *FullTy = LHS->getType(); 3148 Type *TruncTy = 3149 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3150 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3151 } 3152 } 3153 3154 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3155 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3156 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3157 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3158 } 3159 3160 /// Get a canonical unsigned division expression, or something simpler if 3161 /// possible. 3162 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3163 const SCEV *RHS) { 3164 assert(getEffectiveSCEVType(LHS->getType()) == 3165 getEffectiveSCEVType(RHS->getType()) && 3166 "SCEVUDivExpr operand types don't match!"); 3167 3168 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3169 if (RHSC->getValue()->isOne()) 3170 return LHS; // X udiv 1 --> x 3171 // If the denominator is zero, the result of the udiv is undefined. Don't 3172 // try to analyze it, because the resolution chosen here may differ from 3173 // the resolution chosen in other parts of the compiler. 3174 if (!RHSC->getValue()->isZero()) { 3175 // Determine if the division can be folded into the operands of 3176 // its operands. 3177 // TODO: Generalize this to non-constants by using known-bits information. 3178 Type *Ty = LHS->getType(); 3179 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3180 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3181 // For non-power-of-two values, effectively round the value up to the 3182 // nearest power of two. 3183 if (!RHSC->getAPInt().isPowerOf2()) 3184 ++MaxShiftAmt; 3185 IntegerType *ExtTy = 3186 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3187 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3188 if (const SCEVConstant *Step = 3189 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3190 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3191 const APInt &StepInt = Step->getAPInt(); 3192 const APInt &DivInt = RHSC->getAPInt(); 3193 if (!StepInt.urem(DivInt) && 3194 getZeroExtendExpr(AR, ExtTy) == 3195 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3196 getZeroExtendExpr(Step, ExtTy), 3197 AR->getLoop(), SCEV::FlagAnyWrap)) { 3198 SmallVector<const SCEV *, 4> Operands; 3199 for (const SCEV *Op : AR->operands()) 3200 Operands.push_back(getUDivExpr(Op, RHS)); 3201 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3202 } 3203 /// Get a canonical UDivExpr for a recurrence. 3204 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3205 // We can currently only fold X%N if X is constant. 3206 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3207 if (StartC && !DivInt.urem(StepInt) && 3208 getZeroExtendExpr(AR, ExtTy) == 3209 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3210 getZeroExtendExpr(Step, ExtTy), 3211 AR->getLoop(), SCEV::FlagAnyWrap)) { 3212 const APInt &StartInt = StartC->getAPInt(); 3213 const APInt &StartRem = StartInt.urem(StepInt); 3214 if (StartRem != 0) 3215 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3216 AR->getLoop(), SCEV::FlagNW); 3217 } 3218 } 3219 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3220 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3221 SmallVector<const SCEV *, 4> Operands; 3222 for (const SCEV *Op : M->operands()) 3223 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3224 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3225 // Find an operand that's safely divisible. 3226 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3227 const SCEV *Op = M->getOperand(i); 3228 const SCEV *Div = getUDivExpr(Op, RHSC); 3229 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3230 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3231 M->op_end()); 3232 Operands[i] = Div; 3233 return getMulExpr(Operands); 3234 } 3235 } 3236 } 3237 3238 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3239 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3240 if (auto *DivisorConstant = 3241 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3242 bool Overflow = false; 3243 APInt NewRHS = 3244 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3245 if (Overflow) { 3246 return getConstant(RHSC->getType(), 0, false); 3247 } 3248 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3249 } 3250 } 3251 3252 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3253 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3254 SmallVector<const SCEV *, 4> Operands; 3255 for (const SCEV *Op : A->operands()) 3256 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3257 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3258 Operands.clear(); 3259 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3260 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3261 if (isa<SCEVUDivExpr>(Op) || 3262 getMulExpr(Op, RHS) != A->getOperand(i)) 3263 break; 3264 Operands.push_back(Op); 3265 } 3266 if (Operands.size() == A->getNumOperands()) 3267 return getAddExpr(Operands); 3268 } 3269 } 3270 3271 // Fold if both operands are constant. 3272 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3273 Constant *LHSCV = LHSC->getValue(); 3274 Constant *RHSCV = RHSC->getValue(); 3275 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3276 RHSCV))); 3277 } 3278 } 3279 } 3280 3281 FoldingSetNodeID ID; 3282 ID.AddInteger(scUDivExpr); 3283 ID.AddPointer(LHS); 3284 ID.AddPointer(RHS); 3285 void *IP = nullptr; 3286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3287 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3288 LHS, RHS); 3289 UniqueSCEVs.InsertNode(S, IP); 3290 addToLoopUseLists(S); 3291 return S; 3292 } 3293 3294 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3295 APInt A = C1->getAPInt().abs(); 3296 APInt B = C2->getAPInt().abs(); 3297 uint32_t ABW = A.getBitWidth(); 3298 uint32_t BBW = B.getBitWidth(); 3299 3300 if (ABW > BBW) 3301 B = B.zext(ABW); 3302 else if (ABW < BBW) 3303 A = A.zext(BBW); 3304 3305 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3306 } 3307 3308 /// Get a canonical unsigned division expression, or something simpler if 3309 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3310 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3311 /// it's not exact because the udiv may be clearing bits. 3312 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3313 const SCEV *RHS) { 3314 // TODO: we could try to find factors in all sorts of things, but for now we 3315 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3316 // end of this file for inspiration. 3317 3318 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3319 if (!Mul || !Mul->hasNoUnsignedWrap()) 3320 return getUDivExpr(LHS, RHS); 3321 3322 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3323 // If the mulexpr multiplies by a constant, then that constant must be the 3324 // first element of the mulexpr. 3325 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3326 if (LHSCst == RHSCst) { 3327 SmallVector<const SCEV *, 2> Operands; 3328 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3329 return getMulExpr(Operands); 3330 } 3331 3332 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3333 // that there's a factor provided by one of the other terms. We need to 3334 // check. 3335 APInt Factor = gcd(LHSCst, RHSCst); 3336 if (!Factor.isIntN(1)) { 3337 LHSCst = 3338 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3339 RHSCst = 3340 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3341 SmallVector<const SCEV *, 2> Operands; 3342 Operands.push_back(LHSCst); 3343 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3344 LHS = getMulExpr(Operands); 3345 RHS = RHSCst; 3346 Mul = dyn_cast<SCEVMulExpr>(LHS); 3347 if (!Mul) 3348 return getUDivExactExpr(LHS, RHS); 3349 } 3350 } 3351 } 3352 3353 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3354 if (Mul->getOperand(i) == RHS) { 3355 SmallVector<const SCEV *, 2> Operands; 3356 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3357 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3358 return getMulExpr(Operands); 3359 } 3360 } 3361 3362 return getUDivExpr(LHS, RHS); 3363 } 3364 3365 /// Get an add recurrence expression for the specified loop. Simplify the 3366 /// expression as much as possible. 3367 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3368 const Loop *L, 3369 SCEV::NoWrapFlags Flags) { 3370 SmallVector<const SCEV *, 4> Operands; 3371 Operands.push_back(Start); 3372 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3373 if (StepChrec->getLoop() == L) { 3374 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3375 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3376 } 3377 3378 Operands.push_back(Step); 3379 return getAddRecExpr(Operands, L, Flags); 3380 } 3381 3382 /// Get an add recurrence expression for the specified loop. Simplify the 3383 /// expression as much as possible. 3384 const SCEV * 3385 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3386 const Loop *L, SCEV::NoWrapFlags Flags) { 3387 if (Operands.size() == 1) return Operands[0]; 3388 #ifndef NDEBUG 3389 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3390 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3391 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3392 "SCEVAddRecExpr operand types don't match!"); 3393 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3394 assert(isLoopInvariant(Operands[i], L) && 3395 "SCEVAddRecExpr operand is not loop-invariant!"); 3396 #endif 3397 3398 if (Operands.back()->isZero()) { 3399 Operands.pop_back(); 3400 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3401 } 3402 3403 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3404 // use that information to infer NUW and NSW flags. However, computing a 3405 // BE count requires calling getAddRecExpr, so we may not yet have a 3406 // meaningful BE count at this point (and if we don't, we'd be stuck 3407 // with a SCEVCouldNotCompute as the cached BE count). 3408 3409 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3410 3411 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3412 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3413 const Loop *NestedLoop = NestedAR->getLoop(); 3414 if (L->contains(NestedLoop) 3415 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3416 : (!NestedLoop->contains(L) && 3417 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3418 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3419 NestedAR->op_end()); 3420 Operands[0] = NestedAR->getStart(); 3421 // AddRecs require their operands be loop-invariant with respect to their 3422 // loops. Don't perform this transformation if it would break this 3423 // requirement. 3424 bool AllInvariant = all_of( 3425 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3426 3427 if (AllInvariant) { 3428 // Create a recurrence for the outer loop with the same step size. 3429 // 3430 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3431 // inner recurrence has the same property. 3432 SCEV::NoWrapFlags OuterFlags = 3433 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3434 3435 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3436 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3437 return isLoopInvariant(Op, NestedLoop); 3438 }); 3439 3440 if (AllInvariant) { 3441 // Ok, both add recurrences are valid after the transformation. 3442 // 3443 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3444 // the outer recurrence has the same property. 3445 SCEV::NoWrapFlags InnerFlags = 3446 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3447 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3448 } 3449 } 3450 // Reset Operands to its original state. 3451 Operands[0] = NestedAR; 3452 } 3453 } 3454 3455 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3456 // already have one, otherwise create a new one. 3457 return getOrCreateAddRecExpr(Operands, L, Flags); 3458 } 3459 3460 const SCEV * 3461 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3462 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3463 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3464 // getSCEV(Base)->getType() has the same address space as Base->getType() 3465 // because SCEV::getType() preserves the address space. 3466 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3467 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3468 // instruction to its SCEV, because the Instruction may be guarded by control 3469 // flow and the no-overflow bits may not be valid for the expression in any 3470 // context. This can be fixed similarly to how these flags are handled for 3471 // adds. 3472 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3473 : SCEV::FlagAnyWrap; 3474 3475 const SCEV *TotalOffset = getZero(IntPtrTy); 3476 // The array size is unimportant. The first thing we do on CurTy is getting 3477 // its element type. 3478 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3479 for (const SCEV *IndexExpr : IndexExprs) { 3480 // Compute the (potentially symbolic) offset in bytes for this index. 3481 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3482 // For a struct, add the member offset. 3483 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3484 unsigned FieldNo = Index->getZExtValue(); 3485 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3486 3487 // Add the field offset to the running total offset. 3488 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3489 3490 // Update CurTy to the type of the field at Index. 3491 CurTy = STy->getTypeAtIndex(Index); 3492 } else { 3493 // Update CurTy to its element type. 3494 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3495 // For an array, add the element offset, explicitly scaled. 3496 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3497 // Getelementptr indices are signed. 3498 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3499 3500 // Multiply the index by the element size to compute the element offset. 3501 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3502 3503 // Add the element offset to the running total offset. 3504 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3505 } 3506 } 3507 3508 // Add the total offset from all the GEP indices to the base. 3509 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3510 } 3511 3512 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3513 const SCEV *RHS) { 3514 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3515 return getSMaxExpr(Ops); 3516 } 3517 3518 const SCEV * 3519 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3520 assert(!Ops.empty() && "Cannot get empty smax!"); 3521 if (Ops.size() == 1) return Ops[0]; 3522 #ifndef NDEBUG 3523 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3524 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3525 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3526 "SCEVSMaxExpr operand types don't match!"); 3527 #endif 3528 3529 // Sort by complexity, this groups all similar expression types together. 3530 GroupByComplexity(Ops, &LI, DT); 3531 3532 // If there are any constants, fold them together. 3533 unsigned Idx = 0; 3534 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3535 ++Idx; 3536 assert(Idx < Ops.size()); 3537 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3538 // We found two constants, fold them together! 3539 ConstantInt *Fold = ConstantInt::get( 3540 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3541 Ops[0] = getConstant(Fold); 3542 Ops.erase(Ops.begin()+1); // Erase the folded element 3543 if (Ops.size() == 1) return Ops[0]; 3544 LHSC = cast<SCEVConstant>(Ops[0]); 3545 } 3546 3547 // If we are left with a constant minimum-int, strip it off. 3548 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3549 Ops.erase(Ops.begin()); 3550 --Idx; 3551 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3552 // If we have an smax with a constant maximum-int, it will always be 3553 // maximum-int. 3554 return Ops[0]; 3555 } 3556 3557 if (Ops.size() == 1) return Ops[0]; 3558 } 3559 3560 // Find the first SMax 3561 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3562 ++Idx; 3563 3564 // Check to see if one of the operands is an SMax. If so, expand its operands 3565 // onto our operand list, and recurse to simplify. 3566 if (Idx < Ops.size()) { 3567 bool DeletedSMax = false; 3568 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3569 Ops.erase(Ops.begin()+Idx); 3570 Ops.append(SMax->op_begin(), SMax->op_end()); 3571 DeletedSMax = true; 3572 } 3573 3574 if (DeletedSMax) 3575 return getSMaxExpr(Ops); 3576 } 3577 3578 // Okay, check to see if the same value occurs in the operand list twice. If 3579 // so, delete one. Since we sorted the list, these values are required to 3580 // be adjacent. 3581 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3582 // X smax Y smax Y --> X smax Y 3583 // X smax Y --> X, if X is always greater than Y 3584 if (Ops[i] == Ops[i+1] || 3585 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3586 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3587 --i; --e; 3588 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3589 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3590 --i; --e; 3591 } 3592 3593 if (Ops.size() == 1) return Ops[0]; 3594 3595 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3596 3597 // Okay, it looks like we really DO need an smax expr. Check to see if we 3598 // already have one, otherwise create a new one. 3599 FoldingSetNodeID ID; 3600 ID.AddInteger(scSMaxExpr); 3601 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3602 ID.AddPointer(Ops[i]); 3603 void *IP = nullptr; 3604 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3605 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3606 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3607 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3608 O, Ops.size()); 3609 UniqueSCEVs.InsertNode(S, IP); 3610 addToLoopUseLists(S); 3611 return S; 3612 } 3613 3614 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3615 const SCEV *RHS) { 3616 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3617 return getUMaxExpr(Ops); 3618 } 3619 3620 const SCEV * 3621 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3622 assert(!Ops.empty() && "Cannot get empty umax!"); 3623 if (Ops.size() == 1) return Ops[0]; 3624 #ifndef NDEBUG 3625 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3626 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3627 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3628 "SCEVUMaxExpr operand types don't match!"); 3629 #endif 3630 3631 // Sort by complexity, this groups all similar expression types together. 3632 GroupByComplexity(Ops, &LI, DT); 3633 3634 // If there are any constants, fold them together. 3635 unsigned Idx = 0; 3636 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3637 ++Idx; 3638 assert(Idx < Ops.size()); 3639 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3640 // We found two constants, fold them together! 3641 ConstantInt *Fold = ConstantInt::get( 3642 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3643 Ops[0] = getConstant(Fold); 3644 Ops.erase(Ops.begin()+1); // Erase the folded element 3645 if (Ops.size() == 1) return Ops[0]; 3646 LHSC = cast<SCEVConstant>(Ops[0]); 3647 } 3648 3649 // If we are left with a constant minimum-int, strip it off. 3650 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3651 Ops.erase(Ops.begin()); 3652 --Idx; 3653 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3654 // If we have an umax with a constant maximum-int, it will always be 3655 // maximum-int. 3656 return Ops[0]; 3657 } 3658 3659 if (Ops.size() == 1) return Ops[0]; 3660 } 3661 3662 // Find the first UMax 3663 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3664 ++Idx; 3665 3666 // Check to see if one of the operands is a UMax. If so, expand its operands 3667 // onto our operand list, and recurse to simplify. 3668 if (Idx < Ops.size()) { 3669 bool DeletedUMax = false; 3670 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3671 Ops.erase(Ops.begin()+Idx); 3672 Ops.append(UMax->op_begin(), UMax->op_end()); 3673 DeletedUMax = true; 3674 } 3675 3676 if (DeletedUMax) 3677 return getUMaxExpr(Ops); 3678 } 3679 3680 // Okay, check to see if the same value occurs in the operand list twice. If 3681 // so, delete one. Since we sorted the list, these values are required to 3682 // be adjacent. 3683 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3684 // X umax Y umax Y --> X umax Y 3685 // X umax Y --> X, if X is always greater than Y 3686 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( 3687 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { 3688 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3689 --i; --e; 3690 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], 3691 Ops[i + 1])) { 3692 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3693 --i; --e; 3694 } 3695 3696 if (Ops.size() == 1) return Ops[0]; 3697 3698 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3699 3700 // Okay, it looks like we really DO need a umax expr. Check to see if we 3701 // already have one, otherwise create a new one. 3702 FoldingSetNodeID ID; 3703 ID.AddInteger(scUMaxExpr); 3704 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3705 ID.AddPointer(Ops[i]); 3706 void *IP = nullptr; 3707 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3708 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3709 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3710 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3711 O, Ops.size()); 3712 UniqueSCEVs.InsertNode(S, IP); 3713 addToLoopUseLists(S); 3714 return S; 3715 } 3716 3717 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3718 const SCEV *RHS) { 3719 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3720 return getSMinExpr(Ops); 3721 } 3722 3723 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3724 // ~smax(~x, ~y, ~z) == smin(x, y, z). 3725 SmallVector<const SCEV *, 2> NotOps; 3726 for (auto *S : Ops) 3727 NotOps.push_back(getNotSCEV(S)); 3728 return getNotSCEV(getSMaxExpr(NotOps)); 3729 } 3730 3731 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3732 const SCEV *RHS) { 3733 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3734 return getUMinExpr(Ops); 3735 } 3736 3737 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3738 assert(!Ops.empty() && "At least one operand must be!"); 3739 // Trivial case. 3740 if (Ops.size() == 1) 3741 return Ops[0]; 3742 3743 // ~umax(~x, ~y, ~z) == umin(x, y, z). 3744 SmallVector<const SCEV *, 2> NotOps; 3745 for (auto *S : Ops) 3746 NotOps.push_back(getNotSCEV(S)); 3747 return getNotSCEV(getUMaxExpr(NotOps)); 3748 } 3749 3750 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3751 // We can bypass creating a target-independent 3752 // constant expression and then folding it back into a ConstantInt. 3753 // This is just a compile-time optimization. 3754 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3755 } 3756 3757 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3758 StructType *STy, 3759 unsigned FieldNo) { 3760 // We can bypass creating a target-independent 3761 // constant expression and then folding it back into a ConstantInt. 3762 // This is just a compile-time optimization. 3763 return getConstant( 3764 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3765 } 3766 3767 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3768 // Don't attempt to do anything other than create a SCEVUnknown object 3769 // here. createSCEV only calls getUnknown after checking for all other 3770 // interesting possibilities, and any other code that calls getUnknown 3771 // is doing so in order to hide a value from SCEV canonicalization. 3772 3773 FoldingSetNodeID ID; 3774 ID.AddInteger(scUnknown); 3775 ID.AddPointer(V); 3776 void *IP = nullptr; 3777 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3778 assert(cast<SCEVUnknown>(S)->getValue() == V && 3779 "Stale SCEVUnknown in uniquing map!"); 3780 return S; 3781 } 3782 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3783 FirstUnknown); 3784 FirstUnknown = cast<SCEVUnknown>(S); 3785 UniqueSCEVs.InsertNode(S, IP); 3786 return S; 3787 } 3788 3789 //===----------------------------------------------------------------------===// 3790 // Basic SCEV Analysis and PHI Idiom Recognition Code 3791 // 3792 3793 /// Test if values of the given type are analyzable within the SCEV 3794 /// framework. This primarily includes integer types, and it can optionally 3795 /// include pointer types if the ScalarEvolution class has access to 3796 /// target-specific information. 3797 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3798 // Integers and pointers are always SCEVable. 3799 return Ty->isIntOrPtrTy(); 3800 } 3801 3802 /// Return the size in bits of the specified type, for which isSCEVable must 3803 /// return true. 3804 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3805 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3806 if (Ty->isPointerTy()) 3807 return getDataLayout().getIndexTypeSizeInBits(Ty); 3808 return getDataLayout().getTypeSizeInBits(Ty); 3809 } 3810 3811 /// Return a type with the same bitwidth as the given type and which represents 3812 /// how SCEV will treat the given type, for which isSCEVable must return 3813 /// true. For pointer types, this is the pointer-sized integer type. 3814 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3815 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3816 3817 if (Ty->isIntegerTy()) 3818 return Ty; 3819 3820 // The only other support type is pointer. 3821 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3822 return getDataLayout().getIntPtrType(Ty); 3823 } 3824 3825 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3826 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3827 } 3828 3829 const SCEV *ScalarEvolution::getCouldNotCompute() { 3830 return CouldNotCompute.get(); 3831 } 3832 3833 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3834 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3835 auto *SU = dyn_cast<SCEVUnknown>(S); 3836 return SU && SU->getValue() == nullptr; 3837 }); 3838 3839 return !ContainsNulls; 3840 } 3841 3842 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3843 HasRecMapType::iterator I = HasRecMap.find(S); 3844 if (I != HasRecMap.end()) 3845 return I->second; 3846 3847 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3848 HasRecMap.insert({S, FoundAddRec}); 3849 return FoundAddRec; 3850 } 3851 3852 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3853 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3854 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3855 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3856 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3857 if (!Add) 3858 return {S, nullptr}; 3859 3860 if (Add->getNumOperands() != 2) 3861 return {S, nullptr}; 3862 3863 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3864 if (!ConstOp) 3865 return {S, nullptr}; 3866 3867 return {Add->getOperand(1), ConstOp->getValue()}; 3868 } 3869 3870 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3871 /// by the value and offset from any ValueOffsetPair in the set. 3872 SetVector<ScalarEvolution::ValueOffsetPair> * 3873 ScalarEvolution::getSCEVValues(const SCEV *S) { 3874 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3875 if (SI == ExprValueMap.end()) 3876 return nullptr; 3877 #ifndef NDEBUG 3878 if (VerifySCEVMap) { 3879 // Check there is no dangling Value in the set returned. 3880 for (const auto &VE : SI->second) 3881 assert(ValueExprMap.count(VE.first)); 3882 } 3883 #endif 3884 return &SI->second; 3885 } 3886 3887 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3888 /// cannot be used separately. eraseValueFromMap should be used to remove 3889 /// V from ValueExprMap and ExprValueMap at the same time. 3890 void ScalarEvolution::eraseValueFromMap(Value *V) { 3891 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3892 if (I != ValueExprMap.end()) { 3893 const SCEV *S = I->second; 3894 // Remove {V, 0} from the set of ExprValueMap[S] 3895 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3896 SV->remove({V, nullptr}); 3897 3898 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3899 const SCEV *Stripped; 3900 ConstantInt *Offset; 3901 std::tie(Stripped, Offset) = splitAddExpr(S); 3902 if (Offset != nullptr) { 3903 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3904 SV->remove({V, Offset}); 3905 } 3906 ValueExprMap.erase(V); 3907 } 3908 } 3909 3910 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3911 /// TODO: In reality it is better to check the poison recursively 3912 /// but this is better than nothing. 3913 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3914 if (auto *I = dyn_cast<Instruction>(V)) { 3915 if (isa<OverflowingBinaryOperator>(I)) { 3916 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3917 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3918 return true; 3919 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3920 return true; 3921 } 3922 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3923 return true; 3924 } 3925 return false; 3926 } 3927 3928 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3929 /// create a new one. 3930 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3931 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3932 3933 const SCEV *S = getExistingSCEV(V); 3934 if (S == nullptr) { 3935 S = createSCEV(V); 3936 // During PHI resolution, it is possible to create two SCEVs for the same 3937 // V, so it is needed to double check whether V->S is inserted into 3938 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3939 std::pair<ValueExprMapType::iterator, bool> Pair = 3940 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3941 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3942 ExprValueMap[S].insert({V, nullptr}); 3943 3944 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3945 // ExprValueMap. 3946 const SCEV *Stripped = S; 3947 ConstantInt *Offset = nullptr; 3948 std::tie(Stripped, Offset) = splitAddExpr(S); 3949 // If stripped is SCEVUnknown, don't bother to save 3950 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3951 // increase the complexity of the expansion code. 3952 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3953 // because it may generate add/sub instead of GEP in SCEV expansion. 3954 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3955 !isa<GetElementPtrInst>(V)) 3956 ExprValueMap[Stripped].insert({V, Offset}); 3957 } 3958 } 3959 return S; 3960 } 3961 3962 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3963 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3964 3965 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3966 if (I != ValueExprMap.end()) { 3967 const SCEV *S = I->second; 3968 if (checkValidity(S)) 3969 return S; 3970 eraseValueFromMap(V); 3971 forgetMemoizedResults(S); 3972 } 3973 return nullptr; 3974 } 3975 3976 /// Return a SCEV corresponding to -V = -1*V 3977 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3978 SCEV::NoWrapFlags Flags) { 3979 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3980 return getConstant( 3981 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3982 3983 Type *Ty = V->getType(); 3984 Ty = getEffectiveSCEVType(Ty); 3985 return getMulExpr( 3986 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3987 } 3988 3989 /// Return a SCEV corresponding to ~V = -1-V 3990 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3991 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3992 return getConstant( 3993 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3994 3995 Type *Ty = V->getType(); 3996 Ty = getEffectiveSCEVType(Ty); 3997 const SCEV *AllOnes = 3998 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3999 return getMinusSCEV(AllOnes, V); 4000 } 4001 4002 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4003 SCEV::NoWrapFlags Flags, 4004 unsigned Depth) { 4005 // Fast path: X - X --> 0. 4006 if (LHS == RHS) 4007 return getZero(LHS->getType()); 4008 4009 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4010 // makes it so that we cannot make much use of NUW. 4011 auto AddFlags = SCEV::FlagAnyWrap; 4012 const bool RHSIsNotMinSigned = 4013 !getSignedRangeMin(RHS).isMinSignedValue(); 4014 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4015 // Let M be the minimum representable signed value. Then (-1)*RHS 4016 // signed-wraps if and only if RHS is M. That can happen even for 4017 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4018 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4019 // (-1)*RHS, we need to prove that RHS != M. 4020 // 4021 // If LHS is non-negative and we know that LHS - RHS does not 4022 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4023 // either by proving that RHS > M or that LHS >= 0. 4024 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4025 AddFlags = SCEV::FlagNSW; 4026 } 4027 } 4028 4029 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4030 // RHS is NSW and LHS >= 0. 4031 // 4032 // The difficulty here is that the NSW flag may have been proven 4033 // relative to a loop that is to be found in a recurrence in LHS and 4034 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4035 // larger scope than intended. 4036 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4037 4038 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4039 } 4040 4041 const SCEV * 4042 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 4043 Type *SrcTy = V->getType(); 4044 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4045 "Cannot truncate or zero extend with non-integer arguments!"); 4046 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4047 return V; // No conversion 4048 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4049 return getTruncateExpr(V, Ty); 4050 return getZeroExtendExpr(V, Ty); 4051 } 4052 4053 const SCEV * 4054 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 4055 Type *Ty) { 4056 Type *SrcTy = V->getType(); 4057 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4058 "Cannot truncate or zero extend with non-integer arguments!"); 4059 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4060 return V; // No conversion 4061 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4062 return getTruncateExpr(V, Ty); 4063 return getSignExtendExpr(V, Ty); 4064 } 4065 4066 const SCEV * 4067 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4068 Type *SrcTy = V->getType(); 4069 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4070 "Cannot noop or zero extend with non-integer arguments!"); 4071 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4072 "getNoopOrZeroExtend cannot truncate!"); 4073 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4074 return V; // No conversion 4075 return getZeroExtendExpr(V, Ty); 4076 } 4077 4078 const SCEV * 4079 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4080 Type *SrcTy = V->getType(); 4081 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4082 "Cannot noop or sign extend with non-integer arguments!"); 4083 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4084 "getNoopOrSignExtend cannot truncate!"); 4085 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4086 return V; // No conversion 4087 return getSignExtendExpr(V, Ty); 4088 } 4089 4090 const SCEV * 4091 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4092 Type *SrcTy = V->getType(); 4093 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4094 "Cannot noop or any extend with non-integer arguments!"); 4095 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4096 "getNoopOrAnyExtend cannot truncate!"); 4097 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4098 return V; // No conversion 4099 return getAnyExtendExpr(V, Ty); 4100 } 4101 4102 const SCEV * 4103 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4104 Type *SrcTy = V->getType(); 4105 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4106 "Cannot truncate or noop with non-integer arguments!"); 4107 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4108 "getTruncateOrNoop cannot extend!"); 4109 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4110 return V; // No conversion 4111 return getTruncateExpr(V, Ty); 4112 } 4113 4114 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4115 const SCEV *RHS) { 4116 const SCEV *PromotedLHS = LHS; 4117 const SCEV *PromotedRHS = RHS; 4118 4119 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4120 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4121 else 4122 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4123 4124 return getUMaxExpr(PromotedLHS, PromotedRHS); 4125 } 4126 4127 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4128 const SCEV *RHS) { 4129 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4130 return getUMinFromMismatchedTypes(Ops); 4131 } 4132 4133 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4134 SmallVectorImpl<const SCEV *> &Ops) { 4135 assert(!Ops.empty() && "At least one operand must be!"); 4136 // Trivial case. 4137 if (Ops.size() == 1) 4138 return Ops[0]; 4139 4140 // Find the max type first. 4141 Type *MaxType = nullptr; 4142 for (auto *S : Ops) 4143 if (MaxType) 4144 MaxType = getWiderType(MaxType, S->getType()); 4145 else 4146 MaxType = S->getType(); 4147 4148 // Extend all ops to max type. 4149 SmallVector<const SCEV *, 2> PromotedOps; 4150 for (auto *S : Ops) 4151 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4152 4153 // Generate umin. 4154 return getUMinExpr(PromotedOps); 4155 } 4156 4157 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4158 // A pointer operand may evaluate to a nonpointer expression, such as null. 4159 if (!V->getType()->isPointerTy()) 4160 return V; 4161 4162 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4163 return getPointerBase(Cast->getOperand()); 4164 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4165 const SCEV *PtrOp = nullptr; 4166 for (const SCEV *NAryOp : NAry->operands()) { 4167 if (NAryOp->getType()->isPointerTy()) { 4168 // Cannot find the base of an expression with multiple pointer operands. 4169 if (PtrOp) 4170 return V; 4171 PtrOp = NAryOp; 4172 } 4173 } 4174 if (!PtrOp) 4175 return V; 4176 return getPointerBase(PtrOp); 4177 } 4178 return V; 4179 } 4180 4181 /// Push users of the given Instruction onto the given Worklist. 4182 static void 4183 PushDefUseChildren(Instruction *I, 4184 SmallVectorImpl<Instruction *> &Worklist) { 4185 // Push the def-use children onto the Worklist stack. 4186 for (User *U : I->users()) 4187 Worklist.push_back(cast<Instruction>(U)); 4188 } 4189 4190 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4191 SmallVector<Instruction *, 16> Worklist; 4192 PushDefUseChildren(PN, Worklist); 4193 4194 SmallPtrSet<Instruction *, 8> Visited; 4195 Visited.insert(PN); 4196 while (!Worklist.empty()) { 4197 Instruction *I = Worklist.pop_back_val(); 4198 if (!Visited.insert(I).second) 4199 continue; 4200 4201 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4202 if (It != ValueExprMap.end()) { 4203 const SCEV *Old = It->second; 4204 4205 // Short-circuit the def-use traversal if the symbolic name 4206 // ceases to appear in expressions. 4207 if (Old != SymName && !hasOperand(Old, SymName)) 4208 continue; 4209 4210 // SCEVUnknown for a PHI either means that it has an unrecognized 4211 // structure, it's a PHI that's in the progress of being computed 4212 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4213 // additional loop trip count information isn't going to change anything. 4214 // In the second case, createNodeForPHI will perform the necessary 4215 // updates on its own when it gets to that point. In the third, we do 4216 // want to forget the SCEVUnknown. 4217 if (!isa<PHINode>(I) || 4218 !isa<SCEVUnknown>(Old) || 4219 (I != PN && Old == SymName)) { 4220 eraseValueFromMap(It->first); 4221 forgetMemoizedResults(Old); 4222 } 4223 } 4224 4225 PushDefUseChildren(I, Worklist); 4226 } 4227 } 4228 4229 namespace { 4230 4231 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4232 /// expression in case its Loop is L. If it is not L then 4233 /// if IgnoreOtherLoops is true then use AddRec itself 4234 /// otherwise rewrite cannot be done. 4235 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4236 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4237 public: 4238 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4239 bool IgnoreOtherLoops = true) { 4240 SCEVInitRewriter Rewriter(L, SE); 4241 const SCEV *Result = Rewriter.visit(S); 4242 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4243 return SE.getCouldNotCompute(); 4244 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4245 ? SE.getCouldNotCompute() 4246 : Result; 4247 } 4248 4249 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4250 if (!SE.isLoopInvariant(Expr, L)) 4251 SeenLoopVariantSCEVUnknown = true; 4252 return Expr; 4253 } 4254 4255 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4256 // Only re-write AddRecExprs for this loop. 4257 if (Expr->getLoop() == L) 4258 return Expr->getStart(); 4259 SeenOtherLoops = true; 4260 return Expr; 4261 } 4262 4263 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4264 4265 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4266 4267 private: 4268 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4269 : SCEVRewriteVisitor(SE), L(L) {} 4270 4271 const Loop *L; 4272 bool SeenLoopVariantSCEVUnknown = false; 4273 bool SeenOtherLoops = false; 4274 }; 4275 4276 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4277 /// increment expression in case its Loop is L. If it is not L then 4278 /// use AddRec itself. 4279 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4280 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4281 public: 4282 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4283 SCEVPostIncRewriter Rewriter(L, SE); 4284 const SCEV *Result = Rewriter.visit(S); 4285 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4286 ? SE.getCouldNotCompute() 4287 : Result; 4288 } 4289 4290 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4291 if (!SE.isLoopInvariant(Expr, L)) 4292 SeenLoopVariantSCEVUnknown = true; 4293 return Expr; 4294 } 4295 4296 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4297 // Only re-write AddRecExprs for this loop. 4298 if (Expr->getLoop() == L) 4299 return Expr->getPostIncExpr(SE); 4300 SeenOtherLoops = true; 4301 return Expr; 4302 } 4303 4304 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4305 4306 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4307 4308 private: 4309 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4310 : SCEVRewriteVisitor(SE), L(L) {} 4311 4312 const Loop *L; 4313 bool SeenLoopVariantSCEVUnknown = false; 4314 bool SeenOtherLoops = false; 4315 }; 4316 4317 /// This class evaluates the compare condition by matching it against the 4318 /// condition of loop latch. If there is a match we assume a true value 4319 /// for the condition while building SCEV nodes. 4320 class SCEVBackedgeConditionFolder 4321 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4322 public: 4323 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4324 ScalarEvolution &SE) { 4325 bool IsPosBECond = false; 4326 Value *BECond = nullptr; 4327 if (BasicBlock *Latch = L->getLoopLatch()) { 4328 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4329 if (BI && BI->isConditional()) { 4330 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4331 "Both outgoing branches should not target same header!"); 4332 BECond = BI->getCondition(); 4333 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4334 } else { 4335 return S; 4336 } 4337 } 4338 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4339 return Rewriter.visit(S); 4340 } 4341 4342 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4343 const SCEV *Result = Expr; 4344 bool InvariantF = SE.isLoopInvariant(Expr, L); 4345 4346 if (!InvariantF) { 4347 Instruction *I = cast<Instruction>(Expr->getValue()); 4348 switch (I->getOpcode()) { 4349 case Instruction::Select: { 4350 SelectInst *SI = cast<SelectInst>(I); 4351 Optional<const SCEV *> Res = 4352 compareWithBackedgeCondition(SI->getCondition()); 4353 if (Res.hasValue()) { 4354 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4355 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4356 } 4357 break; 4358 } 4359 default: { 4360 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4361 if (Res.hasValue()) 4362 Result = Res.getValue(); 4363 break; 4364 } 4365 } 4366 } 4367 return Result; 4368 } 4369 4370 private: 4371 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4372 bool IsPosBECond, ScalarEvolution &SE) 4373 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4374 IsPositiveBECond(IsPosBECond) {} 4375 4376 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4377 4378 const Loop *L; 4379 /// Loop back condition. 4380 Value *BackedgeCond = nullptr; 4381 /// Set to true if loop back is on positive branch condition. 4382 bool IsPositiveBECond; 4383 }; 4384 4385 Optional<const SCEV *> 4386 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4387 4388 // If value matches the backedge condition for loop latch, 4389 // then return a constant evolution node based on loopback 4390 // branch taken. 4391 if (BackedgeCond == IC) 4392 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4393 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4394 return None; 4395 } 4396 4397 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4398 public: 4399 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4400 ScalarEvolution &SE) { 4401 SCEVShiftRewriter Rewriter(L, SE); 4402 const SCEV *Result = Rewriter.visit(S); 4403 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4404 } 4405 4406 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4407 // Only allow AddRecExprs for this loop. 4408 if (!SE.isLoopInvariant(Expr, L)) 4409 Valid = false; 4410 return Expr; 4411 } 4412 4413 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4414 if (Expr->getLoop() == L && Expr->isAffine()) 4415 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4416 Valid = false; 4417 return Expr; 4418 } 4419 4420 bool isValid() { return Valid; } 4421 4422 private: 4423 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4424 : SCEVRewriteVisitor(SE), L(L) {} 4425 4426 const Loop *L; 4427 bool Valid = true; 4428 }; 4429 4430 } // end anonymous namespace 4431 4432 SCEV::NoWrapFlags 4433 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4434 if (!AR->isAffine()) 4435 return SCEV::FlagAnyWrap; 4436 4437 using OBO = OverflowingBinaryOperator; 4438 4439 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4440 4441 if (!AR->hasNoSignedWrap()) { 4442 ConstantRange AddRecRange = getSignedRange(AR); 4443 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4444 4445 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4446 Instruction::Add, IncRange, OBO::NoSignedWrap); 4447 if (NSWRegion.contains(AddRecRange)) 4448 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4449 } 4450 4451 if (!AR->hasNoUnsignedWrap()) { 4452 ConstantRange AddRecRange = getUnsignedRange(AR); 4453 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4454 4455 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4456 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4457 if (NUWRegion.contains(AddRecRange)) 4458 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4459 } 4460 4461 return Result; 4462 } 4463 4464 namespace { 4465 4466 /// Represents an abstract binary operation. This may exist as a 4467 /// normal instruction or constant expression, or may have been 4468 /// derived from an expression tree. 4469 struct BinaryOp { 4470 unsigned Opcode; 4471 Value *LHS; 4472 Value *RHS; 4473 bool IsNSW = false; 4474 bool IsNUW = false; 4475 4476 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4477 /// constant expression. 4478 Operator *Op = nullptr; 4479 4480 explicit BinaryOp(Operator *Op) 4481 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4482 Op(Op) { 4483 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4484 IsNSW = OBO->hasNoSignedWrap(); 4485 IsNUW = OBO->hasNoUnsignedWrap(); 4486 } 4487 } 4488 4489 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4490 bool IsNUW = false) 4491 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4492 }; 4493 4494 } // end anonymous namespace 4495 4496 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4497 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4498 auto *Op = dyn_cast<Operator>(V); 4499 if (!Op) 4500 return None; 4501 4502 // Implementation detail: all the cleverness here should happen without 4503 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4504 // SCEV expressions when possible, and we should not break that. 4505 4506 switch (Op->getOpcode()) { 4507 case Instruction::Add: 4508 case Instruction::Sub: 4509 case Instruction::Mul: 4510 case Instruction::UDiv: 4511 case Instruction::URem: 4512 case Instruction::And: 4513 case Instruction::Or: 4514 case Instruction::AShr: 4515 case Instruction::Shl: 4516 return BinaryOp(Op); 4517 4518 case Instruction::Xor: 4519 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4520 // If the RHS of the xor is a signmask, then this is just an add. 4521 // Instcombine turns add of signmask into xor as a strength reduction step. 4522 if (RHSC->getValue().isSignMask()) 4523 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4524 return BinaryOp(Op); 4525 4526 case Instruction::LShr: 4527 // Turn logical shift right of a constant into a unsigned divide. 4528 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4529 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4530 4531 // If the shift count is not less than the bitwidth, the result of 4532 // the shift is undefined. Don't try to analyze it, because the 4533 // resolution chosen here may differ from the resolution chosen in 4534 // other parts of the compiler. 4535 if (SA->getValue().ult(BitWidth)) { 4536 Constant *X = 4537 ConstantInt::get(SA->getContext(), 4538 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4539 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4540 } 4541 } 4542 return BinaryOp(Op); 4543 4544 case Instruction::ExtractValue: { 4545 auto *EVI = cast<ExtractValueInst>(Op); 4546 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4547 break; 4548 4549 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4550 if (!CI) 4551 break; 4552 4553 if (auto *F = CI->getCalledFunction()) 4554 switch (F->getIntrinsicID()) { 4555 case Intrinsic::sadd_with_overflow: 4556 case Intrinsic::uadd_with_overflow: 4557 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4558 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4559 CI->getArgOperand(1)); 4560 4561 // Now that we know that all uses of the arithmetic-result component of 4562 // CI are guarded by the overflow check, we can go ahead and pretend 4563 // that the arithmetic is non-overflowing. 4564 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4565 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4566 CI->getArgOperand(1), /* IsNSW = */ true, 4567 /* IsNUW = */ false); 4568 else 4569 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4570 CI->getArgOperand(1), /* IsNSW = */ false, 4571 /* IsNUW*/ true); 4572 case Intrinsic::ssub_with_overflow: 4573 case Intrinsic::usub_with_overflow: 4574 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4575 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4576 CI->getArgOperand(1)); 4577 4578 // The same reasoning as sadd/uadd above. 4579 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4580 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4581 CI->getArgOperand(1), /* IsNSW = */ true, 4582 /* IsNUW = */ false); 4583 else 4584 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4585 CI->getArgOperand(1), /* IsNSW = */ false, 4586 /* IsNUW = */ true); 4587 case Intrinsic::smul_with_overflow: 4588 case Intrinsic::umul_with_overflow: 4589 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4590 CI->getArgOperand(1)); 4591 default: 4592 break; 4593 } 4594 break; 4595 } 4596 4597 default: 4598 break; 4599 } 4600 4601 return None; 4602 } 4603 4604 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4605 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4606 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4607 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4608 /// follows one of the following patterns: 4609 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4610 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4611 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4612 /// we return the type of the truncation operation, and indicate whether the 4613 /// truncated type should be treated as signed/unsigned by setting 4614 /// \p Signed to true/false, respectively. 4615 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4616 bool &Signed, ScalarEvolution &SE) { 4617 // The case where Op == SymbolicPHI (that is, with no type conversions on 4618 // the way) is handled by the regular add recurrence creating logic and 4619 // would have already been triggered in createAddRecForPHI. Reaching it here 4620 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4621 // because one of the other operands of the SCEVAddExpr updating this PHI is 4622 // not invariant). 4623 // 4624 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4625 // this case predicates that allow us to prove that Op == SymbolicPHI will 4626 // be added. 4627 if (Op == SymbolicPHI) 4628 return nullptr; 4629 4630 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4631 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4632 if (SourceBits != NewBits) 4633 return nullptr; 4634 4635 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4636 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4637 if (!SExt && !ZExt) 4638 return nullptr; 4639 const SCEVTruncateExpr *Trunc = 4640 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4641 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4642 if (!Trunc) 4643 return nullptr; 4644 const SCEV *X = Trunc->getOperand(); 4645 if (X != SymbolicPHI) 4646 return nullptr; 4647 Signed = SExt != nullptr; 4648 return Trunc->getType(); 4649 } 4650 4651 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4652 if (!PN->getType()->isIntegerTy()) 4653 return nullptr; 4654 const Loop *L = LI.getLoopFor(PN->getParent()); 4655 if (!L || L->getHeader() != PN->getParent()) 4656 return nullptr; 4657 return L; 4658 } 4659 4660 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4661 // computation that updates the phi follows the following pattern: 4662 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4663 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4664 // If so, try to see if it can be rewritten as an AddRecExpr under some 4665 // Predicates. If successful, return them as a pair. Also cache the results 4666 // of the analysis. 4667 // 4668 // Example usage scenario: 4669 // Say the Rewriter is called for the following SCEV: 4670 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4671 // where: 4672 // %X = phi i64 (%Start, %BEValue) 4673 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4674 // and call this function with %SymbolicPHI = %X. 4675 // 4676 // The analysis will find that the value coming around the backedge has 4677 // the following SCEV: 4678 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4679 // Upon concluding that this matches the desired pattern, the function 4680 // will return the pair {NewAddRec, SmallPredsVec} where: 4681 // NewAddRec = {%Start,+,%Step} 4682 // SmallPredsVec = {P1, P2, P3} as follows: 4683 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4684 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4685 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4686 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4687 // under the predicates {P1,P2,P3}. 4688 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4689 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4690 // 4691 // TODO's: 4692 // 4693 // 1) Extend the Induction descriptor to also support inductions that involve 4694 // casts: When needed (namely, when we are called in the context of the 4695 // vectorizer induction analysis), a Set of cast instructions will be 4696 // populated by this method, and provided back to isInductionPHI. This is 4697 // needed to allow the vectorizer to properly record them to be ignored by 4698 // the cost model and to avoid vectorizing them (otherwise these casts, 4699 // which are redundant under the runtime overflow checks, will be 4700 // vectorized, which can be costly). 4701 // 4702 // 2) Support additional induction/PHISCEV patterns: We also want to support 4703 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4704 // after the induction update operation (the induction increment): 4705 // 4706 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4707 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4708 // 4709 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4710 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4711 // 4712 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4713 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4714 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4715 SmallVector<const SCEVPredicate *, 3> Predicates; 4716 4717 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4718 // return an AddRec expression under some predicate. 4719 4720 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4721 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4722 assert(L && "Expecting an integer loop header phi"); 4723 4724 // The loop may have multiple entrances or multiple exits; we can analyze 4725 // this phi as an addrec if it has a unique entry value and a unique 4726 // backedge value. 4727 Value *BEValueV = nullptr, *StartValueV = nullptr; 4728 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4729 Value *V = PN->getIncomingValue(i); 4730 if (L->contains(PN->getIncomingBlock(i))) { 4731 if (!BEValueV) { 4732 BEValueV = V; 4733 } else if (BEValueV != V) { 4734 BEValueV = nullptr; 4735 break; 4736 } 4737 } else if (!StartValueV) { 4738 StartValueV = V; 4739 } else if (StartValueV != V) { 4740 StartValueV = nullptr; 4741 break; 4742 } 4743 } 4744 if (!BEValueV || !StartValueV) 4745 return None; 4746 4747 const SCEV *BEValue = getSCEV(BEValueV); 4748 4749 // If the value coming around the backedge is an add with the symbolic 4750 // value we just inserted, possibly with casts that we can ignore under 4751 // an appropriate runtime guard, then we found a simple induction variable! 4752 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4753 if (!Add) 4754 return None; 4755 4756 // If there is a single occurrence of the symbolic value, possibly 4757 // casted, replace it with a recurrence. 4758 unsigned FoundIndex = Add->getNumOperands(); 4759 Type *TruncTy = nullptr; 4760 bool Signed; 4761 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4762 if ((TruncTy = 4763 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4764 if (FoundIndex == e) { 4765 FoundIndex = i; 4766 break; 4767 } 4768 4769 if (FoundIndex == Add->getNumOperands()) 4770 return None; 4771 4772 // Create an add with everything but the specified operand. 4773 SmallVector<const SCEV *, 8> Ops; 4774 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4775 if (i != FoundIndex) 4776 Ops.push_back(Add->getOperand(i)); 4777 const SCEV *Accum = getAddExpr(Ops); 4778 4779 // The runtime checks will not be valid if the step amount is 4780 // varying inside the loop. 4781 if (!isLoopInvariant(Accum, L)) 4782 return None; 4783 4784 // *** Part2: Create the predicates 4785 4786 // Analysis was successful: we have a phi-with-cast pattern for which we 4787 // can return an AddRec expression under the following predicates: 4788 // 4789 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4790 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4791 // P2: An Equal predicate that guarantees that 4792 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4793 // P3: An Equal predicate that guarantees that 4794 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4795 // 4796 // As we next prove, the above predicates guarantee that: 4797 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4798 // 4799 // 4800 // More formally, we want to prove that: 4801 // Expr(i+1) = Start + (i+1) * Accum 4802 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4803 // 4804 // Given that: 4805 // 1) Expr(0) = Start 4806 // 2) Expr(1) = Start + Accum 4807 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4808 // 3) Induction hypothesis (step i): 4809 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4810 // 4811 // Proof: 4812 // Expr(i+1) = 4813 // = Start + (i+1)*Accum 4814 // = (Start + i*Accum) + Accum 4815 // = Expr(i) + Accum 4816 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4817 // :: from step i 4818 // 4819 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4820 // 4821 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4822 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4823 // + Accum :: from P3 4824 // 4825 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4826 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4827 // 4828 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4829 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4830 // 4831 // By induction, the same applies to all iterations 1<=i<n: 4832 // 4833 4834 // Create a truncated addrec for which we will add a no overflow check (P1). 4835 const SCEV *StartVal = getSCEV(StartValueV); 4836 const SCEV *PHISCEV = 4837 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4838 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4839 4840 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4841 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4842 // will be constant. 4843 // 4844 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4845 // add P1. 4846 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4847 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4848 Signed ? SCEVWrapPredicate::IncrementNSSW 4849 : SCEVWrapPredicate::IncrementNUSW; 4850 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4851 Predicates.push_back(AddRecPred); 4852 } 4853 4854 // Create the Equal Predicates P2,P3: 4855 4856 // It is possible that the predicates P2 and/or P3 are computable at 4857 // compile time due to StartVal and/or Accum being constants. 4858 // If either one is, then we can check that now and escape if either P2 4859 // or P3 is false. 4860 4861 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4862 // for each of StartVal and Accum 4863 auto getExtendedExpr = [&](const SCEV *Expr, 4864 bool CreateSignExtend) -> const SCEV * { 4865 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4866 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4867 const SCEV *ExtendedExpr = 4868 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4869 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4870 return ExtendedExpr; 4871 }; 4872 4873 // Given: 4874 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4875 // = getExtendedExpr(Expr) 4876 // Determine whether the predicate P: Expr == ExtendedExpr 4877 // is known to be false at compile time 4878 auto PredIsKnownFalse = [&](const SCEV *Expr, 4879 const SCEV *ExtendedExpr) -> bool { 4880 return Expr != ExtendedExpr && 4881 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4882 }; 4883 4884 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4885 if (PredIsKnownFalse(StartVal, StartExtended)) { 4886 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4887 return None; 4888 } 4889 4890 // The Step is always Signed (because the overflow checks are either 4891 // NSSW or NUSW) 4892 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4893 if (PredIsKnownFalse(Accum, AccumExtended)) { 4894 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4895 return None; 4896 } 4897 4898 auto AppendPredicate = [&](const SCEV *Expr, 4899 const SCEV *ExtendedExpr) -> void { 4900 if (Expr != ExtendedExpr && 4901 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4902 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4903 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4904 Predicates.push_back(Pred); 4905 } 4906 }; 4907 4908 AppendPredicate(StartVal, StartExtended); 4909 AppendPredicate(Accum, AccumExtended); 4910 4911 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4912 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4913 // into NewAR if it will also add the runtime overflow checks specified in 4914 // Predicates. 4915 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4916 4917 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4918 std::make_pair(NewAR, Predicates); 4919 // Remember the result of the analysis for this SCEV at this locayyytion. 4920 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4921 return PredRewrite; 4922 } 4923 4924 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4925 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4926 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4927 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4928 if (!L) 4929 return None; 4930 4931 // Check to see if we already analyzed this PHI. 4932 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4933 if (I != PredicatedSCEVRewrites.end()) { 4934 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4935 I->second; 4936 // Analysis was done before and failed to create an AddRec: 4937 if (Rewrite.first == SymbolicPHI) 4938 return None; 4939 // Analysis was done before and succeeded to create an AddRec under 4940 // a predicate: 4941 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4942 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4943 return Rewrite; 4944 } 4945 4946 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4947 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4948 4949 // Record in the cache that the analysis failed 4950 if (!Rewrite) { 4951 SmallVector<const SCEVPredicate *, 3> Predicates; 4952 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4953 return None; 4954 } 4955 4956 return Rewrite; 4957 } 4958 4959 // FIXME: This utility is currently required because the Rewriter currently 4960 // does not rewrite this expression: 4961 // {0, +, (sext ix (trunc iy to ix) to iy)} 4962 // into {0, +, %step}, 4963 // even when the following Equal predicate exists: 4964 // "%step == (sext ix (trunc iy to ix) to iy)". 4965 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4966 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4967 if (AR1 == AR2) 4968 return true; 4969 4970 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4971 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4972 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4973 return false; 4974 return true; 4975 }; 4976 4977 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4978 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4979 return false; 4980 return true; 4981 } 4982 4983 /// A helper function for createAddRecFromPHI to handle simple cases. 4984 /// 4985 /// This function tries to find an AddRec expression for the simplest (yet most 4986 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4987 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4988 /// technique for finding the AddRec expression. 4989 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4990 Value *BEValueV, 4991 Value *StartValueV) { 4992 const Loop *L = LI.getLoopFor(PN->getParent()); 4993 assert(L && L->getHeader() == PN->getParent()); 4994 assert(BEValueV && StartValueV); 4995 4996 auto BO = MatchBinaryOp(BEValueV, DT); 4997 if (!BO) 4998 return nullptr; 4999 5000 if (BO->Opcode != Instruction::Add) 5001 return nullptr; 5002 5003 const SCEV *Accum = nullptr; 5004 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5005 Accum = getSCEV(BO->RHS); 5006 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5007 Accum = getSCEV(BO->LHS); 5008 5009 if (!Accum) 5010 return nullptr; 5011 5012 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5013 if (BO->IsNUW) 5014 Flags = setFlags(Flags, SCEV::FlagNUW); 5015 if (BO->IsNSW) 5016 Flags = setFlags(Flags, SCEV::FlagNSW); 5017 5018 const SCEV *StartVal = getSCEV(StartValueV); 5019 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5020 5021 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5022 5023 // We can add Flags to the post-inc expression only if we 5024 // know that it is *undefined behavior* for BEValueV to 5025 // overflow. 5026 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5027 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5028 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5029 5030 return PHISCEV; 5031 } 5032 5033 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5034 const Loop *L = LI.getLoopFor(PN->getParent()); 5035 if (!L || L->getHeader() != PN->getParent()) 5036 return nullptr; 5037 5038 // The loop may have multiple entrances or multiple exits; we can analyze 5039 // this phi as an addrec if it has a unique entry value and a unique 5040 // backedge value. 5041 Value *BEValueV = nullptr, *StartValueV = nullptr; 5042 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5043 Value *V = PN->getIncomingValue(i); 5044 if (L->contains(PN->getIncomingBlock(i))) { 5045 if (!BEValueV) { 5046 BEValueV = V; 5047 } else if (BEValueV != V) { 5048 BEValueV = nullptr; 5049 break; 5050 } 5051 } else if (!StartValueV) { 5052 StartValueV = V; 5053 } else if (StartValueV != V) { 5054 StartValueV = nullptr; 5055 break; 5056 } 5057 } 5058 if (!BEValueV || !StartValueV) 5059 return nullptr; 5060 5061 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5062 "PHI node already processed?"); 5063 5064 // First, try to find AddRec expression without creating a fictituos symbolic 5065 // value for PN. 5066 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5067 return S; 5068 5069 // Handle PHI node value symbolically. 5070 const SCEV *SymbolicName = getUnknown(PN); 5071 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5072 5073 // Using this symbolic name for the PHI, analyze the value coming around 5074 // the back-edge. 5075 const SCEV *BEValue = getSCEV(BEValueV); 5076 5077 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5078 // has a special value for the first iteration of the loop. 5079 5080 // If the value coming around the backedge is an add with the symbolic 5081 // value we just inserted, then we found a simple induction variable! 5082 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5083 // If there is a single occurrence of the symbolic value, replace it 5084 // with a recurrence. 5085 unsigned FoundIndex = Add->getNumOperands(); 5086 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5087 if (Add->getOperand(i) == SymbolicName) 5088 if (FoundIndex == e) { 5089 FoundIndex = i; 5090 break; 5091 } 5092 5093 if (FoundIndex != Add->getNumOperands()) { 5094 // Create an add with everything but the specified operand. 5095 SmallVector<const SCEV *, 8> Ops; 5096 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5097 if (i != FoundIndex) 5098 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5099 L, *this)); 5100 const SCEV *Accum = getAddExpr(Ops); 5101 5102 // This is not a valid addrec if the step amount is varying each 5103 // loop iteration, but is not itself an addrec in this loop. 5104 if (isLoopInvariant(Accum, L) || 5105 (isa<SCEVAddRecExpr>(Accum) && 5106 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5107 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5108 5109 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5110 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5111 if (BO->IsNUW) 5112 Flags = setFlags(Flags, SCEV::FlagNUW); 5113 if (BO->IsNSW) 5114 Flags = setFlags(Flags, SCEV::FlagNSW); 5115 } 5116 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5117 // If the increment is an inbounds GEP, then we know the address 5118 // space cannot be wrapped around. We cannot make any guarantee 5119 // about signed or unsigned overflow because pointers are 5120 // unsigned but we may have a negative index from the base 5121 // pointer. We can guarantee that no unsigned wrap occurs if the 5122 // indices form a positive value. 5123 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5124 Flags = setFlags(Flags, SCEV::FlagNW); 5125 5126 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5127 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5128 Flags = setFlags(Flags, SCEV::FlagNUW); 5129 } 5130 5131 // We cannot transfer nuw and nsw flags from subtraction 5132 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5133 // for instance. 5134 } 5135 5136 const SCEV *StartVal = getSCEV(StartValueV); 5137 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5138 5139 // Okay, for the entire analysis of this edge we assumed the PHI 5140 // to be symbolic. We now need to go back and purge all of the 5141 // entries for the scalars that use the symbolic expression. 5142 forgetSymbolicName(PN, SymbolicName); 5143 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5144 5145 // We can add Flags to the post-inc expression only if we 5146 // know that it is *undefined behavior* for BEValueV to 5147 // overflow. 5148 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5149 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5150 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5151 5152 return PHISCEV; 5153 } 5154 } 5155 } else { 5156 // Otherwise, this could be a loop like this: 5157 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5158 // In this case, j = {1,+,1} and BEValue is j. 5159 // Because the other in-value of i (0) fits the evolution of BEValue 5160 // i really is an addrec evolution. 5161 // 5162 // We can generalize this saying that i is the shifted value of BEValue 5163 // by one iteration: 5164 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5165 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5166 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5167 if (Shifted != getCouldNotCompute() && 5168 Start != getCouldNotCompute()) { 5169 const SCEV *StartVal = getSCEV(StartValueV); 5170 if (Start == StartVal) { 5171 // Okay, for the entire analysis of this edge we assumed the PHI 5172 // to be symbolic. We now need to go back and purge all of the 5173 // entries for the scalars that use the symbolic expression. 5174 forgetSymbolicName(PN, SymbolicName); 5175 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5176 return Shifted; 5177 } 5178 } 5179 } 5180 5181 // Remove the temporary PHI node SCEV that has been inserted while intending 5182 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5183 // as it will prevent later (possibly simpler) SCEV expressions to be added 5184 // to the ValueExprMap. 5185 eraseValueFromMap(PN); 5186 5187 return nullptr; 5188 } 5189 5190 // Checks if the SCEV S is available at BB. S is considered available at BB 5191 // if S can be materialized at BB without introducing a fault. 5192 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5193 BasicBlock *BB) { 5194 struct CheckAvailable { 5195 bool TraversalDone = false; 5196 bool Available = true; 5197 5198 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5199 BasicBlock *BB = nullptr; 5200 DominatorTree &DT; 5201 5202 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5203 : L(L), BB(BB), DT(DT) {} 5204 5205 bool setUnavailable() { 5206 TraversalDone = true; 5207 Available = false; 5208 return false; 5209 } 5210 5211 bool follow(const SCEV *S) { 5212 switch (S->getSCEVType()) { 5213 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5214 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5215 // These expressions are available if their operand(s) is/are. 5216 return true; 5217 5218 case scAddRecExpr: { 5219 // We allow add recurrences that are on the loop BB is in, or some 5220 // outer loop. This guarantees availability because the value of the 5221 // add recurrence at BB is simply the "current" value of the induction 5222 // variable. We can relax this in the future; for instance an add 5223 // recurrence on a sibling dominating loop is also available at BB. 5224 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5225 if (L && (ARLoop == L || ARLoop->contains(L))) 5226 return true; 5227 5228 return setUnavailable(); 5229 } 5230 5231 case scUnknown: { 5232 // For SCEVUnknown, we check for simple dominance. 5233 const auto *SU = cast<SCEVUnknown>(S); 5234 Value *V = SU->getValue(); 5235 5236 if (isa<Argument>(V)) 5237 return false; 5238 5239 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5240 return false; 5241 5242 return setUnavailable(); 5243 } 5244 5245 case scUDivExpr: 5246 case scCouldNotCompute: 5247 // We do not try to smart about these at all. 5248 return setUnavailable(); 5249 } 5250 llvm_unreachable("switch should be fully covered!"); 5251 } 5252 5253 bool isDone() { return TraversalDone; } 5254 }; 5255 5256 CheckAvailable CA(L, BB, DT); 5257 SCEVTraversal<CheckAvailable> ST(CA); 5258 5259 ST.visitAll(S); 5260 return CA.Available; 5261 } 5262 5263 // Try to match a control flow sequence that branches out at BI and merges back 5264 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5265 // match. 5266 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5267 Value *&C, Value *&LHS, Value *&RHS) { 5268 C = BI->getCondition(); 5269 5270 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5271 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5272 5273 if (!LeftEdge.isSingleEdge()) 5274 return false; 5275 5276 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5277 5278 Use &LeftUse = Merge->getOperandUse(0); 5279 Use &RightUse = Merge->getOperandUse(1); 5280 5281 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5282 LHS = LeftUse; 5283 RHS = RightUse; 5284 return true; 5285 } 5286 5287 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5288 LHS = RightUse; 5289 RHS = LeftUse; 5290 return true; 5291 } 5292 5293 return false; 5294 } 5295 5296 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5297 auto IsReachable = 5298 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5299 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5300 const Loop *L = LI.getLoopFor(PN->getParent()); 5301 5302 // We don't want to break LCSSA, even in a SCEV expression tree. 5303 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5304 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5305 return nullptr; 5306 5307 // Try to match 5308 // 5309 // br %cond, label %left, label %right 5310 // left: 5311 // br label %merge 5312 // right: 5313 // br label %merge 5314 // merge: 5315 // V = phi [ %x, %left ], [ %y, %right ] 5316 // 5317 // as "select %cond, %x, %y" 5318 5319 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5320 assert(IDom && "At least the entry block should dominate PN"); 5321 5322 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5323 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5324 5325 if (BI && BI->isConditional() && 5326 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5327 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5328 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5329 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5330 } 5331 5332 return nullptr; 5333 } 5334 5335 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5336 if (const SCEV *S = createAddRecFromPHI(PN)) 5337 return S; 5338 5339 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5340 return S; 5341 5342 // If the PHI has a single incoming value, follow that value, unless the 5343 // PHI's incoming blocks are in a different loop, in which case doing so 5344 // risks breaking LCSSA form. Instcombine would normally zap these, but 5345 // it doesn't have DominatorTree information, so it may miss cases. 5346 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5347 if (LI.replacementPreservesLCSSAForm(PN, V)) 5348 return getSCEV(V); 5349 5350 // If it's not a loop phi, we can't handle it yet. 5351 return getUnknown(PN); 5352 } 5353 5354 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5355 Value *Cond, 5356 Value *TrueVal, 5357 Value *FalseVal) { 5358 // Handle "constant" branch or select. This can occur for instance when a 5359 // loop pass transforms an inner loop and moves on to process the outer loop. 5360 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5361 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5362 5363 // Try to match some simple smax or umax patterns. 5364 auto *ICI = dyn_cast<ICmpInst>(Cond); 5365 if (!ICI) 5366 return getUnknown(I); 5367 5368 Value *LHS = ICI->getOperand(0); 5369 Value *RHS = ICI->getOperand(1); 5370 5371 switch (ICI->getPredicate()) { 5372 case ICmpInst::ICMP_SLT: 5373 case ICmpInst::ICMP_SLE: 5374 std::swap(LHS, RHS); 5375 LLVM_FALLTHROUGH; 5376 case ICmpInst::ICMP_SGT: 5377 case ICmpInst::ICMP_SGE: 5378 // a >s b ? a+x : b+x -> smax(a, b)+x 5379 // a >s b ? b+x : a+x -> smin(a, b)+x 5380 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5381 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5382 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5383 const SCEV *LA = getSCEV(TrueVal); 5384 const SCEV *RA = getSCEV(FalseVal); 5385 const SCEV *LDiff = getMinusSCEV(LA, LS); 5386 const SCEV *RDiff = getMinusSCEV(RA, RS); 5387 if (LDiff == RDiff) 5388 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5389 LDiff = getMinusSCEV(LA, RS); 5390 RDiff = getMinusSCEV(RA, LS); 5391 if (LDiff == RDiff) 5392 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5393 } 5394 break; 5395 case ICmpInst::ICMP_ULT: 5396 case ICmpInst::ICMP_ULE: 5397 std::swap(LHS, RHS); 5398 LLVM_FALLTHROUGH; 5399 case ICmpInst::ICMP_UGT: 5400 case ICmpInst::ICMP_UGE: 5401 // a >u b ? a+x : b+x -> umax(a, b)+x 5402 // a >u b ? b+x : a+x -> umin(a, b)+x 5403 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5404 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5405 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5406 const SCEV *LA = getSCEV(TrueVal); 5407 const SCEV *RA = getSCEV(FalseVal); 5408 const SCEV *LDiff = getMinusSCEV(LA, LS); 5409 const SCEV *RDiff = getMinusSCEV(RA, RS); 5410 if (LDiff == RDiff) 5411 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5412 LDiff = getMinusSCEV(LA, RS); 5413 RDiff = getMinusSCEV(RA, LS); 5414 if (LDiff == RDiff) 5415 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5416 } 5417 break; 5418 case ICmpInst::ICMP_NE: 5419 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5420 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5421 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5422 const SCEV *One = getOne(I->getType()); 5423 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5424 const SCEV *LA = getSCEV(TrueVal); 5425 const SCEV *RA = getSCEV(FalseVal); 5426 const SCEV *LDiff = getMinusSCEV(LA, LS); 5427 const SCEV *RDiff = getMinusSCEV(RA, One); 5428 if (LDiff == RDiff) 5429 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5430 } 5431 break; 5432 case ICmpInst::ICMP_EQ: 5433 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5434 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5435 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5436 const SCEV *One = getOne(I->getType()); 5437 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5438 const SCEV *LA = getSCEV(TrueVal); 5439 const SCEV *RA = getSCEV(FalseVal); 5440 const SCEV *LDiff = getMinusSCEV(LA, One); 5441 const SCEV *RDiff = getMinusSCEV(RA, LS); 5442 if (LDiff == RDiff) 5443 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5444 } 5445 break; 5446 default: 5447 break; 5448 } 5449 5450 return getUnknown(I); 5451 } 5452 5453 /// Expand GEP instructions into add and multiply operations. This allows them 5454 /// to be analyzed by regular SCEV code. 5455 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5456 // Don't attempt to analyze GEPs over unsized objects. 5457 if (!GEP->getSourceElementType()->isSized()) 5458 return getUnknown(GEP); 5459 5460 SmallVector<const SCEV *, 4> IndexExprs; 5461 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5462 IndexExprs.push_back(getSCEV(*Index)); 5463 return getGEPExpr(GEP, IndexExprs); 5464 } 5465 5466 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5467 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5468 return C->getAPInt().countTrailingZeros(); 5469 5470 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5471 return std::min(GetMinTrailingZeros(T->getOperand()), 5472 (uint32_t)getTypeSizeInBits(T->getType())); 5473 5474 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5475 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5476 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5477 ? getTypeSizeInBits(E->getType()) 5478 : OpRes; 5479 } 5480 5481 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5482 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5483 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5484 ? getTypeSizeInBits(E->getType()) 5485 : OpRes; 5486 } 5487 5488 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5489 // The result is the min of all operands results. 5490 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5491 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5492 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5493 return MinOpRes; 5494 } 5495 5496 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5497 // The result is the sum of all operands results. 5498 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5499 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5500 for (unsigned i = 1, e = M->getNumOperands(); 5501 SumOpRes != BitWidth && i != e; ++i) 5502 SumOpRes = 5503 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5504 return SumOpRes; 5505 } 5506 5507 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5508 // The result is the min of all operands results. 5509 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5510 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5511 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5512 return MinOpRes; 5513 } 5514 5515 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5516 // The result is the min of all operands results. 5517 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5518 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5519 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5520 return MinOpRes; 5521 } 5522 5523 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5524 // The result is the min of all operands results. 5525 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5526 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5527 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5528 return MinOpRes; 5529 } 5530 5531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5532 // For a SCEVUnknown, ask ValueTracking. 5533 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5534 return Known.countMinTrailingZeros(); 5535 } 5536 5537 // SCEVUDivExpr 5538 return 0; 5539 } 5540 5541 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5542 auto I = MinTrailingZerosCache.find(S); 5543 if (I != MinTrailingZerosCache.end()) 5544 return I->second; 5545 5546 uint32_t Result = GetMinTrailingZerosImpl(S); 5547 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5548 assert(InsertPair.second && "Should insert a new key"); 5549 return InsertPair.first->second; 5550 } 5551 5552 /// Helper method to assign a range to V from metadata present in the IR. 5553 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5554 if (Instruction *I = dyn_cast<Instruction>(V)) 5555 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5556 return getConstantRangeFromMetadata(*MD); 5557 5558 return None; 5559 } 5560 5561 /// Determine the range for a particular SCEV. If SignHint is 5562 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5563 /// with a "cleaner" unsigned (resp. signed) representation. 5564 const ConstantRange & 5565 ScalarEvolution::getRangeRef(const SCEV *S, 5566 ScalarEvolution::RangeSignHint SignHint) { 5567 DenseMap<const SCEV *, ConstantRange> &Cache = 5568 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5569 : SignedRanges; 5570 5571 // See if we've computed this range already. 5572 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5573 if (I != Cache.end()) 5574 return I->second; 5575 5576 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5577 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5578 5579 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5580 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5581 5582 // If the value has known zeros, the maximum value will have those known zeros 5583 // as well. 5584 uint32_t TZ = GetMinTrailingZeros(S); 5585 if (TZ != 0) { 5586 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5587 ConservativeResult = 5588 ConstantRange(APInt::getMinValue(BitWidth), 5589 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5590 else 5591 ConservativeResult = ConstantRange( 5592 APInt::getSignedMinValue(BitWidth), 5593 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5594 } 5595 5596 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5597 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5598 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5599 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5600 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5601 } 5602 5603 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5604 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5605 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5606 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5607 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5608 } 5609 5610 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5611 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5612 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5613 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5614 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5615 } 5616 5617 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5618 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5619 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5620 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5621 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5622 } 5623 5624 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5625 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5626 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5627 return setRange(UDiv, SignHint, 5628 ConservativeResult.intersectWith(X.udiv(Y))); 5629 } 5630 5631 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5632 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5633 return setRange(ZExt, SignHint, 5634 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5635 } 5636 5637 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5638 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5639 return setRange(SExt, SignHint, 5640 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5641 } 5642 5643 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5644 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5645 return setRange(Trunc, SignHint, 5646 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5647 } 5648 5649 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5650 // If there's no unsigned wrap, the value will never be less than its 5651 // initial value. 5652 if (AddRec->hasNoUnsignedWrap()) 5653 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5654 if (!C->getValue()->isZero()) 5655 ConservativeResult = ConservativeResult.intersectWith( 5656 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5657 5658 // If there's no signed wrap, and all the operands have the same sign or 5659 // zero, the value won't ever change sign. 5660 if (AddRec->hasNoSignedWrap()) { 5661 bool AllNonNeg = true; 5662 bool AllNonPos = true; 5663 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5664 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5665 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5666 } 5667 if (AllNonNeg) 5668 ConservativeResult = ConservativeResult.intersectWith( 5669 ConstantRange(APInt(BitWidth, 0), 5670 APInt::getSignedMinValue(BitWidth))); 5671 else if (AllNonPos) 5672 ConservativeResult = ConservativeResult.intersectWith( 5673 ConstantRange(APInt::getSignedMinValue(BitWidth), 5674 APInt(BitWidth, 1))); 5675 } 5676 5677 // TODO: non-affine addrec 5678 if (AddRec->isAffine()) { 5679 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5680 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5681 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5682 auto RangeFromAffine = getRangeForAffineAR( 5683 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5684 BitWidth); 5685 if (!RangeFromAffine.isFullSet()) 5686 ConservativeResult = 5687 ConservativeResult.intersectWith(RangeFromAffine); 5688 5689 auto RangeFromFactoring = getRangeViaFactoring( 5690 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5691 BitWidth); 5692 if (!RangeFromFactoring.isFullSet()) 5693 ConservativeResult = 5694 ConservativeResult.intersectWith(RangeFromFactoring); 5695 } 5696 } 5697 5698 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5699 } 5700 5701 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5702 // Check if the IR explicitly contains !range metadata. 5703 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5704 if (MDRange.hasValue()) 5705 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5706 5707 // Split here to avoid paying the compile-time cost of calling both 5708 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5709 // if needed. 5710 const DataLayout &DL = getDataLayout(); 5711 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5712 // For a SCEVUnknown, ask ValueTracking. 5713 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5714 if (Known.One != ~Known.Zero + 1) 5715 ConservativeResult = 5716 ConservativeResult.intersectWith(ConstantRange(Known.One, 5717 ~Known.Zero + 1)); 5718 } else { 5719 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5720 "generalize as needed!"); 5721 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5722 if (NS > 1) 5723 ConservativeResult = ConservativeResult.intersectWith( 5724 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5725 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5726 } 5727 5728 // A range of Phi is a subset of union of all ranges of its input. 5729 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5730 // Make sure that we do not run over cycled Phis. 5731 if (PendingPhiRanges.insert(Phi).second) { 5732 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5733 for (auto &Op : Phi->operands()) { 5734 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5735 RangeFromOps = RangeFromOps.unionWith(OpRange); 5736 // No point to continue if we already have a full set. 5737 if (RangeFromOps.isFullSet()) 5738 break; 5739 } 5740 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); 5741 bool Erased = PendingPhiRanges.erase(Phi); 5742 assert(Erased && "Failed to erase Phi properly?"); 5743 (void) Erased; 5744 } 5745 } 5746 5747 return setRange(U, SignHint, std::move(ConservativeResult)); 5748 } 5749 5750 return setRange(S, SignHint, std::move(ConservativeResult)); 5751 } 5752 5753 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5754 // values that the expression can take. Initially, the expression has a value 5755 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5756 // argument defines if we treat Step as signed or unsigned. 5757 static ConstantRange getRangeForAffineARHelper(APInt Step, 5758 const ConstantRange &StartRange, 5759 const APInt &MaxBECount, 5760 unsigned BitWidth, bool Signed) { 5761 // If either Step or MaxBECount is 0, then the expression won't change, and we 5762 // just need to return the initial range. 5763 if (Step == 0 || MaxBECount == 0) 5764 return StartRange; 5765 5766 // If we don't know anything about the initial value (i.e. StartRange is 5767 // FullRange), then we don't know anything about the final range either. 5768 // Return FullRange. 5769 if (StartRange.isFullSet()) 5770 return ConstantRange(BitWidth, /* isFullSet = */ true); 5771 5772 // If Step is signed and negative, then we use its absolute value, but we also 5773 // note that we're moving in the opposite direction. 5774 bool Descending = Signed && Step.isNegative(); 5775 5776 if (Signed) 5777 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5778 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5779 // This equations hold true due to the well-defined wrap-around behavior of 5780 // APInt. 5781 Step = Step.abs(); 5782 5783 // Check if Offset is more than full span of BitWidth. If it is, the 5784 // expression is guaranteed to overflow. 5785 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5786 return ConstantRange(BitWidth, /* isFullSet = */ true); 5787 5788 // Offset is by how much the expression can change. Checks above guarantee no 5789 // overflow here. 5790 APInt Offset = Step * MaxBECount; 5791 5792 // Minimum value of the final range will match the minimal value of StartRange 5793 // if the expression is increasing and will be decreased by Offset otherwise. 5794 // Maximum value of the final range will match the maximal value of StartRange 5795 // if the expression is decreasing and will be increased by Offset otherwise. 5796 APInt StartLower = StartRange.getLower(); 5797 APInt StartUpper = StartRange.getUpper() - 1; 5798 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5799 : (StartUpper + std::move(Offset)); 5800 5801 // It's possible that the new minimum/maximum value will fall into the initial 5802 // range (due to wrap around). This means that the expression can take any 5803 // value in this bitwidth, and we have to return full range. 5804 if (StartRange.contains(MovedBoundary)) 5805 return ConstantRange(BitWidth, /* isFullSet = */ true); 5806 5807 APInt NewLower = 5808 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5809 APInt NewUpper = 5810 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5811 NewUpper += 1; 5812 5813 // If we end up with full range, return a proper full range. 5814 if (NewLower == NewUpper) 5815 return ConstantRange(BitWidth, /* isFullSet = */ true); 5816 5817 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5818 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5819 } 5820 5821 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5822 const SCEV *Step, 5823 const SCEV *MaxBECount, 5824 unsigned BitWidth) { 5825 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5826 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5827 "Precondition!"); 5828 5829 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5830 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5831 5832 // First, consider step signed. 5833 ConstantRange StartSRange = getSignedRange(Start); 5834 ConstantRange StepSRange = getSignedRange(Step); 5835 5836 // If Step can be both positive and negative, we need to find ranges for the 5837 // maximum absolute step values in both directions and union them. 5838 ConstantRange SR = 5839 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5840 MaxBECountValue, BitWidth, /* Signed = */ true); 5841 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5842 StartSRange, MaxBECountValue, 5843 BitWidth, /* Signed = */ true)); 5844 5845 // Next, consider step unsigned. 5846 ConstantRange UR = getRangeForAffineARHelper( 5847 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5848 MaxBECountValue, BitWidth, /* Signed = */ false); 5849 5850 // Finally, intersect signed and unsigned ranges. 5851 return SR.intersectWith(UR); 5852 } 5853 5854 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5855 const SCEV *Step, 5856 const SCEV *MaxBECount, 5857 unsigned BitWidth) { 5858 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5859 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5860 5861 struct SelectPattern { 5862 Value *Condition = nullptr; 5863 APInt TrueValue; 5864 APInt FalseValue; 5865 5866 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5867 const SCEV *S) { 5868 Optional<unsigned> CastOp; 5869 APInt Offset(BitWidth, 0); 5870 5871 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5872 "Should be!"); 5873 5874 // Peel off a constant offset: 5875 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5876 // In the future we could consider being smarter here and handle 5877 // {Start+Step,+,Step} too. 5878 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5879 return; 5880 5881 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5882 S = SA->getOperand(1); 5883 } 5884 5885 // Peel off a cast operation 5886 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5887 CastOp = SCast->getSCEVType(); 5888 S = SCast->getOperand(); 5889 } 5890 5891 using namespace llvm::PatternMatch; 5892 5893 auto *SU = dyn_cast<SCEVUnknown>(S); 5894 const APInt *TrueVal, *FalseVal; 5895 if (!SU || 5896 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5897 m_APInt(FalseVal)))) { 5898 Condition = nullptr; 5899 return; 5900 } 5901 5902 TrueValue = *TrueVal; 5903 FalseValue = *FalseVal; 5904 5905 // Re-apply the cast we peeled off earlier 5906 if (CastOp.hasValue()) 5907 switch (*CastOp) { 5908 default: 5909 llvm_unreachable("Unknown SCEV cast type!"); 5910 5911 case scTruncate: 5912 TrueValue = TrueValue.trunc(BitWidth); 5913 FalseValue = FalseValue.trunc(BitWidth); 5914 break; 5915 case scZeroExtend: 5916 TrueValue = TrueValue.zext(BitWidth); 5917 FalseValue = FalseValue.zext(BitWidth); 5918 break; 5919 case scSignExtend: 5920 TrueValue = TrueValue.sext(BitWidth); 5921 FalseValue = FalseValue.sext(BitWidth); 5922 break; 5923 } 5924 5925 // Re-apply the constant offset we peeled off earlier 5926 TrueValue += Offset; 5927 FalseValue += Offset; 5928 } 5929 5930 bool isRecognized() { return Condition != nullptr; } 5931 }; 5932 5933 SelectPattern StartPattern(*this, BitWidth, Start); 5934 if (!StartPattern.isRecognized()) 5935 return ConstantRange(BitWidth, /* isFullSet = */ true); 5936 5937 SelectPattern StepPattern(*this, BitWidth, Step); 5938 if (!StepPattern.isRecognized()) 5939 return ConstantRange(BitWidth, /* isFullSet = */ true); 5940 5941 if (StartPattern.Condition != StepPattern.Condition) { 5942 // We don't handle this case today; but we could, by considering four 5943 // possibilities below instead of two. I'm not sure if there are cases where 5944 // that will help over what getRange already does, though. 5945 return ConstantRange(BitWidth, /* isFullSet = */ true); 5946 } 5947 5948 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5949 // construct arbitrary general SCEV expressions here. This function is called 5950 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5951 // say) can end up caching a suboptimal value. 5952 5953 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5954 // C2352 and C2512 (otherwise it isn't needed). 5955 5956 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5957 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5958 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5959 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5960 5961 ConstantRange TrueRange = 5962 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5963 ConstantRange FalseRange = 5964 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5965 5966 return TrueRange.unionWith(FalseRange); 5967 } 5968 5969 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5970 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5971 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5972 5973 // Return early if there are no flags to propagate to the SCEV. 5974 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5975 if (BinOp->hasNoUnsignedWrap()) 5976 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5977 if (BinOp->hasNoSignedWrap()) 5978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5979 if (Flags == SCEV::FlagAnyWrap) 5980 return SCEV::FlagAnyWrap; 5981 5982 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5983 } 5984 5985 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5986 // Here we check that I is in the header of the innermost loop containing I, 5987 // since we only deal with instructions in the loop header. The actual loop we 5988 // need to check later will come from an add recurrence, but getting that 5989 // requires computing the SCEV of the operands, which can be expensive. This 5990 // check we can do cheaply to rule out some cases early. 5991 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5992 if (InnermostContainingLoop == nullptr || 5993 InnermostContainingLoop->getHeader() != I->getParent()) 5994 return false; 5995 5996 // Only proceed if we can prove that I does not yield poison. 5997 if (!programUndefinedIfFullPoison(I)) 5998 return false; 5999 6000 // At this point we know that if I is executed, then it does not wrap 6001 // according to at least one of NSW or NUW. If I is not executed, then we do 6002 // not know if the calculation that I represents would wrap. Multiple 6003 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6004 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6005 // derived from other instructions that map to the same SCEV. We cannot make 6006 // that guarantee for cases where I is not executed. So we need to find the 6007 // loop that I is considered in relation to and prove that I is executed for 6008 // every iteration of that loop. That implies that the value that I 6009 // calculates does not wrap anywhere in the loop, so then we can apply the 6010 // flags to the SCEV. 6011 // 6012 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6013 // from different loops, so that we know which loop to prove that I is 6014 // executed in. 6015 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6016 // I could be an extractvalue from a call to an overflow intrinsic. 6017 // TODO: We can do better here in some cases. 6018 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6019 return false; 6020 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6021 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6022 bool AllOtherOpsLoopInvariant = true; 6023 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6024 ++OtherOpIndex) { 6025 if (OtherOpIndex != OpIndex) { 6026 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6027 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6028 AllOtherOpsLoopInvariant = false; 6029 break; 6030 } 6031 } 6032 } 6033 if (AllOtherOpsLoopInvariant && 6034 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6035 return true; 6036 } 6037 } 6038 return false; 6039 } 6040 6041 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6042 // If we know that \c I can never be poison period, then that's enough. 6043 if (isSCEVExprNeverPoison(I)) 6044 return true; 6045 6046 // For an add recurrence specifically, we assume that infinite loops without 6047 // side effects are undefined behavior, and then reason as follows: 6048 // 6049 // If the add recurrence is poison in any iteration, it is poison on all 6050 // future iterations (since incrementing poison yields poison). If the result 6051 // of the add recurrence is fed into the loop latch condition and the loop 6052 // does not contain any throws or exiting blocks other than the latch, we now 6053 // have the ability to "choose" whether the backedge is taken or not (by 6054 // choosing a sufficiently evil value for the poison feeding into the branch) 6055 // for every iteration including and after the one in which \p I first became 6056 // poison. There are two possibilities (let's call the iteration in which \p 6057 // I first became poison as K): 6058 // 6059 // 1. In the set of iterations including and after K, the loop body executes 6060 // no side effects. In this case executing the backege an infinte number 6061 // of times will yield undefined behavior. 6062 // 6063 // 2. In the set of iterations including and after K, the loop body executes 6064 // at least one side effect. In this case, that specific instance of side 6065 // effect is control dependent on poison, which also yields undefined 6066 // behavior. 6067 6068 auto *ExitingBB = L->getExitingBlock(); 6069 auto *LatchBB = L->getLoopLatch(); 6070 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6071 return false; 6072 6073 SmallPtrSet<const Instruction *, 16> Pushed; 6074 SmallVector<const Instruction *, 8> PoisonStack; 6075 6076 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6077 // things that are known to be fully poison under that assumption go on the 6078 // PoisonStack. 6079 Pushed.insert(I); 6080 PoisonStack.push_back(I); 6081 6082 bool LatchControlDependentOnPoison = false; 6083 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6084 const Instruction *Poison = PoisonStack.pop_back_val(); 6085 6086 for (auto *PoisonUser : Poison->users()) { 6087 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 6088 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6089 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6090 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6091 assert(BI->isConditional() && "Only possibility!"); 6092 if (BI->getParent() == LatchBB) { 6093 LatchControlDependentOnPoison = true; 6094 break; 6095 } 6096 } 6097 } 6098 } 6099 6100 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6101 } 6102 6103 ScalarEvolution::LoopProperties 6104 ScalarEvolution::getLoopProperties(const Loop *L) { 6105 using LoopProperties = ScalarEvolution::LoopProperties; 6106 6107 auto Itr = LoopPropertiesCache.find(L); 6108 if (Itr == LoopPropertiesCache.end()) { 6109 auto HasSideEffects = [](Instruction *I) { 6110 if (auto *SI = dyn_cast<StoreInst>(I)) 6111 return !SI->isSimple(); 6112 6113 return I->mayHaveSideEffects(); 6114 }; 6115 6116 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6117 /*HasNoSideEffects*/ true}; 6118 6119 for (auto *BB : L->getBlocks()) 6120 for (auto &I : *BB) { 6121 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6122 LP.HasNoAbnormalExits = false; 6123 if (HasSideEffects(&I)) 6124 LP.HasNoSideEffects = false; 6125 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6126 break; // We're already as pessimistic as we can get. 6127 } 6128 6129 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6130 assert(InsertPair.second && "We just checked!"); 6131 Itr = InsertPair.first; 6132 } 6133 6134 return Itr->second; 6135 } 6136 6137 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6138 if (!isSCEVable(V->getType())) 6139 return getUnknown(V); 6140 6141 if (Instruction *I = dyn_cast<Instruction>(V)) { 6142 // Don't attempt to analyze instructions in blocks that aren't 6143 // reachable. Such instructions don't matter, and they aren't required 6144 // to obey basic rules for definitions dominating uses which this 6145 // analysis depends on. 6146 if (!DT.isReachableFromEntry(I->getParent())) 6147 return getUnknown(UndefValue::get(V->getType())); 6148 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6149 return getConstant(CI); 6150 else if (isa<ConstantPointerNull>(V)) 6151 return getZero(V->getType()); 6152 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6153 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6154 else if (!isa<ConstantExpr>(V)) 6155 return getUnknown(V); 6156 6157 Operator *U = cast<Operator>(V); 6158 if (auto BO = MatchBinaryOp(U, DT)) { 6159 switch (BO->Opcode) { 6160 case Instruction::Add: { 6161 // The simple thing to do would be to just call getSCEV on both operands 6162 // and call getAddExpr with the result. However if we're looking at a 6163 // bunch of things all added together, this can be quite inefficient, 6164 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6165 // Instead, gather up all the operands and make a single getAddExpr call. 6166 // LLVM IR canonical form means we need only traverse the left operands. 6167 SmallVector<const SCEV *, 4> AddOps; 6168 do { 6169 if (BO->Op) { 6170 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6171 AddOps.push_back(OpSCEV); 6172 break; 6173 } 6174 6175 // If a NUW or NSW flag can be applied to the SCEV for this 6176 // addition, then compute the SCEV for this addition by itself 6177 // with a separate call to getAddExpr. We need to do that 6178 // instead of pushing the operands of the addition onto AddOps, 6179 // since the flags are only known to apply to this particular 6180 // addition - they may not apply to other additions that can be 6181 // formed with operands from AddOps. 6182 const SCEV *RHS = getSCEV(BO->RHS); 6183 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6184 if (Flags != SCEV::FlagAnyWrap) { 6185 const SCEV *LHS = getSCEV(BO->LHS); 6186 if (BO->Opcode == Instruction::Sub) 6187 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6188 else 6189 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6190 break; 6191 } 6192 } 6193 6194 if (BO->Opcode == Instruction::Sub) 6195 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6196 else 6197 AddOps.push_back(getSCEV(BO->RHS)); 6198 6199 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6200 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6201 NewBO->Opcode != Instruction::Sub)) { 6202 AddOps.push_back(getSCEV(BO->LHS)); 6203 break; 6204 } 6205 BO = NewBO; 6206 } while (true); 6207 6208 return getAddExpr(AddOps); 6209 } 6210 6211 case Instruction::Mul: { 6212 SmallVector<const SCEV *, 4> MulOps; 6213 do { 6214 if (BO->Op) { 6215 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6216 MulOps.push_back(OpSCEV); 6217 break; 6218 } 6219 6220 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6221 if (Flags != SCEV::FlagAnyWrap) { 6222 MulOps.push_back( 6223 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6224 break; 6225 } 6226 } 6227 6228 MulOps.push_back(getSCEV(BO->RHS)); 6229 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6230 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6231 MulOps.push_back(getSCEV(BO->LHS)); 6232 break; 6233 } 6234 BO = NewBO; 6235 } while (true); 6236 6237 return getMulExpr(MulOps); 6238 } 6239 case Instruction::UDiv: 6240 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6241 case Instruction::URem: 6242 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6243 case Instruction::Sub: { 6244 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6245 if (BO->Op) 6246 Flags = getNoWrapFlagsFromUB(BO->Op); 6247 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6248 } 6249 case Instruction::And: 6250 // For an expression like x&255 that merely masks off the high bits, 6251 // use zext(trunc(x)) as the SCEV expression. 6252 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6253 if (CI->isZero()) 6254 return getSCEV(BO->RHS); 6255 if (CI->isMinusOne()) 6256 return getSCEV(BO->LHS); 6257 const APInt &A = CI->getValue(); 6258 6259 // Instcombine's ShrinkDemandedConstant may strip bits out of 6260 // constants, obscuring what would otherwise be a low-bits mask. 6261 // Use computeKnownBits to compute what ShrinkDemandedConstant 6262 // knew about to reconstruct a low-bits mask value. 6263 unsigned LZ = A.countLeadingZeros(); 6264 unsigned TZ = A.countTrailingZeros(); 6265 unsigned BitWidth = A.getBitWidth(); 6266 KnownBits Known(BitWidth); 6267 computeKnownBits(BO->LHS, Known, getDataLayout(), 6268 0, &AC, nullptr, &DT); 6269 6270 APInt EffectiveMask = 6271 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6272 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6273 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6274 const SCEV *LHS = getSCEV(BO->LHS); 6275 const SCEV *ShiftedLHS = nullptr; 6276 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6277 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6278 // For an expression like (x * 8) & 8, simplify the multiply. 6279 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6280 unsigned GCD = std::min(MulZeros, TZ); 6281 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6282 SmallVector<const SCEV*, 4> MulOps; 6283 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6284 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6285 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6286 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6287 } 6288 } 6289 if (!ShiftedLHS) 6290 ShiftedLHS = getUDivExpr(LHS, MulCount); 6291 return getMulExpr( 6292 getZeroExtendExpr( 6293 getTruncateExpr(ShiftedLHS, 6294 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6295 BO->LHS->getType()), 6296 MulCount); 6297 } 6298 } 6299 break; 6300 6301 case Instruction::Or: 6302 // If the RHS of the Or is a constant, we may have something like: 6303 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6304 // optimizations will transparently handle this case. 6305 // 6306 // In order for this transformation to be safe, the LHS must be of the 6307 // form X*(2^n) and the Or constant must be less than 2^n. 6308 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6309 const SCEV *LHS = getSCEV(BO->LHS); 6310 const APInt &CIVal = CI->getValue(); 6311 if (GetMinTrailingZeros(LHS) >= 6312 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6313 // Build a plain add SCEV. 6314 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6315 // If the LHS of the add was an addrec and it has no-wrap flags, 6316 // transfer the no-wrap flags, since an or won't introduce a wrap. 6317 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6318 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6319 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6320 OldAR->getNoWrapFlags()); 6321 } 6322 return S; 6323 } 6324 } 6325 break; 6326 6327 case Instruction::Xor: 6328 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6329 // If the RHS of xor is -1, then this is a not operation. 6330 if (CI->isMinusOne()) 6331 return getNotSCEV(getSCEV(BO->LHS)); 6332 6333 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6334 // This is a variant of the check for xor with -1, and it handles 6335 // the case where instcombine has trimmed non-demanded bits out 6336 // of an xor with -1. 6337 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6338 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6339 if (LBO->getOpcode() == Instruction::And && 6340 LCI->getValue() == CI->getValue()) 6341 if (const SCEVZeroExtendExpr *Z = 6342 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6343 Type *UTy = BO->LHS->getType(); 6344 const SCEV *Z0 = Z->getOperand(); 6345 Type *Z0Ty = Z0->getType(); 6346 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6347 6348 // If C is a low-bits mask, the zero extend is serving to 6349 // mask off the high bits. Complement the operand and 6350 // re-apply the zext. 6351 if (CI->getValue().isMask(Z0TySize)) 6352 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6353 6354 // If C is a single bit, it may be in the sign-bit position 6355 // before the zero-extend. In this case, represent the xor 6356 // using an add, which is equivalent, and re-apply the zext. 6357 APInt Trunc = CI->getValue().trunc(Z0TySize); 6358 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6359 Trunc.isSignMask()) 6360 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6361 UTy); 6362 } 6363 } 6364 break; 6365 6366 case Instruction::Shl: 6367 // Turn shift left of a constant amount into a multiply. 6368 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6369 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6370 6371 // If the shift count is not less than the bitwidth, the result of 6372 // the shift is undefined. Don't try to analyze it, because the 6373 // resolution chosen here may differ from the resolution chosen in 6374 // other parts of the compiler. 6375 if (SA->getValue().uge(BitWidth)) 6376 break; 6377 6378 // It is currently not resolved how to interpret NSW for left 6379 // shift by BitWidth - 1, so we avoid applying flags in that 6380 // case. Remove this check (or this comment) once the situation 6381 // is resolved. See 6382 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6383 // and http://reviews.llvm.org/D8890 . 6384 auto Flags = SCEV::FlagAnyWrap; 6385 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6386 Flags = getNoWrapFlagsFromUB(BO->Op); 6387 6388 Constant *X = ConstantInt::get( 6389 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6390 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6391 } 6392 break; 6393 6394 case Instruction::AShr: { 6395 // AShr X, C, where C is a constant. 6396 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6397 if (!CI) 6398 break; 6399 6400 Type *OuterTy = BO->LHS->getType(); 6401 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6402 // If the shift count is not less than the bitwidth, the result of 6403 // the shift is undefined. Don't try to analyze it, because the 6404 // resolution chosen here may differ from the resolution chosen in 6405 // other parts of the compiler. 6406 if (CI->getValue().uge(BitWidth)) 6407 break; 6408 6409 if (CI->isZero()) 6410 return getSCEV(BO->LHS); // shift by zero --> noop 6411 6412 uint64_t AShrAmt = CI->getZExtValue(); 6413 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6414 6415 Operator *L = dyn_cast<Operator>(BO->LHS); 6416 if (L && L->getOpcode() == Instruction::Shl) { 6417 // X = Shl A, n 6418 // Y = AShr X, m 6419 // Both n and m are constant. 6420 6421 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6422 if (L->getOperand(1) == BO->RHS) 6423 // For a two-shift sext-inreg, i.e. n = m, 6424 // use sext(trunc(x)) as the SCEV expression. 6425 return getSignExtendExpr( 6426 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6427 6428 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6429 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6430 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6431 if (ShlAmt > AShrAmt) { 6432 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6433 // expression. We already checked that ShlAmt < BitWidth, so 6434 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6435 // ShlAmt - AShrAmt < Amt. 6436 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6437 ShlAmt - AShrAmt); 6438 return getSignExtendExpr( 6439 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6440 getConstant(Mul)), OuterTy); 6441 } 6442 } 6443 } 6444 break; 6445 } 6446 } 6447 } 6448 6449 switch (U->getOpcode()) { 6450 case Instruction::Trunc: 6451 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6452 6453 case Instruction::ZExt: 6454 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6455 6456 case Instruction::SExt: 6457 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6458 // The NSW flag of a subtract does not always survive the conversion to 6459 // A + (-1)*B. By pushing sign extension onto its operands we are much 6460 // more likely to preserve NSW and allow later AddRec optimisations. 6461 // 6462 // NOTE: This is effectively duplicating this logic from getSignExtend: 6463 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6464 // but by that point the NSW information has potentially been lost. 6465 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6466 Type *Ty = U->getType(); 6467 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6468 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6469 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6470 } 6471 } 6472 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6473 6474 case Instruction::BitCast: 6475 // BitCasts are no-op casts so we just eliminate the cast. 6476 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6477 return getSCEV(U->getOperand(0)); 6478 break; 6479 6480 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6481 // lead to pointer expressions which cannot safely be expanded to GEPs, 6482 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6483 // simplifying integer expressions. 6484 6485 case Instruction::GetElementPtr: 6486 return createNodeForGEP(cast<GEPOperator>(U)); 6487 6488 case Instruction::PHI: 6489 return createNodeForPHI(cast<PHINode>(U)); 6490 6491 case Instruction::Select: 6492 // U can also be a select constant expr, which let fall through. Since 6493 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6494 // constant expressions cannot have instructions as operands, we'd have 6495 // returned getUnknown for a select constant expressions anyway. 6496 if (isa<Instruction>(U)) 6497 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6498 U->getOperand(1), U->getOperand(2)); 6499 break; 6500 6501 case Instruction::Call: 6502 case Instruction::Invoke: 6503 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6504 return getSCEV(RV); 6505 break; 6506 } 6507 6508 return getUnknown(V); 6509 } 6510 6511 //===----------------------------------------------------------------------===// 6512 // Iteration Count Computation Code 6513 // 6514 6515 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6516 if (!ExitCount) 6517 return 0; 6518 6519 ConstantInt *ExitConst = ExitCount->getValue(); 6520 6521 // Guard against huge trip counts. 6522 if (ExitConst->getValue().getActiveBits() > 32) 6523 return 0; 6524 6525 // In case of integer overflow, this returns 0, which is correct. 6526 return ((unsigned)ExitConst->getZExtValue()) + 1; 6527 } 6528 6529 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6530 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6531 return getSmallConstantTripCount(L, ExitingBB); 6532 6533 // No trip count information for multiple exits. 6534 return 0; 6535 } 6536 6537 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6538 BasicBlock *ExitingBlock) { 6539 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6540 assert(L->isLoopExiting(ExitingBlock) && 6541 "Exiting block must actually branch out of the loop!"); 6542 const SCEVConstant *ExitCount = 6543 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6544 return getConstantTripCount(ExitCount); 6545 } 6546 6547 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6548 const auto *MaxExitCount = 6549 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6550 return getConstantTripCount(MaxExitCount); 6551 } 6552 6553 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6554 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6555 return getSmallConstantTripMultiple(L, ExitingBB); 6556 6557 // No trip multiple information for multiple exits. 6558 return 0; 6559 } 6560 6561 /// Returns the largest constant divisor of the trip count of this loop as a 6562 /// normal unsigned value, if possible. This means that the actual trip count is 6563 /// always a multiple of the returned value (don't forget the trip count could 6564 /// very well be zero as well!). 6565 /// 6566 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6567 /// multiple of a constant (which is also the case if the trip count is simply 6568 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6569 /// if the trip count is very large (>= 2^32). 6570 /// 6571 /// As explained in the comments for getSmallConstantTripCount, this assumes 6572 /// that control exits the loop via ExitingBlock. 6573 unsigned 6574 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6575 BasicBlock *ExitingBlock) { 6576 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6577 assert(L->isLoopExiting(ExitingBlock) && 6578 "Exiting block must actually branch out of the loop!"); 6579 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6580 if (ExitCount == getCouldNotCompute()) 6581 return 1; 6582 6583 // Get the trip count from the BE count by adding 1. 6584 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6585 6586 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6587 if (!TC) 6588 // Attempt to factor more general cases. Returns the greatest power of 6589 // two divisor. If overflow happens, the trip count expression is still 6590 // divisible by the greatest power of 2 divisor returned. 6591 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6592 6593 ConstantInt *Result = TC->getValue(); 6594 6595 // Guard against huge trip counts (this requires checking 6596 // for zero to handle the case where the trip count == -1 and the 6597 // addition wraps). 6598 if (!Result || Result->getValue().getActiveBits() > 32 || 6599 Result->getValue().getActiveBits() == 0) 6600 return 1; 6601 6602 return (unsigned)Result->getZExtValue(); 6603 } 6604 6605 /// Get the expression for the number of loop iterations for which this loop is 6606 /// guaranteed not to exit via ExitingBlock. Otherwise return 6607 /// SCEVCouldNotCompute. 6608 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6609 BasicBlock *ExitingBlock) { 6610 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6611 } 6612 6613 const SCEV * 6614 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6615 SCEVUnionPredicate &Preds) { 6616 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6617 } 6618 6619 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6620 return getBackedgeTakenInfo(L).getExact(L, this); 6621 } 6622 6623 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6624 /// known never to be less than the actual backedge taken count. 6625 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6626 return getBackedgeTakenInfo(L).getMax(this); 6627 } 6628 6629 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6630 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6631 } 6632 6633 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6634 static void 6635 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6636 BasicBlock *Header = L->getHeader(); 6637 6638 // Push all Loop-header PHIs onto the Worklist stack. 6639 for (PHINode &PN : Header->phis()) 6640 Worklist.push_back(&PN); 6641 } 6642 6643 const ScalarEvolution::BackedgeTakenInfo & 6644 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6645 auto &BTI = getBackedgeTakenInfo(L); 6646 if (BTI.hasFullInfo()) 6647 return BTI; 6648 6649 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6650 6651 if (!Pair.second) 6652 return Pair.first->second; 6653 6654 BackedgeTakenInfo Result = 6655 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6656 6657 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6658 } 6659 6660 const ScalarEvolution::BackedgeTakenInfo & 6661 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6662 // Initially insert an invalid entry for this loop. If the insertion 6663 // succeeds, proceed to actually compute a backedge-taken count and 6664 // update the value. The temporary CouldNotCompute value tells SCEV 6665 // code elsewhere that it shouldn't attempt to request a new 6666 // backedge-taken count, which could result in infinite recursion. 6667 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6668 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6669 if (!Pair.second) 6670 return Pair.first->second; 6671 6672 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6673 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6674 // must be cleared in this scope. 6675 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6676 6677 // In product build, there are no usage of statistic. 6678 (void)NumTripCountsComputed; 6679 (void)NumTripCountsNotComputed; 6680 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6681 const SCEV *BEExact = Result.getExact(L, this); 6682 if (BEExact != getCouldNotCompute()) { 6683 assert(isLoopInvariant(BEExact, L) && 6684 isLoopInvariant(Result.getMax(this), L) && 6685 "Computed backedge-taken count isn't loop invariant for loop!"); 6686 ++NumTripCountsComputed; 6687 } 6688 else if (Result.getMax(this) == getCouldNotCompute() && 6689 isa<PHINode>(L->getHeader()->begin())) { 6690 // Only count loops that have phi nodes as not being computable. 6691 ++NumTripCountsNotComputed; 6692 } 6693 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6694 6695 // Now that we know more about the trip count for this loop, forget any 6696 // existing SCEV values for PHI nodes in this loop since they are only 6697 // conservative estimates made without the benefit of trip count 6698 // information. This is similar to the code in forgetLoop, except that 6699 // it handles SCEVUnknown PHI nodes specially. 6700 if (Result.hasAnyInfo()) { 6701 SmallVector<Instruction *, 16> Worklist; 6702 PushLoopPHIs(L, Worklist); 6703 6704 SmallPtrSet<Instruction *, 8> Discovered; 6705 while (!Worklist.empty()) { 6706 Instruction *I = Worklist.pop_back_val(); 6707 6708 ValueExprMapType::iterator It = 6709 ValueExprMap.find_as(static_cast<Value *>(I)); 6710 if (It != ValueExprMap.end()) { 6711 const SCEV *Old = It->second; 6712 6713 // SCEVUnknown for a PHI either means that it has an unrecognized 6714 // structure, or it's a PHI that's in the progress of being computed 6715 // by createNodeForPHI. In the former case, additional loop trip 6716 // count information isn't going to change anything. In the later 6717 // case, createNodeForPHI will perform the necessary updates on its 6718 // own when it gets to that point. 6719 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6720 eraseValueFromMap(It->first); 6721 forgetMemoizedResults(Old); 6722 } 6723 if (PHINode *PN = dyn_cast<PHINode>(I)) 6724 ConstantEvolutionLoopExitValue.erase(PN); 6725 } 6726 6727 // Since we don't need to invalidate anything for correctness and we're 6728 // only invalidating to make SCEV's results more precise, we get to stop 6729 // early to avoid invalidating too much. This is especially important in 6730 // cases like: 6731 // 6732 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6733 // loop0: 6734 // %pn0 = phi 6735 // ... 6736 // loop1: 6737 // %pn1 = phi 6738 // ... 6739 // 6740 // where both loop0 and loop1's backedge taken count uses the SCEV 6741 // expression for %v. If we don't have the early stop below then in cases 6742 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6743 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6744 // count for loop1, effectively nullifying SCEV's trip count cache. 6745 for (auto *U : I->users()) 6746 if (auto *I = dyn_cast<Instruction>(U)) { 6747 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6748 if (LoopForUser && L->contains(LoopForUser) && 6749 Discovered.insert(I).second) 6750 Worklist.push_back(I); 6751 } 6752 } 6753 } 6754 6755 // Re-lookup the insert position, since the call to 6756 // computeBackedgeTakenCount above could result in a 6757 // recusive call to getBackedgeTakenInfo (on a different 6758 // loop), which would invalidate the iterator computed 6759 // earlier. 6760 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6761 } 6762 6763 void ScalarEvolution::forgetLoop(const Loop *L) { 6764 // Drop any stored trip count value. 6765 auto RemoveLoopFromBackedgeMap = 6766 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6767 auto BTCPos = Map.find(L); 6768 if (BTCPos != Map.end()) { 6769 BTCPos->second.clear(); 6770 Map.erase(BTCPos); 6771 } 6772 }; 6773 6774 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6775 SmallVector<Instruction *, 32> Worklist; 6776 SmallPtrSet<Instruction *, 16> Visited; 6777 6778 // Iterate over all the loops and sub-loops to drop SCEV information. 6779 while (!LoopWorklist.empty()) { 6780 auto *CurrL = LoopWorklist.pop_back_val(); 6781 6782 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6783 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6784 6785 // Drop information about predicated SCEV rewrites for this loop. 6786 for (auto I = PredicatedSCEVRewrites.begin(); 6787 I != PredicatedSCEVRewrites.end();) { 6788 std::pair<const SCEV *, const Loop *> Entry = I->first; 6789 if (Entry.second == CurrL) 6790 PredicatedSCEVRewrites.erase(I++); 6791 else 6792 ++I; 6793 } 6794 6795 auto LoopUsersItr = LoopUsers.find(CurrL); 6796 if (LoopUsersItr != LoopUsers.end()) { 6797 for (auto *S : LoopUsersItr->second) 6798 forgetMemoizedResults(S); 6799 LoopUsers.erase(LoopUsersItr); 6800 } 6801 6802 // Drop information about expressions based on loop-header PHIs. 6803 PushLoopPHIs(CurrL, Worklist); 6804 6805 while (!Worklist.empty()) { 6806 Instruction *I = Worklist.pop_back_val(); 6807 if (!Visited.insert(I).second) 6808 continue; 6809 6810 ValueExprMapType::iterator It = 6811 ValueExprMap.find_as(static_cast<Value *>(I)); 6812 if (It != ValueExprMap.end()) { 6813 eraseValueFromMap(It->first); 6814 forgetMemoizedResults(It->second); 6815 if (PHINode *PN = dyn_cast<PHINode>(I)) 6816 ConstantEvolutionLoopExitValue.erase(PN); 6817 } 6818 6819 PushDefUseChildren(I, Worklist); 6820 } 6821 6822 LoopPropertiesCache.erase(CurrL); 6823 // Forget all contained loops too, to avoid dangling entries in the 6824 // ValuesAtScopes map. 6825 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6826 } 6827 } 6828 6829 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6830 while (Loop *Parent = L->getParentLoop()) 6831 L = Parent; 6832 forgetLoop(L); 6833 } 6834 6835 void ScalarEvolution::forgetValue(Value *V) { 6836 Instruction *I = dyn_cast<Instruction>(V); 6837 if (!I) return; 6838 6839 // Drop information about expressions based on loop-header PHIs. 6840 SmallVector<Instruction *, 16> Worklist; 6841 Worklist.push_back(I); 6842 6843 SmallPtrSet<Instruction *, 8> Visited; 6844 while (!Worklist.empty()) { 6845 I = Worklist.pop_back_val(); 6846 if (!Visited.insert(I).second) 6847 continue; 6848 6849 ValueExprMapType::iterator It = 6850 ValueExprMap.find_as(static_cast<Value *>(I)); 6851 if (It != ValueExprMap.end()) { 6852 eraseValueFromMap(It->first); 6853 forgetMemoizedResults(It->second); 6854 if (PHINode *PN = dyn_cast<PHINode>(I)) 6855 ConstantEvolutionLoopExitValue.erase(PN); 6856 } 6857 6858 PushDefUseChildren(I, Worklist); 6859 } 6860 } 6861 6862 /// Get the exact loop backedge taken count considering all loop exits. A 6863 /// computable result can only be returned for loops with all exiting blocks 6864 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6865 /// is never skipped. This is a valid assumption as long as the loop exits via 6866 /// that test. For precise results, it is the caller's responsibility to specify 6867 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6868 const SCEV * 6869 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6870 SCEVUnionPredicate *Preds) const { 6871 // If any exits were not computable, the loop is not computable. 6872 if (!isComplete() || ExitNotTaken.empty()) 6873 return SE->getCouldNotCompute(); 6874 6875 const BasicBlock *Latch = L->getLoopLatch(); 6876 // All exiting blocks we have collected must dominate the only backedge. 6877 if (!Latch) 6878 return SE->getCouldNotCompute(); 6879 6880 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6881 // count is simply a minimum out of all these calculated exit counts. 6882 SmallVector<const SCEV *, 2> Ops; 6883 for (auto &ENT : ExitNotTaken) { 6884 const SCEV *BECount = ENT.ExactNotTaken; 6885 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6886 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6887 "We should only have known counts for exiting blocks that dominate " 6888 "latch!"); 6889 6890 Ops.push_back(BECount); 6891 6892 if (Preds && !ENT.hasAlwaysTruePredicate()) 6893 Preds->add(ENT.Predicate.get()); 6894 6895 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6896 "Predicate should be always true!"); 6897 } 6898 6899 return SE->getUMinFromMismatchedTypes(Ops); 6900 } 6901 6902 /// Get the exact not taken count for this loop exit. 6903 const SCEV * 6904 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6905 ScalarEvolution *SE) const { 6906 for (auto &ENT : ExitNotTaken) 6907 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6908 return ENT.ExactNotTaken; 6909 6910 return SE->getCouldNotCompute(); 6911 } 6912 6913 /// getMax - Get the max backedge taken count for the loop. 6914 const SCEV * 6915 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6916 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6917 return !ENT.hasAlwaysTruePredicate(); 6918 }; 6919 6920 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6921 return SE->getCouldNotCompute(); 6922 6923 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6924 "No point in having a non-constant max backedge taken count!"); 6925 return getMax(); 6926 } 6927 6928 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6929 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6930 return !ENT.hasAlwaysTruePredicate(); 6931 }; 6932 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6933 } 6934 6935 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6936 ScalarEvolution *SE) const { 6937 if (getMax() && getMax() != SE->getCouldNotCompute() && 6938 SE->hasOperand(getMax(), S)) 6939 return true; 6940 6941 for (auto &ENT : ExitNotTaken) 6942 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6943 SE->hasOperand(ENT.ExactNotTaken, S)) 6944 return true; 6945 6946 return false; 6947 } 6948 6949 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6950 : ExactNotTaken(E), MaxNotTaken(E) { 6951 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6952 isa<SCEVConstant>(MaxNotTaken)) && 6953 "No point in having a non-constant max backedge taken count!"); 6954 } 6955 6956 ScalarEvolution::ExitLimit::ExitLimit( 6957 const SCEV *E, const SCEV *M, bool MaxOrZero, 6958 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6959 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6960 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6961 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6962 "Exact is not allowed to be less precise than Max"); 6963 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6964 isa<SCEVConstant>(MaxNotTaken)) && 6965 "No point in having a non-constant max backedge taken count!"); 6966 for (auto *PredSet : PredSetList) 6967 for (auto *P : *PredSet) 6968 addPredicate(P); 6969 } 6970 6971 ScalarEvolution::ExitLimit::ExitLimit( 6972 const SCEV *E, const SCEV *M, bool MaxOrZero, 6973 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6974 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6975 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6976 isa<SCEVConstant>(MaxNotTaken)) && 6977 "No point in having a non-constant max backedge taken count!"); 6978 } 6979 6980 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6981 bool MaxOrZero) 6982 : ExitLimit(E, M, MaxOrZero, None) { 6983 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6984 isa<SCEVConstant>(MaxNotTaken)) && 6985 "No point in having a non-constant max backedge taken count!"); 6986 } 6987 6988 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6989 /// computable exit into a persistent ExitNotTakenInfo array. 6990 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6991 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6992 ExitCounts, 6993 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6994 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6995 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6996 6997 ExitNotTaken.reserve(ExitCounts.size()); 6998 std::transform( 6999 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7000 [&](const EdgeExitInfo &EEI) { 7001 BasicBlock *ExitBB = EEI.first; 7002 const ExitLimit &EL = EEI.second; 7003 if (EL.Predicates.empty()) 7004 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 7005 7006 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7007 for (auto *Pred : EL.Predicates) 7008 Predicate->add(Pred); 7009 7010 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 7011 }); 7012 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 7013 "No point in having a non-constant max backedge taken count!"); 7014 } 7015 7016 /// Invalidate this result and free the ExitNotTakenInfo array. 7017 void ScalarEvolution::BackedgeTakenInfo::clear() { 7018 ExitNotTaken.clear(); 7019 } 7020 7021 /// Compute the number of times the backedge of the specified loop will execute. 7022 ScalarEvolution::BackedgeTakenInfo 7023 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7024 bool AllowPredicates) { 7025 SmallVector<BasicBlock *, 8> ExitingBlocks; 7026 L->getExitingBlocks(ExitingBlocks); 7027 7028 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7029 7030 SmallVector<EdgeExitInfo, 4> ExitCounts; 7031 bool CouldComputeBECount = true; 7032 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7033 const SCEV *MustExitMaxBECount = nullptr; 7034 const SCEV *MayExitMaxBECount = nullptr; 7035 bool MustExitMaxOrZero = false; 7036 7037 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7038 // and compute maxBECount. 7039 // Do a union of all the predicates here. 7040 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7041 BasicBlock *ExitBB = ExitingBlocks[i]; 7042 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7043 7044 assert((AllowPredicates || EL.Predicates.empty()) && 7045 "Predicated exit limit when predicates are not allowed!"); 7046 7047 // 1. For each exit that can be computed, add an entry to ExitCounts. 7048 // CouldComputeBECount is true only if all exits can be computed. 7049 if (EL.ExactNotTaken == getCouldNotCompute()) 7050 // We couldn't compute an exact value for this exit, so 7051 // we won't be able to compute an exact value for the loop. 7052 CouldComputeBECount = false; 7053 else 7054 ExitCounts.emplace_back(ExitBB, EL); 7055 7056 // 2. Derive the loop's MaxBECount from each exit's max number of 7057 // non-exiting iterations. Partition the loop exits into two kinds: 7058 // LoopMustExits and LoopMayExits. 7059 // 7060 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7061 // is a LoopMayExit. If any computable LoopMustExit is found, then 7062 // MaxBECount is the minimum EL.MaxNotTaken of computable 7063 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7064 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7065 // computable EL.MaxNotTaken. 7066 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7067 DT.dominates(ExitBB, Latch)) { 7068 if (!MustExitMaxBECount) { 7069 MustExitMaxBECount = EL.MaxNotTaken; 7070 MustExitMaxOrZero = EL.MaxOrZero; 7071 } else { 7072 MustExitMaxBECount = 7073 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7074 } 7075 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7076 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7077 MayExitMaxBECount = EL.MaxNotTaken; 7078 else { 7079 MayExitMaxBECount = 7080 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7081 } 7082 } 7083 } 7084 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7085 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7086 // The loop backedge will be taken the maximum or zero times if there's 7087 // a single exit that must be taken the maximum or zero times. 7088 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7089 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7090 MaxBECount, MaxOrZero); 7091 } 7092 7093 ScalarEvolution::ExitLimit 7094 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7095 bool AllowPredicates) { 7096 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7097 // If our exiting block does not dominate the latch, then its connection with 7098 // loop's exit limit may be far from trivial. 7099 const BasicBlock *Latch = L->getLoopLatch(); 7100 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7101 return getCouldNotCompute(); 7102 7103 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7104 Instruction *Term = ExitingBlock->getTerminator(); 7105 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7106 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7107 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7108 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7109 "It should have one successor in loop and one exit block!"); 7110 // Proceed to the next level to examine the exit condition expression. 7111 return computeExitLimitFromCond( 7112 L, BI->getCondition(), ExitIfTrue, 7113 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7114 } 7115 7116 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7117 // For switch, make sure that there is a single exit from the loop. 7118 BasicBlock *Exit = nullptr; 7119 for (auto *SBB : successors(ExitingBlock)) 7120 if (!L->contains(SBB)) { 7121 if (Exit) // Multiple exit successors. 7122 return getCouldNotCompute(); 7123 Exit = SBB; 7124 } 7125 assert(Exit && "Exiting block must have at least one exit"); 7126 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7127 /*ControlsExit=*/IsOnlyExit); 7128 } 7129 7130 return getCouldNotCompute(); 7131 } 7132 7133 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7134 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7135 bool ControlsExit, bool AllowPredicates) { 7136 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7137 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7138 ControlsExit, AllowPredicates); 7139 } 7140 7141 Optional<ScalarEvolution::ExitLimit> 7142 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7143 bool ExitIfTrue, bool ControlsExit, 7144 bool AllowPredicates) { 7145 (void)this->L; 7146 (void)this->ExitIfTrue; 7147 (void)this->AllowPredicates; 7148 7149 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7150 this->AllowPredicates == AllowPredicates && 7151 "Variance in assumed invariant key components!"); 7152 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7153 if (Itr == TripCountMap.end()) 7154 return None; 7155 return Itr->second; 7156 } 7157 7158 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7159 bool ExitIfTrue, 7160 bool ControlsExit, 7161 bool AllowPredicates, 7162 const ExitLimit &EL) { 7163 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7164 this->AllowPredicates == AllowPredicates && 7165 "Variance in assumed invariant key components!"); 7166 7167 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7168 assert(InsertResult.second && "Expected successful insertion!"); 7169 (void)InsertResult; 7170 (void)ExitIfTrue; 7171 } 7172 7173 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7174 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7175 bool ControlsExit, bool AllowPredicates) { 7176 7177 if (auto MaybeEL = 7178 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7179 return *MaybeEL; 7180 7181 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7182 ControlsExit, AllowPredicates); 7183 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7184 return EL; 7185 } 7186 7187 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7188 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7189 bool ControlsExit, bool AllowPredicates) { 7190 // Check if the controlling expression for this loop is an And or Or. 7191 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7192 if (BO->getOpcode() == Instruction::And) { 7193 // Recurse on the operands of the and. 7194 bool EitherMayExit = !ExitIfTrue; 7195 ExitLimit EL0 = computeExitLimitFromCondCached( 7196 Cache, L, BO->getOperand(0), ExitIfTrue, 7197 ControlsExit && !EitherMayExit, AllowPredicates); 7198 ExitLimit EL1 = computeExitLimitFromCondCached( 7199 Cache, L, BO->getOperand(1), ExitIfTrue, 7200 ControlsExit && !EitherMayExit, AllowPredicates); 7201 const SCEV *BECount = getCouldNotCompute(); 7202 const SCEV *MaxBECount = getCouldNotCompute(); 7203 if (EitherMayExit) { 7204 // Both conditions must be true for the loop to continue executing. 7205 // Choose the less conservative count. 7206 if (EL0.ExactNotTaken == getCouldNotCompute() || 7207 EL1.ExactNotTaken == getCouldNotCompute()) 7208 BECount = getCouldNotCompute(); 7209 else 7210 BECount = 7211 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7212 if (EL0.MaxNotTaken == getCouldNotCompute()) 7213 MaxBECount = EL1.MaxNotTaken; 7214 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7215 MaxBECount = EL0.MaxNotTaken; 7216 else 7217 MaxBECount = 7218 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7219 } else { 7220 // Both conditions must be true at the same time for the loop to exit. 7221 // For now, be conservative. 7222 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7223 MaxBECount = EL0.MaxNotTaken; 7224 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7225 BECount = EL0.ExactNotTaken; 7226 } 7227 7228 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7229 // to be more aggressive when computing BECount than when computing 7230 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7231 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7232 // to not. 7233 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7234 !isa<SCEVCouldNotCompute>(BECount)) 7235 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7236 7237 return ExitLimit(BECount, MaxBECount, false, 7238 {&EL0.Predicates, &EL1.Predicates}); 7239 } 7240 if (BO->getOpcode() == Instruction::Or) { 7241 // Recurse on the operands of the or. 7242 bool EitherMayExit = ExitIfTrue; 7243 ExitLimit EL0 = computeExitLimitFromCondCached( 7244 Cache, L, BO->getOperand(0), ExitIfTrue, 7245 ControlsExit && !EitherMayExit, AllowPredicates); 7246 ExitLimit EL1 = computeExitLimitFromCondCached( 7247 Cache, L, BO->getOperand(1), ExitIfTrue, 7248 ControlsExit && !EitherMayExit, AllowPredicates); 7249 const SCEV *BECount = getCouldNotCompute(); 7250 const SCEV *MaxBECount = getCouldNotCompute(); 7251 if (EitherMayExit) { 7252 // Both conditions must be false for the loop to continue executing. 7253 // Choose the less conservative count. 7254 if (EL0.ExactNotTaken == getCouldNotCompute() || 7255 EL1.ExactNotTaken == getCouldNotCompute()) 7256 BECount = getCouldNotCompute(); 7257 else 7258 BECount = 7259 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7260 if (EL0.MaxNotTaken == getCouldNotCompute()) 7261 MaxBECount = EL1.MaxNotTaken; 7262 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7263 MaxBECount = EL0.MaxNotTaken; 7264 else 7265 MaxBECount = 7266 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7267 } else { 7268 // Both conditions must be false at the same time for the loop to exit. 7269 // For now, be conservative. 7270 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7271 MaxBECount = EL0.MaxNotTaken; 7272 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7273 BECount = EL0.ExactNotTaken; 7274 } 7275 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7276 // to be more aggressive when computing BECount than when computing 7277 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7278 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7279 // to not. 7280 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7281 !isa<SCEVCouldNotCompute>(BECount)) 7282 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7283 7284 return ExitLimit(BECount, MaxBECount, false, 7285 {&EL0.Predicates, &EL1.Predicates}); 7286 } 7287 } 7288 7289 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7290 // Proceed to the next level to examine the icmp. 7291 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7292 ExitLimit EL = 7293 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7294 if (EL.hasFullInfo() || !AllowPredicates) 7295 return EL; 7296 7297 // Try again, but use SCEV predicates this time. 7298 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7299 /*AllowPredicates=*/true); 7300 } 7301 7302 // Check for a constant condition. These are normally stripped out by 7303 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7304 // preserve the CFG and is temporarily leaving constant conditions 7305 // in place. 7306 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7307 if (ExitIfTrue == !CI->getZExtValue()) 7308 // The backedge is always taken. 7309 return getCouldNotCompute(); 7310 else 7311 // The backedge is never taken. 7312 return getZero(CI->getType()); 7313 } 7314 7315 // If it's not an integer or pointer comparison then compute it the hard way. 7316 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7317 } 7318 7319 ScalarEvolution::ExitLimit 7320 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7321 ICmpInst *ExitCond, 7322 bool ExitIfTrue, 7323 bool ControlsExit, 7324 bool AllowPredicates) { 7325 // If the condition was exit on true, convert the condition to exit on false 7326 ICmpInst::Predicate Pred; 7327 if (!ExitIfTrue) 7328 Pred = ExitCond->getPredicate(); 7329 else 7330 Pred = ExitCond->getInversePredicate(); 7331 const ICmpInst::Predicate OriginalPred = Pred; 7332 7333 // Handle common loops like: for (X = "string"; *X; ++X) 7334 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7335 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7336 ExitLimit ItCnt = 7337 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7338 if (ItCnt.hasAnyInfo()) 7339 return ItCnt; 7340 } 7341 7342 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7343 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7344 7345 // Try to evaluate any dependencies out of the loop. 7346 LHS = getSCEVAtScope(LHS, L); 7347 RHS = getSCEVAtScope(RHS, L); 7348 7349 // At this point, we would like to compute how many iterations of the 7350 // loop the predicate will return true for these inputs. 7351 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7352 // If there is a loop-invariant, force it into the RHS. 7353 std::swap(LHS, RHS); 7354 Pred = ICmpInst::getSwappedPredicate(Pred); 7355 } 7356 7357 // Simplify the operands before analyzing them. 7358 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7359 7360 // If we have a comparison of a chrec against a constant, try to use value 7361 // ranges to answer this query. 7362 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7363 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7364 if (AddRec->getLoop() == L) { 7365 // Form the constant range. 7366 ConstantRange CompRange = 7367 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7368 7369 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7370 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7371 } 7372 7373 switch (Pred) { 7374 case ICmpInst::ICMP_NE: { // while (X != Y) 7375 // Convert to: while (X-Y != 0) 7376 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7377 AllowPredicates); 7378 if (EL.hasAnyInfo()) return EL; 7379 break; 7380 } 7381 case ICmpInst::ICMP_EQ: { // while (X == Y) 7382 // Convert to: while (X-Y == 0) 7383 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7384 if (EL.hasAnyInfo()) return EL; 7385 break; 7386 } 7387 case ICmpInst::ICMP_SLT: 7388 case ICmpInst::ICMP_ULT: { // while (X < Y) 7389 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7390 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7391 AllowPredicates); 7392 if (EL.hasAnyInfo()) return EL; 7393 break; 7394 } 7395 case ICmpInst::ICMP_SGT: 7396 case ICmpInst::ICMP_UGT: { // while (X > Y) 7397 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7398 ExitLimit EL = 7399 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7400 AllowPredicates); 7401 if (EL.hasAnyInfo()) return EL; 7402 break; 7403 } 7404 default: 7405 break; 7406 } 7407 7408 auto *ExhaustiveCount = 7409 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7410 7411 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7412 return ExhaustiveCount; 7413 7414 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7415 ExitCond->getOperand(1), L, OriginalPred); 7416 } 7417 7418 ScalarEvolution::ExitLimit 7419 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7420 SwitchInst *Switch, 7421 BasicBlock *ExitingBlock, 7422 bool ControlsExit) { 7423 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7424 7425 // Give up if the exit is the default dest of a switch. 7426 if (Switch->getDefaultDest() == ExitingBlock) 7427 return getCouldNotCompute(); 7428 7429 assert(L->contains(Switch->getDefaultDest()) && 7430 "Default case must not exit the loop!"); 7431 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7432 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7433 7434 // while (X != Y) --> while (X-Y != 0) 7435 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7436 if (EL.hasAnyInfo()) 7437 return EL; 7438 7439 return getCouldNotCompute(); 7440 } 7441 7442 static ConstantInt * 7443 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7444 ScalarEvolution &SE) { 7445 const SCEV *InVal = SE.getConstant(C); 7446 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7447 assert(isa<SCEVConstant>(Val) && 7448 "Evaluation of SCEV at constant didn't fold correctly?"); 7449 return cast<SCEVConstant>(Val)->getValue(); 7450 } 7451 7452 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7453 /// compute the backedge execution count. 7454 ScalarEvolution::ExitLimit 7455 ScalarEvolution::computeLoadConstantCompareExitLimit( 7456 LoadInst *LI, 7457 Constant *RHS, 7458 const Loop *L, 7459 ICmpInst::Predicate predicate) { 7460 if (LI->isVolatile()) return getCouldNotCompute(); 7461 7462 // Check to see if the loaded pointer is a getelementptr of a global. 7463 // TODO: Use SCEV instead of manually grubbing with GEPs. 7464 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7465 if (!GEP) return getCouldNotCompute(); 7466 7467 // Make sure that it is really a constant global we are gepping, with an 7468 // initializer, and make sure the first IDX is really 0. 7469 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7470 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7471 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7472 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7473 return getCouldNotCompute(); 7474 7475 // Okay, we allow one non-constant index into the GEP instruction. 7476 Value *VarIdx = nullptr; 7477 std::vector<Constant*> Indexes; 7478 unsigned VarIdxNum = 0; 7479 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7480 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7481 Indexes.push_back(CI); 7482 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7483 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7484 VarIdx = GEP->getOperand(i); 7485 VarIdxNum = i-2; 7486 Indexes.push_back(nullptr); 7487 } 7488 7489 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7490 if (!VarIdx) 7491 return getCouldNotCompute(); 7492 7493 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7494 // Check to see if X is a loop variant variable value now. 7495 const SCEV *Idx = getSCEV(VarIdx); 7496 Idx = getSCEVAtScope(Idx, L); 7497 7498 // We can only recognize very limited forms of loop index expressions, in 7499 // particular, only affine AddRec's like {C1,+,C2}. 7500 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7501 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7502 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7503 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7504 return getCouldNotCompute(); 7505 7506 unsigned MaxSteps = MaxBruteForceIterations; 7507 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7508 ConstantInt *ItCst = ConstantInt::get( 7509 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7510 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7511 7512 // Form the GEP offset. 7513 Indexes[VarIdxNum] = Val; 7514 7515 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7516 Indexes); 7517 if (!Result) break; // Cannot compute! 7518 7519 // Evaluate the condition for this iteration. 7520 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7521 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7522 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7523 ++NumArrayLenItCounts; 7524 return getConstant(ItCst); // Found terminating iteration! 7525 } 7526 } 7527 return getCouldNotCompute(); 7528 } 7529 7530 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7531 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7532 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7533 if (!RHS) 7534 return getCouldNotCompute(); 7535 7536 const BasicBlock *Latch = L->getLoopLatch(); 7537 if (!Latch) 7538 return getCouldNotCompute(); 7539 7540 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7541 if (!Predecessor) 7542 return getCouldNotCompute(); 7543 7544 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7545 // Return LHS in OutLHS and shift_opt in OutOpCode. 7546 auto MatchPositiveShift = 7547 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7548 7549 using namespace PatternMatch; 7550 7551 ConstantInt *ShiftAmt; 7552 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7553 OutOpCode = Instruction::LShr; 7554 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7555 OutOpCode = Instruction::AShr; 7556 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7557 OutOpCode = Instruction::Shl; 7558 else 7559 return false; 7560 7561 return ShiftAmt->getValue().isStrictlyPositive(); 7562 }; 7563 7564 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7565 // 7566 // loop: 7567 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7568 // %iv.shifted = lshr i32 %iv, <positive constant> 7569 // 7570 // Return true on a successful match. Return the corresponding PHI node (%iv 7571 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7572 auto MatchShiftRecurrence = 7573 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7574 Optional<Instruction::BinaryOps> PostShiftOpCode; 7575 7576 { 7577 Instruction::BinaryOps OpC; 7578 Value *V; 7579 7580 // If we encounter a shift instruction, "peel off" the shift operation, 7581 // and remember that we did so. Later when we inspect %iv's backedge 7582 // value, we will make sure that the backedge value uses the same 7583 // operation. 7584 // 7585 // Note: the peeled shift operation does not have to be the same 7586 // instruction as the one feeding into the PHI's backedge value. We only 7587 // really care about it being the same *kind* of shift instruction -- 7588 // that's all that is required for our later inferences to hold. 7589 if (MatchPositiveShift(LHS, V, OpC)) { 7590 PostShiftOpCode = OpC; 7591 LHS = V; 7592 } 7593 } 7594 7595 PNOut = dyn_cast<PHINode>(LHS); 7596 if (!PNOut || PNOut->getParent() != L->getHeader()) 7597 return false; 7598 7599 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7600 Value *OpLHS; 7601 7602 return 7603 // The backedge value for the PHI node must be a shift by a positive 7604 // amount 7605 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7606 7607 // of the PHI node itself 7608 OpLHS == PNOut && 7609 7610 // and the kind of shift should be match the kind of shift we peeled 7611 // off, if any. 7612 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7613 }; 7614 7615 PHINode *PN; 7616 Instruction::BinaryOps OpCode; 7617 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7618 return getCouldNotCompute(); 7619 7620 const DataLayout &DL = getDataLayout(); 7621 7622 // The key rationale for this optimization is that for some kinds of shift 7623 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7624 // within a finite number of iterations. If the condition guarding the 7625 // backedge (in the sense that the backedge is taken if the condition is true) 7626 // is false for the value the shift recurrence stabilizes to, then we know 7627 // that the backedge is taken only a finite number of times. 7628 7629 ConstantInt *StableValue = nullptr; 7630 switch (OpCode) { 7631 default: 7632 llvm_unreachable("Impossible case!"); 7633 7634 case Instruction::AShr: { 7635 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7636 // bitwidth(K) iterations. 7637 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7638 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7639 Predecessor->getTerminator(), &DT); 7640 auto *Ty = cast<IntegerType>(RHS->getType()); 7641 if (Known.isNonNegative()) 7642 StableValue = ConstantInt::get(Ty, 0); 7643 else if (Known.isNegative()) 7644 StableValue = ConstantInt::get(Ty, -1, true); 7645 else 7646 return getCouldNotCompute(); 7647 7648 break; 7649 } 7650 case Instruction::LShr: 7651 case Instruction::Shl: 7652 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7653 // stabilize to 0 in at most bitwidth(K) iterations. 7654 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7655 break; 7656 } 7657 7658 auto *Result = 7659 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7660 assert(Result->getType()->isIntegerTy(1) && 7661 "Otherwise cannot be an operand to a branch instruction"); 7662 7663 if (Result->isZeroValue()) { 7664 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7665 const SCEV *UpperBound = 7666 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7667 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7668 } 7669 7670 return getCouldNotCompute(); 7671 } 7672 7673 /// Return true if we can constant fold an instruction of the specified type, 7674 /// assuming that all operands were constants. 7675 static bool CanConstantFold(const Instruction *I) { 7676 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7677 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7678 isa<LoadInst>(I)) 7679 return true; 7680 7681 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7682 if (const Function *F = CI->getCalledFunction()) 7683 return canConstantFoldCallTo(CI, F); 7684 return false; 7685 } 7686 7687 /// Determine whether this instruction can constant evolve within this loop 7688 /// assuming its operands can all constant evolve. 7689 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7690 // An instruction outside of the loop can't be derived from a loop PHI. 7691 if (!L->contains(I)) return false; 7692 7693 if (isa<PHINode>(I)) { 7694 // We don't currently keep track of the control flow needed to evaluate 7695 // PHIs, so we cannot handle PHIs inside of loops. 7696 return L->getHeader() == I->getParent(); 7697 } 7698 7699 // If we won't be able to constant fold this expression even if the operands 7700 // are constants, bail early. 7701 return CanConstantFold(I); 7702 } 7703 7704 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7705 /// recursing through each instruction operand until reaching a loop header phi. 7706 static PHINode * 7707 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7708 DenseMap<Instruction *, PHINode *> &PHIMap, 7709 unsigned Depth) { 7710 if (Depth > MaxConstantEvolvingDepth) 7711 return nullptr; 7712 7713 // Otherwise, we can evaluate this instruction if all of its operands are 7714 // constant or derived from a PHI node themselves. 7715 PHINode *PHI = nullptr; 7716 for (Value *Op : UseInst->operands()) { 7717 if (isa<Constant>(Op)) continue; 7718 7719 Instruction *OpInst = dyn_cast<Instruction>(Op); 7720 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7721 7722 PHINode *P = dyn_cast<PHINode>(OpInst); 7723 if (!P) 7724 // If this operand is already visited, reuse the prior result. 7725 // We may have P != PHI if this is the deepest point at which the 7726 // inconsistent paths meet. 7727 P = PHIMap.lookup(OpInst); 7728 if (!P) { 7729 // Recurse and memoize the results, whether a phi is found or not. 7730 // This recursive call invalidates pointers into PHIMap. 7731 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7732 PHIMap[OpInst] = P; 7733 } 7734 if (!P) 7735 return nullptr; // Not evolving from PHI 7736 if (PHI && PHI != P) 7737 return nullptr; // Evolving from multiple different PHIs. 7738 PHI = P; 7739 } 7740 // This is a expression evolving from a constant PHI! 7741 return PHI; 7742 } 7743 7744 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7745 /// in the loop that V is derived from. We allow arbitrary operations along the 7746 /// way, but the operands of an operation must either be constants or a value 7747 /// derived from a constant PHI. If this expression does not fit with these 7748 /// constraints, return null. 7749 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7750 Instruction *I = dyn_cast<Instruction>(V); 7751 if (!I || !canConstantEvolve(I, L)) return nullptr; 7752 7753 if (PHINode *PN = dyn_cast<PHINode>(I)) 7754 return PN; 7755 7756 // Record non-constant instructions contained by the loop. 7757 DenseMap<Instruction *, PHINode *> PHIMap; 7758 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7759 } 7760 7761 /// EvaluateExpression - Given an expression that passes the 7762 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7763 /// in the loop has the value PHIVal. If we can't fold this expression for some 7764 /// reason, return null. 7765 static Constant *EvaluateExpression(Value *V, const Loop *L, 7766 DenseMap<Instruction *, Constant *> &Vals, 7767 const DataLayout &DL, 7768 const TargetLibraryInfo *TLI) { 7769 // Convenient constant check, but redundant for recursive calls. 7770 if (Constant *C = dyn_cast<Constant>(V)) return C; 7771 Instruction *I = dyn_cast<Instruction>(V); 7772 if (!I) return nullptr; 7773 7774 if (Constant *C = Vals.lookup(I)) return C; 7775 7776 // An instruction inside the loop depends on a value outside the loop that we 7777 // weren't given a mapping for, or a value such as a call inside the loop. 7778 if (!canConstantEvolve(I, L)) return nullptr; 7779 7780 // An unmapped PHI can be due to a branch or another loop inside this loop, 7781 // or due to this not being the initial iteration through a loop where we 7782 // couldn't compute the evolution of this particular PHI last time. 7783 if (isa<PHINode>(I)) return nullptr; 7784 7785 std::vector<Constant*> Operands(I->getNumOperands()); 7786 7787 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7788 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7789 if (!Operand) { 7790 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7791 if (!Operands[i]) return nullptr; 7792 continue; 7793 } 7794 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7795 Vals[Operand] = C; 7796 if (!C) return nullptr; 7797 Operands[i] = C; 7798 } 7799 7800 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7801 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7802 Operands[1], DL, TLI); 7803 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7804 if (!LI->isVolatile()) 7805 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7806 } 7807 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7808 } 7809 7810 7811 // If every incoming value to PN except the one for BB is a specific Constant, 7812 // return that, else return nullptr. 7813 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7814 Constant *IncomingVal = nullptr; 7815 7816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7817 if (PN->getIncomingBlock(i) == BB) 7818 continue; 7819 7820 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7821 if (!CurrentVal) 7822 return nullptr; 7823 7824 if (IncomingVal != CurrentVal) { 7825 if (IncomingVal) 7826 return nullptr; 7827 IncomingVal = CurrentVal; 7828 } 7829 } 7830 7831 return IncomingVal; 7832 } 7833 7834 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7835 /// in the header of its containing loop, we know the loop executes a 7836 /// constant number of times, and the PHI node is just a recurrence 7837 /// involving constants, fold it. 7838 Constant * 7839 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7840 const APInt &BEs, 7841 const Loop *L) { 7842 auto I = ConstantEvolutionLoopExitValue.find(PN); 7843 if (I != ConstantEvolutionLoopExitValue.end()) 7844 return I->second; 7845 7846 if (BEs.ugt(MaxBruteForceIterations)) 7847 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7848 7849 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7850 7851 DenseMap<Instruction *, Constant *> CurrentIterVals; 7852 BasicBlock *Header = L->getHeader(); 7853 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7854 7855 BasicBlock *Latch = L->getLoopLatch(); 7856 if (!Latch) 7857 return nullptr; 7858 7859 for (PHINode &PHI : Header->phis()) { 7860 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7861 CurrentIterVals[&PHI] = StartCST; 7862 } 7863 if (!CurrentIterVals.count(PN)) 7864 return RetVal = nullptr; 7865 7866 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7867 7868 // Execute the loop symbolically to determine the exit value. 7869 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7870 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7871 7872 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7873 unsigned IterationNum = 0; 7874 const DataLayout &DL = getDataLayout(); 7875 for (; ; ++IterationNum) { 7876 if (IterationNum == NumIterations) 7877 return RetVal = CurrentIterVals[PN]; // Got exit value! 7878 7879 // Compute the value of the PHIs for the next iteration. 7880 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7881 DenseMap<Instruction *, Constant *> NextIterVals; 7882 Constant *NextPHI = 7883 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7884 if (!NextPHI) 7885 return nullptr; // Couldn't evaluate! 7886 NextIterVals[PN] = NextPHI; 7887 7888 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7889 7890 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7891 // cease to be able to evaluate one of them or if they stop evolving, 7892 // because that doesn't necessarily prevent us from computing PN. 7893 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7894 for (const auto &I : CurrentIterVals) { 7895 PHINode *PHI = dyn_cast<PHINode>(I.first); 7896 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7897 PHIsToCompute.emplace_back(PHI, I.second); 7898 } 7899 // We use two distinct loops because EvaluateExpression may invalidate any 7900 // iterators into CurrentIterVals. 7901 for (const auto &I : PHIsToCompute) { 7902 PHINode *PHI = I.first; 7903 Constant *&NextPHI = NextIterVals[PHI]; 7904 if (!NextPHI) { // Not already computed. 7905 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7906 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7907 } 7908 if (NextPHI != I.second) 7909 StoppedEvolving = false; 7910 } 7911 7912 // If all entries in CurrentIterVals == NextIterVals then we can stop 7913 // iterating, the loop can't continue to change. 7914 if (StoppedEvolving) 7915 return RetVal = CurrentIterVals[PN]; 7916 7917 CurrentIterVals.swap(NextIterVals); 7918 } 7919 } 7920 7921 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7922 Value *Cond, 7923 bool ExitWhen) { 7924 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7925 if (!PN) return getCouldNotCompute(); 7926 7927 // If the loop is canonicalized, the PHI will have exactly two entries. 7928 // That's the only form we support here. 7929 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7930 7931 DenseMap<Instruction *, Constant *> CurrentIterVals; 7932 BasicBlock *Header = L->getHeader(); 7933 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7934 7935 BasicBlock *Latch = L->getLoopLatch(); 7936 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7937 7938 for (PHINode &PHI : Header->phis()) { 7939 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7940 CurrentIterVals[&PHI] = StartCST; 7941 } 7942 if (!CurrentIterVals.count(PN)) 7943 return getCouldNotCompute(); 7944 7945 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7946 // the loop symbolically to determine when the condition gets a value of 7947 // "ExitWhen". 7948 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7949 const DataLayout &DL = getDataLayout(); 7950 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7951 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7952 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7953 7954 // Couldn't symbolically evaluate. 7955 if (!CondVal) return getCouldNotCompute(); 7956 7957 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7958 ++NumBruteForceTripCountsComputed; 7959 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7960 } 7961 7962 // Update all the PHI nodes for the next iteration. 7963 DenseMap<Instruction *, Constant *> NextIterVals; 7964 7965 // Create a list of which PHIs we need to compute. We want to do this before 7966 // calling EvaluateExpression on them because that may invalidate iterators 7967 // into CurrentIterVals. 7968 SmallVector<PHINode *, 8> PHIsToCompute; 7969 for (const auto &I : CurrentIterVals) { 7970 PHINode *PHI = dyn_cast<PHINode>(I.first); 7971 if (!PHI || PHI->getParent() != Header) continue; 7972 PHIsToCompute.push_back(PHI); 7973 } 7974 for (PHINode *PHI : PHIsToCompute) { 7975 Constant *&NextPHI = NextIterVals[PHI]; 7976 if (NextPHI) continue; // Already computed! 7977 7978 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7979 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7980 } 7981 CurrentIterVals.swap(NextIterVals); 7982 } 7983 7984 // Too many iterations were needed to evaluate. 7985 return getCouldNotCompute(); 7986 } 7987 7988 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7989 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7990 ValuesAtScopes[V]; 7991 // Check to see if we've folded this expression at this loop before. 7992 for (auto &LS : Values) 7993 if (LS.first == L) 7994 return LS.second ? LS.second : V; 7995 7996 Values.emplace_back(L, nullptr); 7997 7998 // Otherwise compute it. 7999 const SCEV *C = computeSCEVAtScope(V, L); 8000 for (auto &LS : reverse(ValuesAtScopes[V])) 8001 if (LS.first == L) { 8002 LS.second = C; 8003 break; 8004 } 8005 return C; 8006 } 8007 8008 /// This builds up a Constant using the ConstantExpr interface. That way, we 8009 /// will return Constants for objects which aren't represented by a 8010 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8011 /// Returns NULL if the SCEV isn't representable as a Constant. 8012 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8013 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 8014 case scCouldNotCompute: 8015 case scAddRecExpr: 8016 break; 8017 case scConstant: 8018 return cast<SCEVConstant>(V)->getValue(); 8019 case scUnknown: 8020 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8021 case scSignExtend: { 8022 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8023 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8024 return ConstantExpr::getSExt(CastOp, SS->getType()); 8025 break; 8026 } 8027 case scZeroExtend: { 8028 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8029 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8030 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8031 break; 8032 } 8033 case scTruncate: { 8034 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8035 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8036 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8037 break; 8038 } 8039 case scAddExpr: { 8040 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8041 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8042 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8043 unsigned AS = PTy->getAddressSpace(); 8044 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8045 C = ConstantExpr::getBitCast(C, DestPtrTy); 8046 } 8047 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8048 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8049 if (!C2) return nullptr; 8050 8051 // First pointer! 8052 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8053 unsigned AS = C2->getType()->getPointerAddressSpace(); 8054 std::swap(C, C2); 8055 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8056 // The offsets have been converted to bytes. We can add bytes to an 8057 // i8* by GEP with the byte count in the first index. 8058 C = ConstantExpr::getBitCast(C, DestPtrTy); 8059 } 8060 8061 // Don't bother trying to sum two pointers. We probably can't 8062 // statically compute a load that results from it anyway. 8063 if (C2->getType()->isPointerTy()) 8064 return nullptr; 8065 8066 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8067 if (PTy->getElementType()->isStructTy()) 8068 C2 = ConstantExpr::getIntegerCast( 8069 C2, Type::getInt32Ty(C->getContext()), true); 8070 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8071 } else 8072 C = ConstantExpr::getAdd(C, C2); 8073 } 8074 return C; 8075 } 8076 break; 8077 } 8078 case scMulExpr: { 8079 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8080 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8081 // Don't bother with pointers at all. 8082 if (C->getType()->isPointerTy()) return nullptr; 8083 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8084 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8085 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8086 C = ConstantExpr::getMul(C, C2); 8087 } 8088 return C; 8089 } 8090 break; 8091 } 8092 case scUDivExpr: { 8093 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8094 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8095 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8096 if (LHS->getType() == RHS->getType()) 8097 return ConstantExpr::getUDiv(LHS, RHS); 8098 break; 8099 } 8100 case scSMaxExpr: 8101 case scUMaxExpr: 8102 break; // TODO: smax, umax. 8103 } 8104 return nullptr; 8105 } 8106 8107 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8108 if (isa<SCEVConstant>(V)) return V; 8109 8110 // If this instruction is evolved from a constant-evolving PHI, compute the 8111 // exit value from the loop without using SCEVs. 8112 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8113 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8114 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8115 const Loop *LI = this->LI[I->getParent()]; 8116 // Looking for loop exit value. 8117 if (LI && LI->getParentLoop() == L && 8118 PN->getParent() == LI->getHeader()) { 8119 // Okay, there is no closed form solution for the PHI node. Check 8120 // to see if the loop that contains it has a known backedge-taken 8121 // count. If so, we may be able to force computation of the exit 8122 // value. 8123 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8124 if (const SCEVConstant *BTCC = 8125 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8126 8127 // This trivial case can show up in some degenerate cases where 8128 // the incoming IR has not yet been fully simplified. 8129 if (BTCC->getValue()->isZero()) { 8130 Value *InitValue = nullptr; 8131 bool MultipleInitValues = false; 8132 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8133 if (!LI->contains(PN->getIncomingBlock(i))) { 8134 if (!InitValue) 8135 InitValue = PN->getIncomingValue(i); 8136 else if (InitValue != PN->getIncomingValue(i)) { 8137 MultipleInitValues = true; 8138 break; 8139 } 8140 } 8141 if (!MultipleInitValues && InitValue) 8142 return getSCEV(InitValue); 8143 } 8144 } 8145 // Okay, we know how many times the containing loop executes. If 8146 // this is a constant evolving PHI node, get the final value at 8147 // the specified iteration number. 8148 Constant *RV = 8149 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8150 if (RV) return getSCEV(RV); 8151 } 8152 } 8153 } 8154 8155 // Okay, this is an expression that we cannot symbolically evaluate 8156 // into a SCEV. Check to see if it's possible to symbolically evaluate 8157 // the arguments into constants, and if so, try to constant propagate the 8158 // result. This is particularly useful for computing loop exit values. 8159 if (CanConstantFold(I)) { 8160 SmallVector<Constant *, 4> Operands; 8161 bool MadeImprovement = false; 8162 for (Value *Op : I->operands()) { 8163 if (Constant *C = dyn_cast<Constant>(Op)) { 8164 Operands.push_back(C); 8165 continue; 8166 } 8167 8168 // If any of the operands is non-constant and if they are 8169 // non-integer and non-pointer, don't even try to analyze them 8170 // with scev techniques. 8171 if (!isSCEVable(Op->getType())) 8172 return V; 8173 8174 const SCEV *OrigV = getSCEV(Op); 8175 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8176 MadeImprovement |= OrigV != OpV; 8177 8178 Constant *C = BuildConstantFromSCEV(OpV); 8179 if (!C) return V; 8180 if (C->getType() != Op->getType()) 8181 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8182 Op->getType(), 8183 false), 8184 C, Op->getType()); 8185 Operands.push_back(C); 8186 } 8187 8188 // Check to see if getSCEVAtScope actually made an improvement. 8189 if (MadeImprovement) { 8190 Constant *C = nullptr; 8191 const DataLayout &DL = getDataLayout(); 8192 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8193 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8194 Operands[1], DL, &TLI); 8195 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8196 if (!LI->isVolatile()) 8197 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8198 } else 8199 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8200 if (!C) return V; 8201 return getSCEV(C); 8202 } 8203 } 8204 } 8205 8206 // This is some other type of SCEVUnknown, just return it. 8207 return V; 8208 } 8209 8210 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8211 // Avoid performing the look-up in the common case where the specified 8212 // expression has no loop-variant portions. 8213 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8214 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8215 if (OpAtScope != Comm->getOperand(i)) { 8216 // Okay, at least one of these operands is loop variant but might be 8217 // foldable. Build a new instance of the folded commutative expression. 8218 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8219 Comm->op_begin()+i); 8220 NewOps.push_back(OpAtScope); 8221 8222 for (++i; i != e; ++i) { 8223 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8224 NewOps.push_back(OpAtScope); 8225 } 8226 if (isa<SCEVAddExpr>(Comm)) 8227 return getAddExpr(NewOps); 8228 if (isa<SCEVMulExpr>(Comm)) 8229 return getMulExpr(NewOps); 8230 if (isa<SCEVSMaxExpr>(Comm)) 8231 return getSMaxExpr(NewOps); 8232 if (isa<SCEVUMaxExpr>(Comm)) 8233 return getUMaxExpr(NewOps); 8234 llvm_unreachable("Unknown commutative SCEV type!"); 8235 } 8236 } 8237 // If we got here, all operands are loop invariant. 8238 return Comm; 8239 } 8240 8241 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8242 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8243 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8244 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8245 return Div; // must be loop invariant 8246 return getUDivExpr(LHS, RHS); 8247 } 8248 8249 // If this is a loop recurrence for a loop that does not contain L, then we 8250 // are dealing with the final value computed by the loop. 8251 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8252 // First, attempt to evaluate each operand. 8253 // Avoid performing the look-up in the common case where the specified 8254 // expression has no loop-variant portions. 8255 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8256 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8257 if (OpAtScope == AddRec->getOperand(i)) 8258 continue; 8259 8260 // Okay, at least one of these operands is loop variant but might be 8261 // foldable. Build a new instance of the folded commutative expression. 8262 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8263 AddRec->op_begin()+i); 8264 NewOps.push_back(OpAtScope); 8265 for (++i; i != e; ++i) 8266 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8267 8268 const SCEV *FoldedRec = 8269 getAddRecExpr(NewOps, AddRec->getLoop(), 8270 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8271 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8272 // The addrec may be folded to a nonrecurrence, for example, if the 8273 // induction variable is multiplied by zero after constant folding. Go 8274 // ahead and return the folded value. 8275 if (!AddRec) 8276 return FoldedRec; 8277 break; 8278 } 8279 8280 // If the scope is outside the addrec's loop, evaluate it by using the 8281 // loop exit value of the addrec. 8282 if (!AddRec->getLoop()->contains(L)) { 8283 // To evaluate this recurrence, we need to know how many times the AddRec 8284 // loop iterates. Compute this now. 8285 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8286 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8287 8288 // Then, evaluate the AddRec. 8289 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8290 } 8291 8292 return AddRec; 8293 } 8294 8295 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8296 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8297 if (Op == Cast->getOperand()) 8298 return Cast; // must be loop invariant 8299 return getZeroExtendExpr(Op, Cast->getType()); 8300 } 8301 8302 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8303 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8304 if (Op == Cast->getOperand()) 8305 return Cast; // must be loop invariant 8306 return getSignExtendExpr(Op, Cast->getType()); 8307 } 8308 8309 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8310 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8311 if (Op == Cast->getOperand()) 8312 return Cast; // must be loop invariant 8313 return getTruncateExpr(Op, Cast->getType()); 8314 } 8315 8316 llvm_unreachable("Unknown SCEV type!"); 8317 } 8318 8319 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8320 return getSCEVAtScope(getSCEV(V), L); 8321 } 8322 8323 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8324 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8325 return stripInjectiveFunctions(ZExt->getOperand()); 8326 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8327 return stripInjectiveFunctions(SExt->getOperand()); 8328 return S; 8329 } 8330 8331 /// Finds the minimum unsigned root of the following equation: 8332 /// 8333 /// A * X = B (mod N) 8334 /// 8335 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8336 /// A and B isn't important. 8337 /// 8338 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8339 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8340 ScalarEvolution &SE) { 8341 uint32_t BW = A.getBitWidth(); 8342 assert(BW == SE.getTypeSizeInBits(B->getType())); 8343 assert(A != 0 && "A must be non-zero."); 8344 8345 // 1. D = gcd(A, N) 8346 // 8347 // The gcd of A and N may have only one prime factor: 2. The number of 8348 // trailing zeros in A is its multiplicity 8349 uint32_t Mult2 = A.countTrailingZeros(); 8350 // D = 2^Mult2 8351 8352 // 2. Check if B is divisible by D. 8353 // 8354 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8355 // is not less than multiplicity of this prime factor for D. 8356 if (SE.GetMinTrailingZeros(B) < Mult2) 8357 return SE.getCouldNotCompute(); 8358 8359 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8360 // modulo (N / D). 8361 // 8362 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8363 // (N / D) in general. The inverse itself always fits into BW bits, though, 8364 // so we immediately truncate it. 8365 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8366 APInt Mod(BW + 1, 0); 8367 Mod.setBit(BW - Mult2); // Mod = N / D 8368 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8369 8370 // 4. Compute the minimum unsigned root of the equation: 8371 // I * (B / D) mod (N / D) 8372 // To simplify the computation, we factor out the divide by D: 8373 // (I * B mod N) / D 8374 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8375 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8376 } 8377 8378 /// For a given quadratic addrec, generate coefficients of the corresponding 8379 /// quadratic equation, multiplied by a common value to ensure that they are 8380 /// integers. 8381 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8382 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8383 /// were multiplied by, and BitWidth is the bit width of the original addrec 8384 /// coefficients. 8385 /// This function returns None if the addrec coefficients are not compile- 8386 /// time constants. 8387 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8388 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8389 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8390 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8391 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8392 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8393 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8394 << *AddRec << '\n'); 8395 8396 // We currently can only solve this if the coefficients are constants. 8397 if (!LC || !MC || !NC) { 8398 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8399 return None; 8400 } 8401 8402 APInt L = LC->getAPInt(); 8403 APInt M = MC->getAPInt(); 8404 APInt N = NC->getAPInt(); 8405 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8406 8407 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8408 unsigned NewWidth = BitWidth + 1; 8409 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8410 << BitWidth << '\n'); 8411 // The sign-extension (as opposed to a zero-extension) here matches the 8412 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8413 N = N.sext(NewWidth); 8414 M = M.sext(NewWidth); 8415 L = L.sext(NewWidth); 8416 8417 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8418 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8419 // L+M, L+2M+N, L+3M+3N, ... 8420 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8421 // 8422 // The equation Acc = 0 is then 8423 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8424 // In a quadratic form it becomes: 8425 // N n^2 + (2M-N) n + 2L = 0. 8426 8427 APInt A = N; 8428 APInt B = 2 * M - A; 8429 APInt C = 2 * L; 8430 APInt T = APInt(NewWidth, 2); 8431 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8432 << "x + " << C << ", coeff bw: " << NewWidth 8433 << ", multiplied by " << T << '\n'); 8434 return std::make_tuple(A, B, C, T, BitWidth); 8435 } 8436 8437 /// Helper function to compare optional APInts: 8438 /// (a) if X and Y both exist, return min(X, Y), 8439 /// (b) if neither X nor Y exist, return None, 8440 /// (c) if exactly one of X and Y exists, return that value. 8441 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8442 if (X.hasValue() && Y.hasValue()) { 8443 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8444 APInt XW = X->sextOrSelf(W); 8445 APInt YW = Y->sextOrSelf(W); 8446 return XW.slt(YW) ? *X : *Y; 8447 } 8448 if (!X.hasValue() && !Y.hasValue()) 8449 return None; 8450 return X.hasValue() ? *X : *Y; 8451 } 8452 8453 /// Helper function to truncate an optional APInt to a given BitWidth. 8454 /// When solving addrec-related equations, it is preferable to return a value 8455 /// that has the same bit width as the original addrec's coefficients. If the 8456 /// solution fits in the original bit width, truncate it (except for i1). 8457 /// Returning a value of a different bit width may inhibit some optimizations. 8458 /// 8459 /// In general, a solution to a quadratic equation generated from an addrec 8460 /// may require BW+1 bits, where BW is the bit width of the addrec's 8461 /// coefficients. The reason is that the coefficients of the quadratic 8462 /// equation are BW+1 bits wide (to avoid truncation when converting from 8463 /// the addrec to the equation). 8464 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8465 if (!X.hasValue()) 8466 return None; 8467 unsigned W = X->getBitWidth(); 8468 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8469 return X->trunc(BitWidth); 8470 return X; 8471 } 8472 8473 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8474 /// iterations. The values L, M, N are assumed to be signed, and they 8475 /// should all have the same bit widths. 8476 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8477 /// where BW is the bit width of the addrec's coefficients. 8478 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8479 /// returned as such, otherwise the bit width of the returned value may 8480 /// be greater than BW. 8481 /// 8482 /// This function returns None if 8483 /// (a) the addrec coefficients are not constant, or 8484 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8485 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8486 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8487 static Optional<APInt> 8488 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8489 APInt A, B, C, M; 8490 unsigned BitWidth; 8491 auto T = GetQuadraticEquation(AddRec); 8492 if (!T.hasValue()) 8493 return None; 8494 8495 std::tie(A, B, C, M, BitWidth) = *T; 8496 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8497 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8498 if (!X.hasValue()) 8499 return None; 8500 8501 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8502 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8503 if (!V->isZero()) 8504 return None; 8505 8506 return TruncIfPossible(X, BitWidth); 8507 } 8508 8509 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8510 /// iterations. The values M, N are assumed to be signed, and they 8511 /// should all have the same bit widths. 8512 /// Find the least n such that c(n) does not belong to the given range, 8513 /// while c(n-1) does. 8514 /// 8515 /// This function returns None if 8516 /// (a) the addrec coefficients are not constant, or 8517 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8518 /// bounds of the range. 8519 static Optional<APInt> 8520 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8521 const ConstantRange &Range, ScalarEvolution &SE) { 8522 assert(AddRec->getOperand(0)->isZero() && 8523 "Starting value of addrec should be 0"); 8524 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8525 << Range << ", addrec " << *AddRec << '\n'); 8526 // This case is handled in getNumIterationsInRange. Here we can assume that 8527 // we start in the range. 8528 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8529 "Addrec's initial value should be in range"); 8530 8531 APInt A, B, C, M; 8532 unsigned BitWidth; 8533 auto T = GetQuadraticEquation(AddRec); 8534 if (!T.hasValue()) 8535 return None; 8536 8537 // Be careful about the return value: there can be two reasons for not 8538 // returning an actual number. First, if no solutions to the equations 8539 // were found, and second, if the solutions don't leave the given range. 8540 // The first case means that the actual solution is "unknown", the second 8541 // means that it's known, but not valid. If the solution is unknown, we 8542 // cannot make any conclusions. 8543 // Return a pair: the optional solution and a flag indicating if the 8544 // solution was found. 8545 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8546 // Solve for signed overflow and unsigned overflow, pick the lower 8547 // solution. 8548 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8549 << Bound << " (before multiplying by " << M << ")\n"); 8550 Bound *= M; // The quadratic equation multiplier. 8551 8552 Optional<APInt> SO = None; 8553 if (BitWidth > 1) { 8554 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8555 "signed overflow\n"); 8556 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8557 } 8558 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8559 "unsigned overflow\n"); 8560 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8561 BitWidth+1); 8562 8563 auto LeavesRange = [&] (const APInt &X) { 8564 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8565 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8566 if (Range.contains(V0->getValue())) 8567 return false; 8568 // X should be at least 1, so X-1 is non-negative. 8569 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8570 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8571 if (Range.contains(V1->getValue())) 8572 return true; 8573 return false; 8574 }; 8575 8576 // If SolveQuadraticEquationWrap returns None, it means that there can 8577 // be a solution, but the function failed to find it. We cannot treat it 8578 // as "no solution". 8579 if (!SO.hasValue() || !UO.hasValue()) 8580 return { None, false }; 8581 8582 // Check the smaller value first to see if it leaves the range. 8583 // At this point, both SO and UO must have values. 8584 Optional<APInt> Min = MinOptional(SO, UO); 8585 if (LeavesRange(*Min)) 8586 return { Min, true }; 8587 Optional<APInt> Max = Min == SO ? UO : SO; 8588 if (LeavesRange(*Max)) 8589 return { Max, true }; 8590 8591 // Solutions were found, but were eliminated, hence the "true". 8592 return { None, true }; 8593 }; 8594 8595 std::tie(A, B, C, M, BitWidth) = *T; 8596 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8597 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8598 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8599 auto SL = SolveForBoundary(Lower); 8600 auto SU = SolveForBoundary(Upper); 8601 // If any of the solutions was unknown, no meaninigful conclusions can 8602 // be made. 8603 if (!SL.second || !SU.second) 8604 return None; 8605 8606 // Claim: The correct solution is not some value between Min and Max. 8607 // 8608 // Justification: Assuming that Min and Max are different values, one of 8609 // them is when the first signed overflow happens, the other is when the 8610 // first unsigned overflow happens. Crossing the range boundary is only 8611 // possible via an overflow (treating 0 as a special case of it, modeling 8612 // an overflow as crossing k*2^W for some k). 8613 // 8614 // The interesting case here is when Min was eliminated as an invalid 8615 // solution, but Max was not. The argument is that if there was another 8616 // overflow between Min and Max, it would also have been eliminated if 8617 // it was considered. 8618 // 8619 // For a given boundary, it is possible to have two overflows of the same 8620 // type (signed/unsigned) without having the other type in between: this 8621 // can happen when the vertex of the parabola is between the iterations 8622 // corresponding to the overflows. This is only possible when the two 8623 // overflows cross k*2^W for the same k. In such case, if the second one 8624 // left the range (and was the first one to do so), the first overflow 8625 // would have to enter the range, which would mean that either we had left 8626 // the range before or that we started outside of it. Both of these cases 8627 // are contradictions. 8628 // 8629 // Claim: In the case where SolveForBoundary returns None, the correct 8630 // solution is not some value between the Max for this boundary and the 8631 // Min of the other boundary. 8632 // 8633 // Justification: Assume that we had such Max_A and Min_B corresponding 8634 // to range boundaries A and B and such that Max_A < Min_B. If there was 8635 // a solution between Max_A and Min_B, it would have to be caused by an 8636 // overflow corresponding to either A or B. It cannot correspond to B, 8637 // since Min_B is the first occurrence of such an overflow. If it 8638 // corresponded to A, it would have to be either a signed or an unsigned 8639 // overflow that is larger than both eliminated overflows for A. But 8640 // between the eliminated overflows and this overflow, the values would 8641 // cover the entire value space, thus crossing the other boundary, which 8642 // is a contradiction. 8643 8644 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8645 } 8646 8647 ScalarEvolution::ExitLimit 8648 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8649 bool AllowPredicates) { 8650 8651 // This is only used for loops with a "x != y" exit test. The exit condition 8652 // is now expressed as a single expression, V = x-y. So the exit test is 8653 // effectively V != 0. We know and take advantage of the fact that this 8654 // expression only being used in a comparison by zero context. 8655 8656 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8657 // If the value is a constant 8658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8659 // If the value is already zero, the branch will execute zero times. 8660 if (C->getValue()->isZero()) return C; 8661 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8662 } 8663 8664 const SCEVAddRecExpr *AddRec = 8665 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8666 8667 if (!AddRec && AllowPredicates) 8668 // Try to make this an AddRec using runtime tests, in the first X 8669 // iterations of this loop, where X is the SCEV expression found by the 8670 // algorithm below. 8671 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8672 8673 if (!AddRec || AddRec->getLoop() != L) 8674 return getCouldNotCompute(); 8675 8676 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8677 // the quadratic equation to solve it. 8678 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8679 // We can only use this value if the chrec ends up with an exact zero 8680 // value at this index. When solving for "X*X != 5", for example, we 8681 // should not accept a root of 2. 8682 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8683 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8684 return ExitLimit(R, R, false, Predicates); 8685 } 8686 return getCouldNotCompute(); 8687 } 8688 8689 // Otherwise we can only handle this if it is affine. 8690 if (!AddRec->isAffine()) 8691 return getCouldNotCompute(); 8692 8693 // If this is an affine expression, the execution count of this branch is 8694 // the minimum unsigned root of the following equation: 8695 // 8696 // Start + Step*N = 0 (mod 2^BW) 8697 // 8698 // equivalent to: 8699 // 8700 // Step*N = -Start (mod 2^BW) 8701 // 8702 // where BW is the common bit width of Start and Step. 8703 8704 // Get the initial value for the loop. 8705 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8706 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8707 8708 // For now we handle only constant steps. 8709 // 8710 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8711 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8712 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8713 // We have not yet seen any such cases. 8714 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8715 if (!StepC || StepC->getValue()->isZero()) 8716 return getCouldNotCompute(); 8717 8718 // For positive steps (counting up until unsigned overflow): 8719 // N = -Start/Step (as unsigned) 8720 // For negative steps (counting down to zero): 8721 // N = Start/-Step 8722 // First compute the unsigned distance from zero in the direction of Step. 8723 bool CountDown = StepC->getAPInt().isNegative(); 8724 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8725 8726 // Handle unitary steps, which cannot wraparound. 8727 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8728 // N = Distance (as unsigned) 8729 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8730 APInt MaxBECount = getUnsignedRangeMax(Distance); 8731 8732 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8733 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8734 // case, and see if we can improve the bound. 8735 // 8736 // Explicitly handling this here is necessary because getUnsignedRange 8737 // isn't context-sensitive; it doesn't know that we only care about the 8738 // range inside the loop. 8739 const SCEV *Zero = getZero(Distance->getType()); 8740 const SCEV *One = getOne(Distance->getType()); 8741 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8742 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8743 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8744 // as "unsigned_max(Distance + 1) - 1". 8745 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8746 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8747 } 8748 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8749 } 8750 8751 // If the condition controls loop exit (the loop exits only if the expression 8752 // is true) and the addition is no-wrap we can use unsigned divide to 8753 // compute the backedge count. In this case, the step may not divide the 8754 // distance, but we don't care because if the condition is "missed" the loop 8755 // will have undefined behavior due to wrapping. 8756 if (ControlsExit && AddRec->hasNoSelfWrap() && 8757 loopHasNoAbnormalExits(AddRec->getLoop())) { 8758 const SCEV *Exact = 8759 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8760 const SCEV *Max = 8761 Exact == getCouldNotCompute() 8762 ? Exact 8763 : getConstant(getUnsignedRangeMax(Exact)); 8764 return ExitLimit(Exact, Max, false, Predicates); 8765 } 8766 8767 // Solve the general equation. 8768 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8769 getNegativeSCEV(Start), *this); 8770 const SCEV *M = E == getCouldNotCompute() 8771 ? E 8772 : getConstant(getUnsignedRangeMax(E)); 8773 return ExitLimit(E, M, false, Predicates); 8774 } 8775 8776 ScalarEvolution::ExitLimit 8777 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8778 // Loops that look like: while (X == 0) are very strange indeed. We don't 8779 // handle them yet except for the trivial case. This could be expanded in the 8780 // future as needed. 8781 8782 // If the value is a constant, check to see if it is known to be non-zero 8783 // already. If so, the backedge will execute zero times. 8784 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8785 if (!C->getValue()->isZero()) 8786 return getZero(C->getType()); 8787 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8788 } 8789 8790 // We could implement others, but I really doubt anyone writes loops like 8791 // this, and if they did, they would already be constant folded. 8792 return getCouldNotCompute(); 8793 } 8794 8795 std::pair<BasicBlock *, BasicBlock *> 8796 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8797 // If the block has a unique predecessor, then there is no path from the 8798 // predecessor to the block that does not go through the direct edge 8799 // from the predecessor to the block. 8800 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8801 return {Pred, BB}; 8802 8803 // A loop's header is defined to be a block that dominates the loop. 8804 // If the header has a unique predecessor outside the loop, it must be 8805 // a block that has exactly one successor that can reach the loop. 8806 if (Loop *L = LI.getLoopFor(BB)) 8807 return {L->getLoopPredecessor(), L->getHeader()}; 8808 8809 return {nullptr, nullptr}; 8810 } 8811 8812 /// SCEV structural equivalence is usually sufficient for testing whether two 8813 /// expressions are equal, however for the purposes of looking for a condition 8814 /// guarding a loop, it can be useful to be a little more general, since a 8815 /// front-end may have replicated the controlling expression. 8816 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8817 // Quick check to see if they are the same SCEV. 8818 if (A == B) return true; 8819 8820 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8821 // Not all instructions that are "identical" compute the same value. For 8822 // instance, two distinct alloca instructions allocating the same type are 8823 // identical and do not read memory; but compute distinct values. 8824 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8825 }; 8826 8827 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8828 // two different instructions with the same value. Check for this case. 8829 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8830 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8831 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8832 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8833 if (ComputesEqualValues(AI, BI)) 8834 return true; 8835 8836 // Otherwise assume they may have a different value. 8837 return false; 8838 } 8839 8840 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8841 const SCEV *&LHS, const SCEV *&RHS, 8842 unsigned Depth) { 8843 bool Changed = false; 8844 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8845 // '0 != 0'. 8846 auto TrivialCase = [&](bool TriviallyTrue) { 8847 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8848 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8849 return true; 8850 }; 8851 // If we hit the max recursion limit bail out. 8852 if (Depth >= 3) 8853 return false; 8854 8855 // Canonicalize a constant to the right side. 8856 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8857 // Check for both operands constant. 8858 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8859 if (ConstantExpr::getICmp(Pred, 8860 LHSC->getValue(), 8861 RHSC->getValue())->isNullValue()) 8862 return TrivialCase(false); 8863 else 8864 return TrivialCase(true); 8865 } 8866 // Otherwise swap the operands to put the constant on the right. 8867 std::swap(LHS, RHS); 8868 Pred = ICmpInst::getSwappedPredicate(Pred); 8869 Changed = true; 8870 } 8871 8872 // If we're comparing an addrec with a value which is loop-invariant in the 8873 // addrec's loop, put the addrec on the left. Also make a dominance check, 8874 // as both operands could be addrecs loop-invariant in each other's loop. 8875 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8876 const Loop *L = AR->getLoop(); 8877 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8878 std::swap(LHS, RHS); 8879 Pred = ICmpInst::getSwappedPredicate(Pred); 8880 Changed = true; 8881 } 8882 } 8883 8884 // If there's a constant operand, canonicalize comparisons with boundary 8885 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8886 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8887 const APInt &RA = RC->getAPInt(); 8888 8889 bool SimplifiedByConstantRange = false; 8890 8891 if (!ICmpInst::isEquality(Pred)) { 8892 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8893 if (ExactCR.isFullSet()) 8894 return TrivialCase(true); 8895 else if (ExactCR.isEmptySet()) 8896 return TrivialCase(false); 8897 8898 APInt NewRHS; 8899 CmpInst::Predicate NewPred; 8900 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8901 ICmpInst::isEquality(NewPred)) { 8902 // We were able to convert an inequality to an equality. 8903 Pred = NewPred; 8904 RHS = getConstant(NewRHS); 8905 Changed = SimplifiedByConstantRange = true; 8906 } 8907 } 8908 8909 if (!SimplifiedByConstantRange) { 8910 switch (Pred) { 8911 default: 8912 break; 8913 case ICmpInst::ICMP_EQ: 8914 case ICmpInst::ICMP_NE: 8915 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8916 if (!RA) 8917 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8918 if (const SCEVMulExpr *ME = 8919 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8920 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8921 ME->getOperand(0)->isAllOnesValue()) { 8922 RHS = AE->getOperand(1); 8923 LHS = ME->getOperand(1); 8924 Changed = true; 8925 } 8926 break; 8927 8928 8929 // The "Should have been caught earlier!" messages refer to the fact 8930 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8931 // should have fired on the corresponding cases, and canonicalized the 8932 // check to trivial case. 8933 8934 case ICmpInst::ICMP_UGE: 8935 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8936 Pred = ICmpInst::ICMP_UGT; 8937 RHS = getConstant(RA - 1); 8938 Changed = true; 8939 break; 8940 case ICmpInst::ICMP_ULE: 8941 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8942 Pred = ICmpInst::ICMP_ULT; 8943 RHS = getConstant(RA + 1); 8944 Changed = true; 8945 break; 8946 case ICmpInst::ICMP_SGE: 8947 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8948 Pred = ICmpInst::ICMP_SGT; 8949 RHS = getConstant(RA - 1); 8950 Changed = true; 8951 break; 8952 case ICmpInst::ICMP_SLE: 8953 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8954 Pred = ICmpInst::ICMP_SLT; 8955 RHS = getConstant(RA + 1); 8956 Changed = true; 8957 break; 8958 } 8959 } 8960 } 8961 8962 // Check for obvious equality. 8963 if (HasSameValue(LHS, RHS)) { 8964 if (ICmpInst::isTrueWhenEqual(Pred)) 8965 return TrivialCase(true); 8966 if (ICmpInst::isFalseWhenEqual(Pred)) 8967 return TrivialCase(false); 8968 } 8969 8970 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8971 // adding or subtracting 1 from one of the operands. 8972 switch (Pred) { 8973 case ICmpInst::ICMP_SLE: 8974 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8975 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8976 SCEV::FlagNSW); 8977 Pred = ICmpInst::ICMP_SLT; 8978 Changed = true; 8979 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8980 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8981 SCEV::FlagNSW); 8982 Pred = ICmpInst::ICMP_SLT; 8983 Changed = true; 8984 } 8985 break; 8986 case ICmpInst::ICMP_SGE: 8987 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8988 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8989 SCEV::FlagNSW); 8990 Pred = ICmpInst::ICMP_SGT; 8991 Changed = true; 8992 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8993 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8994 SCEV::FlagNSW); 8995 Pred = ICmpInst::ICMP_SGT; 8996 Changed = true; 8997 } 8998 break; 8999 case ICmpInst::ICMP_ULE: 9000 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9001 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9002 SCEV::FlagNUW); 9003 Pred = ICmpInst::ICMP_ULT; 9004 Changed = true; 9005 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9006 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9007 Pred = ICmpInst::ICMP_ULT; 9008 Changed = true; 9009 } 9010 break; 9011 case ICmpInst::ICMP_UGE: 9012 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9013 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9014 Pred = ICmpInst::ICMP_UGT; 9015 Changed = true; 9016 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9017 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9018 SCEV::FlagNUW); 9019 Pred = ICmpInst::ICMP_UGT; 9020 Changed = true; 9021 } 9022 break; 9023 default: 9024 break; 9025 } 9026 9027 // TODO: More simplifications are possible here. 9028 9029 // Recursively simplify until we either hit a recursion limit or nothing 9030 // changes. 9031 if (Changed) 9032 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9033 9034 return Changed; 9035 } 9036 9037 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9038 return getSignedRangeMax(S).isNegative(); 9039 } 9040 9041 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9042 return getSignedRangeMin(S).isStrictlyPositive(); 9043 } 9044 9045 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9046 return !getSignedRangeMin(S).isNegative(); 9047 } 9048 9049 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9050 return !getSignedRangeMax(S).isStrictlyPositive(); 9051 } 9052 9053 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9054 return isKnownNegative(S) || isKnownPositive(S); 9055 } 9056 9057 std::pair<const SCEV *, const SCEV *> 9058 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9059 // Compute SCEV on entry of loop L. 9060 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9061 if (Start == getCouldNotCompute()) 9062 return { Start, Start }; 9063 // Compute post increment SCEV for loop L. 9064 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9065 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9066 return { Start, PostInc }; 9067 } 9068 9069 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9070 const SCEV *LHS, const SCEV *RHS) { 9071 // First collect all loops. 9072 SmallPtrSet<const Loop *, 8> LoopsUsed; 9073 getUsedLoops(LHS, LoopsUsed); 9074 getUsedLoops(RHS, LoopsUsed); 9075 9076 if (LoopsUsed.empty()) 9077 return false; 9078 9079 // Domination relationship must be a linear order on collected loops. 9080 #ifndef NDEBUG 9081 for (auto *L1 : LoopsUsed) 9082 for (auto *L2 : LoopsUsed) 9083 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9084 DT.dominates(L2->getHeader(), L1->getHeader())) && 9085 "Domination relationship is not a linear order"); 9086 #endif 9087 9088 const Loop *MDL = 9089 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9090 [&](const Loop *L1, const Loop *L2) { 9091 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9092 }); 9093 9094 // Get init and post increment value for LHS. 9095 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9096 // if LHS contains unknown non-invariant SCEV then bail out. 9097 if (SplitLHS.first == getCouldNotCompute()) 9098 return false; 9099 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9100 // Get init and post increment value for RHS. 9101 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9102 // if RHS contains unknown non-invariant SCEV then bail out. 9103 if (SplitRHS.first == getCouldNotCompute()) 9104 return false; 9105 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9106 // It is possible that init SCEV contains an invariant load but it does 9107 // not dominate MDL and is not available at MDL loop entry, so we should 9108 // check it here. 9109 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9110 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9111 return false; 9112 9113 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 9114 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9115 SplitRHS.second); 9116 } 9117 9118 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9119 const SCEV *LHS, const SCEV *RHS) { 9120 // Canonicalize the inputs first. 9121 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9122 9123 if (isKnownViaInduction(Pred, LHS, RHS)) 9124 return true; 9125 9126 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9127 return true; 9128 9129 // Otherwise see what can be done with some simple reasoning. 9130 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9131 } 9132 9133 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9134 const SCEVAddRecExpr *LHS, 9135 const SCEV *RHS) { 9136 const Loop *L = LHS->getLoop(); 9137 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9138 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9139 } 9140 9141 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9142 ICmpInst::Predicate Pred, 9143 bool &Increasing) { 9144 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9145 9146 #ifndef NDEBUG 9147 // Verify an invariant: inverting the predicate should turn a monotonically 9148 // increasing change to a monotonically decreasing one, and vice versa. 9149 bool IncreasingSwapped; 9150 bool ResultSwapped = isMonotonicPredicateImpl( 9151 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9152 9153 assert(Result == ResultSwapped && "should be able to analyze both!"); 9154 if (ResultSwapped) 9155 assert(Increasing == !IncreasingSwapped && 9156 "monotonicity should flip as we flip the predicate"); 9157 #endif 9158 9159 return Result; 9160 } 9161 9162 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9163 ICmpInst::Predicate Pred, 9164 bool &Increasing) { 9165 9166 // A zero step value for LHS means the induction variable is essentially a 9167 // loop invariant value. We don't really depend on the predicate actually 9168 // flipping from false to true (for increasing predicates, and the other way 9169 // around for decreasing predicates), all we care about is that *if* the 9170 // predicate changes then it only changes from false to true. 9171 // 9172 // A zero step value in itself is not very useful, but there may be places 9173 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9174 // as general as possible. 9175 9176 switch (Pred) { 9177 default: 9178 return false; // Conservative answer 9179 9180 case ICmpInst::ICMP_UGT: 9181 case ICmpInst::ICMP_UGE: 9182 case ICmpInst::ICMP_ULT: 9183 case ICmpInst::ICMP_ULE: 9184 if (!LHS->hasNoUnsignedWrap()) 9185 return false; 9186 9187 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9188 return true; 9189 9190 case ICmpInst::ICMP_SGT: 9191 case ICmpInst::ICMP_SGE: 9192 case ICmpInst::ICMP_SLT: 9193 case ICmpInst::ICMP_SLE: { 9194 if (!LHS->hasNoSignedWrap()) 9195 return false; 9196 9197 const SCEV *Step = LHS->getStepRecurrence(*this); 9198 9199 if (isKnownNonNegative(Step)) { 9200 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9201 return true; 9202 } 9203 9204 if (isKnownNonPositive(Step)) { 9205 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9206 return true; 9207 } 9208 9209 return false; 9210 } 9211 9212 } 9213 9214 llvm_unreachable("switch has default clause!"); 9215 } 9216 9217 bool ScalarEvolution::isLoopInvariantPredicate( 9218 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9219 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9220 const SCEV *&InvariantRHS) { 9221 9222 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9223 if (!isLoopInvariant(RHS, L)) { 9224 if (!isLoopInvariant(LHS, L)) 9225 return false; 9226 9227 std::swap(LHS, RHS); 9228 Pred = ICmpInst::getSwappedPredicate(Pred); 9229 } 9230 9231 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9232 if (!ArLHS || ArLHS->getLoop() != L) 9233 return false; 9234 9235 bool Increasing; 9236 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9237 return false; 9238 9239 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9240 // true as the loop iterates, and the backedge is control dependent on 9241 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9242 // 9243 // * if the predicate was false in the first iteration then the predicate 9244 // is never evaluated again, since the loop exits without taking the 9245 // backedge. 9246 // * if the predicate was true in the first iteration then it will 9247 // continue to be true for all future iterations since it is 9248 // monotonically increasing. 9249 // 9250 // For both the above possibilities, we can replace the loop varying 9251 // predicate with its value on the first iteration of the loop (which is 9252 // loop invariant). 9253 // 9254 // A similar reasoning applies for a monotonically decreasing predicate, by 9255 // replacing true with false and false with true in the above two bullets. 9256 9257 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9258 9259 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9260 return false; 9261 9262 InvariantPred = Pred; 9263 InvariantLHS = ArLHS->getStart(); 9264 InvariantRHS = RHS; 9265 return true; 9266 } 9267 9268 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9269 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9270 if (HasSameValue(LHS, RHS)) 9271 return ICmpInst::isTrueWhenEqual(Pred); 9272 9273 // This code is split out from isKnownPredicate because it is called from 9274 // within isLoopEntryGuardedByCond. 9275 9276 auto CheckRanges = 9277 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9278 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9279 .contains(RangeLHS); 9280 }; 9281 9282 // The check at the top of the function catches the case where the values are 9283 // known to be equal. 9284 if (Pred == CmpInst::ICMP_EQ) 9285 return false; 9286 9287 if (Pred == CmpInst::ICMP_NE) 9288 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9289 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9290 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9291 9292 if (CmpInst::isSigned(Pred)) 9293 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9294 9295 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9296 } 9297 9298 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9299 const SCEV *LHS, 9300 const SCEV *RHS) { 9301 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9302 // Return Y via OutY. 9303 auto MatchBinaryAddToConst = 9304 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9305 SCEV::NoWrapFlags ExpectedFlags) { 9306 const SCEV *NonConstOp, *ConstOp; 9307 SCEV::NoWrapFlags FlagsPresent; 9308 9309 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9310 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9311 return false; 9312 9313 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9314 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9315 }; 9316 9317 APInt C; 9318 9319 switch (Pred) { 9320 default: 9321 break; 9322 9323 case ICmpInst::ICMP_SGE: 9324 std::swap(LHS, RHS); 9325 LLVM_FALLTHROUGH; 9326 case ICmpInst::ICMP_SLE: 9327 // X s<= (X + C)<nsw> if C >= 0 9328 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9329 return true; 9330 9331 // (X + C)<nsw> s<= X if C <= 0 9332 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9333 !C.isStrictlyPositive()) 9334 return true; 9335 break; 9336 9337 case ICmpInst::ICMP_SGT: 9338 std::swap(LHS, RHS); 9339 LLVM_FALLTHROUGH; 9340 case ICmpInst::ICMP_SLT: 9341 // X s< (X + C)<nsw> if C > 0 9342 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9343 C.isStrictlyPositive()) 9344 return true; 9345 9346 // (X + C)<nsw> s< X if C < 0 9347 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9348 return true; 9349 break; 9350 } 9351 9352 return false; 9353 } 9354 9355 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9356 const SCEV *LHS, 9357 const SCEV *RHS) { 9358 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9359 return false; 9360 9361 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9362 // the stack can result in exponential time complexity. 9363 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9364 9365 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9366 // 9367 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9368 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9369 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9370 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9371 // use isKnownPredicate later if needed. 9372 return isKnownNonNegative(RHS) && 9373 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9374 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9375 } 9376 9377 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9378 ICmpInst::Predicate Pred, 9379 const SCEV *LHS, const SCEV *RHS) { 9380 // No need to even try if we know the module has no guards. 9381 if (!HasGuards) 9382 return false; 9383 9384 return any_of(*BB, [&](Instruction &I) { 9385 using namespace llvm::PatternMatch; 9386 9387 Value *Condition; 9388 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9389 m_Value(Condition))) && 9390 isImpliedCond(Pred, LHS, RHS, Condition, false); 9391 }); 9392 } 9393 9394 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9395 /// protected by a conditional between LHS and RHS. This is used to 9396 /// to eliminate casts. 9397 bool 9398 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9399 ICmpInst::Predicate Pred, 9400 const SCEV *LHS, const SCEV *RHS) { 9401 // Interpret a null as meaning no loop, where there is obviously no guard 9402 // (interprocedural conditions notwithstanding). 9403 if (!L) return true; 9404 9405 if (VerifyIR) 9406 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9407 "This cannot be done on broken IR!"); 9408 9409 9410 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9411 return true; 9412 9413 BasicBlock *Latch = L->getLoopLatch(); 9414 if (!Latch) 9415 return false; 9416 9417 BranchInst *LoopContinuePredicate = 9418 dyn_cast<BranchInst>(Latch->getTerminator()); 9419 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9420 isImpliedCond(Pred, LHS, RHS, 9421 LoopContinuePredicate->getCondition(), 9422 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9423 return true; 9424 9425 // We don't want more than one activation of the following loops on the stack 9426 // -- that can lead to O(n!) time complexity. 9427 if (WalkingBEDominatingConds) 9428 return false; 9429 9430 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9431 9432 // See if we can exploit a trip count to prove the predicate. 9433 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9434 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9435 if (LatchBECount != getCouldNotCompute()) { 9436 // We know that Latch branches back to the loop header exactly 9437 // LatchBECount times. This means the backdege condition at Latch is 9438 // equivalent to "{0,+,1} u< LatchBECount". 9439 Type *Ty = LatchBECount->getType(); 9440 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9441 const SCEV *LoopCounter = 9442 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9443 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9444 LatchBECount)) 9445 return true; 9446 } 9447 9448 // Check conditions due to any @llvm.assume intrinsics. 9449 for (auto &AssumeVH : AC.assumptions()) { 9450 if (!AssumeVH) 9451 continue; 9452 auto *CI = cast<CallInst>(AssumeVH); 9453 if (!DT.dominates(CI, Latch->getTerminator())) 9454 continue; 9455 9456 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9457 return true; 9458 } 9459 9460 // If the loop is not reachable from the entry block, we risk running into an 9461 // infinite loop as we walk up into the dom tree. These loops do not matter 9462 // anyway, so we just return a conservative answer when we see them. 9463 if (!DT.isReachableFromEntry(L->getHeader())) 9464 return false; 9465 9466 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9467 return true; 9468 9469 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9470 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9471 assert(DTN && "should reach the loop header before reaching the root!"); 9472 9473 BasicBlock *BB = DTN->getBlock(); 9474 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9475 return true; 9476 9477 BasicBlock *PBB = BB->getSinglePredecessor(); 9478 if (!PBB) 9479 continue; 9480 9481 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9482 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9483 continue; 9484 9485 Value *Condition = ContinuePredicate->getCondition(); 9486 9487 // If we have an edge `E` within the loop body that dominates the only 9488 // latch, the condition guarding `E` also guards the backedge. This 9489 // reasoning works only for loops with a single latch. 9490 9491 BasicBlockEdge DominatingEdge(PBB, BB); 9492 if (DominatingEdge.isSingleEdge()) { 9493 // We're constructively (and conservatively) enumerating edges within the 9494 // loop body that dominate the latch. The dominator tree better agree 9495 // with us on this: 9496 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9497 9498 if (isImpliedCond(Pred, LHS, RHS, Condition, 9499 BB != ContinuePredicate->getSuccessor(0))) 9500 return true; 9501 } 9502 } 9503 9504 return false; 9505 } 9506 9507 bool 9508 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9509 ICmpInst::Predicate Pred, 9510 const SCEV *LHS, const SCEV *RHS) { 9511 // Interpret a null as meaning no loop, where there is obviously no guard 9512 // (interprocedural conditions notwithstanding). 9513 if (!L) return false; 9514 9515 if (VerifyIR) 9516 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9517 "This cannot be done on broken IR!"); 9518 9519 // Both LHS and RHS must be available at loop entry. 9520 assert(isAvailableAtLoopEntry(LHS, L) && 9521 "LHS is not available at Loop Entry"); 9522 assert(isAvailableAtLoopEntry(RHS, L) && 9523 "RHS is not available at Loop Entry"); 9524 9525 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9526 return true; 9527 9528 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9529 // the facts (a >= b && a != b) separately. A typical situation is when the 9530 // non-strict comparison is known from ranges and non-equality is known from 9531 // dominating predicates. If we are proving strict comparison, we always try 9532 // to prove non-equality and non-strict comparison separately. 9533 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9534 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9535 bool ProvedNonStrictComparison = false; 9536 bool ProvedNonEquality = false; 9537 9538 if (ProvingStrictComparison) { 9539 ProvedNonStrictComparison = 9540 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9541 ProvedNonEquality = 9542 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9543 if (ProvedNonStrictComparison && ProvedNonEquality) 9544 return true; 9545 } 9546 9547 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9548 auto ProveViaGuard = [&](BasicBlock *Block) { 9549 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9550 return true; 9551 if (ProvingStrictComparison) { 9552 if (!ProvedNonStrictComparison) 9553 ProvedNonStrictComparison = 9554 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9555 if (!ProvedNonEquality) 9556 ProvedNonEquality = 9557 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9558 if (ProvedNonStrictComparison && ProvedNonEquality) 9559 return true; 9560 } 9561 return false; 9562 }; 9563 9564 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9565 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9566 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9567 return true; 9568 if (ProvingStrictComparison) { 9569 if (!ProvedNonStrictComparison) 9570 ProvedNonStrictComparison = 9571 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9572 if (!ProvedNonEquality) 9573 ProvedNonEquality = 9574 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9575 if (ProvedNonStrictComparison && ProvedNonEquality) 9576 return true; 9577 } 9578 return false; 9579 }; 9580 9581 // Starting at the loop predecessor, climb up the predecessor chain, as long 9582 // as there are predecessors that can be found that have unique successors 9583 // leading to the original header. 9584 for (std::pair<BasicBlock *, BasicBlock *> 9585 Pair(L->getLoopPredecessor(), L->getHeader()); 9586 Pair.first; 9587 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9588 9589 if (ProveViaGuard(Pair.first)) 9590 return true; 9591 9592 BranchInst *LoopEntryPredicate = 9593 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9594 if (!LoopEntryPredicate || 9595 LoopEntryPredicate->isUnconditional()) 9596 continue; 9597 9598 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9599 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9600 return true; 9601 } 9602 9603 // Check conditions due to any @llvm.assume intrinsics. 9604 for (auto &AssumeVH : AC.assumptions()) { 9605 if (!AssumeVH) 9606 continue; 9607 auto *CI = cast<CallInst>(AssumeVH); 9608 if (!DT.dominates(CI, L->getHeader())) 9609 continue; 9610 9611 if (ProveViaCond(CI->getArgOperand(0), false)) 9612 return true; 9613 } 9614 9615 return false; 9616 } 9617 9618 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9619 const SCEV *LHS, const SCEV *RHS, 9620 Value *FoundCondValue, 9621 bool Inverse) { 9622 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9623 return false; 9624 9625 auto ClearOnExit = 9626 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9627 9628 // Recursively handle And and Or conditions. 9629 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9630 if (BO->getOpcode() == Instruction::And) { 9631 if (!Inverse) 9632 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9633 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9634 } else if (BO->getOpcode() == Instruction::Or) { 9635 if (Inverse) 9636 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9637 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9638 } 9639 } 9640 9641 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9642 if (!ICI) return false; 9643 9644 // Now that we found a conditional branch that dominates the loop or controls 9645 // the loop latch. Check to see if it is the comparison we are looking for. 9646 ICmpInst::Predicate FoundPred; 9647 if (Inverse) 9648 FoundPred = ICI->getInversePredicate(); 9649 else 9650 FoundPred = ICI->getPredicate(); 9651 9652 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9653 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9654 9655 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9656 } 9657 9658 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9659 const SCEV *RHS, 9660 ICmpInst::Predicate FoundPred, 9661 const SCEV *FoundLHS, 9662 const SCEV *FoundRHS) { 9663 // Balance the types. 9664 if (getTypeSizeInBits(LHS->getType()) < 9665 getTypeSizeInBits(FoundLHS->getType())) { 9666 if (CmpInst::isSigned(Pred)) { 9667 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9668 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9669 } else { 9670 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9671 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9672 } 9673 } else if (getTypeSizeInBits(LHS->getType()) > 9674 getTypeSizeInBits(FoundLHS->getType())) { 9675 if (CmpInst::isSigned(FoundPred)) { 9676 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9677 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9678 } else { 9679 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9680 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9681 } 9682 } 9683 9684 // Canonicalize the query to match the way instcombine will have 9685 // canonicalized the comparison. 9686 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9687 if (LHS == RHS) 9688 return CmpInst::isTrueWhenEqual(Pred); 9689 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9690 if (FoundLHS == FoundRHS) 9691 return CmpInst::isFalseWhenEqual(FoundPred); 9692 9693 // Check to see if we can make the LHS or RHS match. 9694 if (LHS == FoundRHS || RHS == FoundLHS) { 9695 if (isa<SCEVConstant>(RHS)) { 9696 std::swap(FoundLHS, FoundRHS); 9697 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9698 } else { 9699 std::swap(LHS, RHS); 9700 Pred = ICmpInst::getSwappedPredicate(Pred); 9701 } 9702 } 9703 9704 // Check whether the found predicate is the same as the desired predicate. 9705 if (FoundPred == Pred) 9706 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9707 9708 // Check whether swapping the found predicate makes it the same as the 9709 // desired predicate. 9710 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9711 if (isa<SCEVConstant>(RHS)) 9712 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9713 else 9714 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9715 RHS, LHS, FoundLHS, FoundRHS); 9716 } 9717 9718 // Unsigned comparison is the same as signed comparison when both the operands 9719 // are non-negative. 9720 if (CmpInst::isUnsigned(FoundPred) && 9721 CmpInst::getSignedPredicate(FoundPred) == Pred && 9722 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9723 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9724 9725 // Check if we can make progress by sharpening ranges. 9726 if (FoundPred == ICmpInst::ICMP_NE && 9727 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9728 9729 const SCEVConstant *C = nullptr; 9730 const SCEV *V = nullptr; 9731 9732 if (isa<SCEVConstant>(FoundLHS)) { 9733 C = cast<SCEVConstant>(FoundLHS); 9734 V = FoundRHS; 9735 } else { 9736 C = cast<SCEVConstant>(FoundRHS); 9737 V = FoundLHS; 9738 } 9739 9740 // The guarding predicate tells us that C != V. If the known range 9741 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9742 // range we consider has to correspond to same signedness as the 9743 // predicate we're interested in folding. 9744 9745 APInt Min = ICmpInst::isSigned(Pred) ? 9746 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9747 9748 if (Min == C->getAPInt()) { 9749 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9750 // This is true even if (Min + 1) wraps around -- in case of 9751 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9752 9753 APInt SharperMin = Min + 1; 9754 9755 switch (Pred) { 9756 case ICmpInst::ICMP_SGE: 9757 case ICmpInst::ICMP_UGE: 9758 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9759 // RHS, we're done. 9760 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9761 getConstant(SharperMin))) 9762 return true; 9763 LLVM_FALLTHROUGH; 9764 9765 case ICmpInst::ICMP_SGT: 9766 case ICmpInst::ICMP_UGT: 9767 // We know from the range information that (V `Pred` Min || 9768 // V == Min). We know from the guarding condition that !(V 9769 // == Min). This gives us 9770 // 9771 // V `Pred` Min || V == Min && !(V == Min) 9772 // => V `Pred` Min 9773 // 9774 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9775 9776 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9777 return true; 9778 LLVM_FALLTHROUGH; 9779 9780 default: 9781 // No change 9782 break; 9783 } 9784 } 9785 } 9786 9787 // Check whether the actual condition is beyond sufficient. 9788 if (FoundPred == ICmpInst::ICMP_EQ) 9789 if (ICmpInst::isTrueWhenEqual(Pred)) 9790 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9791 return true; 9792 if (Pred == ICmpInst::ICMP_NE) 9793 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9794 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9795 return true; 9796 9797 // Otherwise assume the worst. 9798 return false; 9799 } 9800 9801 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9802 const SCEV *&L, const SCEV *&R, 9803 SCEV::NoWrapFlags &Flags) { 9804 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9805 if (!AE || AE->getNumOperands() != 2) 9806 return false; 9807 9808 L = AE->getOperand(0); 9809 R = AE->getOperand(1); 9810 Flags = AE->getNoWrapFlags(); 9811 return true; 9812 } 9813 9814 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9815 const SCEV *Less) { 9816 // We avoid subtracting expressions here because this function is usually 9817 // fairly deep in the call stack (i.e. is called many times). 9818 9819 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9820 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9821 const auto *MAR = cast<SCEVAddRecExpr>(More); 9822 9823 if (LAR->getLoop() != MAR->getLoop()) 9824 return None; 9825 9826 // We look at affine expressions only; not for correctness but to keep 9827 // getStepRecurrence cheap. 9828 if (!LAR->isAffine() || !MAR->isAffine()) 9829 return None; 9830 9831 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9832 return None; 9833 9834 Less = LAR->getStart(); 9835 More = MAR->getStart(); 9836 9837 // fall through 9838 } 9839 9840 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9841 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9842 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9843 return M - L; 9844 } 9845 9846 SCEV::NoWrapFlags Flags; 9847 const SCEV *LLess = nullptr, *RLess = nullptr; 9848 const SCEV *LMore = nullptr, *RMore = nullptr; 9849 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9850 // Compare (X + C1) vs X. 9851 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9852 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9853 if (RLess == More) 9854 return -(C1->getAPInt()); 9855 9856 // Compare X vs (X + C2). 9857 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9858 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9859 if (RMore == Less) 9860 return C2->getAPInt(); 9861 9862 // Compare (X + C1) vs (X + C2). 9863 if (C1 && C2 && RLess == RMore) 9864 return C2->getAPInt() - C1->getAPInt(); 9865 9866 return None; 9867 } 9868 9869 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9870 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9871 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9872 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9873 return false; 9874 9875 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9876 if (!AddRecLHS) 9877 return false; 9878 9879 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9880 if (!AddRecFoundLHS) 9881 return false; 9882 9883 // We'd like to let SCEV reason about control dependencies, so we constrain 9884 // both the inequalities to be about add recurrences on the same loop. This 9885 // way we can use isLoopEntryGuardedByCond later. 9886 9887 const Loop *L = AddRecFoundLHS->getLoop(); 9888 if (L != AddRecLHS->getLoop()) 9889 return false; 9890 9891 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9892 // 9893 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9894 // ... (2) 9895 // 9896 // Informal proof for (2), assuming (1) [*]: 9897 // 9898 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9899 // 9900 // Then 9901 // 9902 // FoundLHS s< FoundRHS s< INT_MIN - C 9903 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9904 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9905 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9906 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9907 // <=> FoundLHS + C s< FoundRHS + C 9908 // 9909 // [*]: (1) can be proved by ruling out overflow. 9910 // 9911 // [**]: This can be proved by analyzing all the four possibilities: 9912 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9913 // (A s>= 0, B s>= 0). 9914 // 9915 // Note: 9916 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9917 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9918 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9919 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9920 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9921 // C)". 9922 9923 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9924 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9925 if (!LDiff || !RDiff || *LDiff != *RDiff) 9926 return false; 9927 9928 if (LDiff->isMinValue()) 9929 return true; 9930 9931 APInt FoundRHSLimit; 9932 9933 if (Pred == CmpInst::ICMP_ULT) { 9934 FoundRHSLimit = -(*RDiff); 9935 } else { 9936 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9937 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9938 } 9939 9940 // Try to prove (1) or (2), as needed. 9941 return isAvailableAtLoopEntry(FoundRHS, L) && 9942 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9943 getConstant(FoundRHSLimit)); 9944 } 9945 9946 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9947 const SCEV *LHS, const SCEV *RHS, 9948 const SCEV *FoundLHS, 9949 const SCEV *FoundRHS, unsigned Depth) { 9950 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9951 9952 auto ClearOnExit = make_scope_exit([&]() { 9953 if (LPhi) { 9954 bool Erased = PendingMerges.erase(LPhi); 9955 assert(Erased && "Failed to erase LPhi!"); 9956 (void)Erased; 9957 } 9958 if (RPhi) { 9959 bool Erased = PendingMerges.erase(RPhi); 9960 assert(Erased && "Failed to erase RPhi!"); 9961 (void)Erased; 9962 } 9963 }); 9964 9965 // Find respective Phis and check that they are not being pending. 9966 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9967 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9968 if (!PendingMerges.insert(Phi).second) 9969 return false; 9970 LPhi = Phi; 9971 } 9972 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9973 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9974 // If we detect a loop of Phi nodes being processed by this method, for 9975 // example: 9976 // 9977 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9978 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9979 // 9980 // we don't want to deal with a case that complex, so return conservative 9981 // answer false. 9982 if (!PendingMerges.insert(Phi).second) 9983 return false; 9984 RPhi = Phi; 9985 } 9986 9987 // If none of LHS, RHS is a Phi, nothing to do here. 9988 if (!LPhi && !RPhi) 9989 return false; 9990 9991 // If there is a SCEVUnknown Phi we are interested in, make it left. 9992 if (!LPhi) { 9993 std::swap(LHS, RHS); 9994 std::swap(FoundLHS, FoundRHS); 9995 std::swap(LPhi, RPhi); 9996 Pred = ICmpInst::getSwappedPredicate(Pred); 9997 } 9998 9999 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10000 const BasicBlock *LBB = LPhi->getParent(); 10001 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10002 10003 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10004 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10005 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10006 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10007 }; 10008 10009 if (RPhi && RPhi->getParent() == LBB) { 10010 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10011 // If we compare two Phis from the same block, and for each entry block 10012 // the predicate is true for incoming values from this block, then the 10013 // predicate is also true for the Phis. 10014 for (const BasicBlock *IncBB : predecessors(LBB)) { 10015 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10016 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10017 if (!ProvedEasily(L, R)) 10018 return false; 10019 } 10020 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10021 // Case two: RHS is also a Phi from the same basic block, and it is an 10022 // AddRec. It means that there is a loop which has both AddRec and Unknown 10023 // PHIs, for it we can compare incoming values of AddRec from above the loop 10024 // and latch with their respective incoming values of LPhi. 10025 // TODO: Generalize to handle loops with many inputs in a header. 10026 if (LPhi->getNumIncomingValues() != 2) return false; 10027 10028 auto *RLoop = RAR->getLoop(); 10029 auto *Predecessor = RLoop->getLoopPredecessor(); 10030 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10031 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10032 if (!ProvedEasily(L1, RAR->getStart())) 10033 return false; 10034 auto *Latch = RLoop->getLoopLatch(); 10035 assert(Latch && "Loop with AddRec with no latch?"); 10036 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10037 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10038 return false; 10039 } else { 10040 // In all other cases go over inputs of LHS and compare each of them to RHS, 10041 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10042 // At this point RHS is either a non-Phi, or it is a Phi from some block 10043 // different from LBB. 10044 for (const BasicBlock *IncBB : predecessors(LBB)) { 10045 // Check that RHS is available in this block. 10046 if (!dominates(RHS, IncBB)) 10047 return false; 10048 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10049 if (!ProvedEasily(L, RHS)) 10050 return false; 10051 } 10052 } 10053 return true; 10054 } 10055 10056 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10057 const SCEV *LHS, const SCEV *RHS, 10058 const SCEV *FoundLHS, 10059 const SCEV *FoundRHS) { 10060 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10061 return true; 10062 10063 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10064 return true; 10065 10066 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10067 FoundLHS, FoundRHS) || 10068 // ~x < ~y --> x > y 10069 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10070 getNotSCEV(FoundRHS), 10071 getNotSCEV(FoundLHS)); 10072 } 10073 10074 /// If Expr computes ~A, return A else return nullptr 10075 static const SCEV *MatchNotExpr(const SCEV *Expr) { 10076 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 10077 if (!Add || Add->getNumOperands() != 2 || 10078 !Add->getOperand(0)->isAllOnesValue()) 10079 return nullptr; 10080 10081 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 10082 if (!AddRHS || AddRHS->getNumOperands() != 2 || 10083 !AddRHS->getOperand(0)->isAllOnesValue()) 10084 return nullptr; 10085 10086 return AddRHS->getOperand(1); 10087 } 10088 10089 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 10090 template<typename MaxExprType> 10091 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 10092 const SCEV *Candidate) { 10093 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 10094 if (!MaxExpr) return false; 10095 10096 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 10097 } 10098 10099 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 10100 template<typename MaxExprType> 10101 static bool IsMinConsistingOf(ScalarEvolution &SE, 10102 const SCEV *MaybeMinExpr, 10103 const SCEV *Candidate) { 10104 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 10105 if (!MaybeMaxExpr) 10106 return false; 10107 10108 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 10109 } 10110 10111 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10112 ICmpInst::Predicate Pred, 10113 const SCEV *LHS, const SCEV *RHS) { 10114 // If both sides are affine addrecs for the same loop, with equal 10115 // steps, and we know the recurrences don't wrap, then we only 10116 // need to check the predicate on the starting values. 10117 10118 if (!ICmpInst::isRelational(Pred)) 10119 return false; 10120 10121 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10122 if (!LAR) 10123 return false; 10124 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10125 if (!RAR) 10126 return false; 10127 if (LAR->getLoop() != RAR->getLoop()) 10128 return false; 10129 if (!LAR->isAffine() || !RAR->isAffine()) 10130 return false; 10131 10132 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10133 return false; 10134 10135 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10136 SCEV::FlagNSW : SCEV::FlagNUW; 10137 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10138 return false; 10139 10140 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10141 } 10142 10143 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10144 /// expression? 10145 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10146 ICmpInst::Predicate Pred, 10147 const SCEV *LHS, const SCEV *RHS) { 10148 switch (Pred) { 10149 default: 10150 return false; 10151 10152 case ICmpInst::ICMP_SGE: 10153 std::swap(LHS, RHS); 10154 LLVM_FALLTHROUGH; 10155 case ICmpInst::ICMP_SLE: 10156 return 10157 // min(A, ...) <= A 10158 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 10159 // A <= max(A, ...) 10160 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10161 10162 case ICmpInst::ICMP_UGE: 10163 std::swap(LHS, RHS); 10164 LLVM_FALLTHROUGH; 10165 case ICmpInst::ICMP_ULE: 10166 return 10167 // min(A, ...) <= A 10168 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 10169 // A <= max(A, ...) 10170 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10171 } 10172 10173 llvm_unreachable("covered switch fell through?!"); 10174 } 10175 10176 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10177 const SCEV *LHS, const SCEV *RHS, 10178 const SCEV *FoundLHS, 10179 const SCEV *FoundRHS, 10180 unsigned Depth) { 10181 assert(getTypeSizeInBits(LHS->getType()) == 10182 getTypeSizeInBits(RHS->getType()) && 10183 "LHS and RHS have different sizes?"); 10184 assert(getTypeSizeInBits(FoundLHS->getType()) == 10185 getTypeSizeInBits(FoundRHS->getType()) && 10186 "FoundLHS and FoundRHS have different sizes?"); 10187 // We want to avoid hurting the compile time with analysis of too big trees. 10188 if (Depth > MaxSCEVOperationsImplicationDepth) 10189 return false; 10190 // We only want to work with ICMP_SGT comparison so far. 10191 // TODO: Extend to ICMP_UGT? 10192 if (Pred == ICmpInst::ICMP_SLT) { 10193 Pred = ICmpInst::ICMP_SGT; 10194 std::swap(LHS, RHS); 10195 std::swap(FoundLHS, FoundRHS); 10196 } 10197 if (Pred != ICmpInst::ICMP_SGT) 10198 return false; 10199 10200 auto GetOpFromSExt = [&](const SCEV *S) { 10201 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10202 return Ext->getOperand(); 10203 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10204 // the constant in some cases. 10205 return S; 10206 }; 10207 10208 // Acquire values from extensions. 10209 auto *OrigLHS = LHS; 10210 auto *OrigFoundLHS = FoundLHS; 10211 LHS = GetOpFromSExt(LHS); 10212 FoundLHS = GetOpFromSExt(FoundLHS); 10213 10214 // Is the SGT predicate can be proved trivially or using the found context. 10215 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10216 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10217 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10218 FoundRHS, Depth + 1); 10219 }; 10220 10221 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10222 // We want to avoid creation of any new non-constant SCEV. Since we are 10223 // going to compare the operands to RHS, we should be certain that we don't 10224 // need any size extensions for this. So let's decline all cases when the 10225 // sizes of types of LHS and RHS do not match. 10226 // TODO: Maybe try to get RHS from sext to catch more cases? 10227 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10228 return false; 10229 10230 // Should not overflow. 10231 if (!LHSAddExpr->hasNoSignedWrap()) 10232 return false; 10233 10234 auto *LL = LHSAddExpr->getOperand(0); 10235 auto *LR = LHSAddExpr->getOperand(1); 10236 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10237 10238 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10239 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10240 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10241 }; 10242 // Try to prove the following rule: 10243 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10244 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10245 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10246 return true; 10247 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10248 Value *LL, *LR; 10249 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10250 10251 using namespace llvm::PatternMatch; 10252 10253 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10254 // Rules for division. 10255 // We are going to perform some comparisons with Denominator and its 10256 // derivative expressions. In general case, creating a SCEV for it may 10257 // lead to a complex analysis of the entire graph, and in particular it 10258 // can request trip count recalculation for the same loop. This would 10259 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10260 // this, we only want to create SCEVs that are constants in this section. 10261 // So we bail if Denominator is not a constant. 10262 if (!isa<ConstantInt>(LR)) 10263 return false; 10264 10265 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10266 10267 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10268 // then a SCEV for the numerator already exists and matches with FoundLHS. 10269 auto *Numerator = getExistingSCEV(LL); 10270 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10271 return false; 10272 10273 // Make sure that the numerator matches with FoundLHS and the denominator 10274 // is positive. 10275 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10276 return false; 10277 10278 auto *DTy = Denominator->getType(); 10279 auto *FRHSTy = FoundRHS->getType(); 10280 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10281 // One of types is a pointer and another one is not. We cannot extend 10282 // them properly to a wider type, so let us just reject this case. 10283 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10284 // to avoid this check. 10285 return false; 10286 10287 // Given that: 10288 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10289 auto *WTy = getWiderType(DTy, FRHSTy); 10290 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10291 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10292 10293 // Try to prove the following rule: 10294 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10295 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10296 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10297 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10298 if (isKnownNonPositive(RHS) && 10299 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10300 return true; 10301 10302 // Try to prove the following rule: 10303 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10304 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10305 // If we divide it by Denominator > 2, then: 10306 // 1. If FoundLHS is negative, then the result is 0. 10307 // 2. If FoundLHS is non-negative, then the result is non-negative. 10308 // Anyways, the result is non-negative. 10309 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10310 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10311 if (isKnownNegative(RHS) && 10312 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10313 return true; 10314 } 10315 } 10316 10317 // If our expression contained SCEVUnknown Phis, and we split it down and now 10318 // need to prove something for them, try to prove the predicate for every 10319 // possible incoming values of those Phis. 10320 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10321 return true; 10322 10323 return false; 10324 } 10325 10326 bool 10327 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10328 const SCEV *LHS, const SCEV *RHS) { 10329 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10330 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10331 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10332 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10333 } 10334 10335 bool 10336 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10337 const SCEV *LHS, const SCEV *RHS, 10338 const SCEV *FoundLHS, 10339 const SCEV *FoundRHS) { 10340 switch (Pred) { 10341 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10342 case ICmpInst::ICMP_EQ: 10343 case ICmpInst::ICMP_NE: 10344 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10345 return true; 10346 break; 10347 case ICmpInst::ICMP_SLT: 10348 case ICmpInst::ICMP_SLE: 10349 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10350 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10351 return true; 10352 break; 10353 case ICmpInst::ICMP_SGT: 10354 case ICmpInst::ICMP_SGE: 10355 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10356 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10357 return true; 10358 break; 10359 case ICmpInst::ICMP_ULT: 10360 case ICmpInst::ICMP_ULE: 10361 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10362 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10363 return true; 10364 break; 10365 case ICmpInst::ICMP_UGT: 10366 case ICmpInst::ICMP_UGE: 10367 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10368 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10369 return true; 10370 break; 10371 } 10372 10373 // Maybe it can be proved via operations? 10374 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10375 return true; 10376 10377 return false; 10378 } 10379 10380 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10381 const SCEV *LHS, 10382 const SCEV *RHS, 10383 const SCEV *FoundLHS, 10384 const SCEV *FoundRHS) { 10385 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10386 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10387 // reduce the compile time impact of this optimization. 10388 return false; 10389 10390 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10391 if (!Addend) 10392 return false; 10393 10394 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10395 10396 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10397 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10398 ConstantRange FoundLHSRange = 10399 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10400 10401 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10402 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10403 10404 // We can also compute the range of values for `LHS` that satisfy the 10405 // consequent, "`LHS` `Pred` `RHS`": 10406 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10407 ConstantRange SatisfyingLHSRange = 10408 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10409 10410 // The antecedent implies the consequent if every value of `LHS` that 10411 // satisfies the antecedent also satisfies the consequent. 10412 return SatisfyingLHSRange.contains(LHSRange); 10413 } 10414 10415 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10416 bool IsSigned, bool NoWrap) { 10417 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10418 10419 if (NoWrap) return false; 10420 10421 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10422 const SCEV *One = getOne(Stride->getType()); 10423 10424 if (IsSigned) { 10425 APInt MaxRHS = getSignedRangeMax(RHS); 10426 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10427 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10428 10429 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10430 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10431 } 10432 10433 APInt MaxRHS = getUnsignedRangeMax(RHS); 10434 APInt MaxValue = APInt::getMaxValue(BitWidth); 10435 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10436 10437 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10438 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10439 } 10440 10441 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10442 bool IsSigned, bool NoWrap) { 10443 if (NoWrap) return false; 10444 10445 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10446 const SCEV *One = getOne(Stride->getType()); 10447 10448 if (IsSigned) { 10449 APInt MinRHS = getSignedRangeMin(RHS); 10450 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10451 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10452 10453 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10454 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10455 } 10456 10457 APInt MinRHS = getUnsignedRangeMin(RHS); 10458 APInt MinValue = APInt::getMinValue(BitWidth); 10459 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10460 10461 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10462 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10463 } 10464 10465 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10466 bool Equality) { 10467 const SCEV *One = getOne(Step->getType()); 10468 Delta = Equality ? getAddExpr(Delta, Step) 10469 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10470 return getUDivExpr(Delta, Step); 10471 } 10472 10473 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10474 const SCEV *Stride, 10475 const SCEV *End, 10476 unsigned BitWidth, 10477 bool IsSigned) { 10478 10479 assert(!isKnownNonPositive(Stride) && 10480 "Stride is expected strictly positive!"); 10481 // Calculate the maximum backedge count based on the range of values 10482 // permitted by Start, End, and Stride. 10483 const SCEV *MaxBECount; 10484 APInt MinStart = 10485 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10486 10487 APInt StrideForMaxBECount = 10488 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10489 10490 // We already know that the stride is positive, so we paper over conservatism 10491 // in our range computation by forcing StrideForMaxBECount to be at least one. 10492 // In theory this is unnecessary, but we expect MaxBECount to be a 10493 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10494 // is nothing to constant fold it to). 10495 APInt One(BitWidth, 1, IsSigned); 10496 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10497 10498 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10499 : APInt::getMaxValue(BitWidth); 10500 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10501 10502 // Although End can be a MAX expression we estimate MaxEnd considering only 10503 // the case End = RHS of the loop termination condition. This is safe because 10504 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10505 // taken count. 10506 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10507 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10508 10509 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10510 getConstant(StrideForMaxBECount) /* Step */, 10511 false /* Equality */); 10512 10513 return MaxBECount; 10514 } 10515 10516 ScalarEvolution::ExitLimit 10517 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10518 const Loop *L, bool IsSigned, 10519 bool ControlsExit, bool AllowPredicates) { 10520 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10521 10522 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10523 bool PredicatedIV = false; 10524 10525 if (!IV && AllowPredicates) { 10526 // Try to make this an AddRec using runtime tests, in the first X 10527 // iterations of this loop, where X is the SCEV expression found by the 10528 // algorithm below. 10529 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10530 PredicatedIV = true; 10531 } 10532 10533 // Avoid weird loops 10534 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10535 return getCouldNotCompute(); 10536 10537 bool NoWrap = ControlsExit && 10538 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10539 10540 const SCEV *Stride = IV->getStepRecurrence(*this); 10541 10542 bool PositiveStride = isKnownPositive(Stride); 10543 10544 // Avoid negative or zero stride values. 10545 if (!PositiveStride) { 10546 // We can compute the correct backedge taken count for loops with unknown 10547 // strides if we can prove that the loop is not an infinite loop with side 10548 // effects. Here's the loop structure we are trying to handle - 10549 // 10550 // i = start 10551 // do { 10552 // A[i] = i; 10553 // i += s; 10554 // } while (i < end); 10555 // 10556 // The backedge taken count for such loops is evaluated as - 10557 // (max(end, start + stride) - start - 1) /u stride 10558 // 10559 // The additional preconditions that we need to check to prove correctness 10560 // of the above formula is as follows - 10561 // 10562 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10563 // NoWrap flag). 10564 // b) loop is single exit with no side effects. 10565 // 10566 // 10567 // Precondition a) implies that if the stride is negative, this is a single 10568 // trip loop. The backedge taken count formula reduces to zero in this case. 10569 // 10570 // Precondition b) implies that the unknown stride cannot be zero otherwise 10571 // we have UB. 10572 // 10573 // The positive stride case is the same as isKnownPositive(Stride) returning 10574 // true (original behavior of the function). 10575 // 10576 // We want to make sure that the stride is truly unknown as there are edge 10577 // cases where ScalarEvolution propagates no wrap flags to the 10578 // post-increment/decrement IV even though the increment/decrement operation 10579 // itself is wrapping. The computed backedge taken count may be wrong in 10580 // such cases. This is prevented by checking that the stride is not known to 10581 // be either positive or non-positive. For example, no wrap flags are 10582 // propagated to the post-increment IV of this loop with a trip count of 2 - 10583 // 10584 // unsigned char i; 10585 // for(i=127; i<128; i+=129) 10586 // A[i] = i; 10587 // 10588 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10589 !loopHasNoSideEffects(L)) 10590 return getCouldNotCompute(); 10591 } else if (!Stride->isOne() && 10592 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10593 // Avoid proven overflow cases: this will ensure that the backedge taken 10594 // count will not generate any unsigned overflow. Relaxed no-overflow 10595 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10596 // undefined behaviors like the case of C language. 10597 return getCouldNotCompute(); 10598 10599 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10600 : ICmpInst::ICMP_ULT; 10601 const SCEV *Start = IV->getStart(); 10602 const SCEV *End = RHS; 10603 // When the RHS is not invariant, we do not know the end bound of the loop and 10604 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10605 // calculate the MaxBECount, given the start, stride and max value for the end 10606 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10607 // checked above). 10608 if (!isLoopInvariant(RHS, L)) { 10609 const SCEV *MaxBECount = computeMaxBECountForLT( 10610 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10611 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10612 false /*MaxOrZero*/, Predicates); 10613 } 10614 // If the backedge is taken at least once, then it will be taken 10615 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10616 // is the LHS value of the less-than comparison the first time it is evaluated 10617 // and End is the RHS. 10618 const SCEV *BECountIfBackedgeTaken = 10619 computeBECount(getMinusSCEV(End, Start), Stride, false); 10620 // If the loop entry is guarded by the result of the backedge test of the 10621 // first loop iteration, then we know the backedge will be taken at least 10622 // once and so the backedge taken count is as above. If not then we use the 10623 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10624 // as if the backedge is taken at least once max(End,Start) is End and so the 10625 // result is as above, and if not max(End,Start) is Start so we get a backedge 10626 // count of zero. 10627 const SCEV *BECount; 10628 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10629 BECount = BECountIfBackedgeTaken; 10630 else { 10631 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10632 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10633 } 10634 10635 const SCEV *MaxBECount; 10636 bool MaxOrZero = false; 10637 if (isa<SCEVConstant>(BECount)) 10638 MaxBECount = BECount; 10639 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10640 // If we know exactly how many times the backedge will be taken if it's 10641 // taken at least once, then the backedge count will either be that or 10642 // zero. 10643 MaxBECount = BECountIfBackedgeTaken; 10644 MaxOrZero = true; 10645 } else { 10646 MaxBECount = computeMaxBECountForLT( 10647 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10648 } 10649 10650 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10651 !isa<SCEVCouldNotCompute>(BECount)) 10652 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10653 10654 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10655 } 10656 10657 ScalarEvolution::ExitLimit 10658 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10659 const Loop *L, bool IsSigned, 10660 bool ControlsExit, bool AllowPredicates) { 10661 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10662 // We handle only IV > Invariant 10663 if (!isLoopInvariant(RHS, L)) 10664 return getCouldNotCompute(); 10665 10666 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10667 if (!IV && AllowPredicates) 10668 // Try to make this an AddRec using runtime tests, in the first X 10669 // iterations of this loop, where X is the SCEV expression found by the 10670 // algorithm below. 10671 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10672 10673 // Avoid weird loops 10674 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10675 return getCouldNotCompute(); 10676 10677 bool NoWrap = ControlsExit && 10678 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10679 10680 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10681 10682 // Avoid negative or zero stride values 10683 if (!isKnownPositive(Stride)) 10684 return getCouldNotCompute(); 10685 10686 // Avoid proven overflow cases: this will ensure that the backedge taken count 10687 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10688 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10689 // behaviors like the case of C language. 10690 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10691 return getCouldNotCompute(); 10692 10693 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10694 : ICmpInst::ICMP_UGT; 10695 10696 const SCEV *Start = IV->getStart(); 10697 const SCEV *End = RHS; 10698 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10699 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10700 10701 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10702 10703 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10704 : getUnsignedRangeMax(Start); 10705 10706 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10707 : getUnsignedRangeMin(Stride); 10708 10709 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10710 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10711 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10712 10713 // Although End can be a MIN expression we estimate MinEnd considering only 10714 // the case End = RHS. This is safe because in the other case (Start - End) 10715 // is zero, leading to a zero maximum backedge taken count. 10716 APInt MinEnd = 10717 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10718 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10719 10720 10721 const SCEV *MaxBECount = getCouldNotCompute(); 10722 if (isa<SCEVConstant>(BECount)) 10723 MaxBECount = BECount; 10724 else 10725 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10726 getConstant(MinStride), false); 10727 10728 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10729 MaxBECount = BECount; 10730 10731 return ExitLimit(BECount, MaxBECount, false, Predicates); 10732 } 10733 10734 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10735 ScalarEvolution &SE) const { 10736 if (Range.isFullSet()) // Infinite loop. 10737 return SE.getCouldNotCompute(); 10738 10739 // If the start is a non-zero constant, shift the range to simplify things. 10740 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10741 if (!SC->getValue()->isZero()) { 10742 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10743 Operands[0] = SE.getZero(SC->getType()); 10744 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10745 getNoWrapFlags(FlagNW)); 10746 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10747 return ShiftedAddRec->getNumIterationsInRange( 10748 Range.subtract(SC->getAPInt()), SE); 10749 // This is strange and shouldn't happen. 10750 return SE.getCouldNotCompute(); 10751 } 10752 10753 // The only time we can solve this is when we have all constant indices. 10754 // Otherwise, we cannot determine the overflow conditions. 10755 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10756 return SE.getCouldNotCompute(); 10757 10758 // Okay at this point we know that all elements of the chrec are constants and 10759 // that the start element is zero. 10760 10761 // First check to see if the range contains zero. If not, the first 10762 // iteration exits. 10763 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10764 if (!Range.contains(APInt(BitWidth, 0))) 10765 return SE.getZero(getType()); 10766 10767 if (isAffine()) { 10768 // If this is an affine expression then we have this situation: 10769 // Solve {0,+,A} in Range === Ax in Range 10770 10771 // We know that zero is in the range. If A is positive then we know that 10772 // the upper value of the range must be the first possible exit value. 10773 // If A is negative then the lower of the range is the last possible loop 10774 // value. Also note that we already checked for a full range. 10775 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10776 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10777 10778 // The exit value should be (End+A)/A. 10779 APInt ExitVal = (End + A).udiv(A); 10780 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10781 10782 // Evaluate at the exit value. If we really did fall out of the valid 10783 // range, then we computed our trip count, otherwise wrap around or other 10784 // things must have happened. 10785 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10786 if (Range.contains(Val->getValue())) 10787 return SE.getCouldNotCompute(); // Something strange happened 10788 10789 // Ensure that the previous value is in the range. This is a sanity check. 10790 assert(Range.contains( 10791 EvaluateConstantChrecAtConstant(this, 10792 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10793 "Linear scev computation is off in a bad way!"); 10794 return SE.getConstant(ExitValue); 10795 } 10796 10797 if (isQuadratic()) { 10798 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10799 return SE.getConstant(S.getValue()); 10800 } 10801 10802 return SE.getCouldNotCompute(); 10803 } 10804 10805 const SCEVAddRecExpr * 10806 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10807 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10808 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10809 // but in this case we cannot guarantee that the value returned will be an 10810 // AddRec because SCEV does not have a fixed point where it stops 10811 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10812 // may happen if we reach arithmetic depth limit while simplifying. So we 10813 // construct the returned value explicitly. 10814 SmallVector<const SCEV *, 3> Ops; 10815 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10816 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10817 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10818 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10819 // We know that the last operand is not a constant zero (otherwise it would 10820 // have been popped out earlier). This guarantees us that if the result has 10821 // the same last operand, then it will also not be popped out, meaning that 10822 // the returned value will be an AddRec. 10823 const SCEV *Last = getOperand(getNumOperands() - 1); 10824 assert(!Last->isZero() && "Recurrency with zero step?"); 10825 Ops.push_back(Last); 10826 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10827 SCEV::FlagAnyWrap)); 10828 } 10829 10830 // Return true when S contains at least an undef value. 10831 static inline bool containsUndefs(const SCEV *S) { 10832 return SCEVExprContains(S, [](const SCEV *S) { 10833 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10834 return isa<UndefValue>(SU->getValue()); 10835 return false; 10836 }); 10837 } 10838 10839 namespace { 10840 10841 // Collect all steps of SCEV expressions. 10842 struct SCEVCollectStrides { 10843 ScalarEvolution &SE; 10844 SmallVectorImpl<const SCEV *> &Strides; 10845 10846 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10847 : SE(SE), Strides(S) {} 10848 10849 bool follow(const SCEV *S) { 10850 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10851 Strides.push_back(AR->getStepRecurrence(SE)); 10852 return true; 10853 } 10854 10855 bool isDone() const { return false; } 10856 }; 10857 10858 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10859 struct SCEVCollectTerms { 10860 SmallVectorImpl<const SCEV *> &Terms; 10861 10862 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10863 10864 bool follow(const SCEV *S) { 10865 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10866 isa<SCEVSignExtendExpr>(S)) { 10867 if (!containsUndefs(S)) 10868 Terms.push_back(S); 10869 10870 // Stop recursion: once we collected a term, do not walk its operands. 10871 return false; 10872 } 10873 10874 // Keep looking. 10875 return true; 10876 } 10877 10878 bool isDone() const { return false; } 10879 }; 10880 10881 // Check if a SCEV contains an AddRecExpr. 10882 struct SCEVHasAddRec { 10883 bool &ContainsAddRec; 10884 10885 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10886 ContainsAddRec = false; 10887 } 10888 10889 bool follow(const SCEV *S) { 10890 if (isa<SCEVAddRecExpr>(S)) { 10891 ContainsAddRec = true; 10892 10893 // Stop recursion: once we collected a term, do not walk its operands. 10894 return false; 10895 } 10896 10897 // Keep looking. 10898 return true; 10899 } 10900 10901 bool isDone() const { return false; } 10902 }; 10903 10904 // Find factors that are multiplied with an expression that (possibly as a 10905 // subexpression) contains an AddRecExpr. In the expression: 10906 // 10907 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10908 // 10909 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10910 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10911 // parameters as they form a product with an induction variable. 10912 // 10913 // This collector expects all array size parameters to be in the same MulExpr. 10914 // It might be necessary to later add support for collecting parameters that are 10915 // spread over different nested MulExpr. 10916 struct SCEVCollectAddRecMultiplies { 10917 SmallVectorImpl<const SCEV *> &Terms; 10918 ScalarEvolution &SE; 10919 10920 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10921 : Terms(T), SE(SE) {} 10922 10923 bool follow(const SCEV *S) { 10924 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10925 bool HasAddRec = false; 10926 SmallVector<const SCEV *, 0> Operands; 10927 for (auto Op : Mul->operands()) { 10928 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10929 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10930 Operands.push_back(Op); 10931 } else if (Unknown) { 10932 HasAddRec = true; 10933 } else { 10934 bool ContainsAddRec; 10935 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10936 visitAll(Op, ContiansAddRec); 10937 HasAddRec |= ContainsAddRec; 10938 } 10939 } 10940 if (Operands.size() == 0) 10941 return true; 10942 10943 if (!HasAddRec) 10944 return false; 10945 10946 Terms.push_back(SE.getMulExpr(Operands)); 10947 // Stop recursion: once we collected a term, do not walk its operands. 10948 return false; 10949 } 10950 10951 // Keep looking. 10952 return true; 10953 } 10954 10955 bool isDone() const { return false; } 10956 }; 10957 10958 } // end anonymous namespace 10959 10960 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10961 /// two places: 10962 /// 1) The strides of AddRec expressions. 10963 /// 2) Unknowns that are multiplied with AddRec expressions. 10964 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10965 SmallVectorImpl<const SCEV *> &Terms) { 10966 SmallVector<const SCEV *, 4> Strides; 10967 SCEVCollectStrides StrideCollector(*this, Strides); 10968 visitAll(Expr, StrideCollector); 10969 10970 LLVM_DEBUG({ 10971 dbgs() << "Strides:\n"; 10972 for (const SCEV *S : Strides) 10973 dbgs() << *S << "\n"; 10974 }); 10975 10976 for (const SCEV *S : Strides) { 10977 SCEVCollectTerms TermCollector(Terms); 10978 visitAll(S, TermCollector); 10979 } 10980 10981 LLVM_DEBUG({ 10982 dbgs() << "Terms:\n"; 10983 for (const SCEV *T : Terms) 10984 dbgs() << *T << "\n"; 10985 }); 10986 10987 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10988 visitAll(Expr, MulCollector); 10989 } 10990 10991 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10992 SmallVectorImpl<const SCEV *> &Terms, 10993 SmallVectorImpl<const SCEV *> &Sizes) { 10994 int Last = Terms.size() - 1; 10995 const SCEV *Step = Terms[Last]; 10996 10997 // End of recursion. 10998 if (Last == 0) { 10999 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11000 SmallVector<const SCEV *, 2> Qs; 11001 for (const SCEV *Op : M->operands()) 11002 if (!isa<SCEVConstant>(Op)) 11003 Qs.push_back(Op); 11004 11005 Step = SE.getMulExpr(Qs); 11006 } 11007 11008 Sizes.push_back(Step); 11009 return true; 11010 } 11011 11012 for (const SCEV *&Term : Terms) { 11013 // Normalize the terms before the next call to findArrayDimensionsRec. 11014 const SCEV *Q, *R; 11015 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11016 11017 // Bail out when GCD does not evenly divide one of the terms. 11018 if (!R->isZero()) 11019 return false; 11020 11021 Term = Q; 11022 } 11023 11024 // Remove all SCEVConstants. 11025 Terms.erase( 11026 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11027 Terms.end()); 11028 11029 if (Terms.size() > 0) 11030 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11031 return false; 11032 11033 Sizes.push_back(Step); 11034 return true; 11035 } 11036 11037 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11038 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11039 for (const SCEV *T : Terms) 11040 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 11041 return true; 11042 return false; 11043 } 11044 11045 // Return the number of product terms in S. 11046 static inline int numberOfTerms(const SCEV *S) { 11047 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11048 return Expr->getNumOperands(); 11049 return 1; 11050 } 11051 11052 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11053 if (isa<SCEVConstant>(T)) 11054 return nullptr; 11055 11056 if (isa<SCEVUnknown>(T)) 11057 return T; 11058 11059 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11060 SmallVector<const SCEV *, 2> Factors; 11061 for (const SCEV *Op : M->operands()) 11062 if (!isa<SCEVConstant>(Op)) 11063 Factors.push_back(Op); 11064 11065 return SE.getMulExpr(Factors); 11066 } 11067 11068 return T; 11069 } 11070 11071 /// Return the size of an element read or written by Inst. 11072 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11073 Type *Ty; 11074 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11075 Ty = Store->getValueOperand()->getType(); 11076 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11077 Ty = Load->getType(); 11078 else 11079 return nullptr; 11080 11081 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11082 return getSizeOfExpr(ETy, Ty); 11083 } 11084 11085 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11086 SmallVectorImpl<const SCEV *> &Sizes, 11087 const SCEV *ElementSize) { 11088 if (Terms.size() < 1 || !ElementSize) 11089 return; 11090 11091 // Early return when Terms do not contain parameters: we do not delinearize 11092 // non parametric SCEVs. 11093 if (!containsParameters(Terms)) 11094 return; 11095 11096 LLVM_DEBUG({ 11097 dbgs() << "Terms:\n"; 11098 for (const SCEV *T : Terms) 11099 dbgs() << *T << "\n"; 11100 }); 11101 11102 // Remove duplicates. 11103 array_pod_sort(Terms.begin(), Terms.end()); 11104 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11105 11106 // Put larger terms first. 11107 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11108 return numberOfTerms(LHS) > numberOfTerms(RHS); 11109 }); 11110 11111 // Try to divide all terms by the element size. If term is not divisible by 11112 // element size, proceed with the original term. 11113 for (const SCEV *&Term : Terms) { 11114 const SCEV *Q, *R; 11115 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11116 if (!Q->isZero()) 11117 Term = Q; 11118 } 11119 11120 SmallVector<const SCEV *, 4> NewTerms; 11121 11122 // Remove constant factors. 11123 for (const SCEV *T : Terms) 11124 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11125 NewTerms.push_back(NewT); 11126 11127 LLVM_DEBUG({ 11128 dbgs() << "Terms after sorting:\n"; 11129 for (const SCEV *T : NewTerms) 11130 dbgs() << *T << "\n"; 11131 }); 11132 11133 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11134 Sizes.clear(); 11135 return; 11136 } 11137 11138 // The last element to be pushed into Sizes is the size of an element. 11139 Sizes.push_back(ElementSize); 11140 11141 LLVM_DEBUG({ 11142 dbgs() << "Sizes:\n"; 11143 for (const SCEV *S : Sizes) 11144 dbgs() << *S << "\n"; 11145 }); 11146 } 11147 11148 void ScalarEvolution::computeAccessFunctions( 11149 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11150 SmallVectorImpl<const SCEV *> &Sizes) { 11151 // Early exit in case this SCEV is not an affine multivariate function. 11152 if (Sizes.empty()) 11153 return; 11154 11155 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11156 if (!AR->isAffine()) 11157 return; 11158 11159 const SCEV *Res = Expr; 11160 int Last = Sizes.size() - 1; 11161 for (int i = Last; i >= 0; i--) { 11162 const SCEV *Q, *R; 11163 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11164 11165 LLVM_DEBUG({ 11166 dbgs() << "Res: " << *Res << "\n"; 11167 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11168 dbgs() << "Res divided by Sizes[i]:\n"; 11169 dbgs() << "Quotient: " << *Q << "\n"; 11170 dbgs() << "Remainder: " << *R << "\n"; 11171 }); 11172 11173 Res = Q; 11174 11175 // Do not record the last subscript corresponding to the size of elements in 11176 // the array. 11177 if (i == Last) { 11178 11179 // Bail out if the remainder is too complex. 11180 if (isa<SCEVAddRecExpr>(R)) { 11181 Subscripts.clear(); 11182 Sizes.clear(); 11183 return; 11184 } 11185 11186 continue; 11187 } 11188 11189 // Record the access function for the current subscript. 11190 Subscripts.push_back(R); 11191 } 11192 11193 // Also push in last position the remainder of the last division: it will be 11194 // the access function of the innermost dimension. 11195 Subscripts.push_back(Res); 11196 11197 std::reverse(Subscripts.begin(), Subscripts.end()); 11198 11199 LLVM_DEBUG({ 11200 dbgs() << "Subscripts:\n"; 11201 for (const SCEV *S : Subscripts) 11202 dbgs() << *S << "\n"; 11203 }); 11204 } 11205 11206 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11207 /// sizes of an array access. Returns the remainder of the delinearization that 11208 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11209 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11210 /// expressions in the stride and base of a SCEV corresponding to the 11211 /// computation of a GCD (greatest common divisor) of base and stride. When 11212 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11213 /// 11214 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11215 /// 11216 /// void foo(long n, long m, long o, double A[n][m][o]) { 11217 /// 11218 /// for (long i = 0; i < n; i++) 11219 /// for (long j = 0; j < m; j++) 11220 /// for (long k = 0; k < o; k++) 11221 /// A[i][j][k] = 1.0; 11222 /// } 11223 /// 11224 /// the delinearization input is the following AddRec SCEV: 11225 /// 11226 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11227 /// 11228 /// From this SCEV, we are able to say that the base offset of the access is %A 11229 /// because it appears as an offset that does not divide any of the strides in 11230 /// the loops: 11231 /// 11232 /// CHECK: Base offset: %A 11233 /// 11234 /// and then SCEV->delinearize determines the size of some of the dimensions of 11235 /// the array as these are the multiples by which the strides are happening: 11236 /// 11237 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11238 /// 11239 /// Note that the outermost dimension remains of UnknownSize because there are 11240 /// no strides that would help identifying the size of the last dimension: when 11241 /// the array has been statically allocated, one could compute the size of that 11242 /// dimension by dividing the overall size of the array by the size of the known 11243 /// dimensions: %m * %o * 8. 11244 /// 11245 /// Finally delinearize provides the access functions for the array reference 11246 /// that does correspond to A[i][j][k] of the above C testcase: 11247 /// 11248 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11249 /// 11250 /// The testcases are checking the output of a function pass: 11251 /// DelinearizationPass that walks through all loads and stores of a function 11252 /// asking for the SCEV of the memory access with respect to all enclosing 11253 /// loops, calling SCEV->delinearize on that and printing the results. 11254 void ScalarEvolution::delinearize(const SCEV *Expr, 11255 SmallVectorImpl<const SCEV *> &Subscripts, 11256 SmallVectorImpl<const SCEV *> &Sizes, 11257 const SCEV *ElementSize) { 11258 // First step: collect parametric terms. 11259 SmallVector<const SCEV *, 4> Terms; 11260 collectParametricTerms(Expr, Terms); 11261 11262 if (Terms.empty()) 11263 return; 11264 11265 // Second step: find subscript sizes. 11266 findArrayDimensions(Terms, Sizes, ElementSize); 11267 11268 if (Sizes.empty()) 11269 return; 11270 11271 // Third step: compute the access functions for each subscript. 11272 computeAccessFunctions(Expr, Subscripts, Sizes); 11273 11274 if (Subscripts.empty()) 11275 return; 11276 11277 LLVM_DEBUG({ 11278 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11279 dbgs() << "ArrayDecl[UnknownSize]"; 11280 for (const SCEV *S : Sizes) 11281 dbgs() << "[" << *S << "]"; 11282 11283 dbgs() << "\nArrayRef"; 11284 for (const SCEV *S : Subscripts) 11285 dbgs() << "[" << *S << "]"; 11286 dbgs() << "\n"; 11287 }); 11288 } 11289 11290 //===----------------------------------------------------------------------===// 11291 // SCEVCallbackVH Class Implementation 11292 //===----------------------------------------------------------------------===// 11293 11294 void ScalarEvolution::SCEVCallbackVH::deleted() { 11295 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11296 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11297 SE->ConstantEvolutionLoopExitValue.erase(PN); 11298 SE->eraseValueFromMap(getValPtr()); 11299 // this now dangles! 11300 } 11301 11302 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11303 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11304 11305 // Forget all the expressions associated with users of the old value, 11306 // so that future queries will recompute the expressions using the new 11307 // value. 11308 Value *Old = getValPtr(); 11309 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11310 SmallPtrSet<User *, 8> Visited; 11311 while (!Worklist.empty()) { 11312 User *U = Worklist.pop_back_val(); 11313 // Deleting the Old value will cause this to dangle. Postpone 11314 // that until everything else is done. 11315 if (U == Old) 11316 continue; 11317 if (!Visited.insert(U).second) 11318 continue; 11319 if (PHINode *PN = dyn_cast<PHINode>(U)) 11320 SE->ConstantEvolutionLoopExitValue.erase(PN); 11321 SE->eraseValueFromMap(U); 11322 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11323 } 11324 // Delete the Old value. 11325 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11326 SE->ConstantEvolutionLoopExitValue.erase(PN); 11327 SE->eraseValueFromMap(Old); 11328 // this now dangles! 11329 } 11330 11331 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11332 : CallbackVH(V), SE(se) {} 11333 11334 //===----------------------------------------------------------------------===// 11335 // ScalarEvolution Class Implementation 11336 //===----------------------------------------------------------------------===// 11337 11338 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11339 AssumptionCache &AC, DominatorTree &DT, 11340 LoopInfo &LI) 11341 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11342 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11343 LoopDispositions(64), BlockDispositions(64) { 11344 // To use guards for proving predicates, we need to scan every instruction in 11345 // relevant basic blocks, and not just terminators. Doing this is a waste of 11346 // time if the IR does not actually contain any calls to 11347 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11348 // 11349 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11350 // to _add_ guards to the module when there weren't any before, and wants 11351 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11352 // efficient in lieu of being smart in that rather obscure case. 11353 11354 auto *GuardDecl = F.getParent()->getFunction( 11355 Intrinsic::getName(Intrinsic::experimental_guard)); 11356 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11357 } 11358 11359 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11360 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11361 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11362 ValueExprMap(std::move(Arg.ValueExprMap)), 11363 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11364 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11365 PendingMerges(std::move(Arg.PendingMerges)), 11366 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11367 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11368 PredicatedBackedgeTakenCounts( 11369 std::move(Arg.PredicatedBackedgeTakenCounts)), 11370 ConstantEvolutionLoopExitValue( 11371 std::move(Arg.ConstantEvolutionLoopExitValue)), 11372 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11373 LoopDispositions(std::move(Arg.LoopDispositions)), 11374 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11375 BlockDispositions(std::move(Arg.BlockDispositions)), 11376 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11377 SignedRanges(std::move(Arg.SignedRanges)), 11378 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11379 UniquePreds(std::move(Arg.UniquePreds)), 11380 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11381 LoopUsers(std::move(Arg.LoopUsers)), 11382 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11383 FirstUnknown(Arg.FirstUnknown) { 11384 Arg.FirstUnknown = nullptr; 11385 } 11386 11387 ScalarEvolution::~ScalarEvolution() { 11388 // Iterate through all the SCEVUnknown instances and call their 11389 // destructors, so that they release their references to their values. 11390 for (SCEVUnknown *U = FirstUnknown; U;) { 11391 SCEVUnknown *Tmp = U; 11392 U = U->Next; 11393 Tmp->~SCEVUnknown(); 11394 } 11395 FirstUnknown = nullptr; 11396 11397 ExprValueMap.clear(); 11398 ValueExprMap.clear(); 11399 HasRecMap.clear(); 11400 11401 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11402 // that a loop had multiple computable exits. 11403 for (auto &BTCI : BackedgeTakenCounts) 11404 BTCI.second.clear(); 11405 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11406 BTCI.second.clear(); 11407 11408 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11409 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11410 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11411 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11412 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11413 } 11414 11415 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11416 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11417 } 11418 11419 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11420 const Loop *L) { 11421 // Print all inner loops first 11422 for (Loop *I : *L) 11423 PrintLoopInfo(OS, SE, I); 11424 11425 OS << "Loop "; 11426 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11427 OS << ": "; 11428 11429 SmallVector<BasicBlock *, 8> ExitBlocks; 11430 L->getExitBlocks(ExitBlocks); 11431 if (ExitBlocks.size() != 1) 11432 OS << "<multiple exits> "; 11433 11434 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11435 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 11436 } else { 11437 OS << "Unpredictable backedge-taken count. "; 11438 } 11439 11440 OS << "\n" 11441 "Loop "; 11442 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11443 OS << ": "; 11444 11445 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 11446 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 11447 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11448 OS << ", actual taken count either this or zero."; 11449 } else { 11450 OS << "Unpredictable max backedge-taken count. "; 11451 } 11452 11453 OS << "\n" 11454 "Loop "; 11455 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11456 OS << ": "; 11457 11458 SCEVUnionPredicate Pred; 11459 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11460 if (!isa<SCEVCouldNotCompute>(PBT)) { 11461 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11462 OS << " Predicates:\n"; 11463 Pred.print(OS, 4); 11464 } else { 11465 OS << "Unpredictable predicated backedge-taken count. "; 11466 } 11467 OS << "\n"; 11468 11469 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11470 OS << "Loop "; 11471 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11472 OS << ": "; 11473 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11474 } 11475 } 11476 11477 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11478 switch (LD) { 11479 case ScalarEvolution::LoopVariant: 11480 return "Variant"; 11481 case ScalarEvolution::LoopInvariant: 11482 return "Invariant"; 11483 case ScalarEvolution::LoopComputable: 11484 return "Computable"; 11485 } 11486 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11487 } 11488 11489 void ScalarEvolution::print(raw_ostream &OS) const { 11490 // ScalarEvolution's implementation of the print method is to print 11491 // out SCEV values of all instructions that are interesting. Doing 11492 // this potentially causes it to create new SCEV objects though, 11493 // which technically conflicts with the const qualifier. This isn't 11494 // observable from outside the class though, so casting away the 11495 // const isn't dangerous. 11496 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11497 11498 OS << "Classifying expressions for: "; 11499 F.printAsOperand(OS, /*PrintType=*/false); 11500 OS << "\n"; 11501 for (Instruction &I : instructions(F)) 11502 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11503 OS << I << '\n'; 11504 OS << " --> "; 11505 const SCEV *SV = SE.getSCEV(&I); 11506 SV->print(OS); 11507 if (!isa<SCEVCouldNotCompute>(SV)) { 11508 OS << " U: "; 11509 SE.getUnsignedRange(SV).print(OS); 11510 OS << " S: "; 11511 SE.getSignedRange(SV).print(OS); 11512 } 11513 11514 const Loop *L = LI.getLoopFor(I.getParent()); 11515 11516 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11517 if (AtUse != SV) { 11518 OS << " --> "; 11519 AtUse->print(OS); 11520 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11521 OS << " U: "; 11522 SE.getUnsignedRange(AtUse).print(OS); 11523 OS << " S: "; 11524 SE.getSignedRange(AtUse).print(OS); 11525 } 11526 } 11527 11528 if (L) { 11529 OS << "\t\t" "Exits: "; 11530 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11531 if (!SE.isLoopInvariant(ExitValue, L)) { 11532 OS << "<<Unknown>>"; 11533 } else { 11534 OS << *ExitValue; 11535 } 11536 11537 bool First = true; 11538 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11539 if (First) { 11540 OS << "\t\t" "LoopDispositions: { "; 11541 First = false; 11542 } else { 11543 OS << ", "; 11544 } 11545 11546 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11547 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11548 } 11549 11550 for (auto *InnerL : depth_first(L)) { 11551 if (InnerL == L) 11552 continue; 11553 if (First) { 11554 OS << "\t\t" "LoopDispositions: { "; 11555 First = false; 11556 } else { 11557 OS << ", "; 11558 } 11559 11560 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11561 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11562 } 11563 11564 OS << " }"; 11565 } 11566 11567 OS << "\n"; 11568 } 11569 11570 OS << "Determining loop execution counts for: "; 11571 F.printAsOperand(OS, /*PrintType=*/false); 11572 OS << "\n"; 11573 for (Loop *I : LI) 11574 PrintLoopInfo(OS, &SE, I); 11575 } 11576 11577 ScalarEvolution::LoopDisposition 11578 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11579 auto &Values = LoopDispositions[S]; 11580 for (auto &V : Values) { 11581 if (V.getPointer() == L) 11582 return V.getInt(); 11583 } 11584 Values.emplace_back(L, LoopVariant); 11585 LoopDisposition D = computeLoopDisposition(S, L); 11586 auto &Values2 = LoopDispositions[S]; 11587 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11588 if (V.getPointer() == L) { 11589 V.setInt(D); 11590 break; 11591 } 11592 } 11593 return D; 11594 } 11595 11596 ScalarEvolution::LoopDisposition 11597 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11598 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11599 case scConstant: 11600 return LoopInvariant; 11601 case scTruncate: 11602 case scZeroExtend: 11603 case scSignExtend: 11604 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11605 case scAddRecExpr: { 11606 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11607 11608 // If L is the addrec's loop, it's computable. 11609 if (AR->getLoop() == L) 11610 return LoopComputable; 11611 11612 // Add recurrences are never invariant in the function-body (null loop). 11613 if (!L) 11614 return LoopVariant; 11615 11616 // Everything that is not defined at loop entry is variant. 11617 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11618 return LoopVariant; 11619 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11620 " dominate the contained loop's header?"); 11621 11622 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11623 if (AR->getLoop()->contains(L)) 11624 return LoopInvariant; 11625 11626 // This recurrence is variant w.r.t. L if any of its operands 11627 // are variant. 11628 for (auto *Op : AR->operands()) 11629 if (!isLoopInvariant(Op, L)) 11630 return LoopVariant; 11631 11632 // Otherwise it's loop-invariant. 11633 return LoopInvariant; 11634 } 11635 case scAddExpr: 11636 case scMulExpr: 11637 case scUMaxExpr: 11638 case scSMaxExpr: { 11639 bool HasVarying = false; 11640 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11641 LoopDisposition D = getLoopDisposition(Op, L); 11642 if (D == LoopVariant) 11643 return LoopVariant; 11644 if (D == LoopComputable) 11645 HasVarying = true; 11646 } 11647 return HasVarying ? LoopComputable : LoopInvariant; 11648 } 11649 case scUDivExpr: { 11650 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11651 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11652 if (LD == LoopVariant) 11653 return LoopVariant; 11654 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11655 if (RD == LoopVariant) 11656 return LoopVariant; 11657 return (LD == LoopInvariant && RD == LoopInvariant) ? 11658 LoopInvariant : LoopComputable; 11659 } 11660 case scUnknown: 11661 // All non-instruction values are loop invariant. All instructions are loop 11662 // invariant if they are not contained in the specified loop. 11663 // Instructions are never considered invariant in the function body 11664 // (null loop) because they are defined within the "loop". 11665 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11666 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11667 return LoopInvariant; 11668 case scCouldNotCompute: 11669 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11670 } 11671 llvm_unreachable("Unknown SCEV kind!"); 11672 } 11673 11674 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11675 return getLoopDisposition(S, L) == LoopInvariant; 11676 } 11677 11678 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11679 return getLoopDisposition(S, L) == LoopComputable; 11680 } 11681 11682 ScalarEvolution::BlockDisposition 11683 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11684 auto &Values = BlockDispositions[S]; 11685 for (auto &V : Values) { 11686 if (V.getPointer() == BB) 11687 return V.getInt(); 11688 } 11689 Values.emplace_back(BB, DoesNotDominateBlock); 11690 BlockDisposition D = computeBlockDisposition(S, BB); 11691 auto &Values2 = BlockDispositions[S]; 11692 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11693 if (V.getPointer() == BB) { 11694 V.setInt(D); 11695 break; 11696 } 11697 } 11698 return D; 11699 } 11700 11701 ScalarEvolution::BlockDisposition 11702 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11703 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11704 case scConstant: 11705 return ProperlyDominatesBlock; 11706 case scTruncate: 11707 case scZeroExtend: 11708 case scSignExtend: 11709 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11710 case scAddRecExpr: { 11711 // This uses a "dominates" query instead of "properly dominates" query 11712 // to test for proper dominance too, because the instruction which 11713 // produces the addrec's value is a PHI, and a PHI effectively properly 11714 // dominates its entire containing block. 11715 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11716 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11717 return DoesNotDominateBlock; 11718 11719 // Fall through into SCEVNAryExpr handling. 11720 LLVM_FALLTHROUGH; 11721 } 11722 case scAddExpr: 11723 case scMulExpr: 11724 case scUMaxExpr: 11725 case scSMaxExpr: { 11726 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11727 bool Proper = true; 11728 for (const SCEV *NAryOp : NAry->operands()) { 11729 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11730 if (D == DoesNotDominateBlock) 11731 return DoesNotDominateBlock; 11732 if (D == DominatesBlock) 11733 Proper = false; 11734 } 11735 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11736 } 11737 case scUDivExpr: { 11738 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11739 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11740 BlockDisposition LD = getBlockDisposition(LHS, BB); 11741 if (LD == DoesNotDominateBlock) 11742 return DoesNotDominateBlock; 11743 BlockDisposition RD = getBlockDisposition(RHS, BB); 11744 if (RD == DoesNotDominateBlock) 11745 return DoesNotDominateBlock; 11746 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11747 ProperlyDominatesBlock : DominatesBlock; 11748 } 11749 case scUnknown: 11750 if (Instruction *I = 11751 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11752 if (I->getParent() == BB) 11753 return DominatesBlock; 11754 if (DT.properlyDominates(I->getParent(), BB)) 11755 return ProperlyDominatesBlock; 11756 return DoesNotDominateBlock; 11757 } 11758 return ProperlyDominatesBlock; 11759 case scCouldNotCompute: 11760 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11761 } 11762 llvm_unreachable("Unknown SCEV kind!"); 11763 } 11764 11765 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11766 return getBlockDisposition(S, BB) >= DominatesBlock; 11767 } 11768 11769 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11770 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11771 } 11772 11773 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11774 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11775 } 11776 11777 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11778 auto IsS = [&](const SCEV *X) { return S == X; }; 11779 auto ContainsS = [&](const SCEV *X) { 11780 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11781 }; 11782 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11783 } 11784 11785 void 11786 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11787 ValuesAtScopes.erase(S); 11788 LoopDispositions.erase(S); 11789 BlockDispositions.erase(S); 11790 UnsignedRanges.erase(S); 11791 SignedRanges.erase(S); 11792 ExprValueMap.erase(S); 11793 HasRecMap.erase(S); 11794 MinTrailingZerosCache.erase(S); 11795 11796 for (auto I = PredicatedSCEVRewrites.begin(); 11797 I != PredicatedSCEVRewrites.end();) { 11798 std::pair<const SCEV *, const Loop *> Entry = I->first; 11799 if (Entry.first == S) 11800 PredicatedSCEVRewrites.erase(I++); 11801 else 11802 ++I; 11803 } 11804 11805 auto RemoveSCEVFromBackedgeMap = 11806 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11807 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11808 BackedgeTakenInfo &BEInfo = I->second; 11809 if (BEInfo.hasOperand(S, this)) { 11810 BEInfo.clear(); 11811 Map.erase(I++); 11812 } else 11813 ++I; 11814 } 11815 }; 11816 11817 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11818 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11819 } 11820 11821 void 11822 ScalarEvolution::getUsedLoops(const SCEV *S, 11823 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11824 struct FindUsedLoops { 11825 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11826 : LoopsUsed(LoopsUsed) {} 11827 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11828 bool follow(const SCEV *S) { 11829 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11830 LoopsUsed.insert(AR->getLoop()); 11831 return true; 11832 } 11833 11834 bool isDone() const { return false; } 11835 }; 11836 11837 FindUsedLoops F(LoopsUsed); 11838 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11839 } 11840 11841 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11842 SmallPtrSet<const Loop *, 8> LoopsUsed; 11843 getUsedLoops(S, LoopsUsed); 11844 for (auto *L : LoopsUsed) 11845 LoopUsers[L].push_back(S); 11846 } 11847 11848 void ScalarEvolution::verify() const { 11849 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11850 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11851 11852 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11853 11854 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11855 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11856 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11857 11858 const SCEV *visitConstant(const SCEVConstant *Constant) { 11859 return SE.getConstant(Constant->getAPInt()); 11860 } 11861 11862 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11863 return SE.getUnknown(Expr->getValue()); 11864 } 11865 11866 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11867 return SE.getCouldNotCompute(); 11868 } 11869 }; 11870 11871 SCEVMapper SCM(SE2); 11872 11873 while (!LoopStack.empty()) { 11874 auto *L = LoopStack.pop_back_val(); 11875 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11876 11877 auto *CurBECount = SCM.visit( 11878 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11879 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11880 11881 if (CurBECount == SE2.getCouldNotCompute() || 11882 NewBECount == SE2.getCouldNotCompute()) { 11883 // NB! This situation is legal, but is very suspicious -- whatever pass 11884 // change the loop to make a trip count go from could not compute to 11885 // computable or vice-versa *should have* invalidated SCEV. However, we 11886 // choose not to assert here (for now) since we don't want false 11887 // positives. 11888 continue; 11889 } 11890 11891 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11892 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11893 // not propagate undef aggressively). This means we can (and do) fail 11894 // verification in cases where a transform makes the trip count of a loop 11895 // go from "undef" to "undef+1" (say). The transform is fine, since in 11896 // both cases the loop iterates "undef" times, but SCEV thinks we 11897 // increased the trip count of the loop by 1 incorrectly. 11898 continue; 11899 } 11900 11901 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11902 SE.getTypeSizeInBits(NewBECount->getType())) 11903 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11904 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11905 SE.getTypeSizeInBits(NewBECount->getType())) 11906 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11907 11908 auto *ConstantDelta = 11909 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11910 11911 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11912 dbgs() << "Trip Count Changed!\n"; 11913 dbgs() << "Old: " << *CurBECount << "\n"; 11914 dbgs() << "New: " << *NewBECount << "\n"; 11915 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11916 std::abort(); 11917 } 11918 } 11919 } 11920 11921 bool ScalarEvolution::invalidate( 11922 Function &F, const PreservedAnalyses &PA, 11923 FunctionAnalysisManager::Invalidator &Inv) { 11924 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11925 // of its dependencies is invalidated. 11926 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11927 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11928 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11929 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11930 Inv.invalidate<LoopAnalysis>(F, PA); 11931 } 11932 11933 AnalysisKey ScalarEvolutionAnalysis::Key; 11934 11935 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11936 FunctionAnalysisManager &AM) { 11937 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11938 AM.getResult<AssumptionAnalysis>(F), 11939 AM.getResult<DominatorTreeAnalysis>(F), 11940 AM.getResult<LoopAnalysis>(F)); 11941 } 11942 11943 PreservedAnalyses 11944 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11945 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11946 return PreservedAnalyses::all(); 11947 } 11948 11949 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11950 "Scalar Evolution Analysis", false, true) 11951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11952 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11955 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11956 "Scalar Evolution Analysis", false, true) 11957 11958 char ScalarEvolutionWrapperPass::ID = 0; 11959 11960 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11961 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11962 } 11963 11964 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11965 SE.reset(new ScalarEvolution( 11966 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11967 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11968 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11969 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11970 return false; 11971 } 11972 11973 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11974 11975 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11976 SE->print(OS); 11977 } 11978 11979 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11980 if (!VerifySCEV) 11981 return; 11982 11983 SE->verify(); 11984 } 11985 11986 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11987 AU.setPreservesAll(); 11988 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11989 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11990 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11991 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11992 } 11993 11994 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11995 const SCEV *RHS) { 11996 FoldingSetNodeID ID; 11997 assert(LHS->getType() == RHS->getType() && 11998 "Type mismatch between LHS and RHS"); 11999 // Unique this node based on the arguments 12000 ID.AddInteger(SCEVPredicate::P_Equal); 12001 ID.AddPointer(LHS); 12002 ID.AddPointer(RHS); 12003 void *IP = nullptr; 12004 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12005 return S; 12006 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12007 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12008 UniquePreds.InsertNode(Eq, IP); 12009 return Eq; 12010 } 12011 12012 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12013 const SCEVAddRecExpr *AR, 12014 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12015 FoldingSetNodeID ID; 12016 // Unique this node based on the arguments 12017 ID.AddInteger(SCEVPredicate::P_Wrap); 12018 ID.AddPointer(AR); 12019 ID.AddInteger(AddedFlags); 12020 void *IP = nullptr; 12021 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12022 return S; 12023 auto *OF = new (SCEVAllocator) 12024 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12025 UniquePreds.InsertNode(OF, IP); 12026 return OF; 12027 } 12028 12029 namespace { 12030 12031 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12032 public: 12033 12034 /// Rewrites \p S in the context of a loop L and the SCEV predication 12035 /// infrastructure. 12036 /// 12037 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12038 /// equivalences present in \p Pred. 12039 /// 12040 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12041 /// \p NewPreds such that the result will be an AddRecExpr. 12042 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12043 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12044 SCEVUnionPredicate *Pred) { 12045 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12046 return Rewriter.visit(S); 12047 } 12048 12049 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12050 if (Pred) { 12051 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12052 for (auto *Pred : ExprPreds) 12053 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12054 if (IPred->getLHS() == Expr) 12055 return IPred->getRHS(); 12056 } 12057 return convertToAddRecWithPreds(Expr); 12058 } 12059 12060 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12061 const SCEV *Operand = visit(Expr->getOperand()); 12062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12063 if (AR && AR->getLoop() == L && AR->isAffine()) { 12064 // This couldn't be folded because the operand didn't have the nuw 12065 // flag. Add the nusw flag as an assumption that we could make. 12066 const SCEV *Step = AR->getStepRecurrence(SE); 12067 Type *Ty = Expr->getType(); 12068 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12069 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12070 SE.getSignExtendExpr(Step, Ty), L, 12071 AR->getNoWrapFlags()); 12072 } 12073 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12074 } 12075 12076 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12077 const SCEV *Operand = visit(Expr->getOperand()); 12078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12079 if (AR && AR->getLoop() == L && AR->isAffine()) { 12080 // This couldn't be folded because the operand didn't have the nsw 12081 // flag. Add the nssw flag as an assumption that we could make. 12082 const SCEV *Step = AR->getStepRecurrence(SE); 12083 Type *Ty = Expr->getType(); 12084 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12085 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12086 SE.getSignExtendExpr(Step, Ty), L, 12087 AR->getNoWrapFlags()); 12088 } 12089 return SE.getSignExtendExpr(Operand, Expr->getType()); 12090 } 12091 12092 private: 12093 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12094 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12095 SCEVUnionPredicate *Pred) 12096 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12097 12098 bool addOverflowAssumption(const SCEVPredicate *P) { 12099 if (!NewPreds) { 12100 // Check if we've already made this assumption. 12101 return Pred && Pred->implies(P); 12102 } 12103 NewPreds->insert(P); 12104 return true; 12105 } 12106 12107 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12108 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12109 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12110 return addOverflowAssumption(A); 12111 } 12112 12113 // If \p Expr represents a PHINode, we try to see if it can be represented 12114 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12115 // to add this predicate as a runtime overflow check, we return the AddRec. 12116 // If \p Expr does not meet these conditions (is not a PHI node, or we 12117 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12118 // return \p Expr. 12119 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12120 if (!isa<PHINode>(Expr->getValue())) 12121 return Expr; 12122 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12123 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12124 if (!PredicatedRewrite) 12125 return Expr; 12126 for (auto *P : PredicatedRewrite->second){ 12127 // Wrap predicates from outer loops are not supported. 12128 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12129 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12130 if (L != AR->getLoop()) 12131 return Expr; 12132 } 12133 if (!addOverflowAssumption(P)) 12134 return Expr; 12135 } 12136 return PredicatedRewrite->first; 12137 } 12138 12139 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12140 SCEVUnionPredicate *Pred; 12141 const Loop *L; 12142 }; 12143 12144 } // end anonymous namespace 12145 12146 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12147 SCEVUnionPredicate &Preds) { 12148 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12149 } 12150 12151 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12152 const SCEV *S, const Loop *L, 12153 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12154 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12155 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12156 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12157 12158 if (!AddRec) 12159 return nullptr; 12160 12161 // Since the transformation was successful, we can now transfer the SCEV 12162 // predicates. 12163 for (auto *P : TransformPreds) 12164 Preds.insert(P); 12165 12166 return AddRec; 12167 } 12168 12169 /// SCEV predicates 12170 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12171 SCEVPredicateKind Kind) 12172 : FastID(ID), Kind(Kind) {} 12173 12174 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12175 const SCEV *LHS, const SCEV *RHS) 12176 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12177 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12178 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12179 } 12180 12181 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12182 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12183 12184 if (!Op) 12185 return false; 12186 12187 return Op->LHS == LHS && Op->RHS == RHS; 12188 } 12189 12190 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12191 12192 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12193 12194 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12195 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12196 } 12197 12198 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12199 const SCEVAddRecExpr *AR, 12200 IncrementWrapFlags Flags) 12201 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12202 12203 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12204 12205 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12206 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12207 12208 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12209 } 12210 12211 bool SCEVWrapPredicate::isAlwaysTrue() const { 12212 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12213 IncrementWrapFlags IFlags = Flags; 12214 12215 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12216 IFlags = clearFlags(IFlags, IncrementNSSW); 12217 12218 return IFlags == IncrementAnyWrap; 12219 } 12220 12221 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12222 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12223 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12224 OS << "<nusw>"; 12225 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12226 OS << "<nssw>"; 12227 OS << "\n"; 12228 } 12229 12230 SCEVWrapPredicate::IncrementWrapFlags 12231 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12232 ScalarEvolution &SE) { 12233 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12234 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12235 12236 // We can safely transfer the NSW flag as NSSW. 12237 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12238 ImpliedFlags = IncrementNSSW; 12239 12240 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12241 // If the increment is positive, the SCEV NUW flag will also imply the 12242 // WrapPredicate NUSW flag. 12243 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12244 if (Step->getValue()->getValue().isNonNegative()) 12245 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12246 } 12247 12248 return ImpliedFlags; 12249 } 12250 12251 /// Union predicates don't get cached so create a dummy set ID for it. 12252 SCEVUnionPredicate::SCEVUnionPredicate() 12253 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12254 12255 bool SCEVUnionPredicate::isAlwaysTrue() const { 12256 return all_of(Preds, 12257 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12258 } 12259 12260 ArrayRef<const SCEVPredicate *> 12261 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12262 auto I = SCEVToPreds.find(Expr); 12263 if (I == SCEVToPreds.end()) 12264 return ArrayRef<const SCEVPredicate *>(); 12265 return I->second; 12266 } 12267 12268 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12269 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12270 return all_of(Set->Preds, 12271 [this](const SCEVPredicate *I) { return this->implies(I); }); 12272 12273 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12274 if (ScevPredsIt == SCEVToPreds.end()) 12275 return false; 12276 auto &SCEVPreds = ScevPredsIt->second; 12277 12278 return any_of(SCEVPreds, 12279 [N](const SCEVPredicate *I) { return I->implies(N); }); 12280 } 12281 12282 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12283 12284 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12285 for (auto Pred : Preds) 12286 Pred->print(OS, Depth); 12287 } 12288 12289 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12290 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12291 for (auto Pred : Set->Preds) 12292 add(Pred); 12293 return; 12294 } 12295 12296 if (implies(N)) 12297 return; 12298 12299 const SCEV *Key = N->getExpr(); 12300 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12301 " associated expression!"); 12302 12303 SCEVToPreds[Key].push_back(N); 12304 Preds.push_back(N); 12305 } 12306 12307 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12308 Loop &L) 12309 : SE(SE), L(L) {} 12310 12311 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12312 const SCEV *Expr = SE.getSCEV(V); 12313 RewriteEntry &Entry = RewriteMap[Expr]; 12314 12315 // If we already have an entry and the version matches, return it. 12316 if (Entry.second && Generation == Entry.first) 12317 return Entry.second; 12318 12319 // We found an entry but it's stale. Rewrite the stale entry 12320 // according to the current predicate. 12321 if (Entry.second) 12322 Expr = Entry.second; 12323 12324 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12325 Entry = {Generation, NewSCEV}; 12326 12327 return NewSCEV; 12328 } 12329 12330 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12331 if (!BackedgeCount) { 12332 SCEVUnionPredicate BackedgePred; 12333 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12334 addPredicate(BackedgePred); 12335 } 12336 return BackedgeCount; 12337 } 12338 12339 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12340 if (Preds.implies(&Pred)) 12341 return; 12342 Preds.add(&Pred); 12343 updateGeneration(); 12344 } 12345 12346 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12347 return Preds; 12348 } 12349 12350 void PredicatedScalarEvolution::updateGeneration() { 12351 // If the generation number wrapped recompute everything. 12352 if (++Generation == 0) { 12353 for (auto &II : RewriteMap) { 12354 const SCEV *Rewritten = II.second.second; 12355 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12356 } 12357 } 12358 } 12359 12360 void PredicatedScalarEvolution::setNoOverflow( 12361 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12362 const SCEV *Expr = getSCEV(V); 12363 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12364 12365 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12366 12367 // Clear the statically implied flags. 12368 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12369 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12370 12371 auto II = FlagsMap.insert({V, Flags}); 12372 if (!II.second) 12373 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12374 } 12375 12376 bool PredicatedScalarEvolution::hasNoOverflow( 12377 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12378 const SCEV *Expr = getSCEV(V); 12379 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12380 12381 Flags = SCEVWrapPredicate::clearFlags( 12382 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12383 12384 auto II = FlagsMap.find(V); 12385 12386 if (II != FlagsMap.end()) 12387 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12388 12389 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12390 } 12391 12392 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12393 const SCEV *Expr = this->getSCEV(V); 12394 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12395 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12396 12397 if (!New) 12398 return nullptr; 12399 12400 for (auto *P : NewPreds) 12401 Preds.add(P); 12402 12403 updateGeneration(); 12404 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12405 return New; 12406 } 12407 12408 PredicatedScalarEvolution::PredicatedScalarEvolution( 12409 const PredicatedScalarEvolution &Init) 12410 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12411 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12412 for (const auto &I : Init.FlagsMap) 12413 FlagsMap.insert(I); 12414 } 12415 12416 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12417 // For each block. 12418 for (auto *BB : L.getBlocks()) 12419 for (auto &I : *BB) { 12420 if (!SE.isSCEVable(I.getType())) 12421 continue; 12422 12423 auto *Expr = SE.getSCEV(&I); 12424 auto II = RewriteMap.find(Expr); 12425 12426 if (II == RewriteMap.end()) 12427 continue; 12428 12429 // Don't print things that are not interesting. 12430 if (II->second.second == Expr) 12431 continue; 12432 12433 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12434 OS.indent(Depth + 2) << *Expr << "\n"; 12435 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12436 } 12437 } 12438 12439 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12440 // arbitrary expressions. 12441 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12442 // 4, A / B becomes X / 8). 12443 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12444 const SCEV *&RHS) { 12445 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12446 if (Add == nullptr || Add->getNumOperands() != 2) 12447 return false; 12448 12449 const SCEV *A = Add->getOperand(1); 12450 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12451 12452 if (Mul == nullptr) 12453 return false; 12454 12455 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12456 // (SomeExpr + (-(SomeExpr / B) * B)). 12457 if (Expr == getURemExpr(A, B)) { 12458 LHS = A; 12459 RHS = B; 12460 return true; 12461 } 12462 return false; 12463 }; 12464 12465 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12466 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12467 return MatchURemWithDivisor(Mul->getOperand(1)) || 12468 MatchURemWithDivisor(Mul->getOperand(2)); 12469 12470 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12471 if (Mul->getNumOperands() == 2) 12472 return MatchURemWithDivisor(Mul->getOperand(1)) || 12473 MatchURemWithDivisor(Mul->getOperand(0)) || 12474 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12475 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12476 return false; 12477 } 12478