1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 236 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 237 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 238 "Phi strongly connected components"), 239 cl::init(8)); 240 241 static cl::opt<bool> 242 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 243 cl::desc("Handle <= and >= in finite loops"), 244 cl::init(true)); 245 246 //===----------------------------------------------------------------------===// 247 // SCEV class definitions 248 //===----------------------------------------------------------------------===// 249 250 //===----------------------------------------------------------------------===// 251 // Implementation of the SCEV class. 252 // 253 254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 255 LLVM_DUMP_METHOD void SCEV::dump() const { 256 print(dbgs()); 257 dbgs() << '\n'; 258 } 259 #endif 260 261 void SCEV::print(raw_ostream &OS) const { 262 switch (getSCEVType()) { 263 case scConstant: 264 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 265 return; 266 case scPtrToInt: { 267 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 268 const SCEV *Op = PtrToInt->getOperand(); 269 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 270 << *PtrToInt->getType() << ")"; 271 return; 272 } 273 case scTruncate: { 274 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 275 const SCEV *Op = Trunc->getOperand(); 276 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 277 << *Trunc->getType() << ")"; 278 return; 279 } 280 case scZeroExtend: { 281 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 282 const SCEV *Op = ZExt->getOperand(); 283 OS << "(zext " << *Op->getType() << " " << *Op << " to " 284 << *ZExt->getType() << ")"; 285 return; 286 } 287 case scSignExtend: { 288 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 289 const SCEV *Op = SExt->getOperand(); 290 OS << "(sext " << *Op->getType() << " " << *Op << " to " 291 << *SExt->getType() << ")"; 292 return; 293 } 294 case scAddRecExpr: { 295 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 296 OS << "{" << *AR->getOperand(0); 297 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 298 OS << ",+," << *AR->getOperand(i); 299 OS << "}<"; 300 if (AR->hasNoUnsignedWrap()) 301 OS << "nuw><"; 302 if (AR->hasNoSignedWrap()) 303 OS << "nsw><"; 304 if (AR->hasNoSelfWrap() && 305 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 306 OS << "nw><"; 307 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 308 OS << ">"; 309 return; 310 } 311 case scAddExpr: 312 case scMulExpr: 313 case scUMaxExpr: 314 case scSMaxExpr: 315 case scUMinExpr: 316 case scSMinExpr: 317 case scSequentialUMinExpr: { 318 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 319 const char *OpStr = nullptr; 320 switch (NAry->getSCEVType()) { 321 case scAddExpr: OpStr = " + "; break; 322 case scMulExpr: OpStr = " * "; break; 323 case scUMaxExpr: OpStr = " umax "; break; 324 case scSMaxExpr: OpStr = " smax "; break; 325 case scUMinExpr: 326 OpStr = " umin "; 327 break; 328 case scSMinExpr: 329 OpStr = " smin "; 330 break; 331 case scSequentialUMinExpr: 332 OpStr = " umin_seq "; 333 break; 334 default: 335 llvm_unreachable("There are no other nary expression types."); 336 } 337 OS << "("; 338 ListSeparator LS(OpStr); 339 for (const SCEV *Op : NAry->operands()) 340 OS << LS << *Op; 341 OS << ")"; 342 switch (NAry->getSCEVType()) { 343 case scAddExpr: 344 case scMulExpr: 345 if (NAry->hasNoUnsignedWrap()) 346 OS << "<nuw>"; 347 if (NAry->hasNoSignedWrap()) 348 OS << "<nsw>"; 349 break; 350 default: 351 // Nothing to print for other nary expressions. 352 break; 353 } 354 return; 355 } 356 case scUDivExpr: { 357 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 358 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 359 return; 360 } 361 case scUnknown: { 362 const SCEVUnknown *U = cast<SCEVUnknown>(this); 363 Type *AllocTy; 364 if (U->isSizeOf(AllocTy)) { 365 OS << "sizeof(" << *AllocTy << ")"; 366 return; 367 } 368 if (U->isAlignOf(AllocTy)) { 369 OS << "alignof(" << *AllocTy << ")"; 370 return; 371 } 372 373 Type *CTy; 374 Constant *FieldNo; 375 if (U->isOffsetOf(CTy, FieldNo)) { 376 OS << "offsetof(" << *CTy << ", "; 377 FieldNo->printAsOperand(OS, false); 378 OS << ")"; 379 return; 380 } 381 382 // Otherwise just print it normally. 383 U->getValue()->printAsOperand(OS, false); 384 return; 385 } 386 case scCouldNotCompute: 387 OS << "***COULDNOTCOMPUTE***"; 388 return; 389 } 390 llvm_unreachable("Unknown SCEV kind!"); 391 } 392 393 Type *SCEV::getType() const { 394 switch (getSCEVType()) { 395 case scConstant: 396 return cast<SCEVConstant>(this)->getType(); 397 case scPtrToInt: 398 case scTruncate: 399 case scZeroExtend: 400 case scSignExtend: 401 return cast<SCEVCastExpr>(this)->getType(); 402 case scAddRecExpr: 403 return cast<SCEVAddRecExpr>(this)->getType(); 404 case scMulExpr: 405 return cast<SCEVMulExpr>(this)->getType(); 406 case scUMaxExpr: 407 case scSMaxExpr: 408 case scUMinExpr: 409 case scSMinExpr: 410 return cast<SCEVMinMaxExpr>(this)->getType(); 411 case scSequentialUMinExpr: 412 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 413 case scAddExpr: 414 return cast<SCEVAddExpr>(this)->getType(); 415 case scUDivExpr: 416 return cast<SCEVUDivExpr>(this)->getType(); 417 case scUnknown: 418 return cast<SCEVUnknown>(this)->getType(); 419 case scCouldNotCompute: 420 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 421 } 422 llvm_unreachable("Unknown SCEV kind!"); 423 } 424 425 bool SCEV::isZero() const { 426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 427 return SC->getValue()->isZero(); 428 return false; 429 } 430 431 bool SCEV::isOne() const { 432 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 433 return SC->getValue()->isOne(); 434 return false; 435 } 436 437 bool SCEV::isAllOnesValue() const { 438 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 439 return SC->getValue()->isMinusOne(); 440 return false; 441 } 442 443 bool SCEV::isNonConstantNegative() const { 444 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 445 if (!Mul) return false; 446 447 // If there is a constant factor, it will be first. 448 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 449 if (!SC) return false; 450 451 // Return true if the value is negative, this matches things like (-42 * V). 452 return SC->getAPInt().isNegative(); 453 } 454 455 SCEVCouldNotCompute::SCEVCouldNotCompute() : 456 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 457 458 bool SCEVCouldNotCompute::classof(const SCEV *S) { 459 return S->getSCEVType() == scCouldNotCompute; 460 } 461 462 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 463 FoldingSetNodeID ID; 464 ID.AddInteger(scConstant); 465 ID.AddPointer(V); 466 void *IP = nullptr; 467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 468 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 469 UniqueSCEVs.InsertNode(S, IP); 470 return S; 471 } 472 473 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 474 return getConstant(ConstantInt::get(getContext(), Val)); 475 } 476 477 const SCEV * 478 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 479 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 480 return getConstant(ConstantInt::get(ITy, V, isSigned)); 481 } 482 483 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 484 const SCEV *op, Type *ty) 485 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 486 Operands[0] = op; 487 } 488 489 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 490 Type *ITy) 491 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 492 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 493 "Must be a non-bit-width-changing pointer-to-integer cast!"); 494 } 495 496 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 497 SCEVTypes SCEVTy, const SCEV *op, 498 Type *ty) 499 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 500 501 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 502 Type *ty) 503 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 504 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 505 "Cannot truncate non-integer value!"); 506 } 507 508 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 509 const SCEV *op, Type *ty) 510 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 511 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 512 "Cannot zero extend non-integer value!"); 513 } 514 515 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 516 const SCEV *op, Type *ty) 517 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 518 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 519 "Cannot sign extend non-integer value!"); 520 } 521 522 void SCEVUnknown::deleted() { 523 // Clear this SCEVUnknown from various maps. 524 SE->forgetMemoizedResults(this); 525 526 // Remove this SCEVUnknown from the uniquing map. 527 SE->UniqueSCEVs.RemoveNode(this); 528 529 // Release the value. 530 setValPtr(nullptr); 531 } 532 533 void SCEVUnknown::allUsesReplacedWith(Value *New) { 534 // Clear this SCEVUnknown from various maps. 535 SE->forgetMemoizedResults(this); 536 537 // Remove this SCEVUnknown from the uniquing map. 538 SE->UniqueSCEVs.RemoveNode(this); 539 540 // Replace the value pointer in case someone is still using this SCEVUnknown. 541 setValPtr(New); 542 } 543 544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue() && 550 CE->getNumOperands() == 2) 551 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 552 if (CI->isOne()) { 553 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 554 return true; 555 } 556 557 return false; 558 } 559 560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 561 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 562 if (VCE->getOpcode() == Instruction::PtrToInt) 563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 564 if (CE->getOpcode() == Instruction::GetElementPtr && 565 CE->getOperand(0)->isNullValue()) { 566 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 567 if (StructType *STy = dyn_cast<StructType>(Ty)) 568 if (!STy->isPacked() && 569 CE->getNumOperands() == 3 && 570 CE->getOperand(1)->isNullValue()) { 571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 572 if (CI->isOne() && 573 STy->getNumElements() == 2 && 574 STy->getElementType(0)->isIntegerTy(1)) { 575 AllocTy = STy->getElementType(1); 576 return true; 577 } 578 } 579 } 580 581 return false; 582 } 583 584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 585 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 586 if (VCE->getOpcode() == Instruction::PtrToInt) 587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 588 if (CE->getOpcode() == Instruction::GetElementPtr && 589 CE->getNumOperands() == 3 && 590 CE->getOperand(0)->isNullValue() && 591 CE->getOperand(1)->isNullValue()) { 592 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 593 // Ignore vector types here so that ScalarEvolutionExpander doesn't 594 // emit getelementptrs that index into vectors. 595 if (Ty->isStructTy() || Ty->isArrayTy()) { 596 CTy = Ty; 597 FieldNo = CE->getOperand(2); 598 return true; 599 } 600 } 601 602 return false; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // SCEV Utilities 607 //===----------------------------------------------------------------------===// 608 609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 611 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 612 /// have been previously deemed to be "equally complex" by this routine. It is 613 /// intended to avoid exponential time complexity in cases like: 614 /// 615 /// %a = f(%x, %y) 616 /// %b = f(%a, %a) 617 /// %c = f(%b, %b) 618 /// 619 /// %d = f(%x, %y) 620 /// %e = f(%d, %d) 621 /// %f = f(%e, %e) 622 /// 623 /// CompareValueComplexity(%f, %c) 624 /// 625 /// Since we do not continue running this routine on expression trees once we 626 /// have seen unequal values, there is no need to track them in the cache. 627 static int 628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 629 const LoopInfo *const LI, Value *LV, Value *RV, 630 unsigned Depth) { 631 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 632 return 0; 633 634 // Order pointer values after integer values. This helps SCEVExpander form 635 // GEPs. 636 bool LIsPointer = LV->getType()->isPointerTy(), 637 RIsPointer = RV->getType()->isPointerTy(); 638 if (LIsPointer != RIsPointer) 639 return (int)LIsPointer - (int)RIsPointer; 640 641 // Compare getValueID values. 642 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 643 if (LID != RID) 644 return (int)LID - (int)RID; 645 646 // Sort arguments by their position. 647 if (const auto *LA = dyn_cast<Argument>(LV)) { 648 const auto *RA = cast<Argument>(RV); 649 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 650 return (int)LArgNo - (int)RArgNo; 651 } 652 653 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 654 const auto *RGV = cast<GlobalValue>(RV); 655 656 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 657 auto LT = GV->getLinkage(); 658 return !(GlobalValue::isPrivateLinkage(LT) || 659 GlobalValue::isInternalLinkage(LT)); 660 }; 661 662 // Use the names to distinguish the two values, but only if the 663 // names are semantically important. 664 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 665 return LGV->getName().compare(RGV->getName()); 666 } 667 668 // For instructions, compare their loop depth, and their operand count. This 669 // is pretty loose. 670 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 671 const auto *RInst = cast<Instruction>(RV); 672 673 // Compare loop depths. 674 const BasicBlock *LParent = LInst->getParent(), 675 *RParent = RInst->getParent(); 676 if (LParent != RParent) { 677 unsigned LDepth = LI->getLoopDepth(LParent), 678 RDepth = LI->getLoopDepth(RParent); 679 if (LDepth != RDepth) 680 return (int)LDepth - (int)RDepth; 681 } 682 683 // Compare the number of operands. 684 unsigned LNumOps = LInst->getNumOperands(), 685 RNumOps = RInst->getNumOperands(); 686 if (LNumOps != RNumOps) 687 return (int)LNumOps - (int)RNumOps; 688 689 for (unsigned Idx : seq(0u, LNumOps)) { 690 int Result = 691 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 692 RInst->getOperand(Idx), Depth + 1); 693 if (Result != 0) 694 return Result; 695 } 696 } 697 698 EqCacheValue.unionSets(LV, RV); 699 return 0; 700 } 701 702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 703 // than RHS, respectively. A three-way result allows recursive comparisons to be 704 // more efficient. 705 // If the max analysis depth was reached, return None, assuming we do not know 706 // if they are equivalent for sure. 707 static Optional<int> 708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 709 EquivalenceClasses<const Value *> &EqCacheValue, 710 const LoopInfo *const LI, const SCEV *LHS, 711 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 712 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 713 if (LHS == RHS) 714 return 0; 715 716 // Primarily, sort the SCEVs by their getSCEVType(). 717 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 718 if (LType != RType) 719 return (int)LType - (int)RType; 720 721 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 722 return 0; 723 724 if (Depth > MaxSCEVCompareDepth) 725 return None; 726 727 // Aside from the getSCEVType() ordering, the particular ordering 728 // isn't very important except that it's beneficial to be consistent, 729 // so that (a + b) and (b + a) don't end up as different expressions. 730 switch (LType) { 731 case scUnknown: { 732 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 733 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 734 735 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 736 RU->getValue(), Depth + 1); 737 if (X == 0) 738 EqCacheSCEV.unionSets(LHS, RHS); 739 return X; 740 } 741 742 case scConstant: { 743 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 744 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 745 746 // Compare constant values. 747 const APInt &LA = LC->getAPInt(); 748 const APInt &RA = RC->getAPInt(); 749 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 750 if (LBitWidth != RBitWidth) 751 return (int)LBitWidth - (int)RBitWidth; 752 return LA.ult(RA) ? -1 : 1; 753 } 754 755 case scAddRecExpr: { 756 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 757 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 758 759 // There is always a dominance between two recs that are used by one SCEV, 760 // so we can safely sort recs by loop header dominance. We require such 761 // order in getAddExpr. 762 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 763 if (LLoop != RLoop) { 764 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 765 assert(LHead != RHead && "Two loops share the same header?"); 766 if (DT.dominates(LHead, RHead)) 767 return 1; 768 else 769 assert(DT.dominates(RHead, LHead) && 770 "No dominance between recurrences used by one SCEV?"); 771 return -1; 772 } 773 774 // Addrec complexity grows with operand count. 775 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 776 if (LNumOps != RNumOps) 777 return (int)LNumOps - (int)RNumOps; 778 779 // Lexicographically compare. 780 for (unsigned i = 0; i != LNumOps; ++i) { 781 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 782 LA->getOperand(i), RA->getOperand(i), DT, 783 Depth + 1); 784 if (X != 0) 785 return X; 786 } 787 EqCacheSCEV.unionSets(LHS, RHS); 788 return 0; 789 } 790 791 case scAddExpr: 792 case scMulExpr: 793 case scSMaxExpr: 794 case scUMaxExpr: 795 case scSMinExpr: 796 case scUMinExpr: 797 case scSequentialUMinExpr: { 798 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 799 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 800 801 // Lexicographically compare n-ary expressions. 802 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 803 if (LNumOps != RNumOps) 804 return (int)LNumOps - (int)RNumOps; 805 806 for (unsigned i = 0; i != LNumOps; ++i) { 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 808 LC->getOperand(i), RC->getOperand(i), DT, 809 Depth + 1); 810 if (X != 0) 811 return X; 812 } 813 EqCacheSCEV.unionSets(LHS, RHS); 814 return 0; 815 } 816 817 case scUDivExpr: { 818 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 819 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 820 821 // Lexicographically compare udiv expressions. 822 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 823 RC->getLHS(), DT, Depth + 1); 824 if (X != 0) 825 return X; 826 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 827 RC->getRHS(), DT, Depth + 1); 828 if (X == 0) 829 EqCacheSCEV.unionSets(LHS, RHS); 830 return X; 831 } 832 833 case scPtrToInt: 834 case scTruncate: 835 case scZeroExtend: 836 case scSignExtend: { 837 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 838 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 839 840 // Compare cast expressions by operand. 841 auto X = 842 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 843 RC->getOperand(), DT, Depth + 1); 844 if (X == 0) 845 EqCacheSCEV.unionSets(LHS, RHS); 846 return X; 847 } 848 849 case scCouldNotCompute: 850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 851 } 852 llvm_unreachable("Unknown SCEV kind!"); 853 } 854 855 /// Given a list of SCEV objects, order them by their complexity, and group 856 /// objects of the same complexity together by value. When this routine is 857 /// finished, we know that any duplicates in the vector are consecutive and that 858 /// complexity is monotonically increasing. 859 /// 860 /// Note that we go take special precautions to ensure that we get deterministic 861 /// results from this routine. In other words, we don't want the results of 862 /// this to depend on where the addresses of various SCEV objects happened to 863 /// land in memory. 864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 865 LoopInfo *LI, DominatorTree &DT) { 866 if (Ops.size() < 2) return; // Noop 867 868 EquivalenceClasses<const SCEV *> EqCacheSCEV; 869 EquivalenceClasses<const Value *> EqCacheValue; 870 871 // Whether LHS has provably less complexity than RHS. 872 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 873 auto Complexity = 874 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 875 return Complexity && *Complexity < 0; 876 }; 877 if (Ops.size() == 2) { 878 // This is the common case, which also happens to be trivially simple. 879 // Special case it. 880 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 881 if (IsLessComplex(RHS, LHS)) 882 std::swap(LHS, RHS); 883 return; 884 } 885 886 // Do the rough sort by complexity. 887 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 888 return IsLessComplex(LHS, RHS); 889 }); 890 891 // Now that we are sorted by complexity, group elements of the same 892 // complexity. Note that this is, at worst, N^2, but the vector is likely to 893 // be extremely short in practice. Note that we take this approach because we 894 // do not want to depend on the addresses of the objects we are grouping. 895 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 896 const SCEV *S = Ops[i]; 897 unsigned Complexity = S->getSCEVType(); 898 899 // If there are any objects of the same complexity and same value as this 900 // one, group them. 901 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 902 if (Ops[j] == S) { // Found a duplicate. 903 // Move it to immediately after i'th element. 904 std::swap(Ops[i+1], Ops[j]); 905 ++i; // no need to rescan it. 906 if (i == e-2) return; // Done! 907 } 908 } 909 } 910 } 911 912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 913 /// least HugeExprThreshold nodes). 914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 915 return any_of(Ops, [](const SCEV *S) { 916 return S->getExpressionSize() >= HugeExprThreshold; 917 }); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // Simple SCEV method implementations 922 //===----------------------------------------------------------------------===// 923 924 /// Compute BC(It, K). The result has width W. Assume, K > 0. 925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 926 ScalarEvolution &SE, 927 Type *ResultTy) { 928 // Handle the simplest case efficiently. 929 if (K == 1) 930 return SE.getTruncateOrZeroExtend(It, ResultTy); 931 932 // We are using the following formula for BC(It, K): 933 // 934 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 935 // 936 // Suppose, W is the bitwidth of the return value. We must be prepared for 937 // overflow. Hence, we must assure that the result of our computation is 938 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 939 // safe in modular arithmetic. 940 // 941 // However, this code doesn't use exactly that formula; the formula it uses 942 // is something like the following, where T is the number of factors of 2 in 943 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 944 // exponentiation: 945 // 946 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 947 // 948 // This formula is trivially equivalent to the previous formula. However, 949 // this formula can be implemented much more efficiently. The trick is that 950 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 951 // arithmetic. To do exact division in modular arithmetic, all we have 952 // to do is multiply by the inverse. Therefore, this step can be done at 953 // width W. 954 // 955 // The next issue is how to safely do the division by 2^T. The way this 956 // is done is by doing the multiplication step at a width of at least W + T 957 // bits. This way, the bottom W+T bits of the product are accurate. Then, 958 // when we perform the division by 2^T (which is equivalent to a right shift 959 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 960 // truncated out after the division by 2^T. 961 // 962 // In comparison to just directly using the first formula, this technique 963 // is much more efficient; using the first formula requires W * K bits, 964 // but this formula less than W + K bits. Also, the first formula requires 965 // a division step, whereas this formula only requires multiplies and shifts. 966 // 967 // It doesn't matter whether the subtraction step is done in the calculation 968 // width or the input iteration count's width; if the subtraction overflows, 969 // the result must be zero anyway. We prefer here to do it in the width of 970 // the induction variable because it helps a lot for certain cases; CodeGen 971 // isn't smart enough to ignore the overflow, which leads to much less 972 // efficient code if the width of the subtraction is wider than the native 973 // register width. 974 // 975 // (It's possible to not widen at all by pulling out factors of 2 before 976 // the multiplication; for example, K=2 can be calculated as 977 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 978 // extra arithmetic, so it's not an obvious win, and it gets 979 // much more complicated for K > 3.) 980 981 // Protection from insane SCEVs; this bound is conservative, 982 // but it probably doesn't matter. 983 if (K > 1000) 984 return SE.getCouldNotCompute(); 985 986 unsigned W = SE.getTypeSizeInBits(ResultTy); 987 988 // Calculate K! / 2^T and T; we divide out the factors of two before 989 // multiplying for calculating K! / 2^T to avoid overflow. 990 // Other overflow doesn't matter because we only care about the bottom 991 // W bits of the result. 992 APInt OddFactorial(W, 1); 993 unsigned T = 1; 994 for (unsigned i = 3; i <= K; ++i) { 995 APInt Mult(W, i); 996 unsigned TwoFactors = Mult.countTrailingZeros(); 997 T += TwoFactors; 998 Mult.lshrInPlace(TwoFactors); 999 OddFactorial *= Mult; 1000 } 1001 1002 // We need at least W + T bits for the multiplication step 1003 unsigned CalculationBits = W + T; 1004 1005 // Calculate 2^T, at width T+W. 1006 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1007 1008 // Calculate the multiplicative inverse of K! / 2^T; 1009 // this multiplication factor will perform the exact division by 1010 // K! / 2^T. 1011 APInt Mod = APInt::getSignedMinValue(W+1); 1012 APInt MultiplyFactor = OddFactorial.zext(W+1); 1013 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1014 MultiplyFactor = MultiplyFactor.trunc(W); 1015 1016 // Calculate the product, at width T+W 1017 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1018 CalculationBits); 1019 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1020 for (unsigned i = 1; i != K; ++i) { 1021 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1022 Dividend = SE.getMulExpr(Dividend, 1023 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1024 } 1025 1026 // Divide by 2^T 1027 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1028 1029 // Truncate the result, and divide by K! / 2^T. 1030 1031 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1032 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1033 } 1034 1035 /// Return the value of this chain of recurrences at the specified iteration 1036 /// number. We can evaluate this recurrence by multiplying each element in the 1037 /// chain by the binomial coefficient corresponding to it. In other words, we 1038 /// can evaluate {A,+,B,+,C,+,D} as: 1039 /// 1040 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1041 /// 1042 /// where BC(It, k) stands for binomial coefficient. 1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1044 ScalarEvolution &SE) const { 1045 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1046 } 1047 1048 const SCEV * 1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1050 const SCEV *It, ScalarEvolution &SE) { 1051 assert(Operands.size() > 0); 1052 const SCEV *Result = Operands[0]; 1053 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1071 unsigned Depth) { 1072 assert(Depth <= 1 && 1073 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1074 1075 // We could be called with an integer-typed operands during SCEV rewrites. 1076 // Since the operand is an integer already, just perform zext/trunc/self cast. 1077 if (!Op->getType()->isPointerTy()) 1078 return Op; 1079 1080 // What would be an ID for such a SCEV cast expression? 1081 FoldingSetNodeID ID; 1082 ID.AddInteger(scPtrToInt); 1083 ID.AddPointer(Op); 1084 1085 void *IP = nullptr; 1086 1087 // Is there already an expression for such a cast? 1088 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1089 return S; 1090 1091 // It isn't legal for optimizations to construct new ptrtoint expressions 1092 // for non-integral pointers. 1093 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1094 return getCouldNotCompute(); 1095 1096 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1097 1098 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1099 // is sufficiently wide to represent all possible pointer values. 1100 // We could theoretically teach SCEV to truncate wider pointers, but 1101 // that isn't implemented for now. 1102 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1103 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1104 return getCouldNotCompute(); 1105 1106 // If not, is this expression something we can't reduce any further? 1107 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1108 // Perform some basic constant folding. If the operand of the ptr2int cast 1109 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1110 // left as-is), but produce a zero constant. 1111 // NOTE: We could handle a more general case, but lack motivational cases. 1112 if (isa<ConstantPointerNull>(U->getValue())) 1113 return getZero(IntPtrTy); 1114 1115 // Create an explicit cast node. 1116 // We can reuse the existing insert position since if we get here, 1117 // we won't have made any changes which would invalidate it. 1118 SCEV *S = new (SCEVAllocator) 1119 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1120 UniqueSCEVs.InsertNode(S, IP); 1121 registerUser(S, Op); 1122 return S; 1123 } 1124 1125 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1126 "non-SCEVUnknown's."); 1127 1128 // Otherwise, we've got some expression that is more complex than just a 1129 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1130 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1131 // only, and the expressions must otherwise be integer-typed. 1132 // So sink the cast down to the SCEVUnknown's. 1133 1134 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1135 /// which computes a pointer-typed value, and rewrites the whole expression 1136 /// tree so that *all* the computations are done on integers, and the only 1137 /// pointer-typed operands in the expression are SCEVUnknown. 1138 class SCEVPtrToIntSinkingRewriter 1139 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1140 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1141 1142 public: 1143 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1144 1145 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1146 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1147 return Rewriter.visit(Scev); 1148 } 1149 1150 const SCEV *visit(const SCEV *S) { 1151 Type *STy = S->getType(); 1152 // If the expression is not pointer-typed, just keep it as-is. 1153 if (!STy->isPointerTy()) 1154 return S; 1155 // Else, recursively sink the cast down into it. 1156 return Base::visit(S); 1157 } 1158 1159 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1160 SmallVector<const SCEV *, 2> Operands; 1161 bool Changed = false; 1162 for (auto *Op : Expr->operands()) { 1163 Operands.push_back(visit(Op)); 1164 Changed |= Op != Operands.back(); 1165 } 1166 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1167 } 1168 1169 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1170 SmallVector<const SCEV *, 2> Operands; 1171 bool Changed = false; 1172 for (auto *Op : Expr->operands()) { 1173 Operands.push_back(visit(Op)); 1174 Changed |= Op != Operands.back(); 1175 } 1176 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1177 } 1178 1179 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1180 assert(Expr->getType()->isPointerTy() && 1181 "Should only reach pointer-typed SCEVUnknown's."); 1182 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1183 } 1184 }; 1185 1186 // And actually perform the cast sinking. 1187 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1188 assert(IntOp->getType()->isIntegerTy() && 1189 "We must have succeeded in sinking the cast, " 1190 "and ending up with an integer-typed expression!"); 1191 return IntOp; 1192 } 1193 1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1195 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1196 1197 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1198 if (isa<SCEVCouldNotCompute>(IntOp)) 1199 return IntOp; 1200 1201 return getTruncateOrZeroExtend(IntOp, Ty); 1202 } 1203 1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1205 unsigned Depth) { 1206 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1207 "This is not a truncating conversion!"); 1208 assert(isSCEVable(Ty) && 1209 "This is not a conversion to a SCEVable type!"); 1210 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1211 Ty = getEffectiveSCEVType(Ty); 1212 1213 FoldingSetNodeID ID; 1214 ID.AddInteger(scTruncate); 1215 ID.AddPointer(Op); 1216 ID.AddPointer(Ty); 1217 void *IP = nullptr; 1218 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1219 1220 // Fold if the operand is constant. 1221 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1222 return getConstant( 1223 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1224 1225 // trunc(trunc(x)) --> trunc(x) 1226 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1227 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1231 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1232 1233 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1234 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1235 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1236 1237 if (Depth > MaxCastDepth) { 1238 SCEV *S = 1239 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1240 UniqueSCEVs.InsertNode(S, IP); 1241 registerUser(S, Op); 1242 return S; 1243 } 1244 1245 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1246 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1247 // if after transforming we have at most one truncate, not counting truncates 1248 // that replace other casts. 1249 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1250 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1251 SmallVector<const SCEV *, 4> Operands; 1252 unsigned numTruncs = 0; 1253 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1254 ++i) { 1255 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1256 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1257 isa<SCEVTruncateExpr>(S)) 1258 numTruncs++; 1259 Operands.push_back(S); 1260 } 1261 if (numTruncs < 2) { 1262 if (isa<SCEVAddExpr>(Op)) 1263 return getAddExpr(Operands); 1264 else if (isa<SCEVMulExpr>(Op)) 1265 return getMulExpr(Operands); 1266 else 1267 llvm_unreachable("Unexpected SCEV type for Op."); 1268 } 1269 // Although we checked in the beginning that ID is not in the cache, it is 1270 // possible that during recursion and different modification ID was inserted 1271 // into the cache. So if we find it, just return it. 1272 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1273 return S; 1274 } 1275 1276 // If the input value is a chrec scev, truncate the chrec's operands. 1277 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1278 SmallVector<const SCEV *, 4> Operands; 1279 for (const SCEV *Op : AddRec->operands()) 1280 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1281 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1282 } 1283 1284 // Return zero if truncating to known zeros. 1285 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1286 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1287 return getZero(Ty); 1288 1289 // The cast wasn't folded; create an explicit cast node. We can reuse 1290 // the existing insert position since if we get here, we won't have 1291 // made any changes which would invalidate it. 1292 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1293 Op, Ty); 1294 UniqueSCEVs.InsertNode(S, IP); 1295 registerUser(S, Op); 1296 return S; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // signed overflow as long as the value of the recurrence within the 1301 // loop does not exceed this limit before incrementing. 1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 if (SE->isKnownPositive(Step)) { 1307 *Pred = ICmpInst::ICMP_SLT; 1308 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1309 SE->getSignedRangeMax(Step)); 1310 } 1311 if (SE->isKnownNegative(Step)) { 1312 *Pred = ICmpInst::ICMP_SGT; 1313 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1314 SE->getSignedRangeMin(Step)); 1315 } 1316 return nullptr; 1317 } 1318 1319 // Get the limit of a recurrence such that incrementing by Step cannot cause 1320 // unsigned overflow as long as the value of the recurrence within the loop does 1321 // not exceed this limit before incrementing. 1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1323 ICmpInst::Predicate *Pred, 1324 ScalarEvolution *SE) { 1325 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1326 *Pred = ICmpInst::ICMP_ULT; 1327 1328 return SE->getConstant(APInt::getMinValue(BitWidth) - 1329 SE->getUnsignedRangeMax(Step)); 1330 } 1331 1332 namespace { 1333 1334 struct ExtendOpTraitsBase { 1335 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1336 unsigned); 1337 }; 1338 1339 // Used to make code generic over signed and unsigned overflow. 1340 template <typename ExtendOp> struct ExtendOpTraits { 1341 // Members present: 1342 // 1343 // static const SCEV::NoWrapFlags WrapType; 1344 // 1345 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1346 // 1347 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1348 // ICmpInst::Predicate *Pred, 1349 // ScalarEvolution *SE); 1350 }; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getSignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1367 1368 template <> 1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1370 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1371 1372 static const GetExtendExprTy GetExtendExpr; 1373 1374 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1375 ICmpInst::Predicate *Pred, 1376 ScalarEvolution *SE) { 1377 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1378 } 1379 }; 1380 1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1382 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1383 1384 } // end anonymous namespace 1385 1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1391 // expression "Step + sext/zext(PreIncAR)" is congruent with 1392 // "sext/zext(PostIncAR)" 1393 template <typename ExtendOpTy> 1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1395 ScalarEvolution *SE, unsigned Depth) { 1396 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const Loop *L = AR->getLoop(); 1400 const SCEV *Start = AR->getStart(); 1401 const SCEV *Step = AR->getStepRecurrence(*SE); 1402 1403 // Check for a simple looking step prior to loop entry. 1404 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1405 if (!SA) 1406 return nullptr; 1407 1408 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1409 // subtraction is expensive. For this purpose, perform a quick and dirty 1410 // difference, by checking for Step in the operand list. 1411 SmallVector<const SCEV *, 4> DiffOps; 1412 for (const SCEV *Op : SA->operands()) 1413 if (Op != Step) 1414 DiffOps.push_back(Op); 1415 1416 if (DiffOps.size() == SA->getNumOperands()) 1417 return nullptr; 1418 1419 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1420 // `Step`: 1421 1422 // 1. NSW/NUW flags on the step increment. 1423 auto PreStartFlags = 1424 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1425 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1426 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1427 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1428 1429 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1430 // "S+X does not sign/unsign-overflow". 1431 // 1432 1433 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1434 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1435 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1436 return PreStart; 1437 1438 // 2. Direct overflow check on the step operation's expression. 1439 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1440 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1441 const SCEV *OperandExtendedStart = 1442 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1443 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1444 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1445 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1446 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1447 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1448 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1449 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1450 } 1451 return PreStart; 1452 } 1453 1454 // 3. Loop precondition. 1455 ICmpInst::Predicate Pred; 1456 const SCEV *OverflowLimit = 1457 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1458 1459 if (OverflowLimit && 1460 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1461 return PreStart; 1462 1463 return nullptr; 1464 } 1465 1466 // Get the normalized zero or sign extended expression for this AddRec's Start. 1467 template <typename ExtendOpTy> 1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1469 ScalarEvolution *SE, 1470 unsigned Depth) { 1471 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1472 1473 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1474 if (!PreStart) 1475 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1476 1477 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1478 Depth), 1479 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1480 } 1481 1482 // Try to prove away overflow by looking at "nearby" add recurrences. A 1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1485 // 1486 // Formally: 1487 // 1488 // {S,+,X} == {S-T,+,X} + T 1489 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1490 // 1491 // If ({S-T,+,X} + T) does not overflow ... (1) 1492 // 1493 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1494 // 1495 // If {S-T,+,X} does not overflow ... (2) 1496 // 1497 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1498 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1499 // 1500 // If (S-T)+T does not overflow ... (3) 1501 // 1502 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1503 // == {Ext(S),+,Ext(X)} == LHS 1504 // 1505 // Thus, if (1), (2) and (3) are true for some T, then 1506 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1507 // 1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1509 // does not overflow" restricted to the 0th iteration. Therefore we only need 1510 // to check for (1) and (2). 1511 // 1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1513 // is `Delta` (defined below). 1514 template <typename ExtendOpTy> 1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1516 const SCEV *Step, 1517 const Loop *L) { 1518 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1519 1520 // We restrict `Start` to a constant to prevent SCEV from spending too much 1521 // time here. It is correct (but more expensive) to continue with a 1522 // non-constant `Start` and do a general SCEV subtraction to compute 1523 // `PreStart` below. 1524 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1525 if (!StartC) 1526 return false; 1527 1528 APInt StartAI = StartC->getAPInt(); 1529 1530 for (unsigned Delta : {-2, -1, 1, 2}) { 1531 const SCEV *PreStart = getConstant(StartAI - Delta); 1532 1533 FoldingSetNodeID ID; 1534 ID.AddInteger(scAddRecExpr); 1535 ID.AddPointer(PreStart); 1536 ID.AddPointer(Step); 1537 ID.AddPointer(L); 1538 void *IP = nullptr; 1539 const auto *PreAR = 1540 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1541 1542 // Give up if we don't already have the add recurrence we need because 1543 // actually constructing an add recurrence is relatively expensive. 1544 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1545 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1546 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1547 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1548 DeltaS, &Pred, this); 1549 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1550 return true; 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 // Finds an integer D for an expression (C + x + y + ...) such that the top 1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1561 // the (C + x + y + ...) expression is \p WholeAddExpr. 1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1563 const SCEVConstant *ConstantTerm, 1564 const SCEVAddExpr *WholeAddExpr) { 1565 const APInt &C = ConstantTerm->getAPInt(); 1566 const unsigned BitWidth = C.getBitWidth(); 1567 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1568 uint32_t TZ = BitWidth; 1569 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1570 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1571 if (TZ) { 1572 // Set D to be as many least significant bits of C as possible while still 1573 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1574 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1575 } 1576 return APInt(BitWidth, 0); 1577 } 1578 1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1584 const APInt &ConstantStart, 1585 const SCEV *Step) { 1586 const unsigned BitWidth = ConstantStart.getBitWidth(); 1587 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1588 if (TZ) 1589 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1590 : ConstantStart; 1591 return APInt(BitWidth, 0); 1592 } 1593 1594 const SCEV * 1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1596 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1597 "This is not an extending conversion!"); 1598 assert(isSCEVable(Ty) && 1599 "This is not a conversion to a SCEVable type!"); 1600 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1601 Ty = getEffectiveSCEVType(Ty); 1602 1603 // Fold if the operand is constant. 1604 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1605 return getConstant( 1606 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1607 1608 // zext(zext(x)) --> zext(x) 1609 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1610 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1611 1612 // Before doing any expensive analysis, check to see if we've already 1613 // computed a SCEV for this Op and Ty. 1614 FoldingSetNodeID ID; 1615 ID.AddInteger(scZeroExtend); 1616 ID.AddPointer(Op); 1617 ID.AddPointer(Ty); 1618 void *IP = nullptr; 1619 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1620 if (Depth > MaxCastDepth) { 1621 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1622 Op, Ty); 1623 UniqueSCEVs.InsertNode(S, IP); 1624 registerUser(S, Op); 1625 return S; 1626 } 1627 1628 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all zero bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getUnsignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1637 CR.zextOrTrunc(NewBits))) 1638 return getTruncateOrZeroExtend(X, Ty, Depth); 1639 } 1640 1641 // If the input value is a chrec scev, and we can prove that the value 1642 // did not overflow the old, smaller, value, we can zero extend all of the 1643 // operands (often constants). This allows analysis of something like 1644 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1646 if (AR->isAffine()) { 1647 const SCEV *Start = AR->getStart(); 1648 const SCEV *Step = AR->getStepRecurrence(*this); 1649 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1650 const Loop *L = AR->getLoop(); 1651 1652 if (!AR->hasNoUnsignedWrap()) { 1653 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1654 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1655 } 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->hasNoUnsignedWrap()) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1662 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1680 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1681 CastedMaxBECount, MaxBECount->getType(), Depth); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1685 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1688 SCEV::FlagAnyWrap, 1689 Depth + 1), 1690 WideTy, Depth + 1); 1691 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1692 const SCEV *WideMaxBECount = 1693 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1694 const SCEV *OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1702 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr(getExtendAddRecStart<SCEVZeroExtendExpr>( 1705 AR, Ty, this, Depth + 1), 1706 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1707 AR->getNoWrapFlags()); 1708 } 1709 // Similar to above, only this time treat the step value as signed. 1710 // This covers loops that count down. 1711 OperandExtendedAdd = 1712 getAddExpr(WideStart, 1713 getMulExpr(WideMaxBECount, 1714 getSignExtendExpr(Step, WideTy, Depth + 1), 1715 SCEV::FlagAnyWrap, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1); 1717 if (ZAdd == OperandExtendedAdd) { 1718 // Cache knowledge of AR NW, which is propagated to this AddRec. 1719 // Negative step causes unsigned wrap, but it still can't self-wrap. 1720 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1721 // Return the expression with the addrec on the outside. 1722 return getAddRecExpr(getExtendAddRecStart<SCEVZeroExtendExpr>( 1723 AR, Ty, this, Depth + 1), 1724 getSignExtendExpr(Step, Ty, Depth + 1), L, 1725 AR->getNoWrapFlags()); 1726 } 1727 } 1728 } 1729 1730 // Normally, in the cases we can prove no-overflow via a 1731 // backedge guarding condition, we can also compute a backedge 1732 // taken count for the loop. The exceptions are assumptions and 1733 // guards present in the loop -- SCEV is not great at exploiting 1734 // these to compute max backedge taken counts, but can still use 1735 // these to prove lack of overflow. Use this fact to avoid 1736 // doing extra work that may not pay off. 1737 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1738 !AC.assumptions().empty()) { 1739 1740 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1741 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1742 if (AR->hasNoUnsignedWrap()) { 1743 // Same as nuw case above - duplicated here to avoid a compile time 1744 // issue. It's not clear that the order of checks does matter, but 1745 // it's one of two issue possible causes for a change which was 1746 // reverted. Be conservative for the moment. 1747 return getAddRecExpr( 1748 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1749 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1750 } 1751 1752 // For a negative step, we can extend the operands iff doing so only 1753 // traverses values in the range zext([0,UINT_MAX]). 1754 if (isKnownNegative(Step)) { 1755 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1756 getSignedRangeMin(Step)); 1757 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1758 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1759 // Cache knowledge of AR NW, which is propagated to this 1760 // AddRec. Negative step causes unsigned wrap, but it 1761 // still can't self-wrap. 1762 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1763 // Return the expression with the addrec on the outside. 1764 return getAddRecExpr(getExtendAddRecStart<SCEVZeroExtendExpr>( 1765 AR, Ty, this, Depth + 1), 1766 getSignExtendExpr(Step, Ty, Depth + 1), L, 1767 AR->getNoWrapFlags()); 1768 } 1769 } 1770 } 1771 1772 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1773 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1774 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1775 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1776 const APInt &C = SC->getAPInt(); 1777 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1778 if (D != 0) { 1779 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1780 const SCEV *SResidual = 1781 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1782 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1783 return getAddExpr(SZExtD, SZExtR, 1784 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1785 Depth + 1); 1786 } 1787 } 1788 1789 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1790 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1791 return getAddRecExpr( 1792 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1793 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1794 } 1795 } 1796 1797 // zext(A % B) --> zext(A) % zext(B) 1798 { 1799 const SCEV *LHS; 1800 const SCEV *RHS; 1801 if (matchURem(Op, LHS, RHS)) 1802 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1803 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1804 } 1805 1806 // zext(A / B) --> zext(A) / zext(B). 1807 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1808 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1809 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1810 1811 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1812 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1813 if (SA->hasNoUnsignedWrap()) { 1814 // If the addition does not unsign overflow then we can, by definition, 1815 // commute the zero extension with the addition operation. 1816 SmallVector<const SCEV *, 4> Ops; 1817 for (const auto *Op : SA->operands()) 1818 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1819 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1820 } 1821 1822 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1823 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1824 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1825 // 1826 // Often address arithmetics contain expressions like 1827 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1828 // This transformation is useful while proving that such expressions are 1829 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1830 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1831 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1832 if (D != 0) { 1833 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1834 const SCEV *SResidual = 1835 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1836 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1837 return getAddExpr(SZExtD, SZExtR, 1838 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1839 Depth + 1); 1840 } 1841 } 1842 } 1843 1844 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1845 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1846 if (SM->hasNoUnsignedWrap()) { 1847 // If the multiply does not unsign overflow then we can, by definition, 1848 // commute the zero extension with the multiply operation. 1849 SmallVector<const SCEV *, 4> Ops; 1850 for (const auto *Op : SM->operands()) 1851 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1852 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1853 } 1854 1855 // zext(2^K * (trunc X to iN)) to iM -> 1856 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1857 // 1858 // Proof: 1859 // 1860 // zext(2^K * (trunc X to iN)) to iM 1861 // = zext((trunc X to iN) << K) to iM 1862 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1863 // (because shl removes the top K bits) 1864 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1865 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1866 // 1867 if (SM->getNumOperands() == 2) 1868 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1869 if (MulLHS->getAPInt().isPowerOf2()) 1870 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1871 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1872 MulLHS->getAPInt().logBase2(); 1873 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1874 return getMulExpr( 1875 getZeroExtendExpr(MulLHS, Ty), 1876 getZeroExtendExpr( 1877 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1878 SCEV::FlagNUW, Depth + 1); 1879 } 1880 } 1881 1882 // The cast wasn't folded; create an explicit cast node. 1883 // Recompute the insert position, as it may have been invalidated. 1884 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1885 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1886 Op, Ty); 1887 UniqueSCEVs.InsertNode(S, IP); 1888 registerUser(S, Op); 1889 return S; 1890 } 1891 1892 const SCEV * 1893 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1894 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1895 "This is not an extending conversion!"); 1896 assert(isSCEVable(Ty) && 1897 "This is not a conversion to a SCEVable type!"); 1898 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1899 Ty = getEffectiveSCEVType(Ty); 1900 1901 // Fold if the operand is constant. 1902 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1903 return getConstant( 1904 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1905 1906 // sext(sext(x)) --> sext(x) 1907 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1908 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1909 1910 // sext(zext(x)) --> zext(x) 1911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1912 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1913 1914 // Before doing any expensive analysis, check to see if we've already 1915 // computed a SCEV for this Op and Ty. 1916 FoldingSetNodeID ID; 1917 ID.AddInteger(scSignExtend); 1918 ID.AddPointer(Op); 1919 ID.AddPointer(Ty); 1920 void *IP = nullptr; 1921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1922 // Limit recursion depth. 1923 if (Depth > MaxCastDepth) { 1924 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1925 Op, Ty); 1926 UniqueSCEVs.InsertNode(S, IP); 1927 registerUser(S, Op); 1928 return S; 1929 } 1930 1931 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1932 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1933 // It's possible the bits taken off by the truncate were all sign bits. If 1934 // so, we should be able to simplify this further. 1935 const SCEV *X = ST->getOperand(); 1936 ConstantRange CR = getSignedRange(X); 1937 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1938 unsigned NewBits = getTypeSizeInBits(Ty); 1939 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1940 CR.sextOrTrunc(NewBits))) 1941 return getTruncateOrSignExtend(X, Ty, Depth); 1942 } 1943 1944 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1945 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1946 if (SA->hasNoSignedWrap()) { 1947 // If the addition does not sign overflow then we can, by definition, 1948 // commute the sign extension with the addition operation. 1949 SmallVector<const SCEV *, 4> Ops; 1950 for (const auto *Op : SA->operands()) 1951 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1952 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1953 } 1954 1955 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1956 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1957 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1958 // 1959 // For instance, this will bring two seemingly different expressions: 1960 // 1 + sext(5 + 20 * %x + 24 * %y) and 1961 // sext(6 + 20 * %x + 24 * %y) 1962 // to the same form: 1963 // 2 + sext(4 + 20 * %x + 24 * %y) 1964 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1965 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1966 if (D != 0) { 1967 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1968 const SCEV *SResidual = 1969 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1970 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1971 return getAddExpr(SSExtD, SSExtR, 1972 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1973 Depth + 1); 1974 } 1975 } 1976 } 1977 // If the input value is a chrec scev, and we can prove that the value 1978 // did not overflow the old, smaller, value, we can sign extend all of the 1979 // operands (often constants). This allows analysis of something like 1980 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1982 if (AR->isAffine()) { 1983 const SCEV *Start = AR->getStart(); 1984 const SCEV *Step = AR->getStepRecurrence(*this); 1985 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1986 const Loop *L = AR->getLoop(); 1987 1988 if (!AR->hasNoSignedWrap()) { 1989 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1990 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1991 } 1992 1993 // If we have special knowledge that this addrec won't overflow, 1994 // we don't need to do any further analysis. 1995 if (AR->hasNoSignedWrap()) 1996 return getAddRecExpr( 1997 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1998 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1999 2000 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2001 // Note that this serves two purposes: It filters out loops that are 2002 // simply not analyzable, and it covers the case where this code is 2003 // being called from within backedge-taken count analysis, such that 2004 // attempting to ask for the backedge-taken count would likely result 2005 // in infinite recursion. In the later case, the analysis code will 2006 // cope with a conservative value, and it will take care to purge 2007 // that value once it has finished. 2008 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2009 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2010 // Manually compute the final value for AR, checking for 2011 // overflow. 2012 2013 // Check whether the backedge-taken count can be losslessly casted to 2014 // the addrec's type. The count is always unsigned. 2015 const SCEV *CastedMaxBECount = 2016 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2017 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2018 CastedMaxBECount, MaxBECount->getType(), Depth); 2019 if (MaxBECount == RecastedMaxBECount) { 2020 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2021 // Check whether Start+Step*MaxBECount has no signed overflow. 2022 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2025 SCEV::FlagAnyWrap, 2026 Depth + 1), 2027 WideTy, Depth + 1); 2028 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2029 const SCEV *WideMaxBECount = 2030 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2031 const SCEV *OperandExtendedAdd = 2032 getAddExpr(WideStart, 2033 getMulExpr(WideMaxBECount, 2034 getSignExtendExpr(Step, WideTy, Depth + 1), 2035 SCEV::FlagAnyWrap, Depth + 1), 2036 SCEV::FlagAnyWrap, Depth + 1); 2037 if (SAdd == OperandExtendedAdd) { 2038 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2039 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2040 // Return the expression with the addrec on the outside. 2041 return getAddRecExpr(getExtendAddRecStart<SCEVSignExtendExpr>( 2042 AR, Ty, this, Depth + 1), 2043 getSignExtendExpr(Step, Ty, Depth + 1), L, 2044 AR->getNoWrapFlags()); 2045 } 2046 // Similar to above, only this time treat the step value as unsigned. 2047 // This covers loops that count up with an unsigned step. 2048 OperandExtendedAdd = 2049 getAddExpr(WideStart, 2050 getMulExpr(WideMaxBECount, 2051 getZeroExtendExpr(Step, WideTy, Depth + 1), 2052 SCEV::FlagAnyWrap, Depth + 1), 2053 SCEV::FlagAnyWrap, Depth + 1); 2054 if (SAdd == OperandExtendedAdd) { 2055 // If AR wraps around then 2056 // 2057 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2058 // => SAdd != OperandExtendedAdd 2059 // 2060 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2061 // (SAdd == OperandExtendedAdd => AR is NW) 2062 2063 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2064 2065 // Return the expression with the addrec on the outside. 2066 return getAddRecExpr(getExtendAddRecStart<SCEVSignExtendExpr>( 2067 AR, Ty, this, Depth + 1), 2068 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2069 AR->getNoWrapFlags()); 2070 } 2071 } 2072 } 2073 2074 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2075 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2076 if (AR->hasNoSignedWrap()) { 2077 // Same as nsw case above - duplicated here to avoid a compile time 2078 // issue. It's not clear that the order of checks does matter, but 2079 // it's one of two issue possible causes for a change which was 2080 // reverted. Be conservative for the moment. 2081 return getAddRecExpr( 2082 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2083 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2084 } 2085 2086 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2087 // if D + (C - D + Step * n) could be proven to not signed wrap 2088 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2089 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2090 const APInt &C = SC->getAPInt(); 2091 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2092 if (D != 0) { 2093 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2094 const SCEV *SResidual = 2095 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2096 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2097 return getAddExpr(SSExtD, SSExtR, 2098 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2099 Depth + 1); 2100 } 2101 } 2102 2103 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2104 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2105 return getAddRecExpr( 2106 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2107 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2108 } 2109 } 2110 2111 // If the input value is provably positive and we could not simplify 2112 // away the sext build a zext instead. 2113 if (isKnownNonNegative(Op)) 2114 return getZeroExtendExpr(Op, Ty, Depth + 1); 2115 2116 // The cast wasn't folded; create an explicit cast node. 2117 // Recompute the insert position, as it may have been invalidated. 2118 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2119 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2120 Op, Ty); 2121 UniqueSCEVs.InsertNode(S, IP); 2122 registerUser(S, { Op }); 2123 return S; 2124 } 2125 2126 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2127 Type *Ty) { 2128 switch (Kind) { 2129 case scTruncate: 2130 return getTruncateExpr(Op, Ty); 2131 case scZeroExtend: 2132 return getZeroExtendExpr(Op, Ty); 2133 case scSignExtend: 2134 return getSignExtendExpr(Op, Ty); 2135 case scPtrToInt: 2136 return getPtrToIntExpr(Op, Ty); 2137 default: 2138 llvm_unreachable("Not a SCEV cast expression!"); 2139 } 2140 } 2141 2142 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2143 /// unspecified bits out to the given type. 2144 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2145 Type *Ty) { 2146 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2147 "This is not an extending conversion!"); 2148 assert(isSCEVable(Ty) && 2149 "This is not a conversion to a SCEVable type!"); 2150 Ty = getEffectiveSCEVType(Ty); 2151 2152 // Sign-extend negative constants. 2153 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2154 if (SC->getAPInt().isNegative()) 2155 return getSignExtendExpr(Op, Ty); 2156 2157 // Peel off a truncate cast. 2158 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2159 const SCEV *NewOp = T->getOperand(); 2160 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2161 return getAnyExtendExpr(NewOp, Ty); 2162 return getTruncateOrNoop(NewOp, Ty); 2163 } 2164 2165 // Next try a zext cast. If the cast is folded, use it. 2166 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2167 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2168 return ZExt; 2169 2170 // Next try a sext cast. If the cast is folded, use it. 2171 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2172 if (!isa<SCEVSignExtendExpr>(SExt)) 2173 return SExt; 2174 2175 // Force the cast to be folded into the operands of an addrec. 2176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2177 SmallVector<const SCEV *, 4> Ops; 2178 for (const SCEV *Op : AR->operands()) 2179 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2180 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2181 } 2182 2183 // If the expression is obviously signed, use the sext cast value. 2184 if (isa<SCEVSMaxExpr>(Op)) 2185 return SExt; 2186 2187 // Absent any other information, use the zext cast value. 2188 return ZExt; 2189 } 2190 2191 /// Process the given Ops list, which is a list of operands to be added under 2192 /// the given scale, update the given map. This is a helper function for 2193 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2194 /// that would form an add expression like this: 2195 /// 2196 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2197 /// 2198 /// where A and B are constants, update the map with these values: 2199 /// 2200 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2201 /// 2202 /// and add 13 + A*B*29 to AccumulatedConstant. 2203 /// This will allow getAddRecExpr to produce this: 2204 /// 2205 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2206 /// 2207 /// This form often exposes folding opportunities that are hidden in 2208 /// the original operand list. 2209 /// 2210 /// Return true iff it appears that any interesting folding opportunities 2211 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2212 /// the common case where no interesting opportunities are present, and 2213 /// is also used as a check to avoid infinite recursion. 2214 static bool 2215 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2216 SmallVectorImpl<const SCEV *> &NewOps, 2217 APInt &AccumulatedConstant, 2218 const SCEV *const *Ops, size_t NumOperands, 2219 const APInt &Scale, 2220 ScalarEvolution &SE) { 2221 bool Interesting = false; 2222 2223 // Iterate over the add operands. They are sorted, with constants first. 2224 unsigned i = 0; 2225 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2226 ++i; 2227 // Pull a buried constant out to the outside. 2228 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2229 Interesting = true; 2230 AccumulatedConstant += Scale * C->getAPInt(); 2231 } 2232 2233 // Next comes everything else. We're especially interested in multiplies 2234 // here, but they're in the middle, so just visit the rest with one loop. 2235 for (; i != NumOperands; ++i) { 2236 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2237 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2238 APInt NewScale = 2239 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2240 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2241 // A multiplication of a constant with another add; recurse. 2242 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2243 Interesting |= 2244 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2245 Add->op_begin(), Add->getNumOperands(), 2246 NewScale, SE); 2247 } else { 2248 // A multiplication of a constant with some other value. Update 2249 // the map. 2250 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2251 const SCEV *Key = SE.getMulExpr(MulOps); 2252 auto Pair = M.insert({Key, NewScale}); 2253 if (Pair.second) { 2254 NewOps.push_back(Pair.first->first); 2255 } else { 2256 Pair.first->second += NewScale; 2257 // The map already had an entry for this value, which may indicate 2258 // a folding opportunity. 2259 Interesting = true; 2260 } 2261 } 2262 } else { 2263 // An ordinary operand. Update the map. 2264 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2265 M.insert({Ops[i], Scale}); 2266 if (Pair.second) { 2267 NewOps.push_back(Pair.first->first); 2268 } else { 2269 Pair.first->second += Scale; 2270 // The map already had an entry for this value, which may indicate 2271 // a folding opportunity. 2272 Interesting = true; 2273 } 2274 } 2275 } 2276 2277 return Interesting; 2278 } 2279 2280 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2281 const SCEV *LHS, const SCEV *RHS) { 2282 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2283 SCEV::NoWrapFlags, unsigned); 2284 switch (BinOp) { 2285 default: 2286 llvm_unreachable("Unsupported binary op"); 2287 case Instruction::Add: 2288 Operation = &ScalarEvolution::getAddExpr; 2289 break; 2290 case Instruction::Sub: 2291 Operation = &ScalarEvolution::getMinusSCEV; 2292 break; 2293 case Instruction::Mul: 2294 Operation = &ScalarEvolution::getMulExpr; 2295 break; 2296 } 2297 2298 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2299 Signed ? &ScalarEvolution::getSignExtendExpr 2300 : &ScalarEvolution::getZeroExtendExpr; 2301 2302 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2303 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2304 auto *WideTy = 2305 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2306 2307 const SCEV *A = (this->*Extension)( 2308 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2309 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2310 (this->*Extension)(RHS, WideTy, 0), 2311 SCEV::FlagAnyWrap, 0); 2312 return A == B; 2313 } 2314 2315 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2316 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2317 const OverflowingBinaryOperator *OBO) { 2318 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2319 2320 if (OBO->hasNoUnsignedWrap()) 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2322 if (OBO->hasNoSignedWrap()) 2323 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2324 2325 bool Deduced = false; 2326 2327 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2328 return {Flags, Deduced}; 2329 2330 if (OBO->getOpcode() != Instruction::Add && 2331 OBO->getOpcode() != Instruction::Sub && 2332 OBO->getOpcode() != Instruction::Mul) 2333 return {Flags, Deduced}; 2334 2335 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2336 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2337 2338 if (!OBO->hasNoUnsignedWrap() && 2339 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2340 /* Signed */ false, LHS, RHS)) { 2341 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2342 Deduced = true; 2343 } 2344 2345 if (!OBO->hasNoSignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ true, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2349 Deduced = true; 2350 } 2351 2352 return {Flags, Deduced}; 2353 } 2354 2355 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2356 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2357 // can't-overflow flags for the operation if possible. 2358 static SCEV::NoWrapFlags 2359 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2360 const ArrayRef<const SCEV *> Ops, 2361 SCEV::NoWrapFlags Flags) { 2362 using namespace std::placeholders; 2363 2364 using OBO = OverflowingBinaryOperator; 2365 2366 bool CanAnalyze = 2367 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2368 (void)CanAnalyze; 2369 assert(CanAnalyze && "don't call from other places!"); 2370 2371 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2372 SCEV::NoWrapFlags SignOrUnsignWrap = 2373 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2374 2375 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2376 auto IsKnownNonNegative = [&](const SCEV *S) { 2377 return SE->isKnownNonNegative(S); 2378 }; 2379 2380 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2381 Flags = 2382 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2383 2384 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2385 2386 if (SignOrUnsignWrap != SignOrUnsignMask && 2387 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2388 isa<SCEVConstant>(Ops[0])) { 2389 2390 auto Opcode = [&] { 2391 switch (Type) { 2392 case scAddExpr: 2393 return Instruction::Add; 2394 case scMulExpr: 2395 return Instruction::Mul; 2396 default: 2397 llvm_unreachable("Unexpected SCEV op."); 2398 } 2399 }(); 2400 2401 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2402 2403 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2404 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2405 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2406 Opcode, C, OBO::NoSignedWrap); 2407 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2408 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2409 } 2410 2411 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2412 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2413 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2414 Opcode, C, OBO::NoUnsignedWrap); 2415 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2416 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2417 } 2418 } 2419 2420 // <0,+,nonnegative><nw> is also nuw 2421 // TODO: Add corresponding nsw case 2422 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2423 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2424 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2425 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2426 2427 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2428 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2429 Ops.size() == 2) { 2430 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2431 if (UDiv->getOperand(1) == Ops[1]) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2434 if (UDiv->getOperand(1) == Ops[0]) 2435 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2436 } 2437 2438 return Flags; 2439 } 2440 2441 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2442 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2443 } 2444 2445 /// Get a canonical add expression, or something simpler if possible. 2446 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2447 SCEV::NoWrapFlags OrigFlags, 2448 unsigned Depth) { 2449 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2450 "only nuw or nsw allowed"); 2451 assert(!Ops.empty() && "Cannot get empty add!"); 2452 if (Ops.size() == 1) return Ops[0]; 2453 #ifndef NDEBUG 2454 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2455 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2456 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2457 "SCEVAddExpr operand types don't match!"); 2458 unsigned NumPtrs = count_if( 2459 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2460 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2461 #endif 2462 2463 // Sort by complexity, this groups all similar expression types together. 2464 GroupByComplexity(Ops, &LI, DT); 2465 2466 // If there are any constants, fold them together. 2467 unsigned Idx = 0; 2468 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2469 ++Idx; 2470 assert(Idx < Ops.size()); 2471 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2472 // We found two constants, fold them together! 2473 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2474 if (Ops.size() == 2) return Ops[0]; 2475 Ops.erase(Ops.begin()+1); // Erase the folded element 2476 LHSC = cast<SCEVConstant>(Ops[0]); 2477 } 2478 2479 // If we are left with a constant zero being added, strip it off. 2480 if (LHSC->getValue()->isZero()) { 2481 Ops.erase(Ops.begin()); 2482 --Idx; 2483 } 2484 2485 if (Ops.size() == 1) return Ops[0]; 2486 } 2487 2488 // Delay expensive flag strengthening until necessary. 2489 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2490 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2491 }; 2492 2493 // Limit recursion calls depth. 2494 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2495 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2496 2497 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2498 // Don't strengthen flags if we have no new information. 2499 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2500 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2501 Add->setNoWrapFlags(ComputeFlags(Ops)); 2502 return S; 2503 } 2504 2505 // Okay, check to see if the same value occurs in the operand list more than 2506 // once. If so, merge them together into an multiply expression. Since we 2507 // sorted the list, these values are required to be adjacent. 2508 Type *Ty = Ops[0]->getType(); 2509 bool FoundMatch = false; 2510 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2511 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2512 // Scan ahead to count how many equal operands there are. 2513 unsigned Count = 2; 2514 while (i+Count != e && Ops[i+Count] == Ops[i]) 2515 ++Count; 2516 // Merge the values into a multiply. 2517 const SCEV *Scale = getConstant(Ty, Count); 2518 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2519 if (Ops.size() == Count) 2520 return Mul; 2521 Ops[i] = Mul; 2522 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2523 --i; e -= Count - 1; 2524 FoundMatch = true; 2525 } 2526 if (FoundMatch) 2527 return getAddExpr(Ops, OrigFlags, Depth + 1); 2528 2529 // Check for truncates. If all the operands are truncated from the same 2530 // type, see if factoring out the truncate would permit the result to be 2531 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2532 // if the contents of the resulting outer trunc fold to something simple. 2533 auto FindTruncSrcType = [&]() -> Type * { 2534 // We're ultimately looking to fold an addrec of truncs and muls of only 2535 // constants and truncs, so if we find any other types of SCEV 2536 // as operands of the addrec then we bail and return nullptr here. 2537 // Otherwise, we return the type of the operand of a trunc that we find. 2538 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2539 return T->getOperand()->getType(); 2540 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2541 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2542 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2543 return T->getOperand()->getType(); 2544 } 2545 return nullptr; 2546 }; 2547 if (auto *SrcType = FindTruncSrcType()) { 2548 SmallVector<const SCEV *, 8> LargeOps; 2549 bool Ok = true; 2550 // Check all the operands to see if they can be represented in the 2551 // source type of the truncate. 2552 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2553 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2554 if (T->getOperand()->getType() != SrcType) { 2555 Ok = false; 2556 break; 2557 } 2558 LargeOps.push_back(T->getOperand()); 2559 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2560 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2561 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2562 SmallVector<const SCEV *, 8> LargeMulOps; 2563 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2564 if (const SCEVTruncateExpr *T = 2565 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2566 if (T->getOperand()->getType() != SrcType) { 2567 Ok = false; 2568 break; 2569 } 2570 LargeMulOps.push_back(T->getOperand()); 2571 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2573 } else { 2574 Ok = false; 2575 break; 2576 } 2577 } 2578 if (Ok) 2579 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) { 2586 // Evaluate the expression in the larger type. 2587 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2588 // If it folds to something simple, use it. Otherwise, don't. 2589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2590 return getTruncateExpr(Fold, Ty); 2591 } 2592 } 2593 2594 if (Ops.size() == 2) { 2595 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2596 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2597 // C1). 2598 const SCEV *A = Ops[0]; 2599 const SCEV *B = Ops[1]; 2600 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2601 auto *C = dyn_cast<SCEVConstant>(A); 2602 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2603 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2604 auto C2 = C->getAPInt(); 2605 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2606 2607 APInt ConstAdd = C1 + C2; 2608 auto AddFlags = AddExpr->getNoWrapFlags(); 2609 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2610 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2611 ConstAdd.ule(C1)) { 2612 PreservedFlags = 2613 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2614 } 2615 2616 // Adding a constant with the same sign and small magnitude is NSW, if the 2617 // original AddExpr was NSW. 2618 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2619 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2620 ConstAdd.abs().ule(C1.abs())) { 2621 PreservedFlags = 2622 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2623 } 2624 2625 if (PreservedFlags != SCEV::FlagAnyWrap) { 2626 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2627 NewOps[0] = getConstant(ConstAdd); 2628 return getAddExpr(NewOps, PreservedFlags); 2629 } 2630 } 2631 } 2632 2633 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2634 if (Ops.size() == 2) { 2635 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2636 if (Mul && Mul->getNumOperands() == 2 && 2637 Mul->getOperand(0)->isAllOnesValue()) { 2638 const SCEV *X; 2639 const SCEV *Y; 2640 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2641 return getMulExpr(Y, getUDivExpr(X, Y)); 2642 } 2643 } 2644 } 2645 2646 // Skip past any other cast SCEVs. 2647 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2648 ++Idx; 2649 2650 // If there are add operands they would be next. 2651 if (Idx < Ops.size()) { 2652 bool DeletedAdd = false; 2653 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2654 // common NUW flag for expression after inlining. Other flags cannot be 2655 // preserved, because they may depend on the original order of operations. 2656 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2657 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2658 if (Ops.size() > AddOpsInlineThreshold || 2659 Add->getNumOperands() > AddOpsInlineThreshold) 2660 break; 2661 // If we have an add, expand the add operands onto the end of the operands 2662 // list. 2663 Ops.erase(Ops.begin()+Idx); 2664 Ops.append(Add->op_begin(), Add->op_end()); 2665 DeletedAdd = true; 2666 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2667 } 2668 2669 // If we deleted at least one add, we added operands to the end of the list, 2670 // and they are not necessarily sorted. Recurse to resort and resimplify 2671 // any operands we just acquired. 2672 if (DeletedAdd) 2673 return getAddExpr(Ops, CommonFlags, Depth + 1); 2674 } 2675 2676 // Skip over the add expression until we get to a multiply. 2677 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2678 ++Idx; 2679 2680 // Check to see if there are any folding opportunities present with 2681 // operands multiplied by constant values. 2682 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2683 uint64_t BitWidth = getTypeSizeInBits(Ty); 2684 DenseMap<const SCEV *, APInt> M; 2685 SmallVector<const SCEV *, 8> NewOps; 2686 APInt AccumulatedConstant(BitWidth, 0); 2687 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2688 Ops.data(), Ops.size(), 2689 APInt(BitWidth, 1), *this)) { 2690 struct APIntCompare { 2691 bool operator()(const APInt &LHS, const APInt &RHS) const { 2692 return LHS.ult(RHS); 2693 } 2694 }; 2695 2696 // Some interesting folding opportunity is present, so its worthwhile to 2697 // re-generate the operands list. Group the operands by constant scale, 2698 // to avoid multiplying by the same constant scale multiple times. 2699 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2700 for (const SCEV *NewOp : NewOps) 2701 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2702 // Re-generate the operands list. 2703 Ops.clear(); 2704 if (AccumulatedConstant != 0) 2705 Ops.push_back(getConstant(AccumulatedConstant)); 2706 for (auto &MulOp : MulOpLists) { 2707 if (MulOp.first == 1) { 2708 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2709 } else if (MulOp.first != 0) { 2710 Ops.push_back(getMulExpr( 2711 getConstant(MulOp.first), 2712 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2713 SCEV::FlagAnyWrap, Depth + 1)); 2714 } 2715 } 2716 if (Ops.empty()) 2717 return getZero(Ty); 2718 if (Ops.size() == 1) 2719 return Ops[0]; 2720 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2721 } 2722 } 2723 2724 // If we are adding something to a multiply expression, make sure the 2725 // something is not already an operand of the multiply. If so, merge it into 2726 // the multiply. 2727 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2728 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2729 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2730 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2731 if (isa<SCEVConstant>(MulOpSCEV)) 2732 continue; 2733 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2734 if (MulOpSCEV == Ops[AddOp]) { 2735 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2736 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2737 if (Mul->getNumOperands() != 2) { 2738 // If the multiply has more than two operands, we must get the 2739 // Y*Z term. 2740 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2741 Mul->op_begin()+MulOp); 2742 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2743 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2744 } 2745 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2746 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2747 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2748 SCEV::FlagAnyWrap, Depth + 1); 2749 if (Ops.size() == 2) return OuterMul; 2750 if (AddOp < Idx) { 2751 Ops.erase(Ops.begin()+AddOp); 2752 Ops.erase(Ops.begin()+Idx-1); 2753 } else { 2754 Ops.erase(Ops.begin()+Idx); 2755 Ops.erase(Ops.begin()+AddOp-1); 2756 } 2757 Ops.push_back(OuterMul); 2758 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2759 } 2760 2761 // Check this multiply against other multiplies being added together. 2762 for (unsigned OtherMulIdx = Idx+1; 2763 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2764 ++OtherMulIdx) { 2765 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2766 // If MulOp occurs in OtherMul, we can fold the two multiplies 2767 // together. 2768 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2769 OMulOp != e; ++OMulOp) 2770 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2771 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2772 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2773 if (Mul->getNumOperands() != 2) { 2774 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2775 Mul->op_begin()+MulOp); 2776 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2777 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2778 } 2779 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2780 if (OtherMul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2782 OtherMul->op_begin()+OMulOp); 2783 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2784 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2787 const SCEV *InnerMulSum = 2788 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2789 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2790 SCEV::FlagAnyWrap, Depth + 1); 2791 if (Ops.size() == 2) return OuterMul; 2792 Ops.erase(Ops.begin()+Idx); 2793 Ops.erase(Ops.begin()+OtherMulIdx-1); 2794 Ops.push_back(OuterMul); 2795 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2796 } 2797 } 2798 } 2799 } 2800 2801 // If there are any add recurrences in the operands list, see if any other 2802 // added values are loop invariant. If so, we can fold them into the 2803 // recurrence. 2804 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2805 ++Idx; 2806 2807 // Scan over all recurrences, trying to fold loop invariants into them. 2808 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2809 // Scan all of the other operands to this add and add them to the vector if 2810 // they are loop invariant w.r.t. the recurrence. 2811 SmallVector<const SCEV *, 8> LIOps; 2812 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2813 const Loop *AddRecLoop = AddRec->getLoop(); 2814 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2815 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2816 LIOps.push_back(Ops[i]); 2817 Ops.erase(Ops.begin()+i); 2818 --i; --e; 2819 } 2820 2821 // If we found some loop invariants, fold them into the recurrence. 2822 if (!LIOps.empty()) { 2823 // Compute nowrap flags for the addition of the loop-invariant ops and 2824 // the addrec. Temporarily push it as an operand for that purpose. These 2825 // flags are valid in the scope of the addrec only. 2826 LIOps.push_back(AddRec); 2827 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2828 LIOps.pop_back(); 2829 2830 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2831 LIOps.push_back(AddRec->getStart()); 2832 2833 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2834 2835 // It is not in general safe to propagate flags valid on an add within 2836 // the addrec scope to one outside it. We must prove that the inner 2837 // scope is guaranteed to execute if the outer one does to be able to 2838 // safely propagate. We know the program is undefined if poison is 2839 // produced on the inner scoped addrec. We also know that *for this use* 2840 // the outer scoped add can't overflow (because of the flags we just 2841 // computed for the inner scoped add) without the program being undefined. 2842 // Proving that entry to the outer scope neccesitates entry to the inner 2843 // scope, thus proves the program undefined if the flags would be violated 2844 // in the outer scope. 2845 SCEV::NoWrapFlags AddFlags = Flags; 2846 if (AddFlags != SCEV::FlagAnyWrap) { 2847 auto *DefI = getDefiningScopeBound(LIOps); 2848 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2849 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2850 AddFlags = SCEV::FlagAnyWrap; 2851 } 2852 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2853 2854 // Build the new addrec. Propagate the NUW and NSW flags if both the 2855 // outer add and the inner addrec are guaranteed to have no overflow. 2856 // Always propagate NW. 2857 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2858 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2859 2860 // If all of the other operands were loop invariant, we are done. 2861 if (Ops.size() == 1) return NewRec; 2862 2863 // Otherwise, add the folded AddRec by the non-invariant parts. 2864 for (unsigned i = 0;; ++i) 2865 if (Ops[i] == AddRec) { 2866 Ops[i] = NewRec; 2867 break; 2868 } 2869 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2870 } 2871 2872 // Okay, if there weren't any loop invariants to be folded, check to see if 2873 // there are multiple AddRec's with the same loop induction variable being 2874 // added together. If so, we can fold them. 2875 for (unsigned OtherIdx = Idx+1; 2876 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2877 ++OtherIdx) { 2878 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2879 // so that the 1st found AddRecExpr is dominated by all others. 2880 assert(DT.dominates( 2881 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2882 AddRec->getLoop()->getHeader()) && 2883 "AddRecExprs are not sorted in reverse dominance order?"); 2884 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2885 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2886 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2887 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2888 ++OtherIdx) { 2889 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2890 if (OtherAddRec->getLoop() == AddRecLoop) { 2891 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2892 i != e; ++i) { 2893 if (i >= AddRecOps.size()) { 2894 AddRecOps.append(OtherAddRec->op_begin()+i, 2895 OtherAddRec->op_end()); 2896 break; 2897 } 2898 SmallVector<const SCEV *, 2> TwoOps = { 2899 AddRecOps[i], OtherAddRec->getOperand(i)}; 2900 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2901 } 2902 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2903 } 2904 } 2905 // Step size has changed, so we cannot guarantee no self-wraparound. 2906 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2907 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 } 2910 2911 // Otherwise couldn't fold anything into this recurrence. Move onto the 2912 // next one. 2913 } 2914 2915 // Okay, it looks like we really DO need an add expr. Check to see if we 2916 // already have one, otherwise create a new one. 2917 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2918 } 2919 2920 const SCEV * 2921 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2922 SCEV::NoWrapFlags Flags) { 2923 FoldingSetNodeID ID; 2924 ID.AddInteger(scAddExpr); 2925 for (const SCEV *Op : Ops) 2926 ID.AddPointer(Op); 2927 void *IP = nullptr; 2928 SCEVAddExpr *S = 2929 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2930 if (!S) { 2931 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2932 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2933 S = new (SCEVAllocator) 2934 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2935 UniqueSCEVs.InsertNode(S, IP); 2936 registerUser(S, Ops); 2937 } 2938 S->setNoWrapFlags(Flags); 2939 return S; 2940 } 2941 2942 const SCEV * 2943 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2944 const Loop *L, SCEV::NoWrapFlags Flags) { 2945 FoldingSetNodeID ID; 2946 ID.AddInteger(scAddRecExpr); 2947 for (const SCEV *Op : Ops) 2948 ID.AddPointer(Op); 2949 ID.AddPointer(L); 2950 void *IP = nullptr; 2951 SCEVAddRecExpr *S = 2952 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2953 if (!S) { 2954 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2955 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2956 S = new (SCEVAllocator) 2957 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2958 UniqueSCEVs.InsertNode(S, IP); 2959 LoopUsers[L].push_back(S); 2960 registerUser(S, Ops); 2961 } 2962 setNoWrapFlags(S, Flags); 2963 return S; 2964 } 2965 2966 const SCEV * 2967 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2968 SCEV::NoWrapFlags Flags) { 2969 FoldingSetNodeID ID; 2970 ID.AddInteger(scMulExpr); 2971 for (const SCEV *Op : Ops) 2972 ID.AddPointer(Op); 2973 void *IP = nullptr; 2974 SCEVMulExpr *S = 2975 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2976 if (!S) { 2977 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2978 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2979 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2980 O, Ops.size()); 2981 UniqueSCEVs.InsertNode(S, IP); 2982 registerUser(S, Ops); 2983 } 2984 S->setNoWrapFlags(Flags); 2985 return S; 2986 } 2987 2988 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2989 uint64_t k = i*j; 2990 if (j > 1 && k / j != i) Overflow = true; 2991 return k; 2992 } 2993 2994 /// Compute the result of "n choose k", the binomial coefficient. If an 2995 /// intermediate computation overflows, Overflow will be set and the return will 2996 /// be garbage. Overflow is not cleared on absence of overflow. 2997 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2998 // We use the multiplicative formula: 2999 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3000 // At each iteration, we take the n-th term of the numeral and divide by the 3001 // (k-n)th term of the denominator. This division will always produce an 3002 // integral result, and helps reduce the chance of overflow in the 3003 // intermediate computations. However, we can still overflow even when the 3004 // final result would fit. 3005 3006 if (n == 0 || n == k) return 1; 3007 if (k > n) return 0; 3008 3009 if (k > n/2) 3010 k = n-k; 3011 3012 uint64_t r = 1; 3013 for (uint64_t i = 1; i <= k; ++i) { 3014 r = umul_ov(r, n-(i-1), Overflow); 3015 r /= i; 3016 } 3017 return r; 3018 } 3019 3020 /// Determine if any of the operands in this SCEV are a constant or if 3021 /// any of the add or multiply expressions in this SCEV contain a constant. 3022 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3023 struct FindConstantInAddMulChain { 3024 bool FoundConstant = false; 3025 3026 bool follow(const SCEV *S) { 3027 FoundConstant |= isa<SCEVConstant>(S); 3028 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3029 } 3030 3031 bool isDone() const { 3032 return FoundConstant; 3033 } 3034 }; 3035 3036 FindConstantInAddMulChain F; 3037 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3038 ST.visitAll(StartExpr); 3039 return F.FoundConstant; 3040 } 3041 3042 /// Get a canonical multiply expression, or something simpler if possible. 3043 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3044 SCEV::NoWrapFlags OrigFlags, 3045 unsigned Depth) { 3046 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3047 "only nuw or nsw allowed"); 3048 assert(!Ops.empty() && "Cannot get empty mul!"); 3049 if (Ops.size() == 1) return Ops[0]; 3050 #ifndef NDEBUG 3051 Type *ETy = Ops[0]->getType(); 3052 assert(!ETy->isPointerTy()); 3053 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3054 assert(Ops[i]->getType() == ETy && 3055 "SCEVMulExpr operand types don't match!"); 3056 #endif 3057 3058 // Sort by complexity, this groups all similar expression types together. 3059 GroupByComplexity(Ops, &LI, DT); 3060 3061 // If there are any constants, fold them together. 3062 unsigned Idx = 0; 3063 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3064 ++Idx; 3065 assert(Idx < Ops.size()); 3066 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3067 // We found two constants, fold them together! 3068 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3069 if (Ops.size() == 2) return Ops[0]; 3070 Ops.erase(Ops.begin()+1); // Erase the folded element 3071 LHSC = cast<SCEVConstant>(Ops[0]); 3072 } 3073 3074 // If we have a multiply of zero, it will always be zero. 3075 if (LHSC->getValue()->isZero()) 3076 return LHSC; 3077 3078 // If we are left with a constant one being multiplied, strip it off. 3079 if (LHSC->getValue()->isOne()) { 3080 Ops.erase(Ops.begin()); 3081 --Idx; 3082 } 3083 3084 if (Ops.size() == 1) 3085 return Ops[0]; 3086 } 3087 3088 // Delay expensive flag strengthening until necessary. 3089 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3090 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3091 }; 3092 3093 // Limit recursion calls depth. 3094 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3095 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3096 3097 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3098 // Don't strengthen flags if we have no new information. 3099 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3100 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3101 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3102 return S; 3103 } 3104 3105 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3106 if (Ops.size() == 2) { 3107 // C1*(C2+V) -> C1*C2 + C1*V 3108 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3109 // If any of Add's ops are Adds or Muls with a constant, apply this 3110 // transformation as well. 3111 // 3112 // TODO: There are some cases where this transformation is not 3113 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3114 // this transformation should be narrowed down. 3115 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3116 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3117 SCEV::FlagAnyWrap, Depth + 1), 3118 getMulExpr(LHSC, Add->getOperand(1), 3119 SCEV::FlagAnyWrap, Depth + 1), 3120 SCEV::FlagAnyWrap, Depth + 1); 3121 3122 if (Ops[0]->isAllOnesValue()) { 3123 // If we have a mul by -1 of an add, try distributing the -1 among the 3124 // add operands. 3125 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3126 SmallVector<const SCEV *, 4> NewOps; 3127 bool AnyFolded = false; 3128 for (const SCEV *AddOp : Add->operands()) { 3129 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3130 Depth + 1); 3131 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3132 NewOps.push_back(Mul); 3133 } 3134 if (AnyFolded) 3135 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3136 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3137 // Negation preserves a recurrence's no self-wrap property. 3138 SmallVector<const SCEV *, 4> Operands; 3139 for (const SCEV *AddRecOp : AddRec->operands()) 3140 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3141 Depth + 1)); 3142 3143 return getAddRecExpr(Operands, AddRec->getLoop(), 3144 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3145 } 3146 } 3147 } 3148 } 3149 3150 // Skip over the add expression until we get to a multiply. 3151 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3152 ++Idx; 3153 3154 // If there are mul operands inline them all into this expression. 3155 if (Idx < Ops.size()) { 3156 bool DeletedMul = false; 3157 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3158 if (Ops.size() > MulOpsInlineThreshold) 3159 break; 3160 // If we have an mul, expand the mul operands onto the end of the 3161 // operands list. 3162 Ops.erase(Ops.begin()+Idx); 3163 Ops.append(Mul->op_begin(), Mul->op_end()); 3164 DeletedMul = true; 3165 } 3166 3167 // If we deleted at least one mul, we added operands to the end of the 3168 // list, and they are not necessarily sorted. Recurse to resort and 3169 // resimplify any operands we just acquired. 3170 if (DeletedMul) 3171 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3172 } 3173 3174 // If there are any add recurrences in the operands list, see if any other 3175 // added values are loop invariant. If so, we can fold them into the 3176 // recurrence. 3177 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3178 ++Idx; 3179 3180 // Scan over all recurrences, trying to fold loop invariants into them. 3181 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3182 // Scan all of the other operands to this mul and add them to the vector 3183 // if they are loop invariant w.r.t. the recurrence. 3184 SmallVector<const SCEV *, 8> LIOps; 3185 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3186 const Loop *AddRecLoop = AddRec->getLoop(); 3187 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3188 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3189 LIOps.push_back(Ops[i]); 3190 Ops.erase(Ops.begin()+i); 3191 --i; --e; 3192 } 3193 3194 // If we found some loop invariants, fold them into the recurrence. 3195 if (!LIOps.empty()) { 3196 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3197 SmallVector<const SCEV *, 4> NewOps; 3198 NewOps.reserve(AddRec->getNumOperands()); 3199 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3200 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3201 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3202 SCEV::FlagAnyWrap, Depth + 1)); 3203 3204 // Build the new addrec. Propagate the NUW and NSW flags if both the 3205 // outer mul and the inner addrec are guaranteed to have no overflow. 3206 // 3207 // No self-wrap cannot be guaranteed after changing the step size, but 3208 // will be inferred if either NUW or NSW is true. 3209 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3210 const SCEV *NewRec = getAddRecExpr( 3211 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3212 3213 // If all of the other operands were loop invariant, we are done. 3214 if (Ops.size() == 1) return NewRec; 3215 3216 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3217 for (unsigned i = 0;; ++i) 3218 if (Ops[i] == AddRec) { 3219 Ops[i] = NewRec; 3220 break; 3221 } 3222 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3223 } 3224 3225 // Okay, if there weren't any loop invariants to be folded, check to see 3226 // if there are multiple AddRec's with the same loop induction variable 3227 // being multiplied together. If so, we can fold them. 3228 3229 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3230 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3231 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3232 // ]]],+,...up to x=2n}. 3233 // Note that the arguments to choose() are always integers with values 3234 // known at compile time, never SCEV objects. 3235 // 3236 // The implementation avoids pointless extra computations when the two 3237 // addrec's are of different length (mathematically, it's equivalent to 3238 // an infinite stream of zeros on the right). 3239 bool OpsModified = false; 3240 for (unsigned OtherIdx = Idx+1; 3241 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3242 ++OtherIdx) { 3243 const SCEVAddRecExpr *OtherAddRec = 3244 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3245 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3246 continue; 3247 3248 // Limit max number of arguments to avoid creation of unreasonably big 3249 // SCEVAddRecs with very complex operands. 3250 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3251 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3252 continue; 3253 3254 bool Overflow = false; 3255 Type *Ty = AddRec->getType(); 3256 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3257 SmallVector<const SCEV*, 7> AddRecOps; 3258 for (int x = 0, xe = AddRec->getNumOperands() + 3259 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3260 SmallVector <const SCEV *, 7> SumOps; 3261 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3262 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3263 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3264 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3265 z < ze && !Overflow; ++z) { 3266 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3267 uint64_t Coeff; 3268 if (LargerThan64Bits) 3269 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3270 else 3271 Coeff = Coeff1*Coeff2; 3272 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3273 const SCEV *Term1 = AddRec->getOperand(y-z); 3274 const SCEV *Term2 = OtherAddRec->getOperand(z); 3275 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3276 SCEV::FlagAnyWrap, Depth + 1)); 3277 } 3278 } 3279 if (SumOps.empty()) 3280 SumOps.push_back(getZero(Ty)); 3281 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3282 } 3283 if (!Overflow) { 3284 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3285 SCEV::FlagAnyWrap); 3286 if (Ops.size() == 2) return NewAddRec; 3287 Ops[Idx] = NewAddRec; 3288 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3289 OpsModified = true; 3290 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3291 if (!AddRec) 3292 break; 3293 } 3294 } 3295 if (OpsModified) 3296 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3297 3298 // Otherwise couldn't fold anything into this recurrence. Move onto the 3299 // next one. 3300 } 3301 3302 // Okay, it looks like we really DO need an mul expr. Check to see if we 3303 // already have one, otherwise create a new one. 3304 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3305 } 3306 3307 /// Represents an unsigned remainder expression based on unsigned division. 3308 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3309 const SCEV *RHS) { 3310 assert(getEffectiveSCEVType(LHS->getType()) == 3311 getEffectiveSCEVType(RHS->getType()) && 3312 "SCEVURemExpr operand types don't match!"); 3313 3314 // Short-circuit easy cases 3315 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3316 // If constant is one, the result is trivial 3317 if (RHSC->getValue()->isOne()) 3318 return getZero(LHS->getType()); // X urem 1 --> 0 3319 3320 // If constant is a power of two, fold into a zext(trunc(LHS)). 3321 if (RHSC->getAPInt().isPowerOf2()) { 3322 Type *FullTy = LHS->getType(); 3323 Type *TruncTy = 3324 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3325 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3326 } 3327 } 3328 3329 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3330 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3331 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3332 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3333 } 3334 3335 /// Get a canonical unsigned division expression, or something simpler if 3336 /// possible. 3337 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3338 const SCEV *RHS) { 3339 assert(!LHS->getType()->isPointerTy() && 3340 "SCEVUDivExpr operand can't be pointer!"); 3341 assert(LHS->getType() == RHS->getType() && 3342 "SCEVUDivExpr operand types don't match!"); 3343 3344 FoldingSetNodeID ID; 3345 ID.AddInteger(scUDivExpr); 3346 ID.AddPointer(LHS); 3347 ID.AddPointer(RHS); 3348 void *IP = nullptr; 3349 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3350 return S; 3351 3352 // 0 udiv Y == 0 3353 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3354 if (LHSC->getValue()->isZero()) 3355 return LHS; 3356 3357 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3358 if (RHSC->getValue()->isOne()) 3359 return LHS; // X udiv 1 --> x 3360 // If the denominator is zero, the result of the udiv is undefined. Don't 3361 // try to analyze it, because the resolution chosen here may differ from 3362 // the resolution chosen in other parts of the compiler. 3363 if (!RHSC->getValue()->isZero()) { 3364 // Determine if the division can be folded into the operands of 3365 // its operands. 3366 // TODO: Generalize this to non-constants by using known-bits information. 3367 Type *Ty = LHS->getType(); 3368 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3369 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3370 // For non-power-of-two values, effectively round the value up to the 3371 // nearest power of two. 3372 if (!RHSC->getAPInt().isPowerOf2()) 3373 ++MaxShiftAmt; 3374 IntegerType *ExtTy = 3375 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3376 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3377 if (const SCEVConstant *Step = 3378 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3379 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3380 const APInt &StepInt = Step->getAPInt(); 3381 const APInt &DivInt = RHSC->getAPInt(); 3382 if (!StepInt.urem(DivInt) && 3383 getZeroExtendExpr(AR, ExtTy) == 3384 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3385 getZeroExtendExpr(Step, ExtTy), 3386 AR->getLoop(), SCEV::FlagAnyWrap)) { 3387 SmallVector<const SCEV *, 4> Operands; 3388 for (const SCEV *Op : AR->operands()) 3389 Operands.push_back(getUDivExpr(Op, RHS)); 3390 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3391 } 3392 /// Get a canonical UDivExpr for a recurrence. 3393 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3394 // We can currently only fold X%N if X is constant. 3395 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3396 if (StartC && !DivInt.urem(StepInt) && 3397 getZeroExtendExpr(AR, ExtTy) == 3398 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3399 getZeroExtendExpr(Step, ExtTy), 3400 AR->getLoop(), SCEV::FlagAnyWrap)) { 3401 const APInt &StartInt = StartC->getAPInt(); 3402 const APInt &StartRem = StartInt.urem(StepInt); 3403 if (StartRem != 0) { 3404 const SCEV *NewLHS = 3405 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3406 AR->getLoop(), SCEV::FlagNW); 3407 if (LHS != NewLHS) { 3408 LHS = NewLHS; 3409 3410 // Reset the ID to include the new LHS, and check if it is 3411 // already cached. 3412 ID.clear(); 3413 ID.AddInteger(scUDivExpr); 3414 ID.AddPointer(LHS); 3415 ID.AddPointer(RHS); 3416 IP = nullptr; 3417 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3418 return S; 3419 } 3420 } 3421 } 3422 } 3423 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3424 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3425 SmallVector<const SCEV *, 4> Operands; 3426 for (const SCEV *Op : M->operands()) 3427 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3428 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3429 // Find an operand that's safely divisible. 3430 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3431 const SCEV *Op = M->getOperand(i); 3432 const SCEV *Div = getUDivExpr(Op, RHSC); 3433 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3434 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3435 Operands[i] = Div; 3436 return getMulExpr(Operands); 3437 } 3438 } 3439 } 3440 3441 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3442 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3443 if (auto *DivisorConstant = 3444 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3445 bool Overflow = false; 3446 APInt NewRHS = 3447 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3448 if (Overflow) { 3449 return getConstant(RHSC->getType(), 0, false); 3450 } 3451 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3452 } 3453 } 3454 3455 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3456 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3457 SmallVector<const SCEV *, 4> Operands; 3458 for (const SCEV *Op : A->operands()) 3459 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3460 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3461 Operands.clear(); 3462 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3463 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3464 if (isa<SCEVUDivExpr>(Op) || 3465 getMulExpr(Op, RHS) != A->getOperand(i)) 3466 break; 3467 Operands.push_back(Op); 3468 } 3469 if (Operands.size() == A->getNumOperands()) 3470 return getAddExpr(Operands); 3471 } 3472 } 3473 3474 // Fold if both operands are constant. 3475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3476 Constant *LHSCV = LHSC->getValue(); 3477 Constant *RHSCV = RHSC->getValue(); 3478 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3479 RHSCV))); 3480 } 3481 } 3482 } 3483 3484 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3485 // changes). Make sure we get a new one. 3486 IP = nullptr; 3487 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3488 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3489 LHS, RHS); 3490 UniqueSCEVs.InsertNode(S, IP); 3491 registerUser(S, {LHS, RHS}); 3492 return S; 3493 } 3494 3495 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3496 APInt A = C1->getAPInt().abs(); 3497 APInt B = C2->getAPInt().abs(); 3498 uint32_t ABW = A.getBitWidth(); 3499 uint32_t BBW = B.getBitWidth(); 3500 3501 if (ABW > BBW) 3502 B = B.zext(ABW); 3503 else if (ABW < BBW) 3504 A = A.zext(BBW); 3505 3506 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3507 } 3508 3509 /// Get a canonical unsigned division expression, or something simpler if 3510 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3511 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3512 /// it's not exact because the udiv may be clearing bits. 3513 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3514 const SCEV *RHS) { 3515 // TODO: we could try to find factors in all sorts of things, but for now we 3516 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3517 // end of this file for inspiration. 3518 3519 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3520 if (!Mul || !Mul->hasNoUnsignedWrap()) 3521 return getUDivExpr(LHS, RHS); 3522 3523 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3524 // If the mulexpr multiplies by a constant, then that constant must be the 3525 // first element of the mulexpr. 3526 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3527 if (LHSCst == RHSCst) { 3528 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3529 return getMulExpr(Operands); 3530 } 3531 3532 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3533 // that there's a factor provided by one of the other terms. We need to 3534 // check. 3535 APInt Factor = gcd(LHSCst, RHSCst); 3536 if (!Factor.isIntN(1)) { 3537 LHSCst = 3538 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3539 RHSCst = 3540 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3541 SmallVector<const SCEV *, 2> Operands; 3542 Operands.push_back(LHSCst); 3543 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3544 LHS = getMulExpr(Operands); 3545 RHS = RHSCst; 3546 Mul = dyn_cast<SCEVMulExpr>(LHS); 3547 if (!Mul) 3548 return getUDivExactExpr(LHS, RHS); 3549 } 3550 } 3551 } 3552 3553 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3554 if (Mul->getOperand(i) == RHS) { 3555 SmallVector<const SCEV *, 2> Operands; 3556 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3557 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3558 return getMulExpr(Operands); 3559 } 3560 } 3561 3562 return getUDivExpr(LHS, RHS); 3563 } 3564 3565 /// Get an add recurrence expression for the specified loop. Simplify the 3566 /// expression as much as possible. 3567 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3568 const Loop *L, 3569 SCEV::NoWrapFlags Flags) { 3570 SmallVector<const SCEV *, 4> Operands; 3571 Operands.push_back(Start); 3572 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3573 if (StepChrec->getLoop() == L) { 3574 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3575 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3576 } 3577 3578 Operands.push_back(Step); 3579 return getAddRecExpr(Operands, L, Flags); 3580 } 3581 3582 /// Get an add recurrence expression for the specified loop. Simplify the 3583 /// expression as much as possible. 3584 const SCEV * 3585 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3586 const Loop *L, SCEV::NoWrapFlags Flags) { 3587 if (Operands.size() == 1) return Operands[0]; 3588 #ifndef NDEBUG 3589 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3590 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3591 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3592 "SCEVAddRecExpr operand types don't match!"); 3593 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3594 } 3595 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3596 assert(isLoopInvariant(Operands[i], L) && 3597 "SCEVAddRecExpr operand is not loop-invariant!"); 3598 #endif 3599 3600 if (Operands.back()->isZero()) { 3601 Operands.pop_back(); 3602 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3603 } 3604 3605 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3606 // use that information to infer NUW and NSW flags. However, computing a 3607 // BE count requires calling getAddRecExpr, so we may not yet have a 3608 // meaningful BE count at this point (and if we don't, we'd be stuck 3609 // with a SCEVCouldNotCompute as the cached BE count). 3610 3611 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3612 3613 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3614 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3615 const Loop *NestedLoop = NestedAR->getLoop(); 3616 if (L->contains(NestedLoop) 3617 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3618 : (!NestedLoop->contains(L) && 3619 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3620 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3621 Operands[0] = NestedAR->getStart(); 3622 // AddRecs require their operands be loop-invariant with respect to their 3623 // loops. Don't perform this transformation if it would break this 3624 // requirement. 3625 bool AllInvariant = all_of( 3626 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3627 3628 if (AllInvariant) { 3629 // Create a recurrence for the outer loop with the same step size. 3630 // 3631 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3632 // inner recurrence has the same property. 3633 SCEV::NoWrapFlags OuterFlags = 3634 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3635 3636 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3637 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3638 return isLoopInvariant(Op, NestedLoop); 3639 }); 3640 3641 if (AllInvariant) { 3642 // Ok, both add recurrences are valid after the transformation. 3643 // 3644 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3645 // the outer recurrence has the same property. 3646 SCEV::NoWrapFlags InnerFlags = 3647 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3648 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3649 } 3650 } 3651 // Reset Operands to its original state. 3652 Operands[0] = NestedAR; 3653 } 3654 } 3655 3656 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3657 // already have one, otherwise create a new one. 3658 return getOrCreateAddRecExpr(Operands, L, Flags); 3659 } 3660 3661 const SCEV * 3662 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3663 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3664 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3665 // getSCEV(Base)->getType() has the same address space as Base->getType() 3666 // because SCEV::getType() preserves the address space. 3667 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3668 const bool AssumeInBoundsFlags = [&]() { 3669 if (!GEP->isInBounds()) 3670 return false; 3671 3672 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3673 // but to do that, we have to ensure that said flag is valid in the entire 3674 // defined scope of the SCEV. 3675 auto *GEPI = dyn_cast<Instruction>(GEP); 3676 // TODO: non-instructions have global scope. We might be able to prove 3677 // some global scope cases 3678 return GEPI && isSCEVExprNeverPoison(GEPI); 3679 }(); 3680 3681 SCEV::NoWrapFlags OffsetWrap = 3682 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3683 3684 Type *CurTy = GEP->getType(); 3685 bool FirstIter = true; 3686 SmallVector<const SCEV *, 4> Offsets; 3687 for (const SCEV *IndexExpr : IndexExprs) { 3688 // Compute the (potentially symbolic) offset in bytes for this index. 3689 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3690 // For a struct, add the member offset. 3691 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3692 unsigned FieldNo = Index->getZExtValue(); 3693 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3694 Offsets.push_back(FieldOffset); 3695 3696 // Update CurTy to the type of the field at Index. 3697 CurTy = STy->getTypeAtIndex(Index); 3698 } else { 3699 // Update CurTy to its element type. 3700 if (FirstIter) { 3701 assert(isa<PointerType>(CurTy) && 3702 "The first index of a GEP indexes a pointer"); 3703 CurTy = GEP->getSourceElementType(); 3704 FirstIter = false; 3705 } else { 3706 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3707 } 3708 // For an array, add the element offset, explicitly scaled. 3709 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3710 // Getelementptr indices are signed. 3711 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3712 3713 // Multiply the index by the element size to compute the element offset. 3714 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3715 Offsets.push_back(LocalOffset); 3716 } 3717 } 3718 3719 // Handle degenerate case of GEP without offsets. 3720 if (Offsets.empty()) 3721 return BaseExpr; 3722 3723 // Add the offsets together, assuming nsw if inbounds. 3724 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3725 // Add the base address and the offset. We cannot use the nsw flag, as the 3726 // base address is unsigned. However, if we know that the offset is 3727 // non-negative, we can use nuw. 3728 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3729 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3730 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3731 assert(BaseExpr->getType() == GEPExpr->getType() && 3732 "GEP should not change type mid-flight."); 3733 return GEPExpr; 3734 } 3735 3736 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3737 ArrayRef<const SCEV *> Ops) { 3738 FoldingSetNodeID ID; 3739 ID.AddInteger(SCEVType); 3740 for (const SCEV *Op : Ops) 3741 ID.AddPointer(Op); 3742 void *IP = nullptr; 3743 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3744 } 3745 3746 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3747 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3748 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3749 } 3750 3751 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3752 SmallVectorImpl<const SCEV *> &Ops) { 3753 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3754 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3755 if (Ops.size() == 1) return Ops[0]; 3756 #ifndef NDEBUG 3757 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3758 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3759 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3760 "Operand types don't match!"); 3761 assert(Ops[0]->getType()->isPointerTy() == 3762 Ops[i]->getType()->isPointerTy() && 3763 "min/max should be consistently pointerish"); 3764 } 3765 #endif 3766 3767 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3768 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3769 3770 // Sort by complexity, this groups all similar expression types together. 3771 GroupByComplexity(Ops, &LI, DT); 3772 3773 // Check if we have created the same expression before. 3774 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3775 return S; 3776 } 3777 3778 // If there are any constants, fold them together. 3779 unsigned Idx = 0; 3780 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3781 ++Idx; 3782 assert(Idx < Ops.size()); 3783 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3784 if (Kind == scSMaxExpr) 3785 return APIntOps::smax(LHS, RHS); 3786 else if (Kind == scSMinExpr) 3787 return APIntOps::smin(LHS, RHS); 3788 else if (Kind == scUMaxExpr) 3789 return APIntOps::umax(LHS, RHS); 3790 else if (Kind == scUMinExpr) 3791 return APIntOps::umin(LHS, RHS); 3792 llvm_unreachable("Unknown SCEV min/max opcode"); 3793 }; 3794 3795 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3796 // We found two constants, fold them together! 3797 ConstantInt *Fold = ConstantInt::get( 3798 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3799 Ops[0] = getConstant(Fold); 3800 Ops.erase(Ops.begin()+1); // Erase the folded element 3801 if (Ops.size() == 1) return Ops[0]; 3802 LHSC = cast<SCEVConstant>(Ops[0]); 3803 } 3804 3805 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3806 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3807 3808 if (IsMax ? IsMinV : IsMaxV) { 3809 // If we are left with a constant minimum(/maximum)-int, strip it off. 3810 Ops.erase(Ops.begin()); 3811 --Idx; 3812 } else if (IsMax ? IsMaxV : IsMinV) { 3813 // If we have a max(/min) with a constant maximum(/minimum)-int, 3814 // it will always be the extremum. 3815 return LHSC; 3816 } 3817 3818 if (Ops.size() == 1) return Ops[0]; 3819 } 3820 3821 // Find the first operation of the same kind 3822 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3823 ++Idx; 3824 3825 // Check to see if one of the operands is of the same kind. If so, expand its 3826 // operands onto our operand list, and recurse to simplify. 3827 if (Idx < Ops.size()) { 3828 bool DeletedAny = false; 3829 while (Ops[Idx]->getSCEVType() == Kind) { 3830 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3831 Ops.erase(Ops.begin()+Idx); 3832 Ops.append(SMME->op_begin(), SMME->op_end()); 3833 DeletedAny = true; 3834 } 3835 3836 if (DeletedAny) 3837 return getMinMaxExpr(Kind, Ops); 3838 } 3839 3840 // Okay, check to see if the same value occurs in the operand list twice. If 3841 // so, delete one. Since we sorted the list, these values are required to 3842 // be adjacent. 3843 llvm::CmpInst::Predicate GEPred = 3844 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3845 llvm::CmpInst::Predicate LEPred = 3846 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3847 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3848 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3849 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3850 if (Ops[i] == Ops[i + 1] || 3851 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3852 // X op Y op Y --> X op Y 3853 // X op Y --> X, if we know X, Y are ordered appropriately 3854 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3855 --i; 3856 --e; 3857 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3858 Ops[i + 1])) { 3859 // X op Y --> Y, if we know X, Y are ordered appropriately 3860 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3861 --i; 3862 --e; 3863 } 3864 } 3865 3866 if (Ops.size() == 1) return Ops[0]; 3867 3868 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3869 3870 // Okay, it looks like we really DO need an expr. Check to see if we 3871 // already have one, otherwise create a new one. 3872 FoldingSetNodeID ID; 3873 ID.AddInteger(Kind); 3874 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3875 ID.AddPointer(Ops[i]); 3876 void *IP = nullptr; 3877 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3878 if (ExistingSCEV) 3879 return ExistingSCEV; 3880 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3881 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3882 SCEV *S = new (SCEVAllocator) 3883 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3884 3885 UniqueSCEVs.InsertNode(S, IP); 3886 registerUser(S, Ops); 3887 return S; 3888 } 3889 3890 namespace { 3891 3892 class SCEVSequentialMinMaxDeduplicatingVisitor final 3893 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3894 Optional<const SCEV *>> { 3895 using RetVal = Optional<const SCEV *>; 3896 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3897 3898 ScalarEvolution &SE; 3899 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3900 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3901 SmallPtrSet<const SCEV *, 16> SeenOps; 3902 3903 bool canRecurseInto(SCEVTypes Kind) const { 3904 // We can only recurse into the SCEV expression of the same effective type 3905 // as the type of our root SCEV expression. 3906 return RootKind == Kind || NonSequentialRootKind == Kind; 3907 }; 3908 3909 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3910 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3911 "Only for min/max expressions."); 3912 SCEVTypes Kind = S->getSCEVType(); 3913 3914 if (!canRecurseInto(Kind)) 3915 return S; 3916 3917 auto *NAry = cast<SCEVNAryExpr>(S); 3918 SmallVector<const SCEV *> NewOps; 3919 bool Changed = 3920 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3921 3922 if (!Changed) 3923 return S; 3924 if (NewOps.empty()) 3925 return None; 3926 3927 return isa<SCEVSequentialMinMaxExpr>(S) 3928 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3929 : SE.getMinMaxExpr(Kind, NewOps); 3930 } 3931 3932 RetVal visit(const SCEV *S) { 3933 // Has the whole operand been seen already? 3934 if (!SeenOps.insert(S).second) 3935 return None; 3936 return Base::visit(S); 3937 } 3938 3939 public: 3940 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3941 SCEVTypes RootKind) 3942 : SE(SE), RootKind(RootKind), 3943 NonSequentialRootKind( 3944 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3945 RootKind)) {} 3946 3947 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3948 SmallVectorImpl<const SCEV *> &NewOps) { 3949 bool Changed = false; 3950 SmallVector<const SCEV *> Ops; 3951 Ops.reserve(OrigOps.size()); 3952 3953 for (const SCEV *Op : OrigOps) { 3954 RetVal NewOp = visit(Op); 3955 if (NewOp != Op) 3956 Changed = true; 3957 if (NewOp) 3958 Ops.emplace_back(*NewOp); 3959 } 3960 3961 if (Changed) 3962 NewOps = std::move(Ops); 3963 return Changed; 3964 } 3965 3966 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3967 3968 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3969 3970 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3971 3972 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3973 3974 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3975 3976 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3977 3978 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3979 3980 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3981 3982 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3983 3984 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3985 return visitAnyMinMaxExpr(Expr); 3986 } 3987 3988 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3989 return visitAnyMinMaxExpr(Expr); 3990 } 3991 3992 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 3993 return visitAnyMinMaxExpr(Expr); 3994 } 3995 3996 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 3997 return visitAnyMinMaxExpr(Expr); 3998 } 3999 4000 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4001 return visitAnyMinMaxExpr(Expr); 4002 } 4003 4004 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4005 4006 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4007 }; 4008 4009 } // namespace 4010 4011 /// Return true if V is poison given that AssumedPoison is already poison. 4012 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4013 // The only way poison may be introduced in a SCEV expression is from a 4014 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4015 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4016 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4017 // 4018 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4019 // with the notable exception of umin_seq, where only poison from the first 4020 // operand is (unconditionally) propagated. 4021 struct SCEVPoisonCollector { 4022 bool LookThroughSeq; 4023 SmallPtrSet<const SCEV *, 4> MaybePoison; 4024 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4025 4026 bool follow(const SCEV *S) { 4027 // TODO: We can always follow the first operand, but the SCEVTraversal 4028 // API doesn't support this. 4029 if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S)) 4030 return false; 4031 4032 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4033 if (!isGuaranteedNotToBePoison(SU->getValue())) 4034 MaybePoison.insert(S); 4035 } 4036 return true; 4037 } 4038 bool isDone() const { return false; } 4039 }; 4040 4041 // First collect all SCEVs that might result in AssumedPoison to be poison. 4042 // We need to look through umin_seq here, because we want to find all SCEVs 4043 // that *might* result in poison, not only those that are *required* to. 4044 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4045 visitAll(AssumedPoison, PC1); 4046 4047 // AssumedPoison is never poison. As the assumption is false, the implication 4048 // is true. Don't bother walking the other SCEV in this case. 4049 if (PC1.MaybePoison.empty()) 4050 return true; 4051 4052 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4053 // as well. We cannot look through umin_seq here, as its argument only *may* 4054 // make the result poison. 4055 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4056 visitAll(S, PC2); 4057 4058 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4059 // it will also make S poison by being part of PC2.MaybePoison. 4060 return all_of(PC1.MaybePoison, 4061 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4062 } 4063 4064 const SCEV * 4065 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4066 SmallVectorImpl<const SCEV *> &Ops) { 4067 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4068 "Not a SCEVSequentialMinMaxExpr!"); 4069 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4070 if (Ops.size() == 1) 4071 return Ops[0]; 4072 #ifndef NDEBUG 4073 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4074 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4075 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4076 "Operand types don't match!"); 4077 assert(Ops[0]->getType()->isPointerTy() == 4078 Ops[i]->getType()->isPointerTy() && 4079 "min/max should be consistently pointerish"); 4080 } 4081 #endif 4082 4083 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4084 // so we can *NOT* do any kind of sorting of the expressions! 4085 4086 // Check if we have created the same expression before. 4087 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4088 return S; 4089 4090 // FIXME: there are *some* simplifications that we can do here. 4091 4092 // Keep only the first instance of an operand. 4093 { 4094 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4095 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4096 if (Changed) 4097 return getSequentialMinMaxExpr(Kind, Ops); 4098 } 4099 4100 // Check to see if one of the operands is of the same kind. If so, expand its 4101 // operands onto our operand list, and recurse to simplify. 4102 { 4103 unsigned Idx = 0; 4104 bool DeletedAny = false; 4105 while (Idx < Ops.size()) { 4106 if (Ops[Idx]->getSCEVType() != Kind) { 4107 ++Idx; 4108 continue; 4109 } 4110 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4111 Ops.erase(Ops.begin() + Idx); 4112 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4113 DeletedAny = true; 4114 } 4115 4116 if (DeletedAny) 4117 return getSequentialMinMaxExpr(Kind, Ops); 4118 } 4119 4120 const SCEV *SaturationPoint; 4121 ICmpInst::Predicate Pred; 4122 switch (Kind) { 4123 case scSequentialUMinExpr: 4124 SaturationPoint = getZero(Ops[0]->getType()); 4125 Pred = ICmpInst::ICMP_ULE; 4126 break; 4127 default: 4128 llvm_unreachable("Not a sequential min/max type."); 4129 } 4130 4131 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4132 // We can replace %x umin_seq %y with %x umin %y if either: 4133 // * %y being poison implies %x is also poison. 4134 // * %x cannot be the saturating value (e.g. zero for umin). 4135 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4136 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4137 SaturationPoint)) { 4138 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4139 Ops[i - 1] = getMinMaxExpr( 4140 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4141 SeqOps); 4142 Ops.erase(Ops.begin() + i); 4143 return getSequentialMinMaxExpr(Kind, Ops); 4144 } 4145 // Fold %x umin_seq %y to %x if %x ule %y. 4146 // TODO: We might be able to prove the predicate for a later operand. 4147 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4148 Ops.erase(Ops.begin() + i); 4149 return getSequentialMinMaxExpr(Kind, Ops); 4150 } 4151 } 4152 4153 // Okay, it looks like we really DO need an expr. Check to see if we 4154 // already have one, otherwise create a new one. 4155 FoldingSetNodeID ID; 4156 ID.AddInteger(Kind); 4157 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4158 ID.AddPointer(Ops[i]); 4159 void *IP = nullptr; 4160 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4161 if (ExistingSCEV) 4162 return ExistingSCEV; 4163 4164 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4165 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4166 SCEV *S = new (SCEVAllocator) 4167 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4168 4169 UniqueSCEVs.InsertNode(S, IP); 4170 registerUser(S, Ops); 4171 return S; 4172 } 4173 4174 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4175 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4176 return getSMaxExpr(Ops); 4177 } 4178 4179 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4180 return getMinMaxExpr(scSMaxExpr, Ops); 4181 } 4182 4183 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4184 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4185 return getUMaxExpr(Ops); 4186 } 4187 4188 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4189 return getMinMaxExpr(scUMaxExpr, Ops); 4190 } 4191 4192 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4193 const SCEV *RHS) { 4194 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4195 return getSMinExpr(Ops); 4196 } 4197 4198 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4199 return getMinMaxExpr(scSMinExpr, Ops); 4200 } 4201 4202 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4203 bool Sequential) { 4204 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4205 return getUMinExpr(Ops, Sequential); 4206 } 4207 4208 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4209 bool Sequential) { 4210 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4211 : getMinMaxExpr(scUMinExpr, Ops); 4212 } 4213 4214 const SCEV * 4215 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4216 ScalableVectorType *ScalableTy) { 4217 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4218 Constant *One = ConstantInt::get(IntTy, 1); 4219 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4220 // Note that the expression we created is the final expression, we don't 4221 // want to simplify it any further Also, if we call a normal getSCEV(), 4222 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4223 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4224 } 4225 4226 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4227 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4228 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4229 // We can bypass creating a target-independent constant expression and then 4230 // folding it back into a ConstantInt. This is just a compile-time 4231 // optimization. 4232 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4233 } 4234 4235 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4236 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4237 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4238 // We can bypass creating a target-independent constant expression and then 4239 // folding it back into a ConstantInt. This is just a compile-time 4240 // optimization. 4241 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4242 } 4243 4244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4245 StructType *STy, 4246 unsigned FieldNo) { 4247 // We can bypass creating a target-independent constant expression and then 4248 // folding it back into a ConstantInt. This is just a compile-time 4249 // optimization. 4250 return getConstant( 4251 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4252 } 4253 4254 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4255 // Don't attempt to do anything other than create a SCEVUnknown object 4256 // here. createSCEV only calls getUnknown after checking for all other 4257 // interesting possibilities, and any other code that calls getUnknown 4258 // is doing so in order to hide a value from SCEV canonicalization. 4259 4260 FoldingSetNodeID ID; 4261 ID.AddInteger(scUnknown); 4262 ID.AddPointer(V); 4263 void *IP = nullptr; 4264 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4265 assert(cast<SCEVUnknown>(S)->getValue() == V && 4266 "Stale SCEVUnknown in uniquing map!"); 4267 return S; 4268 } 4269 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4270 FirstUnknown); 4271 FirstUnknown = cast<SCEVUnknown>(S); 4272 UniqueSCEVs.InsertNode(S, IP); 4273 return S; 4274 } 4275 4276 //===----------------------------------------------------------------------===// 4277 // Basic SCEV Analysis and PHI Idiom Recognition Code 4278 // 4279 4280 /// Test if values of the given type are analyzable within the SCEV 4281 /// framework. This primarily includes integer types, and it can optionally 4282 /// include pointer types if the ScalarEvolution class has access to 4283 /// target-specific information. 4284 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4285 // Integers and pointers are always SCEVable. 4286 return Ty->isIntOrPtrTy(); 4287 } 4288 4289 /// Return the size in bits of the specified type, for which isSCEVable must 4290 /// return true. 4291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4292 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4293 if (Ty->isPointerTy()) 4294 return getDataLayout().getIndexTypeSizeInBits(Ty); 4295 return getDataLayout().getTypeSizeInBits(Ty); 4296 } 4297 4298 /// Return a type with the same bitwidth as the given type and which represents 4299 /// how SCEV will treat the given type, for which isSCEVable must return 4300 /// true. For pointer types, this is the pointer index sized integer type. 4301 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4302 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4303 4304 if (Ty->isIntegerTy()) 4305 return Ty; 4306 4307 // The only other support type is pointer. 4308 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4309 return getDataLayout().getIndexType(Ty); 4310 } 4311 4312 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4313 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4314 } 4315 4316 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4317 const SCEV *B) { 4318 /// For a valid use point to exist, the defining scope of one operand 4319 /// must dominate the other. 4320 bool PreciseA, PreciseB; 4321 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4322 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4323 if (!PreciseA || !PreciseB) 4324 // Can't tell. 4325 return false; 4326 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4327 DT.dominates(ScopeB, ScopeA); 4328 } 4329 4330 4331 const SCEV *ScalarEvolution::getCouldNotCompute() { 4332 return CouldNotCompute.get(); 4333 } 4334 4335 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4336 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4337 auto *SU = dyn_cast<SCEVUnknown>(S); 4338 return SU && SU->getValue() == nullptr; 4339 }); 4340 4341 return !ContainsNulls; 4342 } 4343 4344 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4345 HasRecMapType::iterator I = HasRecMap.find(S); 4346 if (I != HasRecMap.end()) 4347 return I->second; 4348 4349 bool FoundAddRec = 4350 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4351 HasRecMap.insert({S, FoundAddRec}); 4352 return FoundAddRec; 4353 } 4354 4355 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4356 /// by the value and offset from any ValueOffsetPair in the set. 4357 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4358 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4359 if (SI == ExprValueMap.end()) 4360 return None; 4361 #ifndef NDEBUG 4362 if (VerifySCEVMap) { 4363 // Check there is no dangling Value in the set returned. 4364 for (Value *V : SI->second) 4365 assert(ValueExprMap.count(V)); 4366 } 4367 #endif 4368 return SI->second.getArrayRef(); 4369 } 4370 4371 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4372 /// cannot be used separately. eraseValueFromMap should be used to remove 4373 /// V from ValueExprMap and ExprValueMap at the same time. 4374 void ScalarEvolution::eraseValueFromMap(Value *V) { 4375 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4376 if (I != ValueExprMap.end()) { 4377 auto EVIt = ExprValueMap.find(I->second); 4378 bool Removed = EVIt->second.remove(V); 4379 (void) Removed; 4380 assert(Removed && "Value not in ExprValueMap?"); 4381 ValueExprMap.erase(I); 4382 } 4383 } 4384 4385 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4386 // A recursive query may have already computed the SCEV. It should be 4387 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4388 // inferred nowrap flags. 4389 auto It = ValueExprMap.find_as(V); 4390 if (It == ValueExprMap.end()) { 4391 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4392 ExprValueMap[S].insert(V); 4393 } 4394 } 4395 4396 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4397 /// create a new one. 4398 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4399 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4400 4401 const SCEV *S = getExistingSCEV(V); 4402 if (S == nullptr) { 4403 S = createSCEV(V); 4404 // During PHI resolution, it is possible to create two SCEVs for the same 4405 // V, so it is needed to double check whether V->S is inserted into 4406 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4407 std::pair<ValueExprMapType::iterator, bool> Pair = 4408 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4409 if (Pair.second) 4410 ExprValueMap[S].insert(V); 4411 } 4412 return S; 4413 } 4414 4415 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4416 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4417 4418 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4419 if (I != ValueExprMap.end()) { 4420 const SCEV *S = I->second; 4421 assert(checkValidity(S) && 4422 "existing SCEV has not been properly invalidated"); 4423 return S; 4424 } 4425 return nullptr; 4426 } 4427 4428 /// Return a SCEV corresponding to -V = -1*V 4429 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4430 SCEV::NoWrapFlags Flags) { 4431 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4432 return getConstant( 4433 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4434 4435 Type *Ty = V->getType(); 4436 Ty = getEffectiveSCEVType(Ty); 4437 return getMulExpr(V, getMinusOne(Ty), Flags); 4438 } 4439 4440 /// If Expr computes ~A, return A else return nullptr 4441 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4442 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4443 if (!Add || Add->getNumOperands() != 2 || 4444 !Add->getOperand(0)->isAllOnesValue()) 4445 return nullptr; 4446 4447 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4448 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4449 !AddRHS->getOperand(0)->isAllOnesValue()) 4450 return nullptr; 4451 4452 return AddRHS->getOperand(1); 4453 } 4454 4455 /// Return a SCEV corresponding to ~V = -1-V 4456 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4457 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4458 4459 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4460 return getConstant( 4461 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4462 4463 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4464 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4465 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4466 SmallVector<const SCEV *, 2> MatchedOperands; 4467 for (const SCEV *Operand : MME->operands()) { 4468 const SCEV *Matched = MatchNotExpr(Operand); 4469 if (!Matched) 4470 return (const SCEV *)nullptr; 4471 MatchedOperands.push_back(Matched); 4472 } 4473 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4474 MatchedOperands); 4475 }; 4476 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4477 return Replaced; 4478 } 4479 4480 Type *Ty = V->getType(); 4481 Ty = getEffectiveSCEVType(Ty); 4482 return getMinusSCEV(getMinusOne(Ty), V); 4483 } 4484 4485 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4486 assert(P->getType()->isPointerTy()); 4487 4488 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4489 // The base of an AddRec is the first operand. 4490 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4491 Ops[0] = removePointerBase(Ops[0]); 4492 // Don't try to transfer nowrap flags for now. We could in some cases 4493 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4494 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4495 } 4496 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4497 // The base of an Add is the pointer operand. 4498 SmallVector<const SCEV *> Ops{Add->operands()}; 4499 const SCEV **PtrOp = nullptr; 4500 for (const SCEV *&AddOp : Ops) { 4501 if (AddOp->getType()->isPointerTy()) { 4502 assert(!PtrOp && "Cannot have multiple pointer ops"); 4503 PtrOp = &AddOp; 4504 } 4505 } 4506 *PtrOp = removePointerBase(*PtrOp); 4507 // Don't try to transfer nowrap flags for now. We could in some cases 4508 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4509 return getAddExpr(Ops); 4510 } 4511 // Any other expression must be a pointer base. 4512 return getZero(P->getType()); 4513 } 4514 4515 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4516 SCEV::NoWrapFlags Flags, 4517 unsigned Depth) { 4518 // Fast path: X - X --> 0. 4519 if (LHS == RHS) 4520 return getZero(LHS->getType()); 4521 4522 // If we subtract two pointers with different pointer bases, bail. 4523 // Eventually, we're going to add an assertion to getMulExpr that we 4524 // can't multiply by a pointer. 4525 if (RHS->getType()->isPointerTy()) { 4526 if (!LHS->getType()->isPointerTy() || 4527 getPointerBase(LHS) != getPointerBase(RHS)) 4528 return getCouldNotCompute(); 4529 LHS = removePointerBase(LHS); 4530 RHS = removePointerBase(RHS); 4531 } 4532 4533 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4534 // makes it so that we cannot make much use of NUW. 4535 auto AddFlags = SCEV::FlagAnyWrap; 4536 const bool RHSIsNotMinSigned = 4537 !getSignedRangeMin(RHS).isMinSignedValue(); 4538 if (hasFlags(Flags, SCEV::FlagNSW)) { 4539 // Let M be the minimum representable signed value. Then (-1)*RHS 4540 // signed-wraps if and only if RHS is M. That can happen even for 4541 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4542 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4543 // (-1)*RHS, we need to prove that RHS != M. 4544 // 4545 // If LHS is non-negative and we know that LHS - RHS does not 4546 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4547 // either by proving that RHS > M or that LHS >= 0. 4548 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4549 AddFlags = SCEV::FlagNSW; 4550 } 4551 } 4552 4553 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4554 // RHS is NSW and LHS >= 0. 4555 // 4556 // The difficulty here is that the NSW flag may have been proven 4557 // relative to a loop that is to be found in a recurrence in LHS and 4558 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4559 // larger scope than intended. 4560 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4561 4562 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4563 } 4564 4565 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4566 unsigned Depth) { 4567 Type *SrcTy = V->getType(); 4568 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4569 "Cannot truncate or zero extend with non-integer arguments!"); 4570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4571 return V; // No conversion 4572 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4573 return getTruncateExpr(V, Ty, Depth); 4574 return getZeroExtendExpr(V, Ty, Depth); 4575 } 4576 4577 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4578 unsigned Depth) { 4579 Type *SrcTy = V->getType(); 4580 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4581 "Cannot truncate or zero extend with non-integer arguments!"); 4582 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4583 return V; // No conversion 4584 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4585 return getTruncateExpr(V, Ty, Depth); 4586 return getSignExtendExpr(V, Ty, Depth); 4587 } 4588 4589 const SCEV * 4590 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4591 Type *SrcTy = V->getType(); 4592 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4593 "Cannot noop or zero extend with non-integer arguments!"); 4594 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4595 "getNoopOrZeroExtend cannot truncate!"); 4596 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4597 return V; // No conversion 4598 return getZeroExtendExpr(V, Ty); 4599 } 4600 4601 const SCEV * 4602 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4603 Type *SrcTy = V->getType(); 4604 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4605 "Cannot noop or sign extend with non-integer arguments!"); 4606 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4607 "getNoopOrSignExtend cannot truncate!"); 4608 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4609 return V; // No conversion 4610 return getSignExtendExpr(V, Ty); 4611 } 4612 4613 const SCEV * 4614 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4615 Type *SrcTy = V->getType(); 4616 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4617 "Cannot noop or any extend with non-integer arguments!"); 4618 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4619 "getNoopOrAnyExtend cannot truncate!"); 4620 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4621 return V; // No conversion 4622 return getAnyExtendExpr(V, Ty); 4623 } 4624 4625 const SCEV * 4626 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4627 Type *SrcTy = V->getType(); 4628 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4629 "Cannot truncate or noop with non-integer arguments!"); 4630 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4631 "getTruncateOrNoop cannot extend!"); 4632 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4633 return V; // No conversion 4634 return getTruncateExpr(V, Ty); 4635 } 4636 4637 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4638 const SCEV *RHS) { 4639 const SCEV *PromotedLHS = LHS; 4640 const SCEV *PromotedRHS = RHS; 4641 4642 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4643 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4644 else 4645 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4646 4647 return getUMaxExpr(PromotedLHS, PromotedRHS); 4648 } 4649 4650 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4651 const SCEV *RHS, 4652 bool Sequential) { 4653 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4654 return getUMinFromMismatchedTypes(Ops, Sequential); 4655 } 4656 4657 const SCEV * 4658 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4659 bool Sequential) { 4660 assert(!Ops.empty() && "At least one operand must be!"); 4661 // Trivial case. 4662 if (Ops.size() == 1) 4663 return Ops[0]; 4664 4665 // Find the max type first. 4666 Type *MaxType = nullptr; 4667 for (auto *S : Ops) 4668 if (MaxType) 4669 MaxType = getWiderType(MaxType, S->getType()); 4670 else 4671 MaxType = S->getType(); 4672 assert(MaxType && "Failed to find maximum type!"); 4673 4674 // Extend all ops to max type. 4675 SmallVector<const SCEV *, 2> PromotedOps; 4676 for (auto *S : Ops) 4677 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4678 4679 // Generate umin. 4680 return getUMinExpr(PromotedOps, Sequential); 4681 } 4682 4683 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4684 // A pointer operand may evaluate to a nonpointer expression, such as null. 4685 if (!V->getType()->isPointerTy()) 4686 return V; 4687 4688 while (true) { 4689 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4690 V = AddRec->getStart(); 4691 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4692 const SCEV *PtrOp = nullptr; 4693 for (const SCEV *AddOp : Add->operands()) { 4694 if (AddOp->getType()->isPointerTy()) { 4695 assert(!PtrOp && "Cannot have multiple pointer ops"); 4696 PtrOp = AddOp; 4697 } 4698 } 4699 assert(PtrOp && "Must have pointer op"); 4700 V = PtrOp; 4701 } else // Not something we can look further into. 4702 return V; 4703 } 4704 } 4705 4706 /// Push users of the given Instruction onto the given Worklist. 4707 static void PushDefUseChildren(Instruction *I, 4708 SmallVectorImpl<Instruction *> &Worklist, 4709 SmallPtrSetImpl<Instruction *> &Visited) { 4710 // Push the def-use children onto the Worklist stack. 4711 for (User *U : I->users()) { 4712 auto *UserInsn = cast<Instruction>(U); 4713 if (Visited.insert(UserInsn).second) 4714 Worklist.push_back(UserInsn); 4715 } 4716 } 4717 4718 namespace { 4719 4720 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4721 /// expression in case its Loop is L. If it is not L then 4722 /// if IgnoreOtherLoops is true then use AddRec itself 4723 /// otherwise rewrite cannot be done. 4724 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4725 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4726 public: 4727 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4728 bool IgnoreOtherLoops = true) { 4729 SCEVInitRewriter Rewriter(L, SE); 4730 const SCEV *Result = Rewriter.visit(S); 4731 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4732 return SE.getCouldNotCompute(); 4733 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4734 ? SE.getCouldNotCompute() 4735 : Result; 4736 } 4737 4738 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4739 if (!SE.isLoopInvariant(Expr, L)) 4740 SeenLoopVariantSCEVUnknown = true; 4741 return Expr; 4742 } 4743 4744 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4745 // Only re-write AddRecExprs for this loop. 4746 if (Expr->getLoop() == L) 4747 return Expr->getStart(); 4748 SeenOtherLoops = true; 4749 return Expr; 4750 } 4751 4752 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4753 4754 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4755 4756 private: 4757 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4758 : SCEVRewriteVisitor(SE), L(L) {} 4759 4760 const Loop *L; 4761 bool SeenLoopVariantSCEVUnknown = false; 4762 bool SeenOtherLoops = false; 4763 }; 4764 4765 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4766 /// increment expression in case its Loop is L. If it is not L then 4767 /// use AddRec itself. 4768 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4769 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4770 public: 4771 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4772 SCEVPostIncRewriter Rewriter(L, SE); 4773 const SCEV *Result = Rewriter.visit(S); 4774 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4775 ? SE.getCouldNotCompute() 4776 : Result; 4777 } 4778 4779 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4780 if (!SE.isLoopInvariant(Expr, L)) 4781 SeenLoopVariantSCEVUnknown = true; 4782 return Expr; 4783 } 4784 4785 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4786 // Only re-write AddRecExprs for this loop. 4787 if (Expr->getLoop() == L) 4788 return Expr->getPostIncExpr(SE); 4789 SeenOtherLoops = true; 4790 return Expr; 4791 } 4792 4793 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4794 4795 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4796 4797 private: 4798 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4799 : SCEVRewriteVisitor(SE), L(L) {} 4800 4801 const Loop *L; 4802 bool SeenLoopVariantSCEVUnknown = false; 4803 bool SeenOtherLoops = false; 4804 }; 4805 4806 /// This class evaluates the compare condition by matching it against the 4807 /// condition of loop latch. If there is a match we assume a true value 4808 /// for the condition while building SCEV nodes. 4809 class SCEVBackedgeConditionFolder 4810 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4811 public: 4812 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4813 ScalarEvolution &SE) { 4814 bool IsPosBECond = false; 4815 Value *BECond = nullptr; 4816 if (BasicBlock *Latch = L->getLoopLatch()) { 4817 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4818 if (BI && BI->isConditional()) { 4819 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4820 "Both outgoing branches should not target same header!"); 4821 BECond = BI->getCondition(); 4822 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4823 } else { 4824 return S; 4825 } 4826 } 4827 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4828 return Rewriter.visit(S); 4829 } 4830 4831 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4832 const SCEV *Result = Expr; 4833 bool InvariantF = SE.isLoopInvariant(Expr, L); 4834 4835 if (!InvariantF) { 4836 Instruction *I = cast<Instruction>(Expr->getValue()); 4837 switch (I->getOpcode()) { 4838 case Instruction::Select: { 4839 SelectInst *SI = cast<SelectInst>(I); 4840 Optional<const SCEV *> Res = 4841 compareWithBackedgeCondition(SI->getCondition()); 4842 if (Res.hasValue()) { 4843 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4844 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4845 } 4846 break; 4847 } 4848 default: { 4849 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4850 if (Res.hasValue()) 4851 Result = Res.getValue(); 4852 break; 4853 } 4854 } 4855 } 4856 return Result; 4857 } 4858 4859 private: 4860 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4861 bool IsPosBECond, ScalarEvolution &SE) 4862 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4863 IsPositiveBECond(IsPosBECond) {} 4864 4865 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4866 4867 const Loop *L; 4868 /// Loop back condition. 4869 Value *BackedgeCond = nullptr; 4870 /// Set to true if loop back is on positive branch condition. 4871 bool IsPositiveBECond; 4872 }; 4873 4874 Optional<const SCEV *> 4875 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4876 4877 // If value matches the backedge condition for loop latch, 4878 // then return a constant evolution node based on loopback 4879 // branch taken. 4880 if (BackedgeCond == IC) 4881 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4882 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4883 return None; 4884 } 4885 4886 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4887 public: 4888 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4889 ScalarEvolution &SE) { 4890 SCEVShiftRewriter Rewriter(L, SE); 4891 const SCEV *Result = Rewriter.visit(S); 4892 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4893 } 4894 4895 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4896 // Only allow AddRecExprs for this loop. 4897 if (!SE.isLoopInvariant(Expr, L)) 4898 Valid = false; 4899 return Expr; 4900 } 4901 4902 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4903 if (Expr->getLoop() == L && Expr->isAffine()) 4904 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4905 Valid = false; 4906 return Expr; 4907 } 4908 4909 bool isValid() { return Valid; } 4910 4911 private: 4912 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4913 : SCEVRewriteVisitor(SE), L(L) {} 4914 4915 const Loop *L; 4916 bool Valid = true; 4917 }; 4918 4919 } // end anonymous namespace 4920 4921 SCEV::NoWrapFlags 4922 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4923 if (!AR->isAffine()) 4924 return SCEV::FlagAnyWrap; 4925 4926 using OBO = OverflowingBinaryOperator; 4927 4928 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4929 4930 if (!AR->hasNoSignedWrap()) { 4931 ConstantRange AddRecRange = getSignedRange(AR); 4932 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4933 4934 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4935 Instruction::Add, IncRange, OBO::NoSignedWrap); 4936 if (NSWRegion.contains(AddRecRange)) 4937 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4938 } 4939 4940 if (!AR->hasNoUnsignedWrap()) { 4941 ConstantRange AddRecRange = getUnsignedRange(AR); 4942 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4943 4944 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4945 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4946 if (NUWRegion.contains(AddRecRange)) 4947 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4948 } 4949 4950 return Result; 4951 } 4952 4953 SCEV::NoWrapFlags 4954 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4955 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4956 4957 if (AR->hasNoSignedWrap()) 4958 return Result; 4959 4960 if (!AR->isAffine()) 4961 return Result; 4962 4963 const SCEV *Step = AR->getStepRecurrence(*this); 4964 const Loop *L = AR->getLoop(); 4965 4966 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4967 // Note that this serves two purposes: It filters out loops that are 4968 // simply not analyzable, and it covers the case where this code is 4969 // being called from within backedge-taken count analysis, such that 4970 // attempting to ask for the backedge-taken count would likely result 4971 // in infinite recursion. In the later case, the analysis code will 4972 // cope with a conservative value, and it will take care to purge 4973 // that value once it has finished. 4974 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4975 4976 // Normally, in the cases we can prove no-overflow via a 4977 // backedge guarding condition, we can also compute a backedge 4978 // taken count for the loop. The exceptions are assumptions and 4979 // guards present in the loop -- SCEV is not great at exploiting 4980 // these to compute max backedge taken counts, but can still use 4981 // these to prove lack of overflow. Use this fact to avoid 4982 // doing extra work that may not pay off. 4983 4984 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4985 AC.assumptions().empty()) 4986 return Result; 4987 4988 // If the backedge is guarded by a comparison with the pre-inc value the 4989 // addrec is safe. Also, if the entry is guarded by a comparison with the 4990 // start value and the backedge is guarded by a comparison with the post-inc 4991 // value, the addrec is safe. 4992 ICmpInst::Predicate Pred; 4993 const SCEV *OverflowLimit = 4994 getSignedOverflowLimitForStep(Step, &Pred, this); 4995 if (OverflowLimit && 4996 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4997 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4998 Result = setFlags(Result, SCEV::FlagNSW); 4999 } 5000 return Result; 5001 } 5002 SCEV::NoWrapFlags 5003 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5004 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5005 5006 if (AR->hasNoUnsignedWrap()) 5007 return Result; 5008 5009 if (!AR->isAffine()) 5010 return Result; 5011 5012 const SCEV *Step = AR->getStepRecurrence(*this); 5013 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5014 const Loop *L = AR->getLoop(); 5015 5016 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5017 // Note that this serves two purposes: It filters out loops that are 5018 // simply not analyzable, and it covers the case where this code is 5019 // being called from within backedge-taken count analysis, such that 5020 // attempting to ask for the backedge-taken count would likely result 5021 // in infinite recursion. In the later case, the analysis code will 5022 // cope with a conservative value, and it will take care to purge 5023 // that value once it has finished. 5024 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5025 5026 // Normally, in the cases we can prove no-overflow via a 5027 // backedge guarding condition, we can also compute a backedge 5028 // taken count for the loop. The exceptions are assumptions and 5029 // guards present in the loop -- SCEV is not great at exploiting 5030 // these to compute max backedge taken counts, but can still use 5031 // these to prove lack of overflow. Use this fact to avoid 5032 // doing extra work that may not pay off. 5033 5034 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5035 AC.assumptions().empty()) 5036 return Result; 5037 5038 // If the backedge is guarded by a comparison with the pre-inc value the 5039 // addrec is safe. Also, if the entry is guarded by a comparison with the 5040 // start value and the backedge is guarded by a comparison with the post-inc 5041 // value, the addrec is safe. 5042 if (isKnownPositive(Step)) { 5043 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5044 getUnsignedRangeMax(Step)); 5045 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5046 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5047 Result = setFlags(Result, SCEV::FlagNUW); 5048 } 5049 } 5050 5051 return Result; 5052 } 5053 5054 namespace { 5055 5056 /// Represents an abstract binary operation. This may exist as a 5057 /// normal instruction or constant expression, or may have been 5058 /// derived from an expression tree. 5059 struct BinaryOp { 5060 unsigned Opcode; 5061 Value *LHS; 5062 Value *RHS; 5063 bool IsNSW = false; 5064 bool IsNUW = false; 5065 5066 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5067 /// constant expression. 5068 Operator *Op = nullptr; 5069 5070 explicit BinaryOp(Operator *Op) 5071 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5072 Op(Op) { 5073 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5074 IsNSW = OBO->hasNoSignedWrap(); 5075 IsNUW = OBO->hasNoUnsignedWrap(); 5076 } 5077 } 5078 5079 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5080 bool IsNUW = false) 5081 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5082 }; 5083 5084 } // end anonymous namespace 5085 5086 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5087 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5088 auto *Op = dyn_cast<Operator>(V); 5089 if (!Op) 5090 return None; 5091 5092 // Implementation detail: all the cleverness here should happen without 5093 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5094 // SCEV expressions when possible, and we should not break that. 5095 5096 switch (Op->getOpcode()) { 5097 case Instruction::Add: 5098 case Instruction::Sub: 5099 case Instruction::Mul: 5100 case Instruction::UDiv: 5101 case Instruction::URem: 5102 case Instruction::And: 5103 case Instruction::Or: 5104 case Instruction::AShr: 5105 case Instruction::Shl: 5106 return BinaryOp(Op); 5107 5108 case Instruction::Xor: 5109 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5110 // If the RHS of the xor is a signmask, then this is just an add. 5111 // Instcombine turns add of signmask into xor as a strength reduction step. 5112 if (RHSC->getValue().isSignMask()) 5113 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5114 // Binary `xor` is a bit-wise `add`. 5115 if (V->getType()->isIntegerTy(1)) 5116 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5117 return BinaryOp(Op); 5118 5119 case Instruction::LShr: 5120 // Turn logical shift right of a constant into a unsigned divide. 5121 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5122 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5123 5124 // If the shift count is not less than the bitwidth, the result of 5125 // the shift is undefined. Don't try to analyze it, because the 5126 // resolution chosen here may differ from the resolution chosen in 5127 // other parts of the compiler. 5128 if (SA->getValue().ult(BitWidth)) { 5129 Constant *X = 5130 ConstantInt::get(SA->getContext(), 5131 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5132 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5133 } 5134 } 5135 return BinaryOp(Op); 5136 5137 case Instruction::ExtractValue: { 5138 auto *EVI = cast<ExtractValueInst>(Op); 5139 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5140 break; 5141 5142 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5143 if (!WO) 5144 break; 5145 5146 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5147 bool Signed = WO->isSigned(); 5148 // TODO: Should add nuw/nsw flags for mul as well. 5149 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5150 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5151 5152 // Now that we know that all uses of the arithmetic-result component of 5153 // CI are guarded by the overflow check, we can go ahead and pretend 5154 // that the arithmetic is non-overflowing. 5155 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5156 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5157 } 5158 5159 default: 5160 break; 5161 } 5162 5163 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5164 // semantics as a Sub, return a binary sub expression. 5165 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5166 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5167 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5168 5169 return None; 5170 } 5171 5172 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5173 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5174 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5175 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5176 /// follows one of the following patterns: 5177 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5178 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5179 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5180 /// we return the type of the truncation operation, and indicate whether the 5181 /// truncated type should be treated as signed/unsigned by setting 5182 /// \p Signed to true/false, respectively. 5183 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5184 bool &Signed, ScalarEvolution &SE) { 5185 // The case where Op == SymbolicPHI (that is, with no type conversions on 5186 // the way) is handled by the regular add recurrence creating logic and 5187 // would have already been triggered in createAddRecForPHI. Reaching it here 5188 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5189 // because one of the other operands of the SCEVAddExpr updating this PHI is 5190 // not invariant). 5191 // 5192 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5193 // this case predicates that allow us to prove that Op == SymbolicPHI will 5194 // be added. 5195 if (Op == SymbolicPHI) 5196 return nullptr; 5197 5198 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5199 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5200 if (SourceBits != NewBits) 5201 return nullptr; 5202 5203 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5204 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5205 if (!SExt && !ZExt) 5206 return nullptr; 5207 const SCEVTruncateExpr *Trunc = 5208 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5209 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5210 if (!Trunc) 5211 return nullptr; 5212 const SCEV *X = Trunc->getOperand(); 5213 if (X != SymbolicPHI) 5214 return nullptr; 5215 Signed = SExt != nullptr; 5216 return Trunc->getType(); 5217 } 5218 5219 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5220 if (!PN->getType()->isIntegerTy()) 5221 return nullptr; 5222 const Loop *L = LI.getLoopFor(PN->getParent()); 5223 if (!L || L->getHeader() != PN->getParent()) 5224 return nullptr; 5225 return L; 5226 } 5227 5228 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5229 // computation that updates the phi follows the following pattern: 5230 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5231 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5232 // If so, try to see if it can be rewritten as an AddRecExpr under some 5233 // Predicates. If successful, return them as a pair. Also cache the results 5234 // of the analysis. 5235 // 5236 // Example usage scenario: 5237 // Say the Rewriter is called for the following SCEV: 5238 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5239 // where: 5240 // %X = phi i64 (%Start, %BEValue) 5241 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5242 // and call this function with %SymbolicPHI = %X. 5243 // 5244 // The analysis will find that the value coming around the backedge has 5245 // the following SCEV: 5246 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5247 // Upon concluding that this matches the desired pattern, the function 5248 // will return the pair {NewAddRec, SmallPredsVec} where: 5249 // NewAddRec = {%Start,+,%Step} 5250 // SmallPredsVec = {P1, P2, P3} as follows: 5251 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5252 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5253 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5254 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5255 // under the predicates {P1,P2,P3}. 5256 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5257 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5258 // 5259 // TODO's: 5260 // 5261 // 1) Extend the Induction descriptor to also support inductions that involve 5262 // casts: When needed (namely, when we are called in the context of the 5263 // vectorizer induction analysis), a Set of cast instructions will be 5264 // populated by this method, and provided back to isInductionPHI. This is 5265 // needed to allow the vectorizer to properly record them to be ignored by 5266 // the cost model and to avoid vectorizing them (otherwise these casts, 5267 // which are redundant under the runtime overflow checks, will be 5268 // vectorized, which can be costly). 5269 // 5270 // 2) Support additional induction/PHISCEV patterns: We also want to support 5271 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5272 // after the induction update operation (the induction increment): 5273 // 5274 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5275 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5276 // 5277 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5278 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5279 // 5280 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5281 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5282 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5283 SmallVector<const SCEVPredicate *, 3> Predicates; 5284 5285 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5286 // return an AddRec expression under some predicate. 5287 5288 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5289 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5290 assert(L && "Expecting an integer loop header phi"); 5291 5292 // The loop may have multiple entrances or multiple exits; we can analyze 5293 // this phi as an addrec if it has a unique entry value and a unique 5294 // backedge value. 5295 Value *BEValueV = nullptr, *StartValueV = nullptr; 5296 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5297 Value *V = PN->getIncomingValue(i); 5298 if (L->contains(PN->getIncomingBlock(i))) { 5299 if (!BEValueV) { 5300 BEValueV = V; 5301 } else if (BEValueV != V) { 5302 BEValueV = nullptr; 5303 break; 5304 } 5305 } else if (!StartValueV) { 5306 StartValueV = V; 5307 } else if (StartValueV != V) { 5308 StartValueV = nullptr; 5309 break; 5310 } 5311 } 5312 if (!BEValueV || !StartValueV) 5313 return None; 5314 5315 const SCEV *BEValue = getSCEV(BEValueV); 5316 5317 // If the value coming around the backedge is an add with the symbolic 5318 // value we just inserted, possibly with casts that we can ignore under 5319 // an appropriate runtime guard, then we found a simple induction variable! 5320 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5321 if (!Add) 5322 return None; 5323 5324 // If there is a single occurrence of the symbolic value, possibly 5325 // casted, replace it with a recurrence. 5326 unsigned FoundIndex = Add->getNumOperands(); 5327 Type *TruncTy = nullptr; 5328 bool Signed; 5329 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5330 if ((TruncTy = 5331 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5332 if (FoundIndex == e) { 5333 FoundIndex = i; 5334 break; 5335 } 5336 5337 if (FoundIndex == Add->getNumOperands()) 5338 return None; 5339 5340 // Create an add with everything but the specified operand. 5341 SmallVector<const SCEV *, 8> Ops; 5342 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5343 if (i != FoundIndex) 5344 Ops.push_back(Add->getOperand(i)); 5345 const SCEV *Accum = getAddExpr(Ops); 5346 5347 // The runtime checks will not be valid if the step amount is 5348 // varying inside the loop. 5349 if (!isLoopInvariant(Accum, L)) 5350 return None; 5351 5352 // *** Part2: Create the predicates 5353 5354 // Analysis was successful: we have a phi-with-cast pattern for which we 5355 // can return an AddRec expression under the following predicates: 5356 // 5357 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5358 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5359 // P2: An Equal predicate that guarantees that 5360 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5361 // P3: An Equal predicate that guarantees that 5362 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5363 // 5364 // As we next prove, the above predicates guarantee that: 5365 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5366 // 5367 // 5368 // More formally, we want to prove that: 5369 // Expr(i+1) = Start + (i+1) * Accum 5370 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5371 // 5372 // Given that: 5373 // 1) Expr(0) = Start 5374 // 2) Expr(1) = Start + Accum 5375 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5376 // 3) Induction hypothesis (step i): 5377 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5378 // 5379 // Proof: 5380 // Expr(i+1) = 5381 // = Start + (i+1)*Accum 5382 // = (Start + i*Accum) + Accum 5383 // = Expr(i) + Accum 5384 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5385 // :: from step i 5386 // 5387 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5388 // 5389 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5390 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5391 // + Accum :: from P3 5392 // 5393 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5394 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5395 // 5396 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5397 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5398 // 5399 // By induction, the same applies to all iterations 1<=i<n: 5400 // 5401 5402 // Create a truncated addrec for which we will add a no overflow check (P1). 5403 const SCEV *StartVal = getSCEV(StartValueV); 5404 const SCEV *PHISCEV = 5405 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5406 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5407 5408 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5409 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5410 // will be constant. 5411 // 5412 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5413 // add P1. 5414 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5415 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5416 Signed ? SCEVWrapPredicate::IncrementNSSW 5417 : SCEVWrapPredicate::IncrementNUSW; 5418 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5419 Predicates.push_back(AddRecPred); 5420 } 5421 5422 // Create the Equal Predicates P2,P3: 5423 5424 // It is possible that the predicates P2 and/or P3 are computable at 5425 // compile time due to StartVal and/or Accum being constants. 5426 // If either one is, then we can check that now and escape if either P2 5427 // or P3 is false. 5428 5429 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5430 // for each of StartVal and Accum 5431 auto getExtendedExpr = [&](const SCEV *Expr, 5432 bool CreateSignExtend) -> const SCEV * { 5433 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5434 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5435 const SCEV *ExtendedExpr = 5436 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5437 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5438 return ExtendedExpr; 5439 }; 5440 5441 // Given: 5442 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5443 // = getExtendedExpr(Expr) 5444 // Determine whether the predicate P: Expr == ExtendedExpr 5445 // is known to be false at compile time 5446 auto PredIsKnownFalse = [&](const SCEV *Expr, 5447 const SCEV *ExtendedExpr) -> bool { 5448 return Expr != ExtendedExpr && 5449 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5450 }; 5451 5452 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5453 if (PredIsKnownFalse(StartVal, StartExtended)) { 5454 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5455 return None; 5456 } 5457 5458 // The Step is always Signed (because the overflow checks are either 5459 // NSSW or NUSW) 5460 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5461 if (PredIsKnownFalse(Accum, AccumExtended)) { 5462 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5463 return None; 5464 } 5465 5466 auto AppendPredicate = [&](const SCEV *Expr, 5467 const SCEV *ExtendedExpr) -> void { 5468 if (Expr != ExtendedExpr && 5469 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5470 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5471 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5472 Predicates.push_back(Pred); 5473 } 5474 }; 5475 5476 AppendPredicate(StartVal, StartExtended); 5477 AppendPredicate(Accum, AccumExtended); 5478 5479 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5480 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5481 // into NewAR if it will also add the runtime overflow checks specified in 5482 // Predicates. 5483 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5484 5485 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5486 std::make_pair(NewAR, Predicates); 5487 // Remember the result of the analysis for this SCEV at this locayyytion. 5488 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5489 return PredRewrite; 5490 } 5491 5492 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5493 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5494 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5495 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5496 if (!L) 5497 return None; 5498 5499 // Check to see if we already analyzed this PHI. 5500 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5501 if (I != PredicatedSCEVRewrites.end()) { 5502 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5503 I->second; 5504 // Analysis was done before and failed to create an AddRec: 5505 if (Rewrite.first == SymbolicPHI) 5506 return None; 5507 // Analysis was done before and succeeded to create an AddRec under 5508 // a predicate: 5509 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5510 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5511 return Rewrite; 5512 } 5513 5514 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5515 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5516 5517 // Record in the cache that the analysis failed 5518 if (!Rewrite) { 5519 SmallVector<const SCEVPredicate *, 3> Predicates; 5520 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5521 return None; 5522 } 5523 5524 return Rewrite; 5525 } 5526 5527 // FIXME: This utility is currently required because the Rewriter currently 5528 // does not rewrite this expression: 5529 // {0, +, (sext ix (trunc iy to ix) to iy)} 5530 // into {0, +, %step}, 5531 // even when the following Equal predicate exists: 5532 // "%step == (sext ix (trunc iy to ix) to iy)". 5533 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5534 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5535 if (AR1 == AR2) 5536 return true; 5537 5538 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5539 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5540 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5541 return false; 5542 return true; 5543 }; 5544 5545 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5546 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5547 return false; 5548 return true; 5549 } 5550 5551 /// A helper function for createAddRecFromPHI to handle simple cases. 5552 /// 5553 /// This function tries to find an AddRec expression for the simplest (yet most 5554 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5555 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5556 /// technique for finding the AddRec expression. 5557 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5558 Value *BEValueV, 5559 Value *StartValueV) { 5560 const Loop *L = LI.getLoopFor(PN->getParent()); 5561 assert(L && L->getHeader() == PN->getParent()); 5562 assert(BEValueV && StartValueV); 5563 5564 auto BO = MatchBinaryOp(BEValueV, DT); 5565 if (!BO) 5566 return nullptr; 5567 5568 if (BO->Opcode != Instruction::Add) 5569 return nullptr; 5570 5571 const SCEV *Accum = nullptr; 5572 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5573 Accum = getSCEV(BO->RHS); 5574 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5575 Accum = getSCEV(BO->LHS); 5576 5577 if (!Accum) 5578 return nullptr; 5579 5580 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5581 if (BO->IsNUW) 5582 Flags = setFlags(Flags, SCEV::FlagNUW); 5583 if (BO->IsNSW) 5584 Flags = setFlags(Flags, SCEV::FlagNSW); 5585 5586 const SCEV *StartVal = getSCEV(StartValueV); 5587 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5588 insertValueToMap(PN, PHISCEV); 5589 5590 // We can add Flags to the post-inc expression only if we 5591 // know that it is *undefined behavior* for BEValueV to 5592 // overflow. 5593 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5594 assert(isLoopInvariant(Accum, L) && 5595 "Accum is defined outside L, but is not invariant?"); 5596 if (isAddRecNeverPoison(BEInst, L)) 5597 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5598 } 5599 5600 return PHISCEV; 5601 } 5602 5603 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5604 const Loop *L = LI.getLoopFor(PN->getParent()); 5605 if (!L || L->getHeader() != PN->getParent()) 5606 return nullptr; 5607 5608 // The loop may have multiple entrances or multiple exits; we can analyze 5609 // this phi as an addrec if it has a unique entry value and a unique 5610 // backedge value. 5611 Value *BEValueV = nullptr, *StartValueV = nullptr; 5612 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5613 Value *V = PN->getIncomingValue(i); 5614 if (L->contains(PN->getIncomingBlock(i))) { 5615 if (!BEValueV) { 5616 BEValueV = V; 5617 } else if (BEValueV != V) { 5618 BEValueV = nullptr; 5619 break; 5620 } 5621 } else if (!StartValueV) { 5622 StartValueV = V; 5623 } else if (StartValueV != V) { 5624 StartValueV = nullptr; 5625 break; 5626 } 5627 } 5628 if (!BEValueV || !StartValueV) 5629 return nullptr; 5630 5631 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5632 "PHI node already processed?"); 5633 5634 // First, try to find AddRec expression without creating a fictituos symbolic 5635 // value for PN. 5636 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5637 return S; 5638 5639 // Handle PHI node value symbolically. 5640 const SCEV *SymbolicName = getUnknown(PN); 5641 insertValueToMap(PN, SymbolicName); 5642 5643 // Using this symbolic name for the PHI, analyze the value coming around 5644 // the back-edge. 5645 const SCEV *BEValue = getSCEV(BEValueV); 5646 5647 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5648 // has a special value for the first iteration of the loop. 5649 5650 // If the value coming around the backedge is an add with the symbolic 5651 // value we just inserted, then we found a simple induction variable! 5652 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5653 // If there is a single occurrence of the symbolic value, replace it 5654 // with a recurrence. 5655 unsigned FoundIndex = Add->getNumOperands(); 5656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5657 if (Add->getOperand(i) == SymbolicName) 5658 if (FoundIndex == e) { 5659 FoundIndex = i; 5660 break; 5661 } 5662 5663 if (FoundIndex != Add->getNumOperands()) { 5664 // Create an add with everything but the specified operand. 5665 SmallVector<const SCEV *, 8> Ops; 5666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5667 if (i != FoundIndex) 5668 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5669 L, *this)); 5670 const SCEV *Accum = getAddExpr(Ops); 5671 5672 // This is not a valid addrec if the step amount is varying each 5673 // loop iteration, but is not itself an addrec in this loop. 5674 if (isLoopInvariant(Accum, L) || 5675 (isa<SCEVAddRecExpr>(Accum) && 5676 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5677 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5678 5679 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5680 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5681 if (BO->IsNUW) 5682 Flags = setFlags(Flags, SCEV::FlagNUW); 5683 if (BO->IsNSW) 5684 Flags = setFlags(Flags, SCEV::FlagNSW); 5685 } 5686 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5687 // If the increment is an inbounds GEP, then we know the address 5688 // space cannot be wrapped around. We cannot make any guarantee 5689 // about signed or unsigned overflow because pointers are 5690 // unsigned but we may have a negative index from the base 5691 // pointer. We can guarantee that no unsigned wrap occurs if the 5692 // indices form a positive value. 5693 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5694 Flags = setFlags(Flags, SCEV::FlagNW); 5695 5696 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5697 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5698 Flags = setFlags(Flags, SCEV::FlagNUW); 5699 } 5700 5701 // We cannot transfer nuw and nsw flags from subtraction 5702 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5703 // for instance. 5704 } 5705 5706 const SCEV *StartVal = getSCEV(StartValueV); 5707 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5708 5709 // Okay, for the entire analysis of this edge we assumed the PHI 5710 // to be symbolic. We now need to go back and purge all of the 5711 // entries for the scalars that use the symbolic expression. 5712 forgetMemoizedResults(SymbolicName); 5713 insertValueToMap(PN, PHISCEV); 5714 5715 // We can add Flags to the post-inc expression only if we 5716 // know that it is *undefined behavior* for BEValueV to 5717 // overflow. 5718 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5719 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5720 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5721 5722 return PHISCEV; 5723 } 5724 } 5725 } else { 5726 // Otherwise, this could be a loop like this: 5727 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5728 // In this case, j = {1,+,1} and BEValue is j. 5729 // Because the other in-value of i (0) fits the evolution of BEValue 5730 // i really is an addrec evolution. 5731 // 5732 // We can generalize this saying that i is the shifted value of BEValue 5733 // by one iteration: 5734 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5735 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5736 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5737 if (Shifted != getCouldNotCompute() && 5738 Start != getCouldNotCompute()) { 5739 const SCEV *StartVal = getSCEV(StartValueV); 5740 if (Start == StartVal) { 5741 // Okay, for the entire analysis of this edge we assumed the PHI 5742 // to be symbolic. We now need to go back and purge all of the 5743 // entries for the scalars that use the symbolic expression. 5744 forgetMemoizedResults(SymbolicName); 5745 insertValueToMap(PN, Shifted); 5746 return Shifted; 5747 } 5748 } 5749 } 5750 5751 // Remove the temporary PHI node SCEV that has been inserted while intending 5752 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5753 // as it will prevent later (possibly simpler) SCEV expressions to be added 5754 // to the ValueExprMap. 5755 eraseValueFromMap(PN); 5756 5757 return nullptr; 5758 } 5759 5760 // Checks if the SCEV S is available at BB. S is considered available at BB 5761 // if S can be materialized at BB without introducing a fault. 5762 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5763 BasicBlock *BB) { 5764 struct CheckAvailable { 5765 bool TraversalDone = false; 5766 bool Available = true; 5767 5768 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5769 BasicBlock *BB = nullptr; 5770 DominatorTree &DT; 5771 5772 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5773 : L(L), BB(BB), DT(DT) {} 5774 5775 bool setUnavailable() { 5776 TraversalDone = true; 5777 Available = false; 5778 return false; 5779 } 5780 5781 bool follow(const SCEV *S) { 5782 switch (S->getSCEVType()) { 5783 case scConstant: 5784 case scPtrToInt: 5785 case scTruncate: 5786 case scZeroExtend: 5787 case scSignExtend: 5788 case scAddExpr: 5789 case scMulExpr: 5790 case scUMaxExpr: 5791 case scSMaxExpr: 5792 case scUMinExpr: 5793 case scSMinExpr: 5794 case scSequentialUMinExpr: 5795 // These expressions are available if their operand(s) is/are. 5796 return true; 5797 5798 case scAddRecExpr: { 5799 // We allow add recurrences that are on the loop BB is in, or some 5800 // outer loop. This guarantees availability because the value of the 5801 // add recurrence at BB is simply the "current" value of the induction 5802 // variable. We can relax this in the future; for instance an add 5803 // recurrence on a sibling dominating loop is also available at BB. 5804 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5805 if (L && (ARLoop == L || ARLoop->contains(L))) 5806 return true; 5807 5808 return setUnavailable(); 5809 } 5810 5811 case scUnknown: { 5812 // For SCEVUnknown, we check for simple dominance. 5813 const auto *SU = cast<SCEVUnknown>(S); 5814 Value *V = SU->getValue(); 5815 5816 if (isa<Argument>(V)) 5817 return false; 5818 5819 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5820 return false; 5821 5822 return setUnavailable(); 5823 } 5824 5825 case scUDivExpr: 5826 case scCouldNotCompute: 5827 // We do not try to smart about these at all. 5828 return setUnavailable(); 5829 } 5830 llvm_unreachable("Unknown SCEV kind!"); 5831 } 5832 5833 bool isDone() { return TraversalDone; } 5834 }; 5835 5836 CheckAvailable CA(L, BB, DT); 5837 SCEVTraversal<CheckAvailable> ST(CA); 5838 5839 ST.visitAll(S); 5840 return CA.Available; 5841 } 5842 5843 // Try to match a control flow sequence that branches out at BI and merges back 5844 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5845 // match. 5846 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5847 Value *&C, Value *&LHS, Value *&RHS) { 5848 C = BI->getCondition(); 5849 5850 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5851 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5852 5853 if (!LeftEdge.isSingleEdge()) 5854 return false; 5855 5856 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5857 5858 Use &LeftUse = Merge->getOperandUse(0); 5859 Use &RightUse = Merge->getOperandUse(1); 5860 5861 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5862 LHS = LeftUse; 5863 RHS = RightUse; 5864 return true; 5865 } 5866 5867 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5868 LHS = RightUse; 5869 RHS = LeftUse; 5870 return true; 5871 } 5872 5873 return false; 5874 } 5875 5876 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5877 auto IsReachable = 5878 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5879 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5880 const Loop *L = LI.getLoopFor(PN->getParent()); 5881 5882 // We don't want to break LCSSA, even in a SCEV expression tree. 5883 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5884 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5885 return nullptr; 5886 5887 // Try to match 5888 // 5889 // br %cond, label %left, label %right 5890 // left: 5891 // br label %merge 5892 // right: 5893 // br label %merge 5894 // merge: 5895 // V = phi [ %x, %left ], [ %y, %right ] 5896 // 5897 // as "select %cond, %x, %y" 5898 5899 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5900 assert(IDom && "At least the entry block should dominate PN"); 5901 5902 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5903 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5904 5905 if (BI && BI->isConditional() && 5906 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5907 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5908 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5909 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5910 } 5911 5912 return nullptr; 5913 } 5914 5915 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5916 if (const SCEV *S = createAddRecFromPHI(PN)) 5917 return S; 5918 5919 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5920 return S; 5921 5922 // If the PHI has a single incoming value, follow that value, unless the 5923 // PHI's incoming blocks are in a different loop, in which case doing so 5924 // risks breaking LCSSA form. Instcombine would normally zap these, but 5925 // it doesn't have DominatorTree information, so it may miss cases. 5926 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5927 if (LI.replacementPreservesLCSSAForm(PN, V)) 5928 return getSCEV(V); 5929 5930 // If it's not a loop phi, we can't handle it yet. 5931 return getUnknown(PN); 5932 } 5933 5934 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5935 SCEVTypes RootKind) { 5936 struct FindClosure { 5937 const SCEV *OperandToFind; 5938 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5939 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5940 5941 bool Found = false; 5942 5943 bool canRecurseInto(SCEVTypes Kind) const { 5944 // We can only recurse into the SCEV expression of the same effective type 5945 // as the type of our root SCEV expression, and into zero-extensions. 5946 return RootKind == Kind || NonSequentialRootKind == Kind || 5947 scZeroExtend == Kind; 5948 }; 5949 5950 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5951 : OperandToFind(OperandToFind), RootKind(RootKind), 5952 NonSequentialRootKind( 5953 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5954 RootKind)) {} 5955 5956 bool follow(const SCEV *S) { 5957 Found = S == OperandToFind; 5958 5959 return !isDone() && canRecurseInto(S->getSCEVType()); 5960 } 5961 5962 bool isDone() const { return Found; } 5963 }; 5964 5965 FindClosure FC(OperandToFind, RootKind); 5966 visitAll(Root, FC); 5967 return FC.Found; 5968 } 5969 5970 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5971 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5972 // Try to match some simple smax or umax patterns. 5973 auto *ICI = Cond; 5974 5975 Value *LHS = ICI->getOperand(0); 5976 Value *RHS = ICI->getOperand(1); 5977 5978 switch (ICI->getPredicate()) { 5979 case ICmpInst::ICMP_SLT: 5980 case ICmpInst::ICMP_SLE: 5981 case ICmpInst::ICMP_ULT: 5982 case ICmpInst::ICMP_ULE: 5983 std::swap(LHS, RHS); 5984 LLVM_FALLTHROUGH; 5985 case ICmpInst::ICMP_SGT: 5986 case ICmpInst::ICMP_SGE: 5987 case ICmpInst::ICMP_UGT: 5988 case ICmpInst::ICMP_UGE: 5989 // a > b ? a+x : b+x -> max(a, b)+x 5990 // a > b ? b+x : a+x -> min(a, b)+x 5991 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5992 bool Signed = ICI->isSigned(); 5993 const SCEV *LA = getSCEV(TrueVal); 5994 const SCEV *RA = getSCEV(FalseVal); 5995 const SCEV *LS = getSCEV(LHS); 5996 const SCEV *RS = getSCEV(RHS); 5997 if (LA->getType()->isPointerTy()) { 5998 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5999 // Need to make sure we can't produce weird expressions involving 6000 // negated pointers. 6001 if (LA == LS && RA == RS) 6002 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6003 if (LA == RS && RA == LS) 6004 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6005 } 6006 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6007 if (Op->getType()->isPointerTy()) { 6008 Op = getLosslessPtrToIntExpr(Op); 6009 if (isa<SCEVCouldNotCompute>(Op)) 6010 return Op; 6011 } 6012 if (Signed) 6013 Op = getNoopOrSignExtend(Op, I->getType()); 6014 else 6015 Op = getNoopOrZeroExtend(Op, I->getType()); 6016 return Op; 6017 }; 6018 LS = CoerceOperand(LS); 6019 RS = CoerceOperand(RS); 6020 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6021 break; 6022 const SCEV *LDiff = getMinusSCEV(LA, LS); 6023 const SCEV *RDiff = getMinusSCEV(RA, RS); 6024 if (LDiff == RDiff) 6025 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6026 LDiff); 6027 LDiff = getMinusSCEV(LA, RS); 6028 RDiff = getMinusSCEV(RA, LS); 6029 if (LDiff == RDiff) 6030 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6031 LDiff); 6032 } 6033 break; 6034 case ICmpInst::ICMP_NE: 6035 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6036 std::swap(TrueVal, FalseVal); 6037 LLVM_FALLTHROUGH; 6038 case ICmpInst::ICMP_EQ: 6039 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6040 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6041 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6042 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6043 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6044 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6045 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6046 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6047 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6048 return getAddExpr(getUMaxExpr(X, C), Y); 6049 } 6050 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6051 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6052 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6053 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6054 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6055 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6056 const SCEV *X = getSCEV(LHS); 6057 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6058 X = ZExt->getOperand(); 6059 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6060 const SCEV *FalseValExpr = getSCEV(FalseVal); 6061 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6062 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6063 /*Sequential=*/true); 6064 } 6065 } 6066 break; 6067 default: 6068 break; 6069 } 6070 6071 return getUnknown(I); 6072 } 6073 6074 static Optional<const SCEV *> 6075 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6076 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6077 assert(CondExpr->getType()->isIntegerTy(1) && 6078 TrueExpr->getType() == FalseExpr->getType() && 6079 TrueExpr->getType()->isIntegerTy(1) && 6080 "Unexpected operands of a select."); 6081 6082 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6083 // --> C + (umin_seq cond, x - C) 6084 // 6085 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6086 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6087 // --> C + (umin_seq ~cond, x - C) 6088 6089 // FIXME: while we can't legally model the case where both of the hands 6090 // are fully variable, we only require that the *difference* is constant. 6091 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6092 return None; 6093 6094 const SCEV *X, *C; 6095 if (isa<SCEVConstant>(TrueExpr)) { 6096 CondExpr = SE->getNotSCEV(CondExpr); 6097 X = FalseExpr; 6098 C = TrueExpr; 6099 } else { 6100 X = TrueExpr; 6101 C = FalseExpr; 6102 } 6103 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6104 /*Sequential=*/true)); 6105 } 6106 6107 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE, 6108 Value *Cond, 6109 Value *TrueVal, 6110 Value *FalseVal) { 6111 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6112 return None; 6113 6114 return createNodeForSelectViaUMinSeq( 6115 SE, SE->getSCEV(Cond), SE->getSCEV(TrueVal), SE->getSCEV(FalseVal)); 6116 } 6117 6118 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6119 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6120 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6121 assert(TrueVal->getType() == FalseVal->getType() && 6122 V->getType() == TrueVal->getType() && 6123 "Types of select hands and of the result must match."); 6124 6125 // For now, only deal with i1-typed `select`s. 6126 if (!V->getType()->isIntegerTy(1)) 6127 return getUnknown(V); 6128 6129 if (Optional<const SCEV *> S = 6130 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6131 return *S; 6132 6133 return getUnknown(V); 6134 } 6135 6136 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6137 Value *TrueVal, 6138 Value *FalseVal) { 6139 // Handle "constant" branch or select. This can occur for instance when a 6140 // loop pass transforms an inner loop and moves on to process the outer loop. 6141 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6142 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6143 6144 if (auto *I = dyn_cast<Instruction>(V)) { 6145 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6146 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6147 I, ICI, TrueVal, FalseVal); 6148 if (!isa<SCEVUnknown>(S)) 6149 return S; 6150 } 6151 } 6152 6153 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6154 } 6155 6156 /// Expand GEP instructions into add and multiply operations. This allows them 6157 /// to be analyzed by regular SCEV code. 6158 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6159 // Don't attempt to analyze GEPs over unsized objects. 6160 if (!GEP->getSourceElementType()->isSized()) 6161 return getUnknown(GEP); 6162 6163 SmallVector<const SCEV *, 4> IndexExprs; 6164 for (Value *Index : GEP->indices()) 6165 IndexExprs.push_back(getSCEV(Index)); 6166 return getGEPExpr(GEP, IndexExprs); 6167 } 6168 6169 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6170 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6171 return C->getAPInt().countTrailingZeros(); 6172 6173 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6174 return GetMinTrailingZeros(I->getOperand()); 6175 6176 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6177 return std::min(GetMinTrailingZeros(T->getOperand()), 6178 (uint32_t)getTypeSizeInBits(T->getType())); 6179 6180 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6181 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6182 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6183 ? getTypeSizeInBits(E->getType()) 6184 : OpRes; 6185 } 6186 6187 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6188 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6189 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6190 ? getTypeSizeInBits(E->getType()) 6191 : OpRes; 6192 } 6193 6194 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6195 // The result is the min of all operands results. 6196 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6197 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6198 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6199 return MinOpRes; 6200 } 6201 6202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6203 // The result is the sum of all operands results. 6204 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6205 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6206 for (unsigned i = 1, e = M->getNumOperands(); 6207 SumOpRes != BitWidth && i != e; ++i) 6208 SumOpRes = 6209 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6210 return SumOpRes; 6211 } 6212 6213 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6214 // The result is the min of all operands results. 6215 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6216 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6217 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6218 return MinOpRes; 6219 } 6220 6221 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6222 // The result is the min of all operands results. 6223 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6224 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6225 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6226 return MinOpRes; 6227 } 6228 6229 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6230 // The result is the min of all operands results. 6231 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6232 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6233 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6234 return MinOpRes; 6235 } 6236 6237 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6238 // For a SCEVUnknown, ask ValueTracking. 6239 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6240 return Known.countMinTrailingZeros(); 6241 } 6242 6243 // SCEVUDivExpr 6244 return 0; 6245 } 6246 6247 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6248 auto I = MinTrailingZerosCache.find(S); 6249 if (I != MinTrailingZerosCache.end()) 6250 return I->second; 6251 6252 uint32_t Result = GetMinTrailingZerosImpl(S); 6253 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6254 assert(InsertPair.second && "Should insert a new key"); 6255 return InsertPair.first->second; 6256 } 6257 6258 /// Helper method to assign a range to V from metadata present in the IR. 6259 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6260 if (Instruction *I = dyn_cast<Instruction>(V)) 6261 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6262 return getConstantRangeFromMetadata(*MD); 6263 6264 return None; 6265 } 6266 6267 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6268 SCEV::NoWrapFlags Flags) { 6269 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6270 AddRec->setNoWrapFlags(Flags); 6271 UnsignedRanges.erase(AddRec); 6272 SignedRanges.erase(AddRec); 6273 } 6274 } 6275 6276 ConstantRange ScalarEvolution:: 6277 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6278 const DataLayout &DL = getDataLayout(); 6279 6280 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6281 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6282 6283 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6284 // use information about the trip count to improve our available range. Note 6285 // that the trip count independent cases are already handled by known bits. 6286 // WARNING: The definition of recurrence used here is subtly different than 6287 // the one used by AddRec (and thus most of this file). Step is allowed to 6288 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6289 // and other addrecs in the same loop (for non-affine addrecs). The code 6290 // below intentionally handles the case where step is not loop invariant. 6291 auto *P = dyn_cast<PHINode>(U->getValue()); 6292 if (!P) 6293 return FullSet; 6294 6295 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6296 // even the values that are not available in these blocks may come from them, 6297 // and this leads to false-positive recurrence test. 6298 for (auto *Pred : predecessors(P->getParent())) 6299 if (!DT.isReachableFromEntry(Pred)) 6300 return FullSet; 6301 6302 BinaryOperator *BO; 6303 Value *Start, *Step; 6304 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6305 return FullSet; 6306 6307 // If we found a recurrence in reachable code, we must be in a loop. Note 6308 // that BO might be in some subloop of L, and that's completely okay. 6309 auto *L = LI.getLoopFor(P->getParent()); 6310 assert(L && L->getHeader() == P->getParent()); 6311 if (!L->contains(BO->getParent())) 6312 // NOTE: This bailout should be an assert instead. However, asserting 6313 // the condition here exposes a case where LoopFusion is querying SCEV 6314 // with malformed loop information during the midst of the transform. 6315 // There doesn't appear to be an obvious fix, so for the moment bailout 6316 // until the caller issue can be fixed. PR49566 tracks the bug. 6317 return FullSet; 6318 6319 // TODO: Extend to other opcodes such as mul, and div 6320 switch (BO->getOpcode()) { 6321 default: 6322 return FullSet; 6323 case Instruction::AShr: 6324 case Instruction::LShr: 6325 case Instruction::Shl: 6326 break; 6327 }; 6328 6329 if (BO->getOperand(0) != P) 6330 // TODO: Handle the power function forms some day. 6331 return FullSet; 6332 6333 unsigned TC = getSmallConstantMaxTripCount(L); 6334 if (!TC || TC >= BitWidth) 6335 return FullSet; 6336 6337 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6338 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6339 assert(KnownStart.getBitWidth() == BitWidth && 6340 KnownStep.getBitWidth() == BitWidth); 6341 6342 // Compute total shift amount, being careful of overflow and bitwidths. 6343 auto MaxShiftAmt = KnownStep.getMaxValue(); 6344 APInt TCAP(BitWidth, TC-1); 6345 bool Overflow = false; 6346 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6347 if (Overflow) 6348 return FullSet; 6349 6350 switch (BO->getOpcode()) { 6351 default: 6352 llvm_unreachable("filtered out above"); 6353 case Instruction::AShr: { 6354 // For each ashr, three cases: 6355 // shift = 0 => unchanged value 6356 // saturation => 0 or -1 6357 // other => a value closer to zero (of the same sign) 6358 // Thus, the end value is closer to zero than the start. 6359 auto KnownEnd = KnownBits::ashr(KnownStart, 6360 KnownBits::makeConstant(TotalShift)); 6361 if (KnownStart.isNonNegative()) 6362 // Analogous to lshr (simply not yet canonicalized) 6363 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6364 KnownStart.getMaxValue() + 1); 6365 if (KnownStart.isNegative()) 6366 // End >=u Start && End <=s Start 6367 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6368 KnownEnd.getMaxValue() + 1); 6369 break; 6370 } 6371 case Instruction::LShr: { 6372 // For each lshr, three cases: 6373 // shift = 0 => unchanged value 6374 // saturation => 0 6375 // other => a smaller positive number 6376 // Thus, the low end of the unsigned range is the last value produced. 6377 auto KnownEnd = KnownBits::lshr(KnownStart, 6378 KnownBits::makeConstant(TotalShift)); 6379 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6380 KnownStart.getMaxValue() + 1); 6381 } 6382 case Instruction::Shl: { 6383 // Iff no bits are shifted out, value increases on every shift. 6384 auto KnownEnd = KnownBits::shl(KnownStart, 6385 KnownBits::makeConstant(TotalShift)); 6386 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6387 return ConstantRange(KnownStart.getMinValue(), 6388 KnownEnd.getMaxValue() + 1); 6389 break; 6390 } 6391 }; 6392 return FullSet; 6393 } 6394 6395 /// Determine the range for a particular SCEV. If SignHint is 6396 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6397 /// with a "cleaner" unsigned (resp. signed) representation. 6398 const ConstantRange & 6399 ScalarEvolution::getRangeRef(const SCEV *S, 6400 ScalarEvolution::RangeSignHint SignHint) { 6401 DenseMap<const SCEV *, ConstantRange> &Cache = 6402 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6403 : SignedRanges; 6404 ConstantRange::PreferredRangeType RangeType = 6405 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6406 ? ConstantRange::Unsigned : ConstantRange::Signed; 6407 6408 // See if we've computed this range already. 6409 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6410 if (I != Cache.end()) 6411 return I->second; 6412 6413 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6414 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6415 6416 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6417 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6418 using OBO = OverflowingBinaryOperator; 6419 6420 // If the value has known zeros, the maximum value will have those known zeros 6421 // as well. 6422 uint32_t TZ = GetMinTrailingZeros(S); 6423 if (TZ != 0) { 6424 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6425 ConservativeResult = 6426 ConstantRange(APInt::getMinValue(BitWidth), 6427 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6428 else 6429 ConservativeResult = ConstantRange( 6430 APInt::getSignedMinValue(BitWidth), 6431 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6432 } 6433 6434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6435 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6436 unsigned WrapType = OBO::AnyWrap; 6437 if (Add->hasNoSignedWrap()) 6438 WrapType |= OBO::NoSignedWrap; 6439 if (Add->hasNoUnsignedWrap()) 6440 WrapType |= OBO::NoUnsignedWrap; 6441 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6442 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6443 WrapType, RangeType); 6444 return setRange(Add, SignHint, 6445 ConservativeResult.intersectWith(X, RangeType)); 6446 } 6447 6448 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6449 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6450 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6451 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6452 return setRange(Mul, SignHint, 6453 ConservativeResult.intersectWith(X, RangeType)); 6454 } 6455 6456 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6457 Intrinsic::ID ID; 6458 switch (S->getSCEVType()) { 6459 case scUMaxExpr: 6460 ID = Intrinsic::umax; 6461 break; 6462 case scSMaxExpr: 6463 ID = Intrinsic::smax; 6464 break; 6465 case scUMinExpr: 6466 case scSequentialUMinExpr: 6467 ID = Intrinsic::umin; 6468 break; 6469 case scSMinExpr: 6470 ID = Intrinsic::smin; 6471 break; 6472 default: 6473 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6474 } 6475 6476 const auto *NAry = cast<SCEVNAryExpr>(S); 6477 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6478 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6479 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6480 return setRange(S, SignHint, 6481 ConservativeResult.intersectWith(X, RangeType)); 6482 } 6483 6484 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6485 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6486 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6487 return setRange(UDiv, SignHint, 6488 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6489 } 6490 6491 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6492 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6493 return setRange(ZExt, SignHint, 6494 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6495 RangeType)); 6496 } 6497 6498 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6499 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6500 return setRange(SExt, SignHint, 6501 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6502 RangeType)); 6503 } 6504 6505 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6506 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6507 return setRange(PtrToInt, SignHint, X); 6508 } 6509 6510 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6511 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6512 return setRange(Trunc, SignHint, 6513 ConservativeResult.intersectWith(X.truncate(BitWidth), 6514 RangeType)); 6515 } 6516 6517 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6518 // If there's no unsigned wrap, the value will never be less than its 6519 // initial value. 6520 if (AddRec->hasNoUnsignedWrap()) { 6521 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6522 if (!UnsignedMinValue.isZero()) 6523 ConservativeResult = ConservativeResult.intersectWith( 6524 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6525 } 6526 6527 // If there's no signed wrap, and all the operands except initial value have 6528 // the same sign or zero, the value won't ever be: 6529 // 1: smaller than initial value if operands are non negative, 6530 // 2: bigger than initial value if operands are non positive. 6531 // For both cases, value can not cross signed min/max boundary. 6532 if (AddRec->hasNoSignedWrap()) { 6533 bool AllNonNeg = true; 6534 bool AllNonPos = true; 6535 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6536 if (!isKnownNonNegative(AddRec->getOperand(i))) 6537 AllNonNeg = false; 6538 if (!isKnownNonPositive(AddRec->getOperand(i))) 6539 AllNonPos = false; 6540 } 6541 if (AllNonNeg) 6542 ConservativeResult = ConservativeResult.intersectWith( 6543 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6544 APInt::getSignedMinValue(BitWidth)), 6545 RangeType); 6546 else if (AllNonPos) 6547 ConservativeResult = ConservativeResult.intersectWith( 6548 ConstantRange::getNonEmpty( 6549 APInt::getSignedMinValue(BitWidth), 6550 getSignedRangeMax(AddRec->getStart()) + 1), 6551 RangeType); 6552 } 6553 6554 // TODO: non-affine addrec 6555 if (AddRec->isAffine()) { 6556 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6557 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6558 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6559 auto RangeFromAffine = getRangeForAffineAR( 6560 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6561 BitWidth); 6562 ConservativeResult = 6563 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6564 6565 auto RangeFromFactoring = getRangeViaFactoring( 6566 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6567 BitWidth); 6568 ConservativeResult = 6569 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6570 } 6571 6572 // Now try symbolic BE count and more powerful methods. 6573 if (UseExpensiveRangeSharpening) { 6574 const SCEV *SymbolicMaxBECount = 6575 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6576 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6577 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6578 AddRec->hasNoSelfWrap()) { 6579 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6580 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6581 ConservativeResult = 6582 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6583 } 6584 } 6585 } 6586 6587 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6588 } 6589 6590 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6591 6592 // Check if the IR explicitly contains !range metadata. 6593 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6594 if (MDRange.hasValue()) 6595 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6596 RangeType); 6597 6598 // Use facts about recurrences in the underlying IR. Note that add 6599 // recurrences are AddRecExprs and thus don't hit this path. This 6600 // primarily handles shift recurrences. 6601 auto CR = getRangeForUnknownRecurrence(U); 6602 ConservativeResult = ConservativeResult.intersectWith(CR); 6603 6604 // See if ValueTracking can give us a useful range. 6605 const DataLayout &DL = getDataLayout(); 6606 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6607 if (Known.getBitWidth() != BitWidth) 6608 Known = Known.zextOrTrunc(BitWidth); 6609 6610 // ValueTracking may be able to compute a tighter result for the number of 6611 // sign bits than for the value of those sign bits. 6612 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6613 if (U->getType()->isPointerTy()) { 6614 // If the pointer size is larger than the index size type, this can cause 6615 // NS to be larger than BitWidth. So compensate for this. 6616 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6617 int ptrIdxDiff = ptrSize - BitWidth; 6618 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6619 NS -= ptrIdxDiff; 6620 } 6621 6622 if (NS > 1) { 6623 // If we know any of the sign bits, we know all of the sign bits. 6624 if (!Known.Zero.getHiBits(NS).isZero()) 6625 Known.Zero.setHighBits(NS); 6626 if (!Known.One.getHiBits(NS).isZero()) 6627 Known.One.setHighBits(NS); 6628 } 6629 6630 if (Known.getMinValue() != Known.getMaxValue() + 1) 6631 ConservativeResult = ConservativeResult.intersectWith( 6632 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6633 RangeType); 6634 if (NS > 1) 6635 ConservativeResult = ConservativeResult.intersectWith( 6636 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6637 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6638 RangeType); 6639 6640 // A range of Phi is a subset of union of all ranges of its input. 6641 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6642 // Make sure that we do not run over cycled Phis. 6643 if (PendingPhiRanges.insert(Phi).second) { 6644 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6645 for (auto &Op : Phi->operands()) { 6646 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6647 RangeFromOps = RangeFromOps.unionWith(OpRange); 6648 // No point to continue if we already have a full set. 6649 if (RangeFromOps.isFullSet()) 6650 break; 6651 } 6652 ConservativeResult = 6653 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6654 bool Erased = PendingPhiRanges.erase(Phi); 6655 assert(Erased && "Failed to erase Phi properly?"); 6656 (void) Erased; 6657 } 6658 } 6659 6660 return setRange(U, SignHint, std::move(ConservativeResult)); 6661 } 6662 6663 return setRange(S, SignHint, std::move(ConservativeResult)); 6664 } 6665 6666 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6667 // values that the expression can take. Initially, the expression has a value 6668 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6669 // argument defines if we treat Step as signed or unsigned. 6670 static ConstantRange getRangeForAffineARHelper(APInt Step, 6671 const ConstantRange &StartRange, 6672 const APInt &MaxBECount, 6673 unsigned BitWidth, bool Signed) { 6674 // If either Step or MaxBECount is 0, then the expression won't change, and we 6675 // just need to return the initial range. 6676 if (Step == 0 || MaxBECount == 0) 6677 return StartRange; 6678 6679 // If we don't know anything about the initial value (i.e. StartRange is 6680 // FullRange), then we don't know anything about the final range either. 6681 // Return FullRange. 6682 if (StartRange.isFullSet()) 6683 return ConstantRange::getFull(BitWidth); 6684 6685 // If Step is signed and negative, then we use its absolute value, but we also 6686 // note that we're moving in the opposite direction. 6687 bool Descending = Signed && Step.isNegative(); 6688 6689 if (Signed) 6690 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6691 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6692 // This equations hold true due to the well-defined wrap-around behavior of 6693 // APInt. 6694 Step = Step.abs(); 6695 6696 // Check if Offset is more than full span of BitWidth. If it is, the 6697 // expression is guaranteed to overflow. 6698 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6699 return ConstantRange::getFull(BitWidth); 6700 6701 // Offset is by how much the expression can change. Checks above guarantee no 6702 // overflow here. 6703 APInt Offset = Step * MaxBECount; 6704 6705 // Minimum value of the final range will match the minimal value of StartRange 6706 // if the expression is increasing and will be decreased by Offset otherwise. 6707 // Maximum value of the final range will match the maximal value of StartRange 6708 // if the expression is decreasing and will be increased by Offset otherwise. 6709 APInt StartLower = StartRange.getLower(); 6710 APInt StartUpper = StartRange.getUpper() - 1; 6711 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6712 : (StartUpper + std::move(Offset)); 6713 6714 // It's possible that the new minimum/maximum value will fall into the initial 6715 // range (due to wrap around). This means that the expression can take any 6716 // value in this bitwidth, and we have to return full range. 6717 if (StartRange.contains(MovedBoundary)) 6718 return ConstantRange::getFull(BitWidth); 6719 6720 APInt NewLower = 6721 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6722 APInt NewUpper = 6723 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6724 NewUpper += 1; 6725 6726 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6727 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6728 } 6729 6730 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6731 const SCEV *Step, 6732 const SCEV *MaxBECount, 6733 unsigned BitWidth) { 6734 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6735 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6736 "Precondition!"); 6737 6738 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6739 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6740 6741 // First, consider step signed. 6742 ConstantRange StartSRange = getSignedRange(Start); 6743 ConstantRange StepSRange = getSignedRange(Step); 6744 6745 // If Step can be both positive and negative, we need to find ranges for the 6746 // maximum absolute step values in both directions and union them. 6747 ConstantRange SR = 6748 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6749 MaxBECountValue, BitWidth, /* Signed = */ true); 6750 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6751 StartSRange, MaxBECountValue, 6752 BitWidth, /* Signed = */ true)); 6753 6754 // Next, consider step unsigned. 6755 ConstantRange UR = getRangeForAffineARHelper( 6756 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6757 MaxBECountValue, BitWidth, /* Signed = */ false); 6758 6759 // Finally, intersect signed and unsigned ranges. 6760 return SR.intersectWith(UR, ConstantRange::Smallest); 6761 } 6762 6763 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6764 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6765 ScalarEvolution::RangeSignHint SignHint) { 6766 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6767 assert(AddRec->hasNoSelfWrap() && 6768 "This only works for non-self-wrapping AddRecs!"); 6769 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6770 const SCEV *Step = AddRec->getStepRecurrence(*this); 6771 // Only deal with constant step to save compile time. 6772 if (!isa<SCEVConstant>(Step)) 6773 return ConstantRange::getFull(BitWidth); 6774 // Let's make sure that we can prove that we do not self-wrap during 6775 // MaxBECount iterations. We need this because MaxBECount is a maximum 6776 // iteration count estimate, and we might infer nw from some exit for which we 6777 // do not know max exit count (or any other side reasoning). 6778 // TODO: Turn into assert at some point. 6779 if (getTypeSizeInBits(MaxBECount->getType()) > 6780 getTypeSizeInBits(AddRec->getType())) 6781 return ConstantRange::getFull(BitWidth); 6782 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6783 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6784 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6785 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6786 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6787 MaxItersWithoutWrap)) 6788 return ConstantRange::getFull(BitWidth); 6789 6790 ICmpInst::Predicate LEPred = 6791 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6792 ICmpInst::Predicate GEPred = 6793 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6794 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6795 6796 // We know that there is no self-wrap. Let's take Start and End values and 6797 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6798 // the iteration. They either lie inside the range [Min(Start, End), 6799 // Max(Start, End)] or outside it: 6800 // 6801 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6802 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6803 // 6804 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6805 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6806 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6807 // Start <= End and step is positive, or Start >= End and step is negative. 6808 const SCEV *Start = AddRec->getStart(); 6809 ConstantRange StartRange = getRangeRef(Start, SignHint); 6810 ConstantRange EndRange = getRangeRef(End, SignHint); 6811 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6812 // If they already cover full iteration space, we will know nothing useful 6813 // even if we prove what we want to prove. 6814 if (RangeBetween.isFullSet()) 6815 return RangeBetween; 6816 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6817 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6818 : RangeBetween.isWrappedSet(); 6819 if (IsWrappedSet) 6820 return ConstantRange::getFull(BitWidth); 6821 6822 if (isKnownPositive(Step) && 6823 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6824 return RangeBetween; 6825 else if (isKnownNegative(Step) && 6826 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6827 return RangeBetween; 6828 return ConstantRange::getFull(BitWidth); 6829 } 6830 6831 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6832 const SCEV *Step, 6833 const SCEV *MaxBECount, 6834 unsigned BitWidth) { 6835 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6836 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6837 6838 struct SelectPattern { 6839 Value *Condition = nullptr; 6840 APInt TrueValue; 6841 APInt FalseValue; 6842 6843 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6844 const SCEV *S) { 6845 Optional<unsigned> CastOp; 6846 APInt Offset(BitWidth, 0); 6847 6848 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6849 "Should be!"); 6850 6851 // Peel off a constant offset: 6852 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6853 // In the future we could consider being smarter here and handle 6854 // {Start+Step,+,Step} too. 6855 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6856 return; 6857 6858 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6859 S = SA->getOperand(1); 6860 } 6861 6862 // Peel off a cast operation 6863 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6864 CastOp = SCast->getSCEVType(); 6865 S = SCast->getOperand(); 6866 } 6867 6868 using namespace llvm::PatternMatch; 6869 6870 auto *SU = dyn_cast<SCEVUnknown>(S); 6871 const APInt *TrueVal, *FalseVal; 6872 if (!SU || 6873 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6874 m_APInt(FalseVal)))) { 6875 Condition = nullptr; 6876 return; 6877 } 6878 6879 TrueValue = *TrueVal; 6880 FalseValue = *FalseVal; 6881 6882 // Re-apply the cast we peeled off earlier 6883 if (CastOp.hasValue()) 6884 switch (*CastOp) { 6885 default: 6886 llvm_unreachable("Unknown SCEV cast type!"); 6887 6888 case scTruncate: 6889 TrueValue = TrueValue.trunc(BitWidth); 6890 FalseValue = FalseValue.trunc(BitWidth); 6891 break; 6892 case scZeroExtend: 6893 TrueValue = TrueValue.zext(BitWidth); 6894 FalseValue = FalseValue.zext(BitWidth); 6895 break; 6896 case scSignExtend: 6897 TrueValue = TrueValue.sext(BitWidth); 6898 FalseValue = FalseValue.sext(BitWidth); 6899 break; 6900 } 6901 6902 // Re-apply the constant offset we peeled off earlier 6903 TrueValue += Offset; 6904 FalseValue += Offset; 6905 } 6906 6907 bool isRecognized() { return Condition != nullptr; } 6908 }; 6909 6910 SelectPattern StartPattern(*this, BitWidth, Start); 6911 if (!StartPattern.isRecognized()) 6912 return ConstantRange::getFull(BitWidth); 6913 6914 SelectPattern StepPattern(*this, BitWidth, Step); 6915 if (!StepPattern.isRecognized()) 6916 return ConstantRange::getFull(BitWidth); 6917 6918 if (StartPattern.Condition != StepPattern.Condition) { 6919 // We don't handle this case today; but we could, by considering four 6920 // possibilities below instead of two. I'm not sure if there are cases where 6921 // that will help over what getRange already does, though. 6922 return ConstantRange::getFull(BitWidth); 6923 } 6924 6925 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6926 // construct arbitrary general SCEV expressions here. This function is called 6927 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6928 // say) can end up caching a suboptimal value. 6929 6930 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6931 // C2352 and C2512 (otherwise it isn't needed). 6932 6933 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6934 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6935 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6936 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6937 6938 ConstantRange TrueRange = 6939 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6940 ConstantRange FalseRange = 6941 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6942 6943 return TrueRange.unionWith(FalseRange); 6944 } 6945 6946 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6947 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6948 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6949 6950 // Return early if there are no flags to propagate to the SCEV. 6951 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6952 if (BinOp->hasNoUnsignedWrap()) 6953 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6954 if (BinOp->hasNoSignedWrap()) 6955 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6956 if (Flags == SCEV::FlagAnyWrap) 6957 return SCEV::FlagAnyWrap; 6958 6959 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6960 } 6961 6962 const Instruction * 6963 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6964 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6965 return &*AddRec->getLoop()->getHeader()->begin(); 6966 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6967 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6968 return I; 6969 return nullptr; 6970 } 6971 6972 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6973 /// \p Ops remains unmodified. 6974 static void collectUniqueOps(const SCEV *S, 6975 SmallVectorImpl<const SCEV *> &Ops) { 6976 SmallPtrSet<const SCEV *, 4> Unique; 6977 auto InsertUnique = [&](const SCEV *S) { 6978 if (Unique.insert(S).second) 6979 Ops.push_back(S); 6980 }; 6981 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6982 for (auto *Op : S2->operands()) 6983 InsertUnique(Op); 6984 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6985 for (auto *Op : S2->operands()) 6986 InsertUnique(Op); 6987 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6988 for (auto *Op : S2->operands()) 6989 InsertUnique(Op); 6990 } 6991 6992 const Instruction * 6993 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6994 bool &Precise) { 6995 Precise = true; 6996 // Do a bounded search of the def relation of the requested SCEVs. 6997 SmallSet<const SCEV *, 16> Visited; 6998 SmallVector<const SCEV *> Worklist; 6999 auto pushOp = [&](const SCEV *S) { 7000 if (!Visited.insert(S).second) 7001 return; 7002 // Threshold of 30 here is arbitrary. 7003 if (Visited.size() > 30) { 7004 Precise = false; 7005 return; 7006 } 7007 Worklist.push_back(S); 7008 }; 7009 7010 for (auto *S : Ops) 7011 pushOp(S); 7012 7013 const Instruction *Bound = nullptr; 7014 while (!Worklist.empty()) { 7015 auto *S = Worklist.pop_back_val(); 7016 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7017 if (!Bound || DT.dominates(Bound, DefI)) 7018 Bound = DefI; 7019 } else { 7020 SmallVector<const SCEV *, 4> Ops; 7021 collectUniqueOps(S, Ops); 7022 for (auto *Op : Ops) 7023 pushOp(Op); 7024 } 7025 } 7026 return Bound ? Bound : &*F.getEntryBlock().begin(); 7027 } 7028 7029 const Instruction * 7030 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7031 bool Discard; 7032 return getDefiningScopeBound(Ops, Discard); 7033 } 7034 7035 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7036 const Instruction *B) { 7037 if (A->getParent() == B->getParent() && 7038 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7039 B->getIterator())) 7040 return true; 7041 7042 auto *BLoop = LI.getLoopFor(B->getParent()); 7043 if (BLoop && BLoop->getHeader() == B->getParent() && 7044 BLoop->getLoopPreheader() == A->getParent() && 7045 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7046 A->getParent()->end()) && 7047 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7048 B->getIterator())) 7049 return true; 7050 return false; 7051 } 7052 7053 7054 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7055 // Only proceed if we can prove that I does not yield poison. 7056 if (!programUndefinedIfPoison(I)) 7057 return false; 7058 7059 // At this point we know that if I is executed, then it does not wrap 7060 // according to at least one of NSW or NUW. If I is not executed, then we do 7061 // not know if the calculation that I represents would wrap. Multiple 7062 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7063 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7064 // derived from other instructions that map to the same SCEV. We cannot make 7065 // that guarantee for cases where I is not executed. So we need to find a 7066 // upper bound on the defining scope for the SCEV, and prove that I is 7067 // executed every time we enter that scope. When the bounding scope is a 7068 // loop (the common case), this is equivalent to proving I executes on every 7069 // iteration of that loop. 7070 SmallVector<const SCEV *> SCEVOps; 7071 for (const Use &Op : I->operands()) { 7072 // I could be an extractvalue from a call to an overflow intrinsic. 7073 // TODO: We can do better here in some cases. 7074 if (isSCEVable(Op->getType())) 7075 SCEVOps.push_back(getSCEV(Op)); 7076 } 7077 auto *DefI = getDefiningScopeBound(SCEVOps); 7078 return isGuaranteedToTransferExecutionTo(DefI, I); 7079 } 7080 7081 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7082 // If we know that \c I can never be poison period, then that's enough. 7083 if (isSCEVExprNeverPoison(I)) 7084 return true; 7085 7086 // For an add recurrence specifically, we assume that infinite loops without 7087 // side effects are undefined behavior, and then reason as follows: 7088 // 7089 // If the add recurrence is poison in any iteration, it is poison on all 7090 // future iterations (since incrementing poison yields poison). If the result 7091 // of the add recurrence is fed into the loop latch condition and the loop 7092 // does not contain any throws or exiting blocks other than the latch, we now 7093 // have the ability to "choose" whether the backedge is taken or not (by 7094 // choosing a sufficiently evil value for the poison feeding into the branch) 7095 // for every iteration including and after the one in which \p I first became 7096 // poison. There are two possibilities (let's call the iteration in which \p 7097 // I first became poison as K): 7098 // 7099 // 1. In the set of iterations including and after K, the loop body executes 7100 // no side effects. In this case executing the backege an infinte number 7101 // of times will yield undefined behavior. 7102 // 7103 // 2. In the set of iterations including and after K, the loop body executes 7104 // at least one side effect. In this case, that specific instance of side 7105 // effect is control dependent on poison, which also yields undefined 7106 // behavior. 7107 7108 auto *ExitingBB = L->getExitingBlock(); 7109 auto *LatchBB = L->getLoopLatch(); 7110 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7111 return false; 7112 7113 SmallPtrSet<const Instruction *, 16> Pushed; 7114 SmallVector<const Instruction *, 8> PoisonStack; 7115 7116 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7117 // things that are known to be poison under that assumption go on the 7118 // PoisonStack. 7119 Pushed.insert(I); 7120 PoisonStack.push_back(I); 7121 7122 bool LatchControlDependentOnPoison = false; 7123 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7124 const Instruction *Poison = PoisonStack.pop_back_val(); 7125 7126 for (auto *PoisonUser : Poison->users()) { 7127 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7128 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7129 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7130 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7131 assert(BI->isConditional() && "Only possibility!"); 7132 if (BI->getParent() == LatchBB) { 7133 LatchControlDependentOnPoison = true; 7134 break; 7135 } 7136 } 7137 } 7138 } 7139 7140 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7141 } 7142 7143 ScalarEvolution::LoopProperties 7144 ScalarEvolution::getLoopProperties(const Loop *L) { 7145 using LoopProperties = ScalarEvolution::LoopProperties; 7146 7147 auto Itr = LoopPropertiesCache.find(L); 7148 if (Itr == LoopPropertiesCache.end()) { 7149 auto HasSideEffects = [](Instruction *I) { 7150 if (auto *SI = dyn_cast<StoreInst>(I)) 7151 return !SI->isSimple(); 7152 7153 return I->mayThrow() || I->mayWriteToMemory(); 7154 }; 7155 7156 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7157 /*HasNoSideEffects*/ true}; 7158 7159 for (auto *BB : L->getBlocks()) 7160 for (auto &I : *BB) { 7161 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7162 LP.HasNoAbnormalExits = false; 7163 if (HasSideEffects(&I)) 7164 LP.HasNoSideEffects = false; 7165 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7166 break; // We're already as pessimistic as we can get. 7167 } 7168 7169 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7170 assert(InsertPair.second && "We just checked!"); 7171 Itr = InsertPair.first; 7172 } 7173 7174 return Itr->second; 7175 } 7176 7177 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7178 // A mustprogress loop without side effects must be finite. 7179 // TODO: The check used here is very conservative. It's only *specific* 7180 // side effects which are well defined in infinite loops. 7181 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7182 } 7183 7184 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7185 if (!isSCEVable(V->getType())) 7186 return getUnknown(V); 7187 7188 if (Instruction *I = dyn_cast<Instruction>(V)) { 7189 // Don't attempt to analyze instructions in blocks that aren't 7190 // reachable. Such instructions don't matter, and they aren't required 7191 // to obey basic rules for definitions dominating uses which this 7192 // analysis depends on. 7193 if (!DT.isReachableFromEntry(I->getParent())) 7194 return getUnknown(UndefValue::get(V->getType())); 7195 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7196 return getConstant(CI); 7197 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7198 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7199 else if (!isa<ConstantExpr>(V)) 7200 return getUnknown(V); 7201 7202 Operator *U = cast<Operator>(V); 7203 if (auto BO = MatchBinaryOp(U, DT)) { 7204 switch (BO->Opcode) { 7205 case Instruction::Add: { 7206 // The simple thing to do would be to just call getSCEV on both operands 7207 // and call getAddExpr with the result. However if we're looking at a 7208 // bunch of things all added together, this can be quite inefficient, 7209 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7210 // Instead, gather up all the operands and make a single getAddExpr call. 7211 // LLVM IR canonical form means we need only traverse the left operands. 7212 SmallVector<const SCEV *, 4> AddOps; 7213 do { 7214 if (BO->Op) { 7215 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7216 AddOps.push_back(OpSCEV); 7217 break; 7218 } 7219 7220 // If a NUW or NSW flag can be applied to the SCEV for this 7221 // addition, then compute the SCEV for this addition by itself 7222 // with a separate call to getAddExpr. We need to do that 7223 // instead of pushing the operands of the addition onto AddOps, 7224 // since the flags are only known to apply to this particular 7225 // addition - they may not apply to other additions that can be 7226 // formed with operands from AddOps. 7227 const SCEV *RHS = getSCEV(BO->RHS); 7228 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7229 if (Flags != SCEV::FlagAnyWrap) { 7230 const SCEV *LHS = getSCEV(BO->LHS); 7231 if (BO->Opcode == Instruction::Sub) 7232 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7233 else 7234 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7235 break; 7236 } 7237 } 7238 7239 if (BO->Opcode == Instruction::Sub) 7240 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7241 else 7242 AddOps.push_back(getSCEV(BO->RHS)); 7243 7244 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7245 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7246 NewBO->Opcode != Instruction::Sub)) { 7247 AddOps.push_back(getSCEV(BO->LHS)); 7248 break; 7249 } 7250 BO = NewBO; 7251 } while (true); 7252 7253 return getAddExpr(AddOps); 7254 } 7255 7256 case Instruction::Mul: { 7257 SmallVector<const SCEV *, 4> MulOps; 7258 do { 7259 if (BO->Op) { 7260 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7261 MulOps.push_back(OpSCEV); 7262 break; 7263 } 7264 7265 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7266 if (Flags != SCEV::FlagAnyWrap) { 7267 MulOps.push_back( 7268 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7269 break; 7270 } 7271 } 7272 7273 MulOps.push_back(getSCEV(BO->RHS)); 7274 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7275 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7276 MulOps.push_back(getSCEV(BO->LHS)); 7277 break; 7278 } 7279 BO = NewBO; 7280 } while (true); 7281 7282 return getMulExpr(MulOps); 7283 } 7284 case Instruction::UDiv: 7285 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7286 case Instruction::URem: 7287 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7288 case Instruction::Sub: { 7289 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7290 if (BO->Op) 7291 Flags = getNoWrapFlagsFromUB(BO->Op); 7292 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7293 } 7294 case Instruction::And: 7295 // For an expression like x&255 that merely masks off the high bits, 7296 // use zext(trunc(x)) as the SCEV expression. 7297 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7298 if (CI->isZero()) 7299 return getSCEV(BO->RHS); 7300 if (CI->isMinusOne()) 7301 return getSCEV(BO->LHS); 7302 const APInt &A = CI->getValue(); 7303 7304 // Instcombine's ShrinkDemandedConstant may strip bits out of 7305 // constants, obscuring what would otherwise be a low-bits mask. 7306 // Use computeKnownBits to compute what ShrinkDemandedConstant 7307 // knew about to reconstruct a low-bits mask value. 7308 unsigned LZ = A.countLeadingZeros(); 7309 unsigned TZ = A.countTrailingZeros(); 7310 unsigned BitWidth = A.getBitWidth(); 7311 KnownBits Known(BitWidth); 7312 computeKnownBits(BO->LHS, Known, getDataLayout(), 7313 0, &AC, nullptr, &DT); 7314 7315 APInt EffectiveMask = 7316 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7317 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7318 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7319 const SCEV *LHS = getSCEV(BO->LHS); 7320 const SCEV *ShiftedLHS = nullptr; 7321 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7322 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7323 // For an expression like (x * 8) & 8, simplify the multiply. 7324 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7325 unsigned GCD = std::min(MulZeros, TZ); 7326 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7327 SmallVector<const SCEV*, 4> MulOps; 7328 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7329 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7330 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7331 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7332 } 7333 } 7334 if (!ShiftedLHS) 7335 ShiftedLHS = getUDivExpr(LHS, MulCount); 7336 return getMulExpr( 7337 getZeroExtendExpr( 7338 getTruncateExpr(ShiftedLHS, 7339 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7340 BO->LHS->getType()), 7341 MulCount); 7342 } 7343 } 7344 // Binary `and` is a bit-wise `umin`. 7345 if (BO->LHS->getType()->isIntegerTy(1)) 7346 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7347 break; 7348 7349 case Instruction::Or: 7350 // If the RHS of the Or is a constant, we may have something like: 7351 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7352 // optimizations will transparently handle this case. 7353 // 7354 // In order for this transformation to be safe, the LHS must be of the 7355 // form X*(2^n) and the Or constant must be less than 2^n. 7356 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7357 const SCEV *LHS = getSCEV(BO->LHS); 7358 const APInt &CIVal = CI->getValue(); 7359 if (GetMinTrailingZeros(LHS) >= 7360 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7361 // Build a plain add SCEV. 7362 return getAddExpr(LHS, getSCEV(CI), 7363 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7364 } 7365 } 7366 // Binary `or` is a bit-wise `umax`. 7367 if (BO->LHS->getType()->isIntegerTy(1)) 7368 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7369 break; 7370 7371 case Instruction::Xor: 7372 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7373 // If the RHS of xor is -1, then this is a not operation. 7374 if (CI->isMinusOne()) 7375 return getNotSCEV(getSCEV(BO->LHS)); 7376 7377 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7378 // This is a variant of the check for xor with -1, and it handles 7379 // the case where instcombine has trimmed non-demanded bits out 7380 // of an xor with -1. 7381 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7382 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7383 if (LBO->getOpcode() == Instruction::And && 7384 LCI->getValue() == CI->getValue()) 7385 if (const SCEVZeroExtendExpr *Z = 7386 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7387 Type *UTy = BO->LHS->getType(); 7388 const SCEV *Z0 = Z->getOperand(); 7389 Type *Z0Ty = Z0->getType(); 7390 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7391 7392 // If C is a low-bits mask, the zero extend is serving to 7393 // mask off the high bits. Complement the operand and 7394 // re-apply the zext. 7395 if (CI->getValue().isMask(Z0TySize)) 7396 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7397 7398 // If C is a single bit, it may be in the sign-bit position 7399 // before the zero-extend. In this case, represent the xor 7400 // using an add, which is equivalent, and re-apply the zext. 7401 APInt Trunc = CI->getValue().trunc(Z0TySize); 7402 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7403 Trunc.isSignMask()) 7404 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7405 UTy); 7406 } 7407 } 7408 break; 7409 7410 case Instruction::Shl: 7411 // Turn shift left of a constant amount into a multiply. 7412 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7413 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7414 7415 // If the shift count is not less than the bitwidth, the result of 7416 // the shift is undefined. Don't try to analyze it, because the 7417 // resolution chosen here may differ from the resolution chosen in 7418 // other parts of the compiler. 7419 if (SA->getValue().uge(BitWidth)) 7420 break; 7421 7422 // We can safely preserve the nuw flag in all cases. It's also safe to 7423 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7424 // requires special handling. It can be preserved as long as we're not 7425 // left shifting by bitwidth - 1. 7426 auto Flags = SCEV::FlagAnyWrap; 7427 if (BO->Op) { 7428 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7429 if ((MulFlags & SCEV::FlagNSW) && 7430 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7431 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7432 if (MulFlags & SCEV::FlagNUW) 7433 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7434 } 7435 7436 ConstantInt *X = ConstantInt::get( 7437 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7438 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7439 } 7440 break; 7441 7442 case Instruction::AShr: { 7443 // AShr X, C, where C is a constant. 7444 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7445 if (!CI) 7446 break; 7447 7448 Type *OuterTy = BO->LHS->getType(); 7449 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7450 // If the shift count is not less than the bitwidth, the result of 7451 // the shift is undefined. Don't try to analyze it, because the 7452 // resolution chosen here may differ from the resolution chosen in 7453 // other parts of the compiler. 7454 if (CI->getValue().uge(BitWidth)) 7455 break; 7456 7457 if (CI->isZero()) 7458 return getSCEV(BO->LHS); // shift by zero --> noop 7459 7460 uint64_t AShrAmt = CI->getZExtValue(); 7461 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7462 7463 Operator *L = dyn_cast<Operator>(BO->LHS); 7464 if (L && L->getOpcode() == Instruction::Shl) { 7465 // X = Shl A, n 7466 // Y = AShr X, m 7467 // Both n and m are constant. 7468 7469 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7470 if (L->getOperand(1) == BO->RHS) 7471 // For a two-shift sext-inreg, i.e. n = m, 7472 // use sext(trunc(x)) as the SCEV expression. 7473 return getSignExtendExpr( 7474 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7475 7476 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7477 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7478 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7479 if (ShlAmt > AShrAmt) { 7480 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7481 // expression. We already checked that ShlAmt < BitWidth, so 7482 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7483 // ShlAmt - AShrAmt < Amt. 7484 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7485 ShlAmt - AShrAmt); 7486 return getSignExtendExpr( 7487 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7488 getConstant(Mul)), OuterTy); 7489 } 7490 } 7491 } 7492 break; 7493 } 7494 } 7495 } 7496 7497 switch (U->getOpcode()) { 7498 case Instruction::Trunc: 7499 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7500 7501 case Instruction::ZExt: 7502 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7503 7504 case Instruction::SExt: 7505 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7506 // The NSW flag of a subtract does not always survive the conversion to 7507 // A + (-1)*B. By pushing sign extension onto its operands we are much 7508 // more likely to preserve NSW and allow later AddRec optimisations. 7509 // 7510 // NOTE: This is effectively duplicating this logic from getSignExtend: 7511 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7512 // but by that point the NSW information has potentially been lost. 7513 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7514 Type *Ty = U->getType(); 7515 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7516 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7517 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7518 } 7519 } 7520 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7521 7522 case Instruction::BitCast: 7523 // BitCasts are no-op casts so we just eliminate the cast. 7524 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7525 return getSCEV(U->getOperand(0)); 7526 break; 7527 7528 case Instruction::PtrToInt: { 7529 // Pointer to integer cast is straight-forward, so do model it. 7530 const SCEV *Op = getSCEV(U->getOperand(0)); 7531 Type *DstIntTy = U->getType(); 7532 // But only if effective SCEV (integer) type is wide enough to represent 7533 // all possible pointer values. 7534 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7535 if (isa<SCEVCouldNotCompute>(IntOp)) 7536 return getUnknown(V); 7537 return IntOp; 7538 } 7539 case Instruction::IntToPtr: 7540 // Just don't deal with inttoptr casts. 7541 return getUnknown(V); 7542 7543 case Instruction::SDiv: 7544 // If both operands are non-negative, this is just an udiv. 7545 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7546 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7547 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7548 break; 7549 7550 case Instruction::SRem: 7551 // If both operands are non-negative, this is just an urem. 7552 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7553 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7554 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7555 break; 7556 7557 case Instruction::GetElementPtr: 7558 return createNodeForGEP(cast<GEPOperator>(U)); 7559 7560 case Instruction::PHI: 7561 return createNodeForPHI(cast<PHINode>(U)); 7562 7563 case Instruction::Select: 7564 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7565 U->getOperand(2)); 7566 7567 case Instruction::Call: 7568 case Instruction::Invoke: 7569 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7570 return getSCEV(RV); 7571 7572 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7573 switch (II->getIntrinsicID()) { 7574 case Intrinsic::abs: 7575 return getAbsExpr( 7576 getSCEV(II->getArgOperand(0)), 7577 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7578 case Intrinsic::umax: 7579 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7580 getSCEV(II->getArgOperand(1))); 7581 case Intrinsic::umin: 7582 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7583 getSCEV(II->getArgOperand(1))); 7584 case Intrinsic::smax: 7585 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7586 getSCEV(II->getArgOperand(1))); 7587 case Intrinsic::smin: 7588 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7589 getSCEV(II->getArgOperand(1))); 7590 case Intrinsic::usub_sat: { 7591 const SCEV *X = getSCEV(II->getArgOperand(0)); 7592 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7593 const SCEV *ClampedY = getUMinExpr(X, Y); 7594 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7595 } 7596 case Intrinsic::uadd_sat: { 7597 const SCEV *X = getSCEV(II->getArgOperand(0)); 7598 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7599 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7600 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7601 } 7602 case Intrinsic::start_loop_iterations: 7603 // A start_loop_iterations is just equivalent to the first operand for 7604 // SCEV purposes. 7605 return getSCEV(II->getArgOperand(0)); 7606 default: 7607 break; 7608 } 7609 } 7610 break; 7611 } 7612 7613 return getUnknown(V); 7614 } 7615 7616 //===----------------------------------------------------------------------===// 7617 // Iteration Count Computation Code 7618 // 7619 7620 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7621 bool Extend) { 7622 if (isa<SCEVCouldNotCompute>(ExitCount)) 7623 return getCouldNotCompute(); 7624 7625 auto *ExitCountType = ExitCount->getType(); 7626 assert(ExitCountType->isIntegerTy()); 7627 7628 if (!Extend) 7629 return getAddExpr(ExitCount, getOne(ExitCountType)); 7630 7631 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7632 1 + ExitCountType->getScalarSizeInBits()); 7633 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7634 getOne(WiderType)); 7635 } 7636 7637 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7638 if (!ExitCount) 7639 return 0; 7640 7641 ConstantInt *ExitConst = ExitCount->getValue(); 7642 7643 // Guard against huge trip counts. 7644 if (ExitConst->getValue().getActiveBits() > 32) 7645 return 0; 7646 7647 // In case of integer overflow, this returns 0, which is correct. 7648 return ((unsigned)ExitConst->getZExtValue()) + 1; 7649 } 7650 7651 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7652 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7653 return getConstantTripCount(ExitCount); 7654 } 7655 7656 unsigned 7657 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7658 const BasicBlock *ExitingBlock) { 7659 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7660 assert(L->isLoopExiting(ExitingBlock) && 7661 "Exiting block must actually branch out of the loop!"); 7662 const SCEVConstant *ExitCount = 7663 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7664 return getConstantTripCount(ExitCount); 7665 } 7666 7667 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7668 const auto *MaxExitCount = 7669 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7670 return getConstantTripCount(MaxExitCount); 7671 } 7672 7673 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7674 // We can't infer from Array in Irregular Loop. 7675 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7676 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7677 return getCouldNotCompute(); 7678 7679 // FIXME: To make the scene more typical, we only analysis loops that have 7680 // one exiting block and that block must be the latch. To make it easier to 7681 // capture loops that have memory access and memory access will be executed 7682 // in each iteration. 7683 const BasicBlock *LoopLatch = L->getLoopLatch(); 7684 assert(LoopLatch && "See defination of simplify form loop."); 7685 if (L->getExitingBlock() != LoopLatch) 7686 return getCouldNotCompute(); 7687 7688 const DataLayout &DL = getDataLayout(); 7689 SmallVector<const SCEV *> InferCountColl; 7690 for (auto *BB : L->getBlocks()) { 7691 // Go here, we can know that Loop is a single exiting and simplified form 7692 // loop. Make sure that infer from Memory Operation in those BBs must be 7693 // executed in loop. First step, we can make sure that max execution time 7694 // of MemAccessBB in loop represents latch max excution time. 7695 // If MemAccessBB does not dom Latch, skip. 7696 // Entry 7697 // │ 7698 // ┌─────▼─────┐ 7699 // │Loop Header◄─────┐ 7700 // └──┬──────┬─┘ │ 7701 // │ │ │ 7702 // ┌────────▼──┐ ┌─▼─────┐ │ 7703 // │MemAccessBB│ │OtherBB│ │ 7704 // └────────┬──┘ └─┬─────┘ │ 7705 // │ │ │ 7706 // ┌─▼──────▼─┐ │ 7707 // │Loop Latch├─────┘ 7708 // └────┬─────┘ 7709 // ▼ 7710 // Exit 7711 if (!DT.dominates(BB, LoopLatch)) 7712 continue; 7713 7714 for (Instruction &Inst : *BB) { 7715 // Find Memory Operation Instruction. 7716 auto *GEP = getLoadStorePointerOperand(&Inst); 7717 if (!GEP) 7718 continue; 7719 7720 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7721 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7722 if (!ElemSize) 7723 continue; 7724 7725 // Use a existing polynomial recurrence on the trip count. 7726 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7727 if (!AddRec) 7728 continue; 7729 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7730 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7731 if (!ArrBase || !Step) 7732 continue; 7733 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7734 7735 // Only handle { %array + step }, 7736 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7737 if (AddRec->getStart() != ArrBase) 7738 continue; 7739 7740 // Memory operation pattern which have gaps. 7741 // Or repeat memory opreation. 7742 // And index of GEP wraps arround. 7743 if (Step->getAPInt().getActiveBits() > 32 || 7744 Step->getAPInt().getZExtValue() != 7745 ElemSize->getAPInt().getZExtValue() || 7746 Step->isZero() || Step->getAPInt().isNegative()) 7747 continue; 7748 7749 // Only infer from stack array which has certain size. 7750 // Make sure alloca instruction is not excuted in loop. 7751 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7752 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7753 continue; 7754 7755 // Make sure only handle normal array. 7756 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7757 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7758 if (!Ty || !ArrSize || !ArrSize->isOne()) 7759 continue; 7760 7761 // FIXME: Since gep indices are silently zext to the indexing type, 7762 // we will have a narrow gep index which wraps around rather than 7763 // increasing strictly, we shoule ensure that step is increasing 7764 // strictly by the loop iteration. 7765 // Now we can infer a max execution time by MemLength/StepLength. 7766 const SCEV *MemSize = 7767 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7768 auto *MaxExeCount = 7769 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7770 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7771 continue; 7772 7773 // If the loop reaches the maximum number of executions, we can not 7774 // access bytes starting outside the statically allocated size without 7775 // being immediate UB. But it is allowed to enter loop header one more 7776 // time. 7777 auto *InferCount = dyn_cast<SCEVConstant>( 7778 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7779 // Discard the maximum number of execution times under 32bits. 7780 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7781 continue; 7782 7783 InferCountColl.push_back(InferCount); 7784 } 7785 } 7786 7787 if (InferCountColl.size() == 0) 7788 return getCouldNotCompute(); 7789 7790 return getUMinFromMismatchedTypes(InferCountColl); 7791 } 7792 7793 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7794 SmallVector<BasicBlock *, 8> ExitingBlocks; 7795 L->getExitingBlocks(ExitingBlocks); 7796 7797 Optional<unsigned> Res = None; 7798 for (auto *ExitingBB : ExitingBlocks) { 7799 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7800 if (!Res) 7801 Res = Multiple; 7802 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7803 } 7804 return Res.getValueOr(1); 7805 } 7806 7807 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7808 const SCEV *ExitCount) { 7809 if (ExitCount == getCouldNotCompute()) 7810 return 1; 7811 7812 // Get the trip count 7813 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7814 7815 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7816 if (!TC) 7817 // Attempt to factor more general cases. Returns the greatest power of 7818 // two divisor. If overflow happens, the trip count expression is still 7819 // divisible by the greatest power of 2 divisor returned. 7820 return 1U << std::min((uint32_t)31, 7821 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7822 7823 ConstantInt *Result = TC->getValue(); 7824 7825 // Guard against huge trip counts (this requires checking 7826 // for zero to handle the case where the trip count == -1 and the 7827 // addition wraps). 7828 if (!Result || Result->getValue().getActiveBits() > 32 || 7829 Result->getValue().getActiveBits() == 0) 7830 return 1; 7831 7832 return (unsigned)Result->getZExtValue(); 7833 } 7834 7835 /// Returns the largest constant divisor of the trip count of this loop as a 7836 /// normal unsigned value, if possible. This means that the actual trip count is 7837 /// always a multiple of the returned value (don't forget the trip count could 7838 /// very well be zero as well!). 7839 /// 7840 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7841 /// multiple of a constant (which is also the case if the trip count is simply 7842 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7843 /// if the trip count is very large (>= 2^32). 7844 /// 7845 /// As explained in the comments for getSmallConstantTripCount, this assumes 7846 /// that control exits the loop via ExitingBlock. 7847 unsigned 7848 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7849 const BasicBlock *ExitingBlock) { 7850 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7851 assert(L->isLoopExiting(ExitingBlock) && 7852 "Exiting block must actually branch out of the loop!"); 7853 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7854 return getSmallConstantTripMultiple(L, ExitCount); 7855 } 7856 7857 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7858 const BasicBlock *ExitingBlock, 7859 ExitCountKind Kind) { 7860 switch (Kind) { 7861 case Exact: 7862 case SymbolicMaximum: 7863 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7864 case ConstantMaximum: 7865 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7866 }; 7867 llvm_unreachable("Invalid ExitCountKind!"); 7868 } 7869 7870 const SCEV * 7871 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7872 SmallVector<const SCEVPredicate *, 4> &Preds) { 7873 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7874 } 7875 7876 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7877 ExitCountKind Kind) { 7878 switch (Kind) { 7879 case Exact: 7880 return getBackedgeTakenInfo(L).getExact(L, this); 7881 case ConstantMaximum: 7882 return getBackedgeTakenInfo(L).getConstantMax(this); 7883 case SymbolicMaximum: 7884 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7885 }; 7886 llvm_unreachable("Invalid ExitCountKind!"); 7887 } 7888 7889 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7890 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7891 } 7892 7893 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7894 static void PushLoopPHIs(const Loop *L, 7895 SmallVectorImpl<Instruction *> &Worklist, 7896 SmallPtrSetImpl<Instruction *> &Visited) { 7897 BasicBlock *Header = L->getHeader(); 7898 7899 // Push all Loop-header PHIs onto the Worklist stack. 7900 for (PHINode &PN : Header->phis()) 7901 if (Visited.insert(&PN).second) 7902 Worklist.push_back(&PN); 7903 } 7904 7905 const ScalarEvolution::BackedgeTakenInfo & 7906 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7907 auto &BTI = getBackedgeTakenInfo(L); 7908 if (BTI.hasFullInfo()) 7909 return BTI; 7910 7911 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7912 7913 if (!Pair.second) 7914 return Pair.first->second; 7915 7916 BackedgeTakenInfo Result = 7917 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7918 7919 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7920 } 7921 7922 ScalarEvolution::BackedgeTakenInfo & 7923 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7924 // Initially insert an invalid entry for this loop. If the insertion 7925 // succeeds, proceed to actually compute a backedge-taken count and 7926 // update the value. The temporary CouldNotCompute value tells SCEV 7927 // code elsewhere that it shouldn't attempt to request a new 7928 // backedge-taken count, which could result in infinite recursion. 7929 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7930 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7931 if (!Pair.second) 7932 return Pair.first->second; 7933 7934 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7935 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7936 // must be cleared in this scope. 7937 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7938 7939 // In product build, there are no usage of statistic. 7940 (void)NumTripCountsComputed; 7941 (void)NumTripCountsNotComputed; 7942 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7943 const SCEV *BEExact = Result.getExact(L, this); 7944 if (BEExact != getCouldNotCompute()) { 7945 assert(isLoopInvariant(BEExact, L) && 7946 isLoopInvariant(Result.getConstantMax(this), L) && 7947 "Computed backedge-taken count isn't loop invariant for loop!"); 7948 ++NumTripCountsComputed; 7949 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7950 isa<PHINode>(L->getHeader()->begin())) { 7951 // Only count loops that have phi nodes as not being computable. 7952 ++NumTripCountsNotComputed; 7953 } 7954 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7955 7956 // Now that we know more about the trip count for this loop, forget any 7957 // existing SCEV values for PHI nodes in this loop since they are only 7958 // conservative estimates made without the benefit of trip count 7959 // information. This invalidation is not necessary for correctness, and is 7960 // only done to produce more precise results. 7961 if (Result.hasAnyInfo()) { 7962 // Invalidate any expression using an addrec in this loop. 7963 SmallVector<const SCEV *, 8> ToForget; 7964 auto LoopUsersIt = LoopUsers.find(L); 7965 if (LoopUsersIt != LoopUsers.end()) 7966 append_range(ToForget, LoopUsersIt->second); 7967 forgetMemoizedResults(ToForget); 7968 7969 // Invalidate constant-evolved loop header phis. 7970 for (PHINode &PN : L->getHeader()->phis()) 7971 ConstantEvolutionLoopExitValue.erase(&PN); 7972 } 7973 7974 // Re-lookup the insert position, since the call to 7975 // computeBackedgeTakenCount above could result in a 7976 // recusive call to getBackedgeTakenInfo (on a different 7977 // loop), which would invalidate the iterator computed 7978 // earlier. 7979 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7980 } 7981 7982 void ScalarEvolution::forgetAllLoops() { 7983 // This method is intended to forget all info about loops. It should 7984 // invalidate caches as if the following happened: 7985 // - The trip counts of all loops have changed arbitrarily 7986 // - Every llvm::Value has been updated in place to produce a different 7987 // result. 7988 BackedgeTakenCounts.clear(); 7989 PredicatedBackedgeTakenCounts.clear(); 7990 BECountUsers.clear(); 7991 LoopPropertiesCache.clear(); 7992 ConstantEvolutionLoopExitValue.clear(); 7993 ValueExprMap.clear(); 7994 ValuesAtScopes.clear(); 7995 ValuesAtScopesUsers.clear(); 7996 LoopDispositions.clear(); 7997 BlockDispositions.clear(); 7998 UnsignedRanges.clear(); 7999 SignedRanges.clear(); 8000 ExprValueMap.clear(); 8001 HasRecMap.clear(); 8002 MinTrailingZerosCache.clear(); 8003 PredicatedSCEVRewrites.clear(); 8004 } 8005 8006 void ScalarEvolution::forgetLoop(const Loop *L) { 8007 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8008 SmallVector<Instruction *, 32> Worklist; 8009 SmallPtrSet<Instruction *, 16> Visited; 8010 SmallVector<const SCEV *, 16> ToForget; 8011 8012 // Iterate over all the loops and sub-loops to drop SCEV information. 8013 while (!LoopWorklist.empty()) { 8014 auto *CurrL = LoopWorklist.pop_back_val(); 8015 8016 // Drop any stored trip count value. 8017 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8018 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8019 8020 // Drop information about predicated SCEV rewrites for this loop. 8021 for (auto I = PredicatedSCEVRewrites.begin(); 8022 I != PredicatedSCEVRewrites.end();) { 8023 std::pair<const SCEV *, const Loop *> Entry = I->first; 8024 if (Entry.second == CurrL) 8025 PredicatedSCEVRewrites.erase(I++); 8026 else 8027 ++I; 8028 } 8029 8030 auto LoopUsersItr = LoopUsers.find(CurrL); 8031 if (LoopUsersItr != LoopUsers.end()) { 8032 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8033 LoopUsersItr->second.end()); 8034 } 8035 8036 // Drop information about expressions based on loop-header PHIs. 8037 PushLoopPHIs(CurrL, Worklist, Visited); 8038 8039 while (!Worklist.empty()) { 8040 Instruction *I = Worklist.pop_back_val(); 8041 8042 ValueExprMapType::iterator It = 8043 ValueExprMap.find_as(static_cast<Value *>(I)); 8044 if (It != ValueExprMap.end()) { 8045 eraseValueFromMap(It->first); 8046 ToForget.push_back(It->second); 8047 if (PHINode *PN = dyn_cast<PHINode>(I)) 8048 ConstantEvolutionLoopExitValue.erase(PN); 8049 } 8050 8051 PushDefUseChildren(I, Worklist, Visited); 8052 } 8053 8054 LoopPropertiesCache.erase(CurrL); 8055 // Forget all contained loops too, to avoid dangling entries in the 8056 // ValuesAtScopes map. 8057 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8058 } 8059 forgetMemoizedResults(ToForget); 8060 } 8061 8062 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8063 while (Loop *Parent = L->getParentLoop()) 8064 L = Parent; 8065 forgetLoop(L); 8066 } 8067 8068 void ScalarEvolution::forgetValue(Value *V) { 8069 Instruction *I = dyn_cast<Instruction>(V); 8070 if (!I) return; 8071 8072 // Drop information about expressions based on loop-header PHIs. 8073 SmallVector<Instruction *, 16> Worklist; 8074 SmallPtrSet<Instruction *, 8> Visited; 8075 SmallVector<const SCEV *, 8> ToForget; 8076 Worklist.push_back(I); 8077 Visited.insert(I); 8078 8079 while (!Worklist.empty()) { 8080 I = Worklist.pop_back_val(); 8081 ValueExprMapType::iterator It = 8082 ValueExprMap.find_as(static_cast<Value *>(I)); 8083 if (It != ValueExprMap.end()) { 8084 eraseValueFromMap(It->first); 8085 ToForget.push_back(It->second); 8086 if (PHINode *PN = dyn_cast<PHINode>(I)) 8087 ConstantEvolutionLoopExitValue.erase(PN); 8088 } 8089 8090 PushDefUseChildren(I, Worklist, Visited); 8091 } 8092 forgetMemoizedResults(ToForget); 8093 } 8094 8095 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8096 LoopDispositions.clear(); 8097 } 8098 8099 /// Get the exact loop backedge taken count considering all loop exits. A 8100 /// computable result can only be returned for loops with all exiting blocks 8101 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8102 /// is never skipped. This is a valid assumption as long as the loop exits via 8103 /// that test. For precise results, it is the caller's responsibility to specify 8104 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8105 const SCEV * 8106 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8107 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8108 // If any exits were not computable, the loop is not computable. 8109 if (!isComplete() || ExitNotTaken.empty()) 8110 return SE->getCouldNotCompute(); 8111 8112 const BasicBlock *Latch = L->getLoopLatch(); 8113 // All exiting blocks we have collected must dominate the only backedge. 8114 if (!Latch) 8115 return SE->getCouldNotCompute(); 8116 8117 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8118 // count is simply a minimum out of all these calculated exit counts. 8119 SmallVector<const SCEV *, 2> Ops; 8120 for (auto &ENT : ExitNotTaken) { 8121 const SCEV *BECount = ENT.ExactNotTaken; 8122 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8123 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8124 "We should only have known counts for exiting blocks that dominate " 8125 "latch!"); 8126 8127 Ops.push_back(BECount); 8128 8129 if (Preds) 8130 for (auto *P : ENT.Predicates) 8131 Preds->push_back(P); 8132 8133 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8134 "Predicate should be always true!"); 8135 } 8136 8137 return SE->getUMinFromMismatchedTypes(Ops); 8138 } 8139 8140 /// Get the exact not taken count for this loop exit. 8141 const SCEV * 8142 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8143 ScalarEvolution *SE) const { 8144 for (auto &ENT : ExitNotTaken) 8145 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8146 return ENT.ExactNotTaken; 8147 8148 return SE->getCouldNotCompute(); 8149 } 8150 8151 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8152 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8153 for (auto &ENT : ExitNotTaken) 8154 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8155 return ENT.MaxNotTaken; 8156 8157 return SE->getCouldNotCompute(); 8158 } 8159 8160 /// getConstantMax - Get the constant max backedge taken count for the loop. 8161 const SCEV * 8162 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8163 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8164 return !ENT.hasAlwaysTruePredicate(); 8165 }; 8166 8167 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8168 return SE->getCouldNotCompute(); 8169 8170 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8171 isa<SCEVConstant>(getConstantMax())) && 8172 "No point in having a non-constant max backedge taken count!"); 8173 return getConstantMax(); 8174 } 8175 8176 const SCEV * 8177 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8178 ScalarEvolution *SE) { 8179 if (!SymbolicMax) 8180 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8181 return SymbolicMax; 8182 } 8183 8184 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8185 ScalarEvolution *SE) const { 8186 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8187 return !ENT.hasAlwaysTruePredicate(); 8188 }; 8189 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8190 } 8191 8192 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8193 : ExitLimit(E, E, false, None) { 8194 } 8195 8196 ScalarEvolution::ExitLimit::ExitLimit( 8197 const SCEV *E, const SCEV *M, bool MaxOrZero, 8198 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8199 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8200 // If we prove the max count is zero, so is the symbolic bound. This happens 8201 // in practice due to differences in a) how context sensitive we've chosen 8202 // to be and b) how we reason about bounds impied by UB. 8203 if (MaxNotTaken->isZero()) 8204 ExactNotTaken = MaxNotTaken; 8205 8206 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8207 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8208 "Exact is not allowed to be less precise than Max"); 8209 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8210 isa<SCEVConstant>(MaxNotTaken)) && 8211 "No point in having a non-constant max backedge taken count!"); 8212 for (auto *PredSet : PredSetList) 8213 for (auto *P : *PredSet) 8214 addPredicate(P); 8215 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8216 "Backedge count should be int"); 8217 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8218 "Max backedge count should be int"); 8219 } 8220 8221 ScalarEvolution::ExitLimit::ExitLimit( 8222 const SCEV *E, const SCEV *M, bool MaxOrZero, 8223 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8224 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8225 } 8226 8227 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8228 bool MaxOrZero) 8229 : ExitLimit(E, M, MaxOrZero, None) { 8230 } 8231 8232 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8233 /// computable exit into a persistent ExitNotTakenInfo array. 8234 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8235 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8236 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8237 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8238 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8239 8240 ExitNotTaken.reserve(ExitCounts.size()); 8241 std::transform( 8242 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8243 [&](const EdgeExitInfo &EEI) { 8244 BasicBlock *ExitBB = EEI.first; 8245 const ExitLimit &EL = EEI.second; 8246 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8247 EL.Predicates); 8248 }); 8249 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8250 isa<SCEVConstant>(ConstantMax)) && 8251 "No point in having a non-constant max backedge taken count!"); 8252 } 8253 8254 /// Compute the number of times the backedge of the specified loop will execute. 8255 ScalarEvolution::BackedgeTakenInfo 8256 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8257 bool AllowPredicates) { 8258 SmallVector<BasicBlock *, 8> ExitingBlocks; 8259 L->getExitingBlocks(ExitingBlocks); 8260 8261 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8262 8263 SmallVector<EdgeExitInfo, 4> ExitCounts; 8264 bool CouldComputeBECount = true; 8265 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8266 const SCEV *MustExitMaxBECount = nullptr; 8267 const SCEV *MayExitMaxBECount = nullptr; 8268 bool MustExitMaxOrZero = false; 8269 8270 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8271 // and compute maxBECount. 8272 // Do a union of all the predicates here. 8273 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8274 BasicBlock *ExitBB = ExitingBlocks[i]; 8275 8276 // We canonicalize untaken exits to br (constant), ignore them so that 8277 // proving an exit untaken doesn't negatively impact our ability to reason 8278 // about the loop as whole. 8279 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8280 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8281 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8282 if (ExitIfTrue == CI->isZero()) 8283 continue; 8284 } 8285 8286 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8287 8288 assert((AllowPredicates || EL.Predicates.empty()) && 8289 "Predicated exit limit when predicates are not allowed!"); 8290 8291 // 1. For each exit that can be computed, add an entry to ExitCounts. 8292 // CouldComputeBECount is true only if all exits can be computed. 8293 if (EL.ExactNotTaken == getCouldNotCompute()) 8294 // We couldn't compute an exact value for this exit, so 8295 // we won't be able to compute an exact value for the loop. 8296 CouldComputeBECount = false; 8297 else 8298 ExitCounts.emplace_back(ExitBB, EL); 8299 8300 // 2. Derive the loop's MaxBECount from each exit's max number of 8301 // non-exiting iterations. Partition the loop exits into two kinds: 8302 // LoopMustExits and LoopMayExits. 8303 // 8304 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8305 // is a LoopMayExit. If any computable LoopMustExit is found, then 8306 // MaxBECount is the minimum EL.MaxNotTaken of computable 8307 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8308 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8309 // computable EL.MaxNotTaken. 8310 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8311 DT.dominates(ExitBB, Latch)) { 8312 if (!MustExitMaxBECount) { 8313 MustExitMaxBECount = EL.MaxNotTaken; 8314 MustExitMaxOrZero = EL.MaxOrZero; 8315 } else { 8316 MustExitMaxBECount = 8317 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8318 } 8319 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8320 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8321 MayExitMaxBECount = EL.MaxNotTaken; 8322 else { 8323 MayExitMaxBECount = 8324 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8325 } 8326 } 8327 } 8328 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8329 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8330 // The loop backedge will be taken the maximum or zero times if there's 8331 // a single exit that must be taken the maximum or zero times. 8332 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8333 8334 // Remember which SCEVs are used in exit limits for invalidation purposes. 8335 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8336 // and MaxBECount, which must be SCEVConstant. 8337 for (const auto &Pair : ExitCounts) 8338 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8339 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8340 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8341 MaxBECount, MaxOrZero); 8342 } 8343 8344 ScalarEvolution::ExitLimit 8345 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8346 bool AllowPredicates) { 8347 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8348 // If our exiting block does not dominate the latch, then its connection with 8349 // loop's exit limit may be far from trivial. 8350 const BasicBlock *Latch = L->getLoopLatch(); 8351 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8352 return getCouldNotCompute(); 8353 8354 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8355 Instruction *Term = ExitingBlock->getTerminator(); 8356 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8357 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8358 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8359 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8360 "It should have one successor in loop and one exit block!"); 8361 // Proceed to the next level to examine the exit condition expression. 8362 return computeExitLimitFromCond( 8363 L, BI->getCondition(), ExitIfTrue, 8364 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8365 } 8366 8367 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8368 // For switch, make sure that there is a single exit from the loop. 8369 BasicBlock *Exit = nullptr; 8370 for (auto *SBB : successors(ExitingBlock)) 8371 if (!L->contains(SBB)) { 8372 if (Exit) // Multiple exit successors. 8373 return getCouldNotCompute(); 8374 Exit = SBB; 8375 } 8376 assert(Exit && "Exiting block must have at least one exit"); 8377 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8378 /*ControlsExit=*/IsOnlyExit); 8379 } 8380 8381 return getCouldNotCompute(); 8382 } 8383 8384 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8385 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8386 bool ControlsExit, bool AllowPredicates) { 8387 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8388 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8389 ControlsExit, AllowPredicates); 8390 } 8391 8392 Optional<ScalarEvolution::ExitLimit> 8393 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8394 bool ExitIfTrue, bool ControlsExit, 8395 bool AllowPredicates) { 8396 (void)this->L; 8397 (void)this->ExitIfTrue; 8398 (void)this->AllowPredicates; 8399 8400 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8401 this->AllowPredicates == AllowPredicates && 8402 "Variance in assumed invariant key components!"); 8403 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8404 if (Itr == TripCountMap.end()) 8405 return None; 8406 return Itr->second; 8407 } 8408 8409 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8410 bool ExitIfTrue, 8411 bool ControlsExit, 8412 bool AllowPredicates, 8413 const ExitLimit &EL) { 8414 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8415 this->AllowPredicates == AllowPredicates && 8416 "Variance in assumed invariant key components!"); 8417 8418 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8419 assert(InsertResult.second && "Expected successful insertion!"); 8420 (void)InsertResult; 8421 (void)ExitIfTrue; 8422 } 8423 8424 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8425 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8426 bool ControlsExit, bool AllowPredicates) { 8427 8428 if (auto MaybeEL = 8429 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8430 return *MaybeEL; 8431 8432 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8433 ControlsExit, AllowPredicates); 8434 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8435 return EL; 8436 } 8437 8438 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8439 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8440 bool ControlsExit, bool AllowPredicates) { 8441 // Handle BinOp conditions (And, Or). 8442 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8443 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8444 return *LimitFromBinOp; 8445 8446 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8447 // Proceed to the next level to examine the icmp. 8448 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8449 ExitLimit EL = 8450 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8451 if (EL.hasFullInfo() || !AllowPredicates) 8452 return EL; 8453 8454 // Try again, but use SCEV predicates this time. 8455 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8456 /*AllowPredicates=*/true); 8457 } 8458 8459 // Check for a constant condition. These are normally stripped out by 8460 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8461 // preserve the CFG and is temporarily leaving constant conditions 8462 // in place. 8463 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8464 if (ExitIfTrue == !CI->getZExtValue()) 8465 // The backedge is always taken. 8466 return getCouldNotCompute(); 8467 else 8468 // The backedge is never taken. 8469 return getZero(CI->getType()); 8470 } 8471 8472 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8473 // with a constant step, we can form an equivalent icmp predicate and figure 8474 // out how many iterations will be taken before we exit. 8475 const WithOverflowInst *WO; 8476 const APInt *C; 8477 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8478 match(WO->getRHS(), m_APInt(C))) { 8479 ConstantRange NWR = 8480 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8481 WO->getNoWrapKind()); 8482 CmpInst::Predicate Pred; 8483 APInt NewRHSC, Offset; 8484 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8485 if (!ExitIfTrue) 8486 Pred = ICmpInst::getInversePredicate(Pred); 8487 auto *LHS = getSCEV(WO->getLHS()); 8488 if (Offset != 0) 8489 LHS = getAddExpr(LHS, getConstant(Offset)); 8490 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8491 ControlsExit, AllowPredicates); 8492 if (EL.hasAnyInfo()) return EL; 8493 } 8494 8495 // If it's not an integer or pointer comparison then compute it the hard way. 8496 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8497 } 8498 8499 Optional<ScalarEvolution::ExitLimit> 8500 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8501 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8502 bool ControlsExit, bool AllowPredicates) { 8503 // Check if the controlling expression for this loop is an And or Or. 8504 Value *Op0, *Op1; 8505 bool IsAnd = false; 8506 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8507 IsAnd = true; 8508 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8509 IsAnd = false; 8510 else 8511 return None; 8512 8513 // EitherMayExit is true in these two cases: 8514 // br (and Op0 Op1), loop, exit 8515 // br (or Op0 Op1), exit, loop 8516 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8517 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8518 ControlsExit && !EitherMayExit, 8519 AllowPredicates); 8520 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8521 ControlsExit && !EitherMayExit, 8522 AllowPredicates); 8523 8524 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8525 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8526 if (isa<ConstantInt>(Op1)) 8527 return Op1 == NeutralElement ? EL0 : EL1; 8528 if (isa<ConstantInt>(Op0)) 8529 return Op0 == NeutralElement ? EL1 : EL0; 8530 8531 const SCEV *BECount = getCouldNotCompute(); 8532 const SCEV *MaxBECount = getCouldNotCompute(); 8533 if (EitherMayExit) { 8534 // Both conditions must be same for the loop to continue executing. 8535 // Choose the less conservative count. 8536 if (EL0.ExactNotTaken != getCouldNotCompute() && 8537 EL1.ExactNotTaken != getCouldNotCompute()) { 8538 BECount = getUMinFromMismatchedTypes( 8539 EL0.ExactNotTaken, EL1.ExactNotTaken, 8540 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8541 } 8542 if (EL0.MaxNotTaken == getCouldNotCompute()) 8543 MaxBECount = EL1.MaxNotTaken; 8544 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8545 MaxBECount = EL0.MaxNotTaken; 8546 else 8547 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8548 } else { 8549 // Both conditions must be same at the same time for the loop to exit. 8550 // For now, be conservative. 8551 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8552 BECount = EL0.ExactNotTaken; 8553 } 8554 8555 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8556 // to be more aggressive when computing BECount than when computing 8557 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8558 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8559 // to not. 8560 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8561 !isa<SCEVCouldNotCompute>(BECount)) 8562 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8563 8564 return ExitLimit(BECount, MaxBECount, false, 8565 { &EL0.Predicates, &EL1.Predicates }); 8566 } 8567 8568 ScalarEvolution::ExitLimit 8569 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8570 ICmpInst *ExitCond, 8571 bool ExitIfTrue, 8572 bool ControlsExit, 8573 bool AllowPredicates) { 8574 // If the condition was exit on true, convert the condition to exit on false 8575 ICmpInst::Predicate Pred; 8576 if (!ExitIfTrue) 8577 Pred = ExitCond->getPredicate(); 8578 else 8579 Pred = ExitCond->getInversePredicate(); 8580 const ICmpInst::Predicate OriginalPred = Pred; 8581 8582 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8583 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8584 8585 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8586 AllowPredicates); 8587 if (EL.hasAnyInfo()) return EL; 8588 8589 auto *ExhaustiveCount = 8590 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8591 8592 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8593 return ExhaustiveCount; 8594 8595 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8596 ExitCond->getOperand(1), L, OriginalPred); 8597 } 8598 ScalarEvolution::ExitLimit 8599 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8600 ICmpInst::Predicate Pred, 8601 const SCEV *LHS, const SCEV *RHS, 8602 bool ControlsExit, 8603 bool AllowPredicates) { 8604 8605 // Try to evaluate any dependencies out of the loop. 8606 LHS = getSCEVAtScope(LHS, L); 8607 RHS = getSCEVAtScope(RHS, L); 8608 8609 // At this point, we would like to compute how many iterations of the 8610 // loop the predicate will return true for these inputs. 8611 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8612 // If there is a loop-invariant, force it into the RHS. 8613 std::swap(LHS, RHS); 8614 Pred = ICmpInst::getSwappedPredicate(Pred); 8615 } 8616 8617 bool ControllingFiniteLoop = 8618 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8619 // Simplify the operands before analyzing them. 8620 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8621 (EnableFiniteLoopControl ? ControllingFiniteLoop 8622 : false)); 8623 8624 // If we have a comparison of a chrec against a constant, try to use value 8625 // ranges to answer this query. 8626 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8627 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8628 if (AddRec->getLoop() == L) { 8629 // Form the constant range. 8630 ConstantRange CompRange = 8631 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8632 8633 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8634 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8635 } 8636 8637 // If this loop must exit based on this condition (or execute undefined 8638 // behaviour), and we can prove the test sequence produced must repeat 8639 // the same values on self-wrap of the IV, then we can infer that IV 8640 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8641 // loop. 8642 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8643 // TODO: We can peel off any functions which are invertible *in L*. Loop 8644 // invariant terms are effectively constants for our purposes here. 8645 auto *InnerLHS = LHS; 8646 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8647 InnerLHS = ZExt->getOperand(); 8648 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8649 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8650 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8651 StrideC && StrideC->getAPInt().isPowerOf2()) { 8652 auto Flags = AR->getNoWrapFlags(); 8653 Flags = setFlags(Flags, SCEV::FlagNW); 8654 SmallVector<const SCEV*> Operands{AR->operands()}; 8655 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8656 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8657 } 8658 } 8659 } 8660 8661 switch (Pred) { 8662 case ICmpInst::ICMP_NE: { // while (X != Y) 8663 // Convert to: while (X-Y != 0) 8664 if (LHS->getType()->isPointerTy()) { 8665 LHS = getLosslessPtrToIntExpr(LHS); 8666 if (isa<SCEVCouldNotCompute>(LHS)) 8667 return LHS; 8668 } 8669 if (RHS->getType()->isPointerTy()) { 8670 RHS = getLosslessPtrToIntExpr(RHS); 8671 if (isa<SCEVCouldNotCompute>(RHS)) 8672 return RHS; 8673 } 8674 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8675 AllowPredicates); 8676 if (EL.hasAnyInfo()) return EL; 8677 break; 8678 } 8679 case ICmpInst::ICMP_EQ: { // while (X == Y) 8680 // Convert to: while (X-Y == 0) 8681 if (LHS->getType()->isPointerTy()) { 8682 LHS = getLosslessPtrToIntExpr(LHS); 8683 if (isa<SCEVCouldNotCompute>(LHS)) 8684 return LHS; 8685 } 8686 if (RHS->getType()->isPointerTy()) { 8687 RHS = getLosslessPtrToIntExpr(RHS); 8688 if (isa<SCEVCouldNotCompute>(RHS)) 8689 return RHS; 8690 } 8691 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8692 if (EL.hasAnyInfo()) return EL; 8693 break; 8694 } 8695 case ICmpInst::ICMP_SLT: 8696 case ICmpInst::ICMP_ULT: { // while (X < Y) 8697 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8698 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8699 AllowPredicates); 8700 if (EL.hasAnyInfo()) return EL; 8701 break; 8702 } 8703 case ICmpInst::ICMP_SGT: 8704 case ICmpInst::ICMP_UGT: { // while (X > Y) 8705 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8706 ExitLimit EL = 8707 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8708 AllowPredicates); 8709 if (EL.hasAnyInfo()) return EL; 8710 break; 8711 } 8712 default: 8713 break; 8714 } 8715 8716 return getCouldNotCompute(); 8717 } 8718 8719 ScalarEvolution::ExitLimit 8720 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8721 SwitchInst *Switch, 8722 BasicBlock *ExitingBlock, 8723 bool ControlsExit) { 8724 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8725 8726 // Give up if the exit is the default dest of a switch. 8727 if (Switch->getDefaultDest() == ExitingBlock) 8728 return getCouldNotCompute(); 8729 8730 assert(L->contains(Switch->getDefaultDest()) && 8731 "Default case must not exit the loop!"); 8732 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8733 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8734 8735 // while (X != Y) --> while (X-Y != 0) 8736 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8737 if (EL.hasAnyInfo()) 8738 return EL; 8739 8740 return getCouldNotCompute(); 8741 } 8742 8743 static ConstantInt * 8744 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8745 ScalarEvolution &SE) { 8746 const SCEV *InVal = SE.getConstant(C); 8747 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8748 assert(isa<SCEVConstant>(Val) && 8749 "Evaluation of SCEV at constant didn't fold correctly?"); 8750 return cast<SCEVConstant>(Val)->getValue(); 8751 } 8752 8753 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8754 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8755 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8756 if (!RHS) 8757 return getCouldNotCompute(); 8758 8759 const BasicBlock *Latch = L->getLoopLatch(); 8760 if (!Latch) 8761 return getCouldNotCompute(); 8762 8763 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8764 if (!Predecessor) 8765 return getCouldNotCompute(); 8766 8767 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8768 // Return LHS in OutLHS and shift_opt in OutOpCode. 8769 auto MatchPositiveShift = 8770 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8771 8772 using namespace PatternMatch; 8773 8774 ConstantInt *ShiftAmt; 8775 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8776 OutOpCode = Instruction::LShr; 8777 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8778 OutOpCode = Instruction::AShr; 8779 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8780 OutOpCode = Instruction::Shl; 8781 else 8782 return false; 8783 8784 return ShiftAmt->getValue().isStrictlyPositive(); 8785 }; 8786 8787 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8788 // 8789 // loop: 8790 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8791 // %iv.shifted = lshr i32 %iv, <positive constant> 8792 // 8793 // Return true on a successful match. Return the corresponding PHI node (%iv 8794 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8795 auto MatchShiftRecurrence = 8796 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8797 Optional<Instruction::BinaryOps> PostShiftOpCode; 8798 8799 { 8800 Instruction::BinaryOps OpC; 8801 Value *V; 8802 8803 // If we encounter a shift instruction, "peel off" the shift operation, 8804 // and remember that we did so. Later when we inspect %iv's backedge 8805 // value, we will make sure that the backedge value uses the same 8806 // operation. 8807 // 8808 // Note: the peeled shift operation does not have to be the same 8809 // instruction as the one feeding into the PHI's backedge value. We only 8810 // really care about it being the same *kind* of shift instruction -- 8811 // that's all that is required for our later inferences to hold. 8812 if (MatchPositiveShift(LHS, V, OpC)) { 8813 PostShiftOpCode = OpC; 8814 LHS = V; 8815 } 8816 } 8817 8818 PNOut = dyn_cast<PHINode>(LHS); 8819 if (!PNOut || PNOut->getParent() != L->getHeader()) 8820 return false; 8821 8822 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8823 Value *OpLHS; 8824 8825 return 8826 // The backedge value for the PHI node must be a shift by a positive 8827 // amount 8828 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8829 8830 // of the PHI node itself 8831 OpLHS == PNOut && 8832 8833 // and the kind of shift should be match the kind of shift we peeled 8834 // off, if any. 8835 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8836 }; 8837 8838 PHINode *PN; 8839 Instruction::BinaryOps OpCode; 8840 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8841 return getCouldNotCompute(); 8842 8843 const DataLayout &DL = getDataLayout(); 8844 8845 // The key rationale for this optimization is that for some kinds of shift 8846 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8847 // within a finite number of iterations. If the condition guarding the 8848 // backedge (in the sense that the backedge is taken if the condition is true) 8849 // is false for the value the shift recurrence stabilizes to, then we know 8850 // that the backedge is taken only a finite number of times. 8851 8852 ConstantInt *StableValue = nullptr; 8853 switch (OpCode) { 8854 default: 8855 llvm_unreachable("Impossible case!"); 8856 8857 case Instruction::AShr: { 8858 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8859 // bitwidth(K) iterations. 8860 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8861 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8862 Predecessor->getTerminator(), &DT); 8863 auto *Ty = cast<IntegerType>(RHS->getType()); 8864 if (Known.isNonNegative()) 8865 StableValue = ConstantInt::get(Ty, 0); 8866 else if (Known.isNegative()) 8867 StableValue = ConstantInt::get(Ty, -1, true); 8868 else 8869 return getCouldNotCompute(); 8870 8871 break; 8872 } 8873 case Instruction::LShr: 8874 case Instruction::Shl: 8875 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8876 // stabilize to 0 in at most bitwidth(K) iterations. 8877 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8878 break; 8879 } 8880 8881 auto *Result = 8882 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8883 assert(Result->getType()->isIntegerTy(1) && 8884 "Otherwise cannot be an operand to a branch instruction"); 8885 8886 if (Result->isZeroValue()) { 8887 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8888 const SCEV *UpperBound = 8889 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8890 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8891 } 8892 8893 return getCouldNotCompute(); 8894 } 8895 8896 /// Return true if we can constant fold an instruction of the specified type, 8897 /// assuming that all operands were constants. 8898 static bool CanConstantFold(const Instruction *I) { 8899 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8900 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8901 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8902 return true; 8903 8904 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8905 if (const Function *F = CI->getCalledFunction()) 8906 return canConstantFoldCallTo(CI, F); 8907 return false; 8908 } 8909 8910 /// Determine whether this instruction can constant evolve within this loop 8911 /// assuming its operands can all constant evolve. 8912 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8913 // An instruction outside of the loop can't be derived from a loop PHI. 8914 if (!L->contains(I)) return false; 8915 8916 if (isa<PHINode>(I)) { 8917 // We don't currently keep track of the control flow needed to evaluate 8918 // PHIs, so we cannot handle PHIs inside of loops. 8919 return L->getHeader() == I->getParent(); 8920 } 8921 8922 // If we won't be able to constant fold this expression even if the operands 8923 // are constants, bail early. 8924 return CanConstantFold(I); 8925 } 8926 8927 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8928 /// recursing through each instruction operand until reaching a loop header phi. 8929 static PHINode * 8930 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8931 DenseMap<Instruction *, PHINode *> &PHIMap, 8932 unsigned Depth) { 8933 if (Depth > MaxConstantEvolvingDepth) 8934 return nullptr; 8935 8936 // Otherwise, we can evaluate this instruction if all of its operands are 8937 // constant or derived from a PHI node themselves. 8938 PHINode *PHI = nullptr; 8939 for (Value *Op : UseInst->operands()) { 8940 if (isa<Constant>(Op)) continue; 8941 8942 Instruction *OpInst = dyn_cast<Instruction>(Op); 8943 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8944 8945 PHINode *P = dyn_cast<PHINode>(OpInst); 8946 if (!P) 8947 // If this operand is already visited, reuse the prior result. 8948 // We may have P != PHI if this is the deepest point at which the 8949 // inconsistent paths meet. 8950 P = PHIMap.lookup(OpInst); 8951 if (!P) { 8952 // Recurse and memoize the results, whether a phi is found or not. 8953 // This recursive call invalidates pointers into PHIMap. 8954 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8955 PHIMap[OpInst] = P; 8956 } 8957 if (!P) 8958 return nullptr; // Not evolving from PHI 8959 if (PHI && PHI != P) 8960 return nullptr; // Evolving from multiple different PHIs. 8961 PHI = P; 8962 } 8963 // This is a expression evolving from a constant PHI! 8964 return PHI; 8965 } 8966 8967 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8968 /// in the loop that V is derived from. We allow arbitrary operations along the 8969 /// way, but the operands of an operation must either be constants or a value 8970 /// derived from a constant PHI. If this expression does not fit with these 8971 /// constraints, return null. 8972 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8973 Instruction *I = dyn_cast<Instruction>(V); 8974 if (!I || !canConstantEvolve(I, L)) return nullptr; 8975 8976 if (PHINode *PN = dyn_cast<PHINode>(I)) 8977 return PN; 8978 8979 // Record non-constant instructions contained by the loop. 8980 DenseMap<Instruction *, PHINode *> PHIMap; 8981 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8982 } 8983 8984 /// EvaluateExpression - Given an expression that passes the 8985 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8986 /// in the loop has the value PHIVal. If we can't fold this expression for some 8987 /// reason, return null. 8988 static Constant *EvaluateExpression(Value *V, const Loop *L, 8989 DenseMap<Instruction *, Constant *> &Vals, 8990 const DataLayout &DL, 8991 const TargetLibraryInfo *TLI) { 8992 // Convenient constant check, but redundant for recursive calls. 8993 if (Constant *C = dyn_cast<Constant>(V)) return C; 8994 Instruction *I = dyn_cast<Instruction>(V); 8995 if (!I) return nullptr; 8996 8997 if (Constant *C = Vals.lookup(I)) return C; 8998 8999 // An instruction inside the loop depends on a value outside the loop that we 9000 // weren't given a mapping for, or a value such as a call inside the loop. 9001 if (!canConstantEvolve(I, L)) return nullptr; 9002 9003 // An unmapped PHI can be due to a branch or another loop inside this loop, 9004 // or due to this not being the initial iteration through a loop where we 9005 // couldn't compute the evolution of this particular PHI last time. 9006 if (isa<PHINode>(I)) return nullptr; 9007 9008 std::vector<Constant*> Operands(I->getNumOperands()); 9009 9010 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9011 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9012 if (!Operand) { 9013 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9014 if (!Operands[i]) return nullptr; 9015 continue; 9016 } 9017 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9018 Vals[Operand] = C; 9019 if (!C) return nullptr; 9020 Operands[i] = C; 9021 } 9022 9023 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9024 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9025 Operands[1], DL, TLI); 9026 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9027 if (!LI->isVolatile()) 9028 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9029 } 9030 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9031 } 9032 9033 9034 // If every incoming value to PN except the one for BB is a specific Constant, 9035 // return that, else return nullptr. 9036 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9037 Constant *IncomingVal = nullptr; 9038 9039 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9040 if (PN->getIncomingBlock(i) == BB) 9041 continue; 9042 9043 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9044 if (!CurrentVal) 9045 return nullptr; 9046 9047 if (IncomingVal != CurrentVal) { 9048 if (IncomingVal) 9049 return nullptr; 9050 IncomingVal = CurrentVal; 9051 } 9052 } 9053 9054 return IncomingVal; 9055 } 9056 9057 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9058 /// in the header of its containing loop, we know the loop executes a 9059 /// constant number of times, and the PHI node is just a recurrence 9060 /// involving constants, fold it. 9061 Constant * 9062 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9063 const APInt &BEs, 9064 const Loop *L) { 9065 auto I = ConstantEvolutionLoopExitValue.find(PN); 9066 if (I != ConstantEvolutionLoopExitValue.end()) 9067 return I->second; 9068 9069 if (BEs.ugt(MaxBruteForceIterations)) 9070 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9071 9072 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9073 9074 DenseMap<Instruction *, Constant *> CurrentIterVals; 9075 BasicBlock *Header = L->getHeader(); 9076 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9077 9078 BasicBlock *Latch = L->getLoopLatch(); 9079 if (!Latch) 9080 return nullptr; 9081 9082 for (PHINode &PHI : Header->phis()) { 9083 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9084 CurrentIterVals[&PHI] = StartCST; 9085 } 9086 if (!CurrentIterVals.count(PN)) 9087 return RetVal = nullptr; 9088 9089 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9090 9091 // Execute the loop symbolically to determine the exit value. 9092 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9093 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9094 9095 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9096 unsigned IterationNum = 0; 9097 const DataLayout &DL = getDataLayout(); 9098 for (; ; ++IterationNum) { 9099 if (IterationNum == NumIterations) 9100 return RetVal = CurrentIterVals[PN]; // Got exit value! 9101 9102 // Compute the value of the PHIs for the next iteration. 9103 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9104 DenseMap<Instruction *, Constant *> NextIterVals; 9105 Constant *NextPHI = 9106 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9107 if (!NextPHI) 9108 return nullptr; // Couldn't evaluate! 9109 NextIterVals[PN] = NextPHI; 9110 9111 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9112 9113 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9114 // cease to be able to evaluate one of them or if they stop evolving, 9115 // because that doesn't necessarily prevent us from computing PN. 9116 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9117 for (const auto &I : CurrentIterVals) { 9118 PHINode *PHI = dyn_cast<PHINode>(I.first); 9119 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9120 PHIsToCompute.emplace_back(PHI, I.second); 9121 } 9122 // We use two distinct loops because EvaluateExpression may invalidate any 9123 // iterators into CurrentIterVals. 9124 for (const auto &I : PHIsToCompute) { 9125 PHINode *PHI = I.first; 9126 Constant *&NextPHI = NextIterVals[PHI]; 9127 if (!NextPHI) { // Not already computed. 9128 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9129 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9130 } 9131 if (NextPHI != I.second) 9132 StoppedEvolving = false; 9133 } 9134 9135 // If all entries in CurrentIterVals == NextIterVals then we can stop 9136 // iterating, the loop can't continue to change. 9137 if (StoppedEvolving) 9138 return RetVal = CurrentIterVals[PN]; 9139 9140 CurrentIterVals.swap(NextIterVals); 9141 } 9142 } 9143 9144 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9145 Value *Cond, 9146 bool ExitWhen) { 9147 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9148 if (!PN) return getCouldNotCompute(); 9149 9150 // If the loop is canonicalized, the PHI will have exactly two entries. 9151 // That's the only form we support here. 9152 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9153 9154 DenseMap<Instruction *, Constant *> CurrentIterVals; 9155 BasicBlock *Header = L->getHeader(); 9156 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9157 9158 BasicBlock *Latch = L->getLoopLatch(); 9159 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9160 9161 for (PHINode &PHI : Header->phis()) { 9162 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9163 CurrentIterVals[&PHI] = StartCST; 9164 } 9165 if (!CurrentIterVals.count(PN)) 9166 return getCouldNotCompute(); 9167 9168 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9169 // the loop symbolically to determine when the condition gets a value of 9170 // "ExitWhen". 9171 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9172 const DataLayout &DL = getDataLayout(); 9173 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9174 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9175 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9176 9177 // Couldn't symbolically evaluate. 9178 if (!CondVal) return getCouldNotCompute(); 9179 9180 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9181 ++NumBruteForceTripCountsComputed; 9182 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9183 } 9184 9185 // Update all the PHI nodes for the next iteration. 9186 DenseMap<Instruction *, Constant *> NextIterVals; 9187 9188 // Create a list of which PHIs we need to compute. We want to do this before 9189 // calling EvaluateExpression on them because that may invalidate iterators 9190 // into CurrentIterVals. 9191 SmallVector<PHINode *, 8> PHIsToCompute; 9192 for (const auto &I : CurrentIterVals) { 9193 PHINode *PHI = dyn_cast<PHINode>(I.first); 9194 if (!PHI || PHI->getParent() != Header) continue; 9195 PHIsToCompute.push_back(PHI); 9196 } 9197 for (PHINode *PHI : PHIsToCompute) { 9198 Constant *&NextPHI = NextIterVals[PHI]; 9199 if (NextPHI) continue; // Already computed! 9200 9201 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9202 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9203 } 9204 CurrentIterVals.swap(NextIterVals); 9205 } 9206 9207 // Too many iterations were needed to evaluate. 9208 return getCouldNotCompute(); 9209 } 9210 9211 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9212 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9213 ValuesAtScopes[V]; 9214 // Check to see if we've folded this expression at this loop before. 9215 for (auto &LS : Values) 9216 if (LS.first == L) 9217 return LS.second ? LS.second : V; 9218 9219 Values.emplace_back(L, nullptr); 9220 9221 // Otherwise compute it. 9222 const SCEV *C = computeSCEVAtScope(V, L); 9223 for (auto &LS : reverse(ValuesAtScopes[V])) 9224 if (LS.first == L) { 9225 LS.second = C; 9226 if (!isa<SCEVConstant>(C)) 9227 ValuesAtScopesUsers[C].push_back({L, V}); 9228 break; 9229 } 9230 return C; 9231 } 9232 9233 /// This builds up a Constant using the ConstantExpr interface. That way, we 9234 /// will return Constants for objects which aren't represented by a 9235 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9236 /// Returns NULL if the SCEV isn't representable as a Constant. 9237 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9238 switch (V->getSCEVType()) { 9239 case scCouldNotCompute: 9240 case scAddRecExpr: 9241 return nullptr; 9242 case scConstant: 9243 return cast<SCEVConstant>(V)->getValue(); 9244 case scUnknown: 9245 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9246 case scSignExtend: { 9247 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9248 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9249 return ConstantExpr::getSExt(CastOp, SS->getType()); 9250 return nullptr; 9251 } 9252 case scZeroExtend: { 9253 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9254 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9255 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9256 return nullptr; 9257 } 9258 case scPtrToInt: { 9259 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9260 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9261 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9262 9263 return nullptr; 9264 } 9265 case scTruncate: { 9266 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9267 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9268 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9269 return nullptr; 9270 } 9271 case scAddExpr: { 9272 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9273 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9274 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9275 unsigned AS = PTy->getAddressSpace(); 9276 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9277 C = ConstantExpr::getBitCast(C, DestPtrTy); 9278 } 9279 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9280 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9281 if (!C2) 9282 return nullptr; 9283 9284 // First pointer! 9285 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9286 unsigned AS = C2->getType()->getPointerAddressSpace(); 9287 std::swap(C, C2); 9288 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9289 // The offsets have been converted to bytes. We can add bytes to an 9290 // i8* by GEP with the byte count in the first index. 9291 C = ConstantExpr::getBitCast(C, DestPtrTy); 9292 } 9293 9294 // Don't bother trying to sum two pointers. We probably can't 9295 // statically compute a load that results from it anyway. 9296 if (C2->getType()->isPointerTy()) 9297 return nullptr; 9298 9299 if (C->getType()->isPointerTy()) { 9300 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9301 C, C2); 9302 } else { 9303 C = ConstantExpr::getAdd(C, C2); 9304 } 9305 } 9306 return C; 9307 } 9308 return nullptr; 9309 } 9310 case scMulExpr: { 9311 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9312 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9313 // Don't bother with pointers at all. 9314 if (C->getType()->isPointerTy()) 9315 return nullptr; 9316 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9317 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9318 if (!C2 || C2->getType()->isPointerTy()) 9319 return nullptr; 9320 C = ConstantExpr::getMul(C, C2); 9321 } 9322 return C; 9323 } 9324 return nullptr; 9325 } 9326 case scUDivExpr: { 9327 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9328 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9329 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9330 if (LHS->getType() == RHS->getType()) 9331 return ConstantExpr::getUDiv(LHS, RHS); 9332 return nullptr; 9333 } 9334 case scSMaxExpr: 9335 case scUMaxExpr: 9336 case scSMinExpr: 9337 case scUMinExpr: 9338 case scSequentialUMinExpr: 9339 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9340 } 9341 llvm_unreachable("Unknown SCEV kind!"); 9342 } 9343 9344 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9345 if (isa<SCEVConstant>(V)) return V; 9346 9347 // If this instruction is evolved from a constant-evolving PHI, compute the 9348 // exit value from the loop without using SCEVs. 9349 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9350 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9351 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9352 const Loop *CurrLoop = this->LI[I->getParent()]; 9353 // Looking for loop exit value. 9354 if (CurrLoop && CurrLoop->getParentLoop() == L && 9355 PN->getParent() == CurrLoop->getHeader()) { 9356 // Okay, there is no closed form solution for the PHI node. Check 9357 // to see if the loop that contains it has a known backedge-taken 9358 // count. If so, we may be able to force computation of the exit 9359 // value. 9360 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9361 // This trivial case can show up in some degenerate cases where 9362 // the incoming IR has not yet been fully simplified. 9363 if (BackedgeTakenCount->isZero()) { 9364 Value *InitValue = nullptr; 9365 bool MultipleInitValues = false; 9366 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9367 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9368 if (!InitValue) 9369 InitValue = PN->getIncomingValue(i); 9370 else if (InitValue != PN->getIncomingValue(i)) { 9371 MultipleInitValues = true; 9372 break; 9373 } 9374 } 9375 } 9376 if (!MultipleInitValues && InitValue) 9377 return getSCEV(InitValue); 9378 } 9379 // Do we have a loop invariant value flowing around the backedge 9380 // for a loop which must execute the backedge? 9381 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9382 isKnownPositive(BackedgeTakenCount) && 9383 PN->getNumIncomingValues() == 2) { 9384 9385 unsigned InLoopPred = 9386 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9387 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9388 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9389 return getSCEV(BackedgeVal); 9390 } 9391 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9392 // Okay, we know how many times the containing loop executes. If 9393 // this is a constant evolving PHI node, get the final value at 9394 // the specified iteration number. 9395 Constant *RV = getConstantEvolutionLoopExitValue( 9396 PN, BTCC->getAPInt(), CurrLoop); 9397 if (RV) return getSCEV(RV); 9398 } 9399 } 9400 9401 // If there is a single-input Phi, evaluate it at our scope. If we can 9402 // prove that this replacement does not break LCSSA form, use new value. 9403 if (PN->getNumOperands() == 1) { 9404 const SCEV *Input = getSCEV(PN->getOperand(0)); 9405 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9406 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9407 // for the simplest case just support constants. 9408 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9409 } 9410 } 9411 9412 // Okay, this is an expression that we cannot symbolically evaluate 9413 // into a SCEV. Check to see if it's possible to symbolically evaluate 9414 // the arguments into constants, and if so, try to constant propagate the 9415 // result. This is particularly useful for computing loop exit values. 9416 if (CanConstantFold(I)) { 9417 SmallVector<Constant *, 4> Operands; 9418 bool MadeImprovement = false; 9419 for (Value *Op : I->operands()) { 9420 if (Constant *C = dyn_cast<Constant>(Op)) { 9421 Operands.push_back(C); 9422 continue; 9423 } 9424 9425 // If any of the operands is non-constant and if they are 9426 // non-integer and non-pointer, don't even try to analyze them 9427 // with scev techniques. 9428 if (!isSCEVable(Op->getType())) 9429 return V; 9430 9431 const SCEV *OrigV = getSCEV(Op); 9432 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9433 MadeImprovement |= OrigV != OpV; 9434 9435 Constant *C = BuildConstantFromSCEV(OpV); 9436 if (!C) return V; 9437 if (C->getType() != Op->getType()) 9438 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9439 Op->getType(), 9440 false), 9441 C, Op->getType()); 9442 Operands.push_back(C); 9443 } 9444 9445 // Check to see if getSCEVAtScope actually made an improvement. 9446 if (MadeImprovement) { 9447 Constant *C = nullptr; 9448 const DataLayout &DL = getDataLayout(); 9449 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9450 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9451 Operands[1], DL, &TLI); 9452 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9453 if (!Load->isVolatile()) 9454 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9455 DL); 9456 } else 9457 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9458 if (!C) return V; 9459 return getSCEV(C); 9460 } 9461 } 9462 } 9463 9464 // This is some other type of SCEVUnknown, just return it. 9465 return V; 9466 } 9467 9468 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9469 const auto *Comm = cast<SCEVNAryExpr>(V); 9470 // Avoid performing the look-up in the common case where the specified 9471 // expression has no loop-variant portions. 9472 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9473 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9474 if (OpAtScope != Comm->getOperand(i)) { 9475 // Okay, at least one of these operands is loop variant but might be 9476 // foldable. Build a new instance of the folded commutative expression. 9477 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9478 Comm->op_begin()+i); 9479 NewOps.push_back(OpAtScope); 9480 9481 for (++i; i != e; ++i) { 9482 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9483 NewOps.push_back(OpAtScope); 9484 } 9485 if (isa<SCEVAddExpr>(Comm)) 9486 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9487 if (isa<SCEVMulExpr>(Comm)) 9488 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9489 if (isa<SCEVMinMaxExpr>(Comm)) 9490 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9491 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9492 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9493 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9494 } 9495 } 9496 // If we got here, all operands are loop invariant. 9497 return Comm; 9498 } 9499 9500 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9501 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9502 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9503 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9504 return Div; // must be loop invariant 9505 return getUDivExpr(LHS, RHS); 9506 } 9507 9508 // If this is a loop recurrence for a loop that does not contain L, then we 9509 // are dealing with the final value computed by the loop. 9510 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9511 // First, attempt to evaluate each operand. 9512 // Avoid performing the look-up in the common case where the specified 9513 // expression has no loop-variant portions. 9514 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9515 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9516 if (OpAtScope == AddRec->getOperand(i)) 9517 continue; 9518 9519 // Okay, at least one of these operands is loop variant but might be 9520 // foldable. Build a new instance of the folded commutative expression. 9521 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9522 AddRec->op_begin()+i); 9523 NewOps.push_back(OpAtScope); 9524 for (++i; i != e; ++i) 9525 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9526 9527 const SCEV *FoldedRec = 9528 getAddRecExpr(NewOps, AddRec->getLoop(), 9529 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9530 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9531 // The addrec may be folded to a nonrecurrence, for example, if the 9532 // induction variable is multiplied by zero after constant folding. Go 9533 // ahead and return the folded value. 9534 if (!AddRec) 9535 return FoldedRec; 9536 break; 9537 } 9538 9539 // If the scope is outside the addrec's loop, evaluate it by using the 9540 // loop exit value of the addrec. 9541 if (!AddRec->getLoop()->contains(L)) { 9542 // To evaluate this recurrence, we need to know how many times the AddRec 9543 // loop iterates. Compute this now. 9544 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9545 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9546 9547 // Then, evaluate the AddRec. 9548 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9549 } 9550 9551 return AddRec; 9552 } 9553 9554 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9555 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9556 if (Op == Cast->getOperand()) 9557 return Cast; // must be loop invariant 9558 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9559 } 9560 9561 llvm_unreachable("Unknown SCEV type!"); 9562 } 9563 9564 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9565 return getSCEVAtScope(getSCEV(V), L); 9566 } 9567 9568 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9569 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9570 return stripInjectiveFunctions(ZExt->getOperand()); 9571 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9572 return stripInjectiveFunctions(SExt->getOperand()); 9573 return S; 9574 } 9575 9576 /// Finds the minimum unsigned root of the following equation: 9577 /// 9578 /// A * X = B (mod N) 9579 /// 9580 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9581 /// A and B isn't important. 9582 /// 9583 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9584 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9585 ScalarEvolution &SE) { 9586 uint32_t BW = A.getBitWidth(); 9587 assert(BW == SE.getTypeSizeInBits(B->getType())); 9588 assert(A != 0 && "A must be non-zero."); 9589 9590 // 1. D = gcd(A, N) 9591 // 9592 // The gcd of A and N may have only one prime factor: 2. The number of 9593 // trailing zeros in A is its multiplicity 9594 uint32_t Mult2 = A.countTrailingZeros(); 9595 // D = 2^Mult2 9596 9597 // 2. Check if B is divisible by D. 9598 // 9599 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9600 // is not less than multiplicity of this prime factor for D. 9601 if (SE.GetMinTrailingZeros(B) < Mult2) 9602 return SE.getCouldNotCompute(); 9603 9604 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9605 // modulo (N / D). 9606 // 9607 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9608 // (N / D) in general. The inverse itself always fits into BW bits, though, 9609 // so we immediately truncate it. 9610 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9611 APInt Mod(BW + 1, 0); 9612 Mod.setBit(BW - Mult2); // Mod = N / D 9613 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9614 9615 // 4. Compute the minimum unsigned root of the equation: 9616 // I * (B / D) mod (N / D) 9617 // To simplify the computation, we factor out the divide by D: 9618 // (I * B mod N) / D 9619 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9620 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9621 } 9622 9623 /// For a given quadratic addrec, generate coefficients of the corresponding 9624 /// quadratic equation, multiplied by a common value to ensure that they are 9625 /// integers. 9626 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9627 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9628 /// were multiplied by, and BitWidth is the bit width of the original addrec 9629 /// coefficients. 9630 /// This function returns None if the addrec coefficients are not compile- 9631 /// time constants. 9632 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9633 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9634 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9635 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9636 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9637 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9638 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9639 << *AddRec << '\n'); 9640 9641 // We currently can only solve this if the coefficients are constants. 9642 if (!LC || !MC || !NC) { 9643 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9644 return None; 9645 } 9646 9647 APInt L = LC->getAPInt(); 9648 APInt M = MC->getAPInt(); 9649 APInt N = NC->getAPInt(); 9650 assert(!N.isZero() && "This is not a quadratic addrec"); 9651 9652 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9653 unsigned NewWidth = BitWidth + 1; 9654 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9655 << BitWidth << '\n'); 9656 // The sign-extension (as opposed to a zero-extension) here matches the 9657 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9658 N = N.sext(NewWidth); 9659 M = M.sext(NewWidth); 9660 L = L.sext(NewWidth); 9661 9662 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9663 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9664 // L+M, L+2M+N, L+3M+3N, ... 9665 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9666 // 9667 // The equation Acc = 0 is then 9668 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9669 // In a quadratic form it becomes: 9670 // N n^2 + (2M-N) n + 2L = 0. 9671 9672 APInt A = N; 9673 APInt B = 2 * M - A; 9674 APInt C = 2 * L; 9675 APInt T = APInt(NewWidth, 2); 9676 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9677 << "x + " << C << ", coeff bw: " << NewWidth 9678 << ", multiplied by " << T << '\n'); 9679 return std::make_tuple(A, B, C, T, BitWidth); 9680 } 9681 9682 /// Helper function to compare optional APInts: 9683 /// (a) if X and Y both exist, return min(X, Y), 9684 /// (b) if neither X nor Y exist, return None, 9685 /// (c) if exactly one of X and Y exists, return that value. 9686 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9687 if (X.hasValue() && Y.hasValue()) { 9688 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9689 APInt XW = X->sextOrSelf(W); 9690 APInt YW = Y->sextOrSelf(W); 9691 return XW.slt(YW) ? *X : *Y; 9692 } 9693 if (!X.hasValue() && !Y.hasValue()) 9694 return None; 9695 return X.hasValue() ? *X : *Y; 9696 } 9697 9698 /// Helper function to truncate an optional APInt to a given BitWidth. 9699 /// When solving addrec-related equations, it is preferable to return a value 9700 /// that has the same bit width as the original addrec's coefficients. If the 9701 /// solution fits in the original bit width, truncate it (except for i1). 9702 /// Returning a value of a different bit width may inhibit some optimizations. 9703 /// 9704 /// In general, a solution to a quadratic equation generated from an addrec 9705 /// may require BW+1 bits, where BW is the bit width of the addrec's 9706 /// coefficients. The reason is that the coefficients of the quadratic 9707 /// equation are BW+1 bits wide (to avoid truncation when converting from 9708 /// the addrec to the equation). 9709 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9710 if (!X.hasValue()) 9711 return None; 9712 unsigned W = X->getBitWidth(); 9713 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9714 return X->trunc(BitWidth); 9715 return X; 9716 } 9717 9718 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9719 /// iterations. The values L, M, N are assumed to be signed, and they 9720 /// should all have the same bit widths. 9721 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9722 /// where BW is the bit width of the addrec's coefficients. 9723 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9724 /// returned as such, otherwise the bit width of the returned value may 9725 /// be greater than BW. 9726 /// 9727 /// This function returns None if 9728 /// (a) the addrec coefficients are not constant, or 9729 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9730 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9731 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9732 static Optional<APInt> 9733 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9734 APInt A, B, C, M; 9735 unsigned BitWidth; 9736 auto T = GetQuadraticEquation(AddRec); 9737 if (!T.hasValue()) 9738 return None; 9739 9740 std::tie(A, B, C, M, BitWidth) = *T; 9741 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9742 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9743 if (!X.hasValue()) 9744 return None; 9745 9746 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9747 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9748 if (!V->isZero()) 9749 return None; 9750 9751 return TruncIfPossible(X, BitWidth); 9752 } 9753 9754 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9755 /// iterations. The values M, N are assumed to be signed, and they 9756 /// should all have the same bit widths. 9757 /// Find the least n such that c(n) does not belong to the given range, 9758 /// while c(n-1) does. 9759 /// 9760 /// This function returns None if 9761 /// (a) the addrec coefficients are not constant, or 9762 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9763 /// bounds of the range. 9764 static Optional<APInt> 9765 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9766 const ConstantRange &Range, ScalarEvolution &SE) { 9767 assert(AddRec->getOperand(0)->isZero() && 9768 "Starting value of addrec should be 0"); 9769 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9770 << Range << ", addrec " << *AddRec << '\n'); 9771 // This case is handled in getNumIterationsInRange. Here we can assume that 9772 // we start in the range. 9773 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9774 "Addrec's initial value should be in range"); 9775 9776 APInt A, B, C, M; 9777 unsigned BitWidth; 9778 auto T = GetQuadraticEquation(AddRec); 9779 if (!T.hasValue()) 9780 return None; 9781 9782 // Be careful about the return value: there can be two reasons for not 9783 // returning an actual number. First, if no solutions to the equations 9784 // were found, and second, if the solutions don't leave the given range. 9785 // The first case means that the actual solution is "unknown", the second 9786 // means that it's known, but not valid. If the solution is unknown, we 9787 // cannot make any conclusions. 9788 // Return a pair: the optional solution and a flag indicating if the 9789 // solution was found. 9790 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9791 // Solve for signed overflow and unsigned overflow, pick the lower 9792 // solution. 9793 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9794 << Bound << " (before multiplying by " << M << ")\n"); 9795 Bound *= M; // The quadratic equation multiplier. 9796 9797 Optional<APInt> SO = None; 9798 if (BitWidth > 1) { 9799 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9800 "signed overflow\n"); 9801 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9802 } 9803 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9804 "unsigned overflow\n"); 9805 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9806 BitWidth+1); 9807 9808 auto LeavesRange = [&] (const APInt &X) { 9809 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9810 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9811 if (Range.contains(V0->getValue())) 9812 return false; 9813 // X should be at least 1, so X-1 is non-negative. 9814 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9815 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9816 if (Range.contains(V1->getValue())) 9817 return true; 9818 return false; 9819 }; 9820 9821 // If SolveQuadraticEquationWrap returns None, it means that there can 9822 // be a solution, but the function failed to find it. We cannot treat it 9823 // as "no solution". 9824 if (!SO.hasValue() || !UO.hasValue()) 9825 return { None, false }; 9826 9827 // Check the smaller value first to see if it leaves the range. 9828 // At this point, both SO and UO must have values. 9829 Optional<APInt> Min = MinOptional(SO, UO); 9830 if (LeavesRange(*Min)) 9831 return { Min, true }; 9832 Optional<APInt> Max = Min == SO ? UO : SO; 9833 if (LeavesRange(*Max)) 9834 return { Max, true }; 9835 9836 // Solutions were found, but were eliminated, hence the "true". 9837 return { None, true }; 9838 }; 9839 9840 std::tie(A, B, C, M, BitWidth) = *T; 9841 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9842 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9843 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9844 auto SL = SolveForBoundary(Lower); 9845 auto SU = SolveForBoundary(Upper); 9846 // If any of the solutions was unknown, no meaninigful conclusions can 9847 // be made. 9848 if (!SL.second || !SU.second) 9849 return None; 9850 9851 // Claim: The correct solution is not some value between Min and Max. 9852 // 9853 // Justification: Assuming that Min and Max are different values, one of 9854 // them is when the first signed overflow happens, the other is when the 9855 // first unsigned overflow happens. Crossing the range boundary is only 9856 // possible via an overflow (treating 0 as a special case of it, modeling 9857 // an overflow as crossing k*2^W for some k). 9858 // 9859 // The interesting case here is when Min was eliminated as an invalid 9860 // solution, but Max was not. The argument is that if there was another 9861 // overflow between Min and Max, it would also have been eliminated if 9862 // it was considered. 9863 // 9864 // For a given boundary, it is possible to have two overflows of the same 9865 // type (signed/unsigned) without having the other type in between: this 9866 // can happen when the vertex of the parabola is between the iterations 9867 // corresponding to the overflows. This is only possible when the two 9868 // overflows cross k*2^W for the same k. In such case, if the second one 9869 // left the range (and was the first one to do so), the first overflow 9870 // would have to enter the range, which would mean that either we had left 9871 // the range before or that we started outside of it. Both of these cases 9872 // are contradictions. 9873 // 9874 // Claim: In the case where SolveForBoundary returns None, the correct 9875 // solution is not some value between the Max for this boundary and the 9876 // Min of the other boundary. 9877 // 9878 // Justification: Assume that we had such Max_A and Min_B corresponding 9879 // to range boundaries A and B and such that Max_A < Min_B. If there was 9880 // a solution between Max_A and Min_B, it would have to be caused by an 9881 // overflow corresponding to either A or B. It cannot correspond to B, 9882 // since Min_B is the first occurrence of such an overflow. If it 9883 // corresponded to A, it would have to be either a signed or an unsigned 9884 // overflow that is larger than both eliminated overflows for A. But 9885 // between the eliminated overflows and this overflow, the values would 9886 // cover the entire value space, thus crossing the other boundary, which 9887 // is a contradiction. 9888 9889 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9890 } 9891 9892 ScalarEvolution::ExitLimit 9893 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9894 bool AllowPredicates) { 9895 9896 // This is only used for loops with a "x != y" exit test. The exit condition 9897 // is now expressed as a single expression, V = x-y. So the exit test is 9898 // effectively V != 0. We know and take advantage of the fact that this 9899 // expression only being used in a comparison by zero context. 9900 9901 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9902 // If the value is a constant 9903 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9904 // If the value is already zero, the branch will execute zero times. 9905 if (C->getValue()->isZero()) return C; 9906 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9907 } 9908 9909 const SCEVAddRecExpr *AddRec = 9910 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9911 9912 if (!AddRec && AllowPredicates) 9913 // Try to make this an AddRec using runtime tests, in the first X 9914 // iterations of this loop, where X is the SCEV expression found by the 9915 // algorithm below. 9916 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9917 9918 if (!AddRec || AddRec->getLoop() != L) 9919 return getCouldNotCompute(); 9920 9921 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9922 // the quadratic equation to solve it. 9923 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9924 // We can only use this value if the chrec ends up with an exact zero 9925 // value at this index. When solving for "X*X != 5", for example, we 9926 // should not accept a root of 2. 9927 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9928 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9929 return ExitLimit(R, R, false, Predicates); 9930 } 9931 return getCouldNotCompute(); 9932 } 9933 9934 // Otherwise we can only handle this if it is affine. 9935 if (!AddRec->isAffine()) 9936 return getCouldNotCompute(); 9937 9938 // If this is an affine expression, the execution count of this branch is 9939 // the minimum unsigned root of the following equation: 9940 // 9941 // Start + Step*N = 0 (mod 2^BW) 9942 // 9943 // equivalent to: 9944 // 9945 // Step*N = -Start (mod 2^BW) 9946 // 9947 // where BW is the common bit width of Start and Step. 9948 9949 // Get the initial value for the loop. 9950 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9951 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9952 9953 // For now we handle only constant steps. 9954 // 9955 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9956 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9957 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9958 // We have not yet seen any such cases. 9959 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9960 if (!StepC || StepC->getValue()->isZero()) 9961 return getCouldNotCompute(); 9962 9963 // For positive steps (counting up until unsigned overflow): 9964 // N = -Start/Step (as unsigned) 9965 // For negative steps (counting down to zero): 9966 // N = Start/-Step 9967 // First compute the unsigned distance from zero in the direction of Step. 9968 bool CountDown = StepC->getAPInt().isNegative(); 9969 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9970 9971 // Handle unitary steps, which cannot wraparound. 9972 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9973 // N = Distance (as unsigned) 9974 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9975 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9976 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9977 9978 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9979 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9980 // case, and see if we can improve the bound. 9981 // 9982 // Explicitly handling this here is necessary because getUnsignedRange 9983 // isn't context-sensitive; it doesn't know that we only care about the 9984 // range inside the loop. 9985 const SCEV *Zero = getZero(Distance->getType()); 9986 const SCEV *One = getOne(Distance->getType()); 9987 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9988 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9989 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9990 // as "unsigned_max(Distance + 1) - 1". 9991 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9992 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9993 } 9994 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9995 } 9996 9997 // If the condition controls loop exit (the loop exits only if the expression 9998 // is true) and the addition is no-wrap we can use unsigned divide to 9999 // compute the backedge count. In this case, the step may not divide the 10000 // distance, but we don't care because if the condition is "missed" the loop 10001 // will have undefined behavior due to wrapping. 10002 if (ControlsExit && AddRec->hasNoSelfWrap() && 10003 loopHasNoAbnormalExits(AddRec->getLoop())) { 10004 const SCEV *Exact = 10005 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10006 const SCEV *Max = getCouldNotCompute(); 10007 if (Exact != getCouldNotCompute()) { 10008 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10009 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10010 } 10011 return ExitLimit(Exact, Max, false, Predicates); 10012 } 10013 10014 // Solve the general equation. 10015 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10016 getNegativeSCEV(Start), *this); 10017 10018 const SCEV *M = E; 10019 if (E != getCouldNotCompute()) { 10020 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10021 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10022 } 10023 return ExitLimit(E, M, false, Predicates); 10024 } 10025 10026 ScalarEvolution::ExitLimit 10027 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10028 // Loops that look like: while (X == 0) are very strange indeed. We don't 10029 // handle them yet except for the trivial case. This could be expanded in the 10030 // future as needed. 10031 10032 // If the value is a constant, check to see if it is known to be non-zero 10033 // already. If so, the backedge will execute zero times. 10034 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10035 if (!C->getValue()->isZero()) 10036 return getZero(C->getType()); 10037 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10038 } 10039 10040 // We could implement others, but I really doubt anyone writes loops like 10041 // this, and if they did, they would already be constant folded. 10042 return getCouldNotCompute(); 10043 } 10044 10045 std::pair<const BasicBlock *, const BasicBlock *> 10046 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10047 const { 10048 // If the block has a unique predecessor, then there is no path from the 10049 // predecessor to the block that does not go through the direct edge 10050 // from the predecessor to the block. 10051 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10052 return {Pred, BB}; 10053 10054 // A loop's header is defined to be a block that dominates the loop. 10055 // If the header has a unique predecessor outside the loop, it must be 10056 // a block that has exactly one successor that can reach the loop. 10057 if (const Loop *L = LI.getLoopFor(BB)) 10058 return {L->getLoopPredecessor(), L->getHeader()}; 10059 10060 return {nullptr, nullptr}; 10061 } 10062 10063 /// SCEV structural equivalence is usually sufficient for testing whether two 10064 /// expressions are equal, however for the purposes of looking for a condition 10065 /// guarding a loop, it can be useful to be a little more general, since a 10066 /// front-end may have replicated the controlling expression. 10067 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10068 // Quick check to see if they are the same SCEV. 10069 if (A == B) return true; 10070 10071 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10072 // Not all instructions that are "identical" compute the same value. For 10073 // instance, two distinct alloca instructions allocating the same type are 10074 // identical and do not read memory; but compute distinct values. 10075 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10076 }; 10077 10078 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10079 // two different instructions with the same value. Check for this case. 10080 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10081 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10082 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10083 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10084 if (ComputesEqualValues(AI, BI)) 10085 return true; 10086 10087 // Otherwise assume they may have a different value. 10088 return false; 10089 } 10090 10091 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10092 const SCEV *&LHS, const SCEV *&RHS, 10093 unsigned Depth, 10094 bool ControllingFiniteLoop) { 10095 bool Changed = false; 10096 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10097 // '0 != 0'. 10098 auto TrivialCase = [&](bool TriviallyTrue) { 10099 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10100 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10101 return true; 10102 }; 10103 // If we hit the max recursion limit bail out. 10104 if (Depth >= 3) 10105 return false; 10106 10107 // Canonicalize a constant to the right side. 10108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10109 // Check for both operands constant. 10110 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10111 if (ConstantExpr::getICmp(Pred, 10112 LHSC->getValue(), 10113 RHSC->getValue())->isNullValue()) 10114 return TrivialCase(false); 10115 else 10116 return TrivialCase(true); 10117 } 10118 // Otherwise swap the operands to put the constant on the right. 10119 std::swap(LHS, RHS); 10120 Pred = ICmpInst::getSwappedPredicate(Pred); 10121 Changed = true; 10122 } 10123 10124 // If we're comparing an addrec with a value which is loop-invariant in the 10125 // addrec's loop, put the addrec on the left. Also make a dominance check, 10126 // as both operands could be addrecs loop-invariant in each other's loop. 10127 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10128 const Loop *L = AR->getLoop(); 10129 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10130 std::swap(LHS, RHS); 10131 Pred = ICmpInst::getSwappedPredicate(Pred); 10132 Changed = true; 10133 } 10134 } 10135 10136 // If there's a constant operand, canonicalize comparisons with boundary 10137 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10138 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10139 const APInt &RA = RC->getAPInt(); 10140 10141 bool SimplifiedByConstantRange = false; 10142 10143 if (!ICmpInst::isEquality(Pred)) { 10144 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10145 if (ExactCR.isFullSet()) 10146 return TrivialCase(true); 10147 else if (ExactCR.isEmptySet()) 10148 return TrivialCase(false); 10149 10150 APInt NewRHS; 10151 CmpInst::Predicate NewPred; 10152 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10153 ICmpInst::isEquality(NewPred)) { 10154 // We were able to convert an inequality to an equality. 10155 Pred = NewPred; 10156 RHS = getConstant(NewRHS); 10157 Changed = SimplifiedByConstantRange = true; 10158 } 10159 } 10160 10161 if (!SimplifiedByConstantRange) { 10162 switch (Pred) { 10163 default: 10164 break; 10165 case ICmpInst::ICMP_EQ: 10166 case ICmpInst::ICMP_NE: 10167 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10168 if (!RA) 10169 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10170 if (const SCEVMulExpr *ME = 10171 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10172 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10173 ME->getOperand(0)->isAllOnesValue()) { 10174 RHS = AE->getOperand(1); 10175 LHS = ME->getOperand(1); 10176 Changed = true; 10177 } 10178 break; 10179 10180 10181 // The "Should have been caught earlier!" messages refer to the fact 10182 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10183 // should have fired on the corresponding cases, and canonicalized the 10184 // check to trivial case. 10185 10186 case ICmpInst::ICMP_UGE: 10187 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10188 Pred = ICmpInst::ICMP_UGT; 10189 RHS = getConstant(RA - 1); 10190 Changed = true; 10191 break; 10192 case ICmpInst::ICMP_ULE: 10193 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10194 Pred = ICmpInst::ICMP_ULT; 10195 RHS = getConstant(RA + 1); 10196 Changed = true; 10197 break; 10198 case ICmpInst::ICMP_SGE: 10199 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10200 Pred = ICmpInst::ICMP_SGT; 10201 RHS = getConstant(RA - 1); 10202 Changed = true; 10203 break; 10204 case ICmpInst::ICMP_SLE: 10205 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10206 Pred = ICmpInst::ICMP_SLT; 10207 RHS = getConstant(RA + 1); 10208 Changed = true; 10209 break; 10210 } 10211 } 10212 } 10213 10214 // Check for obvious equality. 10215 if (HasSameValue(LHS, RHS)) { 10216 if (ICmpInst::isTrueWhenEqual(Pred)) 10217 return TrivialCase(true); 10218 if (ICmpInst::isFalseWhenEqual(Pred)) 10219 return TrivialCase(false); 10220 } 10221 10222 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10223 // adding or subtracting 1 from one of the operands. This can be done for 10224 // one of two reasons: 10225 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10226 // 2) The loop is finite, with this comparison controlling the exit. Since the 10227 // loop is finite, the bound cannot include the corresponding boundary 10228 // (otherwise it would loop forever). 10229 switch (Pred) { 10230 case ICmpInst::ICMP_SLE: 10231 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10232 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10233 SCEV::FlagNSW); 10234 Pred = ICmpInst::ICMP_SLT; 10235 Changed = true; 10236 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10237 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10238 SCEV::FlagNSW); 10239 Pred = ICmpInst::ICMP_SLT; 10240 Changed = true; 10241 } 10242 break; 10243 case ICmpInst::ICMP_SGE: 10244 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10245 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10246 SCEV::FlagNSW); 10247 Pred = ICmpInst::ICMP_SGT; 10248 Changed = true; 10249 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10250 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10251 SCEV::FlagNSW); 10252 Pred = ICmpInst::ICMP_SGT; 10253 Changed = true; 10254 } 10255 break; 10256 case ICmpInst::ICMP_ULE: 10257 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10258 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10259 SCEV::FlagNUW); 10260 Pred = ICmpInst::ICMP_ULT; 10261 Changed = true; 10262 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10263 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10264 Pred = ICmpInst::ICMP_ULT; 10265 Changed = true; 10266 } 10267 break; 10268 case ICmpInst::ICMP_UGE: 10269 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10270 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10271 Pred = ICmpInst::ICMP_UGT; 10272 Changed = true; 10273 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10274 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10275 SCEV::FlagNUW); 10276 Pred = ICmpInst::ICMP_UGT; 10277 Changed = true; 10278 } 10279 break; 10280 default: 10281 break; 10282 } 10283 10284 // TODO: More simplifications are possible here. 10285 10286 // Recursively simplify until we either hit a recursion limit or nothing 10287 // changes. 10288 if (Changed) 10289 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10290 ControllingFiniteLoop); 10291 10292 return Changed; 10293 } 10294 10295 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10296 return getSignedRangeMax(S).isNegative(); 10297 } 10298 10299 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10300 return getSignedRangeMin(S).isStrictlyPositive(); 10301 } 10302 10303 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10304 return !getSignedRangeMin(S).isNegative(); 10305 } 10306 10307 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10308 return !getSignedRangeMax(S).isStrictlyPositive(); 10309 } 10310 10311 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10312 return getUnsignedRangeMin(S) != 0; 10313 } 10314 10315 std::pair<const SCEV *, const SCEV *> 10316 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10317 // Compute SCEV on entry of loop L. 10318 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10319 if (Start == getCouldNotCompute()) 10320 return { Start, Start }; 10321 // Compute post increment SCEV for loop L. 10322 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10323 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10324 return { Start, PostInc }; 10325 } 10326 10327 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10328 const SCEV *LHS, const SCEV *RHS) { 10329 // First collect all loops. 10330 SmallPtrSet<const Loop *, 8> LoopsUsed; 10331 getUsedLoops(LHS, LoopsUsed); 10332 getUsedLoops(RHS, LoopsUsed); 10333 10334 if (LoopsUsed.empty()) 10335 return false; 10336 10337 // Domination relationship must be a linear order on collected loops. 10338 #ifndef NDEBUG 10339 for (auto *L1 : LoopsUsed) 10340 for (auto *L2 : LoopsUsed) 10341 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10342 DT.dominates(L2->getHeader(), L1->getHeader())) && 10343 "Domination relationship is not a linear order"); 10344 #endif 10345 10346 const Loop *MDL = 10347 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10348 [&](const Loop *L1, const Loop *L2) { 10349 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10350 }); 10351 10352 // Get init and post increment value for LHS. 10353 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10354 // if LHS contains unknown non-invariant SCEV then bail out. 10355 if (SplitLHS.first == getCouldNotCompute()) 10356 return false; 10357 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10358 // Get init and post increment value for RHS. 10359 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10360 // if RHS contains unknown non-invariant SCEV then bail out. 10361 if (SplitRHS.first == getCouldNotCompute()) 10362 return false; 10363 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10364 // It is possible that init SCEV contains an invariant load but it does 10365 // not dominate MDL and is not available at MDL loop entry, so we should 10366 // check it here. 10367 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10368 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10369 return false; 10370 10371 // It seems backedge guard check is faster than entry one so in some cases 10372 // it can speed up whole estimation by short circuit 10373 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10374 SplitRHS.second) && 10375 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10376 } 10377 10378 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10379 const SCEV *LHS, const SCEV *RHS) { 10380 // Canonicalize the inputs first. 10381 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10382 10383 if (isKnownViaInduction(Pred, LHS, RHS)) 10384 return true; 10385 10386 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10387 return true; 10388 10389 // Otherwise see what can be done with some simple reasoning. 10390 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10391 } 10392 10393 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10394 const SCEV *LHS, 10395 const SCEV *RHS) { 10396 if (isKnownPredicate(Pred, LHS, RHS)) 10397 return true; 10398 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10399 return false; 10400 return None; 10401 } 10402 10403 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10404 const SCEV *LHS, const SCEV *RHS, 10405 const Instruction *CtxI) { 10406 // TODO: Analyze guards and assumes from Context's block. 10407 return isKnownPredicate(Pred, LHS, RHS) || 10408 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10409 } 10410 10411 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10412 const SCEV *LHS, 10413 const SCEV *RHS, 10414 const Instruction *CtxI) { 10415 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10416 if (KnownWithoutContext) 10417 return KnownWithoutContext; 10418 10419 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10420 return true; 10421 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10422 ICmpInst::getInversePredicate(Pred), 10423 LHS, RHS)) 10424 return false; 10425 return None; 10426 } 10427 10428 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10429 const SCEVAddRecExpr *LHS, 10430 const SCEV *RHS) { 10431 const Loop *L = LHS->getLoop(); 10432 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10433 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10434 } 10435 10436 Optional<ScalarEvolution::MonotonicPredicateType> 10437 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10438 ICmpInst::Predicate Pred) { 10439 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10440 10441 #ifndef NDEBUG 10442 // Verify an invariant: inverting the predicate should turn a monotonically 10443 // increasing change to a monotonically decreasing one, and vice versa. 10444 if (Result) { 10445 auto ResultSwapped = 10446 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10447 10448 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10449 assert(ResultSwapped.getValue() != Result.getValue() && 10450 "monotonicity should flip as we flip the predicate"); 10451 } 10452 #endif 10453 10454 return Result; 10455 } 10456 10457 Optional<ScalarEvolution::MonotonicPredicateType> 10458 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10459 ICmpInst::Predicate Pred) { 10460 // A zero step value for LHS means the induction variable is essentially a 10461 // loop invariant value. We don't really depend on the predicate actually 10462 // flipping from false to true (for increasing predicates, and the other way 10463 // around for decreasing predicates), all we care about is that *if* the 10464 // predicate changes then it only changes from false to true. 10465 // 10466 // A zero step value in itself is not very useful, but there may be places 10467 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10468 // as general as possible. 10469 10470 // Only handle LE/LT/GE/GT predicates. 10471 if (!ICmpInst::isRelational(Pred)) 10472 return None; 10473 10474 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10475 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10476 "Should be greater or less!"); 10477 10478 // Check that AR does not wrap. 10479 if (ICmpInst::isUnsigned(Pred)) { 10480 if (!LHS->hasNoUnsignedWrap()) 10481 return None; 10482 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10483 } else { 10484 assert(ICmpInst::isSigned(Pred) && 10485 "Relational predicate is either signed or unsigned!"); 10486 if (!LHS->hasNoSignedWrap()) 10487 return None; 10488 10489 const SCEV *Step = LHS->getStepRecurrence(*this); 10490 10491 if (isKnownNonNegative(Step)) 10492 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10493 10494 if (isKnownNonPositive(Step)) 10495 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10496 10497 return None; 10498 } 10499 } 10500 10501 Optional<ScalarEvolution::LoopInvariantPredicate> 10502 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10503 const SCEV *LHS, const SCEV *RHS, 10504 const Loop *L) { 10505 10506 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10507 if (!isLoopInvariant(RHS, L)) { 10508 if (!isLoopInvariant(LHS, L)) 10509 return None; 10510 10511 std::swap(LHS, RHS); 10512 Pred = ICmpInst::getSwappedPredicate(Pred); 10513 } 10514 10515 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10516 if (!ArLHS || ArLHS->getLoop() != L) 10517 return None; 10518 10519 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10520 if (!MonotonicType) 10521 return None; 10522 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10523 // true as the loop iterates, and the backedge is control dependent on 10524 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10525 // 10526 // * if the predicate was false in the first iteration then the predicate 10527 // is never evaluated again, since the loop exits without taking the 10528 // backedge. 10529 // * if the predicate was true in the first iteration then it will 10530 // continue to be true for all future iterations since it is 10531 // monotonically increasing. 10532 // 10533 // For both the above possibilities, we can replace the loop varying 10534 // predicate with its value on the first iteration of the loop (which is 10535 // loop invariant). 10536 // 10537 // A similar reasoning applies for a monotonically decreasing predicate, by 10538 // replacing true with false and false with true in the above two bullets. 10539 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10540 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10541 10542 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10543 return None; 10544 10545 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10546 } 10547 10548 Optional<ScalarEvolution::LoopInvariantPredicate> 10549 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10550 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10551 const Instruction *CtxI, const SCEV *MaxIter) { 10552 // Try to prove the following set of facts: 10553 // - The predicate is monotonic in the iteration space. 10554 // - If the check does not fail on the 1st iteration: 10555 // - No overflow will happen during first MaxIter iterations; 10556 // - It will not fail on the MaxIter'th iteration. 10557 // If the check does fail on the 1st iteration, we leave the loop and no 10558 // other checks matter. 10559 10560 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10561 if (!isLoopInvariant(RHS, L)) { 10562 if (!isLoopInvariant(LHS, L)) 10563 return None; 10564 10565 std::swap(LHS, RHS); 10566 Pred = ICmpInst::getSwappedPredicate(Pred); 10567 } 10568 10569 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10570 if (!AR || AR->getLoop() != L) 10571 return None; 10572 10573 // The predicate must be relational (i.e. <, <=, >=, >). 10574 if (!ICmpInst::isRelational(Pred)) 10575 return None; 10576 10577 // TODO: Support steps other than +/- 1. 10578 const SCEV *Step = AR->getStepRecurrence(*this); 10579 auto *One = getOne(Step->getType()); 10580 auto *MinusOne = getNegativeSCEV(One); 10581 if (Step != One && Step != MinusOne) 10582 return None; 10583 10584 // Type mismatch here means that MaxIter is potentially larger than max 10585 // unsigned value in start type, which mean we cannot prove no wrap for the 10586 // indvar. 10587 if (AR->getType() != MaxIter->getType()) 10588 return None; 10589 10590 // Value of IV on suggested last iteration. 10591 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10592 // Does it still meet the requirement? 10593 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10594 return None; 10595 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10596 // not exceed max unsigned value of this type), this effectively proves 10597 // that there is no wrap during the iteration. To prove that there is no 10598 // signed/unsigned wrap, we need to check that 10599 // Start <= Last for step = 1 or Start >= Last for step = -1. 10600 ICmpInst::Predicate NoOverflowPred = 10601 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10602 if (Step == MinusOne) 10603 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10604 const SCEV *Start = AR->getStart(); 10605 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10606 return None; 10607 10608 // Everything is fine. 10609 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10610 } 10611 10612 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10613 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10614 if (HasSameValue(LHS, RHS)) 10615 return ICmpInst::isTrueWhenEqual(Pred); 10616 10617 // This code is split out from isKnownPredicate because it is called from 10618 // within isLoopEntryGuardedByCond. 10619 10620 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10621 const ConstantRange &RangeRHS) { 10622 return RangeLHS.icmp(Pred, RangeRHS); 10623 }; 10624 10625 // The check at the top of the function catches the case where the values are 10626 // known to be equal. 10627 if (Pred == CmpInst::ICMP_EQ) 10628 return false; 10629 10630 if (Pred == CmpInst::ICMP_NE) { 10631 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10632 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10633 return true; 10634 auto *Diff = getMinusSCEV(LHS, RHS); 10635 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10636 } 10637 10638 if (CmpInst::isSigned(Pred)) 10639 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10640 10641 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10642 } 10643 10644 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10645 const SCEV *LHS, 10646 const SCEV *RHS) { 10647 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10648 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10649 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10650 // OutC1 and OutC2. 10651 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10652 APInt &OutC1, APInt &OutC2, 10653 SCEV::NoWrapFlags ExpectedFlags) { 10654 const SCEV *XNonConstOp, *XConstOp; 10655 const SCEV *YNonConstOp, *YConstOp; 10656 SCEV::NoWrapFlags XFlagsPresent; 10657 SCEV::NoWrapFlags YFlagsPresent; 10658 10659 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10660 XConstOp = getZero(X->getType()); 10661 XNonConstOp = X; 10662 XFlagsPresent = ExpectedFlags; 10663 } 10664 if (!isa<SCEVConstant>(XConstOp) || 10665 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10666 return false; 10667 10668 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10669 YConstOp = getZero(Y->getType()); 10670 YNonConstOp = Y; 10671 YFlagsPresent = ExpectedFlags; 10672 } 10673 10674 if (!isa<SCEVConstant>(YConstOp) || 10675 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10676 return false; 10677 10678 if (YNonConstOp != XNonConstOp) 10679 return false; 10680 10681 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10682 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10683 10684 return true; 10685 }; 10686 10687 APInt C1; 10688 APInt C2; 10689 10690 switch (Pred) { 10691 default: 10692 break; 10693 10694 case ICmpInst::ICMP_SGE: 10695 std::swap(LHS, RHS); 10696 LLVM_FALLTHROUGH; 10697 case ICmpInst::ICMP_SLE: 10698 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10699 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10700 return true; 10701 10702 break; 10703 10704 case ICmpInst::ICMP_SGT: 10705 std::swap(LHS, RHS); 10706 LLVM_FALLTHROUGH; 10707 case ICmpInst::ICMP_SLT: 10708 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10709 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10710 return true; 10711 10712 break; 10713 10714 case ICmpInst::ICMP_UGE: 10715 std::swap(LHS, RHS); 10716 LLVM_FALLTHROUGH; 10717 case ICmpInst::ICMP_ULE: 10718 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10719 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10720 return true; 10721 10722 break; 10723 10724 case ICmpInst::ICMP_UGT: 10725 std::swap(LHS, RHS); 10726 LLVM_FALLTHROUGH; 10727 case ICmpInst::ICMP_ULT: 10728 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10729 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10730 return true; 10731 break; 10732 } 10733 10734 return false; 10735 } 10736 10737 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10738 const SCEV *LHS, 10739 const SCEV *RHS) { 10740 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10741 return false; 10742 10743 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10744 // the stack can result in exponential time complexity. 10745 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10746 10747 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10748 // 10749 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10750 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10751 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10752 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10753 // use isKnownPredicate later if needed. 10754 return isKnownNonNegative(RHS) && 10755 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10756 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10757 } 10758 10759 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10760 ICmpInst::Predicate Pred, 10761 const SCEV *LHS, const SCEV *RHS) { 10762 // No need to even try if we know the module has no guards. 10763 if (!HasGuards) 10764 return false; 10765 10766 return any_of(*BB, [&](const Instruction &I) { 10767 using namespace llvm::PatternMatch; 10768 10769 Value *Condition; 10770 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10771 m_Value(Condition))) && 10772 isImpliedCond(Pred, LHS, RHS, Condition, false); 10773 }); 10774 } 10775 10776 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10777 /// protected by a conditional between LHS and RHS. This is used to 10778 /// to eliminate casts. 10779 bool 10780 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10781 ICmpInst::Predicate Pred, 10782 const SCEV *LHS, const SCEV *RHS) { 10783 // Interpret a null as meaning no loop, where there is obviously no guard 10784 // (interprocedural conditions notwithstanding). 10785 if (!L) return true; 10786 10787 if (VerifyIR) 10788 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10789 "This cannot be done on broken IR!"); 10790 10791 10792 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10793 return true; 10794 10795 BasicBlock *Latch = L->getLoopLatch(); 10796 if (!Latch) 10797 return false; 10798 10799 BranchInst *LoopContinuePredicate = 10800 dyn_cast<BranchInst>(Latch->getTerminator()); 10801 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10802 isImpliedCond(Pred, LHS, RHS, 10803 LoopContinuePredicate->getCondition(), 10804 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10805 return true; 10806 10807 // We don't want more than one activation of the following loops on the stack 10808 // -- that can lead to O(n!) time complexity. 10809 if (WalkingBEDominatingConds) 10810 return false; 10811 10812 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10813 10814 // See if we can exploit a trip count to prove the predicate. 10815 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10816 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10817 if (LatchBECount != getCouldNotCompute()) { 10818 // We know that Latch branches back to the loop header exactly 10819 // LatchBECount times. This means the backdege condition at Latch is 10820 // equivalent to "{0,+,1} u< LatchBECount". 10821 Type *Ty = LatchBECount->getType(); 10822 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10823 const SCEV *LoopCounter = 10824 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10825 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10826 LatchBECount)) 10827 return true; 10828 } 10829 10830 // Check conditions due to any @llvm.assume intrinsics. 10831 for (auto &AssumeVH : AC.assumptions()) { 10832 if (!AssumeVH) 10833 continue; 10834 auto *CI = cast<CallInst>(AssumeVH); 10835 if (!DT.dominates(CI, Latch->getTerminator())) 10836 continue; 10837 10838 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10839 return true; 10840 } 10841 10842 // If the loop is not reachable from the entry block, we risk running into an 10843 // infinite loop as we walk up into the dom tree. These loops do not matter 10844 // anyway, so we just return a conservative answer when we see them. 10845 if (!DT.isReachableFromEntry(L->getHeader())) 10846 return false; 10847 10848 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10849 return true; 10850 10851 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10852 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10853 assert(DTN && "should reach the loop header before reaching the root!"); 10854 10855 BasicBlock *BB = DTN->getBlock(); 10856 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10857 return true; 10858 10859 BasicBlock *PBB = BB->getSinglePredecessor(); 10860 if (!PBB) 10861 continue; 10862 10863 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10864 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10865 continue; 10866 10867 Value *Condition = ContinuePredicate->getCondition(); 10868 10869 // If we have an edge `E` within the loop body that dominates the only 10870 // latch, the condition guarding `E` also guards the backedge. This 10871 // reasoning works only for loops with a single latch. 10872 10873 BasicBlockEdge DominatingEdge(PBB, BB); 10874 if (DominatingEdge.isSingleEdge()) { 10875 // We're constructively (and conservatively) enumerating edges within the 10876 // loop body that dominate the latch. The dominator tree better agree 10877 // with us on this: 10878 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10879 10880 if (isImpliedCond(Pred, LHS, RHS, Condition, 10881 BB != ContinuePredicate->getSuccessor(0))) 10882 return true; 10883 } 10884 } 10885 10886 return false; 10887 } 10888 10889 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10890 ICmpInst::Predicate Pred, 10891 const SCEV *LHS, 10892 const SCEV *RHS) { 10893 if (VerifyIR) 10894 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10895 "This cannot be done on broken IR!"); 10896 10897 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10898 // the facts (a >= b && a != b) separately. A typical situation is when the 10899 // non-strict comparison is known from ranges and non-equality is known from 10900 // dominating predicates. If we are proving strict comparison, we always try 10901 // to prove non-equality and non-strict comparison separately. 10902 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10903 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10904 bool ProvedNonStrictComparison = false; 10905 bool ProvedNonEquality = false; 10906 10907 auto SplitAndProve = 10908 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10909 if (!ProvedNonStrictComparison) 10910 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10911 if (!ProvedNonEquality) 10912 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10913 if (ProvedNonStrictComparison && ProvedNonEquality) 10914 return true; 10915 return false; 10916 }; 10917 10918 if (ProvingStrictComparison) { 10919 auto ProofFn = [&](ICmpInst::Predicate P) { 10920 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10921 }; 10922 if (SplitAndProve(ProofFn)) 10923 return true; 10924 } 10925 10926 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10927 auto ProveViaGuard = [&](const BasicBlock *Block) { 10928 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10929 return true; 10930 if (ProvingStrictComparison) { 10931 auto ProofFn = [&](ICmpInst::Predicate P) { 10932 return isImpliedViaGuard(Block, P, LHS, RHS); 10933 }; 10934 if (SplitAndProve(ProofFn)) 10935 return true; 10936 } 10937 return false; 10938 }; 10939 10940 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10941 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10942 const Instruction *CtxI = &BB->front(); 10943 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10944 return true; 10945 if (ProvingStrictComparison) { 10946 auto ProofFn = [&](ICmpInst::Predicate P) { 10947 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10948 }; 10949 if (SplitAndProve(ProofFn)) 10950 return true; 10951 } 10952 return false; 10953 }; 10954 10955 // Starting at the block's predecessor, climb up the predecessor chain, as long 10956 // as there are predecessors that can be found that have unique successors 10957 // leading to the original block. 10958 const Loop *ContainingLoop = LI.getLoopFor(BB); 10959 const BasicBlock *PredBB; 10960 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10961 PredBB = ContainingLoop->getLoopPredecessor(); 10962 else 10963 PredBB = BB->getSinglePredecessor(); 10964 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10965 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10966 if (ProveViaGuard(Pair.first)) 10967 return true; 10968 10969 const BranchInst *LoopEntryPredicate = 10970 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10971 if (!LoopEntryPredicate || 10972 LoopEntryPredicate->isUnconditional()) 10973 continue; 10974 10975 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10976 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10977 return true; 10978 } 10979 10980 // Check conditions due to any @llvm.assume intrinsics. 10981 for (auto &AssumeVH : AC.assumptions()) { 10982 if (!AssumeVH) 10983 continue; 10984 auto *CI = cast<CallInst>(AssumeVH); 10985 if (!DT.dominates(CI, BB)) 10986 continue; 10987 10988 if (ProveViaCond(CI->getArgOperand(0), false)) 10989 return true; 10990 } 10991 10992 return false; 10993 } 10994 10995 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10996 ICmpInst::Predicate Pred, 10997 const SCEV *LHS, 10998 const SCEV *RHS) { 10999 // Interpret a null as meaning no loop, where there is obviously no guard 11000 // (interprocedural conditions notwithstanding). 11001 if (!L) 11002 return false; 11003 11004 // Both LHS and RHS must be available at loop entry. 11005 assert(isAvailableAtLoopEntry(LHS, L) && 11006 "LHS is not available at Loop Entry"); 11007 assert(isAvailableAtLoopEntry(RHS, L) && 11008 "RHS is not available at Loop Entry"); 11009 11010 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11011 return true; 11012 11013 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11014 } 11015 11016 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11017 const SCEV *RHS, 11018 const Value *FoundCondValue, bool Inverse, 11019 const Instruction *CtxI) { 11020 // False conditions implies anything. Do not bother analyzing it further. 11021 if (FoundCondValue == 11022 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11023 return true; 11024 11025 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11026 return false; 11027 11028 auto ClearOnExit = 11029 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11030 11031 // Recursively handle And and Or conditions. 11032 const Value *Op0, *Op1; 11033 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11034 if (!Inverse) 11035 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11036 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11037 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11038 if (Inverse) 11039 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11040 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11041 } 11042 11043 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11044 if (!ICI) return false; 11045 11046 // Now that we found a conditional branch that dominates the loop or controls 11047 // the loop latch. Check to see if it is the comparison we are looking for. 11048 ICmpInst::Predicate FoundPred; 11049 if (Inverse) 11050 FoundPred = ICI->getInversePredicate(); 11051 else 11052 FoundPred = ICI->getPredicate(); 11053 11054 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11055 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11056 11057 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11058 } 11059 11060 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11061 const SCEV *RHS, 11062 ICmpInst::Predicate FoundPred, 11063 const SCEV *FoundLHS, const SCEV *FoundRHS, 11064 const Instruction *CtxI) { 11065 // Balance the types. 11066 if (getTypeSizeInBits(LHS->getType()) < 11067 getTypeSizeInBits(FoundLHS->getType())) { 11068 // For unsigned and equality predicates, try to prove that both found 11069 // operands fit into narrow unsigned range. If so, try to prove facts in 11070 // narrow types. 11071 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11072 !FoundRHS->getType()->isPointerTy()) { 11073 auto *NarrowType = LHS->getType(); 11074 auto *WideType = FoundLHS->getType(); 11075 auto BitWidth = getTypeSizeInBits(NarrowType); 11076 const SCEV *MaxValue = getZeroExtendExpr( 11077 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11078 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11079 MaxValue) && 11080 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11081 MaxValue)) { 11082 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11083 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11084 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11085 TruncFoundRHS, CtxI)) 11086 return true; 11087 } 11088 } 11089 11090 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11091 return false; 11092 if (CmpInst::isSigned(Pred)) { 11093 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11094 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11095 } else { 11096 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11097 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11098 } 11099 } else if (getTypeSizeInBits(LHS->getType()) > 11100 getTypeSizeInBits(FoundLHS->getType())) { 11101 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11102 return false; 11103 if (CmpInst::isSigned(FoundPred)) { 11104 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11105 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11106 } else { 11107 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11108 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11109 } 11110 } 11111 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11112 FoundRHS, CtxI); 11113 } 11114 11115 bool ScalarEvolution::isImpliedCondBalancedTypes( 11116 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11117 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11118 const Instruction *CtxI) { 11119 assert(getTypeSizeInBits(LHS->getType()) == 11120 getTypeSizeInBits(FoundLHS->getType()) && 11121 "Types should be balanced!"); 11122 // Canonicalize the query to match the way instcombine will have 11123 // canonicalized the comparison. 11124 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11125 if (LHS == RHS) 11126 return CmpInst::isTrueWhenEqual(Pred); 11127 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11128 if (FoundLHS == FoundRHS) 11129 return CmpInst::isFalseWhenEqual(FoundPred); 11130 11131 // Check to see if we can make the LHS or RHS match. 11132 if (LHS == FoundRHS || RHS == FoundLHS) { 11133 if (isa<SCEVConstant>(RHS)) { 11134 std::swap(FoundLHS, FoundRHS); 11135 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11136 } else { 11137 std::swap(LHS, RHS); 11138 Pred = ICmpInst::getSwappedPredicate(Pred); 11139 } 11140 } 11141 11142 // Check whether the found predicate is the same as the desired predicate. 11143 if (FoundPred == Pred) 11144 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11145 11146 // Check whether swapping the found predicate makes it the same as the 11147 // desired predicate. 11148 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11149 // We can write the implication 11150 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11151 // using one of the following ways: 11152 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11153 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11154 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11155 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11156 // Forms 1. and 2. require swapping the operands of one condition. Don't 11157 // do this if it would break canonical constant/addrec ordering. 11158 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11159 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11160 CtxI); 11161 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11162 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11163 11164 // There's no clear preference between forms 3. and 4., try both. Avoid 11165 // forming getNotSCEV of pointer values as the resulting subtract is 11166 // not legal. 11167 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11168 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11169 FoundLHS, FoundRHS, CtxI)) 11170 return true; 11171 11172 if (!FoundLHS->getType()->isPointerTy() && 11173 !FoundRHS->getType()->isPointerTy() && 11174 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11175 getNotSCEV(FoundRHS), CtxI)) 11176 return true; 11177 11178 return false; 11179 } 11180 11181 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11182 CmpInst::Predicate P2) { 11183 assert(P1 != P2 && "Handled earlier!"); 11184 return CmpInst::isRelational(P2) && 11185 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11186 }; 11187 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11188 // Unsigned comparison is the same as signed comparison when both the 11189 // operands are non-negative or negative. 11190 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11191 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11192 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11193 // Create local copies that we can freely swap and canonicalize our 11194 // conditions to "le/lt". 11195 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11196 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11197 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11198 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11199 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11200 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11201 std::swap(CanonicalLHS, CanonicalRHS); 11202 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11203 } 11204 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11205 "Must be!"); 11206 assert((ICmpInst::isLT(CanonicalFoundPred) || 11207 ICmpInst::isLE(CanonicalFoundPred)) && 11208 "Must be!"); 11209 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11210 // Use implication: 11211 // x <u y && y >=s 0 --> x <s y. 11212 // If we can prove the left part, the right part is also proven. 11213 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11214 CanonicalRHS, CanonicalFoundLHS, 11215 CanonicalFoundRHS); 11216 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11217 // Use implication: 11218 // x <s y && y <s 0 --> x <u y. 11219 // If we can prove the left part, the right part is also proven. 11220 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11221 CanonicalRHS, CanonicalFoundLHS, 11222 CanonicalFoundRHS); 11223 } 11224 11225 // Check if we can make progress by sharpening ranges. 11226 if (FoundPred == ICmpInst::ICMP_NE && 11227 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11228 11229 const SCEVConstant *C = nullptr; 11230 const SCEV *V = nullptr; 11231 11232 if (isa<SCEVConstant>(FoundLHS)) { 11233 C = cast<SCEVConstant>(FoundLHS); 11234 V = FoundRHS; 11235 } else { 11236 C = cast<SCEVConstant>(FoundRHS); 11237 V = FoundLHS; 11238 } 11239 11240 // The guarding predicate tells us that C != V. If the known range 11241 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11242 // range we consider has to correspond to same signedness as the 11243 // predicate we're interested in folding. 11244 11245 APInt Min = ICmpInst::isSigned(Pred) ? 11246 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11247 11248 if (Min == C->getAPInt()) { 11249 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11250 // This is true even if (Min + 1) wraps around -- in case of 11251 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11252 11253 APInt SharperMin = Min + 1; 11254 11255 switch (Pred) { 11256 case ICmpInst::ICMP_SGE: 11257 case ICmpInst::ICMP_UGE: 11258 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11259 // RHS, we're done. 11260 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11261 CtxI)) 11262 return true; 11263 LLVM_FALLTHROUGH; 11264 11265 case ICmpInst::ICMP_SGT: 11266 case ICmpInst::ICMP_UGT: 11267 // We know from the range information that (V `Pred` Min || 11268 // V == Min). We know from the guarding condition that !(V 11269 // == Min). This gives us 11270 // 11271 // V `Pred` Min || V == Min && !(V == Min) 11272 // => V `Pred` Min 11273 // 11274 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11275 11276 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11277 return true; 11278 break; 11279 11280 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11281 case ICmpInst::ICMP_SLE: 11282 case ICmpInst::ICMP_ULE: 11283 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11284 LHS, V, getConstant(SharperMin), CtxI)) 11285 return true; 11286 LLVM_FALLTHROUGH; 11287 11288 case ICmpInst::ICMP_SLT: 11289 case ICmpInst::ICMP_ULT: 11290 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11291 LHS, V, getConstant(Min), CtxI)) 11292 return true; 11293 break; 11294 11295 default: 11296 // No change 11297 break; 11298 } 11299 } 11300 } 11301 11302 // Check whether the actual condition is beyond sufficient. 11303 if (FoundPred == ICmpInst::ICMP_EQ) 11304 if (ICmpInst::isTrueWhenEqual(Pred)) 11305 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11306 return true; 11307 if (Pred == ICmpInst::ICMP_NE) 11308 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11309 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11310 return true; 11311 11312 // Otherwise assume the worst. 11313 return false; 11314 } 11315 11316 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11317 const SCEV *&L, const SCEV *&R, 11318 SCEV::NoWrapFlags &Flags) { 11319 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11320 if (!AE || AE->getNumOperands() != 2) 11321 return false; 11322 11323 L = AE->getOperand(0); 11324 R = AE->getOperand(1); 11325 Flags = AE->getNoWrapFlags(); 11326 return true; 11327 } 11328 11329 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11330 const SCEV *Less) { 11331 // We avoid subtracting expressions here because this function is usually 11332 // fairly deep in the call stack (i.e. is called many times). 11333 11334 // X - X = 0. 11335 if (More == Less) 11336 return APInt(getTypeSizeInBits(More->getType()), 0); 11337 11338 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11339 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11340 const auto *MAR = cast<SCEVAddRecExpr>(More); 11341 11342 if (LAR->getLoop() != MAR->getLoop()) 11343 return None; 11344 11345 // We look at affine expressions only; not for correctness but to keep 11346 // getStepRecurrence cheap. 11347 if (!LAR->isAffine() || !MAR->isAffine()) 11348 return None; 11349 11350 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11351 return None; 11352 11353 Less = LAR->getStart(); 11354 More = MAR->getStart(); 11355 11356 // fall through 11357 } 11358 11359 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11360 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11361 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11362 return M - L; 11363 } 11364 11365 SCEV::NoWrapFlags Flags; 11366 const SCEV *LLess = nullptr, *RLess = nullptr; 11367 const SCEV *LMore = nullptr, *RMore = nullptr; 11368 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11369 // Compare (X + C1) vs X. 11370 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11371 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11372 if (RLess == More) 11373 return -(C1->getAPInt()); 11374 11375 // Compare X vs (X + C2). 11376 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11377 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11378 if (RMore == Less) 11379 return C2->getAPInt(); 11380 11381 // Compare (X + C1) vs (X + C2). 11382 if (C1 && C2 && RLess == RMore) 11383 return C2->getAPInt() - C1->getAPInt(); 11384 11385 return None; 11386 } 11387 11388 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11389 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11390 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11391 // Try to recognize the following pattern: 11392 // 11393 // FoundRHS = ... 11394 // ... 11395 // loop: 11396 // FoundLHS = {Start,+,W} 11397 // context_bb: // Basic block from the same loop 11398 // known(Pred, FoundLHS, FoundRHS) 11399 // 11400 // If some predicate is known in the context of a loop, it is also known on 11401 // each iteration of this loop, including the first iteration. Therefore, in 11402 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11403 // prove the original pred using this fact. 11404 if (!CtxI) 11405 return false; 11406 const BasicBlock *ContextBB = CtxI->getParent(); 11407 // Make sure AR varies in the context block. 11408 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11409 const Loop *L = AR->getLoop(); 11410 // Make sure that context belongs to the loop and executes on 1st iteration 11411 // (if it ever executes at all). 11412 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11413 return false; 11414 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11415 return false; 11416 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11417 } 11418 11419 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11420 const Loop *L = AR->getLoop(); 11421 // Make sure that context belongs to the loop and executes on 1st iteration 11422 // (if it ever executes at all). 11423 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11424 return false; 11425 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11426 return false; 11427 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11428 } 11429 11430 return false; 11431 } 11432 11433 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11434 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11435 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11436 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11437 return false; 11438 11439 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11440 if (!AddRecLHS) 11441 return false; 11442 11443 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11444 if (!AddRecFoundLHS) 11445 return false; 11446 11447 // We'd like to let SCEV reason about control dependencies, so we constrain 11448 // both the inequalities to be about add recurrences on the same loop. This 11449 // way we can use isLoopEntryGuardedByCond later. 11450 11451 const Loop *L = AddRecFoundLHS->getLoop(); 11452 if (L != AddRecLHS->getLoop()) 11453 return false; 11454 11455 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11456 // 11457 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11458 // ... (2) 11459 // 11460 // Informal proof for (2), assuming (1) [*]: 11461 // 11462 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11463 // 11464 // Then 11465 // 11466 // FoundLHS s< FoundRHS s< INT_MIN - C 11467 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11468 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11469 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11470 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11471 // <=> FoundLHS + C s< FoundRHS + C 11472 // 11473 // [*]: (1) can be proved by ruling out overflow. 11474 // 11475 // [**]: This can be proved by analyzing all the four possibilities: 11476 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11477 // (A s>= 0, B s>= 0). 11478 // 11479 // Note: 11480 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11481 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11482 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11483 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11484 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11485 // C)". 11486 11487 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11488 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11489 if (!LDiff || !RDiff || *LDiff != *RDiff) 11490 return false; 11491 11492 if (LDiff->isMinValue()) 11493 return true; 11494 11495 APInt FoundRHSLimit; 11496 11497 if (Pred == CmpInst::ICMP_ULT) { 11498 FoundRHSLimit = -(*RDiff); 11499 } else { 11500 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11501 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11502 } 11503 11504 // Try to prove (1) or (2), as needed. 11505 return isAvailableAtLoopEntry(FoundRHS, L) && 11506 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11507 getConstant(FoundRHSLimit)); 11508 } 11509 11510 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11511 const SCEV *LHS, const SCEV *RHS, 11512 const SCEV *FoundLHS, 11513 const SCEV *FoundRHS, unsigned Depth) { 11514 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11515 11516 auto ClearOnExit = make_scope_exit([&]() { 11517 if (LPhi) { 11518 bool Erased = PendingMerges.erase(LPhi); 11519 assert(Erased && "Failed to erase LPhi!"); 11520 (void)Erased; 11521 } 11522 if (RPhi) { 11523 bool Erased = PendingMerges.erase(RPhi); 11524 assert(Erased && "Failed to erase RPhi!"); 11525 (void)Erased; 11526 } 11527 }); 11528 11529 // Find respective Phis and check that they are not being pending. 11530 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11531 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11532 if (!PendingMerges.insert(Phi).second) 11533 return false; 11534 LPhi = Phi; 11535 } 11536 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11537 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11538 // If we detect a loop of Phi nodes being processed by this method, for 11539 // example: 11540 // 11541 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11542 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11543 // 11544 // we don't want to deal with a case that complex, so return conservative 11545 // answer false. 11546 if (!PendingMerges.insert(Phi).second) 11547 return false; 11548 RPhi = Phi; 11549 } 11550 11551 // If none of LHS, RHS is a Phi, nothing to do here. 11552 if (!LPhi && !RPhi) 11553 return false; 11554 11555 // If there is a SCEVUnknown Phi we are interested in, make it left. 11556 if (!LPhi) { 11557 std::swap(LHS, RHS); 11558 std::swap(FoundLHS, FoundRHS); 11559 std::swap(LPhi, RPhi); 11560 Pred = ICmpInst::getSwappedPredicate(Pred); 11561 } 11562 11563 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11564 const BasicBlock *LBB = LPhi->getParent(); 11565 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11566 11567 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11568 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11569 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11570 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11571 }; 11572 11573 if (RPhi && RPhi->getParent() == LBB) { 11574 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11575 // If we compare two Phis from the same block, and for each entry block 11576 // the predicate is true for incoming values from this block, then the 11577 // predicate is also true for the Phis. 11578 for (const BasicBlock *IncBB : predecessors(LBB)) { 11579 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11580 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11581 if (!ProvedEasily(L, R)) 11582 return false; 11583 } 11584 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11585 // Case two: RHS is also a Phi from the same basic block, and it is an 11586 // AddRec. It means that there is a loop which has both AddRec and Unknown 11587 // PHIs, for it we can compare incoming values of AddRec from above the loop 11588 // and latch with their respective incoming values of LPhi. 11589 // TODO: Generalize to handle loops with many inputs in a header. 11590 if (LPhi->getNumIncomingValues() != 2) return false; 11591 11592 auto *RLoop = RAR->getLoop(); 11593 auto *Predecessor = RLoop->getLoopPredecessor(); 11594 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11595 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11596 if (!ProvedEasily(L1, RAR->getStart())) 11597 return false; 11598 auto *Latch = RLoop->getLoopLatch(); 11599 assert(Latch && "Loop with AddRec with no latch?"); 11600 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11601 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11602 return false; 11603 } else { 11604 // In all other cases go over inputs of LHS and compare each of them to RHS, 11605 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11606 // At this point RHS is either a non-Phi, or it is a Phi from some block 11607 // different from LBB. 11608 for (const BasicBlock *IncBB : predecessors(LBB)) { 11609 // Check that RHS is available in this block. 11610 if (!dominates(RHS, IncBB)) 11611 return false; 11612 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11613 // Make sure L does not refer to a value from a potentially previous 11614 // iteration of a loop. 11615 if (!properlyDominates(L, IncBB)) 11616 return false; 11617 if (!ProvedEasily(L, RHS)) 11618 return false; 11619 } 11620 } 11621 return true; 11622 } 11623 11624 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11625 const SCEV *LHS, 11626 const SCEV *RHS, 11627 const SCEV *FoundLHS, 11628 const SCEV *FoundRHS) { 11629 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11630 // sure that we are dealing with same LHS. 11631 if (RHS == FoundRHS) { 11632 std::swap(LHS, RHS); 11633 std::swap(FoundLHS, FoundRHS); 11634 Pred = ICmpInst::getSwappedPredicate(Pred); 11635 } 11636 if (LHS != FoundLHS) 11637 return false; 11638 11639 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11640 if (!SUFoundRHS) 11641 return false; 11642 11643 Value *Shiftee, *ShiftValue; 11644 11645 using namespace PatternMatch; 11646 if (match(SUFoundRHS->getValue(), 11647 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11648 auto *ShifteeS = getSCEV(Shiftee); 11649 // Prove one of the following: 11650 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11651 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11652 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11653 // ---> LHS <s RHS 11654 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11655 // ---> LHS <=s RHS 11656 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11657 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11658 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11659 if (isKnownNonNegative(ShifteeS)) 11660 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11661 } 11662 11663 return false; 11664 } 11665 11666 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11667 const SCEV *LHS, const SCEV *RHS, 11668 const SCEV *FoundLHS, 11669 const SCEV *FoundRHS, 11670 const Instruction *CtxI) { 11671 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11672 return true; 11673 11674 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11675 return true; 11676 11677 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11678 return true; 11679 11680 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11681 CtxI)) 11682 return true; 11683 11684 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11685 FoundLHS, FoundRHS); 11686 } 11687 11688 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11689 template <typename MinMaxExprType> 11690 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11691 const SCEV *Candidate) { 11692 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11693 if (!MinMaxExpr) 11694 return false; 11695 11696 return is_contained(MinMaxExpr->operands(), Candidate); 11697 } 11698 11699 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11700 ICmpInst::Predicate Pred, 11701 const SCEV *LHS, const SCEV *RHS) { 11702 // If both sides are affine addrecs for the same loop, with equal 11703 // steps, and we know the recurrences don't wrap, then we only 11704 // need to check the predicate on the starting values. 11705 11706 if (!ICmpInst::isRelational(Pred)) 11707 return false; 11708 11709 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11710 if (!LAR) 11711 return false; 11712 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11713 if (!RAR) 11714 return false; 11715 if (LAR->getLoop() != RAR->getLoop()) 11716 return false; 11717 if (!LAR->isAffine() || !RAR->isAffine()) 11718 return false; 11719 11720 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11721 return false; 11722 11723 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11724 SCEV::FlagNSW : SCEV::FlagNUW; 11725 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11726 return false; 11727 11728 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11729 } 11730 11731 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11732 /// expression? 11733 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11734 ICmpInst::Predicate Pred, 11735 const SCEV *LHS, const SCEV *RHS) { 11736 switch (Pred) { 11737 default: 11738 return false; 11739 11740 case ICmpInst::ICMP_SGE: 11741 std::swap(LHS, RHS); 11742 LLVM_FALLTHROUGH; 11743 case ICmpInst::ICMP_SLE: 11744 return 11745 // min(A, ...) <= A 11746 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11747 // A <= max(A, ...) 11748 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11749 11750 case ICmpInst::ICMP_UGE: 11751 std::swap(LHS, RHS); 11752 LLVM_FALLTHROUGH; 11753 case ICmpInst::ICMP_ULE: 11754 return 11755 // min(A, ...) <= A 11756 // FIXME: what about umin_seq? 11757 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11758 // A <= max(A, ...) 11759 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11760 } 11761 11762 llvm_unreachable("covered switch fell through?!"); 11763 } 11764 11765 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11766 const SCEV *LHS, const SCEV *RHS, 11767 const SCEV *FoundLHS, 11768 const SCEV *FoundRHS, 11769 unsigned Depth) { 11770 assert(getTypeSizeInBits(LHS->getType()) == 11771 getTypeSizeInBits(RHS->getType()) && 11772 "LHS and RHS have different sizes?"); 11773 assert(getTypeSizeInBits(FoundLHS->getType()) == 11774 getTypeSizeInBits(FoundRHS->getType()) && 11775 "FoundLHS and FoundRHS have different sizes?"); 11776 // We want to avoid hurting the compile time with analysis of too big trees. 11777 if (Depth > MaxSCEVOperationsImplicationDepth) 11778 return false; 11779 11780 // We only want to work with GT comparison so far. 11781 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11782 Pred = CmpInst::getSwappedPredicate(Pred); 11783 std::swap(LHS, RHS); 11784 std::swap(FoundLHS, FoundRHS); 11785 } 11786 11787 // For unsigned, try to reduce it to corresponding signed comparison. 11788 if (Pred == ICmpInst::ICMP_UGT) 11789 // We can replace unsigned predicate with its signed counterpart if all 11790 // involved values are non-negative. 11791 // TODO: We could have better support for unsigned. 11792 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11793 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11794 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11795 // use this fact to prove that LHS and RHS are non-negative. 11796 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11797 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11798 FoundRHS) && 11799 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11800 FoundRHS)) 11801 Pred = ICmpInst::ICMP_SGT; 11802 } 11803 11804 if (Pred != ICmpInst::ICMP_SGT) 11805 return false; 11806 11807 auto GetOpFromSExt = [&](const SCEV *S) { 11808 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11809 return Ext->getOperand(); 11810 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11811 // the constant in some cases. 11812 return S; 11813 }; 11814 11815 // Acquire values from extensions. 11816 auto *OrigLHS = LHS; 11817 auto *OrigFoundLHS = FoundLHS; 11818 LHS = GetOpFromSExt(LHS); 11819 FoundLHS = GetOpFromSExt(FoundLHS); 11820 11821 // Is the SGT predicate can be proved trivially or using the found context. 11822 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11823 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11824 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11825 FoundRHS, Depth + 1); 11826 }; 11827 11828 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11829 // We want to avoid creation of any new non-constant SCEV. Since we are 11830 // going to compare the operands to RHS, we should be certain that we don't 11831 // need any size extensions for this. So let's decline all cases when the 11832 // sizes of types of LHS and RHS do not match. 11833 // TODO: Maybe try to get RHS from sext to catch more cases? 11834 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11835 return false; 11836 11837 // Should not overflow. 11838 if (!LHSAddExpr->hasNoSignedWrap()) 11839 return false; 11840 11841 auto *LL = LHSAddExpr->getOperand(0); 11842 auto *LR = LHSAddExpr->getOperand(1); 11843 auto *MinusOne = getMinusOne(RHS->getType()); 11844 11845 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11846 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11847 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11848 }; 11849 // Try to prove the following rule: 11850 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11851 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11852 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11853 return true; 11854 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11855 Value *LL, *LR; 11856 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11857 11858 using namespace llvm::PatternMatch; 11859 11860 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11861 // Rules for division. 11862 // We are going to perform some comparisons with Denominator and its 11863 // derivative expressions. In general case, creating a SCEV for it may 11864 // lead to a complex analysis of the entire graph, and in particular it 11865 // can request trip count recalculation for the same loop. This would 11866 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11867 // this, we only want to create SCEVs that are constants in this section. 11868 // So we bail if Denominator is not a constant. 11869 if (!isa<ConstantInt>(LR)) 11870 return false; 11871 11872 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11873 11874 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11875 // then a SCEV for the numerator already exists and matches with FoundLHS. 11876 auto *Numerator = getExistingSCEV(LL); 11877 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11878 return false; 11879 11880 // Make sure that the numerator matches with FoundLHS and the denominator 11881 // is positive. 11882 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11883 return false; 11884 11885 auto *DTy = Denominator->getType(); 11886 auto *FRHSTy = FoundRHS->getType(); 11887 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11888 // One of types is a pointer and another one is not. We cannot extend 11889 // them properly to a wider type, so let us just reject this case. 11890 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11891 // to avoid this check. 11892 return false; 11893 11894 // Given that: 11895 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11896 auto *WTy = getWiderType(DTy, FRHSTy); 11897 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11898 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11899 11900 // Try to prove the following rule: 11901 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11902 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11903 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11904 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11905 if (isKnownNonPositive(RHS) && 11906 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11907 return true; 11908 11909 // Try to prove the following rule: 11910 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11911 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11912 // If we divide it by Denominator > 2, then: 11913 // 1. If FoundLHS is negative, then the result is 0. 11914 // 2. If FoundLHS is non-negative, then the result is non-negative. 11915 // Anyways, the result is non-negative. 11916 auto *MinusOne = getMinusOne(WTy); 11917 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11918 if (isKnownNegative(RHS) && 11919 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11920 return true; 11921 } 11922 } 11923 11924 // If our expression contained SCEVUnknown Phis, and we split it down and now 11925 // need to prove something for them, try to prove the predicate for every 11926 // possible incoming values of those Phis. 11927 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11928 return true; 11929 11930 return false; 11931 } 11932 11933 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11934 const SCEV *LHS, const SCEV *RHS) { 11935 // zext x u<= sext x, sext x s<= zext x 11936 switch (Pred) { 11937 case ICmpInst::ICMP_SGE: 11938 std::swap(LHS, RHS); 11939 LLVM_FALLTHROUGH; 11940 case ICmpInst::ICMP_SLE: { 11941 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11942 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11943 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11944 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11945 return true; 11946 break; 11947 } 11948 case ICmpInst::ICMP_UGE: 11949 std::swap(LHS, RHS); 11950 LLVM_FALLTHROUGH; 11951 case ICmpInst::ICMP_ULE: { 11952 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11953 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11954 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11955 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11956 return true; 11957 break; 11958 } 11959 default: 11960 break; 11961 }; 11962 return false; 11963 } 11964 11965 bool 11966 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11967 const SCEV *LHS, const SCEV *RHS) { 11968 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11969 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11970 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11971 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11972 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11973 } 11974 11975 bool 11976 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11977 const SCEV *LHS, const SCEV *RHS, 11978 const SCEV *FoundLHS, 11979 const SCEV *FoundRHS) { 11980 switch (Pred) { 11981 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11982 case ICmpInst::ICMP_EQ: 11983 case ICmpInst::ICMP_NE: 11984 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11985 return true; 11986 break; 11987 case ICmpInst::ICMP_SLT: 11988 case ICmpInst::ICMP_SLE: 11989 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11990 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11991 return true; 11992 break; 11993 case ICmpInst::ICMP_SGT: 11994 case ICmpInst::ICMP_SGE: 11995 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11996 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11997 return true; 11998 break; 11999 case ICmpInst::ICMP_ULT: 12000 case ICmpInst::ICMP_ULE: 12001 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12002 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12003 return true; 12004 break; 12005 case ICmpInst::ICMP_UGT: 12006 case ICmpInst::ICMP_UGE: 12007 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12008 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12009 return true; 12010 break; 12011 } 12012 12013 // Maybe it can be proved via operations? 12014 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12015 return true; 12016 12017 return false; 12018 } 12019 12020 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12021 const SCEV *LHS, 12022 const SCEV *RHS, 12023 const SCEV *FoundLHS, 12024 const SCEV *FoundRHS) { 12025 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12026 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12027 // reduce the compile time impact of this optimization. 12028 return false; 12029 12030 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12031 if (!Addend) 12032 return false; 12033 12034 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12035 12036 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12037 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12038 ConstantRange FoundLHSRange = 12039 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12040 12041 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12042 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12043 12044 // We can also compute the range of values for `LHS` that satisfy the 12045 // consequent, "`LHS` `Pred` `RHS`": 12046 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12047 // The antecedent implies the consequent if every value of `LHS` that 12048 // satisfies the antecedent also satisfies the consequent. 12049 return LHSRange.icmp(Pred, ConstRHS); 12050 } 12051 12052 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12053 bool IsSigned) { 12054 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12055 12056 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12057 const SCEV *One = getOne(Stride->getType()); 12058 12059 if (IsSigned) { 12060 APInt MaxRHS = getSignedRangeMax(RHS); 12061 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12062 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12063 12064 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12065 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12066 } 12067 12068 APInt MaxRHS = getUnsignedRangeMax(RHS); 12069 APInt MaxValue = APInt::getMaxValue(BitWidth); 12070 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12071 12072 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12073 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12074 } 12075 12076 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12077 bool IsSigned) { 12078 12079 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12080 const SCEV *One = getOne(Stride->getType()); 12081 12082 if (IsSigned) { 12083 APInt MinRHS = getSignedRangeMin(RHS); 12084 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12085 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12086 12087 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12088 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12089 } 12090 12091 APInt MinRHS = getUnsignedRangeMin(RHS); 12092 APInt MinValue = APInt::getMinValue(BitWidth); 12093 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12094 12095 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12096 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12097 } 12098 12099 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12100 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12101 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12102 // expression fixes the case of N=0. 12103 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12104 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12105 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12106 } 12107 12108 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12109 const SCEV *Stride, 12110 const SCEV *End, 12111 unsigned BitWidth, 12112 bool IsSigned) { 12113 // The logic in this function assumes we can represent a positive stride. 12114 // If we can't, the backedge-taken count must be zero. 12115 if (IsSigned && BitWidth == 1) 12116 return getZero(Stride->getType()); 12117 12118 // This code has only been closely audited for negative strides in the 12119 // unsigned comparison case, it may be correct for signed comparison, but 12120 // that needs to be established. 12121 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12122 "Stride is expected strictly positive for signed case!"); 12123 12124 // Calculate the maximum backedge count based on the range of values 12125 // permitted by Start, End, and Stride. 12126 APInt MinStart = 12127 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12128 12129 APInt MinStride = 12130 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12131 12132 // We assume either the stride is positive, or the backedge-taken count 12133 // is zero. So force StrideForMaxBECount to be at least one. 12134 APInt One(BitWidth, 1); 12135 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12136 : APIntOps::umax(One, MinStride); 12137 12138 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12139 : APInt::getMaxValue(BitWidth); 12140 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12141 12142 // Although End can be a MAX expression we estimate MaxEnd considering only 12143 // the case End = RHS of the loop termination condition. This is safe because 12144 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12145 // taken count. 12146 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12147 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12148 12149 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12150 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12151 : APIntOps::umax(MaxEnd, MinStart); 12152 12153 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12154 getConstant(StrideForMaxBECount) /* Step */); 12155 } 12156 12157 ScalarEvolution::ExitLimit 12158 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12159 const Loop *L, bool IsSigned, 12160 bool ControlsExit, bool AllowPredicates) { 12161 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12162 12163 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12164 bool PredicatedIV = false; 12165 12166 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12167 // Can we prove this loop *must* be UB if overflow of IV occurs? 12168 // Reasoning goes as follows: 12169 // * Suppose the IV did self wrap. 12170 // * If Stride evenly divides the iteration space, then once wrap 12171 // occurs, the loop must revisit the same values. 12172 // * We know that RHS is invariant, and that none of those values 12173 // caused this exit to be taken previously. Thus, this exit is 12174 // dynamically dead. 12175 // * If this is the sole exit, then a dead exit implies the loop 12176 // must be infinite if there are no abnormal exits. 12177 // * If the loop were infinite, then it must either not be mustprogress 12178 // or have side effects. Otherwise, it must be UB. 12179 // * It can't (by assumption), be UB so we have contradicted our 12180 // premise and can conclude the IV did not in fact self-wrap. 12181 if (!isLoopInvariant(RHS, L)) 12182 return false; 12183 12184 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12185 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12186 return false; 12187 12188 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12189 return false; 12190 12191 return loopIsFiniteByAssumption(L); 12192 }; 12193 12194 if (!IV) { 12195 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12196 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12197 if (AR && AR->getLoop() == L && AR->isAffine()) { 12198 auto canProveNUW = [&]() { 12199 if (!isLoopInvariant(RHS, L)) 12200 return false; 12201 12202 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12203 // We need the sequence defined by AR to strictly increase in the 12204 // unsigned integer domain for the logic below to hold. 12205 return false; 12206 12207 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12208 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12209 // If RHS <=u Limit, then there must exist a value V in the sequence 12210 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12211 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12212 // overflow occurs. This limit also implies that a signed comparison 12213 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12214 // the high bits on both sides must be zero. 12215 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12216 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12217 Limit = Limit.zext(OuterBitWidth); 12218 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12219 }; 12220 auto Flags = AR->getNoWrapFlags(); 12221 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12222 Flags = setFlags(Flags, SCEV::FlagNUW); 12223 12224 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12225 if (AR->hasNoUnsignedWrap()) { 12226 // Emulate what getZeroExtendExpr would have done during construction 12227 // if we'd been able to infer the fact just above at that time. 12228 const SCEV *Step = AR->getStepRecurrence(*this); 12229 Type *Ty = ZExt->getType(); 12230 auto *S = getAddRecExpr( 12231 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12232 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12233 IV = dyn_cast<SCEVAddRecExpr>(S); 12234 } 12235 } 12236 } 12237 } 12238 12239 12240 if (!IV && AllowPredicates) { 12241 // Try to make this an AddRec using runtime tests, in the first X 12242 // iterations of this loop, where X is the SCEV expression found by the 12243 // algorithm below. 12244 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12245 PredicatedIV = true; 12246 } 12247 12248 // Avoid weird loops 12249 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12250 return getCouldNotCompute(); 12251 12252 // A precondition of this method is that the condition being analyzed 12253 // reaches an exiting branch which dominates the latch. Given that, we can 12254 // assume that an increment which violates the nowrap specification and 12255 // produces poison must cause undefined behavior when the resulting poison 12256 // value is branched upon and thus we can conclude that the backedge is 12257 // taken no more often than would be required to produce that poison value. 12258 // Note that a well defined loop can exit on the iteration which violates 12259 // the nowrap specification if there is another exit (either explicit or 12260 // implicit/exceptional) which causes the loop to execute before the 12261 // exiting instruction we're analyzing would trigger UB. 12262 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12263 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12264 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12265 12266 const SCEV *Stride = IV->getStepRecurrence(*this); 12267 12268 bool PositiveStride = isKnownPositive(Stride); 12269 12270 // Avoid negative or zero stride values. 12271 if (!PositiveStride) { 12272 // We can compute the correct backedge taken count for loops with unknown 12273 // strides if we can prove that the loop is not an infinite loop with side 12274 // effects. Here's the loop structure we are trying to handle - 12275 // 12276 // i = start 12277 // do { 12278 // A[i] = i; 12279 // i += s; 12280 // } while (i < end); 12281 // 12282 // The backedge taken count for such loops is evaluated as - 12283 // (max(end, start + stride) - start - 1) /u stride 12284 // 12285 // The additional preconditions that we need to check to prove correctness 12286 // of the above formula is as follows - 12287 // 12288 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12289 // NoWrap flag). 12290 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12291 // no side effects within the loop) 12292 // c) loop has a single static exit (with no abnormal exits) 12293 // 12294 // Precondition a) implies that if the stride is negative, this is a single 12295 // trip loop. The backedge taken count formula reduces to zero in this case. 12296 // 12297 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12298 // then a zero stride means the backedge can't be taken without executing 12299 // undefined behavior. 12300 // 12301 // The positive stride case is the same as isKnownPositive(Stride) returning 12302 // true (original behavior of the function). 12303 // 12304 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12305 !loopHasNoAbnormalExits(L)) 12306 return getCouldNotCompute(); 12307 12308 // This bailout is protecting the logic in computeMaxBECountForLT which 12309 // has not yet been sufficiently auditted or tested with negative strides. 12310 // We used to filter out all known-non-positive cases here, we're in the 12311 // process of being less restrictive bit by bit. 12312 if (IsSigned && isKnownNonPositive(Stride)) 12313 return getCouldNotCompute(); 12314 12315 if (!isKnownNonZero(Stride)) { 12316 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12317 // if it might eventually be greater than start and if so, on which 12318 // iteration. We can't even produce a useful upper bound. 12319 if (!isLoopInvariant(RHS, L)) 12320 return getCouldNotCompute(); 12321 12322 // We allow a potentially zero stride, but we need to divide by stride 12323 // below. Since the loop can't be infinite and this check must control 12324 // the sole exit, we can infer the exit must be taken on the first 12325 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12326 // we know the numerator in the divides below must be zero, so we can 12327 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12328 // and produce the right result. 12329 // FIXME: Handle the case where Stride is poison? 12330 auto wouldZeroStrideBeUB = [&]() { 12331 // Proof by contradiction. Suppose the stride were zero. If we can 12332 // prove that the backedge *is* taken on the first iteration, then since 12333 // we know this condition controls the sole exit, we must have an 12334 // infinite loop. We can't have a (well defined) infinite loop per 12335 // check just above. 12336 // Note: The (Start - Stride) term is used to get the start' term from 12337 // (start' + stride,+,stride). Remember that we only care about the 12338 // result of this expression when stride == 0 at runtime. 12339 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12340 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12341 }; 12342 if (!wouldZeroStrideBeUB()) { 12343 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12344 } 12345 } 12346 } else if (!Stride->isOne() && !NoWrap) { 12347 auto isUBOnWrap = [&]() { 12348 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12349 // follows trivially from the fact that every (un)signed-wrapped, but 12350 // not self-wrapped value must be LT than the last value before 12351 // (un)signed wrap. Since we know that last value didn't exit, nor 12352 // will any smaller one. 12353 return canAssumeNoSelfWrap(IV); 12354 }; 12355 12356 // Avoid proven overflow cases: this will ensure that the backedge taken 12357 // count will not generate any unsigned overflow. Relaxed no-overflow 12358 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12359 // undefined behaviors like the case of C language. 12360 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12361 return getCouldNotCompute(); 12362 } 12363 12364 // On all paths just preceeding, we established the following invariant: 12365 // IV can be assumed not to overflow up to and including the exiting 12366 // iteration. We proved this in one of two ways: 12367 // 1) We can show overflow doesn't occur before the exiting iteration 12368 // 1a) canIVOverflowOnLT, and b) step of one 12369 // 2) We can show that if overflow occurs, the loop must execute UB 12370 // before any possible exit. 12371 // Note that we have not yet proved RHS invariant (in general). 12372 12373 const SCEV *Start = IV->getStart(); 12374 12375 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12376 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12377 // Use integer-typed versions for actual computation; we can't subtract 12378 // pointers in general. 12379 const SCEV *OrigStart = Start; 12380 const SCEV *OrigRHS = RHS; 12381 if (Start->getType()->isPointerTy()) { 12382 Start = getLosslessPtrToIntExpr(Start); 12383 if (isa<SCEVCouldNotCompute>(Start)) 12384 return Start; 12385 } 12386 if (RHS->getType()->isPointerTy()) { 12387 RHS = getLosslessPtrToIntExpr(RHS); 12388 if (isa<SCEVCouldNotCompute>(RHS)) 12389 return RHS; 12390 } 12391 12392 // When the RHS is not invariant, we do not know the end bound of the loop and 12393 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12394 // calculate the MaxBECount, given the start, stride and max value for the end 12395 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12396 // checked above). 12397 if (!isLoopInvariant(RHS, L)) { 12398 const SCEV *MaxBECount = computeMaxBECountForLT( 12399 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12400 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12401 false /*MaxOrZero*/, Predicates); 12402 } 12403 12404 // We use the expression (max(End,Start)-Start)/Stride to describe the 12405 // backedge count, as if the backedge is taken at least once max(End,Start) 12406 // is End and so the result is as above, and if not max(End,Start) is Start 12407 // so we get a backedge count of zero. 12408 const SCEV *BECount = nullptr; 12409 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12410 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12411 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12412 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12413 // Can we prove (max(RHS,Start) > Start - Stride? 12414 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12415 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12416 // In this case, we can use a refined formula for computing backedge taken 12417 // count. The general formula remains: 12418 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12419 // We want to use the alternate formula: 12420 // "((End - 1) - (Start - Stride)) /u Stride" 12421 // Let's do a quick case analysis to show these are equivalent under 12422 // our precondition that max(RHS,Start) > Start - Stride. 12423 // * For RHS <= Start, the backedge-taken count must be zero. 12424 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12425 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12426 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12427 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12428 // this to the stride of 1 case. 12429 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12430 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12431 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12432 // "((RHS - (Start - Stride) - 1) /u Stride". 12433 // Our preconditions trivially imply no overflow in that form. 12434 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12435 const SCEV *Numerator = 12436 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12437 BECount = getUDivExpr(Numerator, Stride); 12438 } 12439 12440 const SCEV *BECountIfBackedgeTaken = nullptr; 12441 if (!BECount) { 12442 auto canProveRHSGreaterThanEqualStart = [&]() { 12443 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12444 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12445 return true; 12446 12447 // (RHS > Start - 1) implies RHS >= Start. 12448 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12449 // "Start - 1" doesn't overflow. 12450 // * For signed comparison, if Start - 1 does overflow, it's equal 12451 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12452 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12453 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12454 // 12455 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12456 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12457 auto *StartMinusOne = getAddExpr(OrigStart, 12458 getMinusOne(OrigStart->getType())); 12459 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12460 }; 12461 12462 // If we know that RHS >= Start in the context of loop, then we know that 12463 // max(RHS, Start) = RHS at this point. 12464 const SCEV *End; 12465 if (canProveRHSGreaterThanEqualStart()) { 12466 End = RHS; 12467 } else { 12468 // If RHS < Start, the backedge will be taken zero times. So in 12469 // general, we can write the backedge-taken count as: 12470 // 12471 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12472 // 12473 // We convert it to the following to make it more convenient for SCEV: 12474 // 12475 // ceil(max(RHS, Start) - Start) / Stride 12476 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12477 12478 // See what would happen if we assume the backedge is taken. This is 12479 // used to compute MaxBECount. 12480 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12481 } 12482 12483 // At this point, we know: 12484 // 12485 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12486 // 2. The index variable doesn't overflow. 12487 // 12488 // Therefore, we know N exists such that 12489 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12490 // doesn't overflow. 12491 // 12492 // Using this information, try to prove whether the addition in 12493 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12494 const SCEV *One = getOne(Stride->getType()); 12495 bool MayAddOverflow = [&] { 12496 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12497 if (StrideC->getAPInt().isPowerOf2()) { 12498 // Suppose Stride is a power of two, and Start/End are unsigned 12499 // integers. Let UMAX be the largest representable unsigned 12500 // integer. 12501 // 12502 // By the preconditions of this function, we know 12503 // "(Start + Stride * N) >= End", and this doesn't overflow. 12504 // As a formula: 12505 // 12506 // End <= (Start + Stride * N) <= UMAX 12507 // 12508 // Subtracting Start from all the terms: 12509 // 12510 // End - Start <= Stride * N <= UMAX - Start 12511 // 12512 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12513 // 12514 // End - Start <= Stride * N <= UMAX 12515 // 12516 // Stride * N is a multiple of Stride. Therefore, 12517 // 12518 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12519 // 12520 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12521 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12522 // 12523 // End - Start <= Stride * N <= UMAX - Stride - 1 12524 // 12525 // Dropping the middle term: 12526 // 12527 // End - Start <= UMAX - Stride - 1 12528 // 12529 // Adding Stride - 1 to both sides: 12530 // 12531 // (End - Start) + (Stride - 1) <= UMAX 12532 // 12533 // In other words, the addition doesn't have unsigned overflow. 12534 // 12535 // A similar proof works if we treat Start/End as signed values. 12536 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12537 // use signed max instead of unsigned max. Note that we're trying 12538 // to prove a lack of unsigned overflow in either case. 12539 return false; 12540 } 12541 } 12542 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12543 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12544 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12545 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12546 // 12547 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12548 return false; 12549 } 12550 return true; 12551 }(); 12552 12553 const SCEV *Delta = getMinusSCEV(End, Start); 12554 if (!MayAddOverflow) { 12555 // floor((D + (S - 1)) / S) 12556 // We prefer this formulation if it's legal because it's fewer operations. 12557 BECount = 12558 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12559 } else { 12560 BECount = getUDivCeilSCEV(Delta, Stride); 12561 } 12562 } 12563 12564 const SCEV *MaxBECount; 12565 bool MaxOrZero = false; 12566 if (isa<SCEVConstant>(BECount)) { 12567 MaxBECount = BECount; 12568 } else if (BECountIfBackedgeTaken && 12569 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12570 // If we know exactly how many times the backedge will be taken if it's 12571 // taken at least once, then the backedge count will either be that or 12572 // zero. 12573 MaxBECount = BECountIfBackedgeTaken; 12574 MaxOrZero = true; 12575 } else { 12576 MaxBECount = computeMaxBECountForLT( 12577 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12578 } 12579 12580 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12581 !isa<SCEVCouldNotCompute>(BECount)) 12582 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12583 12584 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12585 } 12586 12587 ScalarEvolution::ExitLimit 12588 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12589 const Loop *L, bool IsSigned, 12590 bool ControlsExit, bool AllowPredicates) { 12591 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12592 // We handle only IV > Invariant 12593 if (!isLoopInvariant(RHS, L)) 12594 return getCouldNotCompute(); 12595 12596 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12597 if (!IV && AllowPredicates) 12598 // Try to make this an AddRec using runtime tests, in the first X 12599 // iterations of this loop, where X is the SCEV expression found by the 12600 // algorithm below. 12601 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12602 12603 // Avoid weird loops 12604 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12605 return getCouldNotCompute(); 12606 12607 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12608 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12609 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12610 12611 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12612 12613 // Avoid negative or zero stride values 12614 if (!isKnownPositive(Stride)) 12615 return getCouldNotCompute(); 12616 12617 // Avoid proven overflow cases: this will ensure that the backedge taken count 12618 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12619 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12620 // behaviors like the case of C language. 12621 if (!Stride->isOne() && !NoWrap) 12622 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12623 return getCouldNotCompute(); 12624 12625 const SCEV *Start = IV->getStart(); 12626 const SCEV *End = RHS; 12627 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12628 // If we know that Start >= RHS in the context of loop, then we know that 12629 // min(RHS, Start) = RHS at this point. 12630 if (isLoopEntryGuardedByCond( 12631 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12632 End = RHS; 12633 else 12634 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12635 } 12636 12637 if (Start->getType()->isPointerTy()) { 12638 Start = getLosslessPtrToIntExpr(Start); 12639 if (isa<SCEVCouldNotCompute>(Start)) 12640 return Start; 12641 } 12642 if (End->getType()->isPointerTy()) { 12643 End = getLosslessPtrToIntExpr(End); 12644 if (isa<SCEVCouldNotCompute>(End)) 12645 return End; 12646 } 12647 12648 // Compute ((Start - End) + (Stride - 1)) / Stride. 12649 // FIXME: This can overflow. Holding off on fixing this for now; 12650 // howManyGreaterThans will hopefully be gone soon. 12651 const SCEV *One = getOne(Stride->getType()); 12652 const SCEV *BECount = getUDivExpr( 12653 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12654 12655 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12656 : getUnsignedRangeMax(Start); 12657 12658 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12659 : getUnsignedRangeMin(Stride); 12660 12661 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12662 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12663 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12664 12665 // Although End can be a MIN expression we estimate MinEnd considering only 12666 // the case End = RHS. This is safe because in the other case (Start - End) 12667 // is zero, leading to a zero maximum backedge taken count. 12668 APInt MinEnd = 12669 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12670 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12671 12672 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12673 ? BECount 12674 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12675 getConstant(MinStride)); 12676 12677 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12678 MaxBECount = BECount; 12679 12680 return ExitLimit(BECount, MaxBECount, false, Predicates); 12681 } 12682 12683 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12684 ScalarEvolution &SE) const { 12685 if (Range.isFullSet()) // Infinite loop. 12686 return SE.getCouldNotCompute(); 12687 12688 // If the start is a non-zero constant, shift the range to simplify things. 12689 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12690 if (!SC->getValue()->isZero()) { 12691 SmallVector<const SCEV *, 4> Operands(operands()); 12692 Operands[0] = SE.getZero(SC->getType()); 12693 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12694 getNoWrapFlags(FlagNW)); 12695 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12696 return ShiftedAddRec->getNumIterationsInRange( 12697 Range.subtract(SC->getAPInt()), SE); 12698 // This is strange and shouldn't happen. 12699 return SE.getCouldNotCompute(); 12700 } 12701 12702 // The only time we can solve this is when we have all constant indices. 12703 // Otherwise, we cannot determine the overflow conditions. 12704 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12705 return SE.getCouldNotCompute(); 12706 12707 // Okay at this point we know that all elements of the chrec are constants and 12708 // that the start element is zero. 12709 12710 // First check to see if the range contains zero. If not, the first 12711 // iteration exits. 12712 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12713 if (!Range.contains(APInt(BitWidth, 0))) 12714 return SE.getZero(getType()); 12715 12716 if (isAffine()) { 12717 // If this is an affine expression then we have this situation: 12718 // Solve {0,+,A} in Range === Ax in Range 12719 12720 // We know that zero is in the range. If A is positive then we know that 12721 // the upper value of the range must be the first possible exit value. 12722 // If A is negative then the lower of the range is the last possible loop 12723 // value. Also note that we already checked for a full range. 12724 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12725 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12726 12727 // The exit value should be (End+A)/A. 12728 APInt ExitVal = (End + A).udiv(A); 12729 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12730 12731 // Evaluate at the exit value. If we really did fall out of the valid 12732 // range, then we computed our trip count, otherwise wrap around or other 12733 // things must have happened. 12734 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12735 if (Range.contains(Val->getValue())) 12736 return SE.getCouldNotCompute(); // Something strange happened 12737 12738 // Ensure that the previous value is in the range. 12739 assert(Range.contains( 12740 EvaluateConstantChrecAtConstant(this, 12741 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12742 "Linear scev computation is off in a bad way!"); 12743 return SE.getConstant(ExitValue); 12744 } 12745 12746 if (isQuadratic()) { 12747 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12748 return SE.getConstant(S.getValue()); 12749 } 12750 12751 return SE.getCouldNotCompute(); 12752 } 12753 12754 const SCEVAddRecExpr * 12755 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12756 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12757 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12758 // but in this case we cannot guarantee that the value returned will be an 12759 // AddRec because SCEV does not have a fixed point where it stops 12760 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12761 // may happen if we reach arithmetic depth limit while simplifying. So we 12762 // construct the returned value explicitly. 12763 SmallVector<const SCEV *, 3> Ops; 12764 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12765 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12766 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12767 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12768 // We know that the last operand is not a constant zero (otherwise it would 12769 // have been popped out earlier). This guarantees us that if the result has 12770 // the same last operand, then it will also not be popped out, meaning that 12771 // the returned value will be an AddRec. 12772 const SCEV *Last = getOperand(getNumOperands() - 1); 12773 assert(!Last->isZero() && "Recurrency with zero step?"); 12774 Ops.push_back(Last); 12775 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12776 SCEV::FlagAnyWrap)); 12777 } 12778 12779 // Return true when S contains at least an undef value. 12780 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12781 return SCEVExprContains(S, [](const SCEV *S) { 12782 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12783 return isa<UndefValue>(SU->getValue()); 12784 return false; 12785 }); 12786 } 12787 12788 // Return true when S contains a value that is a nullptr. 12789 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 12790 return SCEVExprContains(S, [](const SCEV *S) { 12791 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12792 return SU->getValue() == nullptr; 12793 return false; 12794 }); 12795 } 12796 12797 /// Return the size of an element read or written by Inst. 12798 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12799 Type *Ty; 12800 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12801 Ty = Store->getValueOperand()->getType(); 12802 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12803 Ty = Load->getType(); 12804 else 12805 return nullptr; 12806 12807 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12808 return getSizeOfExpr(ETy, Ty); 12809 } 12810 12811 //===----------------------------------------------------------------------===// 12812 // SCEVCallbackVH Class Implementation 12813 //===----------------------------------------------------------------------===// 12814 12815 void ScalarEvolution::SCEVCallbackVH::deleted() { 12816 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12817 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12818 SE->ConstantEvolutionLoopExitValue.erase(PN); 12819 SE->eraseValueFromMap(getValPtr()); 12820 // this now dangles! 12821 } 12822 12823 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12824 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12825 12826 // Forget all the expressions associated with users of the old value, 12827 // so that future queries will recompute the expressions using the new 12828 // value. 12829 Value *Old = getValPtr(); 12830 SmallVector<User *, 16> Worklist(Old->users()); 12831 SmallPtrSet<User *, 8> Visited; 12832 while (!Worklist.empty()) { 12833 User *U = Worklist.pop_back_val(); 12834 // Deleting the Old value will cause this to dangle. Postpone 12835 // that until everything else is done. 12836 if (U == Old) 12837 continue; 12838 if (!Visited.insert(U).second) 12839 continue; 12840 if (PHINode *PN = dyn_cast<PHINode>(U)) 12841 SE->ConstantEvolutionLoopExitValue.erase(PN); 12842 SE->eraseValueFromMap(U); 12843 llvm::append_range(Worklist, U->users()); 12844 } 12845 // Delete the Old value. 12846 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12847 SE->ConstantEvolutionLoopExitValue.erase(PN); 12848 SE->eraseValueFromMap(Old); 12849 // this now dangles! 12850 } 12851 12852 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12853 : CallbackVH(V), SE(se) {} 12854 12855 //===----------------------------------------------------------------------===// 12856 // ScalarEvolution Class Implementation 12857 //===----------------------------------------------------------------------===// 12858 12859 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12860 AssumptionCache &AC, DominatorTree &DT, 12861 LoopInfo &LI) 12862 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12863 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12864 LoopDispositions(64), BlockDispositions(64) { 12865 // To use guards for proving predicates, we need to scan every instruction in 12866 // relevant basic blocks, and not just terminators. Doing this is a waste of 12867 // time if the IR does not actually contain any calls to 12868 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12869 // 12870 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12871 // to _add_ guards to the module when there weren't any before, and wants 12872 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12873 // efficient in lieu of being smart in that rather obscure case. 12874 12875 auto *GuardDecl = F.getParent()->getFunction( 12876 Intrinsic::getName(Intrinsic::experimental_guard)); 12877 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12878 } 12879 12880 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12881 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12882 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12883 ValueExprMap(std::move(Arg.ValueExprMap)), 12884 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12885 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12886 PendingMerges(std::move(Arg.PendingMerges)), 12887 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12888 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12889 PredicatedBackedgeTakenCounts( 12890 std::move(Arg.PredicatedBackedgeTakenCounts)), 12891 BECountUsers(std::move(Arg.BECountUsers)), 12892 ConstantEvolutionLoopExitValue( 12893 std::move(Arg.ConstantEvolutionLoopExitValue)), 12894 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12895 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12896 LoopDispositions(std::move(Arg.LoopDispositions)), 12897 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12898 BlockDispositions(std::move(Arg.BlockDispositions)), 12899 SCEVUsers(std::move(Arg.SCEVUsers)), 12900 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12901 SignedRanges(std::move(Arg.SignedRanges)), 12902 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12903 UniquePreds(std::move(Arg.UniquePreds)), 12904 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12905 LoopUsers(std::move(Arg.LoopUsers)), 12906 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12907 FirstUnknown(Arg.FirstUnknown) { 12908 Arg.FirstUnknown = nullptr; 12909 } 12910 12911 ScalarEvolution::~ScalarEvolution() { 12912 // Iterate through all the SCEVUnknown instances and call their 12913 // destructors, so that they release their references to their values. 12914 for (SCEVUnknown *U = FirstUnknown; U;) { 12915 SCEVUnknown *Tmp = U; 12916 U = U->Next; 12917 Tmp->~SCEVUnknown(); 12918 } 12919 FirstUnknown = nullptr; 12920 12921 ExprValueMap.clear(); 12922 ValueExprMap.clear(); 12923 HasRecMap.clear(); 12924 BackedgeTakenCounts.clear(); 12925 PredicatedBackedgeTakenCounts.clear(); 12926 12927 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12928 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12929 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12930 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12931 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12932 } 12933 12934 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12935 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12936 } 12937 12938 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12939 const Loop *L) { 12940 // Print all inner loops first 12941 for (Loop *I : *L) 12942 PrintLoopInfo(OS, SE, I); 12943 12944 OS << "Loop "; 12945 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12946 OS << ": "; 12947 12948 SmallVector<BasicBlock *, 8> ExitingBlocks; 12949 L->getExitingBlocks(ExitingBlocks); 12950 if (ExitingBlocks.size() != 1) 12951 OS << "<multiple exits> "; 12952 12953 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12954 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12955 else 12956 OS << "Unpredictable backedge-taken count.\n"; 12957 12958 if (ExitingBlocks.size() > 1) 12959 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12960 OS << " exit count for " << ExitingBlock->getName() << ": " 12961 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12962 } 12963 12964 OS << "Loop "; 12965 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12966 OS << ": "; 12967 12968 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12969 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12970 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12971 OS << ", actual taken count either this or zero."; 12972 } else { 12973 OS << "Unpredictable max backedge-taken count. "; 12974 } 12975 12976 OS << "\n" 12977 "Loop "; 12978 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12979 OS << ": "; 12980 12981 SmallVector<const SCEVPredicate *, 4> Preds; 12982 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12983 if (!isa<SCEVCouldNotCompute>(PBT)) { 12984 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12985 OS << " Predicates:\n"; 12986 for (auto *P : Preds) 12987 P->print(OS, 4); 12988 } else { 12989 OS << "Unpredictable predicated backedge-taken count. "; 12990 } 12991 OS << "\n"; 12992 12993 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12994 OS << "Loop "; 12995 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12996 OS << ": "; 12997 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12998 } 12999 } 13000 13001 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13002 switch (LD) { 13003 case ScalarEvolution::LoopVariant: 13004 return "Variant"; 13005 case ScalarEvolution::LoopInvariant: 13006 return "Invariant"; 13007 case ScalarEvolution::LoopComputable: 13008 return "Computable"; 13009 } 13010 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13011 } 13012 13013 void ScalarEvolution::print(raw_ostream &OS) const { 13014 // ScalarEvolution's implementation of the print method is to print 13015 // out SCEV values of all instructions that are interesting. Doing 13016 // this potentially causes it to create new SCEV objects though, 13017 // which technically conflicts with the const qualifier. This isn't 13018 // observable from outside the class though, so casting away the 13019 // const isn't dangerous. 13020 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13021 13022 if (ClassifyExpressions) { 13023 OS << "Classifying expressions for: "; 13024 F.printAsOperand(OS, /*PrintType=*/false); 13025 OS << "\n"; 13026 for (Instruction &I : instructions(F)) 13027 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13028 OS << I << '\n'; 13029 OS << " --> "; 13030 const SCEV *SV = SE.getSCEV(&I); 13031 SV->print(OS); 13032 if (!isa<SCEVCouldNotCompute>(SV)) { 13033 OS << " U: "; 13034 SE.getUnsignedRange(SV).print(OS); 13035 OS << " S: "; 13036 SE.getSignedRange(SV).print(OS); 13037 } 13038 13039 const Loop *L = LI.getLoopFor(I.getParent()); 13040 13041 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13042 if (AtUse != SV) { 13043 OS << " --> "; 13044 AtUse->print(OS); 13045 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13046 OS << " U: "; 13047 SE.getUnsignedRange(AtUse).print(OS); 13048 OS << " S: "; 13049 SE.getSignedRange(AtUse).print(OS); 13050 } 13051 } 13052 13053 if (L) { 13054 OS << "\t\t" "Exits: "; 13055 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13056 if (!SE.isLoopInvariant(ExitValue, L)) { 13057 OS << "<<Unknown>>"; 13058 } else { 13059 OS << *ExitValue; 13060 } 13061 13062 bool First = true; 13063 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13064 if (First) { 13065 OS << "\t\t" "LoopDispositions: { "; 13066 First = false; 13067 } else { 13068 OS << ", "; 13069 } 13070 13071 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13072 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13073 } 13074 13075 for (auto *InnerL : depth_first(L)) { 13076 if (InnerL == L) 13077 continue; 13078 if (First) { 13079 OS << "\t\t" "LoopDispositions: { "; 13080 First = false; 13081 } else { 13082 OS << ", "; 13083 } 13084 13085 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13086 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13087 } 13088 13089 OS << " }"; 13090 } 13091 13092 OS << "\n"; 13093 } 13094 } 13095 13096 OS << "Determining loop execution counts for: "; 13097 F.printAsOperand(OS, /*PrintType=*/false); 13098 OS << "\n"; 13099 for (Loop *I : LI) 13100 PrintLoopInfo(OS, &SE, I); 13101 } 13102 13103 ScalarEvolution::LoopDisposition 13104 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13105 auto &Values = LoopDispositions[S]; 13106 for (auto &V : Values) { 13107 if (V.getPointer() == L) 13108 return V.getInt(); 13109 } 13110 Values.emplace_back(L, LoopVariant); 13111 LoopDisposition D = computeLoopDisposition(S, L); 13112 auto &Values2 = LoopDispositions[S]; 13113 for (auto &V : llvm::reverse(Values2)) { 13114 if (V.getPointer() == L) { 13115 V.setInt(D); 13116 break; 13117 } 13118 } 13119 return D; 13120 } 13121 13122 ScalarEvolution::LoopDisposition 13123 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13124 switch (S->getSCEVType()) { 13125 case scConstant: 13126 return LoopInvariant; 13127 case scPtrToInt: 13128 case scTruncate: 13129 case scZeroExtend: 13130 case scSignExtend: 13131 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13132 case scAddRecExpr: { 13133 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13134 13135 // If L is the addrec's loop, it's computable. 13136 if (AR->getLoop() == L) 13137 return LoopComputable; 13138 13139 // Add recurrences are never invariant in the function-body (null loop). 13140 if (!L) 13141 return LoopVariant; 13142 13143 // Everything that is not defined at loop entry is variant. 13144 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13145 return LoopVariant; 13146 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13147 " dominate the contained loop's header?"); 13148 13149 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13150 if (AR->getLoop()->contains(L)) 13151 return LoopInvariant; 13152 13153 // This recurrence is variant w.r.t. L if any of its operands 13154 // are variant. 13155 for (auto *Op : AR->operands()) 13156 if (!isLoopInvariant(Op, L)) 13157 return LoopVariant; 13158 13159 // Otherwise it's loop-invariant. 13160 return LoopInvariant; 13161 } 13162 case scAddExpr: 13163 case scMulExpr: 13164 case scUMaxExpr: 13165 case scSMaxExpr: 13166 case scUMinExpr: 13167 case scSMinExpr: 13168 case scSequentialUMinExpr: { 13169 bool HasVarying = false; 13170 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13171 LoopDisposition D = getLoopDisposition(Op, L); 13172 if (D == LoopVariant) 13173 return LoopVariant; 13174 if (D == LoopComputable) 13175 HasVarying = true; 13176 } 13177 return HasVarying ? LoopComputable : LoopInvariant; 13178 } 13179 case scUDivExpr: { 13180 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13181 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13182 if (LD == LoopVariant) 13183 return LoopVariant; 13184 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13185 if (RD == LoopVariant) 13186 return LoopVariant; 13187 return (LD == LoopInvariant && RD == LoopInvariant) ? 13188 LoopInvariant : LoopComputable; 13189 } 13190 case scUnknown: 13191 // All non-instruction values are loop invariant. All instructions are loop 13192 // invariant if they are not contained in the specified loop. 13193 // Instructions are never considered invariant in the function body 13194 // (null loop) because they are defined within the "loop". 13195 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13196 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13197 return LoopInvariant; 13198 case scCouldNotCompute: 13199 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13200 } 13201 llvm_unreachable("Unknown SCEV kind!"); 13202 } 13203 13204 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13205 return getLoopDisposition(S, L) == LoopInvariant; 13206 } 13207 13208 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13209 return getLoopDisposition(S, L) == LoopComputable; 13210 } 13211 13212 ScalarEvolution::BlockDisposition 13213 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13214 auto &Values = BlockDispositions[S]; 13215 for (auto &V : Values) { 13216 if (V.getPointer() == BB) 13217 return V.getInt(); 13218 } 13219 Values.emplace_back(BB, DoesNotDominateBlock); 13220 BlockDisposition D = computeBlockDisposition(S, BB); 13221 auto &Values2 = BlockDispositions[S]; 13222 for (auto &V : llvm::reverse(Values2)) { 13223 if (V.getPointer() == BB) { 13224 V.setInt(D); 13225 break; 13226 } 13227 } 13228 return D; 13229 } 13230 13231 ScalarEvolution::BlockDisposition 13232 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13233 switch (S->getSCEVType()) { 13234 case scConstant: 13235 return ProperlyDominatesBlock; 13236 case scPtrToInt: 13237 case scTruncate: 13238 case scZeroExtend: 13239 case scSignExtend: 13240 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13241 case scAddRecExpr: { 13242 // This uses a "dominates" query instead of "properly dominates" query 13243 // to test for proper dominance too, because the instruction which 13244 // produces the addrec's value is a PHI, and a PHI effectively properly 13245 // dominates its entire containing block. 13246 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13247 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13248 return DoesNotDominateBlock; 13249 13250 // Fall through into SCEVNAryExpr handling. 13251 LLVM_FALLTHROUGH; 13252 } 13253 case scAddExpr: 13254 case scMulExpr: 13255 case scUMaxExpr: 13256 case scSMaxExpr: 13257 case scUMinExpr: 13258 case scSMinExpr: 13259 case scSequentialUMinExpr: { 13260 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13261 bool Proper = true; 13262 for (const SCEV *NAryOp : NAry->operands()) { 13263 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13264 if (D == DoesNotDominateBlock) 13265 return DoesNotDominateBlock; 13266 if (D == DominatesBlock) 13267 Proper = false; 13268 } 13269 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13270 } 13271 case scUDivExpr: { 13272 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13273 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13274 BlockDisposition LD = getBlockDisposition(LHS, BB); 13275 if (LD == DoesNotDominateBlock) 13276 return DoesNotDominateBlock; 13277 BlockDisposition RD = getBlockDisposition(RHS, BB); 13278 if (RD == DoesNotDominateBlock) 13279 return DoesNotDominateBlock; 13280 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13281 ProperlyDominatesBlock : DominatesBlock; 13282 } 13283 case scUnknown: 13284 if (Instruction *I = 13285 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13286 if (I->getParent() == BB) 13287 return DominatesBlock; 13288 if (DT.properlyDominates(I->getParent(), BB)) 13289 return ProperlyDominatesBlock; 13290 return DoesNotDominateBlock; 13291 } 13292 return ProperlyDominatesBlock; 13293 case scCouldNotCompute: 13294 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13295 } 13296 llvm_unreachable("Unknown SCEV kind!"); 13297 } 13298 13299 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13300 return getBlockDisposition(S, BB) >= DominatesBlock; 13301 } 13302 13303 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13304 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13305 } 13306 13307 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13308 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13309 } 13310 13311 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13312 bool Predicated) { 13313 auto &BECounts = 13314 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13315 auto It = BECounts.find(L); 13316 if (It != BECounts.end()) { 13317 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13318 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13319 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13320 assert(UserIt != BECountUsers.end()); 13321 UserIt->second.erase({L, Predicated}); 13322 } 13323 } 13324 BECounts.erase(It); 13325 } 13326 } 13327 13328 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13329 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13330 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13331 13332 while (!Worklist.empty()) { 13333 const SCEV *Curr = Worklist.pop_back_val(); 13334 auto Users = SCEVUsers.find(Curr); 13335 if (Users != SCEVUsers.end()) 13336 for (auto *User : Users->second) 13337 if (ToForget.insert(User).second) 13338 Worklist.push_back(User); 13339 } 13340 13341 for (auto *S : ToForget) 13342 forgetMemoizedResultsImpl(S); 13343 13344 for (auto I = PredicatedSCEVRewrites.begin(); 13345 I != PredicatedSCEVRewrites.end();) { 13346 std::pair<const SCEV *, const Loop *> Entry = I->first; 13347 if (ToForget.count(Entry.first)) 13348 PredicatedSCEVRewrites.erase(I++); 13349 else 13350 ++I; 13351 } 13352 } 13353 13354 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13355 LoopDispositions.erase(S); 13356 BlockDispositions.erase(S); 13357 UnsignedRanges.erase(S); 13358 SignedRanges.erase(S); 13359 HasRecMap.erase(S); 13360 MinTrailingZerosCache.erase(S); 13361 13362 auto ExprIt = ExprValueMap.find(S); 13363 if (ExprIt != ExprValueMap.end()) { 13364 for (Value *V : ExprIt->second) { 13365 auto ValueIt = ValueExprMap.find_as(V); 13366 if (ValueIt != ValueExprMap.end()) 13367 ValueExprMap.erase(ValueIt); 13368 } 13369 ExprValueMap.erase(ExprIt); 13370 } 13371 13372 auto ScopeIt = ValuesAtScopes.find(S); 13373 if (ScopeIt != ValuesAtScopes.end()) { 13374 for (const auto &Pair : ScopeIt->second) 13375 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13376 erase_value(ValuesAtScopesUsers[Pair.second], 13377 std::make_pair(Pair.first, S)); 13378 ValuesAtScopes.erase(ScopeIt); 13379 } 13380 13381 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13382 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13383 for (const auto &Pair : ScopeUserIt->second) 13384 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13385 ValuesAtScopesUsers.erase(ScopeUserIt); 13386 } 13387 13388 auto BEUsersIt = BECountUsers.find(S); 13389 if (BEUsersIt != BECountUsers.end()) { 13390 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13391 auto Copy = BEUsersIt->second; 13392 for (const auto &Pair : Copy) 13393 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13394 BECountUsers.erase(BEUsersIt); 13395 } 13396 } 13397 13398 void 13399 ScalarEvolution::getUsedLoops(const SCEV *S, 13400 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13401 struct FindUsedLoops { 13402 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13403 : LoopsUsed(LoopsUsed) {} 13404 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13405 bool follow(const SCEV *S) { 13406 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13407 LoopsUsed.insert(AR->getLoop()); 13408 return true; 13409 } 13410 13411 bool isDone() const { return false; } 13412 }; 13413 13414 FindUsedLoops F(LoopsUsed); 13415 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13416 } 13417 13418 void ScalarEvolution::getReachableBlocks( 13419 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13420 SmallVector<BasicBlock *> Worklist; 13421 Worklist.push_back(&F.getEntryBlock()); 13422 while (!Worklist.empty()) { 13423 BasicBlock *BB = Worklist.pop_back_val(); 13424 if (!Reachable.insert(BB).second) 13425 continue; 13426 13427 Value *Cond; 13428 BasicBlock *TrueBB, *FalseBB; 13429 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13430 m_BasicBlock(FalseBB)))) { 13431 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13432 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13433 continue; 13434 } 13435 13436 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13437 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13438 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13439 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13440 Worklist.push_back(TrueBB); 13441 continue; 13442 } 13443 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13444 R)) { 13445 Worklist.push_back(FalseBB); 13446 continue; 13447 } 13448 } 13449 } 13450 13451 append_range(Worklist, successors(BB)); 13452 } 13453 } 13454 13455 void ScalarEvolution::verify() const { 13456 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13457 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13458 13459 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13460 13461 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13462 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13463 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13464 13465 const SCEV *visitConstant(const SCEVConstant *Constant) { 13466 return SE.getConstant(Constant->getAPInt()); 13467 } 13468 13469 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13470 return SE.getUnknown(Expr->getValue()); 13471 } 13472 13473 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13474 return SE.getCouldNotCompute(); 13475 } 13476 }; 13477 13478 SCEVMapper SCM(SE2); 13479 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13480 SE2.getReachableBlocks(ReachableBlocks, F); 13481 13482 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13483 if (containsUndefs(Old) || containsUndefs(New)) { 13484 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13485 // not propagate undef aggressively). This means we can (and do) fail 13486 // verification in cases where a transform makes a value go from "undef" 13487 // to "undef+1" (say). The transform is fine, since in both cases the 13488 // result is "undef", but SCEV thinks the value increased by 1. 13489 return nullptr; 13490 } 13491 13492 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13493 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13494 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13495 return nullptr; 13496 13497 return Delta; 13498 }; 13499 13500 while (!LoopStack.empty()) { 13501 auto *L = LoopStack.pop_back_val(); 13502 llvm::append_range(LoopStack, *L); 13503 13504 // Only verify BECounts in reachable loops. For an unreachable loop, 13505 // any BECount is legal. 13506 if (!ReachableBlocks.contains(L->getHeader())) 13507 continue; 13508 13509 // Only verify cached BECounts. Computing new BECounts may change the 13510 // results of subsequent SCEV uses. 13511 auto It = BackedgeTakenCounts.find(L); 13512 if (It == BackedgeTakenCounts.end()) 13513 continue; 13514 13515 auto *CurBECount = 13516 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13517 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13518 13519 if (CurBECount == SE2.getCouldNotCompute() || 13520 NewBECount == SE2.getCouldNotCompute()) { 13521 // NB! This situation is legal, but is very suspicious -- whatever pass 13522 // change the loop to make a trip count go from could not compute to 13523 // computable or vice-versa *should have* invalidated SCEV. However, we 13524 // choose not to assert here (for now) since we don't want false 13525 // positives. 13526 continue; 13527 } 13528 13529 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13530 SE.getTypeSizeInBits(NewBECount->getType())) 13531 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13532 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13533 SE.getTypeSizeInBits(NewBECount->getType())) 13534 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13535 13536 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13537 if (Delta && !Delta->isZero()) { 13538 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13539 dbgs() << "Old: " << *CurBECount << "\n"; 13540 dbgs() << "New: " << *NewBECount << "\n"; 13541 dbgs() << "Delta: " << *Delta << "\n"; 13542 std::abort(); 13543 } 13544 } 13545 13546 // Collect all valid loops currently in LoopInfo. 13547 SmallPtrSet<Loop *, 32> ValidLoops; 13548 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13549 while (!Worklist.empty()) { 13550 Loop *L = Worklist.pop_back_val(); 13551 if (ValidLoops.insert(L).second) 13552 Worklist.append(L->begin(), L->end()); 13553 } 13554 for (auto &KV : ValueExprMap) { 13555 #ifndef NDEBUG 13556 // Check for SCEV expressions referencing invalid/deleted loops. 13557 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13558 assert(ValidLoops.contains(AR->getLoop()) && 13559 "AddRec references invalid loop"); 13560 } 13561 #endif 13562 13563 // Check that the value is also part of the reverse map. 13564 auto It = ExprValueMap.find(KV.second); 13565 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13566 dbgs() << "Value " << *KV.first 13567 << " is in ValueExprMap but not in ExprValueMap\n"; 13568 std::abort(); 13569 } 13570 13571 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13572 if (!ReachableBlocks.contains(I->getParent())) 13573 continue; 13574 const SCEV *OldSCEV = SCM.visit(KV.second); 13575 const SCEV *NewSCEV = SE2.getSCEV(I); 13576 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13577 if (Delta && !Delta->isZero()) { 13578 dbgs() << "SCEV for value " << *I << " changed!\n" 13579 << "Old: " << *OldSCEV << "\n" 13580 << "New: " << *NewSCEV << "\n" 13581 << "Delta: " << *Delta << "\n"; 13582 std::abort(); 13583 } 13584 } 13585 } 13586 13587 for (const auto &KV : ExprValueMap) { 13588 for (Value *V : KV.second) { 13589 auto It = ValueExprMap.find_as(V); 13590 if (It == ValueExprMap.end()) { 13591 dbgs() << "Value " << *V 13592 << " is in ExprValueMap but not in ValueExprMap\n"; 13593 std::abort(); 13594 } 13595 if (It->second != KV.first) { 13596 dbgs() << "Value " << *V << " mapped to " << *It->second 13597 << " rather than " << *KV.first << "\n"; 13598 std::abort(); 13599 } 13600 } 13601 } 13602 13603 // Verify integrity of SCEV users. 13604 for (const auto &S : UniqueSCEVs) { 13605 SmallVector<const SCEV *, 4> Ops; 13606 collectUniqueOps(&S, Ops); 13607 for (const auto *Op : Ops) { 13608 // We do not store dependencies of constants. 13609 if (isa<SCEVConstant>(Op)) 13610 continue; 13611 auto It = SCEVUsers.find(Op); 13612 if (It != SCEVUsers.end() && It->second.count(&S)) 13613 continue; 13614 dbgs() << "Use of operand " << *Op << " by user " << S 13615 << " is not being tracked!\n"; 13616 std::abort(); 13617 } 13618 } 13619 13620 // Verify integrity of ValuesAtScopes users. 13621 for (const auto &ValueAndVec : ValuesAtScopes) { 13622 const SCEV *Value = ValueAndVec.first; 13623 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13624 const Loop *L = LoopAndValueAtScope.first; 13625 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13626 if (!isa<SCEVConstant>(ValueAtScope)) { 13627 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13628 if (It != ValuesAtScopesUsers.end() && 13629 is_contained(It->second, std::make_pair(L, Value))) 13630 continue; 13631 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13632 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13633 std::abort(); 13634 } 13635 } 13636 } 13637 13638 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13639 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13640 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13641 const Loop *L = LoopAndValue.first; 13642 const SCEV *Value = LoopAndValue.second; 13643 assert(!isa<SCEVConstant>(Value)); 13644 auto It = ValuesAtScopes.find(Value); 13645 if (It != ValuesAtScopes.end() && 13646 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13647 continue; 13648 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13649 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13650 std::abort(); 13651 } 13652 } 13653 13654 // Verify integrity of BECountUsers. 13655 auto VerifyBECountUsers = [&](bool Predicated) { 13656 auto &BECounts = 13657 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13658 for (const auto &LoopAndBEInfo : BECounts) { 13659 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13660 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13661 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13662 if (UserIt != BECountUsers.end() && 13663 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13664 continue; 13665 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13666 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13667 std::abort(); 13668 } 13669 } 13670 } 13671 }; 13672 VerifyBECountUsers(/* Predicated */ false); 13673 VerifyBECountUsers(/* Predicated */ true); 13674 } 13675 13676 bool ScalarEvolution::invalidate( 13677 Function &F, const PreservedAnalyses &PA, 13678 FunctionAnalysisManager::Invalidator &Inv) { 13679 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13680 // of its dependencies is invalidated. 13681 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13682 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13683 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13684 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13685 Inv.invalidate<LoopAnalysis>(F, PA); 13686 } 13687 13688 AnalysisKey ScalarEvolutionAnalysis::Key; 13689 13690 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13691 FunctionAnalysisManager &AM) { 13692 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13693 AM.getResult<AssumptionAnalysis>(F), 13694 AM.getResult<DominatorTreeAnalysis>(F), 13695 AM.getResult<LoopAnalysis>(F)); 13696 } 13697 13698 PreservedAnalyses 13699 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13700 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13701 return PreservedAnalyses::all(); 13702 } 13703 13704 PreservedAnalyses 13705 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13706 // For compatibility with opt's -analyze feature under legacy pass manager 13707 // which was not ported to NPM. This keeps tests using 13708 // update_analyze_test_checks.py working. 13709 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13710 << F.getName() << "':\n"; 13711 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13712 return PreservedAnalyses::all(); 13713 } 13714 13715 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13716 "Scalar Evolution Analysis", false, true) 13717 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13718 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13719 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13720 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13721 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13722 "Scalar Evolution Analysis", false, true) 13723 13724 char ScalarEvolutionWrapperPass::ID = 0; 13725 13726 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13727 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13728 } 13729 13730 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13731 SE.reset(new ScalarEvolution( 13732 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13733 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13734 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13735 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13736 return false; 13737 } 13738 13739 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13740 13741 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13742 SE->print(OS); 13743 } 13744 13745 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13746 if (!VerifySCEV) 13747 return; 13748 13749 SE->verify(); 13750 } 13751 13752 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13753 AU.setPreservesAll(); 13754 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13755 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13756 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13757 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13758 } 13759 13760 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13761 const SCEV *RHS) { 13762 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13763 } 13764 13765 const SCEVPredicate * 13766 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13767 const SCEV *LHS, const SCEV *RHS) { 13768 FoldingSetNodeID ID; 13769 assert(LHS->getType() == RHS->getType() && 13770 "Type mismatch between LHS and RHS"); 13771 // Unique this node based on the arguments 13772 ID.AddInteger(SCEVPredicate::P_Compare); 13773 ID.AddInteger(Pred); 13774 ID.AddPointer(LHS); 13775 ID.AddPointer(RHS); 13776 void *IP = nullptr; 13777 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13778 return S; 13779 SCEVComparePredicate *Eq = new (SCEVAllocator) 13780 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13781 UniquePreds.InsertNode(Eq, IP); 13782 return Eq; 13783 } 13784 13785 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13786 const SCEVAddRecExpr *AR, 13787 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13788 FoldingSetNodeID ID; 13789 // Unique this node based on the arguments 13790 ID.AddInteger(SCEVPredicate::P_Wrap); 13791 ID.AddPointer(AR); 13792 ID.AddInteger(AddedFlags); 13793 void *IP = nullptr; 13794 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13795 return S; 13796 auto *OF = new (SCEVAllocator) 13797 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13798 UniquePreds.InsertNode(OF, IP); 13799 return OF; 13800 } 13801 13802 namespace { 13803 13804 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13805 public: 13806 13807 /// Rewrites \p S in the context of a loop L and the SCEV predication 13808 /// infrastructure. 13809 /// 13810 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13811 /// equivalences present in \p Pred. 13812 /// 13813 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13814 /// \p NewPreds such that the result will be an AddRecExpr. 13815 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13816 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13817 const SCEVPredicate *Pred) { 13818 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13819 return Rewriter.visit(S); 13820 } 13821 13822 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13823 if (Pred) { 13824 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13825 for (auto *Pred : U->getPredicates()) 13826 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13827 if (IPred->getLHS() == Expr && 13828 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13829 return IPred->getRHS(); 13830 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13831 if (IPred->getLHS() == Expr && 13832 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13833 return IPred->getRHS(); 13834 } 13835 } 13836 return convertToAddRecWithPreds(Expr); 13837 } 13838 13839 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13840 const SCEV *Operand = visit(Expr->getOperand()); 13841 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13842 if (AR && AR->getLoop() == L && AR->isAffine()) { 13843 // This couldn't be folded because the operand didn't have the nuw 13844 // flag. Add the nusw flag as an assumption that we could make. 13845 const SCEV *Step = AR->getStepRecurrence(SE); 13846 Type *Ty = Expr->getType(); 13847 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13848 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13849 SE.getSignExtendExpr(Step, Ty), L, 13850 AR->getNoWrapFlags()); 13851 } 13852 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13853 } 13854 13855 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13856 const SCEV *Operand = visit(Expr->getOperand()); 13857 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13858 if (AR && AR->getLoop() == L && AR->isAffine()) { 13859 // This couldn't be folded because the operand didn't have the nsw 13860 // flag. Add the nssw flag as an assumption that we could make. 13861 const SCEV *Step = AR->getStepRecurrence(SE); 13862 Type *Ty = Expr->getType(); 13863 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13864 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13865 SE.getSignExtendExpr(Step, Ty), L, 13866 AR->getNoWrapFlags()); 13867 } 13868 return SE.getSignExtendExpr(Operand, Expr->getType()); 13869 } 13870 13871 private: 13872 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13873 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13874 const SCEVPredicate *Pred) 13875 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13876 13877 bool addOverflowAssumption(const SCEVPredicate *P) { 13878 if (!NewPreds) { 13879 // Check if we've already made this assumption. 13880 return Pred && Pred->implies(P); 13881 } 13882 NewPreds->insert(P); 13883 return true; 13884 } 13885 13886 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13887 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13888 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13889 return addOverflowAssumption(A); 13890 } 13891 13892 // If \p Expr represents a PHINode, we try to see if it can be represented 13893 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13894 // to add this predicate as a runtime overflow check, we return the AddRec. 13895 // If \p Expr does not meet these conditions (is not a PHI node, or we 13896 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13897 // return \p Expr. 13898 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13899 if (!isa<PHINode>(Expr->getValue())) 13900 return Expr; 13901 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13902 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13903 if (!PredicatedRewrite) 13904 return Expr; 13905 for (auto *P : PredicatedRewrite->second){ 13906 // Wrap predicates from outer loops are not supported. 13907 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13908 if (L != WP->getExpr()->getLoop()) 13909 return Expr; 13910 } 13911 if (!addOverflowAssumption(P)) 13912 return Expr; 13913 } 13914 return PredicatedRewrite->first; 13915 } 13916 13917 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13918 const SCEVPredicate *Pred; 13919 const Loop *L; 13920 }; 13921 13922 } // end anonymous namespace 13923 13924 const SCEV * 13925 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13926 const SCEVPredicate &Preds) { 13927 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13928 } 13929 13930 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13931 const SCEV *S, const Loop *L, 13932 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13933 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13934 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13935 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13936 13937 if (!AddRec) 13938 return nullptr; 13939 13940 // Since the transformation was successful, we can now transfer the SCEV 13941 // predicates. 13942 for (auto *P : TransformPreds) 13943 Preds.insert(P); 13944 13945 return AddRec; 13946 } 13947 13948 /// SCEV predicates 13949 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13950 SCEVPredicateKind Kind) 13951 : FastID(ID), Kind(Kind) {} 13952 13953 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13954 const ICmpInst::Predicate Pred, 13955 const SCEV *LHS, const SCEV *RHS) 13956 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13957 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13958 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13959 } 13960 13961 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13962 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13963 13964 if (!Op) 13965 return false; 13966 13967 if (Pred != ICmpInst::ICMP_EQ) 13968 return false; 13969 13970 return Op->LHS == LHS && Op->RHS == RHS; 13971 } 13972 13973 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13974 13975 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13976 if (Pred == ICmpInst::ICMP_EQ) 13977 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13978 else 13979 OS.indent(Depth) << "Compare predicate: " << *LHS 13980 << " " << CmpInst::getPredicateName(Pred) << ") " 13981 << *RHS << "\n"; 13982 13983 } 13984 13985 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13986 const SCEVAddRecExpr *AR, 13987 IncrementWrapFlags Flags) 13988 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13989 13990 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13991 13992 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13993 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13994 13995 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13996 } 13997 13998 bool SCEVWrapPredicate::isAlwaysTrue() const { 13999 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14000 IncrementWrapFlags IFlags = Flags; 14001 14002 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14003 IFlags = clearFlags(IFlags, IncrementNSSW); 14004 14005 return IFlags == IncrementAnyWrap; 14006 } 14007 14008 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14009 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14010 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14011 OS << "<nusw>"; 14012 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14013 OS << "<nssw>"; 14014 OS << "\n"; 14015 } 14016 14017 SCEVWrapPredicate::IncrementWrapFlags 14018 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14019 ScalarEvolution &SE) { 14020 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14021 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14022 14023 // We can safely transfer the NSW flag as NSSW. 14024 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14025 ImpliedFlags = IncrementNSSW; 14026 14027 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14028 // If the increment is positive, the SCEV NUW flag will also imply the 14029 // WrapPredicate NUSW flag. 14030 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14031 if (Step->getValue()->getValue().isNonNegative()) 14032 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14033 } 14034 14035 return ImpliedFlags; 14036 } 14037 14038 /// Union predicates don't get cached so create a dummy set ID for it. 14039 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14040 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14041 for (auto *P : Preds) 14042 add(P); 14043 } 14044 14045 bool SCEVUnionPredicate::isAlwaysTrue() const { 14046 return all_of(Preds, 14047 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14048 } 14049 14050 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14051 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14052 return all_of(Set->Preds, 14053 [this](const SCEVPredicate *I) { return this->implies(I); }); 14054 14055 return any_of(Preds, 14056 [N](const SCEVPredicate *I) { return I->implies(N); }); 14057 } 14058 14059 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14060 for (auto Pred : Preds) 14061 Pred->print(OS, Depth); 14062 } 14063 14064 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14065 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14066 for (auto Pred : Set->Preds) 14067 add(Pred); 14068 return; 14069 } 14070 14071 Preds.push_back(N); 14072 } 14073 14074 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14075 Loop &L) 14076 : SE(SE), L(L) { 14077 SmallVector<const SCEVPredicate*, 4> Empty; 14078 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14079 } 14080 14081 void ScalarEvolution::registerUser(const SCEV *User, 14082 ArrayRef<const SCEV *> Ops) { 14083 for (auto *Op : Ops) 14084 // We do not expect that forgetting cached data for SCEVConstants will ever 14085 // open any prospects for sharpening or introduce any correctness issues, 14086 // so we don't bother storing their dependencies. 14087 if (!isa<SCEVConstant>(Op)) 14088 SCEVUsers[Op].insert(User); 14089 } 14090 14091 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14092 const SCEV *Expr = SE.getSCEV(V); 14093 RewriteEntry &Entry = RewriteMap[Expr]; 14094 14095 // If we already have an entry and the version matches, return it. 14096 if (Entry.second && Generation == Entry.first) 14097 return Entry.second; 14098 14099 // We found an entry but it's stale. Rewrite the stale entry 14100 // according to the current predicate. 14101 if (Entry.second) 14102 Expr = Entry.second; 14103 14104 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14105 Entry = {Generation, NewSCEV}; 14106 14107 return NewSCEV; 14108 } 14109 14110 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14111 if (!BackedgeCount) { 14112 SmallVector<const SCEVPredicate *, 4> Preds; 14113 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14114 for (auto *P : Preds) 14115 addPredicate(*P); 14116 } 14117 return BackedgeCount; 14118 } 14119 14120 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14121 if (Preds->implies(&Pred)) 14122 return; 14123 14124 auto &OldPreds = Preds->getPredicates(); 14125 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14126 NewPreds.push_back(&Pred); 14127 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14128 updateGeneration(); 14129 } 14130 14131 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14132 return *Preds; 14133 } 14134 14135 void PredicatedScalarEvolution::updateGeneration() { 14136 // If the generation number wrapped recompute everything. 14137 if (++Generation == 0) { 14138 for (auto &II : RewriteMap) { 14139 const SCEV *Rewritten = II.second.second; 14140 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14141 } 14142 } 14143 } 14144 14145 void PredicatedScalarEvolution::setNoOverflow( 14146 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14147 const SCEV *Expr = getSCEV(V); 14148 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14149 14150 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14151 14152 // Clear the statically implied flags. 14153 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14154 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14155 14156 auto II = FlagsMap.insert({V, Flags}); 14157 if (!II.second) 14158 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14159 } 14160 14161 bool PredicatedScalarEvolution::hasNoOverflow( 14162 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14163 const SCEV *Expr = getSCEV(V); 14164 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14165 14166 Flags = SCEVWrapPredicate::clearFlags( 14167 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14168 14169 auto II = FlagsMap.find(V); 14170 14171 if (II != FlagsMap.end()) 14172 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14173 14174 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14175 } 14176 14177 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14178 const SCEV *Expr = this->getSCEV(V); 14179 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14180 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14181 14182 if (!New) 14183 return nullptr; 14184 14185 for (auto *P : NewPreds) 14186 addPredicate(*P); 14187 14188 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14189 return New; 14190 } 14191 14192 PredicatedScalarEvolution::PredicatedScalarEvolution( 14193 const PredicatedScalarEvolution &Init) 14194 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14195 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14196 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14197 for (auto I : Init.FlagsMap) 14198 FlagsMap.insert(I); 14199 } 14200 14201 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14202 // For each block. 14203 for (auto *BB : L.getBlocks()) 14204 for (auto &I : *BB) { 14205 if (!SE.isSCEVable(I.getType())) 14206 continue; 14207 14208 auto *Expr = SE.getSCEV(&I); 14209 auto II = RewriteMap.find(Expr); 14210 14211 if (II == RewriteMap.end()) 14212 continue; 14213 14214 // Don't print things that are not interesting. 14215 if (II->second.second == Expr) 14216 continue; 14217 14218 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14219 OS.indent(Depth + 2) << *Expr << "\n"; 14220 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14221 } 14222 } 14223 14224 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14225 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14226 // for URem with constant power-of-2 second operands. 14227 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14228 // 4, A / B becomes X / 8). 14229 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14230 const SCEV *&RHS) { 14231 // Try to match 'zext (trunc A to iB) to iY', which is used 14232 // for URem with constant power-of-2 second operands. Make sure the size of 14233 // the operand A matches the size of the whole expressions. 14234 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14235 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14236 LHS = Trunc->getOperand(); 14237 // Bail out if the type of the LHS is larger than the type of the 14238 // expression for now. 14239 if (getTypeSizeInBits(LHS->getType()) > 14240 getTypeSizeInBits(Expr->getType())) 14241 return false; 14242 if (LHS->getType() != Expr->getType()) 14243 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14244 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14245 << getTypeSizeInBits(Trunc->getType())); 14246 return true; 14247 } 14248 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14249 if (Add == nullptr || Add->getNumOperands() != 2) 14250 return false; 14251 14252 const SCEV *A = Add->getOperand(1); 14253 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14254 14255 if (Mul == nullptr) 14256 return false; 14257 14258 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14259 // (SomeExpr + (-(SomeExpr / B) * B)). 14260 if (Expr == getURemExpr(A, B)) { 14261 LHS = A; 14262 RHS = B; 14263 return true; 14264 } 14265 return false; 14266 }; 14267 14268 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14269 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14270 return MatchURemWithDivisor(Mul->getOperand(1)) || 14271 MatchURemWithDivisor(Mul->getOperand(2)); 14272 14273 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14274 if (Mul->getNumOperands() == 2) 14275 return MatchURemWithDivisor(Mul->getOperand(1)) || 14276 MatchURemWithDivisor(Mul->getOperand(0)) || 14277 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14278 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14279 return false; 14280 } 14281 14282 const SCEV * 14283 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14284 SmallVector<BasicBlock*, 16> ExitingBlocks; 14285 L->getExitingBlocks(ExitingBlocks); 14286 14287 // Form an expression for the maximum exit count possible for this loop. We 14288 // merge the max and exact information to approximate a version of 14289 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14290 SmallVector<const SCEV*, 4> ExitCounts; 14291 for (BasicBlock *ExitingBB : ExitingBlocks) { 14292 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14293 if (isa<SCEVCouldNotCompute>(ExitCount)) 14294 ExitCount = getExitCount(L, ExitingBB, 14295 ScalarEvolution::ConstantMaximum); 14296 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14297 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14298 "We should only have known counts for exiting blocks that " 14299 "dominate latch!"); 14300 ExitCounts.push_back(ExitCount); 14301 } 14302 } 14303 if (ExitCounts.empty()) 14304 return getCouldNotCompute(); 14305 return getUMinFromMismatchedTypes(ExitCounts); 14306 } 14307 14308 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14309 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14310 /// replacement is loop invariant in the loop of the AddRec. 14311 /// 14312 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14313 /// supported. 14314 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14315 const DenseMap<const SCEV *, const SCEV *> ⤅ 14316 14317 public: 14318 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14319 DenseMap<const SCEV *, const SCEV *> &M) 14320 : SCEVRewriteVisitor(SE), Map(M) {} 14321 14322 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14323 14324 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14325 auto I = Map.find(Expr); 14326 if (I == Map.end()) 14327 return Expr; 14328 return I->second; 14329 } 14330 14331 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14332 auto I = Map.find(Expr); 14333 if (I == Map.end()) 14334 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14335 Expr); 14336 return I->second; 14337 } 14338 }; 14339 14340 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14341 SmallVector<const SCEV *> ExprsToRewrite; 14342 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14343 const SCEV *RHS, 14344 DenseMap<const SCEV *, const SCEV *> 14345 &RewriteMap) { 14346 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14347 // replacement SCEV which isn't directly implied by the structure of that 14348 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14349 // legal. See the scoping rules for flags in the header to understand why. 14350 14351 // If LHS is a constant, apply information to the other expression. 14352 if (isa<SCEVConstant>(LHS)) { 14353 std::swap(LHS, RHS); 14354 Predicate = CmpInst::getSwappedPredicate(Predicate); 14355 } 14356 14357 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14358 // create this form when combining two checks of the form (X u< C2 + C1) and 14359 // (X >=u C1). 14360 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14361 &ExprsToRewrite]() { 14362 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14363 if (!AddExpr || AddExpr->getNumOperands() != 2) 14364 return false; 14365 14366 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14367 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14368 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14369 if (!C1 || !C2 || !LHSUnknown) 14370 return false; 14371 14372 auto ExactRegion = 14373 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14374 .sub(C1->getAPInt()); 14375 14376 // Bail out, unless we have a non-wrapping, monotonic range. 14377 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14378 return false; 14379 auto I = RewriteMap.find(LHSUnknown); 14380 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14381 RewriteMap[LHSUnknown] = getUMaxExpr( 14382 getConstant(ExactRegion.getUnsignedMin()), 14383 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14384 ExprsToRewrite.push_back(LHSUnknown); 14385 return true; 14386 }; 14387 if (MatchRangeCheckIdiom()) 14388 return; 14389 14390 // If we have LHS == 0, check if LHS is computing a property of some unknown 14391 // SCEV %v which we can rewrite %v to express explicitly. 14392 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14393 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14394 RHSC->getValue()->isNullValue()) { 14395 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14396 // explicitly express that. 14397 const SCEV *URemLHS = nullptr; 14398 const SCEV *URemRHS = nullptr; 14399 if (matchURem(LHS, URemLHS, URemRHS)) { 14400 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14401 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14402 RewriteMap[LHSUnknown] = Multiple; 14403 ExprsToRewrite.push_back(LHSUnknown); 14404 return; 14405 } 14406 } 14407 } 14408 14409 // Do not apply information for constants or if RHS contains an AddRec. 14410 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14411 return; 14412 14413 // If RHS is SCEVUnknown, make sure the information is applied to it. 14414 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14415 std::swap(LHS, RHS); 14416 Predicate = CmpInst::getSwappedPredicate(Predicate); 14417 } 14418 14419 // Limit to expressions that can be rewritten. 14420 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14421 return; 14422 14423 // Check whether LHS has already been rewritten. In that case we want to 14424 // chain further rewrites onto the already rewritten value. 14425 auto I = RewriteMap.find(LHS); 14426 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14427 14428 const SCEV *RewrittenRHS = nullptr; 14429 switch (Predicate) { 14430 case CmpInst::ICMP_ULT: 14431 RewrittenRHS = 14432 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14433 break; 14434 case CmpInst::ICMP_SLT: 14435 RewrittenRHS = 14436 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14437 break; 14438 case CmpInst::ICMP_ULE: 14439 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14440 break; 14441 case CmpInst::ICMP_SLE: 14442 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14443 break; 14444 case CmpInst::ICMP_UGT: 14445 RewrittenRHS = 14446 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14447 break; 14448 case CmpInst::ICMP_SGT: 14449 RewrittenRHS = 14450 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14451 break; 14452 case CmpInst::ICMP_UGE: 14453 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14454 break; 14455 case CmpInst::ICMP_SGE: 14456 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14457 break; 14458 case CmpInst::ICMP_EQ: 14459 if (isa<SCEVConstant>(RHS)) 14460 RewrittenRHS = RHS; 14461 break; 14462 case CmpInst::ICMP_NE: 14463 if (isa<SCEVConstant>(RHS) && 14464 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14465 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14466 break; 14467 default: 14468 break; 14469 } 14470 14471 if (RewrittenRHS) { 14472 RewriteMap[LHS] = RewrittenRHS; 14473 if (LHS == RewrittenLHS) 14474 ExprsToRewrite.push_back(LHS); 14475 } 14476 }; 14477 // First, collect conditions from dominating branches. Starting at the loop 14478 // predecessor, climb up the predecessor chain, as long as there are 14479 // predecessors that can be found that have unique successors leading to the 14480 // original header. 14481 // TODO: share this logic with isLoopEntryGuardedByCond. 14482 SmallVector<std::pair<Value *, bool>> Terms; 14483 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14484 L->getLoopPredecessor(), L->getHeader()); 14485 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14486 14487 const BranchInst *LoopEntryPredicate = 14488 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14489 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14490 continue; 14491 14492 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14493 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14494 } 14495 14496 // Now apply the information from the collected conditions to RewriteMap. 14497 // Conditions are processed in reverse order, so the earliest conditions is 14498 // processed first. This ensures the SCEVs with the shortest dependency chains 14499 // are constructed first. 14500 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14501 for (auto &E : reverse(Terms)) { 14502 bool EnterIfTrue = E.second; 14503 SmallVector<Value *, 8> Worklist; 14504 SmallPtrSet<Value *, 8> Visited; 14505 Worklist.push_back(E.first); 14506 while (!Worklist.empty()) { 14507 Value *Cond = Worklist.pop_back_val(); 14508 if (!Visited.insert(Cond).second) 14509 continue; 14510 14511 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14512 auto Predicate = 14513 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14514 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14515 getSCEV(Cmp->getOperand(1)), RewriteMap); 14516 continue; 14517 } 14518 14519 Value *L, *R; 14520 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14521 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14522 Worklist.push_back(L); 14523 Worklist.push_back(R); 14524 } 14525 } 14526 } 14527 14528 // Also collect information from assumptions dominating the loop. 14529 for (auto &AssumeVH : AC.assumptions()) { 14530 if (!AssumeVH) 14531 continue; 14532 auto *AssumeI = cast<CallInst>(AssumeVH); 14533 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14534 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14535 continue; 14536 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14537 getSCEV(Cmp->getOperand(1)), RewriteMap); 14538 } 14539 14540 if (RewriteMap.empty()) 14541 return Expr; 14542 14543 // Now that all rewrite information is collect, rewrite the collected 14544 // expressions with the information in the map. This applies information to 14545 // sub-expressions. 14546 if (ExprsToRewrite.size() > 1) { 14547 for (const SCEV *Expr : ExprsToRewrite) { 14548 const SCEV *RewriteTo = RewriteMap[Expr]; 14549 RewriteMap.erase(Expr); 14550 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14551 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14552 } 14553 } 14554 14555 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14556 return Rewriter.visit(Expr); 14557 } 14558