1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 //===----------------------------------------------------------------------===// 236 // SCEV class definitions 237 //===----------------------------------------------------------------------===// 238 239 //===----------------------------------------------------------------------===// 240 // Implementation of the SCEV class. 241 // 242 243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 244 LLVM_DUMP_METHOD void SCEV::dump() const { 245 print(dbgs()); 246 dbgs() << '\n'; 247 } 248 #endif 249 250 void SCEV::print(raw_ostream &OS) const { 251 switch (getSCEVType()) { 252 case scConstant: 253 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 254 return; 255 case scPtrToInt: { 256 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 257 const SCEV *Op = PtrToInt->getOperand(); 258 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 259 << *PtrToInt->getType() << ")"; 260 return; 261 } 262 case scTruncate: { 263 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 264 const SCEV *Op = Trunc->getOperand(); 265 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 266 << *Trunc->getType() << ")"; 267 return; 268 } 269 case scZeroExtend: { 270 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 271 const SCEV *Op = ZExt->getOperand(); 272 OS << "(zext " << *Op->getType() << " " << *Op << " to " 273 << *ZExt->getType() << ")"; 274 return; 275 } 276 case scSignExtend: { 277 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 278 const SCEV *Op = SExt->getOperand(); 279 OS << "(sext " << *Op->getType() << " " << *Op << " to " 280 << *SExt->getType() << ")"; 281 return; 282 } 283 case scAddRecExpr: { 284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 285 OS << "{" << *AR->getOperand(0); 286 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 287 OS << ",+," << *AR->getOperand(i); 288 OS << "}<"; 289 if (AR->hasNoUnsignedWrap()) 290 OS << "nuw><"; 291 if (AR->hasNoSignedWrap()) 292 OS << "nsw><"; 293 if (AR->hasNoSelfWrap() && 294 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 295 OS << "nw><"; 296 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 297 OS << ">"; 298 return; 299 } 300 case scAddExpr: 301 case scMulExpr: 302 case scUMaxExpr: 303 case scSMaxExpr: 304 case scUMinExpr: 305 case scSMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 default: 320 llvm_unreachable("There are no other nary expression types."); 321 } 322 OS << "("; 323 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 324 I != E; ++I) { 325 OS << **I; 326 if (std::next(I) != E) 327 OS << OpStr; 328 } 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 case scMulExpr: 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVNAryExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 static int CompareSCEVComplexity( 692 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 695 DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 // Aside from the getSCEVType() ordering, the particular ordering 708 // isn't very important except that it's beneficial to be consistent, 709 // so that (a + b) and (b + a) don't end up as different expressions. 710 switch (LType) { 711 case scUnknown: { 712 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 713 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 714 715 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 716 RU->getValue(), Depth + 1); 717 if (X == 0) 718 EqCacheSCEV.unionSets(LHS, RHS); 719 return X; 720 } 721 722 case scConstant: { 723 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 724 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 725 726 // Compare constant values. 727 const APInt &LA = LC->getAPInt(); 728 const APInt &RA = RC->getAPInt(); 729 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 730 if (LBitWidth != RBitWidth) 731 return (int)LBitWidth - (int)RBitWidth; 732 return LA.ult(RA) ? -1 : 1; 733 } 734 735 case scAddRecExpr: { 736 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 737 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 738 739 // There is always a dominance between two recs that are used by one SCEV, 740 // so we can safely sort recs by loop header dominance. We require such 741 // order in getAddExpr. 742 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 743 if (LLoop != RLoop) { 744 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 745 assert(LHead != RHead && "Two loops share the same header?"); 746 if (DT.dominates(LHead, RHead)) 747 return 1; 748 else 749 assert(DT.dominates(RHead, LHead) && 750 "No dominance between recurrences used by one SCEV?"); 751 return -1; 752 } 753 754 // Addrec complexity grows with operand count. 755 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 756 if (LNumOps != RNumOps) 757 return (int)LNumOps - (int)RNumOps; 758 759 // Lexicographically compare. 760 for (unsigned i = 0; i != LNumOps; ++i) { 761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 762 LA->getOperand(i), RA->getOperand(i), DT, 763 Depth + 1); 764 if (X != 0) 765 return X; 766 } 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return 0; 769 } 770 771 case scAddExpr: 772 case scMulExpr: 773 case scSMaxExpr: 774 case scUMaxExpr: 775 case scSMinExpr: 776 case scUMinExpr: { 777 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 778 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 779 780 // Lexicographically compare n-ary expressions. 781 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 782 if (LNumOps != RNumOps) 783 return (int)LNumOps - (int)RNumOps; 784 785 for (unsigned i = 0; i != LNumOps; ++i) { 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(i), RC->getOperand(i), DT, 788 Depth + 1); 789 if (X != 0) 790 return X; 791 } 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return 0; 794 } 795 796 case scUDivExpr: { 797 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 798 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 799 800 // Lexicographically compare udiv expressions. 801 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 802 RC->getLHS(), DT, Depth + 1); 803 if (X != 0) 804 return X; 805 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 806 RC->getRHS(), DT, Depth + 1); 807 if (X == 0) 808 EqCacheSCEV.unionSets(LHS, RHS); 809 return X; 810 } 811 812 case scPtrToInt: 813 case scTruncate: 814 case scZeroExtend: 815 case scSignExtend: { 816 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 817 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 818 819 // Compare cast expressions by operand. 820 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 821 LC->getOperand(), RC->getOperand(), DT, 822 Depth + 1); 823 if (X == 0) 824 EqCacheSCEV.unionSets(LHS, RHS); 825 return X; 826 } 827 828 case scCouldNotCompute: 829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 830 } 831 llvm_unreachable("Unknown SCEV kind!"); 832 } 833 834 /// Given a list of SCEV objects, order them by their complexity, and group 835 /// objects of the same complexity together by value. When this routine is 836 /// finished, we know that any duplicates in the vector are consecutive and that 837 /// complexity is monotonically increasing. 838 /// 839 /// Note that we go take special precautions to ensure that we get deterministic 840 /// results from this routine. In other words, we don't want the results of 841 /// this to depend on where the addresses of various SCEV objects happened to 842 /// land in memory. 843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 844 LoopInfo *LI, DominatorTree &DT) { 845 if (Ops.size() < 2) return; // Noop 846 847 EquivalenceClasses<const SCEV *> EqCacheSCEV; 848 EquivalenceClasses<const Value *> EqCacheValue; 849 if (Ops.size() == 2) { 850 // This is the common case, which also happens to be trivially simple. 851 // Special case it. 852 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 853 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 854 std::swap(LHS, RHS); 855 return; 856 } 857 858 // Do the rough sort by complexity. 859 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 860 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 861 0; 862 }); 863 864 // Now that we are sorted by complexity, group elements of the same 865 // complexity. Note that this is, at worst, N^2, but the vector is likely to 866 // be extremely short in practice. Note that we take this approach because we 867 // do not want to depend on the addresses of the objects we are grouping. 868 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 869 const SCEV *S = Ops[i]; 870 unsigned Complexity = S->getSCEVType(); 871 872 // If there are any objects of the same complexity and same value as this 873 // one, group them. 874 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 875 if (Ops[j] == S) { // Found a duplicate. 876 // Move it to immediately after i'th element. 877 std::swap(Ops[i+1], Ops[j]); 878 ++i; // no need to rescan it. 879 if (i == e-2) return; // Done! 880 } 881 } 882 } 883 } 884 885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 886 /// least HugeExprThreshold nodes). 887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 888 return any_of(Ops, [](const SCEV *S) { 889 return S->getExpressionSize() >= HugeExprThreshold; 890 }); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Simple SCEV method implementations 895 //===----------------------------------------------------------------------===// 896 897 /// Compute BC(It, K). The result has width W. Assume, K > 0. 898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 899 ScalarEvolution &SE, 900 Type *ResultTy) { 901 // Handle the simplest case efficiently. 902 if (K == 1) 903 return SE.getTruncateOrZeroExtend(It, ResultTy); 904 905 // We are using the following formula for BC(It, K): 906 // 907 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 908 // 909 // Suppose, W is the bitwidth of the return value. We must be prepared for 910 // overflow. Hence, we must assure that the result of our computation is 911 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 912 // safe in modular arithmetic. 913 // 914 // However, this code doesn't use exactly that formula; the formula it uses 915 // is something like the following, where T is the number of factors of 2 in 916 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 917 // exponentiation: 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 920 // 921 // This formula is trivially equivalent to the previous formula. However, 922 // this formula can be implemented much more efficiently. The trick is that 923 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 924 // arithmetic. To do exact division in modular arithmetic, all we have 925 // to do is multiply by the inverse. Therefore, this step can be done at 926 // width W. 927 // 928 // The next issue is how to safely do the division by 2^T. The way this 929 // is done is by doing the multiplication step at a width of at least W + T 930 // bits. This way, the bottom W+T bits of the product are accurate. Then, 931 // when we perform the division by 2^T (which is equivalent to a right shift 932 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 933 // truncated out after the division by 2^T. 934 // 935 // In comparison to just directly using the first formula, this technique 936 // is much more efficient; using the first formula requires W * K bits, 937 // but this formula less than W + K bits. Also, the first formula requires 938 // a division step, whereas this formula only requires multiplies and shifts. 939 // 940 // It doesn't matter whether the subtraction step is done in the calculation 941 // width or the input iteration count's width; if the subtraction overflows, 942 // the result must be zero anyway. We prefer here to do it in the width of 943 // the induction variable because it helps a lot for certain cases; CodeGen 944 // isn't smart enough to ignore the overflow, which leads to much less 945 // efficient code if the width of the subtraction is wider than the native 946 // register width. 947 // 948 // (It's possible to not widen at all by pulling out factors of 2 before 949 // the multiplication; for example, K=2 can be calculated as 950 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 951 // extra arithmetic, so it's not an obvious win, and it gets 952 // much more complicated for K > 3.) 953 954 // Protection from insane SCEVs; this bound is conservative, 955 // but it probably doesn't matter. 956 if (K > 1000) 957 return SE.getCouldNotCompute(); 958 959 unsigned W = SE.getTypeSizeInBits(ResultTy); 960 961 // Calculate K! / 2^T and T; we divide out the factors of two before 962 // multiplying for calculating K! / 2^T to avoid overflow. 963 // Other overflow doesn't matter because we only care about the bottom 964 // W bits of the result. 965 APInt OddFactorial(W, 1); 966 unsigned T = 1; 967 for (unsigned i = 3; i <= K; ++i) { 968 APInt Mult(W, i); 969 unsigned TwoFactors = Mult.countTrailingZeros(); 970 T += TwoFactors; 971 Mult.lshrInPlace(TwoFactors); 972 OddFactorial *= Mult; 973 } 974 975 // We need at least W + T bits for the multiplication step 976 unsigned CalculationBits = W + T; 977 978 // Calculate 2^T, at width T+W. 979 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 980 981 // Calculate the multiplicative inverse of K! / 2^T; 982 // this multiplication factor will perform the exact division by 983 // K! / 2^T. 984 APInt Mod = APInt::getSignedMinValue(W+1); 985 APInt MultiplyFactor = OddFactorial.zext(W+1); 986 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 987 MultiplyFactor = MultiplyFactor.trunc(W); 988 989 // Calculate the product, at width T+W 990 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 991 CalculationBits); 992 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 993 for (unsigned i = 1; i != K; ++i) { 994 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 995 Dividend = SE.getMulExpr(Dividend, 996 SE.getTruncateOrZeroExtend(S, CalculationTy)); 997 } 998 999 // Divide by 2^T 1000 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1001 1002 // Truncate the result, and divide by K! / 2^T. 1003 1004 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1005 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1006 } 1007 1008 /// Return the value of this chain of recurrences at the specified iteration 1009 /// number. We can evaluate this recurrence by multiplying each element in the 1010 /// chain by the binomial coefficient corresponding to it. In other words, we 1011 /// can evaluate {A,+,B,+,C,+,D} as: 1012 /// 1013 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1014 /// 1015 /// where BC(It, k) stands for binomial coefficient. 1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1017 ScalarEvolution &SE) const { 1018 const SCEV *Result = getStart(); 1019 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1020 // The computation is correct in the face of overflow provided that the 1021 // multiplication is performed _after_ the evaluation of the binomial 1022 // coefficient. 1023 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1024 if (isa<SCEVCouldNotCompute>(Coeff)) 1025 return Coeff; 1026 1027 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1028 } 1029 return Result; 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // SCEV Expression folder implementations 1034 //===----------------------------------------------------------------------===// 1035 1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty, 1037 unsigned Depth) { 1038 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1039 assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once."); 1040 1041 // We could be called with an integer-typed operands during SCEV rewrites. 1042 // Since the operand is an integer already, just perform zext/trunc/self cast. 1043 if (!Op->getType()->isPointerTy()) 1044 return getTruncateOrZeroExtend(Op, Ty); 1045 1046 // What would be an ID for such a SCEV cast expression? 1047 FoldingSetNodeID ID; 1048 ID.AddInteger(scPtrToInt); 1049 ID.AddPointer(Op); 1050 1051 void *IP = nullptr; 1052 1053 // Is there already an expression for such a cast? 1054 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1055 return getTruncateOrZeroExtend(S, Ty); 1056 1057 // If not, is this expression something we can't reduce any further? 1058 if (isa<SCEVUnknown>(Op)) { 1059 // Create an explicit cast node. 1060 // We can reuse the existing insert position since if we get here, 1061 // we won't have made any changes which would invalidate it. 1062 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1063 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType( 1064 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) && 1065 "We can only model ptrtoint if SCEV's effective (integer) type is " 1066 "sufficiently wide to represent all possible pointer values."); 1067 SCEV *S = new (SCEVAllocator) 1068 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1069 UniqueSCEVs.InsertNode(S, IP); 1070 addToLoopUseLists(S); 1071 return getTruncateOrZeroExtend(S, Ty); 1072 } 1073 1074 assert(Depth == 0 && 1075 "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's."); 1076 1077 // Otherwise, we've got some expression that is more complex than just a 1078 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1079 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1080 // only, and the expressions must otherwise be integer-typed. 1081 // So sink the cast down to the SCEVUnknown's. 1082 1083 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1084 /// which computes a pointer-typed value, and rewrites the whole expression 1085 /// tree so that *all* the computations are done on integers, and the only 1086 /// pointer-typed operands in the expression are SCEVUnknown. 1087 class SCEVPtrToIntSinkingRewriter 1088 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1089 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1090 1091 public: 1092 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1093 1094 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1095 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1096 return Rewriter.visit(Scev); 1097 } 1098 1099 const SCEV *visit(const SCEV *S) { 1100 Type *STy = S->getType(); 1101 // If the expression is not pointer-typed, just keep it as-is. 1102 if (!STy->isPointerTy()) 1103 return S; 1104 // Else, recursively sink the cast down into it. 1105 return Base::visit(S); 1106 } 1107 1108 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1109 SmallVector<const SCEV *, 2> Operands; 1110 bool Changed = false; 1111 for (auto *Op : Expr->operands()) { 1112 Operands.push_back(visit(Op)); 1113 Changed |= Op != Operands.back(); 1114 } 1115 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1116 } 1117 1118 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1119 SmallVector<const SCEV *, 2> Operands; 1120 bool Changed = false; 1121 for (auto *Op : Expr->operands()) { 1122 Operands.push_back(visit(Op)); 1123 Changed |= Op != Operands.back(); 1124 } 1125 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1126 } 1127 1128 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1129 Type *ExprPtrTy = Expr->getType(); 1130 assert(ExprPtrTy->isPointerTy() && 1131 "Should only reach pointer-typed SCEVUnknown's."); 1132 Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy); 1133 return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1); 1134 } 1135 }; 1136 1137 // And actually perform the cast sinking. 1138 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1139 assert(IntOp->getType()->isIntegerTy() && 1140 "We must have succeeded in sinking the cast, " 1141 "and ending up with an integer-typed expression!"); 1142 return getTruncateOrZeroExtend(IntOp, Ty); 1143 } 1144 1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1146 unsigned Depth) { 1147 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1148 "This is not a truncating conversion!"); 1149 assert(isSCEVable(Ty) && 1150 "This is not a conversion to a SCEVable type!"); 1151 Ty = getEffectiveSCEVType(Ty); 1152 1153 FoldingSetNodeID ID; 1154 ID.AddInteger(scTruncate); 1155 ID.AddPointer(Op); 1156 ID.AddPointer(Ty); 1157 void *IP = nullptr; 1158 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1159 1160 // Fold if the operand is constant. 1161 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1162 return getConstant( 1163 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1164 1165 // trunc(trunc(x)) --> trunc(x) 1166 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1167 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1168 1169 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1171 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1172 1173 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1175 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1176 1177 if (Depth > MaxCastDepth) { 1178 SCEV *S = 1179 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1180 UniqueSCEVs.InsertNode(S, IP); 1181 addToLoopUseLists(S); 1182 return S; 1183 } 1184 1185 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1186 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1187 // if after transforming we have at most one truncate, not counting truncates 1188 // that replace other casts. 1189 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1190 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1191 SmallVector<const SCEV *, 4> Operands; 1192 unsigned numTruncs = 0; 1193 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1194 ++i) { 1195 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1196 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1197 isa<SCEVTruncateExpr>(S)) 1198 numTruncs++; 1199 Operands.push_back(S); 1200 } 1201 if (numTruncs < 2) { 1202 if (isa<SCEVAddExpr>(Op)) 1203 return getAddExpr(Operands); 1204 else if (isa<SCEVMulExpr>(Op)) 1205 return getMulExpr(Operands); 1206 else 1207 llvm_unreachable("Unexpected SCEV type for Op."); 1208 } 1209 // Although we checked in the beginning that ID is not in the cache, it is 1210 // possible that during recursion and different modification ID was inserted 1211 // into the cache. So if we find it, just return it. 1212 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1213 return S; 1214 } 1215 1216 // If the input value is a chrec scev, truncate the chrec's operands. 1217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1218 SmallVector<const SCEV *, 4> Operands; 1219 for (const SCEV *Op : AddRec->operands()) 1220 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1221 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1222 } 1223 1224 // The cast wasn't folded; create an explicit cast node. We can reuse 1225 // the existing insert position since if we get here, we won't have 1226 // made any changes which would invalidate it. 1227 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1228 Op, Ty); 1229 UniqueSCEVs.InsertNode(S, IP); 1230 addToLoopUseLists(S); 1231 return S; 1232 } 1233 1234 // Get the limit of a recurrence such that incrementing by Step cannot cause 1235 // signed overflow as long as the value of the recurrence within the 1236 // loop does not exceed this limit before incrementing. 1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1238 ICmpInst::Predicate *Pred, 1239 ScalarEvolution *SE) { 1240 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1241 if (SE->isKnownPositive(Step)) { 1242 *Pred = ICmpInst::ICMP_SLT; 1243 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1244 SE->getSignedRangeMax(Step)); 1245 } 1246 if (SE->isKnownNegative(Step)) { 1247 *Pred = ICmpInst::ICMP_SGT; 1248 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1249 SE->getSignedRangeMin(Step)); 1250 } 1251 return nullptr; 1252 } 1253 1254 // Get the limit of a recurrence such that incrementing by Step cannot cause 1255 // unsigned overflow as long as the value of the recurrence within the loop does 1256 // not exceed this limit before incrementing. 1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1258 ICmpInst::Predicate *Pred, 1259 ScalarEvolution *SE) { 1260 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1261 *Pred = ICmpInst::ICMP_ULT; 1262 1263 return SE->getConstant(APInt::getMinValue(BitWidth) - 1264 SE->getUnsignedRangeMax(Step)); 1265 } 1266 1267 namespace { 1268 1269 struct ExtendOpTraitsBase { 1270 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1271 unsigned); 1272 }; 1273 1274 // Used to make code generic over signed and unsigned overflow. 1275 template <typename ExtendOp> struct ExtendOpTraits { 1276 // Members present: 1277 // 1278 // static const SCEV::NoWrapFlags WrapType; 1279 // 1280 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1281 // 1282 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1283 // ICmpInst::Predicate *Pred, 1284 // ScalarEvolution *SE); 1285 }; 1286 1287 template <> 1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1289 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1290 1291 static const GetExtendExprTy GetExtendExpr; 1292 1293 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 return getSignedOverflowLimitForStep(Step, Pred, SE); 1297 } 1298 }; 1299 1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1301 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1302 1303 template <> 1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1305 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1306 1307 static const GetExtendExprTy GetExtendExpr; 1308 1309 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1310 ICmpInst::Predicate *Pred, 1311 ScalarEvolution *SE) { 1312 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1313 } 1314 }; 1315 1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1317 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1318 1319 } // end anonymous namespace 1320 1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1326 // expression "Step + sext/zext(PreIncAR)" is congruent with 1327 // "sext/zext(PostIncAR)" 1328 template <typename ExtendOpTy> 1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1330 ScalarEvolution *SE, unsigned Depth) { 1331 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1332 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1333 1334 const Loop *L = AR->getLoop(); 1335 const SCEV *Start = AR->getStart(); 1336 const SCEV *Step = AR->getStepRecurrence(*SE); 1337 1338 // Check for a simple looking step prior to loop entry. 1339 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1340 if (!SA) 1341 return nullptr; 1342 1343 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1344 // subtraction is expensive. For this purpose, perform a quick and dirty 1345 // difference, by checking for Step in the operand list. 1346 SmallVector<const SCEV *, 4> DiffOps; 1347 for (const SCEV *Op : SA->operands()) 1348 if (Op != Step) 1349 DiffOps.push_back(Op); 1350 1351 if (DiffOps.size() == SA->getNumOperands()) 1352 return nullptr; 1353 1354 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1355 // `Step`: 1356 1357 // 1. NSW/NUW flags on the step increment. 1358 auto PreStartFlags = 1359 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1360 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1361 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1362 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1363 1364 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1365 // "S+X does not sign/unsign-overflow". 1366 // 1367 1368 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1369 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1370 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1371 return PreStart; 1372 1373 // 2. Direct overflow check on the step operation's expression. 1374 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1375 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1376 const SCEV *OperandExtendedStart = 1377 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1378 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1379 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1380 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1381 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1382 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1383 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1384 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1385 } 1386 return PreStart; 1387 } 1388 1389 // 3. Loop precondition. 1390 ICmpInst::Predicate Pred; 1391 const SCEV *OverflowLimit = 1392 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1393 1394 if (OverflowLimit && 1395 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1396 return PreStart; 1397 1398 return nullptr; 1399 } 1400 1401 // Get the normalized zero or sign extended expression for this AddRec's Start. 1402 template <typename ExtendOpTy> 1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1404 ScalarEvolution *SE, 1405 unsigned Depth) { 1406 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1407 1408 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1409 if (!PreStart) 1410 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1411 1412 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1413 Depth), 1414 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1415 } 1416 1417 // Try to prove away overflow by looking at "nearby" add recurrences. A 1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1420 // 1421 // Formally: 1422 // 1423 // {S,+,X} == {S-T,+,X} + T 1424 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1425 // 1426 // If ({S-T,+,X} + T) does not overflow ... (1) 1427 // 1428 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1429 // 1430 // If {S-T,+,X} does not overflow ... (2) 1431 // 1432 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1433 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1434 // 1435 // If (S-T)+T does not overflow ... (3) 1436 // 1437 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1438 // == {Ext(S),+,Ext(X)} == LHS 1439 // 1440 // Thus, if (1), (2) and (3) are true for some T, then 1441 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1442 // 1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1444 // does not overflow" restricted to the 0th iteration. Therefore we only need 1445 // to check for (1) and (2). 1446 // 1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1448 // is `Delta` (defined below). 1449 template <typename ExtendOpTy> 1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1451 const SCEV *Step, 1452 const Loop *L) { 1453 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1454 1455 // We restrict `Start` to a constant to prevent SCEV from spending too much 1456 // time here. It is correct (but more expensive) to continue with a 1457 // non-constant `Start` and do a general SCEV subtraction to compute 1458 // `PreStart` below. 1459 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1460 if (!StartC) 1461 return false; 1462 1463 APInt StartAI = StartC->getAPInt(); 1464 1465 for (unsigned Delta : {-2, -1, 1, 2}) { 1466 const SCEV *PreStart = getConstant(StartAI - Delta); 1467 1468 FoldingSetNodeID ID; 1469 ID.AddInteger(scAddRecExpr); 1470 ID.AddPointer(PreStart); 1471 ID.AddPointer(Step); 1472 ID.AddPointer(L); 1473 void *IP = nullptr; 1474 const auto *PreAR = 1475 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1476 1477 // Give up if we don't already have the add recurrence we need because 1478 // actually constructing an add recurrence is relatively expensive. 1479 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1480 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1481 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1482 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1483 DeltaS, &Pred, this); 1484 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1485 return true; 1486 } 1487 } 1488 1489 return false; 1490 } 1491 1492 // Finds an integer D for an expression (C + x + y + ...) such that the top 1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1496 // the (C + x + y + ...) expression is \p WholeAddExpr. 1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1498 const SCEVConstant *ConstantTerm, 1499 const SCEVAddExpr *WholeAddExpr) { 1500 const APInt &C = ConstantTerm->getAPInt(); 1501 const unsigned BitWidth = C.getBitWidth(); 1502 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1503 uint32_t TZ = BitWidth; 1504 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1505 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1506 if (TZ) { 1507 // Set D to be as many least significant bits of C as possible while still 1508 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1509 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1510 } 1511 return APInt(BitWidth, 0); 1512 } 1513 1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1519 const APInt &ConstantStart, 1520 const SCEV *Step) { 1521 const unsigned BitWidth = ConstantStart.getBitWidth(); 1522 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1523 if (TZ) 1524 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1525 : ConstantStart; 1526 return APInt(BitWidth, 0); 1527 } 1528 1529 const SCEV * 1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1531 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1532 "This is not an extending conversion!"); 1533 assert(isSCEVable(Ty) && 1534 "This is not a conversion to a SCEVable type!"); 1535 Ty = getEffectiveSCEVType(Ty); 1536 1537 // Fold if the operand is constant. 1538 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1539 return getConstant( 1540 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1541 1542 // zext(zext(x)) --> zext(x) 1543 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1544 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1545 1546 // Before doing any expensive analysis, check to see if we've already 1547 // computed a SCEV for this Op and Ty. 1548 FoldingSetNodeID ID; 1549 ID.AddInteger(scZeroExtend); 1550 ID.AddPointer(Op); 1551 ID.AddPointer(Ty); 1552 void *IP = nullptr; 1553 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1554 if (Depth > MaxCastDepth) { 1555 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1556 Op, Ty); 1557 UniqueSCEVs.InsertNode(S, IP); 1558 addToLoopUseLists(S); 1559 return S; 1560 } 1561 1562 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1563 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1564 // It's possible the bits taken off by the truncate were all zero bits. If 1565 // so, we should be able to simplify this further. 1566 const SCEV *X = ST->getOperand(); 1567 ConstantRange CR = getUnsignedRange(X); 1568 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1569 unsigned NewBits = getTypeSizeInBits(Ty); 1570 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1571 CR.zextOrTrunc(NewBits))) 1572 return getTruncateOrZeroExtend(X, Ty, Depth); 1573 } 1574 1575 // If the input value is a chrec scev, and we can prove that the value 1576 // did not overflow the old, smaller, value, we can zero extend all of the 1577 // operands (often constants). This allows analysis of something like 1578 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1579 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1580 if (AR->isAffine()) { 1581 const SCEV *Start = AR->getStart(); 1582 const SCEV *Step = AR->getStepRecurrence(*this); 1583 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1584 const Loop *L = AR->getLoop(); 1585 1586 if (!AR->hasNoUnsignedWrap()) { 1587 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1588 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1589 } 1590 1591 // If we have special knowledge that this addrec won't overflow, 1592 // we don't need to do any further analysis. 1593 if (AR->hasNoUnsignedWrap()) 1594 return getAddRecExpr( 1595 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1596 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1597 1598 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1599 // Note that this serves two purposes: It filters out loops that are 1600 // simply not analyzable, and it covers the case where this code is 1601 // being called from within backedge-taken count analysis, such that 1602 // attempting to ask for the backedge-taken count would likely result 1603 // in infinite recursion. In the later case, the analysis code will 1604 // cope with a conservative value, and it will take care to purge 1605 // that value once it has finished. 1606 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1607 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1608 // Manually compute the final value for AR, checking for overflow. 1609 1610 // Check whether the backedge-taken count can be losslessly casted to 1611 // the addrec's type. The count is always unsigned. 1612 const SCEV *CastedMaxBECount = 1613 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1614 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1615 CastedMaxBECount, MaxBECount->getType(), Depth); 1616 if (MaxBECount == RecastedMaxBECount) { 1617 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1618 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1619 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1620 SCEV::FlagAnyWrap, Depth + 1); 1621 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1622 SCEV::FlagAnyWrap, 1623 Depth + 1), 1624 WideTy, Depth + 1); 1625 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1626 const SCEV *WideMaxBECount = 1627 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1628 const SCEV *OperandExtendedAdd = 1629 getAddExpr(WideStart, 1630 getMulExpr(WideMaxBECount, 1631 getZeroExtendExpr(Step, WideTy, Depth + 1), 1632 SCEV::FlagAnyWrap, Depth + 1), 1633 SCEV::FlagAnyWrap, Depth + 1); 1634 if (ZAdd == OperandExtendedAdd) { 1635 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1637 // Return the expression with the addrec on the outside. 1638 return getAddRecExpr( 1639 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1640 Depth + 1), 1641 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1642 AR->getNoWrapFlags()); 1643 } 1644 // Similar to above, only this time treat the step value as signed. 1645 // This covers loops that count down. 1646 OperandExtendedAdd = 1647 getAddExpr(WideStart, 1648 getMulExpr(WideMaxBECount, 1649 getSignExtendExpr(Step, WideTy, Depth + 1), 1650 SCEV::FlagAnyWrap, Depth + 1), 1651 SCEV::FlagAnyWrap, Depth + 1); 1652 if (ZAdd == OperandExtendedAdd) { 1653 // Cache knowledge of AR NW, which is propagated to this AddRec. 1654 // Negative step causes unsigned wrap, but it still can't self-wrap. 1655 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1656 // Return the expression with the addrec on the outside. 1657 return getAddRecExpr( 1658 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1659 Depth + 1), 1660 getSignExtendExpr(Step, Ty, Depth + 1), L, 1661 AR->getNoWrapFlags()); 1662 } 1663 } 1664 } 1665 1666 // Normally, in the cases we can prove no-overflow via a 1667 // backedge guarding condition, we can also compute a backedge 1668 // taken count for the loop. The exceptions are assumptions and 1669 // guards present in the loop -- SCEV is not great at exploiting 1670 // these to compute max backedge taken counts, but can still use 1671 // these to prove lack of overflow. Use this fact to avoid 1672 // doing extra work that may not pay off. 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1674 !AC.assumptions().empty()) { 1675 1676 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1677 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1678 if (AR->hasNoUnsignedWrap()) { 1679 // Same as nuw case above - duplicated here to avoid a compile time 1680 // issue. It's not clear that the order of checks does matter, but 1681 // it's one of two issue possible causes for a change which was 1682 // reverted. Be conservative for the moment. 1683 return getAddRecExpr( 1684 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1685 Depth + 1), 1686 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1687 AR->getNoWrapFlags()); 1688 } 1689 1690 // For a negative step, we can extend the operands iff doing so only 1691 // traverses values in the range zext([0,UINT_MAX]). 1692 if (isKnownNegative(Step)) { 1693 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1694 getSignedRangeMin(Step)); 1695 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1696 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1697 // Cache knowledge of AR NW, which is propagated to this 1698 // AddRec. Negative step causes unsigned wrap, but it 1699 // still can't self-wrap. 1700 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1701 // Return the expression with the addrec on the outside. 1702 return getAddRecExpr( 1703 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1704 Depth + 1), 1705 getSignExtendExpr(Step, Ty, Depth + 1), L, 1706 AR->getNoWrapFlags()); 1707 } 1708 } 1709 } 1710 1711 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1712 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1713 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1714 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1715 const APInt &C = SC->getAPInt(); 1716 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1717 if (D != 0) { 1718 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1719 const SCEV *SResidual = 1720 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1721 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1722 return getAddExpr(SZExtD, SZExtR, 1723 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1724 Depth + 1); 1725 } 1726 } 1727 1728 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1729 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 1736 // zext(A % B) --> zext(A) % zext(B) 1737 { 1738 const SCEV *LHS; 1739 const SCEV *RHS; 1740 if (matchURem(Op, LHS, RHS)) 1741 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1742 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1743 } 1744 1745 // zext(A / B) --> zext(A) / zext(B). 1746 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1747 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1748 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1749 1750 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1751 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1752 if (SA->hasNoUnsignedWrap()) { 1753 // If the addition does not unsign overflow then we can, by definition, 1754 // commute the zero extension with the addition operation. 1755 SmallVector<const SCEV *, 4> Ops; 1756 for (const auto *Op : SA->operands()) 1757 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1758 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1759 } 1760 1761 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1762 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1763 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1764 // 1765 // Often address arithmetics contain expressions like 1766 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1767 // This transformation is useful while proving that such expressions are 1768 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1769 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1770 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1771 if (D != 0) { 1772 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1773 const SCEV *SResidual = 1774 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1775 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1776 return getAddExpr(SZExtD, SZExtR, 1777 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1778 Depth + 1); 1779 } 1780 } 1781 } 1782 1783 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1784 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1785 if (SM->hasNoUnsignedWrap()) { 1786 // If the multiply does not unsign overflow then we can, by definition, 1787 // commute the zero extension with the multiply operation. 1788 SmallVector<const SCEV *, 4> Ops; 1789 for (const auto *Op : SM->operands()) 1790 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1791 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1792 } 1793 1794 // zext(2^K * (trunc X to iN)) to iM -> 1795 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1796 // 1797 // Proof: 1798 // 1799 // zext(2^K * (trunc X to iN)) to iM 1800 // = zext((trunc X to iN) << K) to iM 1801 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1802 // (because shl removes the top K bits) 1803 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1804 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1805 // 1806 if (SM->getNumOperands() == 2) 1807 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1808 if (MulLHS->getAPInt().isPowerOf2()) 1809 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1810 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1811 MulLHS->getAPInt().logBase2(); 1812 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1813 return getMulExpr( 1814 getZeroExtendExpr(MulLHS, Ty), 1815 getZeroExtendExpr( 1816 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1817 SCEV::FlagNUW, Depth + 1); 1818 } 1819 } 1820 1821 // The cast wasn't folded; create an explicit cast node. 1822 // Recompute the insert position, as it may have been invalidated. 1823 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1824 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1825 Op, Ty); 1826 UniqueSCEVs.InsertNode(S, IP); 1827 addToLoopUseLists(S); 1828 return S; 1829 } 1830 1831 const SCEV * 1832 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1833 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1834 "This is not an extending conversion!"); 1835 assert(isSCEVable(Ty) && 1836 "This is not a conversion to a SCEVable type!"); 1837 Ty = getEffectiveSCEVType(Ty); 1838 1839 // Fold if the operand is constant. 1840 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1841 return getConstant( 1842 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1843 1844 // sext(sext(x)) --> sext(x) 1845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1846 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1847 1848 // sext(zext(x)) --> zext(x) 1849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1850 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1851 1852 // Before doing any expensive analysis, check to see if we've already 1853 // computed a SCEV for this Op and Ty. 1854 FoldingSetNodeID ID; 1855 ID.AddInteger(scSignExtend); 1856 ID.AddPointer(Op); 1857 ID.AddPointer(Ty); 1858 void *IP = nullptr; 1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1860 // Limit recursion depth. 1861 if (Depth > MaxCastDepth) { 1862 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1863 Op, Ty); 1864 UniqueSCEVs.InsertNode(S, IP); 1865 addToLoopUseLists(S); 1866 return S; 1867 } 1868 1869 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1870 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1871 // It's possible the bits taken off by the truncate were all sign bits. If 1872 // so, we should be able to simplify this further. 1873 const SCEV *X = ST->getOperand(); 1874 ConstantRange CR = getSignedRange(X); 1875 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1876 unsigned NewBits = getTypeSizeInBits(Ty); 1877 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1878 CR.sextOrTrunc(NewBits))) 1879 return getTruncateOrSignExtend(X, Ty, Depth); 1880 } 1881 1882 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1883 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1884 if (SA->hasNoSignedWrap()) { 1885 // If the addition does not sign overflow then we can, by definition, 1886 // commute the sign extension with the addition operation. 1887 SmallVector<const SCEV *, 4> Ops; 1888 for (const auto *Op : SA->operands()) 1889 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1890 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1891 } 1892 1893 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1894 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1895 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1896 // 1897 // For instance, this will bring two seemingly different expressions: 1898 // 1 + sext(5 + 20 * %x + 24 * %y) and 1899 // sext(6 + 20 * %x + 24 * %y) 1900 // to the same form: 1901 // 2 + sext(4 + 20 * %x + 24 * %y) 1902 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1903 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1904 if (D != 0) { 1905 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1906 const SCEV *SResidual = 1907 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1908 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1909 return getAddExpr(SSExtD, SSExtR, 1910 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1911 Depth + 1); 1912 } 1913 } 1914 } 1915 // If the input value is a chrec scev, and we can prove that the value 1916 // did not overflow the old, smaller, value, we can sign extend all of the 1917 // operands (often constants). This allows analysis of something like 1918 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1919 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1920 if (AR->isAffine()) { 1921 const SCEV *Start = AR->getStart(); 1922 const SCEV *Step = AR->getStepRecurrence(*this); 1923 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1924 const Loop *L = AR->getLoop(); 1925 1926 if (!AR->hasNoSignedWrap()) { 1927 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1928 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1929 } 1930 1931 // If we have special knowledge that this addrec won't overflow, 1932 // we don't need to do any further analysis. 1933 if (AR->hasNoSignedWrap()) 1934 return getAddRecExpr( 1935 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1936 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1937 1938 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1939 // Note that this serves two purposes: It filters out loops that are 1940 // simply not analyzable, and it covers the case where this code is 1941 // being called from within backedge-taken count analysis, such that 1942 // attempting to ask for the backedge-taken count would likely result 1943 // in infinite recursion. In the later case, the analysis code will 1944 // cope with a conservative value, and it will take care to purge 1945 // that value once it has finished. 1946 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1947 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1948 // Manually compute the final value for AR, checking for 1949 // overflow. 1950 1951 // Check whether the backedge-taken count can be losslessly casted to 1952 // the addrec's type. The count is always unsigned. 1953 const SCEV *CastedMaxBECount = 1954 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1955 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1956 CastedMaxBECount, MaxBECount->getType(), Depth); 1957 if (MaxBECount == RecastedMaxBECount) { 1958 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1959 // Check whether Start+Step*MaxBECount has no signed overflow. 1960 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1961 SCEV::FlagAnyWrap, Depth + 1); 1962 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1963 SCEV::FlagAnyWrap, 1964 Depth + 1), 1965 WideTy, Depth + 1); 1966 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1967 const SCEV *WideMaxBECount = 1968 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1969 const SCEV *OperandExtendedAdd = 1970 getAddExpr(WideStart, 1971 getMulExpr(WideMaxBECount, 1972 getSignExtendExpr(Step, WideTy, Depth + 1), 1973 SCEV::FlagAnyWrap, Depth + 1), 1974 SCEV::FlagAnyWrap, Depth + 1); 1975 if (SAdd == OperandExtendedAdd) { 1976 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 1978 // Return the expression with the addrec on the outside. 1979 return getAddRecExpr( 1980 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1981 Depth + 1), 1982 getSignExtendExpr(Step, Ty, Depth + 1), L, 1983 AR->getNoWrapFlags()); 1984 } 1985 // Similar to above, only this time treat the step value as unsigned. 1986 // This covers loops that count up with an unsigned step. 1987 OperandExtendedAdd = 1988 getAddExpr(WideStart, 1989 getMulExpr(WideMaxBECount, 1990 getZeroExtendExpr(Step, WideTy, Depth + 1), 1991 SCEV::FlagAnyWrap, Depth + 1), 1992 SCEV::FlagAnyWrap, Depth + 1); 1993 if (SAdd == OperandExtendedAdd) { 1994 // If AR wraps around then 1995 // 1996 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1997 // => SAdd != OperandExtendedAdd 1998 // 1999 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2000 // (SAdd == OperandExtendedAdd => AR is NW) 2001 2002 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2003 2004 // Return the expression with the addrec on the outside. 2005 return getAddRecExpr( 2006 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2007 Depth + 1), 2008 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2009 AR->getNoWrapFlags()); 2010 } 2011 } 2012 } 2013 2014 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2015 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2016 if (AR->hasNoSignedWrap()) { 2017 // Same as nsw case above - duplicated here to avoid a compile time 2018 // issue. It's not clear that the order of checks does matter, but 2019 // it's one of two issue possible causes for a change which was 2020 // reverted. Be conservative for the moment. 2021 return getAddRecExpr( 2022 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2023 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2024 } 2025 2026 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2027 // if D + (C - D + Step * n) could be proven to not signed wrap 2028 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2029 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2030 const APInt &C = SC->getAPInt(); 2031 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2032 if (D != 0) { 2033 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2034 const SCEV *SResidual = 2035 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2036 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2037 return getAddExpr(SSExtD, SSExtR, 2038 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2039 Depth + 1); 2040 } 2041 } 2042 2043 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 return getAddRecExpr( 2046 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2047 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2048 } 2049 } 2050 2051 // If the input value is provably positive and we could not simplify 2052 // away the sext build a zext instead. 2053 if (isKnownNonNegative(Op)) 2054 return getZeroExtendExpr(Op, Ty, Depth + 1); 2055 2056 // The cast wasn't folded; create an explicit cast node. 2057 // Recompute the insert position, as it may have been invalidated. 2058 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2059 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2060 Op, Ty); 2061 UniqueSCEVs.InsertNode(S, IP); 2062 addToLoopUseLists(S); 2063 return S; 2064 } 2065 2066 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2067 /// unspecified bits out to the given type. 2068 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2069 Type *Ty) { 2070 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2071 "This is not an extending conversion!"); 2072 assert(isSCEVable(Ty) && 2073 "This is not a conversion to a SCEVable type!"); 2074 Ty = getEffectiveSCEVType(Ty); 2075 2076 // Sign-extend negative constants. 2077 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2078 if (SC->getAPInt().isNegative()) 2079 return getSignExtendExpr(Op, Ty); 2080 2081 // Peel off a truncate cast. 2082 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2083 const SCEV *NewOp = T->getOperand(); 2084 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2085 return getAnyExtendExpr(NewOp, Ty); 2086 return getTruncateOrNoop(NewOp, Ty); 2087 } 2088 2089 // Next try a zext cast. If the cast is folded, use it. 2090 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2091 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2092 return ZExt; 2093 2094 // Next try a sext cast. If the cast is folded, use it. 2095 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2096 if (!isa<SCEVSignExtendExpr>(SExt)) 2097 return SExt; 2098 2099 // Force the cast to be folded into the operands of an addrec. 2100 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2101 SmallVector<const SCEV *, 4> Ops; 2102 for (const SCEV *Op : AR->operands()) 2103 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2104 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2105 } 2106 2107 // If the expression is obviously signed, use the sext cast value. 2108 if (isa<SCEVSMaxExpr>(Op)) 2109 return SExt; 2110 2111 // Absent any other information, use the zext cast value. 2112 return ZExt; 2113 } 2114 2115 /// Process the given Ops list, which is a list of operands to be added under 2116 /// the given scale, update the given map. This is a helper function for 2117 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2118 /// that would form an add expression like this: 2119 /// 2120 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2121 /// 2122 /// where A and B are constants, update the map with these values: 2123 /// 2124 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2125 /// 2126 /// and add 13 + A*B*29 to AccumulatedConstant. 2127 /// This will allow getAddRecExpr to produce this: 2128 /// 2129 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2130 /// 2131 /// This form often exposes folding opportunities that are hidden in 2132 /// the original operand list. 2133 /// 2134 /// Return true iff it appears that any interesting folding opportunities 2135 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2136 /// the common case where no interesting opportunities are present, and 2137 /// is also used as a check to avoid infinite recursion. 2138 static bool 2139 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2140 SmallVectorImpl<const SCEV *> &NewOps, 2141 APInt &AccumulatedConstant, 2142 const SCEV *const *Ops, size_t NumOperands, 2143 const APInt &Scale, 2144 ScalarEvolution &SE) { 2145 bool Interesting = false; 2146 2147 // Iterate over the add operands. They are sorted, with constants first. 2148 unsigned i = 0; 2149 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2150 ++i; 2151 // Pull a buried constant out to the outside. 2152 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2153 Interesting = true; 2154 AccumulatedConstant += Scale * C->getAPInt(); 2155 } 2156 2157 // Next comes everything else. We're especially interested in multiplies 2158 // here, but they're in the middle, so just visit the rest with one loop. 2159 for (; i != NumOperands; ++i) { 2160 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2161 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2162 APInt NewScale = 2163 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2164 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2165 // A multiplication of a constant with another add; recurse. 2166 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2167 Interesting |= 2168 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2169 Add->op_begin(), Add->getNumOperands(), 2170 NewScale, SE); 2171 } else { 2172 // A multiplication of a constant with some other value. Update 2173 // the map. 2174 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2175 const SCEV *Key = SE.getMulExpr(MulOps); 2176 auto Pair = M.insert({Key, NewScale}); 2177 if (Pair.second) { 2178 NewOps.push_back(Pair.first->first); 2179 } else { 2180 Pair.first->second += NewScale; 2181 // The map already had an entry for this value, which may indicate 2182 // a folding opportunity. 2183 Interesting = true; 2184 } 2185 } 2186 } else { 2187 // An ordinary operand. Update the map. 2188 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2189 M.insert({Ops[i], Scale}); 2190 if (Pair.second) { 2191 NewOps.push_back(Pair.first->first); 2192 } else { 2193 Pair.first->second += Scale; 2194 // The map already had an entry for this value, which may indicate 2195 // a folding opportunity. 2196 Interesting = true; 2197 } 2198 } 2199 } 2200 2201 return Interesting; 2202 } 2203 2204 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2205 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2206 // can't-overflow flags for the operation if possible. 2207 static SCEV::NoWrapFlags 2208 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2209 const ArrayRef<const SCEV *> Ops, 2210 SCEV::NoWrapFlags Flags) { 2211 using namespace std::placeholders; 2212 2213 using OBO = OverflowingBinaryOperator; 2214 2215 bool CanAnalyze = 2216 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2217 (void)CanAnalyze; 2218 assert(CanAnalyze && "don't call from other places!"); 2219 2220 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2221 SCEV::NoWrapFlags SignOrUnsignWrap = 2222 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2223 2224 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2225 auto IsKnownNonNegative = [&](const SCEV *S) { 2226 return SE->isKnownNonNegative(S); 2227 }; 2228 2229 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2230 Flags = 2231 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2232 2233 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2234 2235 if (SignOrUnsignWrap != SignOrUnsignMask && 2236 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2237 isa<SCEVConstant>(Ops[0])) { 2238 2239 auto Opcode = [&] { 2240 switch (Type) { 2241 case scAddExpr: 2242 return Instruction::Add; 2243 case scMulExpr: 2244 return Instruction::Mul; 2245 default: 2246 llvm_unreachable("Unexpected SCEV op."); 2247 } 2248 }(); 2249 2250 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2251 2252 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2253 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2254 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2255 Opcode, C, OBO::NoSignedWrap); 2256 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2257 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2258 } 2259 2260 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2261 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2262 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2263 Opcode, C, OBO::NoUnsignedWrap); 2264 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2265 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2266 } 2267 } 2268 2269 return Flags; 2270 } 2271 2272 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2273 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2274 } 2275 2276 /// Get a canonical add expression, or something simpler if possible. 2277 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2278 SCEV::NoWrapFlags OrigFlags, 2279 unsigned Depth) { 2280 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2281 "only nuw or nsw allowed"); 2282 assert(!Ops.empty() && "Cannot get empty add!"); 2283 if (Ops.size() == 1) return Ops[0]; 2284 #ifndef NDEBUG 2285 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2286 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2287 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2288 "SCEVAddExpr operand types don't match!"); 2289 #endif 2290 2291 // Sort by complexity, this groups all similar expression types together. 2292 GroupByComplexity(Ops, &LI, DT); 2293 2294 // If there are any constants, fold them together. 2295 unsigned Idx = 0; 2296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2297 ++Idx; 2298 assert(Idx < Ops.size()); 2299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2300 // We found two constants, fold them together! 2301 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2302 if (Ops.size() == 2) return Ops[0]; 2303 Ops.erase(Ops.begin()+1); // Erase the folded element 2304 LHSC = cast<SCEVConstant>(Ops[0]); 2305 } 2306 2307 // If we are left with a constant zero being added, strip it off. 2308 if (LHSC->getValue()->isZero()) { 2309 Ops.erase(Ops.begin()); 2310 --Idx; 2311 } 2312 2313 if (Ops.size() == 1) return Ops[0]; 2314 } 2315 2316 // Delay expensive flag strengthening until necessary. 2317 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2318 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2319 }; 2320 2321 // Limit recursion calls depth. 2322 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2323 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2324 2325 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2326 // Don't strengthen flags if we have no new information. 2327 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2328 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2329 Add->setNoWrapFlags(ComputeFlags(Ops)); 2330 return S; 2331 } 2332 2333 // Okay, check to see if the same value occurs in the operand list more than 2334 // once. If so, merge them together into an multiply expression. Since we 2335 // sorted the list, these values are required to be adjacent. 2336 Type *Ty = Ops[0]->getType(); 2337 bool FoundMatch = false; 2338 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2339 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2340 // Scan ahead to count how many equal operands there are. 2341 unsigned Count = 2; 2342 while (i+Count != e && Ops[i+Count] == Ops[i]) 2343 ++Count; 2344 // Merge the values into a multiply. 2345 const SCEV *Scale = getConstant(Ty, Count); 2346 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2347 if (Ops.size() == Count) 2348 return Mul; 2349 Ops[i] = Mul; 2350 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2351 --i; e -= Count - 1; 2352 FoundMatch = true; 2353 } 2354 if (FoundMatch) 2355 return getAddExpr(Ops, OrigFlags, Depth + 1); 2356 2357 // Check for truncates. If all the operands are truncated from the same 2358 // type, see if factoring out the truncate would permit the result to be 2359 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2360 // if the contents of the resulting outer trunc fold to something simple. 2361 auto FindTruncSrcType = [&]() -> Type * { 2362 // We're ultimately looking to fold an addrec of truncs and muls of only 2363 // constants and truncs, so if we find any other types of SCEV 2364 // as operands of the addrec then we bail and return nullptr here. 2365 // Otherwise, we return the type of the operand of a trunc that we find. 2366 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2367 return T->getOperand()->getType(); 2368 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2369 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2370 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2371 return T->getOperand()->getType(); 2372 } 2373 return nullptr; 2374 }; 2375 if (auto *SrcType = FindTruncSrcType()) { 2376 SmallVector<const SCEV *, 8> LargeOps; 2377 bool Ok = true; 2378 // Check all the operands to see if they can be represented in the 2379 // source type of the truncate. 2380 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2381 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2382 if (T->getOperand()->getType() != SrcType) { 2383 Ok = false; 2384 break; 2385 } 2386 LargeOps.push_back(T->getOperand()); 2387 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2388 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2389 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2390 SmallVector<const SCEV *, 8> LargeMulOps; 2391 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2392 if (const SCEVTruncateExpr *T = 2393 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2394 if (T->getOperand()->getType() != SrcType) { 2395 Ok = false; 2396 break; 2397 } 2398 LargeMulOps.push_back(T->getOperand()); 2399 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2400 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2401 } else { 2402 Ok = false; 2403 break; 2404 } 2405 } 2406 if (Ok) 2407 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2408 } else { 2409 Ok = false; 2410 break; 2411 } 2412 } 2413 if (Ok) { 2414 // Evaluate the expression in the larger type. 2415 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2416 // If it folds to something simple, use it. Otherwise, don't. 2417 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2418 return getTruncateExpr(Fold, Ty); 2419 } 2420 } 2421 2422 // Skip past any other cast SCEVs. 2423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2424 ++Idx; 2425 2426 // If there are add operands they would be next. 2427 if (Idx < Ops.size()) { 2428 bool DeletedAdd = false; 2429 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2430 if (Ops.size() > AddOpsInlineThreshold || 2431 Add->getNumOperands() > AddOpsInlineThreshold) 2432 break; 2433 // If we have an add, expand the add operands onto the end of the operands 2434 // list. 2435 Ops.erase(Ops.begin()+Idx); 2436 Ops.append(Add->op_begin(), Add->op_end()); 2437 DeletedAdd = true; 2438 } 2439 2440 // If we deleted at least one add, we added operands to the end of the list, 2441 // and they are not necessarily sorted. Recurse to resort and resimplify 2442 // any operands we just acquired. 2443 if (DeletedAdd) 2444 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2445 } 2446 2447 // Skip over the add expression until we get to a multiply. 2448 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2449 ++Idx; 2450 2451 // Check to see if there are any folding opportunities present with 2452 // operands multiplied by constant values. 2453 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2454 uint64_t BitWidth = getTypeSizeInBits(Ty); 2455 DenseMap<const SCEV *, APInt> M; 2456 SmallVector<const SCEV *, 8> NewOps; 2457 APInt AccumulatedConstant(BitWidth, 0); 2458 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2459 Ops.data(), Ops.size(), 2460 APInt(BitWidth, 1), *this)) { 2461 struct APIntCompare { 2462 bool operator()(const APInt &LHS, const APInt &RHS) const { 2463 return LHS.ult(RHS); 2464 } 2465 }; 2466 2467 // Some interesting folding opportunity is present, so its worthwhile to 2468 // re-generate the operands list. Group the operands by constant scale, 2469 // to avoid multiplying by the same constant scale multiple times. 2470 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2471 for (const SCEV *NewOp : NewOps) 2472 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2473 // Re-generate the operands list. 2474 Ops.clear(); 2475 if (AccumulatedConstant != 0) 2476 Ops.push_back(getConstant(AccumulatedConstant)); 2477 for (auto &MulOp : MulOpLists) 2478 if (MulOp.first != 0) 2479 Ops.push_back(getMulExpr( 2480 getConstant(MulOp.first), 2481 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2482 SCEV::FlagAnyWrap, Depth + 1)); 2483 if (Ops.empty()) 2484 return getZero(Ty); 2485 if (Ops.size() == 1) 2486 return Ops[0]; 2487 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2488 } 2489 } 2490 2491 // If we are adding something to a multiply expression, make sure the 2492 // something is not already an operand of the multiply. If so, merge it into 2493 // the multiply. 2494 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2495 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2496 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2497 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2498 if (isa<SCEVConstant>(MulOpSCEV)) 2499 continue; 2500 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2501 if (MulOpSCEV == Ops[AddOp]) { 2502 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2503 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2504 if (Mul->getNumOperands() != 2) { 2505 // If the multiply has more than two operands, we must get the 2506 // Y*Z term. 2507 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2508 Mul->op_begin()+MulOp); 2509 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2510 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2511 } 2512 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2513 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2514 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2515 SCEV::FlagAnyWrap, Depth + 1); 2516 if (Ops.size() == 2) return OuterMul; 2517 if (AddOp < Idx) { 2518 Ops.erase(Ops.begin()+AddOp); 2519 Ops.erase(Ops.begin()+Idx-1); 2520 } else { 2521 Ops.erase(Ops.begin()+Idx); 2522 Ops.erase(Ops.begin()+AddOp-1); 2523 } 2524 Ops.push_back(OuterMul); 2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2526 } 2527 2528 // Check this multiply against other multiplies being added together. 2529 for (unsigned OtherMulIdx = Idx+1; 2530 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2531 ++OtherMulIdx) { 2532 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2533 // If MulOp occurs in OtherMul, we can fold the two multiplies 2534 // together. 2535 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2536 OMulOp != e; ++OMulOp) 2537 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2538 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2539 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2540 if (Mul->getNumOperands() != 2) { 2541 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2542 Mul->op_begin()+MulOp); 2543 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2544 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2545 } 2546 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2547 if (OtherMul->getNumOperands() != 2) { 2548 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2549 OtherMul->op_begin()+OMulOp); 2550 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2551 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2552 } 2553 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2554 const SCEV *InnerMulSum = 2555 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2556 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2557 SCEV::FlagAnyWrap, Depth + 1); 2558 if (Ops.size() == 2) return OuterMul; 2559 Ops.erase(Ops.begin()+Idx); 2560 Ops.erase(Ops.begin()+OtherMulIdx-1); 2561 Ops.push_back(OuterMul); 2562 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2563 } 2564 } 2565 } 2566 } 2567 2568 // If there are any add recurrences in the operands list, see if any other 2569 // added values are loop invariant. If so, we can fold them into the 2570 // recurrence. 2571 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2572 ++Idx; 2573 2574 // Scan over all recurrences, trying to fold loop invariants into them. 2575 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2576 // Scan all of the other operands to this add and add them to the vector if 2577 // they are loop invariant w.r.t. the recurrence. 2578 SmallVector<const SCEV *, 8> LIOps; 2579 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2580 const Loop *AddRecLoop = AddRec->getLoop(); 2581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2582 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2583 LIOps.push_back(Ops[i]); 2584 Ops.erase(Ops.begin()+i); 2585 --i; --e; 2586 } 2587 2588 // If we found some loop invariants, fold them into the recurrence. 2589 if (!LIOps.empty()) { 2590 // Compute nowrap flags for the addition of the loop-invariant ops and 2591 // the addrec. Temporarily push it as an operand for that purpose. 2592 LIOps.push_back(AddRec); 2593 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2594 LIOps.pop_back(); 2595 2596 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2597 LIOps.push_back(AddRec->getStart()); 2598 2599 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2600 AddRec->op_end()); 2601 // This follows from the fact that the no-wrap flags on the outer add 2602 // expression are applicable on the 0th iteration, when the add recurrence 2603 // will be equal to its start value. 2604 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2605 2606 // Build the new addrec. Propagate the NUW and NSW flags if both the 2607 // outer add and the inner addrec are guaranteed to have no overflow. 2608 // Always propagate NW. 2609 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2610 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2611 2612 // If all of the other operands were loop invariant, we are done. 2613 if (Ops.size() == 1) return NewRec; 2614 2615 // Otherwise, add the folded AddRec by the non-invariant parts. 2616 for (unsigned i = 0;; ++i) 2617 if (Ops[i] == AddRec) { 2618 Ops[i] = NewRec; 2619 break; 2620 } 2621 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2622 } 2623 2624 // Okay, if there weren't any loop invariants to be folded, check to see if 2625 // there are multiple AddRec's with the same loop induction variable being 2626 // added together. If so, we can fold them. 2627 for (unsigned OtherIdx = Idx+1; 2628 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2629 ++OtherIdx) { 2630 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2631 // so that the 1st found AddRecExpr is dominated by all others. 2632 assert(DT.dominates( 2633 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2634 AddRec->getLoop()->getHeader()) && 2635 "AddRecExprs are not sorted in reverse dominance order?"); 2636 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2637 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2638 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2639 AddRec->op_end()); 2640 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2641 ++OtherIdx) { 2642 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2643 if (OtherAddRec->getLoop() == AddRecLoop) { 2644 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2645 i != e; ++i) { 2646 if (i >= AddRecOps.size()) { 2647 AddRecOps.append(OtherAddRec->op_begin()+i, 2648 OtherAddRec->op_end()); 2649 break; 2650 } 2651 SmallVector<const SCEV *, 2> TwoOps = { 2652 AddRecOps[i], OtherAddRec->getOperand(i)}; 2653 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2654 } 2655 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2656 } 2657 } 2658 // Step size has changed, so we cannot guarantee no self-wraparound. 2659 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2660 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2661 } 2662 } 2663 2664 // Otherwise couldn't fold anything into this recurrence. Move onto the 2665 // next one. 2666 } 2667 2668 // Okay, it looks like we really DO need an add expr. Check to see if we 2669 // already have one, otherwise create a new one. 2670 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2671 } 2672 2673 const SCEV * 2674 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2675 SCEV::NoWrapFlags Flags) { 2676 FoldingSetNodeID ID; 2677 ID.AddInteger(scAddExpr); 2678 for (const SCEV *Op : Ops) 2679 ID.AddPointer(Op); 2680 void *IP = nullptr; 2681 SCEVAddExpr *S = 2682 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2683 if (!S) { 2684 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2685 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2686 S = new (SCEVAllocator) 2687 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2688 UniqueSCEVs.InsertNode(S, IP); 2689 addToLoopUseLists(S); 2690 } 2691 S->setNoWrapFlags(Flags); 2692 return S; 2693 } 2694 2695 const SCEV * 2696 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2697 const Loop *L, SCEV::NoWrapFlags Flags) { 2698 FoldingSetNodeID ID; 2699 ID.AddInteger(scAddRecExpr); 2700 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2701 ID.AddPointer(Ops[i]); 2702 ID.AddPointer(L); 2703 void *IP = nullptr; 2704 SCEVAddRecExpr *S = 2705 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2706 if (!S) { 2707 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2708 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2709 S = new (SCEVAllocator) 2710 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2711 UniqueSCEVs.InsertNode(S, IP); 2712 addToLoopUseLists(S); 2713 } 2714 setNoWrapFlags(S, Flags); 2715 return S; 2716 } 2717 2718 const SCEV * 2719 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2720 SCEV::NoWrapFlags Flags) { 2721 FoldingSetNodeID ID; 2722 ID.AddInteger(scMulExpr); 2723 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2724 ID.AddPointer(Ops[i]); 2725 void *IP = nullptr; 2726 SCEVMulExpr *S = 2727 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2728 if (!S) { 2729 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2730 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2731 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2732 O, Ops.size()); 2733 UniqueSCEVs.InsertNode(S, IP); 2734 addToLoopUseLists(S); 2735 } 2736 S->setNoWrapFlags(Flags); 2737 return S; 2738 } 2739 2740 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2741 uint64_t k = i*j; 2742 if (j > 1 && k / j != i) Overflow = true; 2743 return k; 2744 } 2745 2746 /// Compute the result of "n choose k", the binomial coefficient. If an 2747 /// intermediate computation overflows, Overflow will be set and the return will 2748 /// be garbage. Overflow is not cleared on absence of overflow. 2749 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2750 // We use the multiplicative formula: 2751 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2752 // At each iteration, we take the n-th term of the numeral and divide by the 2753 // (k-n)th term of the denominator. This division will always produce an 2754 // integral result, and helps reduce the chance of overflow in the 2755 // intermediate computations. However, we can still overflow even when the 2756 // final result would fit. 2757 2758 if (n == 0 || n == k) return 1; 2759 if (k > n) return 0; 2760 2761 if (k > n/2) 2762 k = n-k; 2763 2764 uint64_t r = 1; 2765 for (uint64_t i = 1; i <= k; ++i) { 2766 r = umul_ov(r, n-(i-1), Overflow); 2767 r /= i; 2768 } 2769 return r; 2770 } 2771 2772 /// Determine if any of the operands in this SCEV are a constant or if 2773 /// any of the add or multiply expressions in this SCEV contain a constant. 2774 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2775 struct FindConstantInAddMulChain { 2776 bool FoundConstant = false; 2777 2778 bool follow(const SCEV *S) { 2779 FoundConstant |= isa<SCEVConstant>(S); 2780 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2781 } 2782 2783 bool isDone() const { 2784 return FoundConstant; 2785 } 2786 }; 2787 2788 FindConstantInAddMulChain F; 2789 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2790 ST.visitAll(StartExpr); 2791 return F.FoundConstant; 2792 } 2793 2794 /// Get a canonical multiply expression, or something simpler if possible. 2795 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2796 SCEV::NoWrapFlags OrigFlags, 2797 unsigned Depth) { 2798 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2799 "only nuw or nsw allowed"); 2800 assert(!Ops.empty() && "Cannot get empty mul!"); 2801 if (Ops.size() == 1) return Ops[0]; 2802 #ifndef NDEBUG 2803 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2804 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2805 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2806 "SCEVMulExpr operand types don't match!"); 2807 #endif 2808 2809 // Sort by complexity, this groups all similar expression types together. 2810 GroupByComplexity(Ops, &LI, DT); 2811 2812 // If there are any constants, fold them together. 2813 unsigned Idx = 0; 2814 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2815 ++Idx; 2816 assert(Idx < Ops.size()); 2817 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2818 // We found two constants, fold them together! 2819 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2820 if (Ops.size() == 2) return Ops[0]; 2821 Ops.erase(Ops.begin()+1); // Erase the folded element 2822 LHSC = cast<SCEVConstant>(Ops[0]); 2823 } 2824 2825 // If we have a multiply of zero, it will always be zero. 2826 if (LHSC->getValue()->isZero()) 2827 return LHSC; 2828 2829 // If we are left with a constant one being multiplied, strip it off. 2830 if (LHSC->getValue()->isOne()) { 2831 Ops.erase(Ops.begin()); 2832 --Idx; 2833 } 2834 2835 if (Ops.size() == 1) 2836 return Ops[0]; 2837 } 2838 2839 // Delay expensive flag strengthening until necessary. 2840 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2841 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2842 }; 2843 2844 // Limit recursion calls depth. 2845 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2846 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2847 2848 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2849 // Don't strengthen flags if we have no new information. 2850 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2851 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2852 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2853 return S; 2854 } 2855 2856 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2857 if (Ops.size() == 2) { 2858 // C1*(C2+V) -> C1*C2 + C1*V 2859 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2860 // If any of Add's ops are Adds or Muls with a constant, apply this 2861 // transformation as well. 2862 // 2863 // TODO: There are some cases where this transformation is not 2864 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2865 // this transformation should be narrowed down. 2866 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2867 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2868 SCEV::FlagAnyWrap, Depth + 1), 2869 getMulExpr(LHSC, Add->getOperand(1), 2870 SCEV::FlagAnyWrap, Depth + 1), 2871 SCEV::FlagAnyWrap, Depth + 1); 2872 2873 if (Ops[0]->isAllOnesValue()) { 2874 // If we have a mul by -1 of an add, try distributing the -1 among the 2875 // add operands. 2876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2877 SmallVector<const SCEV *, 4> NewOps; 2878 bool AnyFolded = false; 2879 for (const SCEV *AddOp : Add->operands()) { 2880 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2881 Depth + 1); 2882 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2883 NewOps.push_back(Mul); 2884 } 2885 if (AnyFolded) 2886 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2887 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2888 // Negation preserves a recurrence's no self-wrap property. 2889 SmallVector<const SCEV *, 4> Operands; 2890 for (const SCEV *AddRecOp : AddRec->operands()) 2891 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2892 Depth + 1)); 2893 2894 return getAddRecExpr(Operands, AddRec->getLoop(), 2895 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2896 } 2897 } 2898 } 2899 } 2900 2901 // Skip over the add expression until we get to a multiply. 2902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2903 ++Idx; 2904 2905 // If there are mul operands inline them all into this expression. 2906 if (Idx < Ops.size()) { 2907 bool DeletedMul = false; 2908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2909 if (Ops.size() > MulOpsInlineThreshold) 2910 break; 2911 // If we have an mul, expand the mul operands onto the end of the 2912 // operands list. 2913 Ops.erase(Ops.begin()+Idx); 2914 Ops.append(Mul->op_begin(), Mul->op_end()); 2915 DeletedMul = true; 2916 } 2917 2918 // If we deleted at least one mul, we added operands to the end of the 2919 // list, and they are not necessarily sorted. Recurse to resort and 2920 // resimplify any operands we just acquired. 2921 if (DeletedMul) 2922 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2923 } 2924 2925 // If there are any add recurrences in the operands list, see if any other 2926 // added values are loop invariant. If so, we can fold them into the 2927 // recurrence. 2928 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2929 ++Idx; 2930 2931 // Scan over all recurrences, trying to fold loop invariants into them. 2932 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2933 // Scan all of the other operands to this mul and add them to the vector 2934 // if they are loop invariant w.r.t. the recurrence. 2935 SmallVector<const SCEV *, 8> LIOps; 2936 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2937 const Loop *AddRecLoop = AddRec->getLoop(); 2938 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2939 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2940 LIOps.push_back(Ops[i]); 2941 Ops.erase(Ops.begin()+i); 2942 --i; --e; 2943 } 2944 2945 // If we found some loop invariants, fold them into the recurrence. 2946 if (!LIOps.empty()) { 2947 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2948 SmallVector<const SCEV *, 4> NewOps; 2949 NewOps.reserve(AddRec->getNumOperands()); 2950 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2951 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2952 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2953 SCEV::FlagAnyWrap, Depth + 1)); 2954 2955 // Build the new addrec. Propagate the NUW and NSW flags if both the 2956 // outer mul and the inner addrec are guaranteed to have no overflow. 2957 // 2958 // No self-wrap cannot be guaranteed after changing the step size, but 2959 // will be inferred if either NUW or NSW is true. 2960 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2961 const SCEV *NewRec = getAddRecExpr( 2962 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2963 2964 // If all of the other operands were loop invariant, we are done. 2965 if (Ops.size() == 1) return NewRec; 2966 2967 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2968 for (unsigned i = 0;; ++i) 2969 if (Ops[i] == AddRec) { 2970 Ops[i] = NewRec; 2971 break; 2972 } 2973 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2974 } 2975 2976 // Okay, if there weren't any loop invariants to be folded, check to see 2977 // if there are multiple AddRec's with the same loop induction variable 2978 // being multiplied together. If so, we can fold them. 2979 2980 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2981 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2982 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2983 // ]]],+,...up to x=2n}. 2984 // Note that the arguments to choose() are always integers with values 2985 // known at compile time, never SCEV objects. 2986 // 2987 // The implementation avoids pointless extra computations when the two 2988 // addrec's are of different length (mathematically, it's equivalent to 2989 // an infinite stream of zeros on the right). 2990 bool OpsModified = false; 2991 for (unsigned OtherIdx = Idx+1; 2992 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2993 ++OtherIdx) { 2994 const SCEVAddRecExpr *OtherAddRec = 2995 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2996 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2997 continue; 2998 2999 // Limit max number of arguments to avoid creation of unreasonably big 3000 // SCEVAddRecs with very complex operands. 3001 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3002 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3003 continue; 3004 3005 bool Overflow = false; 3006 Type *Ty = AddRec->getType(); 3007 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3008 SmallVector<const SCEV*, 7> AddRecOps; 3009 for (int x = 0, xe = AddRec->getNumOperands() + 3010 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3011 SmallVector <const SCEV *, 7> SumOps; 3012 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3013 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3014 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3015 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3016 z < ze && !Overflow; ++z) { 3017 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3018 uint64_t Coeff; 3019 if (LargerThan64Bits) 3020 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3021 else 3022 Coeff = Coeff1*Coeff2; 3023 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3024 const SCEV *Term1 = AddRec->getOperand(y-z); 3025 const SCEV *Term2 = OtherAddRec->getOperand(z); 3026 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3027 SCEV::FlagAnyWrap, Depth + 1)); 3028 } 3029 } 3030 if (SumOps.empty()) 3031 SumOps.push_back(getZero(Ty)); 3032 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3033 } 3034 if (!Overflow) { 3035 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3036 SCEV::FlagAnyWrap); 3037 if (Ops.size() == 2) return NewAddRec; 3038 Ops[Idx] = NewAddRec; 3039 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3040 OpsModified = true; 3041 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3042 if (!AddRec) 3043 break; 3044 } 3045 } 3046 if (OpsModified) 3047 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3048 3049 // Otherwise couldn't fold anything into this recurrence. Move onto the 3050 // next one. 3051 } 3052 3053 // Okay, it looks like we really DO need an mul expr. Check to see if we 3054 // already have one, otherwise create a new one. 3055 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3056 } 3057 3058 /// Represents an unsigned remainder expression based on unsigned division. 3059 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3060 const SCEV *RHS) { 3061 assert(getEffectiveSCEVType(LHS->getType()) == 3062 getEffectiveSCEVType(RHS->getType()) && 3063 "SCEVURemExpr operand types don't match!"); 3064 3065 // Short-circuit easy cases 3066 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3067 // If constant is one, the result is trivial 3068 if (RHSC->getValue()->isOne()) 3069 return getZero(LHS->getType()); // X urem 1 --> 0 3070 3071 // If constant is a power of two, fold into a zext(trunc(LHS)). 3072 if (RHSC->getAPInt().isPowerOf2()) { 3073 Type *FullTy = LHS->getType(); 3074 Type *TruncTy = 3075 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3076 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3077 } 3078 } 3079 3080 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3081 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3082 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3083 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3084 } 3085 3086 /// Get a canonical unsigned division expression, or something simpler if 3087 /// possible. 3088 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3089 const SCEV *RHS) { 3090 assert(getEffectiveSCEVType(LHS->getType()) == 3091 getEffectiveSCEVType(RHS->getType()) && 3092 "SCEVUDivExpr operand types don't match!"); 3093 3094 FoldingSetNodeID ID; 3095 ID.AddInteger(scUDivExpr); 3096 ID.AddPointer(LHS); 3097 ID.AddPointer(RHS); 3098 void *IP = nullptr; 3099 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3100 return S; 3101 3102 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3103 if (RHSC->getValue()->isOne()) 3104 return LHS; // X udiv 1 --> x 3105 // If the denominator is zero, the result of the udiv is undefined. Don't 3106 // try to analyze it, because the resolution chosen here may differ from 3107 // the resolution chosen in other parts of the compiler. 3108 if (!RHSC->getValue()->isZero()) { 3109 // Determine if the division can be folded into the operands of 3110 // its operands. 3111 // TODO: Generalize this to non-constants by using known-bits information. 3112 Type *Ty = LHS->getType(); 3113 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3114 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3115 // For non-power-of-two values, effectively round the value up to the 3116 // nearest power of two. 3117 if (!RHSC->getAPInt().isPowerOf2()) 3118 ++MaxShiftAmt; 3119 IntegerType *ExtTy = 3120 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3121 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3122 if (const SCEVConstant *Step = 3123 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3124 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3125 const APInt &StepInt = Step->getAPInt(); 3126 const APInt &DivInt = RHSC->getAPInt(); 3127 if (!StepInt.urem(DivInt) && 3128 getZeroExtendExpr(AR, ExtTy) == 3129 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3130 getZeroExtendExpr(Step, ExtTy), 3131 AR->getLoop(), SCEV::FlagAnyWrap)) { 3132 SmallVector<const SCEV *, 4> Operands; 3133 for (const SCEV *Op : AR->operands()) 3134 Operands.push_back(getUDivExpr(Op, RHS)); 3135 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3136 } 3137 /// Get a canonical UDivExpr for a recurrence. 3138 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3139 // We can currently only fold X%N if X is constant. 3140 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3141 if (StartC && !DivInt.urem(StepInt) && 3142 getZeroExtendExpr(AR, ExtTy) == 3143 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3144 getZeroExtendExpr(Step, ExtTy), 3145 AR->getLoop(), SCEV::FlagAnyWrap)) { 3146 const APInt &StartInt = StartC->getAPInt(); 3147 const APInt &StartRem = StartInt.urem(StepInt); 3148 if (StartRem != 0) { 3149 const SCEV *NewLHS = 3150 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3151 AR->getLoop(), SCEV::FlagNW); 3152 if (LHS != NewLHS) { 3153 LHS = NewLHS; 3154 3155 // Reset the ID to include the new LHS, and check if it is 3156 // already cached. 3157 ID.clear(); 3158 ID.AddInteger(scUDivExpr); 3159 ID.AddPointer(LHS); 3160 ID.AddPointer(RHS); 3161 IP = nullptr; 3162 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3163 return S; 3164 } 3165 } 3166 } 3167 } 3168 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3169 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3170 SmallVector<const SCEV *, 4> Operands; 3171 for (const SCEV *Op : M->operands()) 3172 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3173 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3174 // Find an operand that's safely divisible. 3175 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3176 const SCEV *Op = M->getOperand(i); 3177 const SCEV *Div = getUDivExpr(Op, RHSC); 3178 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3179 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3180 M->op_end()); 3181 Operands[i] = Div; 3182 return getMulExpr(Operands); 3183 } 3184 } 3185 } 3186 3187 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3188 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3189 if (auto *DivisorConstant = 3190 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3191 bool Overflow = false; 3192 APInt NewRHS = 3193 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3194 if (Overflow) { 3195 return getConstant(RHSC->getType(), 0, false); 3196 } 3197 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3198 } 3199 } 3200 3201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3203 SmallVector<const SCEV *, 4> Operands; 3204 for (const SCEV *Op : A->operands()) 3205 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3207 Operands.clear(); 3208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3210 if (isa<SCEVUDivExpr>(Op) || 3211 getMulExpr(Op, RHS) != A->getOperand(i)) 3212 break; 3213 Operands.push_back(Op); 3214 } 3215 if (Operands.size() == A->getNumOperands()) 3216 return getAddExpr(Operands); 3217 } 3218 } 3219 3220 // Fold if both operands are constant. 3221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3222 Constant *LHSCV = LHSC->getValue(); 3223 Constant *RHSCV = RHSC->getValue(); 3224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3225 RHSCV))); 3226 } 3227 } 3228 } 3229 3230 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3231 // changes). Make sure we get a new one. 3232 IP = nullptr; 3233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3235 LHS, RHS); 3236 UniqueSCEVs.InsertNode(S, IP); 3237 addToLoopUseLists(S); 3238 return S; 3239 } 3240 3241 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3242 APInt A = C1->getAPInt().abs(); 3243 APInt B = C2->getAPInt().abs(); 3244 uint32_t ABW = A.getBitWidth(); 3245 uint32_t BBW = B.getBitWidth(); 3246 3247 if (ABW > BBW) 3248 B = B.zext(ABW); 3249 else if (ABW < BBW) 3250 A = A.zext(BBW); 3251 3252 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3253 } 3254 3255 /// Get a canonical unsigned division expression, or something simpler if 3256 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3257 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3258 /// it's not exact because the udiv may be clearing bits. 3259 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3260 const SCEV *RHS) { 3261 // TODO: we could try to find factors in all sorts of things, but for now we 3262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3263 // end of this file for inspiration. 3264 3265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3266 if (!Mul || !Mul->hasNoUnsignedWrap()) 3267 return getUDivExpr(LHS, RHS); 3268 3269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3270 // If the mulexpr multiplies by a constant, then that constant must be the 3271 // first element of the mulexpr. 3272 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3273 if (LHSCst == RHSCst) { 3274 SmallVector<const SCEV *, 2> Operands; 3275 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3276 return getMulExpr(Operands); 3277 } 3278 3279 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3280 // that there's a factor provided by one of the other terms. We need to 3281 // check. 3282 APInt Factor = gcd(LHSCst, RHSCst); 3283 if (!Factor.isIntN(1)) { 3284 LHSCst = 3285 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3286 RHSCst = 3287 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3288 SmallVector<const SCEV *, 2> Operands; 3289 Operands.push_back(LHSCst); 3290 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3291 LHS = getMulExpr(Operands); 3292 RHS = RHSCst; 3293 Mul = dyn_cast<SCEVMulExpr>(LHS); 3294 if (!Mul) 3295 return getUDivExactExpr(LHS, RHS); 3296 } 3297 } 3298 } 3299 3300 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3301 if (Mul->getOperand(i) == RHS) { 3302 SmallVector<const SCEV *, 2> Operands; 3303 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3304 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3305 return getMulExpr(Operands); 3306 } 3307 } 3308 3309 return getUDivExpr(LHS, RHS); 3310 } 3311 3312 /// Get an add recurrence expression for the specified loop. Simplify the 3313 /// expression as much as possible. 3314 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3315 const Loop *L, 3316 SCEV::NoWrapFlags Flags) { 3317 SmallVector<const SCEV *, 4> Operands; 3318 Operands.push_back(Start); 3319 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3320 if (StepChrec->getLoop() == L) { 3321 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3322 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3323 } 3324 3325 Operands.push_back(Step); 3326 return getAddRecExpr(Operands, L, Flags); 3327 } 3328 3329 /// Get an add recurrence expression for the specified loop. Simplify the 3330 /// expression as much as possible. 3331 const SCEV * 3332 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3333 const Loop *L, SCEV::NoWrapFlags Flags) { 3334 if (Operands.size() == 1) return Operands[0]; 3335 #ifndef NDEBUG 3336 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3337 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3338 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3339 "SCEVAddRecExpr operand types don't match!"); 3340 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3341 assert(isLoopInvariant(Operands[i], L) && 3342 "SCEVAddRecExpr operand is not loop-invariant!"); 3343 #endif 3344 3345 if (Operands.back()->isZero()) { 3346 Operands.pop_back(); 3347 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3348 } 3349 3350 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3351 // use that information to infer NUW and NSW flags. However, computing a 3352 // BE count requires calling getAddRecExpr, so we may not yet have a 3353 // meaningful BE count at this point (and if we don't, we'd be stuck 3354 // with a SCEVCouldNotCompute as the cached BE count). 3355 3356 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3357 3358 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3359 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3360 const Loop *NestedLoop = NestedAR->getLoop(); 3361 if (L->contains(NestedLoop) 3362 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3363 : (!NestedLoop->contains(L) && 3364 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3365 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3366 NestedAR->op_end()); 3367 Operands[0] = NestedAR->getStart(); 3368 // AddRecs require their operands be loop-invariant with respect to their 3369 // loops. Don't perform this transformation if it would break this 3370 // requirement. 3371 bool AllInvariant = all_of( 3372 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3373 3374 if (AllInvariant) { 3375 // Create a recurrence for the outer loop with the same step size. 3376 // 3377 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3378 // inner recurrence has the same property. 3379 SCEV::NoWrapFlags OuterFlags = 3380 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3381 3382 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3383 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3384 return isLoopInvariant(Op, NestedLoop); 3385 }); 3386 3387 if (AllInvariant) { 3388 // Ok, both add recurrences are valid after the transformation. 3389 // 3390 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3391 // the outer recurrence has the same property. 3392 SCEV::NoWrapFlags InnerFlags = 3393 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3394 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3395 } 3396 } 3397 // Reset Operands to its original state. 3398 Operands[0] = NestedAR; 3399 } 3400 } 3401 3402 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3403 // already have one, otherwise create a new one. 3404 return getOrCreateAddRecExpr(Operands, L, Flags); 3405 } 3406 3407 const SCEV * 3408 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3409 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3410 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3411 // getSCEV(Base)->getType() has the same address space as Base->getType() 3412 // because SCEV::getType() preserves the address space. 3413 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3414 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3415 // instruction to its SCEV, because the Instruction may be guarded by control 3416 // flow and the no-overflow bits may not be valid for the expression in any 3417 // context. This can be fixed similarly to how these flags are handled for 3418 // adds. 3419 SCEV::NoWrapFlags OffsetWrap = 3420 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3421 3422 Type *CurTy = GEP->getType(); 3423 bool FirstIter = true; 3424 SmallVector<const SCEV *, 4> Offsets; 3425 for (const SCEV *IndexExpr : IndexExprs) { 3426 // Compute the (potentially symbolic) offset in bytes for this index. 3427 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3428 // For a struct, add the member offset. 3429 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3430 unsigned FieldNo = Index->getZExtValue(); 3431 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3432 Offsets.push_back(FieldOffset); 3433 3434 // Update CurTy to the type of the field at Index. 3435 CurTy = STy->getTypeAtIndex(Index); 3436 } else { 3437 // Update CurTy to its element type. 3438 if (FirstIter) { 3439 assert(isa<PointerType>(CurTy) && 3440 "The first index of a GEP indexes a pointer"); 3441 CurTy = GEP->getSourceElementType(); 3442 FirstIter = false; 3443 } else { 3444 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3445 } 3446 // For an array, add the element offset, explicitly scaled. 3447 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3448 // Getelementptr indices are signed. 3449 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3450 3451 // Multiply the index by the element size to compute the element offset. 3452 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3453 Offsets.push_back(LocalOffset); 3454 } 3455 } 3456 3457 // Handle degenerate case of GEP without offsets. 3458 if (Offsets.empty()) 3459 return BaseExpr; 3460 3461 // Add the offsets together, assuming nsw if inbounds. 3462 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3463 // Add the base address and the offset. We cannot use the nsw flag, as the 3464 // base address is unsigned. However, if we know that the offset is 3465 // non-negative, we can use nuw. 3466 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3467 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3468 return getAddExpr(BaseExpr, Offset, BaseWrap); 3469 } 3470 3471 std::tuple<SCEV *, FoldingSetNodeID, void *> 3472 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3473 ArrayRef<const SCEV *> Ops) { 3474 FoldingSetNodeID ID; 3475 void *IP = nullptr; 3476 ID.AddInteger(SCEVType); 3477 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3478 ID.AddPointer(Ops[i]); 3479 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3480 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3481 } 3482 3483 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3484 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3485 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3486 } 3487 3488 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3489 Type *Ty = Op->getType(); 3490 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3491 } 3492 3493 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3494 SmallVectorImpl<const SCEV *> &Ops) { 3495 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3496 if (Ops.size() == 1) return Ops[0]; 3497 #ifndef NDEBUG 3498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3499 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3501 "Operand types don't match!"); 3502 #endif 3503 3504 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3505 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3506 3507 // Sort by complexity, this groups all similar expression types together. 3508 GroupByComplexity(Ops, &LI, DT); 3509 3510 // Check if we have created the same expression before. 3511 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3512 return S; 3513 } 3514 3515 // If there are any constants, fold them together. 3516 unsigned Idx = 0; 3517 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3518 ++Idx; 3519 assert(Idx < Ops.size()); 3520 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3521 if (Kind == scSMaxExpr) 3522 return APIntOps::smax(LHS, RHS); 3523 else if (Kind == scSMinExpr) 3524 return APIntOps::smin(LHS, RHS); 3525 else if (Kind == scUMaxExpr) 3526 return APIntOps::umax(LHS, RHS); 3527 else if (Kind == scUMinExpr) 3528 return APIntOps::umin(LHS, RHS); 3529 llvm_unreachable("Unknown SCEV min/max opcode"); 3530 }; 3531 3532 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3533 // We found two constants, fold them together! 3534 ConstantInt *Fold = ConstantInt::get( 3535 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3536 Ops[0] = getConstant(Fold); 3537 Ops.erase(Ops.begin()+1); // Erase the folded element 3538 if (Ops.size() == 1) return Ops[0]; 3539 LHSC = cast<SCEVConstant>(Ops[0]); 3540 } 3541 3542 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3543 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3544 3545 if (IsMax ? IsMinV : IsMaxV) { 3546 // If we are left with a constant minimum(/maximum)-int, strip it off. 3547 Ops.erase(Ops.begin()); 3548 --Idx; 3549 } else if (IsMax ? IsMaxV : IsMinV) { 3550 // If we have a max(/min) with a constant maximum(/minimum)-int, 3551 // it will always be the extremum. 3552 return LHSC; 3553 } 3554 3555 if (Ops.size() == 1) return Ops[0]; 3556 } 3557 3558 // Find the first operation of the same kind 3559 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3560 ++Idx; 3561 3562 // Check to see if one of the operands is of the same kind. If so, expand its 3563 // operands onto our operand list, and recurse to simplify. 3564 if (Idx < Ops.size()) { 3565 bool DeletedAny = false; 3566 while (Ops[Idx]->getSCEVType() == Kind) { 3567 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3568 Ops.erase(Ops.begin()+Idx); 3569 Ops.append(SMME->op_begin(), SMME->op_end()); 3570 DeletedAny = true; 3571 } 3572 3573 if (DeletedAny) 3574 return getMinMaxExpr(Kind, Ops); 3575 } 3576 3577 // Okay, check to see if the same value occurs in the operand list twice. If 3578 // so, delete one. Since we sorted the list, these values are required to 3579 // be adjacent. 3580 llvm::CmpInst::Predicate GEPred = 3581 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3582 llvm::CmpInst::Predicate LEPred = 3583 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3584 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3585 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3586 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3587 if (Ops[i] == Ops[i + 1] || 3588 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3589 // X op Y op Y --> X op Y 3590 // X op Y --> X, if we know X, Y are ordered appropriately 3591 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3592 --i; 3593 --e; 3594 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3595 Ops[i + 1])) { 3596 // X op Y --> Y, if we know X, Y are ordered appropriately 3597 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3598 --i; 3599 --e; 3600 } 3601 } 3602 3603 if (Ops.size() == 1) return Ops[0]; 3604 3605 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3606 3607 // Okay, it looks like we really DO need an expr. Check to see if we 3608 // already have one, otherwise create a new one. 3609 const SCEV *ExistingSCEV; 3610 FoldingSetNodeID ID; 3611 void *IP; 3612 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3613 if (ExistingSCEV) 3614 return ExistingSCEV; 3615 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3616 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3617 SCEV *S = new (SCEVAllocator) 3618 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3619 3620 UniqueSCEVs.InsertNode(S, IP); 3621 addToLoopUseLists(S); 3622 return S; 3623 } 3624 3625 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3626 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3627 return getSMaxExpr(Ops); 3628 } 3629 3630 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3631 return getMinMaxExpr(scSMaxExpr, Ops); 3632 } 3633 3634 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3635 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3636 return getUMaxExpr(Ops); 3637 } 3638 3639 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3640 return getMinMaxExpr(scUMaxExpr, Ops); 3641 } 3642 3643 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3644 const SCEV *RHS) { 3645 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3646 return getSMinExpr(Ops); 3647 } 3648 3649 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3650 return getMinMaxExpr(scSMinExpr, Ops); 3651 } 3652 3653 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3654 const SCEV *RHS) { 3655 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3656 return getUMinExpr(Ops); 3657 } 3658 3659 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3660 return getMinMaxExpr(scUMinExpr, Ops); 3661 } 3662 3663 const SCEV * 3664 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3665 ScalableVectorType *ScalableTy) { 3666 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3667 Constant *One = ConstantInt::get(IntTy, 1); 3668 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3669 // Note that the expression we created is the final expression, we don't 3670 // want to simplify it any further Also, if we call a normal getSCEV(), 3671 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3672 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3673 } 3674 3675 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3676 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3677 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3678 // We can bypass creating a target-independent constant expression and then 3679 // folding it back into a ConstantInt. This is just a compile-time 3680 // optimization. 3681 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3682 } 3683 3684 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3685 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3686 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3687 // We can bypass creating a target-independent constant expression and then 3688 // folding it back into a ConstantInt. This is just a compile-time 3689 // optimization. 3690 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3691 } 3692 3693 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3694 StructType *STy, 3695 unsigned FieldNo) { 3696 // We can bypass creating a target-independent constant expression and then 3697 // folding it back into a ConstantInt. This is just a compile-time 3698 // optimization. 3699 return getConstant( 3700 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3701 } 3702 3703 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3704 // Don't attempt to do anything other than create a SCEVUnknown object 3705 // here. createSCEV only calls getUnknown after checking for all other 3706 // interesting possibilities, and any other code that calls getUnknown 3707 // is doing so in order to hide a value from SCEV canonicalization. 3708 3709 FoldingSetNodeID ID; 3710 ID.AddInteger(scUnknown); 3711 ID.AddPointer(V); 3712 void *IP = nullptr; 3713 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3714 assert(cast<SCEVUnknown>(S)->getValue() == V && 3715 "Stale SCEVUnknown in uniquing map!"); 3716 return S; 3717 } 3718 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3719 FirstUnknown); 3720 FirstUnknown = cast<SCEVUnknown>(S); 3721 UniqueSCEVs.InsertNode(S, IP); 3722 return S; 3723 } 3724 3725 //===----------------------------------------------------------------------===// 3726 // Basic SCEV Analysis and PHI Idiom Recognition Code 3727 // 3728 3729 /// Test if values of the given type are analyzable within the SCEV 3730 /// framework. This primarily includes integer types, and it can optionally 3731 /// include pointer types if the ScalarEvolution class has access to 3732 /// target-specific information. 3733 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3734 // Integers and pointers are always SCEVable. 3735 return Ty->isIntOrPtrTy(); 3736 } 3737 3738 /// Return the size in bits of the specified type, for which isSCEVable must 3739 /// return true. 3740 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3741 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3742 if (Ty->isPointerTy()) 3743 return getDataLayout().getIndexTypeSizeInBits(Ty); 3744 return getDataLayout().getTypeSizeInBits(Ty); 3745 } 3746 3747 /// Return a type with the same bitwidth as the given type and which represents 3748 /// how SCEV will treat the given type, for which isSCEVable must return 3749 /// true. For pointer types, this is the pointer index sized integer type. 3750 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3751 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3752 3753 if (Ty->isIntegerTy()) 3754 return Ty; 3755 3756 // The only other support type is pointer. 3757 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3758 return getDataLayout().getIndexType(Ty); 3759 } 3760 3761 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3762 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3763 } 3764 3765 const SCEV *ScalarEvolution::getCouldNotCompute() { 3766 return CouldNotCompute.get(); 3767 } 3768 3769 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3770 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3771 auto *SU = dyn_cast<SCEVUnknown>(S); 3772 return SU && SU->getValue() == nullptr; 3773 }); 3774 3775 return !ContainsNulls; 3776 } 3777 3778 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3779 HasRecMapType::iterator I = HasRecMap.find(S); 3780 if (I != HasRecMap.end()) 3781 return I->second; 3782 3783 bool FoundAddRec = 3784 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3785 HasRecMap.insert({S, FoundAddRec}); 3786 return FoundAddRec; 3787 } 3788 3789 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3790 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3791 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3792 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3793 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3794 if (!Add) 3795 return {S, nullptr}; 3796 3797 if (Add->getNumOperands() != 2) 3798 return {S, nullptr}; 3799 3800 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3801 if (!ConstOp) 3802 return {S, nullptr}; 3803 3804 return {Add->getOperand(1), ConstOp->getValue()}; 3805 } 3806 3807 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3808 /// by the value and offset from any ValueOffsetPair in the set. 3809 SetVector<ScalarEvolution::ValueOffsetPair> * 3810 ScalarEvolution::getSCEVValues(const SCEV *S) { 3811 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3812 if (SI == ExprValueMap.end()) 3813 return nullptr; 3814 #ifndef NDEBUG 3815 if (VerifySCEVMap) { 3816 // Check there is no dangling Value in the set returned. 3817 for (const auto &VE : SI->second) 3818 assert(ValueExprMap.count(VE.first)); 3819 } 3820 #endif 3821 return &SI->second; 3822 } 3823 3824 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3825 /// cannot be used separately. eraseValueFromMap should be used to remove 3826 /// V from ValueExprMap and ExprValueMap at the same time. 3827 void ScalarEvolution::eraseValueFromMap(Value *V) { 3828 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3829 if (I != ValueExprMap.end()) { 3830 const SCEV *S = I->second; 3831 // Remove {V, 0} from the set of ExprValueMap[S] 3832 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3833 SV->remove({V, nullptr}); 3834 3835 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3836 const SCEV *Stripped; 3837 ConstantInt *Offset; 3838 std::tie(Stripped, Offset) = splitAddExpr(S); 3839 if (Offset != nullptr) { 3840 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3841 SV->remove({V, Offset}); 3842 } 3843 ValueExprMap.erase(V); 3844 } 3845 } 3846 3847 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3848 /// TODO: In reality it is better to check the poison recursively 3849 /// but this is better than nothing. 3850 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3851 if (auto *I = dyn_cast<Instruction>(V)) { 3852 if (isa<OverflowingBinaryOperator>(I)) { 3853 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3854 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3855 return true; 3856 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3857 return true; 3858 } 3859 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3860 return true; 3861 } 3862 return false; 3863 } 3864 3865 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3866 /// create a new one. 3867 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3868 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3869 3870 const SCEV *S = getExistingSCEV(V); 3871 if (S == nullptr) { 3872 S = createSCEV(V); 3873 // During PHI resolution, it is possible to create two SCEVs for the same 3874 // V, so it is needed to double check whether V->S is inserted into 3875 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3876 std::pair<ValueExprMapType::iterator, bool> Pair = 3877 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3878 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3879 ExprValueMap[S].insert({V, nullptr}); 3880 3881 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3882 // ExprValueMap. 3883 const SCEV *Stripped = S; 3884 ConstantInt *Offset = nullptr; 3885 std::tie(Stripped, Offset) = splitAddExpr(S); 3886 // If stripped is SCEVUnknown, don't bother to save 3887 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3888 // increase the complexity of the expansion code. 3889 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3890 // because it may generate add/sub instead of GEP in SCEV expansion. 3891 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3892 !isa<GetElementPtrInst>(V)) 3893 ExprValueMap[Stripped].insert({V, Offset}); 3894 } 3895 } 3896 return S; 3897 } 3898 3899 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3900 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3901 3902 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3903 if (I != ValueExprMap.end()) { 3904 const SCEV *S = I->second; 3905 if (checkValidity(S)) 3906 return S; 3907 eraseValueFromMap(V); 3908 forgetMemoizedResults(S); 3909 } 3910 return nullptr; 3911 } 3912 3913 /// Return a SCEV corresponding to -V = -1*V 3914 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3915 SCEV::NoWrapFlags Flags) { 3916 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3917 return getConstant( 3918 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3919 3920 Type *Ty = V->getType(); 3921 Ty = getEffectiveSCEVType(Ty); 3922 return getMulExpr(V, getMinusOne(Ty), Flags); 3923 } 3924 3925 /// If Expr computes ~A, return A else return nullptr 3926 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3927 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3928 if (!Add || Add->getNumOperands() != 2 || 3929 !Add->getOperand(0)->isAllOnesValue()) 3930 return nullptr; 3931 3932 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3933 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3934 !AddRHS->getOperand(0)->isAllOnesValue()) 3935 return nullptr; 3936 3937 return AddRHS->getOperand(1); 3938 } 3939 3940 /// Return a SCEV corresponding to ~V = -1-V 3941 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3942 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3943 return getConstant( 3944 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3945 3946 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3947 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3948 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3949 SmallVector<const SCEV *, 2> MatchedOperands; 3950 for (const SCEV *Operand : MME->operands()) { 3951 const SCEV *Matched = MatchNotExpr(Operand); 3952 if (!Matched) 3953 return (const SCEV *)nullptr; 3954 MatchedOperands.push_back(Matched); 3955 } 3956 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3957 MatchedOperands); 3958 }; 3959 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3960 return Replaced; 3961 } 3962 3963 Type *Ty = V->getType(); 3964 Ty = getEffectiveSCEVType(Ty); 3965 return getMinusSCEV(getMinusOne(Ty), V); 3966 } 3967 3968 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3969 SCEV::NoWrapFlags Flags, 3970 unsigned Depth) { 3971 // Fast path: X - X --> 0. 3972 if (LHS == RHS) 3973 return getZero(LHS->getType()); 3974 3975 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3976 // makes it so that we cannot make much use of NUW. 3977 auto AddFlags = SCEV::FlagAnyWrap; 3978 const bool RHSIsNotMinSigned = 3979 !getSignedRangeMin(RHS).isMinSignedValue(); 3980 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3981 // Let M be the minimum representable signed value. Then (-1)*RHS 3982 // signed-wraps if and only if RHS is M. That can happen even for 3983 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3984 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3985 // (-1)*RHS, we need to prove that RHS != M. 3986 // 3987 // If LHS is non-negative and we know that LHS - RHS does not 3988 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3989 // either by proving that RHS > M or that LHS >= 0. 3990 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3991 AddFlags = SCEV::FlagNSW; 3992 } 3993 } 3994 3995 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3996 // RHS is NSW and LHS >= 0. 3997 // 3998 // The difficulty here is that the NSW flag may have been proven 3999 // relative to a loop that is to be found in a recurrence in LHS and 4000 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4001 // larger scope than intended. 4002 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4003 4004 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4005 } 4006 4007 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4008 unsigned Depth) { 4009 Type *SrcTy = V->getType(); 4010 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4011 "Cannot truncate or zero extend with non-integer arguments!"); 4012 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4013 return V; // No conversion 4014 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4015 return getTruncateExpr(V, Ty, Depth); 4016 return getZeroExtendExpr(V, Ty, Depth); 4017 } 4018 4019 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4020 unsigned Depth) { 4021 Type *SrcTy = V->getType(); 4022 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4023 "Cannot truncate or zero extend with non-integer arguments!"); 4024 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4025 return V; // No conversion 4026 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4027 return getTruncateExpr(V, Ty, Depth); 4028 return getSignExtendExpr(V, Ty, Depth); 4029 } 4030 4031 const SCEV * 4032 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4033 Type *SrcTy = V->getType(); 4034 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4035 "Cannot noop or zero extend with non-integer arguments!"); 4036 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4037 "getNoopOrZeroExtend cannot truncate!"); 4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4039 return V; // No conversion 4040 return getZeroExtendExpr(V, Ty); 4041 } 4042 4043 const SCEV * 4044 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4045 Type *SrcTy = V->getType(); 4046 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4047 "Cannot noop or sign extend with non-integer arguments!"); 4048 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4049 "getNoopOrSignExtend cannot truncate!"); 4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4051 return V; // No conversion 4052 return getSignExtendExpr(V, Ty); 4053 } 4054 4055 const SCEV * 4056 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4057 Type *SrcTy = V->getType(); 4058 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4059 "Cannot noop or any extend with non-integer arguments!"); 4060 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4061 "getNoopOrAnyExtend cannot truncate!"); 4062 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4063 return V; // No conversion 4064 return getAnyExtendExpr(V, Ty); 4065 } 4066 4067 const SCEV * 4068 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4069 Type *SrcTy = V->getType(); 4070 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4071 "Cannot truncate or noop with non-integer arguments!"); 4072 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4073 "getTruncateOrNoop cannot extend!"); 4074 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4075 return V; // No conversion 4076 return getTruncateExpr(V, Ty); 4077 } 4078 4079 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4080 const SCEV *RHS) { 4081 const SCEV *PromotedLHS = LHS; 4082 const SCEV *PromotedRHS = RHS; 4083 4084 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4085 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4086 else 4087 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4088 4089 return getUMaxExpr(PromotedLHS, PromotedRHS); 4090 } 4091 4092 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4093 const SCEV *RHS) { 4094 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4095 return getUMinFromMismatchedTypes(Ops); 4096 } 4097 4098 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4099 SmallVectorImpl<const SCEV *> &Ops) { 4100 assert(!Ops.empty() && "At least one operand must be!"); 4101 // Trivial case. 4102 if (Ops.size() == 1) 4103 return Ops[0]; 4104 4105 // Find the max type first. 4106 Type *MaxType = nullptr; 4107 for (auto *S : Ops) 4108 if (MaxType) 4109 MaxType = getWiderType(MaxType, S->getType()); 4110 else 4111 MaxType = S->getType(); 4112 assert(MaxType && "Failed to find maximum type!"); 4113 4114 // Extend all ops to max type. 4115 SmallVector<const SCEV *, 2> PromotedOps; 4116 for (auto *S : Ops) 4117 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4118 4119 // Generate umin. 4120 return getUMinExpr(PromotedOps); 4121 } 4122 4123 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4124 // A pointer operand may evaluate to a nonpointer expression, such as null. 4125 if (!V->getType()->isPointerTy()) 4126 return V; 4127 4128 while (true) { 4129 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4130 V = Cast->getOperand(); 4131 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4132 const SCEV *PtrOp = nullptr; 4133 for (const SCEV *NAryOp : NAry->operands()) { 4134 if (NAryOp->getType()->isPointerTy()) { 4135 // Cannot find the base of an expression with multiple pointer ops. 4136 if (PtrOp) 4137 return V; 4138 PtrOp = NAryOp; 4139 } 4140 } 4141 if (!PtrOp) // All operands were non-pointer. 4142 return V; 4143 V = PtrOp; 4144 } else // Not something we can look further into. 4145 return V; 4146 } 4147 } 4148 4149 /// Push users of the given Instruction onto the given Worklist. 4150 static void 4151 PushDefUseChildren(Instruction *I, 4152 SmallVectorImpl<Instruction *> &Worklist) { 4153 // Push the def-use children onto the Worklist stack. 4154 for (User *U : I->users()) 4155 Worklist.push_back(cast<Instruction>(U)); 4156 } 4157 4158 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4159 SmallVector<Instruction *, 16> Worklist; 4160 PushDefUseChildren(PN, Worklist); 4161 4162 SmallPtrSet<Instruction *, 8> Visited; 4163 Visited.insert(PN); 4164 while (!Worklist.empty()) { 4165 Instruction *I = Worklist.pop_back_val(); 4166 if (!Visited.insert(I).second) 4167 continue; 4168 4169 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4170 if (It != ValueExprMap.end()) { 4171 const SCEV *Old = It->second; 4172 4173 // Short-circuit the def-use traversal if the symbolic name 4174 // ceases to appear in expressions. 4175 if (Old != SymName && !hasOperand(Old, SymName)) 4176 continue; 4177 4178 // SCEVUnknown for a PHI either means that it has an unrecognized 4179 // structure, it's a PHI that's in the progress of being computed 4180 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4181 // additional loop trip count information isn't going to change anything. 4182 // In the second case, createNodeForPHI will perform the necessary 4183 // updates on its own when it gets to that point. In the third, we do 4184 // want to forget the SCEVUnknown. 4185 if (!isa<PHINode>(I) || 4186 !isa<SCEVUnknown>(Old) || 4187 (I != PN && Old == SymName)) { 4188 eraseValueFromMap(It->first); 4189 forgetMemoizedResults(Old); 4190 } 4191 } 4192 4193 PushDefUseChildren(I, Worklist); 4194 } 4195 } 4196 4197 namespace { 4198 4199 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4200 /// expression in case its Loop is L. If it is not L then 4201 /// if IgnoreOtherLoops is true then use AddRec itself 4202 /// otherwise rewrite cannot be done. 4203 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4204 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4205 public: 4206 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4207 bool IgnoreOtherLoops = true) { 4208 SCEVInitRewriter Rewriter(L, SE); 4209 const SCEV *Result = Rewriter.visit(S); 4210 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4211 return SE.getCouldNotCompute(); 4212 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4213 ? SE.getCouldNotCompute() 4214 : Result; 4215 } 4216 4217 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4218 if (!SE.isLoopInvariant(Expr, L)) 4219 SeenLoopVariantSCEVUnknown = true; 4220 return Expr; 4221 } 4222 4223 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4224 // Only re-write AddRecExprs for this loop. 4225 if (Expr->getLoop() == L) 4226 return Expr->getStart(); 4227 SeenOtherLoops = true; 4228 return Expr; 4229 } 4230 4231 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4232 4233 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4234 4235 private: 4236 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4237 : SCEVRewriteVisitor(SE), L(L) {} 4238 4239 const Loop *L; 4240 bool SeenLoopVariantSCEVUnknown = false; 4241 bool SeenOtherLoops = false; 4242 }; 4243 4244 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4245 /// increment expression in case its Loop is L. If it is not L then 4246 /// use AddRec itself. 4247 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4248 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4249 public: 4250 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4251 SCEVPostIncRewriter Rewriter(L, SE); 4252 const SCEV *Result = Rewriter.visit(S); 4253 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4254 ? SE.getCouldNotCompute() 4255 : Result; 4256 } 4257 4258 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4259 if (!SE.isLoopInvariant(Expr, L)) 4260 SeenLoopVariantSCEVUnknown = true; 4261 return Expr; 4262 } 4263 4264 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4265 // Only re-write AddRecExprs for this loop. 4266 if (Expr->getLoop() == L) 4267 return Expr->getPostIncExpr(SE); 4268 SeenOtherLoops = true; 4269 return Expr; 4270 } 4271 4272 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4273 4274 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4275 4276 private: 4277 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4278 : SCEVRewriteVisitor(SE), L(L) {} 4279 4280 const Loop *L; 4281 bool SeenLoopVariantSCEVUnknown = false; 4282 bool SeenOtherLoops = false; 4283 }; 4284 4285 /// This class evaluates the compare condition by matching it against the 4286 /// condition of loop latch. If there is a match we assume a true value 4287 /// for the condition while building SCEV nodes. 4288 class SCEVBackedgeConditionFolder 4289 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4290 public: 4291 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4292 ScalarEvolution &SE) { 4293 bool IsPosBECond = false; 4294 Value *BECond = nullptr; 4295 if (BasicBlock *Latch = L->getLoopLatch()) { 4296 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4297 if (BI && BI->isConditional()) { 4298 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4299 "Both outgoing branches should not target same header!"); 4300 BECond = BI->getCondition(); 4301 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4302 } else { 4303 return S; 4304 } 4305 } 4306 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4307 return Rewriter.visit(S); 4308 } 4309 4310 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4311 const SCEV *Result = Expr; 4312 bool InvariantF = SE.isLoopInvariant(Expr, L); 4313 4314 if (!InvariantF) { 4315 Instruction *I = cast<Instruction>(Expr->getValue()); 4316 switch (I->getOpcode()) { 4317 case Instruction::Select: { 4318 SelectInst *SI = cast<SelectInst>(I); 4319 Optional<const SCEV *> Res = 4320 compareWithBackedgeCondition(SI->getCondition()); 4321 if (Res.hasValue()) { 4322 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4323 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4324 } 4325 break; 4326 } 4327 default: { 4328 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4329 if (Res.hasValue()) 4330 Result = Res.getValue(); 4331 break; 4332 } 4333 } 4334 } 4335 return Result; 4336 } 4337 4338 private: 4339 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4340 bool IsPosBECond, ScalarEvolution &SE) 4341 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4342 IsPositiveBECond(IsPosBECond) {} 4343 4344 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4345 4346 const Loop *L; 4347 /// Loop back condition. 4348 Value *BackedgeCond = nullptr; 4349 /// Set to true if loop back is on positive branch condition. 4350 bool IsPositiveBECond; 4351 }; 4352 4353 Optional<const SCEV *> 4354 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4355 4356 // If value matches the backedge condition for loop latch, 4357 // then return a constant evolution node based on loopback 4358 // branch taken. 4359 if (BackedgeCond == IC) 4360 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4361 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4362 return None; 4363 } 4364 4365 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4366 public: 4367 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4368 ScalarEvolution &SE) { 4369 SCEVShiftRewriter Rewriter(L, SE); 4370 const SCEV *Result = Rewriter.visit(S); 4371 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4372 } 4373 4374 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4375 // Only allow AddRecExprs for this loop. 4376 if (!SE.isLoopInvariant(Expr, L)) 4377 Valid = false; 4378 return Expr; 4379 } 4380 4381 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4382 if (Expr->getLoop() == L && Expr->isAffine()) 4383 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4384 Valid = false; 4385 return Expr; 4386 } 4387 4388 bool isValid() { return Valid; } 4389 4390 private: 4391 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4392 : SCEVRewriteVisitor(SE), L(L) {} 4393 4394 const Loop *L; 4395 bool Valid = true; 4396 }; 4397 4398 } // end anonymous namespace 4399 4400 SCEV::NoWrapFlags 4401 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4402 if (!AR->isAffine()) 4403 return SCEV::FlagAnyWrap; 4404 4405 using OBO = OverflowingBinaryOperator; 4406 4407 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4408 4409 if (!AR->hasNoSignedWrap()) { 4410 ConstantRange AddRecRange = getSignedRange(AR); 4411 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4412 4413 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4414 Instruction::Add, IncRange, OBO::NoSignedWrap); 4415 if (NSWRegion.contains(AddRecRange)) 4416 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4417 } 4418 4419 if (!AR->hasNoUnsignedWrap()) { 4420 ConstantRange AddRecRange = getUnsignedRange(AR); 4421 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4422 4423 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4424 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4425 if (NUWRegion.contains(AddRecRange)) 4426 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4427 } 4428 4429 return Result; 4430 } 4431 4432 SCEV::NoWrapFlags 4433 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4434 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4435 4436 if (AR->hasNoSignedWrap()) 4437 return Result; 4438 4439 if (!AR->isAffine()) 4440 return Result; 4441 4442 const SCEV *Step = AR->getStepRecurrence(*this); 4443 const Loop *L = AR->getLoop(); 4444 4445 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4446 // Note that this serves two purposes: It filters out loops that are 4447 // simply not analyzable, and it covers the case where this code is 4448 // being called from within backedge-taken count analysis, such that 4449 // attempting to ask for the backedge-taken count would likely result 4450 // in infinite recursion. In the later case, the analysis code will 4451 // cope with a conservative value, and it will take care to purge 4452 // that value once it has finished. 4453 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4454 4455 // Normally, in the cases we can prove no-overflow via a 4456 // backedge guarding condition, we can also compute a backedge 4457 // taken count for the loop. The exceptions are assumptions and 4458 // guards present in the loop -- SCEV is not great at exploiting 4459 // these to compute max backedge taken counts, but can still use 4460 // these to prove lack of overflow. Use this fact to avoid 4461 // doing extra work that may not pay off. 4462 4463 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4464 AC.assumptions().empty()) 4465 return Result; 4466 4467 // If the backedge is guarded by a comparison with the pre-inc value the 4468 // addrec is safe. Also, if the entry is guarded by a comparison with the 4469 // start value and the backedge is guarded by a comparison with the post-inc 4470 // value, the addrec is safe. 4471 ICmpInst::Predicate Pred; 4472 const SCEV *OverflowLimit = 4473 getSignedOverflowLimitForStep(Step, &Pred, this); 4474 if (OverflowLimit && 4475 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4476 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4477 Result = setFlags(Result, SCEV::FlagNSW); 4478 } 4479 return Result; 4480 } 4481 SCEV::NoWrapFlags 4482 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4483 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4484 4485 if (AR->hasNoUnsignedWrap()) 4486 return Result; 4487 4488 if (!AR->isAffine()) 4489 return Result; 4490 4491 const SCEV *Step = AR->getStepRecurrence(*this); 4492 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4493 const Loop *L = AR->getLoop(); 4494 4495 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4496 // Note that this serves two purposes: It filters out loops that are 4497 // simply not analyzable, and it covers the case where this code is 4498 // being called from within backedge-taken count analysis, such that 4499 // attempting to ask for the backedge-taken count would likely result 4500 // in infinite recursion. In the later case, the analysis code will 4501 // cope with a conservative value, and it will take care to purge 4502 // that value once it has finished. 4503 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4504 4505 // Normally, in the cases we can prove no-overflow via a 4506 // backedge guarding condition, we can also compute a backedge 4507 // taken count for the loop. The exceptions are assumptions and 4508 // guards present in the loop -- SCEV is not great at exploiting 4509 // these to compute max backedge taken counts, but can still use 4510 // these to prove lack of overflow. Use this fact to avoid 4511 // doing extra work that may not pay off. 4512 4513 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4514 AC.assumptions().empty()) 4515 return Result; 4516 4517 // If the backedge is guarded by a comparison with the pre-inc value the 4518 // addrec is safe. Also, if the entry is guarded by a comparison with the 4519 // start value and the backedge is guarded by a comparison with the post-inc 4520 // value, the addrec is safe. 4521 if (isKnownPositive(Step)) { 4522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4523 getUnsignedRangeMax(Step)); 4524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4525 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4526 Result = setFlags(Result, SCEV::FlagNUW); 4527 } 4528 } 4529 4530 return Result; 4531 } 4532 4533 namespace { 4534 4535 /// Represents an abstract binary operation. This may exist as a 4536 /// normal instruction or constant expression, or may have been 4537 /// derived from an expression tree. 4538 struct BinaryOp { 4539 unsigned Opcode; 4540 Value *LHS; 4541 Value *RHS; 4542 bool IsNSW = false; 4543 bool IsNUW = false; 4544 bool IsExact = false; 4545 4546 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4547 /// constant expression. 4548 Operator *Op = nullptr; 4549 4550 explicit BinaryOp(Operator *Op) 4551 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4552 Op(Op) { 4553 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4554 IsNSW = OBO->hasNoSignedWrap(); 4555 IsNUW = OBO->hasNoUnsignedWrap(); 4556 } 4557 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4558 IsExact = PEO->isExact(); 4559 } 4560 4561 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4562 bool IsNUW = false, bool IsExact = false) 4563 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4564 IsExact(IsExact) {} 4565 }; 4566 4567 } // end anonymous namespace 4568 4569 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4570 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4571 auto *Op = dyn_cast<Operator>(V); 4572 if (!Op) 4573 return None; 4574 4575 // Implementation detail: all the cleverness here should happen without 4576 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4577 // SCEV expressions when possible, and we should not break that. 4578 4579 switch (Op->getOpcode()) { 4580 case Instruction::Add: 4581 case Instruction::Sub: 4582 case Instruction::Mul: 4583 case Instruction::UDiv: 4584 case Instruction::URem: 4585 case Instruction::And: 4586 case Instruction::Or: 4587 case Instruction::AShr: 4588 case Instruction::Shl: 4589 return BinaryOp(Op); 4590 4591 case Instruction::Xor: 4592 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4593 // If the RHS of the xor is a signmask, then this is just an add. 4594 // Instcombine turns add of signmask into xor as a strength reduction step. 4595 if (RHSC->getValue().isSignMask()) 4596 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4597 return BinaryOp(Op); 4598 4599 case Instruction::LShr: 4600 // Turn logical shift right of a constant into a unsigned divide. 4601 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4602 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4603 4604 // If the shift count is not less than the bitwidth, the result of 4605 // the shift is undefined. Don't try to analyze it, because the 4606 // resolution chosen here may differ from the resolution chosen in 4607 // other parts of the compiler. 4608 if (SA->getValue().ult(BitWidth)) { 4609 Constant *X = 4610 ConstantInt::get(SA->getContext(), 4611 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4612 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4613 } 4614 } 4615 return BinaryOp(Op); 4616 4617 case Instruction::ExtractValue: { 4618 auto *EVI = cast<ExtractValueInst>(Op); 4619 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4620 break; 4621 4622 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4623 if (!WO) 4624 break; 4625 4626 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4627 bool Signed = WO->isSigned(); 4628 // TODO: Should add nuw/nsw flags for mul as well. 4629 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4630 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4631 4632 // Now that we know that all uses of the arithmetic-result component of 4633 // CI are guarded by the overflow check, we can go ahead and pretend 4634 // that the arithmetic is non-overflowing. 4635 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4636 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4637 } 4638 4639 default: 4640 break; 4641 } 4642 4643 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4644 // semantics as a Sub, return a binary sub expression. 4645 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4646 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4647 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4648 4649 return None; 4650 } 4651 4652 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4653 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4654 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4655 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4656 /// follows one of the following patterns: 4657 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4658 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4659 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4660 /// we return the type of the truncation operation, and indicate whether the 4661 /// truncated type should be treated as signed/unsigned by setting 4662 /// \p Signed to true/false, respectively. 4663 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4664 bool &Signed, ScalarEvolution &SE) { 4665 // The case where Op == SymbolicPHI (that is, with no type conversions on 4666 // the way) is handled by the regular add recurrence creating logic and 4667 // would have already been triggered in createAddRecForPHI. Reaching it here 4668 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4669 // because one of the other operands of the SCEVAddExpr updating this PHI is 4670 // not invariant). 4671 // 4672 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4673 // this case predicates that allow us to prove that Op == SymbolicPHI will 4674 // be added. 4675 if (Op == SymbolicPHI) 4676 return nullptr; 4677 4678 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4679 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4680 if (SourceBits != NewBits) 4681 return nullptr; 4682 4683 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4684 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4685 if (!SExt && !ZExt) 4686 return nullptr; 4687 const SCEVTruncateExpr *Trunc = 4688 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4689 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4690 if (!Trunc) 4691 return nullptr; 4692 const SCEV *X = Trunc->getOperand(); 4693 if (X != SymbolicPHI) 4694 return nullptr; 4695 Signed = SExt != nullptr; 4696 return Trunc->getType(); 4697 } 4698 4699 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4700 if (!PN->getType()->isIntegerTy()) 4701 return nullptr; 4702 const Loop *L = LI.getLoopFor(PN->getParent()); 4703 if (!L || L->getHeader() != PN->getParent()) 4704 return nullptr; 4705 return L; 4706 } 4707 4708 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4709 // computation that updates the phi follows the following pattern: 4710 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4711 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4712 // If so, try to see if it can be rewritten as an AddRecExpr under some 4713 // Predicates. If successful, return them as a pair. Also cache the results 4714 // of the analysis. 4715 // 4716 // Example usage scenario: 4717 // Say the Rewriter is called for the following SCEV: 4718 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4719 // where: 4720 // %X = phi i64 (%Start, %BEValue) 4721 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4722 // and call this function with %SymbolicPHI = %X. 4723 // 4724 // The analysis will find that the value coming around the backedge has 4725 // the following SCEV: 4726 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4727 // Upon concluding that this matches the desired pattern, the function 4728 // will return the pair {NewAddRec, SmallPredsVec} where: 4729 // NewAddRec = {%Start,+,%Step} 4730 // SmallPredsVec = {P1, P2, P3} as follows: 4731 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4732 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4733 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4734 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4735 // under the predicates {P1,P2,P3}. 4736 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4737 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4738 // 4739 // TODO's: 4740 // 4741 // 1) Extend the Induction descriptor to also support inductions that involve 4742 // casts: When needed (namely, when we are called in the context of the 4743 // vectorizer induction analysis), a Set of cast instructions will be 4744 // populated by this method, and provided back to isInductionPHI. This is 4745 // needed to allow the vectorizer to properly record them to be ignored by 4746 // the cost model and to avoid vectorizing them (otherwise these casts, 4747 // which are redundant under the runtime overflow checks, will be 4748 // vectorized, which can be costly). 4749 // 4750 // 2) Support additional induction/PHISCEV patterns: We also want to support 4751 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4752 // after the induction update operation (the induction increment): 4753 // 4754 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4755 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4756 // 4757 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4758 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4759 // 4760 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4761 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4762 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4763 SmallVector<const SCEVPredicate *, 3> Predicates; 4764 4765 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4766 // return an AddRec expression under some predicate. 4767 4768 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4769 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4770 assert(L && "Expecting an integer loop header phi"); 4771 4772 // The loop may have multiple entrances or multiple exits; we can analyze 4773 // this phi as an addrec if it has a unique entry value and a unique 4774 // backedge value. 4775 Value *BEValueV = nullptr, *StartValueV = nullptr; 4776 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4777 Value *V = PN->getIncomingValue(i); 4778 if (L->contains(PN->getIncomingBlock(i))) { 4779 if (!BEValueV) { 4780 BEValueV = V; 4781 } else if (BEValueV != V) { 4782 BEValueV = nullptr; 4783 break; 4784 } 4785 } else if (!StartValueV) { 4786 StartValueV = V; 4787 } else if (StartValueV != V) { 4788 StartValueV = nullptr; 4789 break; 4790 } 4791 } 4792 if (!BEValueV || !StartValueV) 4793 return None; 4794 4795 const SCEV *BEValue = getSCEV(BEValueV); 4796 4797 // If the value coming around the backedge is an add with the symbolic 4798 // value we just inserted, possibly with casts that we can ignore under 4799 // an appropriate runtime guard, then we found a simple induction variable! 4800 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4801 if (!Add) 4802 return None; 4803 4804 // If there is a single occurrence of the symbolic value, possibly 4805 // casted, replace it with a recurrence. 4806 unsigned FoundIndex = Add->getNumOperands(); 4807 Type *TruncTy = nullptr; 4808 bool Signed; 4809 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4810 if ((TruncTy = 4811 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4812 if (FoundIndex == e) { 4813 FoundIndex = i; 4814 break; 4815 } 4816 4817 if (FoundIndex == Add->getNumOperands()) 4818 return None; 4819 4820 // Create an add with everything but the specified operand. 4821 SmallVector<const SCEV *, 8> Ops; 4822 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4823 if (i != FoundIndex) 4824 Ops.push_back(Add->getOperand(i)); 4825 const SCEV *Accum = getAddExpr(Ops); 4826 4827 // The runtime checks will not be valid if the step amount is 4828 // varying inside the loop. 4829 if (!isLoopInvariant(Accum, L)) 4830 return None; 4831 4832 // *** Part2: Create the predicates 4833 4834 // Analysis was successful: we have a phi-with-cast pattern for which we 4835 // can return an AddRec expression under the following predicates: 4836 // 4837 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4838 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4839 // P2: An Equal predicate that guarantees that 4840 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4841 // P3: An Equal predicate that guarantees that 4842 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4843 // 4844 // As we next prove, the above predicates guarantee that: 4845 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4846 // 4847 // 4848 // More formally, we want to prove that: 4849 // Expr(i+1) = Start + (i+1) * Accum 4850 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4851 // 4852 // Given that: 4853 // 1) Expr(0) = Start 4854 // 2) Expr(1) = Start + Accum 4855 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4856 // 3) Induction hypothesis (step i): 4857 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4858 // 4859 // Proof: 4860 // Expr(i+1) = 4861 // = Start + (i+1)*Accum 4862 // = (Start + i*Accum) + Accum 4863 // = Expr(i) + Accum 4864 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4865 // :: from step i 4866 // 4867 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4868 // 4869 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4870 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4871 // + Accum :: from P3 4872 // 4873 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4874 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4875 // 4876 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4877 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4878 // 4879 // By induction, the same applies to all iterations 1<=i<n: 4880 // 4881 4882 // Create a truncated addrec for which we will add a no overflow check (P1). 4883 const SCEV *StartVal = getSCEV(StartValueV); 4884 const SCEV *PHISCEV = 4885 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4886 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4887 4888 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4889 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4890 // will be constant. 4891 // 4892 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4893 // add P1. 4894 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4895 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4896 Signed ? SCEVWrapPredicate::IncrementNSSW 4897 : SCEVWrapPredicate::IncrementNUSW; 4898 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4899 Predicates.push_back(AddRecPred); 4900 } 4901 4902 // Create the Equal Predicates P2,P3: 4903 4904 // It is possible that the predicates P2 and/or P3 are computable at 4905 // compile time due to StartVal and/or Accum being constants. 4906 // If either one is, then we can check that now and escape if either P2 4907 // or P3 is false. 4908 4909 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4910 // for each of StartVal and Accum 4911 auto getExtendedExpr = [&](const SCEV *Expr, 4912 bool CreateSignExtend) -> const SCEV * { 4913 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4914 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4915 const SCEV *ExtendedExpr = 4916 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4917 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4918 return ExtendedExpr; 4919 }; 4920 4921 // Given: 4922 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4923 // = getExtendedExpr(Expr) 4924 // Determine whether the predicate P: Expr == ExtendedExpr 4925 // is known to be false at compile time 4926 auto PredIsKnownFalse = [&](const SCEV *Expr, 4927 const SCEV *ExtendedExpr) -> bool { 4928 return Expr != ExtendedExpr && 4929 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4930 }; 4931 4932 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4933 if (PredIsKnownFalse(StartVal, StartExtended)) { 4934 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4935 return None; 4936 } 4937 4938 // The Step is always Signed (because the overflow checks are either 4939 // NSSW or NUSW) 4940 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4941 if (PredIsKnownFalse(Accum, AccumExtended)) { 4942 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4943 return None; 4944 } 4945 4946 auto AppendPredicate = [&](const SCEV *Expr, 4947 const SCEV *ExtendedExpr) -> void { 4948 if (Expr != ExtendedExpr && 4949 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4950 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4951 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4952 Predicates.push_back(Pred); 4953 } 4954 }; 4955 4956 AppendPredicate(StartVal, StartExtended); 4957 AppendPredicate(Accum, AccumExtended); 4958 4959 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4960 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4961 // into NewAR if it will also add the runtime overflow checks specified in 4962 // Predicates. 4963 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4964 4965 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4966 std::make_pair(NewAR, Predicates); 4967 // Remember the result of the analysis for this SCEV at this locayyytion. 4968 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4969 return PredRewrite; 4970 } 4971 4972 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4973 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4974 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4975 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4976 if (!L) 4977 return None; 4978 4979 // Check to see if we already analyzed this PHI. 4980 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4981 if (I != PredicatedSCEVRewrites.end()) { 4982 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4983 I->second; 4984 // Analysis was done before and failed to create an AddRec: 4985 if (Rewrite.first == SymbolicPHI) 4986 return None; 4987 // Analysis was done before and succeeded to create an AddRec under 4988 // a predicate: 4989 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4990 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4991 return Rewrite; 4992 } 4993 4994 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4995 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4996 4997 // Record in the cache that the analysis failed 4998 if (!Rewrite) { 4999 SmallVector<const SCEVPredicate *, 3> Predicates; 5000 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5001 return None; 5002 } 5003 5004 return Rewrite; 5005 } 5006 5007 // FIXME: This utility is currently required because the Rewriter currently 5008 // does not rewrite this expression: 5009 // {0, +, (sext ix (trunc iy to ix) to iy)} 5010 // into {0, +, %step}, 5011 // even when the following Equal predicate exists: 5012 // "%step == (sext ix (trunc iy to ix) to iy)". 5013 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5014 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5015 if (AR1 == AR2) 5016 return true; 5017 5018 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5019 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5020 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5021 return false; 5022 return true; 5023 }; 5024 5025 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5026 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5027 return false; 5028 return true; 5029 } 5030 5031 /// A helper function for createAddRecFromPHI to handle simple cases. 5032 /// 5033 /// This function tries to find an AddRec expression for the simplest (yet most 5034 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5035 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5036 /// technique for finding the AddRec expression. 5037 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5038 Value *BEValueV, 5039 Value *StartValueV) { 5040 const Loop *L = LI.getLoopFor(PN->getParent()); 5041 assert(L && L->getHeader() == PN->getParent()); 5042 assert(BEValueV && StartValueV); 5043 5044 auto BO = MatchBinaryOp(BEValueV, DT); 5045 if (!BO) 5046 return nullptr; 5047 5048 if (BO->Opcode != Instruction::Add) 5049 return nullptr; 5050 5051 const SCEV *Accum = nullptr; 5052 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5053 Accum = getSCEV(BO->RHS); 5054 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5055 Accum = getSCEV(BO->LHS); 5056 5057 if (!Accum) 5058 return nullptr; 5059 5060 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5061 if (BO->IsNUW) 5062 Flags = setFlags(Flags, SCEV::FlagNUW); 5063 if (BO->IsNSW) 5064 Flags = setFlags(Flags, SCEV::FlagNSW); 5065 5066 const SCEV *StartVal = getSCEV(StartValueV); 5067 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5068 5069 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5070 5071 // We can add Flags to the post-inc expression only if we 5072 // know that it is *undefined behavior* for BEValueV to 5073 // overflow. 5074 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5075 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5076 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5077 5078 return PHISCEV; 5079 } 5080 5081 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5082 const Loop *L = LI.getLoopFor(PN->getParent()); 5083 if (!L || L->getHeader() != PN->getParent()) 5084 return nullptr; 5085 5086 // The loop may have multiple entrances or multiple exits; we can analyze 5087 // this phi as an addrec if it has a unique entry value and a unique 5088 // backedge value. 5089 Value *BEValueV = nullptr, *StartValueV = nullptr; 5090 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5091 Value *V = PN->getIncomingValue(i); 5092 if (L->contains(PN->getIncomingBlock(i))) { 5093 if (!BEValueV) { 5094 BEValueV = V; 5095 } else if (BEValueV != V) { 5096 BEValueV = nullptr; 5097 break; 5098 } 5099 } else if (!StartValueV) { 5100 StartValueV = V; 5101 } else if (StartValueV != V) { 5102 StartValueV = nullptr; 5103 break; 5104 } 5105 } 5106 if (!BEValueV || !StartValueV) 5107 return nullptr; 5108 5109 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5110 "PHI node already processed?"); 5111 5112 // First, try to find AddRec expression without creating a fictituos symbolic 5113 // value for PN. 5114 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5115 return S; 5116 5117 // Handle PHI node value symbolically. 5118 const SCEV *SymbolicName = getUnknown(PN); 5119 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5120 5121 // Using this symbolic name for the PHI, analyze the value coming around 5122 // the back-edge. 5123 const SCEV *BEValue = getSCEV(BEValueV); 5124 5125 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5126 // has a special value for the first iteration of the loop. 5127 5128 // If the value coming around the backedge is an add with the symbolic 5129 // value we just inserted, then we found a simple induction variable! 5130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5131 // If there is a single occurrence of the symbolic value, replace it 5132 // with a recurrence. 5133 unsigned FoundIndex = Add->getNumOperands(); 5134 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5135 if (Add->getOperand(i) == SymbolicName) 5136 if (FoundIndex == e) { 5137 FoundIndex = i; 5138 break; 5139 } 5140 5141 if (FoundIndex != Add->getNumOperands()) { 5142 // Create an add with everything but the specified operand. 5143 SmallVector<const SCEV *, 8> Ops; 5144 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5145 if (i != FoundIndex) 5146 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5147 L, *this)); 5148 const SCEV *Accum = getAddExpr(Ops); 5149 5150 // This is not a valid addrec if the step amount is varying each 5151 // loop iteration, but is not itself an addrec in this loop. 5152 if (isLoopInvariant(Accum, L) || 5153 (isa<SCEVAddRecExpr>(Accum) && 5154 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5155 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5156 5157 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5158 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5159 if (BO->IsNUW) 5160 Flags = setFlags(Flags, SCEV::FlagNUW); 5161 if (BO->IsNSW) 5162 Flags = setFlags(Flags, SCEV::FlagNSW); 5163 } 5164 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5165 // If the increment is an inbounds GEP, then we know the address 5166 // space cannot be wrapped around. We cannot make any guarantee 5167 // about signed or unsigned overflow because pointers are 5168 // unsigned but we may have a negative index from the base 5169 // pointer. We can guarantee that no unsigned wrap occurs if the 5170 // indices form a positive value. 5171 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5172 Flags = setFlags(Flags, SCEV::FlagNW); 5173 5174 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5175 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5176 Flags = setFlags(Flags, SCEV::FlagNUW); 5177 } 5178 5179 // We cannot transfer nuw and nsw flags from subtraction 5180 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5181 // for instance. 5182 } 5183 5184 const SCEV *StartVal = getSCEV(StartValueV); 5185 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5186 5187 // Okay, for the entire analysis of this edge we assumed the PHI 5188 // to be symbolic. We now need to go back and purge all of the 5189 // entries for the scalars that use the symbolic expression. 5190 forgetSymbolicName(PN, SymbolicName); 5191 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5192 5193 // We can add Flags to the post-inc expression only if we 5194 // know that it is *undefined behavior* for BEValueV to 5195 // overflow. 5196 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5197 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5198 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5199 5200 return PHISCEV; 5201 } 5202 } 5203 } else { 5204 // Otherwise, this could be a loop like this: 5205 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5206 // In this case, j = {1,+,1} and BEValue is j. 5207 // Because the other in-value of i (0) fits the evolution of BEValue 5208 // i really is an addrec evolution. 5209 // 5210 // We can generalize this saying that i is the shifted value of BEValue 5211 // by one iteration: 5212 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5213 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5214 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5215 if (Shifted != getCouldNotCompute() && 5216 Start != getCouldNotCompute()) { 5217 const SCEV *StartVal = getSCEV(StartValueV); 5218 if (Start == StartVal) { 5219 // Okay, for the entire analysis of this edge we assumed the PHI 5220 // to be symbolic. We now need to go back and purge all of the 5221 // entries for the scalars that use the symbolic expression. 5222 forgetSymbolicName(PN, SymbolicName); 5223 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5224 return Shifted; 5225 } 5226 } 5227 } 5228 5229 // Remove the temporary PHI node SCEV that has been inserted while intending 5230 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5231 // as it will prevent later (possibly simpler) SCEV expressions to be added 5232 // to the ValueExprMap. 5233 eraseValueFromMap(PN); 5234 5235 return nullptr; 5236 } 5237 5238 // Checks if the SCEV S is available at BB. S is considered available at BB 5239 // if S can be materialized at BB without introducing a fault. 5240 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5241 BasicBlock *BB) { 5242 struct CheckAvailable { 5243 bool TraversalDone = false; 5244 bool Available = true; 5245 5246 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5247 BasicBlock *BB = nullptr; 5248 DominatorTree &DT; 5249 5250 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5251 : L(L), BB(BB), DT(DT) {} 5252 5253 bool setUnavailable() { 5254 TraversalDone = true; 5255 Available = false; 5256 return false; 5257 } 5258 5259 bool follow(const SCEV *S) { 5260 switch (S->getSCEVType()) { 5261 case scConstant: 5262 case scPtrToInt: 5263 case scTruncate: 5264 case scZeroExtend: 5265 case scSignExtend: 5266 case scAddExpr: 5267 case scMulExpr: 5268 case scUMaxExpr: 5269 case scSMaxExpr: 5270 case scUMinExpr: 5271 case scSMinExpr: 5272 // These expressions are available if their operand(s) is/are. 5273 return true; 5274 5275 case scAddRecExpr: { 5276 // We allow add recurrences that are on the loop BB is in, or some 5277 // outer loop. This guarantees availability because the value of the 5278 // add recurrence at BB is simply the "current" value of the induction 5279 // variable. We can relax this in the future; for instance an add 5280 // recurrence on a sibling dominating loop is also available at BB. 5281 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5282 if (L && (ARLoop == L || ARLoop->contains(L))) 5283 return true; 5284 5285 return setUnavailable(); 5286 } 5287 5288 case scUnknown: { 5289 // For SCEVUnknown, we check for simple dominance. 5290 const auto *SU = cast<SCEVUnknown>(S); 5291 Value *V = SU->getValue(); 5292 5293 if (isa<Argument>(V)) 5294 return false; 5295 5296 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5297 return false; 5298 5299 return setUnavailable(); 5300 } 5301 5302 case scUDivExpr: 5303 case scCouldNotCompute: 5304 // We do not try to smart about these at all. 5305 return setUnavailable(); 5306 } 5307 llvm_unreachable("Unknown SCEV kind!"); 5308 } 5309 5310 bool isDone() { return TraversalDone; } 5311 }; 5312 5313 CheckAvailable CA(L, BB, DT); 5314 SCEVTraversal<CheckAvailable> ST(CA); 5315 5316 ST.visitAll(S); 5317 return CA.Available; 5318 } 5319 5320 // Try to match a control flow sequence that branches out at BI and merges back 5321 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5322 // match. 5323 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5324 Value *&C, Value *&LHS, Value *&RHS) { 5325 C = BI->getCondition(); 5326 5327 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5328 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5329 5330 if (!LeftEdge.isSingleEdge()) 5331 return false; 5332 5333 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5334 5335 Use &LeftUse = Merge->getOperandUse(0); 5336 Use &RightUse = Merge->getOperandUse(1); 5337 5338 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5339 LHS = LeftUse; 5340 RHS = RightUse; 5341 return true; 5342 } 5343 5344 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5345 LHS = RightUse; 5346 RHS = LeftUse; 5347 return true; 5348 } 5349 5350 return false; 5351 } 5352 5353 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5354 auto IsReachable = 5355 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5356 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5357 const Loop *L = LI.getLoopFor(PN->getParent()); 5358 5359 // We don't want to break LCSSA, even in a SCEV expression tree. 5360 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5361 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5362 return nullptr; 5363 5364 // Try to match 5365 // 5366 // br %cond, label %left, label %right 5367 // left: 5368 // br label %merge 5369 // right: 5370 // br label %merge 5371 // merge: 5372 // V = phi [ %x, %left ], [ %y, %right ] 5373 // 5374 // as "select %cond, %x, %y" 5375 5376 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5377 assert(IDom && "At least the entry block should dominate PN"); 5378 5379 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5380 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5381 5382 if (BI && BI->isConditional() && 5383 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5384 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5385 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5386 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5387 } 5388 5389 return nullptr; 5390 } 5391 5392 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5393 if (const SCEV *S = createAddRecFromPHI(PN)) 5394 return S; 5395 5396 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5397 return S; 5398 5399 // If the PHI has a single incoming value, follow that value, unless the 5400 // PHI's incoming blocks are in a different loop, in which case doing so 5401 // risks breaking LCSSA form. Instcombine would normally zap these, but 5402 // it doesn't have DominatorTree information, so it may miss cases. 5403 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5404 if (LI.replacementPreservesLCSSAForm(PN, V)) 5405 return getSCEV(V); 5406 5407 // If it's not a loop phi, we can't handle it yet. 5408 return getUnknown(PN); 5409 } 5410 5411 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5412 Value *Cond, 5413 Value *TrueVal, 5414 Value *FalseVal) { 5415 // Handle "constant" branch or select. This can occur for instance when a 5416 // loop pass transforms an inner loop and moves on to process the outer loop. 5417 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5418 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5419 5420 // Try to match some simple smax or umax patterns. 5421 auto *ICI = dyn_cast<ICmpInst>(Cond); 5422 if (!ICI) 5423 return getUnknown(I); 5424 5425 Value *LHS = ICI->getOperand(0); 5426 Value *RHS = ICI->getOperand(1); 5427 5428 switch (ICI->getPredicate()) { 5429 case ICmpInst::ICMP_SLT: 5430 case ICmpInst::ICMP_SLE: 5431 std::swap(LHS, RHS); 5432 LLVM_FALLTHROUGH; 5433 case ICmpInst::ICMP_SGT: 5434 case ICmpInst::ICMP_SGE: 5435 // a >s b ? a+x : b+x -> smax(a, b)+x 5436 // a >s b ? b+x : a+x -> smin(a, b)+x 5437 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5438 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5439 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5440 const SCEV *LA = getSCEV(TrueVal); 5441 const SCEV *RA = getSCEV(FalseVal); 5442 const SCEV *LDiff = getMinusSCEV(LA, LS); 5443 const SCEV *RDiff = getMinusSCEV(RA, RS); 5444 if (LDiff == RDiff) 5445 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5446 LDiff = getMinusSCEV(LA, RS); 5447 RDiff = getMinusSCEV(RA, LS); 5448 if (LDiff == RDiff) 5449 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5450 } 5451 break; 5452 case ICmpInst::ICMP_ULT: 5453 case ICmpInst::ICMP_ULE: 5454 std::swap(LHS, RHS); 5455 LLVM_FALLTHROUGH; 5456 case ICmpInst::ICMP_UGT: 5457 case ICmpInst::ICMP_UGE: 5458 // a >u b ? a+x : b+x -> umax(a, b)+x 5459 // a >u b ? b+x : a+x -> umin(a, b)+x 5460 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5461 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5462 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5463 const SCEV *LA = getSCEV(TrueVal); 5464 const SCEV *RA = getSCEV(FalseVal); 5465 const SCEV *LDiff = getMinusSCEV(LA, LS); 5466 const SCEV *RDiff = getMinusSCEV(RA, RS); 5467 if (LDiff == RDiff) 5468 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5469 LDiff = getMinusSCEV(LA, RS); 5470 RDiff = getMinusSCEV(RA, LS); 5471 if (LDiff == RDiff) 5472 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5473 } 5474 break; 5475 case ICmpInst::ICMP_NE: 5476 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5477 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5478 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5479 const SCEV *One = getOne(I->getType()); 5480 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5481 const SCEV *LA = getSCEV(TrueVal); 5482 const SCEV *RA = getSCEV(FalseVal); 5483 const SCEV *LDiff = getMinusSCEV(LA, LS); 5484 const SCEV *RDiff = getMinusSCEV(RA, One); 5485 if (LDiff == RDiff) 5486 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5487 } 5488 break; 5489 case ICmpInst::ICMP_EQ: 5490 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5491 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5492 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5493 const SCEV *One = getOne(I->getType()); 5494 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5495 const SCEV *LA = getSCEV(TrueVal); 5496 const SCEV *RA = getSCEV(FalseVal); 5497 const SCEV *LDiff = getMinusSCEV(LA, One); 5498 const SCEV *RDiff = getMinusSCEV(RA, LS); 5499 if (LDiff == RDiff) 5500 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5501 } 5502 break; 5503 default: 5504 break; 5505 } 5506 5507 return getUnknown(I); 5508 } 5509 5510 /// Expand GEP instructions into add and multiply operations. This allows them 5511 /// to be analyzed by regular SCEV code. 5512 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5513 // Don't attempt to analyze GEPs over unsized objects. 5514 if (!GEP->getSourceElementType()->isSized()) 5515 return getUnknown(GEP); 5516 5517 SmallVector<const SCEV *, 4> IndexExprs; 5518 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5519 IndexExprs.push_back(getSCEV(*Index)); 5520 return getGEPExpr(GEP, IndexExprs); 5521 } 5522 5523 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5525 return C->getAPInt().countTrailingZeros(); 5526 5527 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5528 return GetMinTrailingZeros(I->getOperand()); 5529 5530 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5531 return std::min(GetMinTrailingZeros(T->getOperand()), 5532 (uint32_t)getTypeSizeInBits(T->getType())); 5533 5534 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5535 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5536 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5537 ? getTypeSizeInBits(E->getType()) 5538 : OpRes; 5539 } 5540 5541 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5542 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5543 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5544 ? getTypeSizeInBits(E->getType()) 5545 : OpRes; 5546 } 5547 5548 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5549 // The result is the min of all operands results. 5550 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5551 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5552 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5553 return MinOpRes; 5554 } 5555 5556 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5557 // The result is the sum of all operands results. 5558 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5559 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5560 for (unsigned i = 1, e = M->getNumOperands(); 5561 SumOpRes != BitWidth && i != e; ++i) 5562 SumOpRes = 5563 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5564 return SumOpRes; 5565 } 5566 5567 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5568 // The result is the min of all operands results. 5569 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5570 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5571 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5572 return MinOpRes; 5573 } 5574 5575 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5576 // The result is the min of all operands results. 5577 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5578 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5579 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5580 return MinOpRes; 5581 } 5582 5583 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5584 // The result is the min of all operands results. 5585 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5586 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5587 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5588 return MinOpRes; 5589 } 5590 5591 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5592 // For a SCEVUnknown, ask ValueTracking. 5593 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5594 return Known.countMinTrailingZeros(); 5595 } 5596 5597 // SCEVUDivExpr 5598 return 0; 5599 } 5600 5601 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5602 auto I = MinTrailingZerosCache.find(S); 5603 if (I != MinTrailingZerosCache.end()) 5604 return I->second; 5605 5606 uint32_t Result = GetMinTrailingZerosImpl(S); 5607 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5608 assert(InsertPair.second && "Should insert a new key"); 5609 return InsertPair.first->second; 5610 } 5611 5612 /// Helper method to assign a range to V from metadata present in the IR. 5613 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5614 if (Instruction *I = dyn_cast<Instruction>(V)) 5615 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5616 return getConstantRangeFromMetadata(*MD); 5617 5618 return None; 5619 } 5620 5621 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5622 SCEV::NoWrapFlags Flags) { 5623 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5624 AddRec->setNoWrapFlags(Flags); 5625 UnsignedRanges.erase(AddRec); 5626 SignedRanges.erase(AddRec); 5627 } 5628 } 5629 5630 /// Determine the range for a particular SCEV. If SignHint is 5631 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5632 /// with a "cleaner" unsigned (resp. signed) representation. 5633 const ConstantRange & 5634 ScalarEvolution::getRangeRef(const SCEV *S, 5635 ScalarEvolution::RangeSignHint SignHint) { 5636 DenseMap<const SCEV *, ConstantRange> &Cache = 5637 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5638 : SignedRanges; 5639 ConstantRange::PreferredRangeType RangeType = 5640 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5641 ? ConstantRange::Unsigned : ConstantRange::Signed; 5642 5643 // See if we've computed this range already. 5644 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5645 if (I != Cache.end()) 5646 return I->second; 5647 5648 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5649 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5650 5651 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5652 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5653 using OBO = OverflowingBinaryOperator; 5654 5655 // If the value has known zeros, the maximum value will have those known zeros 5656 // as well. 5657 uint32_t TZ = GetMinTrailingZeros(S); 5658 if (TZ != 0) { 5659 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5660 ConservativeResult = 5661 ConstantRange(APInt::getMinValue(BitWidth), 5662 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5663 else 5664 ConservativeResult = ConstantRange( 5665 APInt::getSignedMinValue(BitWidth), 5666 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5667 } 5668 5669 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5670 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5671 unsigned WrapType = OBO::AnyWrap; 5672 if (Add->hasNoSignedWrap()) 5673 WrapType |= OBO::NoSignedWrap; 5674 if (Add->hasNoUnsignedWrap()) 5675 WrapType |= OBO::NoUnsignedWrap; 5676 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5677 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5678 WrapType, RangeType); 5679 return setRange(Add, SignHint, 5680 ConservativeResult.intersectWith(X, RangeType)); 5681 } 5682 5683 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5684 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5685 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5686 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5687 return setRange(Mul, SignHint, 5688 ConservativeResult.intersectWith(X, RangeType)); 5689 } 5690 5691 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5692 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5693 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5694 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5695 return setRange(SMax, SignHint, 5696 ConservativeResult.intersectWith(X, RangeType)); 5697 } 5698 5699 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5700 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5701 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5702 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5703 return setRange(UMax, SignHint, 5704 ConservativeResult.intersectWith(X, RangeType)); 5705 } 5706 5707 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5708 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5709 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5710 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5711 return setRange(SMin, SignHint, 5712 ConservativeResult.intersectWith(X, RangeType)); 5713 } 5714 5715 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5716 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5717 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5718 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5719 return setRange(UMin, SignHint, 5720 ConservativeResult.intersectWith(X, RangeType)); 5721 } 5722 5723 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5724 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5725 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5726 return setRange(UDiv, SignHint, 5727 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5728 } 5729 5730 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5731 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5732 return setRange(ZExt, SignHint, 5733 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5734 RangeType)); 5735 } 5736 5737 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5738 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5739 return setRange(SExt, SignHint, 5740 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5741 RangeType)); 5742 } 5743 5744 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5745 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5746 return setRange(PtrToInt, SignHint, X); 5747 } 5748 5749 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5750 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5751 return setRange(Trunc, SignHint, 5752 ConservativeResult.intersectWith(X.truncate(BitWidth), 5753 RangeType)); 5754 } 5755 5756 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5757 // If there's no unsigned wrap, the value will never be less than its 5758 // initial value. 5759 if (AddRec->hasNoUnsignedWrap()) { 5760 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5761 if (!UnsignedMinValue.isNullValue()) 5762 ConservativeResult = ConservativeResult.intersectWith( 5763 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5764 } 5765 5766 // If there's no signed wrap, and all the operands except initial value have 5767 // the same sign or zero, the value won't ever be: 5768 // 1: smaller than initial value if operands are non negative, 5769 // 2: bigger than initial value if operands are non positive. 5770 // For both cases, value can not cross signed min/max boundary. 5771 if (AddRec->hasNoSignedWrap()) { 5772 bool AllNonNeg = true; 5773 bool AllNonPos = true; 5774 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5775 if (!isKnownNonNegative(AddRec->getOperand(i))) 5776 AllNonNeg = false; 5777 if (!isKnownNonPositive(AddRec->getOperand(i))) 5778 AllNonPos = false; 5779 } 5780 if (AllNonNeg) 5781 ConservativeResult = ConservativeResult.intersectWith( 5782 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5783 APInt::getSignedMinValue(BitWidth)), 5784 RangeType); 5785 else if (AllNonPos) 5786 ConservativeResult = ConservativeResult.intersectWith( 5787 ConstantRange::getNonEmpty( 5788 APInt::getSignedMinValue(BitWidth), 5789 getSignedRangeMax(AddRec->getStart()) + 1), 5790 RangeType); 5791 } 5792 5793 // TODO: non-affine addrec 5794 if (AddRec->isAffine()) { 5795 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5796 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5797 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5798 auto RangeFromAffine = getRangeForAffineAR( 5799 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5800 BitWidth); 5801 ConservativeResult = 5802 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5803 5804 auto RangeFromFactoring = getRangeViaFactoring( 5805 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5806 BitWidth); 5807 ConservativeResult = 5808 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5809 } 5810 5811 // Now try symbolic BE count and more powerful methods. 5812 if (UseExpensiveRangeSharpening) { 5813 const SCEV *SymbolicMaxBECount = 5814 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5815 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5816 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5817 AddRec->hasNoSelfWrap()) { 5818 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5819 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5820 ConservativeResult = 5821 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5822 } 5823 } 5824 } 5825 5826 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5827 } 5828 5829 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5830 // Check if the IR explicitly contains !range metadata. 5831 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5832 if (MDRange.hasValue()) 5833 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5834 RangeType); 5835 5836 // Split here to avoid paying the compile-time cost of calling both 5837 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5838 // if needed. 5839 const DataLayout &DL = getDataLayout(); 5840 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5841 // For a SCEVUnknown, ask ValueTracking. 5842 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5843 if (Known.getBitWidth() != BitWidth) 5844 Known = Known.zextOrTrunc(BitWidth); 5845 // If Known does not result in full-set, intersect with it. 5846 if (Known.getMinValue() != Known.getMaxValue() + 1) 5847 ConservativeResult = ConservativeResult.intersectWith( 5848 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5849 RangeType); 5850 } else { 5851 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5852 "generalize as needed!"); 5853 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5854 // If the pointer size is larger than the index size type, this can cause 5855 // NS to be larger than BitWidth. So compensate for this. 5856 if (U->getType()->isPointerTy()) { 5857 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5858 int ptrIdxDiff = ptrSize - BitWidth; 5859 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5860 NS -= ptrIdxDiff; 5861 } 5862 5863 if (NS > 1) 5864 ConservativeResult = ConservativeResult.intersectWith( 5865 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5866 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5867 RangeType); 5868 } 5869 5870 // A range of Phi is a subset of union of all ranges of its input. 5871 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5872 // Make sure that we do not run over cycled Phis. 5873 if (PendingPhiRanges.insert(Phi).second) { 5874 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5875 for (auto &Op : Phi->operands()) { 5876 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5877 RangeFromOps = RangeFromOps.unionWith(OpRange); 5878 // No point to continue if we already have a full set. 5879 if (RangeFromOps.isFullSet()) 5880 break; 5881 } 5882 ConservativeResult = 5883 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5884 bool Erased = PendingPhiRanges.erase(Phi); 5885 assert(Erased && "Failed to erase Phi properly?"); 5886 (void) Erased; 5887 } 5888 } 5889 5890 return setRange(U, SignHint, std::move(ConservativeResult)); 5891 } 5892 5893 return setRange(S, SignHint, std::move(ConservativeResult)); 5894 } 5895 5896 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5897 // values that the expression can take. Initially, the expression has a value 5898 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5899 // argument defines if we treat Step as signed or unsigned. 5900 static ConstantRange getRangeForAffineARHelper(APInt Step, 5901 const ConstantRange &StartRange, 5902 const APInt &MaxBECount, 5903 unsigned BitWidth, bool Signed) { 5904 // If either Step or MaxBECount is 0, then the expression won't change, and we 5905 // just need to return the initial range. 5906 if (Step == 0 || MaxBECount == 0) 5907 return StartRange; 5908 5909 // If we don't know anything about the initial value (i.e. StartRange is 5910 // FullRange), then we don't know anything about the final range either. 5911 // Return FullRange. 5912 if (StartRange.isFullSet()) 5913 return ConstantRange::getFull(BitWidth); 5914 5915 // If Step is signed and negative, then we use its absolute value, but we also 5916 // note that we're moving in the opposite direction. 5917 bool Descending = Signed && Step.isNegative(); 5918 5919 if (Signed) 5920 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5921 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5922 // This equations hold true due to the well-defined wrap-around behavior of 5923 // APInt. 5924 Step = Step.abs(); 5925 5926 // Check if Offset is more than full span of BitWidth. If it is, the 5927 // expression is guaranteed to overflow. 5928 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5929 return ConstantRange::getFull(BitWidth); 5930 5931 // Offset is by how much the expression can change. Checks above guarantee no 5932 // overflow here. 5933 APInt Offset = Step * MaxBECount; 5934 5935 // Minimum value of the final range will match the minimal value of StartRange 5936 // if the expression is increasing and will be decreased by Offset otherwise. 5937 // Maximum value of the final range will match the maximal value of StartRange 5938 // if the expression is decreasing and will be increased by Offset otherwise. 5939 APInt StartLower = StartRange.getLower(); 5940 APInt StartUpper = StartRange.getUpper() - 1; 5941 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5942 : (StartUpper + std::move(Offset)); 5943 5944 // It's possible that the new minimum/maximum value will fall into the initial 5945 // range (due to wrap around). This means that the expression can take any 5946 // value in this bitwidth, and we have to return full range. 5947 if (StartRange.contains(MovedBoundary)) 5948 return ConstantRange::getFull(BitWidth); 5949 5950 APInt NewLower = 5951 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5952 APInt NewUpper = 5953 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5954 NewUpper += 1; 5955 5956 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5957 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5958 } 5959 5960 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5961 const SCEV *Step, 5962 const SCEV *MaxBECount, 5963 unsigned BitWidth) { 5964 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5965 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5966 "Precondition!"); 5967 5968 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5969 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5970 5971 // First, consider step signed. 5972 ConstantRange StartSRange = getSignedRange(Start); 5973 ConstantRange StepSRange = getSignedRange(Step); 5974 5975 // If Step can be both positive and negative, we need to find ranges for the 5976 // maximum absolute step values in both directions and union them. 5977 ConstantRange SR = 5978 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5979 MaxBECountValue, BitWidth, /* Signed = */ true); 5980 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5981 StartSRange, MaxBECountValue, 5982 BitWidth, /* Signed = */ true)); 5983 5984 // Next, consider step unsigned. 5985 ConstantRange UR = getRangeForAffineARHelper( 5986 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5987 MaxBECountValue, BitWidth, /* Signed = */ false); 5988 5989 // Finally, intersect signed and unsigned ranges. 5990 return SR.intersectWith(UR, ConstantRange::Smallest); 5991 } 5992 5993 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 5994 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 5995 ScalarEvolution::RangeSignHint SignHint) { 5996 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 5997 assert(AddRec->hasNoSelfWrap() && 5998 "This only works for non-self-wrapping AddRecs!"); 5999 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6000 const SCEV *Step = AddRec->getStepRecurrence(*this); 6001 // Only deal with constant step to save compile time. 6002 if (!isa<SCEVConstant>(Step)) 6003 return ConstantRange::getFull(BitWidth); 6004 // Let's make sure that we can prove that we do not self-wrap during 6005 // MaxBECount iterations. We need this because MaxBECount is a maximum 6006 // iteration count estimate, and we might infer nw from some exit for which we 6007 // do not know max exit count (or any other side reasoning). 6008 // TODO: Turn into assert at some point. 6009 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6010 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6011 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6012 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6013 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6014 MaxItersWithoutWrap)) 6015 return ConstantRange::getFull(BitWidth); 6016 6017 ICmpInst::Predicate LEPred = 6018 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6019 ICmpInst::Predicate GEPred = 6020 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6021 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6022 6023 // We know that there is no self-wrap. Let's take Start and End values and 6024 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6025 // the iteration. They either lie inside the range [Min(Start, End), 6026 // Max(Start, End)] or outside it: 6027 // 6028 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6029 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6030 // 6031 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6032 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6033 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6034 // Start <= End and step is positive, or Start >= End and step is negative. 6035 const SCEV *Start = AddRec->getStart(); 6036 ConstantRange StartRange = getRangeRef(Start, SignHint); 6037 ConstantRange EndRange = getRangeRef(End, SignHint); 6038 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6039 // If they already cover full iteration space, we will know nothing useful 6040 // even if we prove what we want to prove. 6041 if (RangeBetween.isFullSet()) 6042 return RangeBetween; 6043 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6044 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6045 : RangeBetween.isWrappedSet(); 6046 if (IsWrappedSet) 6047 return ConstantRange::getFull(BitWidth); 6048 6049 if (isKnownPositive(Step) && 6050 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6051 return RangeBetween; 6052 else if (isKnownNegative(Step) && 6053 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6054 return RangeBetween; 6055 return ConstantRange::getFull(BitWidth); 6056 } 6057 6058 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6059 const SCEV *Step, 6060 const SCEV *MaxBECount, 6061 unsigned BitWidth) { 6062 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6063 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6064 6065 struct SelectPattern { 6066 Value *Condition = nullptr; 6067 APInt TrueValue; 6068 APInt FalseValue; 6069 6070 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6071 const SCEV *S) { 6072 Optional<unsigned> CastOp; 6073 APInt Offset(BitWidth, 0); 6074 6075 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6076 "Should be!"); 6077 6078 // Peel off a constant offset: 6079 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6080 // In the future we could consider being smarter here and handle 6081 // {Start+Step,+,Step} too. 6082 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6083 return; 6084 6085 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6086 S = SA->getOperand(1); 6087 } 6088 6089 // Peel off a cast operation 6090 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6091 CastOp = SCast->getSCEVType(); 6092 S = SCast->getOperand(); 6093 } 6094 6095 using namespace llvm::PatternMatch; 6096 6097 auto *SU = dyn_cast<SCEVUnknown>(S); 6098 const APInt *TrueVal, *FalseVal; 6099 if (!SU || 6100 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6101 m_APInt(FalseVal)))) { 6102 Condition = nullptr; 6103 return; 6104 } 6105 6106 TrueValue = *TrueVal; 6107 FalseValue = *FalseVal; 6108 6109 // Re-apply the cast we peeled off earlier 6110 if (CastOp.hasValue()) 6111 switch (*CastOp) { 6112 default: 6113 llvm_unreachable("Unknown SCEV cast type!"); 6114 6115 case scTruncate: 6116 TrueValue = TrueValue.trunc(BitWidth); 6117 FalseValue = FalseValue.trunc(BitWidth); 6118 break; 6119 case scZeroExtend: 6120 TrueValue = TrueValue.zext(BitWidth); 6121 FalseValue = FalseValue.zext(BitWidth); 6122 break; 6123 case scSignExtend: 6124 TrueValue = TrueValue.sext(BitWidth); 6125 FalseValue = FalseValue.sext(BitWidth); 6126 break; 6127 } 6128 6129 // Re-apply the constant offset we peeled off earlier 6130 TrueValue += Offset; 6131 FalseValue += Offset; 6132 } 6133 6134 bool isRecognized() { return Condition != nullptr; } 6135 }; 6136 6137 SelectPattern StartPattern(*this, BitWidth, Start); 6138 if (!StartPattern.isRecognized()) 6139 return ConstantRange::getFull(BitWidth); 6140 6141 SelectPattern StepPattern(*this, BitWidth, Step); 6142 if (!StepPattern.isRecognized()) 6143 return ConstantRange::getFull(BitWidth); 6144 6145 if (StartPattern.Condition != StepPattern.Condition) { 6146 // We don't handle this case today; but we could, by considering four 6147 // possibilities below instead of two. I'm not sure if there are cases where 6148 // that will help over what getRange already does, though. 6149 return ConstantRange::getFull(BitWidth); 6150 } 6151 6152 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6153 // construct arbitrary general SCEV expressions here. This function is called 6154 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6155 // say) can end up caching a suboptimal value. 6156 6157 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6158 // C2352 and C2512 (otherwise it isn't needed). 6159 6160 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6161 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6162 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6163 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6164 6165 ConstantRange TrueRange = 6166 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6167 ConstantRange FalseRange = 6168 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6169 6170 return TrueRange.unionWith(FalseRange); 6171 } 6172 6173 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6174 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6175 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6176 6177 // Return early if there are no flags to propagate to the SCEV. 6178 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6179 if (BinOp->hasNoUnsignedWrap()) 6180 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6181 if (BinOp->hasNoSignedWrap()) 6182 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6183 if (Flags == SCEV::FlagAnyWrap) 6184 return SCEV::FlagAnyWrap; 6185 6186 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6187 } 6188 6189 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6190 // Here we check that I is in the header of the innermost loop containing I, 6191 // since we only deal with instructions in the loop header. The actual loop we 6192 // need to check later will come from an add recurrence, but getting that 6193 // requires computing the SCEV of the operands, which can be expensive. This 6194 // check we can do cheaply to rule out some cases early. 6195 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6196 if (InnermostContainingLoop == nullptr || 6197 InnermostContainingLoop->getHeader() != I->getParent()) 6198 return false; 6199 6200 // Only proceed if we can prove that I does not yield poison. 6201 if (!programUndefinedIfPoison(I)) 6202 return false; 6203 6204 // At this point we know that if I is executed, then it does not wrap 6205 // according to at least one of NSW or NUW. If I is not executed, then we do 6206 // not know if the calculation that I represents would wrap. Multiple 6207 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6208 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6209 // derived from other instructions that map to the same SCEV. We cannot make 6210 // that guarantee for cases where I is not executed. So we need to find the 6211 // loop that I is considered in relation to and prove that I is executed for 6212 // every iteration of that loop. That implies that the value that I 6213 // calculates does not wrap anywhere in the loop, so then we can apply the 6214 // flags to the SCEV. 6215 // 6216 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6217 // from different loops, so that we know which loop to prove that I is 6218 // executed in. 6219 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6220 // I could be an extractvalue from a call to an overflow intrinsic. 6221 // TODO: We can do better here in some cases. 6222 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6223 return false; 6224 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6225 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6226 bool AllOtherOpsLoopInvariant = true; 6227 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6228 ++OtherOpIndex) { 6229 if (OtherOpIndex != OpIndex) { 6230 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6231 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6232 AllOtherOpsLoopInvariant = false; 6233 break; 6234 } 6235 } 6236 } 6237 if (AllOtherOpsLoopInvariant && 6238 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6239 return true; 6240 } 6241 } 6242 return false; 6243 } 6244 6245 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6246 // If we know that \c I can never be poison period, then that's enough. 6247 if (isSCEVExprNeverPoison(I)) 6248 return true; 6249 6250 // For an add recurrence specifically, we assume that infinite loops without 6251 // side effects are undefined behavior, and then reason as follows: 6252 // 6253 // If the add recurrence is poison in any iteration, it is poison on all 6254 // future iterations (since incrementing poison yields poison). If the result 6255 // of the add recurrence is fed into the loop latch condition and the loop 6256 // does not contain any throws or exiting blocks other than the latch, we now 6257 // have the ability to "choose" whether the backedge is taken or not (by 6258 // choosing a sufficiently evil value for the poison feeding into the branch) 6259 // for every iteration including and after the one in which \p I first became 6260 // poison. There are two possibilities (let's call the iteration in which \p 6261 // I first became poison as K): 6262 // 6263 // 1. In the set of iterations including and after K, the loop body executes 6264 // no side effects. In this case executing the backege an infinte number 6265 // of times will yield undefined behavior. 6266 // 6267 // 2. In the set of iterations including and after K, the loop body executes 6268 // at least one side effect. In this case, that specific instance of side 6269 // effect is control dependent on poison, which also yields undefined 6270 // behavior. 6271 6272 auto *ExitingBB = L->getExitingBlock(); 6273 auto *LatchBB = L->getLoopLatch(); 6274 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6275 return false; 6276 6277 SmallPtrSet<const Instruction *, 16> Pushed; 6278 SmallVector<const Instruction *, 8> PoisonStack; 6279 6280 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6281 // things that are known to be poison under that assumption go on the 6282 // PoisonStack. 6283 Pushed.insert(I); 6284 PoisonStack.push_back(I); 6285 6286 bool LatchControlDependentOnPoison = false; 6287 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6288 const Instruction *Poison = PoisonStack.pop_back_val(); 6289 6290 for (auto *PoisonUser : Poison->users()) { 6291 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6292 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6293 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6294 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6295 assert(BI->isConditional() && "Only possibility!"); 6296 if (BI->getParent() == LatchBB) { 6297 LatchControlDependentOnPoison = true; 6298 break; 6299 } 6300 } 6301 } 6302 } 6303 6304 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6305 } 6306 6307 ScalarEvolution::LoopProperties 6308 ScalarEvolution::getLoopProperties(const Loop *L) { 6309 using LoopProperties = ScalarEvolution::LoopProperties; 6310 6311 auto Itr = LoopPropertiesCache.find(L); 6312 if (Itr == LoopPropertiesCache.end()) { 6313 auto HasSideEffects = [](Instruction *I) { 6314 if (auto *SI = dyn_cast<StoreInst>(I)) 6315 return !SI->isSimple(); 6316 6317 return I->mayHaveSideEffects(); 6318 }; 6319 6320 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6321 /*HasNoSideEffects*/ true}; 6322 6323 for (auto *BB : L->getBlocks()) 6324 for (auto &I : *BB) { 6325 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6326 LP.HasNoAbnormalExits = false; 6327 if (HasSideEffects(&I)) 6328 LP.HasNoSideEffects = false; 6329 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6330 break; // We're already as pessimistic as we can get. 6331 } 6332 6333 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6334 assert(InsertPair.second && "We just checked!"); 6335 Itr = InsertPair.first; 6336 } 6337 6338 return Itr->second; 6339 } 6340 6341 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6342 if (!isSCEVable(V->getType())) 6343 return getUnknown(V); 6344 6345 if (Instruction *I = dyn_cast<Instruction>(V)) { 6346 // Don't attempt to analyze instructions in blocks that aren't 6347 // reachable. Such instructions don't matter, and they aren't required 6348 // to obey basic rules for definitions dominating uses which this 6349 // analysis depends on. 6350 if (!DT.isReachableFromEntry(I->getParent())) 6351 return getUnknown(UndefValue::get(V->getType())); 6352 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6353 return getConstant(CI); 6354 else if (isa<ConstantPointerNull>(V)) 6355 // FIXME: we shouldn't special-case null pointer constant. 6356 return getZero(V->getType()); 6357 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6358 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6359 else if (!isa<ConstantExpr>(V)) 6360 return getUnknown(V); 6361 6362 Operator *U = cast<Operator>(V); 6363 if (auto BO = MatchBinaryOp(U, DT)) { 6364 switch (BO->Opcode) { 6365 case Instruction::Add: { 6366 // The simple thing to do would be to just call getSCEV on both operands 6367 // and call getAddExpr with the result. However if we're looking at a 6368 // bunch of things all added together, this can be quite inefficient, 6369 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6370 // Instead, gather up all the operands and make a single getAddExpr call. 6371 // LLVM IR canonical form means we need only traverse the left operands. 6372 SmallVector<const SCEV *, 4> AddOps; 6373 do { 6374 if (BO->Op) { 6375 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6376 AddOps.push_back(OpSCEV); 6377 break; 6378 } 6379 6380 // If a NUW or NSW flag can be applied to the SCEV for this 6381 // addition, then compute the SCEV for this addition by itself 6382 // with a separate call to getAddExpr. We need to do that 6383 // instead of pushing the operands of the addition onto AddOps, 6384 // since the flags are only known to apply to this particular 6385 // addition - they may not apply to other additions that can be 6386 // formed with operands from AddOps. 6387 const SCEV *RHS = getSCEV(BO->RHS); 6388 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6389 if (Flags != SCEV::FlagAnyWrap) { 6390 const SCEV *LHS = getSCEV(BO->LHS); 6391 if (BO->Opcode == Instruction::Sub) 6392 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6393 else 6394 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6395 break; 6396 } 6397 } 6398 6399 if (BO->Opcode == Instruction::Sub) 6400 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6401 else 6402 AddOps.push_back(getSCEV(BO->RHS)); 6403 6404 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6405 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6406 NewBO->Opcode != Instruction::Sub)) { 6407 AddOps.push_back(getSCEV(BO->LHS)); 6408 break; 6409 } 6410 BO = NewBO; 6411 } while (true); 6412 6413 return getAddExpr(AddOps); 6414 } 6415 6416 case Instruction::Mul: { 6417 SmallVector<const SCEV *, 4> MulOps; 6418 do { 6419 if (BO->Op) { 6420 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6421 MulOps.push_back(OpSCEV); 6422 break; 6423 } 6424 6425 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6426 if (Flags != SCEV::FlagAnyWrap) { 6427 MulOps.push_back( 6428 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6429 break; 6430 } 6431 } 6432 6433 MulOps.push_back(getSCEV(BO->RHS)); 6434 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6435 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6436 MulOps.push_back(getSCEV(BO->LHS)); 6437 break; 6438 } 6439 BO = NewBO; 6440 } while (true); 6441 6442 return getMulExpr(MulOps); 6443 } 6444 case Instruction::UDiv: 6445 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6446 case Instruction::URem: 6447 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6448 case Instruction::Sub: { 6449 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6450 if (BO->Op) 6451 Flags = getNoWrapFlagsFromUB(BO->Op); 6452 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6453 } 6454 case Instruction::And: 6455 // For an expression like x&255 that merely masks off the high bits, 6456 // use zext(trunc(x)) as the SCEV expression. 6457 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6458 if (CI->isZero()) 6459 return getSCEV(BO->RHS); 6460 if (CI->isMinusOne()) 6461 return getSCEV(BO->LHS); 6462 const APInt &A = CI->getValue(); 6463 6464 // Instcombine's ShrinkDemandedConstant may strip bits out of 6465 // constants, obscuring what would otherwise be a low-bits mask. 6466 // Use computeKnownBits to compute what ShrinkDemandedConstant 6467 // knew about to reconstruct a low-bits mask value. 6468 unsigned LZ = A.countLeadingZeros(); 6469 unsigned TZ = A.countTrailingZeros(); 6470 unsigned BitWidth = A.getBitWidth(); 6471 KnownBits Known(BitWidth); 6472 computeKnownBits(BO->LHS, Known, getDataLayout(), 6473 0, &AC, nullptr, &DT); 6474 6475 APInt EffectiveMask = 6476 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6477 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6478 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6479 const SCEV *LHS = getSCEV(BO->LHS); 6480 const SCEV *ShiftedLHS = nullptr; 6481 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6482 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6483 // For an expression like (x * 8) & 8, simplify the multiply. 6484 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6485 unsigned GCD = std::min(MulZeros, TZ); 6486 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6487 SmallVector<const SCEV*, 4> MulOps; 6488 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6489 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6490 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6491 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6492 } 6493 } 6494 if (!ShiftedLHS) 6495 ShiftedLHS = getUDivExpr(LHS, MulCount); 6496 return getMulExpr( 6497 getZeroExtendExpr( 6498 getTruncateExpr(ShiftedLHS, 6499 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6500 BO->LHS->getType()), 6501 MulCount); 6502 } 6503 } 6504 break; 6505 6506 case Instruction::Or: 6507 // If the RHS of the Or is a constant, we may have something like: 6508 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6509 // optimizations will transparently handle this case. 6510 // 6511 // In order for this transformation to be safe, the LHS must be of the 6512 // form X*(2^n) and the Or constant must be less than 2^n. 6513 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6514 const SCEV *LHS = getSCEV(BO->LHS); 6515 const APInt &CIVal = CI->getValue(); 6516 if (GetMinTrailingZeros(LHS) >= 6517 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6518 // Build a plain add SCEV. 6519 return getAddExpr(LHS, getSCEV(CI), 6520 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6521 } 6522 } 6523 break; 6524 6525 case Instruction::Xor: 6526 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6527 // If the RHS of xor is -1, then this is a not operation. 6528 if (CI->isMinusOne()) 6529 return getNotSCEV(getSCEV(BO->LHS)); 6530 6531 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6532 // This is a variant of the check for xor with -1, and it handles 6533 // the case where instcombine has trimmed non-demanded bits out 6534 // of an xor with -1. 6535 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6536 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6537 if (LBO->getOpcode() == Instruction::And && 6538 LCI->getValue() == CI->getValue()) 6539 if (const SCEVZeroExtendExpr *Z = 6540 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6541 Type *UTy = BO->LHS->getType(); 6542 const SCEV *Z0 = Z->getOperand(); 6543 Type *Z0Ty = Z0->getType(); 6544 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6545 6546 // If C is a low-bits mask, the zero extend is serving to 6547 // mask off the high bits. Complement the operand and 6548 // re-apply the zext. 6549 if (CI->getValue().isMask(Z0TySize)) 6550 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6551 6552 // If C is a single bit, it may be in the sign-bit position 6553 // before the zero-extend. In this case, represent the xor 6554 // using an add, which is equivalent, and re-apply the zext. 6555 APInt Trunc = CI->getValue().trunc(Z0TySize); 6556 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6557 Trunc.isSignMask()) 6558 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6559 UTy); 6560 } 6561 } 6562 break; 6563 6564 case Instruction::Shl: 6565 // Turn shift left of a constant amount into a multiply. 6566 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6567 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6568 6569 // If the shift count is not less than the bitwidth, the result of 6570 // the shift is undefined. Don't try to analyze it, because the 6571 // resolution chosen here may differ from the resolution chosen in 6572 // other parts of the compiler. 6573 if (SA->getValue().uge(BitWidth)) 6574 break; 6575 6576 // We can safely preserve the nuw flag in all cases. It's also safe to 6577 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6578 // requires special handling. It can be preserved as long as we're not 6579 // left shifting by bitwidth - 1. 6580 auto Flags = SCEV::FlagAnyWrap; 6581 if (BO->Op) { 6582 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6583 if ((MulFlags & SCEV::FlagNSW) && 6584 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6585 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6586 if (MulFlags & SCEV::FlagNUW) 6587 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6588 } 6589 6590 Constant *X = ConstantInt::get( 6591 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6592 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6593 } 6594 break; 6595 6596 case Instruction::AShr: { 6597 // AShr X, C, where C is a constant. 6598 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6599 if (!CI) 6600 break; 6601 6602 Type *OuterTy = BO->LHS->getType(); 6603 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6604 // If the shift count is not less than the bitwidth, the result of 6605 // the shift is undefined. Don't try to analyze it, because the 6606 // resolution chosen here may differ from the resolution chosen in 6607 // other parts of the compiler. 6608 if (CI->getValue().uge(BitWidth)) 6609 break; 6610 6611 if (CI->isZero()) 6612 return getSCEV(BO->LHS); // shift by zero --> noop 6613 6614 uint64_t AShrAmt = CI->getZExtValue(); 6615 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6616 6617 Operator *L = dyn_cast<Operator>(BO->LHS); 6618 if (L && L->getOpcode() == Instruction::Shl) { 6619 // X = Shl A, n 6620 // Y = AShr X, m 6621 // Both n and m are constant. 6622 6623 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6624 if (L->getOperand(1) == BO->RHS) 6625 // For a two-shift sext-inreg, i.e. n = m, 6626 // use sext(trunc(x)) as the SCEV expression. 6627 return getSignExtendExpr( 6628 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6629 6630 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6631 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6632 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6633 if (ShlAmt > AShrAmt) { 6634 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6635 // expression. We already checked that ShlAmt < BitWidth, so 6636 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6637 // ShlAmt - AShrAmt < Amt. 6638 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6639 ShlAmt - AShrAmt); 6640 return getSignExtendExpr( 6641 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6642 getConstant(Mul)), OuterTy); 6643 } 6644 } 6645 } 6646 if (BO->IsExact) { 6647 // Given exact arithmetic in-bounds right-shift by a constant, 6648 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6649 const SCEV *X = getSCEV(BO->LHS); 6650 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6651 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6652 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6653 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6654 } 6655 break; 6656 } 6657 } 6658 } 6659 6660 switch (U->getOpcode()) { 6661 case Instruction::Trunc: 6662 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6663 6664 case Instruction::ZExt: 6665 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6666 6667 case Instruction::SExt: 6668 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6669 // The NSW flag of a subtract does not always survive the conversion to 6670 // A + (-1)*B. By pushing sign extension onto its operands we are much 6671 // more likely to preserve NSW and allow later AddRec optimisations. 6672 // 6673 // NOTE: This is effectively duplicating this logic from getSignExtend: 6674 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6675 // but by that point the NSW information has potentially been lost. 6676 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6677 Type *Ty = U->getType(); 6678 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6679 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6680 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6681 } 6682 } 6683 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6684 6685 case Instruction::BitCast: 6686 // BitCasts are no-op casts so we just eliminate the cast. 6687 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6688 return getSCEV(U->getOperand(0)); 6689 break; 6690 6691 case Instruction::PtrToInt: { 6692 // Pointer to integer cast is straight-forward, so do model it. 6693 Value *Ptr = U->getOperand(0); 6694 const SCEV *Op = getSCEV(Ptr); 6695 Type *DstIntTy = U->getType(); 6696 // SCEV doesn't have constant pointer expression type, but it supports 6697 // nullptr constant (and only that one), which is modelled in SCEV as a 6698 // zero integer constant. So just skip the ptrtoint cast for constants. 6699 if (isa<SCEVConstant>(Op)) 6700 return getTruncateOrZeroExtend(Op, DstIntTy); 6701 Type *PtrTy = Ptr->getType(); 6702 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy); 6703 // But only if effective SCEV (integer) type is wide enough to represent 6704 // all possible pointer values. 6705 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) != 6706 getDataLayout().getTypeSizeInBits(IntPtrTy)) 6707 return getUnknown(V); 6708 return getPtrToIntExpr(Op, DstIntTy); 6709 } 6710 case Instruction::IntToPtr: 6711 // Just don't deal with inttoptr casts. 6712 return getUnknown(V); 6713 6714 case Instruction::SDiv: 6715 // If both operands are non-negative, this is just an udiv. 6716 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6717 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6718 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6719 break; 6720 6721 case Instruction::SRem: 6722 // If both operands are non-negative, this is just an urem. 6723 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6724 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6725 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6726 break; 6727 6728 case Instruction::GetElementPtr: 6729 return createNodeForGEP(cast<GEPOperator>(U)); 6730 6731 case Instruction::PHI: 6732 return createNodeForPHI(cast<PHINode>(U)); 6733 6734 case Instruction::Select: 6735 // U can also be a select constant expr, which let fall through. Since 6736 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6737 // constant expressions cannot have instructions as operands, we'd have 6738 // returned getUnknown for a select constant expressions anyway. 6739 if (isa<Instruction>(U)) 6740 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6741 U->getOperand(1), U->getOperand(2)); 6742 break; 6743 6744 case Instruction::Call: 6745 case Instruction::Invoke: 6746 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6747 return getSCEV(RV); 6748 6749 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6750 switch (II->getIntrinsicID()) { 6751 case Intrinsic::abs: 6752 return getAbsExpr( 6753 getSCEV(II->getArgOperand(0)), 6754 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6755 case Intrinsic::umax: 6756 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6757 getSCEV(II->getArgOperand(1))); 6758 case Intrinsic::umin: 6759 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6760 getSCEV(II->getArgOperand(1))); 6761 case Intrinsic::smax: 6762 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6763 getSCEV(II->getArgOperand(1))); 6764 case Intrinsic::smin: 6765 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6766 getSCEV(II->getArgOperand(1))); 6767 case Intrinsic::usub_sat: { 6768 const SCEV *X = getSCEV(II->getArgOperand(0)); 6769 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6770 const SCEV *ClampedY = getUMinExpr(X, Y); 6771 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6772 } 6773 case Intrinsic::uadd_sat: { 6774 const SCEV *X = getSCEV(II->getArgOperand(0)); 6775 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6776 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6777 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6778 } 6779 case Intrinsic::start_loop_iterations: 6780 // A start_loop_iterations is just equivalent to the first operand for 6781 // SCEV purposes. 6782 return getSCEV(II->getArgOperand(0)); 6783 default: 6784 break; 6785 } 6786 } 6787 break; 6788 } 6789 6790 return getUnknown(V); 6791 } 6792 6793 //===----------------------------------------------------------------------===// 6794 // Iteration Count Computation Code 6795 // 6796 6797 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6798 if (!ExitCount) 6799 return 0; 6800 6801 ConstantInt *ExitConst = ExitCount->getValue(); 6802 6803 // Guard against huge trip counts. 6804 if (ExitConst->getValue().getActiveBits() > 32) 6805 return 0; 6806 6807 // In case of integer overflow, this returns 0, which is correct. 6808 return ((unsigned)ExitConst->getZExtValue()) + 1; 6809 } 6810 6811 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6812 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6813 return getSmallConstantTripCount(L, ExitingBB); 6814 6815 // No trip count information for multiple exits. 6816 return 0; 6817 } 6818 6819 unsigned 6820 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6821 const BasicBlock *ExitingBlock) { 6822 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6823 assert(L->isLoopExiting(ExitingBlock) && 6824 "Exiting block must actually branch out of the loop!"); 6825 const SCEVConstant *ExitCount = 6826 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6827 return getConstantTripCount(ExitCount); 6828 } 6829 6830 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6831 const auto *MaxExitCount = 6832 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6833 return getConstantTripCount(MaxExitCount); 6834 } 6835 6836 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6837 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6838 return getSmallConstantTripMultiple(L, ExitingBB); 6839 6840 // No trip multiple information for multiple exits. 6841 return 0; 6842 } 6843 6844 /// Returns the largest constant divisor of the trip count of this loop as a 6845 /// normal unsigned value, if possible. This means that the actual trip count is 6846 /// always a multiple of the returned value (don't forget the trip count could 6847 /// very well be zero as well!). 6848 /// 6849 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6850 /// multiple of a constant (which is also the case if the trip count is simply 6851 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6852 /// if the trip count is very large (>= 2^32). 6853 /// 6854 /// As explained in the comments for getSmallConstantTripCount, this assumes 6855 /// that control exits the loop via ExitingBlock. 6856 unsigned 6857 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6858 const BasicBlock *ExitingBlock) { 6859 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6860 assert(L->isLoopExiting(ExitingBlock) && 6861 "Exiting block must actually branch out of the loop!"); 6862 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6863 if (ExitCount == getCouldNotCompute()) 6864 return 1; 6865 6866 // Get the trip count from the BE count by adding 1. 6867 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6868 6869 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6870 if (!TC) 6871 // Attempt to factor more general cases. Returns the greatest power of 6872 // two divisor. If overflow happens, the trip count expression is still 6873 // divisible by the greatest power of 2 divisor returned. 6874 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6875 6876 ConstantInt *Result = TC->getValue(); 6877 6878 // Guard against huge trip counts (this requires checking 6879 // for zero to handle the case where the trip count == -1 and the 6880 // addition wraps). 6881 if (!Result || Result->getValue().getActiveBits() > 32 || 6882 Result->getValue().getActiveBits() == 0) 6883 return 1; 6884 6885 return (unsigned)Result->getZExtValue(); 6886 } 6887 6888 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6889 const BasicBlock *ExitingBlock, 6890 ExitCountKind Kind) { 6891 switch (Kind) { 6892 case Exact: 6893 case SymbolicMaximum: 6894 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6895 case ConstantMaximum: 6896 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 6897 }; 6898 llvm_unreachable("Invalid ExitCountKind!"); 6899 } 6900 6901 const SCEV * 6902 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6903 SCEVUnionPredicate &Preds) { 6904 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6905 } 6906 6907 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6908 ExitCountKind Kind) { 6909 switch (Kind) { 6910 case Exact: 6911 return getBackedgeTakenInfo(L).getExact(L, this); 6912 case ConstantMaximum: 6913 return getBackedgeTakenInfo(L).getConstantMax(this); 6914 case SymbolicMaximum: 6915 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 6916 }; 6917 llvm_unreachable("Invalid ExitCountKind!"); 6918 } 6919 6920 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6921 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 6922 } 6923 6924 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6925 static void 6926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6927 BasicBlock *Header = L->getHeader(); 6928 6929 // Push all Loop-header PHIs onto the Worklist stack. 6930 for (PHINode &PN : Header->phis()) 6931 Worklist.push_back(&PN); 6932 } 6933 6934 const ScalarEvolution::BackedgeTakenInfo & 6935 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6936 auto &BTI = getBackedgeTakenInfo(L); 6937 if (BTI.hasFullInfo()) 6938 return BTI; 6939 6940 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6941 6942 if (!Pair.second) 6943 return Pair.first->second; 6944 6945 BackedgeTakenInfo Result = 6946 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6947 6948 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6949 } 6950 6951 ScalarEvolution::BackedgeTakenInfo & 6952 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6953 // Initially insert an invalid entry for this loop. If the insertion 6954 // succeeds, proceed to actually compute a backedge-taken count and 6955 // update the value. The temporary CouldNotCompute value tells SCEV 6956 // code elsewhere that it shouldn't attempt to request a new 6957 // backedge-taken count, which could result in infinite recursion. 6958 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6959 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6960 if (!Pair.second) 6961 return Pair.first->second; 6962 6963 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6964 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6965 // must be cleared in this scope. 6966 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6967 6968 // In product build, there are no usage of statistic. 6969 (void)NumTripCountsComputed; 6970 (void)NumTripCountsNotComputed; 6971 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6972 const SCEV *BEExact = Result.getExact(L, this); 6973 if (BEExact != getCouldNotCompute()) { 6974 assert(isLoopInvariant(BEExact, L) && 6975 isLoopInvariant(Result.getConstantMax(this), L) && 6976 "Computed backedge-taken count isn't loop invariant for loop!"); 6977 ++NumTripCountsComputed; 6978 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 6979 isa<PHINode>(L->getHeader()->begin())) { 6980 // Only count loops that have phi nodes as not being computable. 6981 ++NumTripCountsNotComputed; 6982 } 6983 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6984 6985 // Now that we know more about the trip count for this loop, forget any 6986 // existing SCEV values for PHI nodes in this loop since they are only 6987 // conservative estimates made without the benefit of trip count 6988 // information. This is similar to the code in forgetLoop, except that 6989 // it handles SCEVUnknown PHI nodes specially. 6990 if (Result.hasAnyInfo()) { 6991 SmallVector<Instruction *, 16> Worklist; 6992 PushLoopPHIs(L, Worklist); 6993 6994 SmallPtrSet<Instruction *, 8> Discovered; 6995 while (!Worklist.empty()) { 6996 Instruction *I = Worklist.pop_back_val(); 6997 6998 ValueExprMapType::iterator It = 6999 ValueExprMap.find_as(static_cast<Value *>(I)); 7000 if (It != ValueExprMap.end()) { 7001 const SCEV *Old = It->second; 7002 7003 // SCEVUnknown for a PHI either means that it has an unrecognized 7004 // structure, or it's a PHI that's in the progress of being computed 7005 // by createNodeForPHI. In the former case, additional loop trip 7006 // count information isn't going to change anything. In the later 7007 // case, createNodeForPHI will perform the necessary updates on its 7008 // own when it gets to that point. 7009 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7010 eraseValueFromMap(It->first); 7011 forgetMemoizedResults(Old); 7012 } 7013 if (PHINode *PN = dyn_cast<PHINode>(I)) 7014 ConstantEvolutionLoopExitValue.erase(PN); 7015 } 7016 7017 // Since we don't need to invalidate anything for correctness and we're 7018 // only invalidating to make SCEV's results more precise, we get to stop 7019 // early to avoid invalidating too much. This is especially important in 7020 // cases like: 7021 // 7022 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7023 // loop0: 7024 // %pn0 = phi 7025 // ... 7026 // loop1: 7027 // %pn1 = phi 7028 // ... 7029 // 7030 // where both loop0 and loop1's backedge taken count uses the SCEV 7031 // expression for %v. If we don't have the early stop below then in cases 7032 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7033 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7034 // count for loop1, effectively nullifying SCEV's trip count cache. 7035 for (auto *U : I->users()) 7036 if (auto *I = dyn_cast<Instruction>(U)) { 7037 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7038 if (LoopForUser && L->contains(LoopForUser) && 7039 Discovered.insert(I).second) 7040 Worklist.push_back(I); 7041 } 7042 } 7043 } 7044 7045 // Re-lookup the insert position, since the call to 7046 // computeBackedgeTakenCount above could result in a 7047 // recusive call to getBackedgeTakenInfo (on a different 7048 // loop), which would invalidate the iterator computed 7049 // earlier. 7050 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7051 } 7052 7053 void ScalarEvolution::forgetAllLoops() { 7054 // This method is intended to forget all info about loops. It should 7055 // invalidate caches as if the following happened: 7056 // - The trip counts of all loops have changed arbitrarily 7057 // - Every llvm::Value has been updated in place to produce a different 7058 // result. 7059 BackedgeTakenCounts.clear(); 7060 PredicatedBackedgeTakenCounts.clear(); 7061 LoopPropertiesCache.clear(); 7062 ConstantEvolutionLoopExitValue.clear(); 7063 ValueExprMap.clear(); 7064 ValuesAtScopes.clear(); 7065 LoopDispositions.clear(); 7066 BlockDispositions.clear(); 7067 UnsignedRanges.clear(); 7068 SignedRanges.clear(); 7069 ExprValueMap.clear(); 7070 HasRecMap.clear(); 7071 MinTrailingZerosCache.clear(); 7072 PredicatedSCEVRewrites.clear(); 7073 } 7074 7075 void ScalarEvolution::forgetLoop(const Loop *L) { 7076 // Drop any stored trip count value. 7077 auto RemoveLoopFromBackedgeMap = 7078 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 7079 auto BTCPos = Map.find(L); 7080 if (BTCPos != Map.end()) { 7081 BTCPos->second.clear(); 7082 Map.erase(BTCPos); 7083 } 7084 }; 7085 7086 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7087 SmallVector<Instruction *, 32> Worklist; 7088 SmallPtrSet<Instruction *, 16> Visited; 7089 7090 // Iterate over all the loops and sub-loops to drop SCEV information. 7091 while (!LoopWorklist.empty()) { 7092 auto *CurrL = LoopWorklist.pop_back_val(); 7093 7094 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 7095 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 7096 7097 // Drop information about predicated SCEV rewrites for this loop. 7098 for (auto I = PredicatedSCEVRewrites.begin(); 7099 I != PredicatedSCEVRewrites.end();) { 7100 std::pair<const SCEV *, const Loop *> Entry = I->first; 7101 if (Entry.second == CurrL) 7102 PredicatedSCEVRewrites.erase(I++); 7103 else 7104 ++I; 7105 } 7106 7107 auto LoopUsersItr = LoopUsers.find(CurrL); 7108 if (LoopUsersItr != LoopUsers.end()) { 7109 for (auto *S : LoopUsersItr->second) 7110 forgetMemoizedResults(S); 7111 LoopUsers.erase(LoopUsersItr); 7112 } 7113 7114 // Drop information about expressions based on loop-header PHIs. 7115 PushLoopPHIs(CurrL, Worklist); 7116 7117 while (!Worklist.empty()) { 7118 Instruction *I = Worklist.pop_back_val(); 7119 if (!Visited.insert(I).second) 7120 continue; 7121 7122 ValueExprMapType::iterator It = 7123 ValueExprMap.find_as(static_cast<Value *>(I)); 7124 if (It != ValueExprMap.end()) { 7125 eraseValueFromMap(It->first); 7126 forgetMemoizedResults(It->second); 7127 if (PHINode *PN = dyn_cast<PHINode>(I)) 7128 ConstantEvolutionLoopExitValue.erase(PN); 7129 } 7130 7131 PushDefUseChildren(I, Worklist); 7132 } 7133 7134 LoopPropertiesCache.erase(CurrL); 7135 // Forget all contained loops too, to avoid dangling entries in the 7136 // ValuesAtScopes map. 7137 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7138 } 7139 } 7140 7141 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7142 while (Loop *Parent = L->getParentLoop()) 7143 L = Parent; 7144 forgetLoop(L); 7145 } 7146 7147 void ScalarEvolution::forgetValue(Value *V) { 7148 Instruction *I = dyn_cast<Instruction>(V); 7149 if (!I) return; 7150 7151 // Drop information about expressions based on loop-header PHIs. 7152 SmallVector<Instruction *, 16> Worklist; 7153 Worklist.push_back(I); 7154 7155 SmallPtrSet<Instruction *, 8> Visited; 7156 while (!Worklist.empty()) { 7157 I = Worklist.pop_back_val(); 7158 if (!Visited.insert(I).second) 7159 continue; 7160 7161 ValueExprMapType::iterator It = 7162 ValueExprMap.find_as(static_cast<Value *>(I)); 7163 if (It != ValueExprMap.end()) { 7164 eraseValueFromMap(It->first); 7165 forgetMemoizedResults(It->second); 7166 if (PHINode *PN = dyn_cast<PHINode>(I)) 7167 ConstantEvolutionLoopExitValue.erase(PN); 7168 } 7169 7170 PushDefUseChildren(I, Worklist); 7171 } 7172 } 7173 7174 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7175 LoopDispositions.clear(); 7176 } 7177 7178 /// Get the exact loop backedge taken count considering all loop exits. A 7179 /// computable result can only be returned for loops with all exiting blocks 7180 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7181 /// is never skipped. This is a valid assumption as long as the loop exits via 7182 /// that test. For precise results, it is the caller's responsibility to specify 7183 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7184 const SCEV * 7185 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7186 SCEVUnionPredicate *Preds) const { 7187 // If any exits were not computable, the loop is not computable. 7188 if (!isComplete() || ExitNotTaken.empty()) 7189 return SE->getCouldNotCompute(); 7190 7191 const BasicBlock *Latch = L->getLoopLatch(); 7192 // All exiting blocks we have collected must dominate the only backedge. 7193 if (!Latch) 7194 return SE->getCouldNotCompute(); 7195 7196 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7197 // count is simply a minimum out of all these calculated exit counts. 7198 SmallVector<const SCEV *, 2> Ops; 7199 for (auto &ENT : ExitNotTaken) { 7200 const SCEV *BECount = ENT.ExactNotTaken; 7201 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7202 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7203 "We should only have known counts for exiting blocks that dominate " 7204 "latch!"); 7205 7206 Ops.push_back(BECount); 7207 7208 if (Preds && !ENT.hasAlwaysTruePredicate()) 7209 Preds->add(ENT.Predicate.get()); 7210 7211 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7212 "Predicate should be always true!"); 7213 } 7214 7215 return SE->getUMinFromMismatchedTypes(Ops); 7216 } 7217 7218 /// Get the exact not taken count for this loop exit. 7219 const SCEV * 7220 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7221 ScalarEvolution *SE) const { 7222 for (auto &ENT : ExitNotTaken) 7223 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7224 return ENT.ExactNotTaken; 7225 7226 return SE->getCouldNotCompute(); 7227 } 7228 7229 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7230 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7231 for (auto &ENT : ExitNotTaken) 7232 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7233 return ENT.MaxNotTaken; 7234 7235 return SE->getCouldNotCompute(); 7236 } 7237 7238 /// getConstantMax - Get the constant max backedge taken count for the loop. 7239 const SCEV * 7240 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7241 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7242 return !ENT.hasAlwaysTruePredicate(); 7243 }; 7244 7245 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7246 return SE->getCouldNotCompute(); 7247 7248 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7249 isa<SCEVConstant>(getConstantMax())) && 7250 "No point in having a non-constant max backedge taken count!"); 7251 return getConstantMax(); 7252 } 7253 7254 const SCEV * 7255 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7256 ScalarEvolution *SE) { 7257 if (!SymbolicMax) 7258 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7259 return SymbolicMax; 7260 } 7261 7262 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7263 ScalarEvolution *SE) const { 7264 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7265 return !ENT.hasAlwaysTruePredicate(); 7266 }; 7267 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7268 } 7269 7270 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7271 ScalarEvolution *SE) const { 7272 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7273 SE->hasOperand(getConstantMax(), S)) 7274 return true; 7275 7276 for (auto &ENT : ExitNotTaken) 7277 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7278 SE->hasOperand(ENT.ExactNotTaken, S)) 7279 return true; 7280 7281 return false; 7282 } 7283 7284 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7285 : ExactNotTaken(E), MaxNotTaken(E) { 7286 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7287 isa<SCEVConstant>(MaxNotTaken)) && 7288 "No point in having a non-constant max backedge taken count!"); 7289 } 7290 7291 ScalarEvolution::ExitLimit::ExitLimit( 7292 const SCEV *E, const SCEV *M, bool MaxOrZero, 7293 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7294 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7295 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7296 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7297 "Exact is not allowed to be less precise than Max"); 7298 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7299 isa<SCEVConstant>(MaxNotTaken)) && 7300 "No point in having a non-constant max backedge taken count!"); 7301 for (auto *PredSet : PredSetList) 7302 for (auto *P : *PredSet) 7303 addPredicate(P); 7304 } 7305 7306 ScalarEvolution::ExitLimit::ExitLimit( 7307 const SCEV *E, const SCEV *M, bool MaxOrZero, 7308 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7309 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7310 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7311 isa<SCEVConstant>(MaxNotTaken)) && 7312 "No point in having a non-constant max backedge taken count!"); 7313 } 7314 7315 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7316 bool MaxOrZero) 7317 : ExitLimit(E, M, MaxOrZero, None) { 7318 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7319 isa<SCEVConstant>(MaxNotTaken)) && 7320 "No point in having a non-constant max backedge taken count!"); 7321 } 7322 7323 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7324 /// computable exit into a persistent ExitNotTakenInfo array. 7325 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7326 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7327 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7328 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7329 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7330 7331 ExitNotTaken.reserve(ExitCounts.size()); 7332 std::transform( 7333 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7334 [&](const EdgeExitInfo &EEI) { 7335 BasicBlock *ExitBB = EEI.first; 7336 const ExitLimit &EL = EEI.second; 7337 if (EL.Predicates.empty()) 7338 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7339 nullptr); 7340 7341 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7342 for (auto *Pred : EL.Predicates) 7343 Predicate->add(Pred); 7344 7345 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7346 std::move(Predicate)); 7347 }); 7348 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7349 isa<SCEVConstant>(ConstantMax)) && 7350 "No point in having a non-constant max backedge taken count!"); 7351 } 7352 7353 /// Invalidate this result and free the ExitNotTakenInfo array. 7354 void ScalarEvolution::BackedgeTakenInfo::clear() { 7355 ExitNotTaken.clear(); 7356 } 7357 7358 /// Compute the number of times the backedge of the specified loop will execute. 7359 ScalarEvolution::BackedgeTakenInfo 7360 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7361 bool AllowPredicates) { 7362 SmallVector<BasicBlock *, 8> ExitingBlocks; 7363 L->getExitingBlocks(ExitingBlocks); 7364 7365 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7366 7367 SmallVector<EdgeExitInfo, 4> ExitCounts; 7368 bool CouldComputeBECount = true; 7369 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7370 const SCEV *MustExitMaxBECount = nullptr; 7371 const SCEV *MayExitMaxBECount = nullptr; 7372 bool MustExitMaxOrZero = false; 7373 7374 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7375 // and compute maxBECount. 7376 // Do a union of all the predicates here. 7377 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7378 BasicBlock *ExitBB = ExitingBlocks[i]; 7379 7380 // We canonicalize untaken exits to br (constant), ignore them so that 7381 // proving an exit untaken doesn't negatively impact our ability to reason 7382 // about the loop as whole. 7383 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7384 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7385 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7386 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7387 continue; 7388 } 7389 7390 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7391 7392 assert((AllowPredicates || EL.Predicates.empty()) && 7393 "Predicated exit limit when predicates are not allowed!"); 7394 7395 // 1. For each exit that can be computed, add an entry to ExitCounts. 7396 // CouldComputeBECount is true only if all exits can be computed. 7397 if (EL.ExactNotTaken == getCouldNotCompute()) 7398 // We couldn't compute an exact value for this exit, so 7399 // we won't be able to compute an exact value for the loop. 7400 CouldComputeBECount = false; 7401 else 7402 ExitCounts.emplace_back(ExitBB, EL); 7403 7404 // 2. Derive the loop's MaxBECount from each exit's max number of 7405 // non-exiting iterations. Partition the loop exits into two kinds: 7406 // LoopMustExits and LoopMayExits. 7407 // 7408 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7409 // is a LoopMayExit. If any computable LoopMustExit is found, then 7410 // MaxBECount is the minimum EL.MaxNotTaken of computable 7411 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7412 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7413 // computable EL.MaxNotTaken. 7414 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7415 DT.dominates(ExitBB, Latch)) { 7416 if (!MustExitMaxBECount) { 7417 MustExitMaxBECount = EL.MaxNotTaken; 7418 MustExitMaxOrZero = EL.MaxOrZero; 7419 } else { 7420 MustExitMaxBECount = 7421 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7422 } 7423 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7424 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7425 MayExitMaxBECount = EL.MaxNotTaken; 7426 else { 7427 MayExitMaxBECount = 7428 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7429 } 7430 } 7431 } 7432 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7433 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7434 // The loop backedge will be taken the maximum or zero times if there's 7435 // a single exit that must be taken the maximum or zero times. 7436 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7437 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7438 MaxBECount, MaxOrZero); 7439 } 7440 7441 ScalarEvolution::ExitLimit 7442 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7443 bool AllowPredicates) { 7444 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7445 // If our exiting block does not dominate the latch, then its connection with 7446 // loop's exit limit may be far from trivial. 7447 const BasicBlock *Latch = L->getLoopLatch(); 7448 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7449 return getCouldNotCompute(); 7450 7451 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7452 Instruction *Term = ExitingBlock->getTerminator(); 7453 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7454 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7455 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7456 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7457 "It should have one successor in loop and one exit block!"); 7458 // Proceed to the next level to examine the exit condition expression. 7459 return computeExitLimitFromCond( 7460 L, BI->getCondition(), ExitIfTrue, 7461 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7462 } 7463 7464 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7465 // For switch, make sure that there is a single exit from the loop. 7466 BasicBlock *Exit = nullptr; 7467 for (auto *SBB : successors(ExitingBlock)) 7468 if (!L->contains(SBB)) { 7469 if (Exit) // Multiple exit successors. 7470 return getCouldNotCompute(); 7471 Exit = SBB; 7472 } 7473 assert(Exit && "Exiting block must have at least one exit"); 7474 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7475 /*ControlsExit=*/IsOnlyExit); 7476 } 7477 7478 return getCouldNotCompute(); 7479 } 7480 7481 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7482 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7483 bool ControlsExit, bool AllowPredicates) { 7484 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7485 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7486 ControlsExit, AllowPredicates); 7487 } 7488 7489 Optional<ScalarEvolution::ExitLimit> 7490 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7491 bool ExitIfTrue, bool ControlsExit, 7492 bool AllowPredicates) { 7493 (void)this->L; 7494 (void)this->ExitIfTrue; 7495 (void)this->AllowPredicates; 7496 7497 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7498 this->AllowPredicates == AllowPredicates && 7499 "Variance in assumed invariant key components!"); 7500 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7501 if (Itr == TripCountMap.end()) 7502 return None; 7503 return Itr->second; 7504 } 7505 7506 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7507 bool ExitIfTrue, 7508 bool ControlsExit, 7509 bool AllowPredicates, 7510 const ExitLimit &EL) { 7511 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7512 this->AllowPredicates == AllowPredicates && 7513 "Variance in assumed invariant key components!"); 7514 7515 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7516 assert(InsertResult.second && "Expected successful insertion!"); 7517 (void)InsertResult; 7518 (void)ExitIfTrue; 7519 } 7520 7521 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7522 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7523 bool ControlsExit, bool AllowPredicates) { 7524 7525 if (auto MaybeEL = 7526 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7527 return *MaybeEL; 7528 7529 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7530 ControlsExit, AllowPredicates); 7531 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7532 return EL; 7533 } 7534 7535 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7536 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7537 bool ControlsExit, bool AllowPredicates) { 7538 // Handle BinOp conditions (And, Or). 7539 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7540 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7541 return *LimitFromBinOp; 7542 7543 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7544 // Proceed to the next level to examine the icmp. 7545 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7546 ExitLimit EL = 7547 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7548 if (EL.hasFullInfo() || !AllowPredicates) 7549 return EL; 7550 7551 // Try again, but use SCEV predicates this time. 7552 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7553 /*AllowPredicates=*/true); 7554 } 7555 7556 // Check for a constant condition. These are normally stripped out by 7557 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7558 // preserve the CFG and is temporarily leaving constant conditions 7559 // in place. 7560 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7561 if (ExitIfTrue == !CI->getZExtValue()) 7562 // The backedge is always taken. 7563 return getCouldNotCompute(); 7564 else 7565 // The backedge is never taken. 7566 return getZero(CI->getType()); 7567 } 7568 7569 // If it's not an integer or pointer comparison then compute it the hard way. 7570 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7571 } 7572 7573 Optional<ScalarEvolution::ExitLimit> 7574 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7575 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7576 bool ControlsExit, bool AllowPredicates) { 7577 // Check if the controlling expression for this loop is an And or Or. 7578 if (auto *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7579 if (BO->getOpcode() == Instruction::And) 7580 return computeExitLimitFromCondFromBinOpHelper( 7581 Cache, L, BO, !ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates, 7582 ConstantInt::get(BO->getType(), 1)); 7583 if (BO->getOpcode() == Instruction::Or) 7584 return computeExitLimitFromCondFromBinOpHelper( 7585 Cache, L, BO, ExitIfTrue, ExitIfTrue, ControlsExit, AllowPredicates, 7586 ConstantInt::get(BO->getType(), 0)); 7587 } 7588 return None; 7589 } 7590 7591 ScalarEvolution::ExitLimit 7592 ScalarEvolution::computeExitLimitFromCondFromBinOpHelper( 7593 ExitLimitCacheTy &Cache, const Loop *L, BinaryOperator *BO, 7594 bool EitherMayExit, bool ExitIfTrue, bool ControlsExit, 7595 bool AllowPredicates, const Constant *NeutralElement) { 7596 ExitLimit EL0 = computeExitLimitFromCondCached( 7597 Cache, L, BO->getOperand(0), ExitIfTrue, ControlsExit && !EitherMayExit, 7598 AllowPredicates); 7599 ExitLimit EL1 = computeExitLimitFromCondCached( 7600 Cache, L, BO->getOperand(1), ExitIfTrue, ControlsExit && !EitherMayExit, 7601 AllowPredicates); 7602 // Be robust against unsimplified IR for the form "op i1 X, 7603 // NeutralElement" 7604 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7605 return CI == NeutralElement ? EL0 : EL1; 7606 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7607 return CI == NeutralElement ? EL1 : EL0; 7608 const SCEV *BECount = getCouldNotCompute(); 7609 const SCEV *MaxBECount = getCouldNotCompute(); 7610 if (EitherMayExit) { 7611 // Both conditions must be same for the loop to continue executing. 7612 // Choose the less conservative count. 7613 if (EL0.ExactNotTaken == getCouldNotCompute() || 7614 EL1.ExactNotTaken == getCouldNotCompute()) 7615 BECount = getCouldNotCompute(); 7616 else 7617 BECount = 7618 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7619 if (EL0.MaxNotTaken == getCouldNotCompute()) 7620 MaxBECount = EL1.MaxNotTaken; 7621 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7622 MaxBECount = EL0.MaxNotTaken; 7623 else 7624 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7625 } else { 7626 // Both conditions must be same at the same time for the loop to exit. 7627 // For now, be conservative. 7628 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7629 BECount = EL0.ExactNotTaken; 7630 } 7631 7632 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7633 // to be more aggressive when computing BECount than when computing 7634 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7635 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7636 // to not. 7637 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7638 !isa<SCEVCouldNotCompute>(BECount)) 7639 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7640 7641 return ExitLimit(BECount, MaxBECount, false, 7642 { &EL0.Predicates, &EL1.Predicates }); 7643 } 7644 7645 ScalarEvolution::ExitLimit 7646 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7647 ICmpInst *ExitCond, 7648 bool ExitIfTrue, 7649 bool ControlsExit, 7650 bool AllowPredicates) { 7651 // If the condition was exit on true, convert the condition to exit on false 7652 ICmpInst::Predicate Pred; 7653 if (!ExitIfTrue) 7654 Pred = ExitCond->getPredicate(); 7655 else 7656 Pred = ExitCond->getInversePredicate(); 7657 const ICmpInst::Predicate OriginalPred = Pred; 7658 7659 // Handle common loops like: for (X = "string"; *X; ++X) 7660 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7661 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7662 ExitLimit ItCnt = 7663 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7664 if (ItCnt.hasAnyInfo()) 7665 return ItCnt; 7666 } 7667 7668 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7669 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7670 7671 // Try to evaluate any dependencies out of the loop. 7672 LHS = getSCEVAtScope(LHS, L); 7673 RHS = getSCEVAtScope(RHS, L); 7674 7675 // At this point, we would like to compute how many iterations of the 7676 // loop the predicate will return true for these inputs. 7677 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7678 // If there is a loop-invariant, force it into the RHS. 7679 std::swap(LHS, RHS); 7680 Pred = ICmpInst::getSwappedPredicate(Pred); 7681 } 7682 7683 // Simplify the operands before analyzing them. 7684 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7685 7686 // If we have a comparison of a chrec against a constant, try to use value 7687 // ranges to answer this query. 7688 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7689 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7690 if (AddRec->getLoop() == L) { 7691 // Form the constant range. 7692 ConstantRange CompRange = 7693 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7694 7695 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7696 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7697 } 7698 7699 switch (Pred) { 7700 case ICmpInst::ICMP_NE: { // while (X != Y) 7701 // Convert to: while (X-Y != 0) 7702 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7703 AllowPredicates); 7704 if (EL.hasAnyInfo()) return EL; 7705 break; 7706 } 7707 case ICmpInst::ICMP_EQ: { // while (X == Y) 7708 // Convert to: while (X-Y == 0) 7709 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7710 if (EL.hasAnyInfo()) return EL; 7711 break; 7712 } 7713 case ICmpInst::ICMP_SLT: 7714 case ICmpInst::ICMP_ULT: { // while (X < Y) 7715 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7716 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7717 AllowPredicates); 7718 if (EL.hasAnyInfo()) return EL; 7719 break; 7720 } 7721 case ICmpInst::ICMP_SGT: 7722 case ICmpInst::ICMP_UGT: { // while (X > Y) 7723 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7724 ExitLimit EL = 7725 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7726 AllowPredicates); 7727 if (EL.hasAnyInfo()) return EL; 7728 break; 7729 } 7730 default: 7731 break; 7732 } 7733 7734 auto *ExhaustiveCount = 7735 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7736 7737 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7738 return ExhaustiveCount; 7739 7740 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7741 ExitCond->getOperand(1), L, OriginalPred); 7742 } 7743 7744 ScalarEvolution::ExitLimit 7745 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7746 SwitchInst *Switch, 7747 BasicBlock *ExitingBlock, 7748 bool ControlsExit) { 7749 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7750 7751 // Give up if the exit is the default dest of a switch. 7752 if (Switch->getDefaultDest() == ExitingBlock) 7753 return getCouldNotCompute(); 7754 7755 assert(L->contains(Switch->getDefaultDest()) && 7756 "Default case must not exit the loop!"); 7757 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7758 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7759 7760 // while (X != Y) --> while (X-Y != 0) 7761 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7762 if (EL.hasAnyInfo()) 7763 return EL; 7764 7765 return getCouldNotCompute(); 7766 } 7767 7768 static ConstantInt * 7769 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7770 ScalarEvolution &SE) { 7771 const SCEV *InVal = SE.getConstant(C); 7772 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7773 assert(isa<SCEVConstant>(Val) && 7774 "Evaluation of SCEV at constant didn't fold correctly?"); 7775 return cast<SCEVConstant>(Val)->getValue(); 7776 } 7777 7778 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7779 /// compute the backedge execution count. 7780 ScalarEvolution::ExitLimit 7781 ScalarEvolution::computeLoadConstantCompareExitLimit( 7782 LoadInst *LI, 7783 Constant *RHS, 7784 const Loop *L, 7785 ICmpInst::Predicate predicate) { 7786 if (LI->isVolatile()) return getCouldNotCompute(); 7787 7788 // Check to see if the loaded pointer is a getelementptr of a global. 7789 // TODO: Use SCEV instead of manually grubbing with GEPs. 7790 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7791 if (!GEP) return getCouldNotCompute(); 7792 7793 // Make sure that it is really a constant global we are gepping, with an 7794 // initializer, and make sure the first IDX is really 0. 7795 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7797 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7798 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7799 return getCouldNotCompute(); 7800 7801 // Okay, we allow one non-constant index into the GEP instruction. 7802 Value *VarIdx = nullptr; 7803 std::vector<Constant*> Indexes; 7804 unsigned VarIdxNum = 0; 7805 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7806 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7807 Indexes.push_back(CI); 7808 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7809 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7810 VarIdx = GEP->getOperand(i); 7811 VarIdxNum = i-2; 7812 Indexes.push_back(nullptr); 7813 } 7814 7815 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7816 if (!VarIdx) 7817 return getCouldNotCompute(); 7818 7819 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7820 // Check to see if X is a loop variant variable value now. 7821 const SCEV *Idx = getSCEV(VarIdx); 7822 Idx = getSCEVAtScope(Idx, L); 7823 7824 // We can only recognize very limited forms of loop index expressions, in 7825 // particular, only affine AddRec's like {C1,+,C2}. 7826 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7827 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7828 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7829 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7830 return getCouldNotCompute(); 7831 7832 unsigned MaxSteps = MaxBruteForceIterations; 7833 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7834 ConstantInt *ItCst = ConstantInt::get( 7835 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7836 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7837 7838 // Form the GEP offset. 7839 Indexes[VarIdxNum] = Val; 7840 7841 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7842 Indexes); 7843 if (!Result) break; // Cannot compute! 7844 7845 // Evaluate the condition for this iteration. 7846 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7847 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7848 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7849 ++NumArrayLenItCounts; 7850 return getConstant(ItCst); // Found terminating iteration! 7851 } 7852 } 7853 return getCouldNotCompute(); 7854 } 7855 7856 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7857 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7858 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7859 if (!RHS) 7860 return getCouldNotCompute(); 7861 7862 const BasicBlock *Latch = L->getLoopLatch(); 7863 if (!Latch) 7864 return getCouldNotCompute(); 7865 7866 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7867 if (!Predecessor) 7868 return getCouldNotCompute(); 7869 7870 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7871 // Return LHS in OutLHS and shift_opt in OutOpCode. 7872 auto MatchPositiveShift = 7873 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7874 7875 using namespace PatternMatch; 7876 7877 ConstantInt *ShiftAmt; 7878 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7879 OutOpCode = Instruction::LShr; 7880 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7881 OutOpCode = Instruction::AShr; 7882 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7883 OutOpCode = Instruction::Shl; 7884 else 7885 return false; 7886 7887 return ShiftAmt->getValue().isStrictlyPositive(); 7888 }; 7889 7890 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7891 // 7892 // loop: 7893 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7894 // %iv.shifted = lshr i32 %iv, <positive constant> 7895 // 7896 // Return true on a successful match. Return the corresponding PHI node (%iv 7897 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7898 auto MatchShiftRecurrence = 7899 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7900 Optional<Instruction::BinaryOps> PostShiftOpCode; 7901 7902 { 7903 Instruction::BinaryOps OpC; 7904 Value *V; 7905 7906 // If we encounter a shift instruction, "peel off" the shift operation, 7907 // and remember that we did so. Later when we inspect %iv's backedge 7908 // value, we will make sure that the backedge value uses the same 7909 // operation. 7910 // 7911 // Note: the peeled shift operation does not have to be the same 7912 // instruction as the one feeding into the PHI's backedge value. We only 7913 // really care about it being the same *kind* of shift instruction -- 7914 // that's all that is required for our later inferences to hold. 7915 if (MatchPositiveShift(LHS, V, OpC)) { 7916 PostShiftOpCode = OpC; 7917 LHS = V; 7918 } 7919 } 7920 7921 PNOut = dyn_cast<PHINode>(LHS); 7922 if (!PNOut || PNOut->getParent() != L->getHeader()) 7923 return false; 7924 7925 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7926 Value *OpLHS; 7927 7928 return 7929 // The backedge value for the PHI node must be a shift by a positive 7930 // amount 7931 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7932 7933 // of the PHI node itself 7934 OpLHS == PNOut && 7935 7936 // and the kind of shift should be match the kind of shift we peeled 7937 // off, if any. 7938 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7939 }; 7940 7941 PHINode *PN; 7942 Instruction::BinaryOps OpCode; 7943 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7944 return getCouldNotCompute(); 7945 7946 const DataLayout &DL = getDataLayout(); 7947 7948 // The key rationale for this optimization is that for some kinds of shift 7949 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7950 // within a finite number of iterations. If the condition guarding the 7951 // backedge (in the sense that the backedge is taken if the condition is true) 7952 // is false for the value the shift recurrence stabilizes to, then we know 7953 // that the backedge is taken only a finite number of times. 7954 7955 ConstantInt *StableValue = nullptr; 7956 switch (OpCode) { 7957 default: 7958 llvm_unreachable("Impossible case!"); 7959 7960 case Instruction::AShr: { 7961 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7962 // bitwidth(K) iterations. 7963 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7964 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7965 Predecessor->getTerminator(), &DT); 7966 auto *Ty = cast<IntegerType>(RHS->getType()); 7967 if (Known.isNonNegative()) 7968 StableValue = ConstantInt::get(Ty, 0); 7969 else if (Known.isNegative()) 7970 StableValue = ConstantInt::get(Ty, -1, true); 7971 else 7972 return getCouldNotCompute(); 7973 7974 break; 7975 } 7976 case Instruction::LShr: 7977 case Instruction::Shl: 7978 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7979 // stabilize to 0 in at most bitwidth(K) iterations. 7980 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7981 break; 7982 } 7983 7984 auto *Result = 7985 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7986 assert(Result->getType()->isIntegerTy(1) && 7987 "Otherwise cannot be an operand to a branch instruction"); 7988 7989 if (Result->isZeroValue()) { 7990 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7991 const SCEV *UpperBound = 7992 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7993 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7994 } 7995 7996 return getCouldNotCompute(); 7997 } 7998 7999 /// Return true if we can constant fold an instruction of the specified type, 8000 /// assuming that all operands were constants. 8001 static bool CanConstantFold(const Instruction *I) { 8002 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8003 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8004 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8005 return true; 8006 8007 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8008 if (const Function *F = CI->getCalledFunction()) 8009 return canConstantFoldCallTo(CI, F); 8010 return false; 8011 } 8012 8013 /// Determine whether this instruction can constant evolve within this loop 8014 /// assuming its operands can all constant evolve. 8015 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8016 // An instruction outside of the loop can't be derived from a loop PHI. 8017 if (!L->contains(I)) return false; 8018 8019 if (isa<PHINode>(I)) { 8020 // We don't currently keep track of the control flow needed to evaluate 8021 // PHIs, so we cannot handle PHIs inside of loops. 8022 return L->getHeader() == I->getParent(); 8023 } 8024 8025 // If we won't be able to constant fold this expression even if the operands 8026 // are constants, bail early. 8027 return CanConstantFold(I); 8028 } 8029 8030 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8031 /// recursing through each instruction operand until reaching a loop header phi. 8032 static PHINode * 8033 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8034 DenseMap<Instruction *, PHINode *> &PHIMap, 8035 unsigned Depth) { 8036 if (Depth > MaxConstantEvolvingDepth) 8037 return nullptr; 8038 8039 // Otherwise, we can evaluate this instruction if all of its operands are 8040 // constant or derived from a PHI node themselves. 8041 PHINode *PHI = nullptr; 8042 for (Value *Op : UseInst->operands()) { 8043 if (isa<Constant>(Op)) continue; 8044 8045 Instruction *OpInst = dyn_cast<Instruction>(Op); 8046 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8047 8048 PHINode *P = dyn_cast<PHINode>(OpInst); 8049 if (!P) 8050 // If this operand is already visited, reuse the prior result. 8051 // We may have P != PHI if this is the deepest point at which the 8052 // inconsistent paths meet. 8053 P = PHIMap.lookup(OpInst); 8054 if (!P) { 8055 // Recurse and memoize the results, whether a phi is found or not. 8056 // This recursive call invalidates pointers into PHIMap. 8057 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8058 PHIMap[OpInst] = P; 8059 } 8060 if (!P) 8061 return nullptr; // Not evolving from PHI 8062 if (PHI && PHI != P) 8063 return nullptr; // Evolving from multiple different PHIs. 8064 PHI = P; 8065 } 8066 // This is a expression evolving from a constant PHI! 8067 return PHI; 8068 } 8069 8070 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8071 /// in the loop that V is derived from. We allow arbitrary operations along the 8072 /// way, but the operands of an operation must either be constants or a value 8073 /// derived from a constant PHI. If this expression does not fit with these 8074 /// constraints, return null. 8075 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8076 Instruction *I = dyn_cast<Instruction>(V); 8077 if (!I || !canConstantEvolve(I, L)) return nullptr; 8078 8079 if (PHINode *PN = dyn_cast<PHINode>(I)) 8080 return PN; 8081 8082 // Record non-constant instructions contained by the loop. 8083 DenseMap<Instruction *, PHINode *> PHIMap; 8084 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8085 } 8086 8087 /// EvaluateExpression - Given an expression that passes the 8088 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8089 /// in the loop has the value PHIVal. If we can't fold this expression for some 8090 /// reason, return null. 8091 static Constant *EvaluateExpression(Value *V, const Loop *L, 8092 DenseMap<Instruction *, Constant *> &Vals, 8093 const DataLayout &DL, 8094 const TargetLibraryInfo *TLI) { 8095 // Convenient constant check, but redundant for recursive calls. 8096 if (Constant *C = dyn_cast<Constant>(V)) return C; 8097 Instruction *I = dyn_cast<Instruction>(V); 8098 if (!I) return nullptr; 8099 8100 if (Constant *C = Vals.lookup(I)) return C; 8101 8102 // An instruction inside the loop depends on a value outside the loop that we 8103 // weren't given a mapping for, or a value such as a call inside the loop. 8104 if (!canConstantEvolve(I, L)) return nullptr; 8105 8106 // An unmapped PHI can be due to a branch or another loop inside this loop, 8107 // or due to this not being the initial iteration through a loop where we 8108 // couldn't compute the evolution of this particular PHI last time. 8109 if (isa<PHINode>(I)) return nullptr; 8110 8111 std::vector<Constant*> Operands(I->getNumOperands()); 8112 8113 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8114 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8115 if (!Operand) { 8116 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8117 if (!Operands[i]) return nullptr; 8118 continue; 8119 } 8120 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8121 Vals[Operand] = C; 8122 if (!C) return nullptr; 8123 Operands[i] = C; 8124 } 8125 8126 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8127 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8128 Operands[1], DL, TLI); 8129 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8130 if (!LI->isVolatile()) 8131 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8132 } 8133 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8134 } 8135 8136 8137 // If every incoming value to PN except the one for BB is a specific Constant, 8138 // return that, else return nullptr. 8139 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8140 Constant *IncomingVal = nullptr; 8141 8142 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8143 if (PN->getIncomingBlock(i) == BB) 8144 continue; 8145 8146 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8147 if (!CurrentVal) 8148 return nullptr; 8149 8150 if (IncomingVal != CurrentVal) { 8151 if (IncomingVal) 8152 return nullptr; 8153 IncomingVal = CurrentVal; 8154 } 8155 } 8156 8157 return IncomingVal; 8158 } 8159 8160 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8161 /// in the header of its containing loop, we know the loop executes a 8162 /// constant number of times, and the PHI node is just a recurrence 8163 /// involving constants, fold it. 8164 Constant * 8165 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8166 const APInt &BEs, 8167 const Loop *L) { 8168 auto I = ConstantEvolutionLoopExitValue.find(PN); 8169 if (I != ConstantEvolutionLoopExitValue.end()) 8170 return I->second; 8171 8172 if (BEs.ugt(MaxBruteForceIterations)) 8173 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8174 8175 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8176 8177 DenseMap<Instruction *, Constant *> CurrentIterVals; 8178 BasicBlock *Header = L->getHeader(); 8179 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8180 8181 BasicBlock *Latch = L->getLoopLatch(); 8182 if (!Latch) 8183 return nullptr; 8184 8185 for (PHINode &PHI : Header->phis()) { 8186 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8187 CurrentIterVals[&PHI] = StartCST; 8188 } 8189 if (!CurrentIterVals.count(PN)) 8190 return RetVal = nullptr; 8191 8192 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8193 8194 // Execute the loop symbolically to determine the exit value. 8195 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8196 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8197 8198 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8199 unsigned IterationNum = 0; 8200 const DataLayout &DL = getDataLayout(); 8201 for (; ; ++IterationNum) { 8202 if (IterationNum == NumIterations) 8203 return RetVal = CurrentIterVals[PN]; // Got exit value! 8204 8205 // Compute the value of the PHIs for the next iteration. 8206 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8207 DenseMap<Instruction *, Constant *> NextIterVals; 8208 Constant *NextPHI = 8209 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8210 if (!NextPHI) 8211 return nullptr; // Couldn't evaluate! 8212 NextIterVals[PN] = NextPHI; 8213 8214 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8215 8216 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8217 // cease to be able to evaluate one of them or if they stop evolving, 8218 // because that doesn't necessarily prevent us from computing PN. 8219 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8220 for (const auto &I : CurrentIterVals) { 8221 PHINode *PHI = dyn_cast<PHINode>(I.first); 8222 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8223 PHIsToCompute.emplace_back(PHI, I.second); 8224 } 8225 // We use two distinct loops because EvaluateExpression may invalidate any 8226 // iterators into CurrentIterVals. 8227 for (const auto &I : PHIsToCompute) { 8228 PHINode *PHI = I.first; 8229 Constant *&NextPHI = NextIterVals[PHI]; 8230 if (!NextPHI) { // Not already computed. 8231 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8232 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8233 } 8234 if (NextPHI != I.second) 8235 StoppedEvolving = false; 8236 } 8237 8238 // If all entries in CurrentIterVals == NextIterVals then we can stop 8239 // iterating, the loop can't continue to change. 8240 if (StoppedEvolving) 8241 return RetVal = CurrentIterVals[PN]; 8242 8243 CurrentIterVals.swap(NextIterVals); 8244 } 8245 } 8246 8247 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8248 Value *Cond, 8249 bool ExitWhen) { 8250 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8251 if (!PN) return getCouldNotCompute(); 8252 8253 // If the loop is canonicalized, the PHI will have exactly two entries. 8254 // That's the only form we support here. 8255 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8256 8257 DenseMap<Instruction *, Constant *> CurrentIterVals; 8258 BasicBlock *Header = L->getHeader(); 8259 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8260 8261 BasicBlock *Latch = L->getLoopLatch(); 8262 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8263 8264 for (PHINode &PHI : Header->phis()) { 8265 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8266 CurrentIterVals[&PHI] = StartCST; 8267 } 8268 if (!CurrentIterVals.count(PN)) 8269 return getCouldNotCompute(); 8270 8271 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8272 // the loop symbolically to determine when the condition gets a value of 8273 // "ExitWhen". 8274 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8275 const DataLayout &DL = getDataLayout(); 8276 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8277 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8278 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8279 8280 // Couldn't symbolically evaluate. 8281 if (!CondVal) return getCouldNotCompute(); 8282 8283 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8284 ++NumBruteForceTripCountsComputed; 8285 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8286 } 8287 8288 // Update all the PHI nodes for the next iteration. 8289 DenseMap<Instruction *, Constant *> NextIterVals; 8290 8291 // Create a list of which PHIs we need to compute. We want to do this before 8292 // calling EvaluateExpression on them because that may invalidate iterators 8293 // into CurrentIterVals. 8294 SmallVector<PHINode *, 8> PHIsToCompute; 8295 for (const auto &I : CurrentIterVals) { 8296 PHINode *PHI = dyn_cast<PHINode>(I.first); 8297 if (!PHI || PHI->getParent() != Header) continue; 8298 PHIsToCompute.push_back(PHI); 8299 } 8300 for (PHINode *PHI : PHIsToCompute) { 8301 Constant *&NextPHI = NextIterVals[PHI]; 8302 if (NextPHI) continue; // Already computed! 8303 8304 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8305 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8306 } 8307 CurrentIterVals.swap(NextIterVals); 8308 } 8309 8310 // Too many iterations were needed to evaluate. 8311 return getCouldNotCompute(); 8312 } 8313 8314 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8315 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8316 ValuesAtScopes[V]; 8317 // Check to see if we've folded this expression at this loop before. 8318 for (auto &LS : Values) 8319 if (LS.first == L) 8320 return LS.second ? LS.second : V; 8321 8322 Values.emplace_back(L, nullptr); 8323 8324 // Otherwise compute it. 8325 const SCEV *C = computeSCEVAtScope(V, L); 8326 for (auto &LS : reverse(ValuesAtScopes[V])) 8327 if (LS.first == L) { 8328 LS.second = C; 8329 break; 8330 } 8331 return C; 8332 } 8333 8334 /// This builds up a Constant using the ConstantExpr interface. That way, we 8335 /// will return Constants for objects which aren't represented by a 8336 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8337 /// Returns NULL if the SCEV isn't representable as a Constant. 8338 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8339 switch (V->getSCEVType()) { 8340 case scCouldNotCompute: 8341 case scAddRecExpr: 8342 return nullptr; 8343 case scConstant: 8344 return cast<SCEVConstant>(V)->getValue(); 8345 case scUnknown: 8346 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8347 case scSignExtend: { 8348 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8349 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8350 return ConstantExpr::getSExt(CastOp, SS->getType()); 8351 return nullptr; 8352 } 8353 case scZeroExtend: { 8354 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8355 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8356 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8357 return nullptr; 8358 } 8359 case scPtrToInt: { 8360 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8361 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8362 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8363 8364 return nullptr; 8365 } 8366 case scTruncate: { 8367 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8368 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8369 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8370 return nullptr; 8371 } 8372 case scAddExpr: { 8373 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8374 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8375 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8376 unsigned AS = PTy->getAddressSpace(); 8377 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8378 C = ConstantExpr::getBitCast(C, DestPtrTy); 8379 } 8380 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8381 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8382 if (!C2) 8383 return nullptr; 8384 8385 // First pointer! 8386 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8387 unsigned AS = C2->getType()->getPointerAddressSpace(); 8388 std::swap(C, C2); 8389 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8390 // The offsets have been converted to bytes. We can add bytes to an 8391 // i8* by GEP with the byte count in the first index. 8392 C = ConstantExpr::getBitCast(C, DestPtrTy); 8393 } 8394 8395 // Don't bother trying to sum two pointers. We probably can't 8396 // statically compute a load that results from it anyway. 8397 if (C2->getType()->isPointerTy()) 8398 return nullptr; 8399 8400 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8401 if (PTy->getElementType()->isStructTy()) 8402 C2 = ConstantExpr::getIntegerCast( 8403 C2, Type::getInt32Ty(C->getContext()), true); 8404 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8405 } else 8406 C = ConstantExpr::getAdd(C, C2); 8407 } 8408 return C; 8409 } 8410 return nullptr; 8411 } 8412 case scMulExpr: { 8413 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8414 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8415 // Don't bother with pointers at all. 8416 if (C->getType()->isPointerTy()) 8417 return nullptr; 8418 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8419 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8420 if (!C2 || C2->getType()->isPointerTy()) 8421 return nullptr; 8422 C = ConstantExpr::getMul(C, C2); 8423 } 8424 return C; 8425 } 8426 return nullptr; 8427 } 8428 case scUDivExpr: { 8429 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8430 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8431 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8432 if (LHS->getType() == RHS->getType()) 8433 return ConstantExpr::getUDiv(LHS, RHS); 8434 return nullptr; 8435 } 8436 case scSMaxExpr: 8437 case scUMaxExpr: 8438 case scSMinExpr: 8439 case scUMinExpr: 8440 return nullptr; // TODO: smax, umax, smin, umax. 8441 } 8442 llvm_unreachable("Unknown SCEV kind!"); 8443 } 8444 8445 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8446 if (isa<SCEVConstant>(V)) return V; 8447 8448 // If this instruction is evolved from a constant-evolving PHI, compute the 8449 // exit value from the loop without using SCEVs. 8450 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8451 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8452 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8453 const Loop *CurrLoop = this->LI[I->getParent()]; 8454 // Looking for loop exit value. 8455 if (CurrLoop && CurrLoop->getParentLoop() == L && 8456 PN->getParent() == CurrLoop->getHeader()) { 8457 // Okay, there is no closed form solution for the PHI node. Check 8458 // to see if the loop that contains it has a known backedge-taken 8459 // count. If so, we may be able to force computation of the exit 8460 // value. 8461 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8462 // This trivial case can show up in some degenerate cases where 8463 // the incoming IR has not yet been fully simplified. 8464 if (BackedgeTakenCount->isZero()) { 8465 Value *InitValue = nullptr; 8466 bool MultipleInitValues = false; 8467 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8468 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8469 if (!InitValue) 8470 InitValue = PN->getIncomingValue(i); 8471 else if (InitValue != PN->getIncomingValue(i)) { 8472 MultipleInitValues = true; 8473 break; 8474 } 8475 } 8476 } 8477 if (!MultipleInitValues && InitValue) 8478 return getSCEV(InitValue); 8479 } 8480 // Do we have a loop invariant value flowing around the backedge 8481 // for a loop which must execute the backedge? 8482 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8483 isKnownPositive(BackedgeTakenCount) && 8484 PN->getNumIncomingValues() == 2) { 8485 8486 unsigned InLoopPred = 8487 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8488 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8489 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8490 return getSCEV(BackedgeVal); 8491 } 8492 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8493 // Okay, we know how many times the containing loop executes. If 8494 // this is a constant evolving PHI node, get the final value at 8495 // the specified iteration number. 8496 Constant *RV = getConstantEvolutionLoopExitValue( 8497 PN, BTCC->getAPInt(), CurrLoop); 8498 if (RV) return getSCEV(RV); 8499 } 8500 } 8501 8502 // If there is a single-input Phi, evaluate it at our scope. If we can 8503 // prove that this replacement does not break LCSSA form, use new value. 8504 if (PN->getNumOperands() == 1) { 8505 const SCEV *Input = getSCEV(PN->getOperand(0)); 8506 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8507 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8508 // for the simplest case just support constants. 8509 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8510 } 8511 } 8512 8513 // Okay, this is an expression that we cannot symbolically evaluate 8514 // into a SCEV. Check to see if it's possible to symbolically evaluate 8515 // the arguments into constants, and if so, try to constant propagate the 8516 // result. This is particularly useful for computing loop exit values. 8517 if (CanConstantFold(I)) { 8518 SmallVector<Constant *, 4> Operands; 8519 bool MadeImprovement = false; 8520 for (Value *Op : I->operands()) { 8521 if (Constant *C = dyn_cast<Constant>(Op)) { 8522 Operands.push_back(C); 8523 continue; 8524 } 8525 8526 // If any of the operands is non-constant and if they are 8527 // non-integer and non-pointer, don't even try to analyze them 8528 // with scev techniques. 8529 if (!isSCEVable(Op->getType())) 8530 return V; 8531 8532 const SCEV *OrigV = getSCEV(Op); 8533 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8534 MadeImprovement |= OrigV != OpV; 8535 8536 Constant *C = BuildConstantFromSCEV(OpV); 8537 if (!C) return V; 8538 if (C->getType() != Op->getType()) 8539 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8540 Op->getType(), 8541 false), 8542 C, Op->getType()); 8543 Operands.push_back(C); 8544 } 8545 8546 // Check to see if getSCEVAtScope actually made an improvement. 8547 if (MadeImprovement) { 8548 Constant *C = nullptr; 8549 const DataLayout &DL = getDataLayout(); 8550 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8551 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8552 Operands[1], DL, &TLI); 8553 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8554 if (!Load->isVolatile()) 8555 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8556 DL); 8557 } else 8558 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8559 if (!C) return V; 8560 return getSCEV(C); 8561 } 8562 } 8563 } 8564 8565 // This is some other type of SCEVUnknown, just return it. 8566 return V; 8567 } 8568 8569 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8570 // Avoid performing the look-up in the common case where the specified 8571 // expression has no loop-variant portions. 8572 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8573 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8574 if (OpAtScope != Comm->getOperand(i)) { 8575 // Okay, at least one of these operands is loop variant but might be 8576 // foldable. Build a new instance of the folded commutative expression. 8577 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8578 Comm->op_begin()+i); 8579 NewOps.push_back(OpAtScope); 8580 8581 for (++i; i != e; ++i) { 8582 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8583 NewOps.push_back(OpAtScope); 8584 } 8585 if (isa<SCEVAddExpr>(Comm)) 8586 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8587 if (isa<SCEVMulExpr>(Comm)) 8588 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8589 if (isa<SCEVMinMaxExpr>(Comm)) 8590 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8591 llvm_unreachable("Unknown commutative SCEV type!"); 8592 } 8593 } 8594 // If we got here, all operands are loop invariant. 8595 return Comm; 8596 } 8597 8598 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8599 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8600 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8601 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8602 return Div; // must be loop invariant 8603 return getUDivExpr(LHS, RHS); 8604 } 8605 8606 // If this is a loop recurrence for a loop that does not contain L, then we 8607 // are dealing with the final value computed by the loop. 8608 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8609 // First, attempt to evaluate each operand. 8610 // Avoid performing the look-up in the common case where the specified 8611 // expression has no loop-variant portions. 8612 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8613 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8614 if (OpAtScope == AddRec->getOperand(i)) 8615 continue; 8616 8617 // Okay, at least one of these operands is loop variant but might be 8618 // foldable. Build a new instance of the folded commutative expression. 8619 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8620 AddRec->op_begin()+i); 8621 NewOps.push_back(OpAtScope); 8622 for (++i; i != e; ++i) 8623 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8624 8625 const SCEV *FoldedRec = 8626 getAddRecExpr(NewOps, AddRec->getLoop(), 8627 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8628 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8629 // The addrec may be folded to a nonrecurrence, for example, if the 8630 // induction variable is multiplied by zero after constant folding. Go 8631 // ahead and return the folded value. 8632 if (!AddRec) 8633 return FoldedRec; 8634 break; 8635 } 8636 8637 // If the scope is outside the addrec's loop, evaluate it by using the 8638 // loop exit value of the addrec. 8639 if (!AddRec->getLoop()->contains(L)) { 8640 // To evaluate this recurrence, we need to know how many times the AddRec 8641 // loop iterates. Compute this now. 8642 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8643 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8644 8645 // Then, evaluate the AddRec. 8646 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8647 } 8648 8649 return AddRec; 8650 } 8651 8652 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8653 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8654 if (Op == Cast->getOperand()) 8655 return Cast; // must be loop invariant 8656 return getZeroExtendExpr(Op, Cast->getType()); 8657 } 8658 8659 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8660 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8661 if (Op == Cast->getOperand()) 8662 return Cast; // must be loop invariant 8663 return getSignExtendExpr(Op, Cast->getType()); 8664 } 8665 8666 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8667 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8668 if (Op == Cast->getOperand()) 8669 return Cast; // must be loop invariant 8670 return getTruncateExpr(Op, Cast->getType()); 8671 } 8672 8673 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8674 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8675 if (Op == Cast->getOperand()) 8676 return Cast; // must be loop invariant 8677 return getPtrToIntExpr(Op, Cast->getType()); 8678 } 8679 8680 llvm_unreachable("Unknown SCEV type!"); 8681 } 8682 8683 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8684 return getSCEVAtScope(getSCEV(V), L); 8685 } 8686 8687 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8688 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8689 return stripInjectiveFunctions(ZExt->getOperand()); 8690 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8691 return stripInjectiveFunctions(SExt->getOperand()); 8692 return S; 8693 } 8694 8695 /// Finds the minimum unsigned root of the following equation: 8696 /// 8697 /// A * X = B (mod N) 8698 /// 8699 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8700 /// A and B isn't important. 8701 /// 8702 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8703 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8704 ScalarEvolution &SE) { 8705 uint32_t BW = A.getBitWidth(); 8706 assert(BW == SE.getTypeSizeInBits(B->getType())); 8707 assert(A != 0 && "A must be non-zero."); 8708 8709 // 1. D = gcd(A, N) 8710 // 8711 // The gcd of A and N may have only one prime factor: 2. The number of 8712 // trailing zeros in A is its multiplicity 8713 uint32_t Mult2 = A.countTrailingZeros(); 8714 // D = 2^Mult2 8715 8716 // 2. Check if B is divisible by D. 8717 // 8718 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8719 // is not less than multiplicity of this prime factor for D. 8720 if (SE.GetMinTrailingZeros(B) < Mult2) 8721 return SE.getCouldNotCompute(); 8722 8723 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8724 // modulo (N / D). 8725 // 8726 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8727 // (N / D) in general. The inverse itself always fits into BW bits, though, 8728 // so we immediately truncate it. 8729 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8730 APInt Mod(BW + 1, 0); 8731 Mod.setBit(BW - Mult2); // Mod = N / D 8732 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8733 8734 // 4. Compute the minimum unsigned root of the equation: 8735 // I * (B / D) mod (N / D) 8736 // To simplify the computation, we factor out the divide by D: 8737 // (I * B mod N) / D 8738 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8739 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8740 } 8741 8742 /// For a given quadratic addrec, generate coefficients of the corresponding 8743 /// quadratic equation, multiplied by a common value to ensure that they are 8744 /// integers. 8745 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8746 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8747 /// were multiplied by, and BitWidth is the bit width of the original addrec 8748 /// coefficients. 8749 /// This function returns None if the addrec coefficients are not compile- 8750 /// time constants. 8751 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8752 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8753 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8754 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8755 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8756 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8757 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8758 << *AddRec << '\n'); 8759 8760 // We currently can only solve this if the coefficients are constants. 8761 if (!LC || !MC || !NC) { 8762 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8763 return None; 8764 } 8765 8766 APInt L = LC->getAPInt(); 8767 APInt M = MC->getAPInt(); 8768 APInt N = NC->getAPInt(); 8769 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8770 8771 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8772 unsigned NewWidth = BitWidth + 1; 8773 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8774 << BitWidth << '\n'); 8775 // The sign-extension (as opposed to a zero-extension) here matches the 8776 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8777 N = N.sext(NewWidth); 8778 M = M.sext(NewWidth); 8779 L = L.sext(NewWidth); 8780 8781 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8782 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8783 // L+M, L+2M+N, L+3M+3N, ... 8784 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8785 // 8786 // The equation Acc = 0 is then 8787 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8788 // In a quadratic form it becomes: 8789 // N n^2 + (2M-N) n + 2L = 0. 8790 8791 APInt A = N; 8792 APInt B = 2 * M - A; 8793 APInt C = 2 * L; 8794 APInt T = APInt(NewWidth, 2); 8795 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8796 << "x + " << C << ", coeff bw: " << NewWidth 8797 << ", multiplied by " << T << '\n'); 8798 return std::make_tuple(A, B, C, T, BitWidth); 8799 } 8800 8801 /// Helper function to compare optional APInts: 8802 /// (a) if X and Y both exist, return min(X, Y), 8803 /// (b) if neither X nor Y exist, return None, 8804 /// (c) if exactly one of X and Y exists, return that value. 8805 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8806 if (X.hasValue() && Y.hasValue()) { 8807 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8808 APInt XW = X->sextOrSelf(W); 8809 APInt YW = Y->sextOrSelf(W); 8810 return XW.slt(YW) ? *X : *Y; 8811 } 8812 if (!X.hasValue() && !Y.hasValue()) 8813 return None; 8814 return X.hasValue() ? *X : *Y; 8815 } 8816 8817 /// Helper function to truncate an optional APInt to a given BitWidth. 8818 /// When solving addrec-related equations, it is preferable to return a value 8819 /// that has the same bit width as the original addrec's coefficients. If the 8820 /// solution fits in the original bit width, truncate it (except for i1). 8821 /// Returning a value of a different bit width may inhibit some optimizations. 8822 /// 8823 /// In general, a solution to a quadratic equation generated from an addrec 8824 /// may require BW+1 bits, where BW is the bit width of the addrec's 8825 /// coefficients. The reason is that the coefficients of the quadratic 8826 /// equation are BW+1 bits wide (to avoid truncation when converting from 8827 /// the addrec to the equation). 8828 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8829 if (!X.hasValue()) 8830 return None; 8831 unsigned W = X->getBitWidth(); 8832 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8833 return X->trunc(BitWidth); 8834 return X; 8835 } 8836 8837 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8838 /// iterations. The values L, M, N are assumed to be signed, and they 8839 /// should all have the same bit widths. 8840 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8841 /// where BW is the bit width of the addrec's coefficients. 8842 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8843 /// returned as such, otherwise the bit width of the returned value may 8844 /// be greater than BW. 8845 /// 8846 /// This function returns None if 8847 /// (a) the addrec coefficients are not constant, or 8848 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8849 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8850 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8851 static Optional<APInt> 8852 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8853 APInt A, B, C, M; 8854 unsigned BitWidth; 8855 auto T = GetQuadraticEquation(AddRec); 8856 if (!T.hasValue()) 8857 return None; 8858 8859 std::tie(A, B, C, M, BitWidth) = *T; 8860 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8861 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8862 if (!X.hasValue()) 8863 return None; 8864 8865 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8866 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8867 if (!V->isZero()) 8868 return None; 8869 8870 return TruncIfPossible(X, BitWidth); 8871 } 8872 8873 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8874 /// iterations. The values M, N are assumed to be signed, and they 8875 /// should all have the same bit widths. 8876 /// Find the least n such that c(n) does not belong to the given range, 8877 /// while c(n-1) does. 8878 /// 8879 /// This function returns None if 8880 /// (a) the addrec coefficients are not constant, or 8881 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8882 /// bounds of the range. 8883 static Optional<APInt> 8884 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8885 const ConstantRange &Range, ScalarEvolution &SE) { 8886 assert(AddRec->getOperand(0)->isZero() && 8887 "Starting value of addrec should be 0"); 8888 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8889 << Range << ", addrec " << *AddRec << '\n'); 8890 // This case is handled in getNumIterationsInRange. Here we can assume that 8891 // we start in the range. 8892 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8893 "Addrec's initial value should be in range"); 8894 8895 APInt A, B, C, M; 8896 unsigned BitWidth; 8897 auto T = GetQuadraticEquation(AddRec); 8898 if (!T.hasValue()) 8899 return None; 8900 8901 // Be careful about the return value: there can be two reasons for not 8902 // returning an actual number. First, if no solutions to the equations 8903 // were found, and second, if the solutions don't leave the given range. 8904 // The first case means that the actual solution is "unknown", the second 8905 // means that it's known, but not valid. If the solution is unknown, we 8906 // cannot make any conclusions. 8907 // Return a pair: the optional solution and a flag indicating if the 8908 // solution was found. 8909 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8910 // Solve for signed overflow and unsigned overflow, pick the lower 8911 // solution. 8912 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8913 << Bound << " (before multiplying by " << M << ")\n"); 8914 Bound *= M; // The quadratic equation multiplier. 8915 8916 Optional<APInt> SO = None; 8917 if (BitWidth > 1) { 8918 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8919 "signed overflow\n"); 8920 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8921 } 8922 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8923 "unsigned overflow\n"); 8924 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8925 BitWidth+1); 8926 8927 auto LeavesRange = [&] (const APInt &X) { 8928 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8929 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8930 if (Range.contains(V0->getValue())) 8931 return false; 8932 // X should be at least 1, so X-1 is non-negative. 8933 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8934 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8935 if (Range.contains(V1->getValue())) 8936 return true; 8937 return false; 8938 }; 8939 8940 // If SolveQuadraticEquationWrap returns None, it means that there can 8941 // be a solution, but the function failed to find it. We cannot treat it 8942 // as "no solution". 8943 if (!SO.hasValue() || !UO.hasValue()) 8944 return { None, false }; 8945 8946 // Check the smaller value first to see if it leaves the range. 8947 // At this point, both SO and UO must have values. 8948 Optional<APInt> Min = MinOptional(SO, UO); 8949 if (LeavesRange(*Min)) 8950 return { Min, true }; 8951 Optional<APInt> Max = Min == SO ? UO : SO; 8952 if (LeavesRange(*Max)) 8953 return { Max, true }; 8954 8955 // Solutions were found, but were eliminated, hence the "true". 8956 return { None, true }; 8957 }; 8958 8959 std::tie(A, B, C, M, BitWidth) = *T; 8960 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8961 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8962 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8963 auto SL = SolveForBoundary(Lower); 8964 auto SU = SolveForBoundary(Upper); 8965 // If any of the solutions was unknown, no meaninigful conclusions can 8966 // be made. 8967 if (!SL.second || !SU.second) 8968 return None; 8969 8970 // Claim: The correct solution is not some value between Min and Max. 8971 // 8972 // Justification: Assuming that Min and Max are different values, one of 8973 // them is when the first signed overflow happens, the other is when the 8974 // first unsigned overflow happens. Crossing the range boundary is only 8975 // possible via an overflow (treating 0 as a special case of it, modeling 8976 // an overflow as crossing k*2^W for some k). 8977 // 8978 // The interesting case here is when Min was eliminated as an invalid 8979 // solution, but Max was not. The argument is that if there was another 8980 // overflow between Min and Max, it would also have been eliminated if 8981 // it was considered. 8982 // 8983 // For a given boundary, it is possible to have two overflows of the same 8984 // type (signed/unsigned) without having the other type in between: this 8985 // can happen when the vertex of the parabola is between the iterations 8986 // corresponding to the overflows. This is only possible when the two 8987 // overflows cross k*2^W for the same k. In such case, if the second one 8988 // left the range (and was the first one to do so), the first overflow 8989 // would have to enter the range, which would mean that either we had left 8990 // the range before or that we started outside of it. Both of these cases 8991 // are contradictions. 8992 // 8993 // Claim: In the case where SolveForBoundary returns None, the correct 8994 // solution is not some value between the Max for this boundary and the 8995 // Min of the other boundary. 8996 // 8997 // Justification: Assume that we had such Max_A and Min_B corresponding 8998 // to range boundaries A and B and such that Max_A < Min_B. If there was 8999 // a solution between Max_A and Min_B, it would have to be caused by an 9000 // overflow corresponding to either A or B. It cannot correspond to B, 9001 // since Min_B is the first occurrence of such an overflow. If it 9002 // corresponded to A, it would have to be either a signed or an unsigned 9003 // overflow that is larger than both eliminated overflows for A. But 9004 // between the eliminated overflows and this overflow, the values would 9005 // cover the entire value space, thus crossing the other boundary, which 9006 // is a contradiction. 9007 9008 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9009 } 9010 9011 ScalarEvolution::ExitLimit 9012 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9013 bool AllowPredicates) { 9014 9015 // This is only used for loops with a "x != y" exit test. The exit condition 9016 // is now expressed as a single expression, V = x-y. So the exit test is 9017 // effectively V != 0. We know and take advantage of the fact that this 9018 // expression only being used in a comparison by zero context. 9019 9020 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9021 // If the value is a constant 9022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9023 // If the value is already zero, the branch will execute zero times. 9024 if (C->getValue()->isZero()) return C; 9025 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9026 } 9027 9028 const SCEVAddRecExpr *AddRec = 9029 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9030 9031 if (!AddRec && AllowPredicates) 9032 // Try to make this an AddRec using runtime tests, in the first X 9033 // iterations of this loop, where X is the SCEV expression found by the 9034 // algorithm below. 9035 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9036 9037 if (!AddRec || AddRec->getLoop() != L) 9038 return getCouldNotCompute(); 9039 9040 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9041 // the quadratic equation to solve it. 9042 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9043 // We can only use this value if the chrec ends up with an exact zero 9044 // value at this index. When solving for "X*X != 5", for example, we 9045 // should not accept a root of 2. 9046 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9047 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9048 return ExitLimit(R, R, false, Predicates); 9049 } 9050 return getCouldNotCompute(); 9051 } 9052 9053 // Otherwise we can only handle this if it is affine. 9054 if (!AddRec->isAffine()) 9055 return getCouldNotCompute(); 9056 9057 // If this is an affine expression, the execution count of this branch is 9058 // the minimum unsigned root of the following equation: 9059 // 9060 // Start + Step*N = 0 (mod 2^BW) 9061 // 9062 // equivalent to: 9063 // 9064 // Step*N = -Start (mod 2^BW) 9065 // 9066 // where BW is the common bit width of Start and Step. 9067 9068 // Get the initial value for the loop. 9069 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9070 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9071 9072 // For now we handle only constant steps. 9073 // 9074 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9075 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9076 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9077 // We have not yet seen any such cases. 9078 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9079 if (!StepC || StepC->getValue()->isZero()) 9080 return getCouldNotCompute(); 9081 9082 // For positive steps (counting up until unsigned overflow): 9083 // N = -Start/Step (as unsigned) 9084 // For negative steps (counting down to zero): 9085 // N = Start/-Step 9086 // First compute the unsigned distance from zero in the direction of Step. 9087 bool CountDown = StepC->getAPInt().isNegative(); 9088 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9089 9090 // Handle unitary steps, which cannot wraparound. 9091 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9092 // N = Distance (as unsigned) 9093 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9094 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9095 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9096 if (MaxBECountBase.ult(MaxBECount)) 9097 MaxBECount = MaxBECountBase; 9098 9099 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9100 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9101 // case, and see if we can improve the bound. 9102 // 9103 // Explicitly handling this here is necessary because getUnsignedRange 9104 // isn't context-sensitive; it doesn't know that we only care about the 9105 // range inside the loop. 9106 const SCEV *Zero = getZero(Distance->getType()); 9107 const SCEV *One = getOne(Distance->getType()); 9108 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9109 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9110 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9111 // as "unsigned_max(Distance + 1) - 1". 9112 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9113 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9114 } 9115 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9116 } 9117 9118 // If the condition controls loop exit (the loop exits only if the expression 9119 // is true) and the addition is no-wrap we can use unsigned divide to 9120 // compute the backedge count. In this case, the step may not divide the 9121 // distance, but we don't care because if the condition is "missed" the loop 9122 // will have undefined behavior due to wrapping. 9123 if (ControlsExit && AddRec->hasNoSelfWrap() && 9124 loopHasNoAbnormalExits(AddRec->getLoop())) { 9125 const SCEV *Exact = 9126 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9127 const SCEV *Max = 9128 Exact == getCouldNotCompute() 9129 ? Exact 9130 : getConstant(getUnsignedRangeMax(Exact)); 9131 return ExitLimit(Exact, Max, false, Predicates); 9132 } 9133 9134 // Solve the general equation. 9135 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9136 getNegativeSCEV(Start), *this); 9137 const SCEV *M = E == getCouldNotCompute() 9138 ? E 9139 : getConstant(getUnsignedRangeMax(E)); 9140 return ExitLimit(E, M, false, Predicates); 9141 } 9142 9143 ScalarEvolution::ExitLimit 9144 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9145 // Loops that look like: while (X == 0) are very strange indeed. We don't 9146 // handle them yet except for the trivial case. This could be expanded in the 9147 // future as needed. 9148 9149 // If the value is a constant, check to see if it is known to be non-zero 9150 // already. If so, the backedge will execute zero times. 9151 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9152 if (!C->getValue()->isZero()) 9153 return getZero(C->getType()); 9154 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9155 } 9156 9157 // We could implement others, but I really doubt anyone writes loops like 9158 // this, and if they did, they would already be constant folded. 9159 return getCouldNotCompute(); 9160 } 9161 9162 std::pair<const BasicBlock *, const BasicBlock *> 9163 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9164 const { 9165 // If the block has a unique predecessor, then there is no path from the 9166 // predecessor to the block that does not go through the direct edge 9167 // from the predecessor to the block. 9168 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9169 return {Pred, BB}; 9170 9171 // A loop's header is defined to be a block that dominates the loop. 9172 // If the header has a unique predecessor outside the loop, it must be 9173 // a block that has exactly one successor that can reach the loop. 9174 if (const Loop *L = LI.getLoopFor(BB)) 9175 return {L->getLoopPredecessor(), L->getHeader()}; 9176 9177 return {nullptr, nullptr}; 9178 } 9179 9180 /// SCEV structural equivalence is usually sufficient for testing whether two 9181 /// expressions are equal, however for the purposes of looking for a condition 9182 /// guarding a loop, it can be useful to be a little more general, since a 9183 /// front-end may have replicated the controlling expression. 9184 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9185 // Quick check to see if they are the same SCEV. 9186 if (A == B) return true; 9187 9188 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9189 // Not all instructions that are "identical" compute the same value. For 9190 // instance, two distinct alloca instructions allocating the same type are 9191 // identical and do not read memory; but compute distinct values. 9192 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9193 }; 9194 9195 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9196 // two different instructions with the same value. Check for this case. 9197 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9198 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9199 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9200 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9201 if (ComputesEqualValues(AI, BI)) 9202 return true; 9203 9204 // Otherwise assume they may have a different value. 9205 return false; 9206 } 9207 9208 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9209 const SCEV *&LHS, const SCEV *&RHS, 9210 unsigned Depth) { 9211 bool Changed = false; 9212 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9213 // '0 != 0'. 9214 auto TrivialCase = [&](bool TriviallyTrue) { 9215 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9216 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9217 return true; 9218 }; 9219 // If we hit the max recursion limit bail out. 9220 if (Depth >= 3) 9221 return false; 9222 9223 // Canonicalize a constant to the right side. 9224 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9225 // Check for both operands constant. 9226 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9227 if (ConstantExpr::getICmp(Pred, 9228 LHSC->getValue(), 9229 RHSC->getValue())->isNullValue()) 9230 return TrivialCase(false); 9231 else 9232 return TrivialCase(true); 9233 } 9234 // Otherwise swap the operands to put the constant on the right. 9235 std::swap(LHS, RHS); 9236 Pred = ICmpInst::getSwappedPredicate(Pred); 9237 Changed = true; 9238 } 9239 9240 // If we're comparing an addrec with a value which is loop-invariant in the 9241 // addrec's loop, put the addrec on the left. Also make a dominance check, 9242 // as both operands could be addrecs loop-invariant in each other's loop. 9243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9244 const Loop *L = AR->getLoop(); 9245 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9246 std::swap(LHS, RHS); 9247 Pred = ICmpInst::getSwappedPredicate(Pred); 9248 Changed = true; 9249 } 9250 } 9251 9252 // If there's a constant operand, canonicalize comparisons with boundary 9253 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9254 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9255 const APInt &RA = RC->getAPInt(); 9256 9257 bool SimplifiedByConstantRange = false; 9258 9259 if (!ICmpInst::isEquality(Pred)) { 9260 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9261 if (ExactCR.isFullSet()) 9262 return TrivialCase(true); 9263 else if (ExactCR.isEmptySet()) 9264 return TrivialCase(false); 9265 9266 APInt NewRHS; 9267 CmpInst::Predicate NewPred; 9268 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9269 ICmpInst::isEquality(NewPred)) { 9270 // We were able to convert an inequality to an equality. 9271 Pred = NewPred; 9272 RHS = getConstant(NewRHS); 9273 Changed = SimplifiedByConstantRange = true; 9274 } 9275 } 9276 9277 if (!SimplifiedByConstantRange) { 9278 switch (Pred) { 9279 default: 9280 break; 9281 case ICmpInst::ICMP_EQ: 9282 case ICmpInst::ICMP_NE: 9283 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9284 if (!RA) 9285 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9286 if (const SCEVMulExpr *ME = 9287 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9288 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9289 ME->getOperand(0)->isAllOnesValue()) { 9290 RHS = AE->getOperand(1); 9291 LHS = ME->getOperand(1); 9292 Changed = true; 9293 } 9294 break; 9295 9296 9297 // The "Should have been caught earlier!" messages refer to the fact 9298 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9299 // should have fired on the corresponding cases, and canonicalized the 9300 // check to trivial case. 9301 9302 case ICmpInst::ICMP_UGE: 9303 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9304 Pred = ICmpInst::ICMP_UGT; 9305 RHS = getConstant(RA - 1); 9306 Changed = true; 9307 break; 9308 case ICmpInst::ICMP_ULE: 9309 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9310 Pred = ICmpInst::ICMP_ULT; 9311 RHS = getConstant(RA + 1); 9312 Changed = true; 9313 break; 9314 case ICmpInst::ICMP_SGE: 9315 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9316 Pred = ICmpInst::ICMP_SGT; 9317 RHS = getConstant(RA - 1); 9318 Changed = true; 9319 break; 9320 case ICmpInst::ICMP_SLE: 9321 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9322 Pred = ICmpInst::ICMP_SLT; 9323 RHS = getConstant(RA + 1); 9324 Changed = true; 9325 break; 9326 } 9327 } 9328 } 9329 9330 // Check for obvious equality. 9331 if (HasSameValue(LHS, RHS)) { 9332 if (ICmpInst::isTrueWhenEqual(Pred)) 9333 return TrivialCase(true); 9334 if (ICmpInst::isFalseWhenEqual(Pred)) 9335 return TrivialCase(false); 9336 } 9337 9338 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9339 // adding or subtracting 1 from one of the operands. 9340 switch (Pred) { 9341 case ICmpInst::ICMP_SLE: 9342 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9343 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9344 SCEV::FlagNSW); 9345 Pred = ICmpInst::ICMP_SLT; 9346 Changed = true; 9347 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9348 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9349 SCEV::FlagNSW); 9350 Pred = ICmpInst::ICMP_SLT; 9351 Changed = true; 9352 } 9353 break; 9354 case ICmpInst::ICMP_SGE: 9355 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9356 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9357 SCEV::FlagNSW); 9358 Pred = ICmpInst::ICMP_SGT; 9359 Changed = true; 9360 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9361 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9362 SCEV::FlagNSW); 9363 Pred = ICmpInst::ICMP_SGT; 9364 Changed = true; 9365 } 9366 break; 9367 case ICmpInst::ICMP_ULE: 9368 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9369 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9370 SCEV::FlagNUW); 9371 Pred = ICmpInst::ICMP_ULT; 9372 Changed = true; 9373 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9374 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9375 Pred = ICmpInst::ICMP_ULT; 9376 Changed = true; 9377 } 9378 break; 9379 case ICmpInst::ICMP_UGE: 9380 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9381 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9382 Pred = ICmpInst::ICMP_UGT; 9383 Changed = true; 9384 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9385 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9386 SCEV::FlagNUW); 9387 Pred = ICmpInst::ICMP_UGT; 9388 Changed = true; 9389 } 9390 break; 9391 default: 9392 break; 9393 } 9394 9395 // TODO: More simplifications are possible here. 9396 9397 // Recursively simplify until we either hit a recursion limit or nothing 9398 // changes. 9399 if (Changed) 9400 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9401 9402 return Changed; 9403 } 9404 9405 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9406 return getSignedRangeMax(S).isNegative(); 9407 } 9408 9409 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9410 return getSignedRangeMin(S).isStrictlyPositive(); 9411 } 9412 9413 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9414 return !getSignedRangeMin(S).isNegative(); 9415 } 9416 9417 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9418 return !getSignedRangeMax(S).isStrictlyPositive(); 9419 } 9420 9421 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9422 return isKnownNegative(S) || isKnownPositive(S); 9423 } 9424 9425 std::pair<const SCEV *, const SCEV *> 9426 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9427 // Compute SCEV on entry of loop L. 9428 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9429 if (Start == getCouldNotCompute()) 9430 return { Start, Start }; 9431 // Compute post increment SCEV for loop L. 9432 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9433 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9434 return { Start, PostInc }; 9435 } 9436 9437 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9438 const SCEV *LHS, const SCEV *RHS) { 9439 // First collect all loops. 9440 SmallPtrSet<const Loop *, 8> LoopsUsed; 9441 getUsedLoops(LHS, LoopsUsed); 9442 getUsedLoops(RHS, LoopsUsed); 9443 9444 if (LoopsUsed.empty()) 9445 return false; 9446 9447 // Domination relationship must be a linear order on collected loops. 9448 #ifndef NDEBUG 9449 for (auto *L1 : LoopsUsed) 9450 for (auto *L2 : LoopsUsed) 9451 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9452 DT.dominates(L2->getHeader(), L1->getHeader())) && 9453 "Domination relationship is not a linear order"); 9454 #endif 9455 9456 const Loop *MDL = 9457 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9458 [&](const Loop *L1, const Loop *L2) { 9459 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9460 }); 9461 9462 // Get init and post increment value for LHS. 9463 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9464 // if LHS contains unknown non-invariant SCEV then bail out. 9465 if (SplitLHS.first == getCouldNotCompute()) 9466 return false; 9467 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9468 // Get init and post increment value for RHS. 9469 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9470 // if RHS contains unknown non-invariant SCEV then bail out. 9471 if (SplitRHS.first == getCouldNotCompute()) 9472 return false; 9473 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9474 // It is possible that init SCEV contains an invariant load but it does 9475 // not dominate MDL and is not available at MDL loop entry, so we should 9476 // check it here. 9477 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9478 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9479 return false; 9480 9481 // It seems backedge guard check is faster than entry one so in some cases 9482 // it can speed up whole estimation by short circuit 9483 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9484 SplitRHS.second) && 9485 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9486 } 9487 9488 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9489 const SCEV *LHS, const SCEV *RHS) { 9490 // Canonicalize the inputs first. 9491 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9492 9493 if (isKnownViaInduction(Pred, LHS, RHS)) 9494 return true; 9495 9496 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9497 return true; 9498 9499 // Otherwise see what can be done with some simple reasoning. 9500 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9501 } 9502 9503 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9504 const SCEV *LHS, const SCEV *RHS, 9505 const Instruction *Context) { 9506 // TODO: Analyze guards and assumes from Context's block. 9507 return isKnownPredicate(Pred, LHS, RHS) || 9508 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9509 } 9510 9511 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9512 const SCEVAddRecExpr *LHS, 9513 const SCEV *RHS) { 9514 const Loop *L = LHS->getLoop(); 9515 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9516 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9517 } 9518 9519 Optional<ScalarEvolution::MonotonicPredicateType> 9520 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9521 ICmpInst::Predicate Pred) { 9522 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9523 9524 #ifndef NDEBUG 9525 // Verify an invariant: inverting the predicate should turn a monotonically 9526 // increasing change to a monotonically decreasing one, and vice versa. 9527 if (Result) { 9528 auto ResultSwapped = 9529 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9530 9531 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9532 assert(ResultSwapped.getValue() != Result.getValue() && 9533 "monotonicity should flip as we flip the predicate"); 9534 } 9535 #endif 9536 9537 return Result; 9538 } 9539 9540 Optional<ScalarEvolution::MonotonicPredicateType> 9541 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9542 ICmpInst::Predicate Pred) { 9543 // A zero step value for LHS means the induction variable is essentially a 9544 // loop invariant value. We don't really depend on the predicate actually 9545 // flipping from false to true (for increasing predicates, and the other way 9546 // around for decreasing predicates), all we care about is that *if* the 9547 // predicate changes then it only changes from false to true. 9548 // 9549 // A zero step value in itself is not very useful, but there may be places 9550 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9551 // as general as possible. 9552 9553 // Only handle LE/LT/GE/GT predicates. 9554 if (!ICmpInst::isRelational(Pred)) 9555 return None; 9556 9557 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9558 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9559 "Should be greater or less!"); 9560 9561 // Check that AR does not wrap. 9562 if (ICmpInst::isUnsigned(Pred)) { 9563 if (!LHS->hasNoUnsignedWrap()) 9564 return None; 9565 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9566 } else { 9567 assert(ICmpInst::isSigned(Pred) && 9568 "Relational predicate is either signed or unsigned!"); 9569 if (!LHS->hasNoSignedWrap()) 9570 return None; 9571 9572 const SCEV *Step = LHS->getStepRecurrence(*this); 9573 9574 if (isKnownNonNegative(Step)) 9575 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9576 9577 if (isKnownNonPositive(Step)) 9578 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9579 9580 return None; 9581 } 9582 } 9583 9584 Optional<ScalarEvolution::LoopInvariantPredicate> 9585 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9586 const SCEV *LHS, const SCEV *RHS, 9587 const Loop *L) { 9588 9589 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9590 if (!isLoopInvariant(RHS, L)) { 9591 if (!isLoopInvariant(LHS, L)) 9592 return None; 9593 9594 std::swap(LHS, RHS); 9595 Pred = ICmpInst::getSwappedPredicate(Pred); 9596 } 9597 9598 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9599 if (!ArLHS || ArLHS->getLoop() != L) 9600 return None; 9601 9602 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9603 if (!MonotonicType) 9604 return None; 9605 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9606 // true as the loop iterates, and the backedge is control dependent on 9607 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9608 // 9609 // * if the predicate was false in the first iteration then the predicate 9610 // is never evaluated again, since the loop exits without taking the 9611 // backedge. 9612 // * if the predicate was true in the first iteration then it will 9613 // continue to be true for all future iterations since it is 9614 // monotonically increasing. 9615 // 9616 // For both the above possibilities, we can replace the loop varying 9617 // predicate with its value on the first iteration of the loop (which is 9618 // loop invariant). 9619 // 9620 // A similar reasoning applies for a monotonically decreasing predicate, by 9621 // replacing true with false and false with true in the above two bullets. 9622 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9623 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9624 9625 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9626 return None; 9627 9628 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9629 } 9630 9631 Optional<ScalarEvolution::LoopInvariantPredicate> 9632 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9633 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9634 const Instruction *Context, const SCEV *MaxIter) { 9635 // Try to prove the following set of facts: 9636 // - The predicate is monotonic in the iteration space. 9637 // - If the check does not fail on the 1st iteration: 9638 // - No overflow will happen during first MaxIter iterations; 9639 // - It will not fail on the MaxIter'th iteration. 9640 // If the check does fail on the 1st iteration, we leave the loop and no 9641 // other checks matter. 9642 9643 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9644 if (!isLoopInvariant(RHS, L)) { 9645 if (!isLoopInvariant(LHS, L)) 9646 return None; 9647 9648 std::swap(LHS, RHS); 9649 Pred = ICmpInst::getSwappedPredicate(Pred); 9650 } 9651 9652 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9653 if (!AR || AR->getLoop() != L) 9654 return None; 9655 9656 // The predicate must be relational (i.e. <, <=, >=, >). 9657 if (!ICmpInst::isRelational(Pred)) 9658 return None; 9659 9660 // TODO: Support steps other than +/- 1. 9661 const SCEV *Step = AR->getStepRecurrence(*this); 9662 auto *One = getOne(Step->getType()); 9663 auto *MinusOne = getNegativeSCEV(One); 9664 if (Step != One && Step != MinusOne) 9665 return None; 9666 9667 // Type mismatch here means that MaxIter is potentially larger than max 9668 // unsigned value in start type, which mean we cannot prove no wrap for the 9669 // indvar. 9670 if (AR->getType() != MaxIter->getType()) 9671 return None; 9672 9673 // Value of IV on suggested last iteration. 9674 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9675 // Does it still meet the requirement? 9676 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 9677 return None; 9678 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 9679 // not exceed max unsigned value of this type), this effectively proves 9680 // that there is no wrap during the iteration. To prove that there is no 9681 // signed/unsigned wrap, we need to check that 9682 // Start <= Last for step = 1 or Start >= Last for step = -1. 9683 ICmpInst::Predicate NoOverflowPred = 9684 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9685 if (Step == MinusOne) 9686 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9687 const SCEV *Start = AR->getStart(); 9688 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9689 return None; 9690 9691 // Everything is fine. 9692 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 9693 } 9694 9695 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9696 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9697 if (HasSameValue(LHS, RHS)) 9698 return ICmpInst::isTrueWhenEqual(Pred); 9699 9700 // This code is split out from isKnownPredicate because it is called from 9701 // within isLoopEntryGuardedByCond. 9702 9703 auto CheckRanges = 9704 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9705 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9706 .contains(RangeLHS); 9707 }; 9708 9709 // The check at the top of the function catches the case where the values are 9710 // known to be equal. 9711 if (Pred == CmpInst::ICMP_EQ) 9712 return false; 9713 9714 if (Pred == CmpInst::ICMP_NE) 9715 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9716 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9717 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9718 9719 if (CmpInst::isSigned(Pred)) 9720 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9721 9722 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9723 } 9724 9725 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9726 const SCEV *LHS, 9727 const SCEV *RHS) { 9728 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9729 // Return Y via OutY. 9730 auto MatchBinaryAddToConst = 9731 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9732 SCEV::NoWrapFlags ExpectedFlags) { 9733 const SCEV *NonConstOp, *ConstOp; 9734 SCEV::NoWrapFlags FlagsPresent; 9735 9736 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9737 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9738 return false; 9739 9740 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9741 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9742 }; 9743 9744 APInt C; 9745 9746 switch (Pred) { 9747 default: 9748 break; 9749 9750 case ICmpInst::ICMP_SGE: 9751 std::swap(LHS, RHS); 9752 LLVM_FALLTHROUGH; 9753 case ICmpInst::ICMP_SLE: 9754 // X s<= (X + C)<nsw> if C >= 0 9755 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9756 return true; 9757 9758 // (X + C)<nsw> s<= X if C <= 0 9759 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9760 !C.isStrictlyPositive()) 9761 return true; 9762 break; 9763 9764 case ICmpInst::ICMP_SGT: 9765 std::swap(LHS, RHS); 9766 LLVM_FALLTHROUGH; 9767 case ICmpInst::ICMP_SLT: 9768 // X s< (X + C)<nsw> if C > 0 9769 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9770 C.isStrictlyPositive()) 9771 return true; 9772 9773 // (X + C)<nsw> s< X if C < 0 9774 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9775 return true; 9776 break; 9777 9778 case ICmpInst::ICMP_UGE: 9779 std::swap(LHS, RHS); 9780 LLVM_FALLTHROUGH; 9781 case ICmpInst::ICMP_ULE: 9782 // X u<= (X + C)<nuw> for any C 9783 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9784 return true; 9785 break; 9786 9787 case ICmpInst::ICMP_UGT: 9788 std::swap(LHS, RHS); 9789 LLVM_FALLTHROUGH; 9790 case ICmpInst::ICMP_ULT: 9791 // X u< (X + C)<nuw> if C != 0 9792 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9793 return true; 9794 break; 9795 } 9796 9797 return false; 9798 } 9799 9800 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9801 const SCEV *LHS, 9802 const SCEV *RHS) { 9803 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9804 return false; 9805 9806 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9807 // the stack can result in exponential time complexity. 9808 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9809 9810 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9811 // 9812 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9813 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9814 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9815 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9816 // use isKnownPredicate later if needed. 9817 return isKnownNonNegative(RHS) && 9818 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9819 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9820 } 9821 9822 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9823 ICmpInst::Predicate Pred, 9824 const SCEV *LHS, const SCEV *RHS) { 9825 // No need to even try if we know the module has no guards. 9826 if (!HasGuards) 9827 return false; 9828 9829 return any_of(*BB, [&](const Instruction &I) { 9830 using namespace llvm::PatternMatch; 9831 9832 Value *Condition; 9833 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9834 m_Value(Condition))) && 9835 isImpliedCond(Pred, LHS, RHS, Condition, false); 9836 }); 9837 } 9838 9839 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9840 /// protected by a conditional between LHS and RHS. This is used to 9841 /// to eliminate casts. 9842 bool 9843 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9844 ICmpInst::Predicate Pred, 9845 const SCEV *LHS, const SCEV *RHS) { 9846 // Interpret a null as meaning no loop, where there is obviously no guard 9847 // (interprocedural conditions notwithstanding). 9848 if (!L) return true; 9849 9850 if (VerifyIR) 9851 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9852 "This cannot be done on broken IR!"); 9853 9854 9855 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9856 return true; 9857 9858 BasicBlock *Latch = L->getLoopLatch(); 9859 if (!Latch) 9860 return false; 9861 9862 BranchInst *LoopContinuePredicate = 9863 dyn_cast<BranchInst>(Latch->getTerminator()); 9864 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9865 isImpliedCond(Pred, LHS, RHS, 9866 LoopContinuePredicate->getCondition(), 9867 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9868 return true; 9869 9870 // We don't want more than one activation of the following loops on the stack 9871 // -- that can lead to O(n!) time complexity. 9872 if (WalkingBEDominatingConds) 9873 return false; 9874 9875 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9876 9877 // See if we can exploit a trip count to prove the predicate. 9878 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9879 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9880 if (LatchBECount != getCouldNotCompute()) { 9881 // We know that Latch branches back to the loop header exactly 9882 // LatchBECount times. This means the backdege condition at Latch is 9883 // equivalent to "{0,+,1} u< LatchBECount". 9884 Type *Ty = LatchBECount->getType(); 9885 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9886 const SCEV *LoopCounter = 9887 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9888 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9889 LatchBECount)) 9890 return true; 9891 } 9892 9893 // Check conditions due to any @llvm.assume intrinsics. 9894 for (auto &AssumeVH : AC.assumptions()) { 9895 if (!AssumeVH) 9896 continue; 9897 auto *CI = cast<CallInst>(AssumeVH); 9898 if (!DT.dominates(CI, Latch->getTerminator())) 9899 continue; 9900 9901 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9902 return true; 9903 } 9904 9905 // If the loop is not reachable from the entry block, we risk running into an 9906 // infinite loop as we walk up into the dom tree. These loops do not matter 9907 // anyway, so we just return a conservative answer when we see them. 9908 if (!DT.isReachableFromEntry(L->getHeader())) 9909 return false; 9910 9911 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9912 return true; 9913 9914 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9915 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9916 assert(DTN && "should reach the loop header before reaching the root!"); 9917 9918 BasicBlock *BB = DTN->getBlock(); 9919 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9920 return true; 9921 9922 BasicBlock *PBB = BB->getSinglePredecessor(); 9923 if (!PBB) 9924 continue; 9925 9926 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9927 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9928 continue; 9929 9930 Value *Condition = ContinuePredicate->getCondition(); 9931 9932 // If we have an edge `E` within the loop body that dominates the only 9933 // latch, the condition guarding `E` also guards the backedge. This 9934 // reasoning works only for loops with a single latch. 9935 9936 BasicBlockEdge DominatingEdge(PBB, BB); 9937 if (DominatingEdge.isSingleEdge()) { 9938 // We're constructively (and conservatively) enumerating edges within the 9939 // loop body that dominate the latch. The dominator tree better agree 9940 // with us on this: 9941 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9942 9943 if (isImpliedCond(Pred, LHS, RHS, Condition, 9944 BB != ContinuePredicate->getSuccessor(0))) 9945 return true; 9946 } 9947 } 9948 9949 return false; 9950 } 9951 9952 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9953 ICmpInst::Predicate Pred, 9954 const SCEV *LHS, 9955 const SCEV *RHS) { 9956 if (VerifyIR) 9957 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9958 "This cannot be done on broken IR!"); 9959 9960 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9961 return true; 9962 9963 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9964 // the facts (a >= b && a != b) separately. A typical situation is when the 9965 // non-strict comparison is known from ranges and non-equality is known from 9966 // dominating predicates. If we are proving strict comparison, we always try 9967 // to prove non-equality and non-strict comparison separately. 9968 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9969 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9970 bool ProvedNonStrictComparison = false; 9971 bool ProvedNonEquality = false; 9972 9973 if (ProvingStrictComparison) { 9974 ProvedNonStrictComparison = 9975 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9976 ProvedNonEquality = 9977 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9978 if (ProvedNonStrictComparison && ProvedNonEquality) 9979 return true; 9980 } 9981 9982 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9983 auto ProveViaGuard = [&](const BasicBlock *Block) { 9984 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9985 return true; 9986 if (ProvingStrictComparison) { 9987 if (!ProvedNonStrictComparison) 9988 ProvedNonStrictComparison = 9989 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9990 if (!ProvedNonEquality) 9991 ProvedNonEquality = 9992 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9993 if (ProvedNonStrictComparison && ProvedNonEquality) 9994 return true; 9995 } 9996 return false; 9997 }; 9998 9999 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10000 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10001 const Instruction *Context = &BB->front(); 10002 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10003 return true; 10004 if (ProvingStrictComparison) { 10005 if (!ProvedNonStrictComparison) 10006 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 10007 Condition, Inverse, Context); 10008 if (!ProvedNonEquality) 10009 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 10010 Condition, Inverse, Context); 10011 if (ProvedNonStrictComparison && ProvedNonEquality) 10012 return true; 10013 } 10014 return false; 10015 }; 10016 10017 // Starting at the block's predecessor, climb up the predecessor chain, as long 10018 // as there are predecessors that can be found that have unique successors 10019 // leading to the original block. 10020 const Loop *ContainingLoop = LI.getLoopFor(BB); 10021 const BasicBlock *PredBB; 10022 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10023 PredBB = ContainingLoop->getLoopPredecessor(); 10024 else 10025 PredBB = BB->getSinglePredecessor(); 10026 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10027 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10028 if (ProveViaGuard(Pair.first)) 10029 return true; 10030 10031 const BranchInst *LoopEntryPredicate = 10032 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10033 if (!LoopEntryPredicate || 10034 LoopEntryPredicate->isUnconditional()) 10035 continue; 10036 10037 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10038 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10039 return true; 10040 } 10041 10042 // Check conditions due to any @llvm.assume intrinsics. 10043 for (auto &AssumeVH : AC.assumptions()) { 10044 if (!AssumeVH) 10045 continue; 10046 auto *CI = cast<CallInst>(AssumeVH); 10047 if (!DT.dominates(CI, BB)) 10048 continue; 10049 10050 if (ProveViaCond(CI->getArgOperand(0), false)) 10051 return true; 10052 } 10053 10054 return false; 10055 } 10056 10057 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10058 ICmpInst::Predicate Pred, 10059 const SCEV *LHS, 10060 const SCEV *RHS) { 10061 // Interpret a null as meaning no loop, where there is obviously no guard 10062 // (interprocedural conditions notwithstanding). 10063 if (!L) 10064 return false; 10065 10066 // Both LHS and RHS must be available at loop entry. 10067 assert(isAvailableAtLoopEntry(LHS, L) && 10068 "LHS is not available at Loop Entry"); 10069 assert(isAvailableAtLoopEntry(RHS, L) && 10070 "RHS is not available at Loop Entry"); 10071 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10072 } 10073 10074 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10075 const SCEV *RHS, 10076 const Value *FoundCondValue, bool Inverse, 10077 const Instruction *Context) { 10078 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10079 return false; 10080 10081 auto ClearOnExit = 10082 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10083 10084 // Recursively handle And and Or conditions. 10085 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 10086 if (BO->getOpcode() == Instruction::And) { 10087 if (!Inverse) 10088 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10089 Context) || 10090 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10091 Context); 10092 } else if (BO->getOpcode() == Instruction::Or) { 10093 if (Inverse) 10094 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10095 Context) || 10096 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10097 Context); 10098 } 10099 } 10100 10101 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10102 if (!ICI) return false; 10103 10104 // Now that we found a conditional branch that dominates the loop or controls 10105 // the loop latch. Check to see if it is the comparison we are looking for. 10106 ICmpInst::Predicate FoundPred; 10107 if (Inverse) 10108 FoundPred = ICI->getInversePredicate(); 10109 else 10110 FoundPred = ICI->getPredicate(); 10111 10112 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10113 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10114 10115 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10116 } 10117 10118 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10119 const SCEV *RHS, 10120 ICmpInst::Predicate FoundPred, 10121 const SCEV *FoundLHS, const SCEV *FoundRHS, 10122 const Instruction *Context) { 10123 // Balance the types. 10124 if (getTypeSizeInBits(LHS->getType()) < 10125 getTypeSizeInBits(FoundLHS->getType())) { 10126 // For unsigned and equality predicates, try to prove that both found 10127 // operands fit into narrow unsigned range. If so, try to prove facts in 10128 // narrow types. 10129 if (!CmpInst::isSigned(FoundPred)) { 10130 auto *NarrowType = LHS->getType(); 10131 auto *WideType = FoundLHS->getType(); 10132 auto BitWidth = getTypeSizeInBits(NarrowType); 10133 const SCEV *MaxValue = getZeroExtendExpr( 10134 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10135 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10136 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10137 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10138 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10139 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10140 TruncFoundRHS, Context)) 10141 return true; 10142 } 10143 } 10144 10145 if (CmpInst::isSigned(Pred)) { 10146 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10147 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10148 } else { 10149 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10150 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10151 } 10152 } else if (getTypeSizeInBits(LHS->getType()) > 10153 getTypeSizeInBits(FoundLHS->getType())) { 10154 if (CmpInst::isSigned(FoundPred)) { 10155 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10156 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10157 } else { 10158 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10159 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10160 } 10161 } 10162 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10163 FoundRHS, Context); 10164 } 10165 10166 bool ScalarEvolution::isImpliedCondBalancedTypes( 10167 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10168 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10169 const Instruction *Context) { 10170 assert(getTypeSizeInBits(LHS->getType()) == 10171 getTypeSizeInBits(FoundLHS->getType()) && 10172 "Types should be balanced!"); 10173 // Canonicalize the query to match the way instcombine will have 10174 // canonicalized the comparison. 10175 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10176 if (LHS == RHS) 10177 return CmpInst::isTrueWhenEqual(Pred); 10178 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10179 if (FoundLHS == FoundRHS) 10180 return CmpInst::isFalseWhenEqual(FoundPred); 10181 10182 // Check to see if we can make the LHS or RHS match. 10183 if (LHS == FoundRHS || RHS == FoundLHS) { 10184 if (isa<SCEVConstant>(RHS)) { 10185 std::swap(FoundLHS, FoundRHS); 10186 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10187 } else { 10188 std::swap(LHS, RHS); 10189 Pred = ICmpInst::getSwappedPredicate(Pred); 10190 } 10191 } 10192 10193 // Check whether the found predicate is the same as the desired predicate. 10194 if (FoundPred == Pred) 10195 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10196 10197 // Check whether swapping the found predicate makes it the same as the 10198 // desired predicate. 10199 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10200 if (isa<SCEVConstant>(RHS)) 10201 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10202 else 10203 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 10204 LHS, FoundLHS, FoundRHS, Context); 10205 } 10206 10207 // Unsigned comparison is the same as signed comparison when both the operands 10208 // are non-negative. 10209 if (CmpInst::isUnsigned(FoundPred) && 10210 CmpInst::getSignedPredicate(FoundPred) == Pred && 10211 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10212 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10213 10214 // Check if we can make progress by sharpening ranges. 10215 if (FoundPred == ICmpInst::ICMP_NE && 10216 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10217 10218 const SCEVConstant *C = nullptr; 10219 const SCEV *V = nullptr; 10220 10221 if (isa<SCEVConstant>(FoundLHS)) { 10222 C = cast<SCEVConstant>(FoundLHS); 10223 V = FoundRHS; 10224 } else { 10225 C = cast<SCEVConstant>(FoundRHS); 10226 V = FoundLHS; 10227 } 10228 10229 // The guarding predicate tells us that C != V. If the known range 10230 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10231 // range we consider has to correspond to same signedness as the 10232 // predicate we're interested in folding. 10233 10234 APInt Min = ICmpInst::isSigned(Pred) ? 10235 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10236 10237 if (Min == C->getAPInt()) { 10238 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10239 // This is true even if (Min + 1) wraps around -- in case of 10240 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10241 10242 APInt SharperMin = Min + 1; 10243 10244 switch (Pred) { 10245 case ICmpInst::ICMP_SGE: 10246 case ICmpInst::ICMP_UGE: 10247 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10248 // RHS, we're done. 10249 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10250 Context)) 10251 return true; 10252 LLVM_FALLTHROUGH; 10253 10254 case ICmpInst::ICMP_SGT: 10255 case ICmpInst::ICMP_UGT: 10256 // We know from the range information that (V `Pred` Min || 10257 // V == Min). We know from the guarding condition that !(V 10258 // == Min). This gives us 10259 // 10260 // V `Pred` Min || V == Min && !(V == Min) 10261 // => V `Pred` Min 10262 // 10263 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10264 10265 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10266 Context)) 10267 return true; 10268 break; 10269 10270 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10271 case ICmpInst::ICMP_SLE: 10272 case ICmpInst::ICMP_ULE: 10273 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10274 LHS, V, getConstant(SharperMin), Context)) 10275 return true; 10276 LLVM_FALLTHROUGH; 10277 10278 case ICmpInst::ICMP_SLT: 10279 case ICmpInst::ICMP_ULT: 10280 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10281 LHS, V, getConstant(Min), Context)) 10282 return true; 10283 break; 10284 10285 default: 10286 // No change 10287 break; 10288 } 10289 } 10290 } 10291 10292 // Check whether the actual condition is beyond sufficient. 10293 if (FoundPred == ICmpInst::ICMP_EQ) 10294 if (ICmpInst::isTrueWhenEqual(Pred)) 10295 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10296 return true; 10297 if (Pred == ICmpInst::ICMP_NE) 10298 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10299 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10300 Context)) 10301 return true; 10302 10303 // Otherwise assume the worst. 10304 return false; 10305 } 10306 10307 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10308 const SCEV *&L, const SCEV *&R, 10309 SCEV::NoWrapFlags &Flags) { 10310 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10311 if (!AE || AE->getNumOperands() != 2) 10312 return false; 10313 10314 L = AE->getOperand(0); 10315 R = AE->getOperand(1); 10316 Flags = AE->getNoWrapFlags(); 10317 return true; 10318 } 10319 10320 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10321 const SCEV *Less) { 10322 // We avoid subtracting expressions here because this function is usually 10323 // fairly deep in the call stack (i.e. is called many times). 10324 10325 // X - X = 0. 10326 if (More == Less) 10327 return APInt(getTypeSizeInBits(More->getType()), 0); 10328 10329 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10330 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10331 const auto *MAR = cast<SCEVAddRecExpr>(More); 10332 10333 if (LAR->getLoop() != MAR->getLoop()) 10334 return None; 10335 10336 // We look at affine expressions only; not for correctness but to keep 10337 // getStepRecurrence cheap. 10338 if (!LAR->isAffine() || !MAR->isAffine()) 10339 return None; 10340 10341 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10342 return None; 10343 10344 Less = LAR->getStart(); 10345 More = MAR->getStart(); 10346 10347 // fall through 10348 } 10349 10350 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10351 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10352 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10353 return M - L; 10354 } 10355 10356 SCEV::NoWrapFlags Flags; 10357 const SCEV *LLess = nullptr, *RLess = nullptr; 10358 const SCEV *LMore = nullptr, *RMore = nullptr; 10359 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10360 // Compare (X + C1) vs X. 10361 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10362 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10363 if (RLess == More) 10364 return -(C1->getAPInt()); 10365 10366 // Compare X vs (X + C2). 10367 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10368 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10369 if (RMore == Less) 10370 return C2->getAPInt(); 10371 10372 // Compare (X + C1) vs (X + C2). 10373 if (C1 && C2 && RLess == RMore) 10374 return C2->getAPInt() - C1->getAPInt(); 10375 10376 return None; 10377 } 10378 10379 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10380 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10381 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10382 // Try to recognize the following pattern: 10383 // 10384 // FoundRHS = ... 10385 // ... 10386 // loop: 10387 // FoundLHS = {Start,+,W} 10388 // context_bb: // Basic block from the same loop 10389 // known(Pred, FoundLHS, FoundRHS) 10390 // 10391 // If some predicate is known in the context of a loop, it is also known on 10392 // each iteration of this loop, including the first iteration. Therefore, in 10393 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10394 // prove the original pred using this fact. 10395 if (!Context) 10396 return false; 10397 const BasicBlock *ContextBB = Context->getParent(); 10398 // Make sure AR varies in the context block. 10399 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10400 const Loop *L = AR->getLoop(); 10401 // Make sure that context belongs to the loop and executes on 1st iteration 10402 // (if it ever executes at all). 10403 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10404 return false; 10405 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10406 return false; 10407 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10408 } 10409 10410 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10411 const Loop *L = AR->getLoop(); 10412 // Make sure that context belongs to the loop and executes on 1st iteration 10413 // (if it ever executes at all). 10414 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10415 return false; 10416 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10417 return false; 10418 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10419 } 10420 10421 return false; 10422 } 10423 10424 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10425 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10426 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10427 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10428 return false; 10429 10430 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10431 if (!AddRecLHS) 10432 return false; 10433 10434 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10435 if (!AddRecFoundLHS) 10436 return false; 10437 10438 // We'd like to let SCEV reason about control dependencies, so we constrain 10439 // both the inequalities to be about add recurrences on the same loop. This 10440 // way we can use isLoopEntryGuardedByCond later. 10441 10442 const Loop *L = AddRecFoundLHS->getLoop(); 10443 if (L != AddRecLHS->getLoop()) 10444 return false; 10445 10446 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10447 // 10448 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10449 // ... (2) 10450 // 10451 // Informal proof for (2), assuming (1) [*]: 10452 // 10453 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10454 // 10455 // Then 10456 // 10457 // FoundLHS s< FoundRHS s< INT_MIN - C 10458 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10459 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10460 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10461 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10462 // <=> FoundLHS + C s< FoundRHS + C 10463 // 10464 // [*]: (1) can be proved by ruling out overflow. 10465 // 10466 // [**]: This can be proved by analyzing all the four possibilities: 10467 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10468 // (A s>= 0, B s>= 0). 10469 // 10470 // Note: 10471 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10472 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10473 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10474 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10475 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10476 // C)". 10477 10478 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10479 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10480 if (!LDiff || !RDiff || *LDiff != *RDiff) 10481 return false; 10482 10483 if (LDiff->isMinValue()) 10484 return true; 10485 10486 APInt FoundRHSLimit; 10487 10488 if (Pred == CmpInst::ICMP_ULT) { 10489 FoundRHSLimit = -(*RDiff); 10490 } else { 10491 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10492 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10493 } 10494 10495 // Try to prove (1) or (2), as needed. 10496 return isAvailableAtLoopEntry(FoundRHS, L) && 10497 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10498 getConstant(FoundRHSLimit)); 10499 } 10500 10501 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10502 const SCEV *LHS, const SCEV *RHS, 10503 const SCEV *FoundLHS, 10504 const SCEV *FoundRHS, unsigned Depth) { 10505 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10506 10507 auto ClearOnExit = make_scope_exit([&]() { 10508 if (LPhi) { 10509 bool Erased = PendingMerges.erase(LPhi); 10510 assert(Erased && "Failed to erase LPhi!"); 10511 (void)Erased; 10512 } 10513 if (RPhi) { 10514 bool Erased = PendingMerges.erase(RPhi); 10515 assert(Erased && "Failed to erase RPhi!"); 10516 (void)Erased; 10517 } 10518 }); 10519 10520 // Find respective Phis and check that they are not being pending. 10521 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10522 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10523 if (!PendingMerges.insert(Phi).second) 10524 return false; 10525 LPhi = Phi; 10526 } 10527 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10528 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10529 // If we detect a loop of Phi nodes being processed by this method, for 10530 // example: 10531 // 10532 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10533 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10534 // 10535 // we don't want to deal with a case that complex, so return conservative 10536 // answer false. 10537 if (!PendingMerges.insert(Phi).second) 10538 return false; 10539 RPhi = Phi; 10540 } 10541 10542 // If none of LHS, RHS is a Phi, nothing to do here. 10543 if (!LPhi && !RPhi) 10544 return false; 10545 10546 // If there is a SCEVUnknown Phi we are interested in, make it left. 10547 if (!LPhi) { 10548 std::swap(LHS, RHS); 10549 std::swap(FoundLHS, FoundRHS); 10550 std::swap(LPhi, RPhi); 10551 Pred = ICmpInst::getSwappedPredicate(Pred); 10552 } 10553 10554 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10555 const BasicBlock *LBB = LPhi->getParent(); 10556 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10557 10558 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10559 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10560 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10561 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10562 }; 10563 10564 if (RPhi && RPhi->getParent() == LBB) { 10565 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10566 // If we compare two Phis from the same block, and for each entry block 10567 // the predicate is true for incoming values from this block, then the 10568 // predicate is also true for the Phis. 10569 for (const BasicBlock *IncBB : predecessors(LBB)) { 10570 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10571 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10572 if (!ProvedEasily(L, R)) 10573 return false; 10574 } 10575 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10576 // Case two: RHS is also a Phi from the same basic block, and it is an 10577 // AddRec. It means that there is a loop which has both AddRec and Unknown 10578 // PHIs, for it we can compare incoming values of AddRec from above the loop 10579 // and latch with their respective incoming values of LPhi. 10580 // TODO: Generalize to handle loops with many inputs in a header. 10581 if (LPhi->getNumIncomingValues() != 2) return false; 10582 10583 auto *RLoop = RAR->getLoop(); 10584 auto *Predecessor = RLoop->getLoopPredecessor(); 10585 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10586 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10587 if (!ProvedEasily(L1, RAR->getStart())) 10588 return false; 10589 auto *Latch = RLoop->getLoopLatch(); 10590 assert(Latch && "Loop with AddRec with no latch?"); 10591 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10592 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10593 return false; 10594 } else { 10595 // In all other cases go over inputs of LHS and compare each of them to RHS, 10596 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10597 // At this point RHS is either a non-Phi, or it is a Phi from some block 10598 // different from LBB. 10599 for (const BasicBlock *IncBB : predecessors(LBB)) { 10600 // Check that RHS is available in this block. 10601 if (!dominates(RHS, IncBB)) 10602 return false; 10603 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10604 if (!ProvedEasily(L, RHS)) 10605 return false; 10606 } 10607 } 10608 return true; 10609 } 10610 10611 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10612 const SCEV *LHS, const SCEV *RHS, 10613 const SCEV *FoundLHS, 10614 const SCEV *FoundRHS, 10615 const Instruction *Context) { 10616 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10617 return true; 10618 10619 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10620 return true; 10621 10622 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10623 Context)) 10624 return true; 10625 10626 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10627 FoundLHS, FoundRHS) || 10628 // ~x < ~y --> x > y 10629 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10630 getNotSCEV(FoundRHS), 10631 getNotSCEV(FoundLHS)); 10632 } 10633 10634 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10635 template <typename MinMaxExprType> 10636 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10637 const SCEV *Candidate) { 10638 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10639 if (!MinMaxExpr) 10640 return false; 10641 10642 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10643 } 10644 10645 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10646 ICmpInst::Predicate Pred, 10647 const SCEV *LHS, const SCEV *RHS) { 10648 // If both sides are affine addrecs for the same loop, with equal 10649 // steps, and we know the recurrences don't wrap, then we only 10650 // need to check the predicate on the starting values. 10651 10652 if (!ICmpInst::isRelational(Pred)) 10653 return false; 10654 10655 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10656 if (!LAR) 10657 return false; 10658 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10659 if (!RAR) 10660 return false; 10661 if (LAR->getLoop() != RAR->getLoop()) 10662 return false; 10663 if (!LAR->isAffine() || !RAR->isAffine()) 10664 return false; 10665 10666 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10667 return false; 10668 10669 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10670 SCEV::FlagNSW : SCEV::FlagNUW; 10671 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10672 return false; 10673 10674 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10675 } 10676 10677 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10678 /// expression? 10679 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10680 ICmpInst::Predicate Pred, 10681 const SCEV *LHS, const SCEV *RHS) { 10682 switch (Pred) { 10683 default: 10684 return false; 10685 10686 case ICmpInst::ICMP_SGE: 10687 std::swap(LHS, RHS); 10688 LLVM_FALLTHROUGH; 10689 case ICmpInst::ICMP_SLE: 10690 return 10691 // min(A, ...) <= A 10692 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10693 // A <= max(A, ...) 10694 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10695 10696 case ICmpInst::ICMP_UGE: 10697 std::swap(LHS, RHS); 10698 LLVM_FALLTHROUGH; 10699 case ICmpInst::ICMP_ULE: 10700 return 10701 // min(A, ...) <= A 10702 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10703 // A <= max(A, ...) 10704 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10705 } 10706 10707 llvm_unreachable("covered switch fell through?!"); 10708 } 10709 10710 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10711 const SCEV *LHS, const SCEV *RHS, 10712 const SCEV *FoundLHS, 10713 const SCEV *FoundRHS, 10714 unsigned Depth) { 10715 assert(getTypeSizeInBits(LHS->getType()) == 10716 getTypeSizeInBits(RHS->getType()) && 10717 "LHS and RHS have different sizes?"); 10718 assert(getTypeSizeInBits(FoundLHS->getType()) == 10719 getTypeSizeInBits(FoundRHS->getType()) && 10720 "FoundLHS and FoundRHS have different sizes?"); 10721 // We want to avoid hurting the compile time with analysis of too big trees. 10722 if (Depth > MaxSCEVOperationsImplicationDepth) 10723 return false; 10724 10725 // We only want to work with GT comparison so far. 10726 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10727 Pred = CmpInst::getSwappedPredicate(Pred); 10728 std::swap(LHS, RHS); 10729 std::swap(FoundLHS, FoundRHS); 10730 } 10731 10732 // For unsigned, try to reduce it to corresponding signed comparison. 10733 if (Pred == ICmpInst::ICMP_UGT) 10734 // We can replace unsigned predicate with its signed counterpart if all 10735 // involved values are non-negative. 10736 // TODO: We could have better support for unsigned. 10737 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10738 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10739 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10740 // use this fact to prove that LHS and RHS are non-negative. 10741 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10742 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10743 FoundRHS) && 10744 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10745 FoundRHS)) 10746 Pred = ICmpInst::ICMP_SGT; 10747 } 10748 10749 if (Pred != ICmpInst::ICMP_SGT) 10750 return false; 10751 10752 auto GetOpFromSExt = [&](const SCEV *S) { 10753 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10754 return Ext->getOperand(); 10755 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10756 // the constant in some cases. 10757 return S; 10758 }; 10759 10760 // Acquire values from extensions. 10761 auto *OrigLHS = LHS; 10762 auto *OrigFoundLHS = FoundLHS; 10763 LHS = GetOpFromSExt(LHS); 10764 FoundLHS = GetOpFromSExt(FoundLHS); 10765 10766 // Is the SGT predicate can be proved trivially or using the found context. 10767 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10768 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10769 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10770 FoundRHS, Depth + 1); 10771 }; 10772 10773 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10774 // We want to avoid creation of any new non-constant SCEV. Since we are 10775 // going to compare the operands to RHS, we should be certain that we don't 10776 // need any size extensions for this. So let's decline all cases when the 10777 // sizes of types of LHS and RHS do not match. 10778 // TODO: Maybe try to get RHS from sext to catch more cases? 10779 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10780 return false; 10781 10782 // Should not overflow. 10783 if (!LHSAddExpr->hasNoSignedWrap()) 10784 return false; 10785 10786 auto *LL = LHSAddExpr->getOperand(0); 10787 auto *LR = LHSAddExpr->getOperand(1); 10788 auto *MinusOne = getMinusOne(RHS->getType()); 10789 10790 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10791 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10792 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10793 }; 10794 // Try to prove the following rule: 10795 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10796 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10797 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10798 return true; 10799 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10800 Value *LL, *LR; 10801 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10802 10803 using namespace llvm::PatternMatch; 10804 10805 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10806 // Rules for division. 10807 // We are going to perform some comparisons with Denominator and its 10808 // derivative expressions. In general case, creating a SCEV for it may 10809 // lead to a complex analysis of the entire graph, and in particular it 10810 // can request trip count recalculation for the same loop. This would 10811 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10812 // this, we only want to create SCEVs that are constants in this section. 10813 // So we bail if Denominator is not a constant. 10814 if (!isa<ConstantInt>(LR)) 10815 return false; 10816 10817 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10818 10819 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10820 // then a SCEV for the numerator already exists and matches with FoundLHS. 10821 auto *Numerator = getExistingSCEV(LL); 10822 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10823 return false; 10824 10825 // Make sure that the numerator matches with FoundLHS and the denominator 10826 // is positive. 10827 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10828 return false; 10829 10830 auto *DTy = Denominator->getType(); 10831 auto *FRHSTy = FoundRHS->getType(); 10832 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10833 // One of types is a pointer and another one is not. We cannot extend 10834 // them properly to a wider type, so let us just reject this case. 10835 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10836 // to avoid this check. 10837 return false; 10838 10839 // Given that: 10840 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10841 auto *WTy = getWiderType(DTy, FRHSTy); 10842 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10843 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10844 10845 // Try to prove the following rule: 10846 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10847 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10848 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10849 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10850 if (isKnownNonPositive(RHS) && 10851 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10852 return true; 10853 10854 // Try to prove the following rule: 10855 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10856 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10857 // If we divide it by Denominator > 2, then: 10858 // 1. If FoundLHS is negative, then the result is 0. 10859 // 2. If FoundLHS is non-negative, then the result is non-negative. 10860 // Anyways, the result is non-negative. 10861 auto *MinusOne = getMinusOne(WTy); 10862 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10863 if (isKnownNegative(RHS) && 10864 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10865 return true; 10866 } 10867 } 10868 10869 // If our expression contained SCEVUnknown Phis, and we split it down and now 10870 // need to prove something for them, try to prove the predicate for every 10871 // possible incoming values of those Phis. 10872 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10873 return true; 10874 10875 return false; 10876 } 10877 10878 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10879 const SCEV *LHS, const SCEV *RHS) { 10880 // zext x u<= sext x, sext x s<= zext x 10881 switch (Pred) { 10882 case ICmpInst::ICMP_SGE: 10883 std::swap(LHS, RHS); 10884 LLVM_FALLTHROUGH; 10885 case ICmpInst::ICMP_SLE: { 10886 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10887 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10888 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10889 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10890 return true; 10891 break; 10892 } 10893 case ICmpInst::ICMP_UGE: 10894 std::swap(LHS, RHS); 10895 LLVM_FALLTHROUGH; 10896 case ICmpInst::ICMP_ULE: { 10897 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10898 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10899 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10900 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10901 return true; 10902 break; 10903 } 10904 default: 10905 break; 10906 }; 10907 return false; 10908 } 10909 10910 bool 10911 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10912 const SCEV *LHS, const SCEV *RHS) { 10913 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10914 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10915 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10916 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10917 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10918 } 10919 10920 bool 10921 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10922 const SCEV *LHS, const SCEV *RHS, 10923 const SCEV *FoundLHS, 10924 const SCEV *FoundRHS) { 10925 switch (Pred) { 10926 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10927 case ICmpInst::ICMP_EQ: 10928 case ICmpInst::ICMP_NE: 10929 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10930 return true; 10931 break; 10932 case ICmpInst::ICMP_SLT: 10933 case ICmpInst::ICMP_SLE: 10934 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10935 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10936 return true; 10937 break; 10938 case ICmpInst::ICMP_SGT: 10939 case ICmpInst::ICMP_SGE: 10940 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10941 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10942 return true; 10943 break; 10944 case ICmpInst::ICMP_ULT: 10945 case ICmpInst::ICMP_ULE: 10946 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10947 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10948 return true; 10949 break; 10950 case ICmpInst::ICMP_UGT: 10951 case ICmpInst::ICMP_UGE: 10952 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10953 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10954 return true; 10955 break; 10956 } 10957 10958 // Maybe it can be proved via operations? 10959 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10960 return true; 10961 10962 return false; 10963 } 10964 10965 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10966 const SCEV *LHS, 10967 const SCEV *RHS, 10968 const SCEV *FoundLHS, 10969 const SCEV *FoundRHS) { 10970 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10971 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10972 // reduce the compile time impact of this optimization. 10973 return false; 10974 10975 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10976 if (!Addend) 10977 return false; 10978 10979 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10980 10981 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10982 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10983 ConstantRange FoundLHSRange = 10984 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10985 10986 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10987 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10988 10989 // We can also compute the range of values for `LHS` that satisfy the 10990 // consequent, "`LHS` `Pred` `RHS`": 10991 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10992 ConstantRange SatisfyingLHSRange = 10993 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10994 10995 // The antecedent implies the consequent if every value of `LHS` that 10996 // satisfies the antecedent also satisfies the consequent. 10997 return SatisfyingLHSRange.contains(LHSRange); 10998 } 10999 11000 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11001 bool IsSigned, bool NoWrap) { 11002 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11003 11004 if (NoWrap) return false; 11005 11006 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11007 const SCEV *One = getOne(Stride->getType()); 11008 11009 if (IsSigned) { 11010 APInt MaxRHS = getSignedRangeMax(RHS); 11011 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11012 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11013 11014 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11015 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11016 } 11017 11018 APInt MaxRHS = getUnsignedRangeMax(RHS); 11019 APInt MaxValue = APInt::getMaxValue(BitWidth); 11020 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11021 11022 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11023 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11024 } 11025 11026 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11027 bool IsSigned, bool NoWrap) { 11028 if (NoWrap) return false; 11029 11030 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11031 const SCEV *One = getOne(Stride->getType()); 11032 11033 if (IsSigned) { 11034 APInt MinRHS = getSignedRangeMin(RHS); 11035 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11036 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11037 11038 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11039 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11040 } 11041 11042 APInt MinRHS = getUnsignedRangeMin(RHS); 11043 APInt MinValue = APInt::getMinValue(BitWidth); 11044 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11045 11046 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11047 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11048 } 11049 11050 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 11051 bool Equality) { 11052 const SCEV *One = getOne(Step->getType()); 11053 Delta = Equality ? getAddExpr(Delta, Step) 11054 : getAddExpr(Delta, getMinusSCEV(Step, One)); 11055 return getUDivExpr(Delta, Step); 11056 } 11057 11058 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11059 const SCEV *Stride, 11060 const SCEV *End, 11061 unsigned BitWidth, 11062 bool IsSigned) { 11063 11064 assert(!isKnownNonPositive(Stride) && 11065 "Stride is expected strictly positive!"); 11066 // Calculate the maximum backedge count based on the range of values 11067 // permitted by Start, End, and Stride. 11068 const SCEV *MaxBECount; 11069 APInt MinStart = 11070 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11071 11072 APInt StrideForMaxBECount = 11073 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11074 11075 // We already know that the stride is positive, so we paper over conservatism 11076 // in our range computation by forcing StrideForMaxBECount to be at least one. 11077 // In theory this is unnecessary, but we expect MaxBECount to be a 11078 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11079 // is nothing to constant fold it to). 11080 APInt One(BitWidth, 1, IsSigned); 11081 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11082 11083 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11084 : APInt::getMaxValue(BitWidth); 11085 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11086 11087 // Although End can be a MAX expression we estimate MaxEnd considering only 11088 // the case End = RHS of the loop termination condition. This is safe because 11089 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11090 // taken count. 11091 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11092 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11093 11094 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11095 getConstant(StrideForMaxBECount) /* Step */, 11096 false /* Equality */); 11097 11098 return MaxBECount; 11099 } 11100 11101 ScalarEvolution::ExitLimit 11102 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11103 const Loop *L, bool IsSigned, 11104 bool ControlsExit, bool AllowPredicates) { 11105 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11106 11107 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11108 bool PredicatedIV = false; 11109 11110 if (!IV && AllowPredicates) { 11111 // Try to make this an AddRec using runtime tests, in the first X 11112 // iterations of this loop, where X is the SCEV expression found by the 11113 // algorithm below. 11114 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11115 PredicatedIV = true; 11116 } 11117 11118 // Avoid weird loops 11119 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11120 return getCouldNotCompute(); 11121 11122 bool NoWrap = ControlsExit && 11123 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11124 11125 const SCEV *Stride = IV->getStepRecurrence(*this); 11126 11127 bool PositiveStride = isKnownPositive(Stride); 11128 11129 // Avoid negative or zero stride values. 11130 if (!PositiveStride) { 11131 // We can compute the correct backedge taken count for loops with unknown 11132 // strides if we can prove that the loop is not an infinite loop with side 11133 // effects. Here's the loop structure we are trying to handle - 11134 // 11135 // i = start 11136 // do { 11137 // A[i] = i; 11138 // i += s; 11139 // } while (i < end); 11140 // 11141 // The backedge taken count for such loops is evaluated as - 11142 // (max(end, start + stride) - start - 1) /u stride 11143 // 11144 // The additional preconditions that we need to check to prove correctness 11145 // of the above formula is as follows - 11146 // 11147 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11148 // NoWrap flag). 11149 // b) loop is single exit with no side effects. 11150 // 11151 // 11152 // Precondition a) implies that if the stride is negative, this is a single 11153 // trip loop. The backedge taken count formula reduces to zero in this case. 11154 // 11155 // Precondition b) implies that the unknown stride cannot be zero otherwise 11156 // we have UB. 11157 // 11158 // The positive stride case is the same as isKnownPositive(Stride) returning 11159 // true (original behavior of the function). 11160 // 11161 // We want to make sure that the stride is truly unknown as there are edge 11162 // cases where ScalarEvolution propagates no wrap flags to the 11163 // post-increment/decrement IV even though the increment/decrement operation 11164 // itself is wrapping. The computed backedge taken count may be wrong in 11165 // such cases. This is prevented by checking that the stride is not known to 11166 // be either positive or non-positive. For example, no wrap flags are 11167 // propagated to the post-increment IV of this loop with a trip count of 2 - 11168 // 11169 // unsigned char i; 11170 // for(i=127; i<128; i+=129) 11171 // A[i] = i; 11172 // 11173 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11174 !loopHasNoSideEffects(L)) 11175 return getCouldNotCompute(); 11176 } else if (!Stride->isOne() && 11177 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11178 // Avoid proven overflow cases: this will ensure that the backedge taken 11179 // count will not generate any unsigned overflow. Relaxed no-overflow 11180 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11181 // undefined behaviors like the case of C language. 11182 return getCouldNotCompute(); 11183 11184 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11185 : ICmpInst::ICMP_ULT; 11186 const SCEV *Start = IV->getStart(); 11187 const SCEV *End = RHS; 11188 // When the RHS is not invariant, we do not know the end bound of the loop and 11189 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11190 // calculate the MaxBECount, given the start, stride and max value for the end 11191 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11192 // checked above). 11193 if (!isLoopInvariant(RHS, L)) { 11194 const SCEV *MaxBECount = computeMaxBECountForLT( 11195 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11196 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11197 false /*MaxOrZero*/, Predicates); 11198 } 11199 // If the backedge is taken at least once, then it will be taken 11200 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11201 // is the LHS value of the less-than comparison the first time it is evaluated 11202 // and End is the RHS. 11203 const SCEV *BECountIfBackedgeTaken = 11204 computeBECount(getMinusSCEV(End, Start), Stride, false); 11205 // If the loop entry is guarded by the result of the backedge test of the 11206 // first loop iteration, then we know the backedge will be taken at least 11207 // once and so the backedge taken count is as above. If not then we use the 11208 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11209 // as if the backedge is taken at least once max(End,Start) is End and so the 11210 // result is as above, and if not max(End,Start) is Start so we get a backedge 11211 // count of zero. 11212 const SCEV *BECount; 11213 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11214 BECount = BECountIfBackedgeTaken; 11215 else { 11216 // If we know that RHS >= Start in the context of loop, then we know that 11217 // max(RHS, Start) = RHS at this point. 11218 if (isLoopEntryGuardedByCond( 11219 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11220 End = RHS; 11221 else 11222 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11223 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11224 } 11225 11226 const SCEV *MaxBECount; 11227 bool MaxOrZero = false; 11228 if (isa<SCEVConstant>(BECount)) 11229 MaxBECount = BECount; 11230 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11231 // If we know exactly how many times the backedge will be taken if it's 11232 // taken at least once, then the backedge count will either be that or 11233 // zero. 11234 MaxBECount = BECountIfBackedgeTaken; 11235 MaxOrZero = true; 11236 } else { 11237 MaxBECount = computeMaxBECountForLT( 11238 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11239 } 11240 11241 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11242 !isa<SCEVCouldNotCompute>(BECount)) 11243 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11244 11245 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11246 } 11247 11248 ScalarEvolution::ExitLimit 11249 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11250 const Loop *L, bool IsSigned, 11251 bool ControlsExit, bool AllowPredicates) { 11252 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11253 // We handle only IV > Invariant 11254 if (!isLoopInvariant(RHS, L)) 11255 return getCouldNotCompute(); 11256 11257 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11258 if (!IV && AllowPredicates) 11259 // Try to make this an AddRec using runtime tests, in the first X 11260 // iterations of this loop, where X is the SCEV expression found by the 11261 // algorithm below. 11262 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11263 11264 // Avoid weird loops 11265 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11266 return getCouldNotCompute(); 11267 11268 bool NoWrap = ControlsExit && 11269 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11270 11271 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11272 11273 // Avoid negative or zero stride values 11274 if (!isKnownPositive(Stride)) 11275 return getCouldNotCompute(); 11276 11277 // Avoid proven overflow cases: this will ensure that the backedge taken count 11278 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11279 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11280 // behaviors like the case of C language. 11281 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11282 return getCouldNotCompute(); 11283 11284 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11285 : ICmpInst::ICMP_UGT; 11286 11287 const SCEV *Start = IV->getStart(); 11288 const SCEV *End = RHS; 11289 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11290 // If we know that Start >= RHS in the context of loop, then we know that 11291 // min(RHS, Start) = RHS at this point. 11292 if (isLoopEntryGuardedByCond( 11293 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11294 End = RHS; 11295 else 11296 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11297 } 11298 11299 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11300 11301 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11302 : getUnsignedRangeMax(Start); 11303 11304 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11305 : getUnsignedRangeMin(Stride); 11306 11307 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11308 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11309 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11310 11311 // Although End can be a MIN expression we estimate MinEnd considering only 11312 // the case End = RHS. This is safe because in the other case (Start - End) 11313 // is zero, leading to a zero maximum backedge taken count. 11314 APInt MinEnd = 11315 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11316 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11317 11318 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11319 ? BECount 11320 : computeBECount(getConstant(MaxStart - MinEnd), 11321 getConstant(MinStride), false); 11322 11323 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11324 MaxBECount = BECount; 11325 11326 return ExitLimit(BECount, MaxBECount, false, Predicates); 11327 } 11328 11329 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11330 ScalarEvolution &SE) const { 11331 if (Range.isFullSet()) // Infinite loop. 11332 return SE.getCouldNotCompute(); 11333 11334 // If the start is a non-zero constant, shift the range to simplify things. 11335 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11336 if (!SC->getValue()->isZero()) { 11337 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 11338 Operands[0] = SE.getZero(SC->getType()); 11339 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11340 getNoWrapFlags(FlagNW)); 11341 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11342 return ShiftedAddRec->getNumIterationsInRange( 11343 Range.subtract(SC->getAPInt()), SE); 11344 // This is strange and shouldn't happen. 11345 return SE.getCouldNotCompute(); 11346 } 11347 11348 // The only time we can solve this is when we have all constant indices. 11349 // Otherwise, we cannot determine the overflow conditions. 11350 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11351 return SE.getCouldNotCompute(); 11352 11353 // Okay at this point we know that all elements of the chrec are constants and 11354 // that the start element is zero. 11355 11356 // First check to see if the range contains zero. If not, the first 11357 // iteration exits. 11358 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11359 if (!Range.contains(APInt(BitWidth, 0))) 11360 return SE.getZero(getType()); 11361 11362 if (isAffine()) { 11363 // If this is an affine expression then we have this situation: 11364 // Solve {0,+,A} in Range === Ax in Range 11365 11366 // We know that zero is in the range. If A is positive then we know that 11367 // the upper value of the range must be the first possible exit value. 11368 // If A is negative then the lower of the range is the last possible loop 11369 // value. Also note that we already checked for a full range. 11370 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11371 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11372 11373 // The exit value should be (End+A)/A. 11374 APInt ExitVal = (End + A).udiv(A); 11375 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11376 11377 // Evaluate at the exit value. If we really did fall out of the valid 11378 // range, then we computed our trip count, otherwise wrap around or other 11379 // things must have happened. 11380 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11381 if (Range.contains(Val->getValue())) 11382 return SE.getCouldNotCompute(); // Something strange happened 11383 11384 // Ensure that the previous value is in the range. This is a sanity check. 11385 assert(Range.contains( 11386 EvaluateConstantChrecAtConstant(this, 11387 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11388 "Linear scev computation is off in a bad way!"); 11389 return SE.getConstant(ExitValue); 11390 } 11391 11392 if (isQuadratic()) { 11393 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11394 return SE.getConstant(S.getValue()); 11395 } 11396 11397 return SE.getCouldNotCompute(); 11398 } 11399 11400 const SCEVAddRecExpr * 11401 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11402 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11403 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11404 // but in this case we cannot guarantee that the value returned will be an 11405 // AddRec because SCEV does not have a fixed point where it stops 11406 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11407 // may happen if we reach arithmetic depth limit while simplifying. So we 11408 // construct the returned value explicitly. 11409 SmallVector<const SCEV *, 3> Ops; 11410 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11411 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11412 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11413 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11414 // We know that the last operand is not a constant zero (otherwise it would 11415 // have been popped out earlier). This guarantees us that if the result has 11416 // the same last operand, then it will also not be popped out, meaning that 11417 // the returned value will be an AddRec. 11418 const SCEV *Last = getOperand(getNumOperands() - 1); 11419 assert(!Last->isZero() && "Recurrency with zero step?"); 11420 Ops.push_back(Last); 11421 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11422 SCEV::FlagAnyWrap)); 11423 } 11424 11425 // Return true when S contains at least an undef value. 11426 static inline bool containsUndefs(const SCEV *S) { 11427 return SCEVExprContains(S, [](const SCEV *S) { 11428 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11429 return isa<UndefValue>(SU->getValue()); 11430 return false; 11431 }); 11432 } 11433 11434 namespace { 11435 11436 // Collect all steps of SCEV expressions. 11437 struct SCEVCollectStrides { 11438 ScalarEvolution &SE; 11439 SmallVectorImpl<const SCEV *> &Strides; 11440 11441 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11442 : SE(SE), Strides(S) {} 11443 11444 bool follow(const SCEV *S) { 11445 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11446 Strides.push_back(AR->getStepRecurrence(SE)); 11447 return true; 11448 } 11449 11450 bool isDone() const { return false; } 11451 }; 11452 11453 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11454 struct SCEVCollectTerms { 11455 SmallVectorImpl<const SCEV *> &Terms; 11456 11457 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11458 11459 bool follow(const SCEV *S) { 11460 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11461 isa<SCEVSignExtendExpr>(S)) { 11462 if (!containsUndefs(S)) 11463 Terms.push_back(S); 11464 11465 // Stop recursion: once we collected a term, do not walk its operands. 11466 return false; 11467 } 11468 11469 // Keep looking. 11470 return true; 11471 } 11472 11473 bool isDone() const { return false; } 11474 }; 11475 11476 // Check if a SCEV contains an AddRecExpr. 11477 struct SCEVHasAddRec { 11478 bool &ContainsAddRec; 11479 11480 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11481 ContainsAddRec = false; 11482 } 11483 11484 bool follow(const SCEV *S) { 11485 if (isa<SCEVAddRecExpr>(S)) { 11486 ContainsAddRec = true; 11487 11488 // Stop recursion: once we collected a term, do not walk its operands. 11489 return false; 11490 } 11491 11492 // Keep looking. 11493 return true; 11494 } 11495 11496 bool isDone() const { return false; } 11497 }; 11498 11499 // Find factors that are multiplied with an expression that (possibly as a 11500 // subexpression) contains an AddRecExpr. In the expression: 11501 // 11502 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11503 // 11504 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11505 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11506 // parameters as they form a product with an induction variable. 11507 // 11508 // This collector expects all array size parameters to be in the same MulExpr. 11509 // It might be necessary to later add support for collecting parameters that are 11510 // spread over different nested MulExpr. 11511 struct SCEVCollectAddRecMultiplies { 11512 SmallVectorImpl<const SCEV *> &Terms; 11513 ScalarEvolution &SE; 11514 11515 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11516 : Terms(T), SE(SE) {} 11517 11518 bool follow(const SCEV *S) { 11519 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11520 bool HasAddRec = false; 11521 SmallVector<const SCEV *, 0> Operands; 11522 for (auto Op : Mul->operands()) { 11523 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11524 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11525 Operands.push_back(Op); 11526 } else if (Unknown) { 11527 HasAddRec = true; 11528 } else { 11529 bool ContainsAddRec = false; 11530 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11531 visitAll(Op, ContiansAddRec); 11532 HasAddRec |= ContainsAddRec; 11533 } 11534 } 11535 if (Operands.size() == 0) 11536 return true; 11537 11538 if (!HasAddRec) 11539 return false; 11540 11541 Terms.push_back(SE.getMulExpr(Operands)); 11542 // Stop recursion: once we collected a term, do not walk its operands. 11543 return false; 11544 } 11545 11546 // Keep looking. 11547 return true; 11548 } 11549 11550 bool isDone() const { return false; } 11551 }; 11552 11553 } // end anonymous namespace 11554 11555 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11556 /// two places: 11557 /// 1) The strides of AddRec expressions. 11558 /// 2) Unknowns that are multiplied with AddRec expressions. 11559 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11560 SmallVectorImpl<const SCEV *> &Terms) { 11561 SmallVector<const SCEV *, 4> Strides; 11562 SCEVCollectStrides StrideCollector(*this, Strides); 11563 visitAll(Expr, StrideCollector); 11564 11565 LLVM_DEBUG({ 11566 dbgs() << "Strides:\n"; 11567 for (const SCEV *S : Strides) 11568 dbgs() << *S << "\n"; 11569 }); 11570 11571 for (const SCEV *S : Strides) { 11572 SCEVCollectTerms TermCollector(Terms); 11573 visitAll(S, TermCollector); 11574 } 11575 11576 LLVM_DEBUG({ 11577 dbgs() << "Terms:\n"; 11578 for (const SCEV *T : Terms) 11579 dbgs() << *T << "\n"; 11580 }); 11581 11582 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11583 visitAll(Expr, MulCollector); 11584 } 11585 11586 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11587 SmallVectorImpl<const SCEV *> &Terms, 11588 SmallVectorImpl<const SCEV *> &Sizes) { 11589 int Last = Terms.size() - 1; 11590 const SCEV *Step = Terms[Last]; 11591 11592 // End of recursion. 11593 if (Last == 0) { 11594 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11595 SmallVector<const SCEV *, 2> Qs; 11596 for (const SCEV *Op : M->operands()) 11597 if (!isa<SCEVConstant>(Op)) 11598 Qs.push_back(Op); 11599 11600 Step = SE.getMulExpr(Qs); 11601 } 11602 11603 Sizes.push_back(Step); 11604 return true; 11605 } 11606 11607 for (const SCEV *&Term : Terms) { 11608 // Normalize the terms before the next call to findArrayDimensionsRec. 11609 const SCEV *Q, *R; 11610 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11611 11612 // Bail out when GCD does not evenly divide one of the terms. 11613 if (!R->isZero()) 11614 return false; 11615 11616 Term = Q; 11617 } 11618 11619 // Remove all SCEVConstants. 11620 Terms.erase( 11621 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11622 Terms.end()); 11623 11624 if (Terms.size() > 0) 11625 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11626 return false; 11627 11628 Sizes.push_back(Step); 11629 return true; 11630 } 11631 11632 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11633 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11634 for (const SCEV *T : Terms) 11635 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11636 return true; 11637 11638 return false; 11639 } 11640 11641 // Return the number of product terms in S. 11642 static inline int numberOfTerms(const SCEV *S) { 11643 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11644 return Expr->getNumOperands(); 11645 return 1; 11646 } 11647 11648 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11649 if (isa<SCEVConstant>(T)) 11650 return nullptr; 11651 11652 if (isa<SCEVUnknown>(T)) 11653 return T; 11654 11655 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11656 SmallVector<const SCEV *, 2> Factors; 11657 for (const SCEV *Op : M->operands()) 11658 if (!isa<SCEVConstant>(Op)) 11659 Factors.push_back(Op); 11660 11661 return SE.getMulExpr(Factors); 11662 } 11663 11664 return T; 11665 } 11666 11667 /// Return the size of an element read or written by Inst. 11668 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11669 Type *Ty; 11670 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11671 Ty = Store->getValueOperand()->getType(); 11672 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11673 Ty = Load->getType(); 11674 else 11675 return nullptr; 11676 11677 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11678 return getSizeOfExpr(ETy, Ty); 11679 } 11680 11681 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11682 SmallVectorImpl<const SCEV *> &Sizes, 11683 const SCEV *ElementSize) { 11684 if (Terms.size() < 1 || !ElementSize) 11685 return; 11686 11687 // Early return when Terms do not contain parameters: we do not delinearize 11688 // non parametric SCEVs. 11689 if (!containsParameters(Terms)) 11690 return; 11691 11692 LLVM_DEBUG({ 11693 dbgs() << "Terms:\n"; 11694 for (const SCEV *T : Terms) 11695 dbgs() << *T << "\n"; 11696 }); 11697 11698 // Remove duplicates. 11699 array_pod_sort(Terms.begin(), Terms.end()); 11700 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11701 11702 // Put larger terms first. 11703 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11704 return numberOfTerms(LHS) > numberOfTerms(RHS); 11705 }); 11706 11707 // Try to divide all terms by the element size. If term is not divisible by 11708 // element size, proceed with the original term. 11709 for (const SCEV *&Term : Terms) { 11710 const SCEV *Q, *R; 11711 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11712 if (!Q->isZero()) 11713 Term = Q; 11714 } 11715 11716 SmallVector<const SCEV *, 4> NewTerms; 11717 11718 // Remove constant factors. 11719 for (const SCEV *T : Terms) 11720 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11721 NewTerms.push_back(NewT); 11722 11723 LLVM_DEBUG({ 11724 dbgs() << "Terms after sorting:\n"; 11725 for (const SCEV *T : NewTerms) 11726 dbgs() << *T << "\n"; 11727 }); 11728 11729 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11730 Sizes.clear(); 11731 return; 11732 } 11733 11734 // The last element to be pushed into Sizes is the size of an element. 11735 Sizes.push_back(ElementSize); 11736 11737 LLVM_DEBUG({ 11738 dbgs() << "Sizes:\n"; 11739 for (const SCEV *S : Sizes) 11740 dbgs() << *S << "\n"; 11741 }); 11742 } 11743 11744 void ScalarEvolution::computeAccessFunctions( 11745 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11746 SmallVectorImpl<const SCEV *> &Sizes) { 11747 // Early exit in case this SCEV is not an affine multivariate function. 11748 if (Sizes.empty()) 11749 return; 11750 11751 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11752 if (!AR->isAffine()) 11753 return; 11754 11755 const SCEV *Res = Expr; 11756 int Last = Sizes.size() - 1; 11757 for (int i = Last; i >= 0; i--) { 11758 const SCEV *Q, *R; 11759 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11760 11761 LLVM_DEBUG({ 11762 dbgs() << "Res: " << *Res << "\n"; 11763 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11764 dbgs() << "Res divided by Sizes[i]:\n"; 11765 dbgs() << "Quotient: " << *Q << "\n"; 11766 dbgs() << "Remainder: " << *R << "\n"; 11767 }); 11768 11769 Res = Q; 11770 11771 // Do not record the last subscript corresponding to the size of elements in 11772 // the array. 11773 if (i == Last) { 11774 11775 // Bail out if the remainder is too complex. 11776 if (isa<SCEVAddRecExpr>(R)) { 11777 Subscripts.clear(); 11778 Sizes.clear(); 11779 return; 11780 } 11781 11782 continue; 11783 } 11784 11785 // Record the access function for the current subscript. 11786 Subscripts.push_back(R); 11787 } 11788 11789 // Also push in last position the remainder of the last division: it will be 11790 // the access function of the innermost dimension. 11791 Subscripts.push_back(Res); 11792 11793 std::reverse(Subscripts.begin(), Subscripts.end()); 11794 11795 LLVM_DEBUG({ 11796 dbgs() << "Subscripts:\n"; 11797 for (const SCEV *S : Subscripts) 11798 dbgs() << *S << "\n"; 11799 }); 11800 } 11801 11802 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11803 /// sizes of an array access. Returns the remainder of the delinearization that 11804 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11805 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11806 /// expressions in the stride and base of a SCEV corresponding to the 11807 /// computation of a GCD (greatest common divisor) of base and stride. When 11808 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11809 /// 11810 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11811 /// 11812 /// void foo(long n, long m, long o, double A[n][m][o]) { 11813 /// 11814 /// for (long i = 0; i < n; i++) 11815 /// for (long j = 0; j < m; j++) 11816 /// for (long k = 0; k < o; k++) 11817 /// A[i][j][k] = 1.0; 11818 /// } 11819 /// 11820 /// the delinearization input is the following AddRec SCEV: 11821 /// 11822 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11823 /// 11824 /// From this SCEV, we are able to say that the base offset of the access is %A 11825 /// because it appears as an offset that does not divide any of the strides in 11826 /// the loops: 11827 /// 11828 /// CHECK: Base offset: %A 11829 /// 11830 /// and then SCEV->delinearize determines the size of some of the dimensions of 11831 /// the array as these are the multiples by which the strides are happening: 11832 /// 11833 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11834 /// 11835 /// Note that the outermost dimension remains of UnknownSize because there are 11836 /// no strides that would help identifying the size of the last dimension: when 11837 /// the array has been statically allocated, one could compute the size of that 11838 /// dimension by dividing the overall size of the array by the size of the known 11839 /// dimensions: %m * %o * 8. 11840 /// 11841 /// Finally delinearize provides the access functions for the array reference 11842 /// that does correspond to A[i][j][k] of the above C testcase: 11843 /// 11844 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11845 /// 11846 /// The testcases are checking the output of a function pass: 11847 /// DelinearizationPass that walks through all loads and stores of a function 11848 /// asking for the SCEV of the memory access with respect to all enclosing 11849 /// loops, calling SCEV->delinearize on that and printing the results. 11850 void ScalarEvolution::delinearize(const SCEV *Expr, 11851 SmallVectorImpl<const SCEV *> &Subscripts, 11852 SmallVectorImpl<const SCEV *> &Sizes, 11853 const SCEV *ElementSize) { 11854 // First step: collect parametric terms. 11855 SmallVector<const SCEV *, 4> Terms; 11856 collectParametricTerms(Expr, Terms); 11857 11858 if (Terms.empty()) 11859 return; 11860 11861 // Second step: find subscript sizes. 11862 findArrayDimensions(Terms, Sizes, ElementSize); 11863 11864 if (Sizes.empty()) 11865 return; 11866 11867 // Third step: compute the access functions for each subscript. 11868 computeAccessFunctions(Expr, Subscripts, Sizes); 11869 11870 if (Subscripts.empty()) 11871 return; 11872 11873 LLVM_DEBUG({ 11874 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11875 dbgs() << "ArrayDecl[UnknownSize]"; 11876 for (const SCEV *S : Sizes) 11877 dbgs() << "[" << *S << "]"; 11878 11879 dbgs() << "\nArrayRef"; 11880 for (const SCEV *S : Subscripts) 11881 dbgs() << "[" << *S << "]"; 11882 dbgs() << "\n"; 11883 }); 11884 } 11885 11886 bool ScalarEvolution::getIndexExpressionsFromGEP( 11887 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11888 SmallVectorImpl<int> &Sizes) { 11889 assert(Subscripts.empty() && Sizes.empty() && 11890 "Expected output lists to be empty on entry to this function."); 11891 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11892 Type *Ty = GEP->getPointerOperandType(); 11893 bool DroppedFirstDim = false; 11894 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11895 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11896 if (i == 1) { 11897 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11898 Ty = PtrTy->getElementType(); 11899 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11900 Ty = ArrayTy->getElementType(); 11901 } else { 11902 Subscripts.clear(); 11903 Sizes.clear(); 11904 return false; 11905 } 11906 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11907 if (Const->getValue()->isZero()) { 11908 DroppedFirstDim = true; 11909 continue; 11910 } 11911 Subscripts.push_back(Expr); 11912 continue; 11913 } 11914 11915 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11916 if (!ArrayTy) { 11917 Subscripts.clear(); 11918 Sizes.clear(); 11919 return false; 11920 } 11921 11922 Subscripts.push_back(Expr); 11923 if (!(DroppedFirstDim && i == 2)) 11924 Sizes.push_back(ArrayTy->getNumElements()); 11925 11926 Ty = ArrayTy->getElementType(); 11927 } 11928 return !Subscripts.empty(); 11929 } 11930 11931 //===----------------------------------------------------------------------===// 11932 // SCEVCallbackVH Class Implementation 11933 //===----------------------------------------------------------------------===// 11934 11935 void ScalarEvolution::SCEVCallbackVH::deleted() { 11936 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11937 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11938 SE->ConstantEvolutionLoopExitValue.erase(PN); 11939 SE->eraseValueFromMap(getValPtr()); 11940 // this now dangles! 11941 } 11942 11943 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11944 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11945 11946 // Forget all the expressions associated with users of the old value, 11947 // so that future queries will recompute the expressions using the new 11948 // value. 11949 Value *Old = getValPtr(); 11950 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11951 SmallPtrSet<User *, 8> Visited; 11952 while (!Worklist.empty()) { 11953 User *U = Worklist.pop_back_val(); 11954 // Deleting the Old value will cause this to dangle. Postpone 11955 // that until everything else is done. 11956 if (U == Old) 11957 continue; 11958 if (!Visited.insert(U).second) 11959 continue; 11960 if (PHINode *PN = dyn_cast<PHINode>(U)) 11961 SE->ConstantEvolutionLoopExitValue.erase(PN); 11962 SE->eraseValueFromMap(U); 11963 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11964 } 11965 // Delete the Old value. 11966 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11967 SE->ConstantEvolutionLoopExitValue.erase(PN); 11968 SE->eraseValueFromMap(Old); 11969 // this now dangles! 11970 } 11971 11972 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11973 : CallbackVH(V), SE(se) {} 11974 11975 //===----------------------------------------------------------------------===// 11976 // ScalarEvolution Class Implementation 11977 //===----------------------------------------------------------------------===// 11978 11979 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11980 AssumptionCache &AC, DominatorTree &DT, 11981 LoopInfo &LI) 11982 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11983 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11984 LoopDispositions(64), BlockDispositions(64) { 11985 // To use guards for proving predicates, we need to scan every instruction in 11986 // relevant basic blocks, and not just terminators. Doing this is a waste of 11987 // time if the IR does not actually contain any calls to 11988 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11989 // 11990 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11991 // to _add_ guards to the module when there weren't any before, and wants 11992 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11993 // efficient in lieu of being smart in that rather obscure case. 11994 11995 auto *GuardDecl = F.getParent()->getFunction( 11996 Intrinsic::getName(Intrinsic::experimental_guard)); 11997 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11998 } 11999 12000 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12001 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12002 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12003 ValueExprMap(std::move(Arg.ValueExprMap)), 12004 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12005 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12006 PendingMerges(std::move(Arg.PendingMerges)), 12007 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12008 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12009 PredicatedBackedgeTakenCounts( 12010 std::move(Arg.PredicatedBackedgeTakenCounts)), 12011 ConstantEvolutionLoopExitValue( 12012 std::move(Arg.ConstantEvolutionLoopExitValue)), 12013 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12014 LoopDispositions(std::move(Arg.LoopDispositions)), 12015 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12016 BlockDispositions(std::move(Arg.BlockDispositions)), 12017 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12018 SignedRanges(std::move(Arg.SignedRanges)), 12019 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12020 UniquePreds(std::move(Arg.UniquePreds)), 12021 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12022 LoopUsers(std::move(Arg.LoopUsers)), 12023 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12024 FirstUnknown(Arg.FirstUnknown) { 12025 Arg.FirstUnknown = nullptr; 12026 } 12027 12028 ScalarEvolution::~ScalarEvolution() { 12029 // Iterate through all the SCEVUnknown instances and call their 12030 // destructors, so that they release their references to their values. 12031 for (SCEVUnknown *U = FirstUnknown; U;) { 12032 SCEVUnknown *Tmp = U; 12033 U = U->Next; 12034 Tmp->~SCEVUnknown(); 12035 } 12036 FirstUnknown = nullptr; 12037 12038 ExprValueMap.clear(); 12039 ValueExprMap.clear(); 12040 HasRecMap.clear(); 12041 12042 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 12043 // that a loop had multiple computable exits. 12044 for (auto &BTCI : BackedgeTakenCounts) 12045 BTCI.second.clear(); 12046 for (auto &BTCI : PredicatedBackedgeTakenCounts) 12047 BTCI.second.clear(); 12048 12049 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12050 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12051 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12052 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12053 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12054 } 12055 12056 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12057 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12058 } 12059 12060 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12061 const Loop *L) { 12062 // Print all inner loops first 12063 for (Loop *I : *L) 12064 PrintLoopInfo(OS, SE, I); 12065 12066 OS << "Loop "; 12067 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12068 OS << ": "; 12069 12070 SmallVector<BasicBlock *, 8> ExitingBlocks; 12071 L->getExitingBlocks(ExitingBlocks); 12072 if (ExitingBlocks.size() != 1) 12073 OS << "<multiple exits> "; 12074 12075 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12076 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12077 else 12078 OS << "Unpredictable backedge-taken count.\n"; 12079 12080 if (ExitingBlocks.size() > 1) 12081 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12082 OS << " exit count for " << ExitingBlock->getName() << ": " 12083 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12084 } 12085 12086 OS << "Loop "; 12087 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12088 OS << ": "; 12089 12090 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12091 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12092 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12093 OS << ", actual taken count either this or zero."; 12094 } else { 12095 OS << "Unpredictable max backedge-taken count. "; 12096 } 12097 12098 OS << "\n" 12099 "Loop "; 12100 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12101 OS << ": "; 12102 12103 SCEVUnionPredicate Pred; 12104 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12105 if (!isa<SCEVCouldNotCompute>(PBT)) { 12106 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12107 OS << " Predicates:\n"; 12108 Pred.print(OS, 4); 12109 } else { 12110 OS << "Unpredictable predicated backedge-taken count. "; 12111 } 12112 OS << "\n"; 12113 12114 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12115 OS << "Loop "; 12116 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12117 OS << ": "; 12118 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12119 } 12120 } 12121 12122 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12123 switch (LD) { 12124 case ScalarEvolution::LoopVariant: 12125 return "Variant"; 12126 case ScalarEvolution::LoopInvariant: 12127 return "Invariant"; 12128 case ScalarEvolution::LoopComputable: 12129 return "Computable"; 12130 } 12131 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12132 } 12133 12134 void ScalarEvolution::print(raw_ostream &OS) const { 12135 // ScalarEvolution's implementation of the print method is to print 12136 // out SCEV values of all instructions that are interesting. Doing 12137 // this potentially causes it to create new SCEV objects though, 12138 // which technically conflicts with the const qualifier. This isn't 12139 // observable from outside the class though, so casting away the 12140 // const isn't dangerous. 12141 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12142 12143 if (ClassifyExpressions) { 12144 OS << "Classifying expressions for: "; 12145 F.printAsOperand(OS, /*PrintType=*/false); 12146 OS << "\n"; 12147 for (Instruction &I : instructions(F)) 12148 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12149 OS << I << '\n'; 12150 OS << " --> "; 12151 const SCEV *SV = SE.getSCEV(&I); 12152 SV->print(OS); 12153 if (!isa<SCEVCouldNotCompute>(SV)) { 12154 OS << " U: "; 12155 SE.getUnsignedRange(SV).print(OS); 12156 OS << " S: "; 12157 SE.getSignedRange(SV).print(OS); 12158 } 12159 12160 const Loop *L = LI.getLoopFor(I.getParent()); 12161 12162 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12163 if (AtUse != SV) { 12164 OS << " --> "; 12165 AtUse->print(OS); 12166 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12167 OS << " U: "; 12168 SE.getUnsignedRange(AtUse).print(OS); 12169 OS << " S: "; 12170 SE.getSignedRange(AtUse).print(OS); 12171 } 12172 } 12173 12174 if (L) { 12175 OS << "\t\t" "Exits: "; 12176 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12177 if (!SE.isLoopInvariant(ExitValue, L)) { 12178 OS << "<<Unknown>>"; 12179 } else { 12180 OS << *ExitValue; 12181 } 12182 12183 bool First = true; 12184 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12185 if (First) { 12186 OS << "\t\t" "LoopDispositions: { "; 12187 First = false; 12188 } else { 12189 OS << ", "; 12190 } 12191 12192 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12193 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12194 } 12195 12196 for (auto *InnerL : depth_first(L)) { 12197 if (InnerL == L) 12198 continue; 12199 if (First) { 12200 OS << "\t\t" "LoopDispositions: { "; 12201 First = false; 12202 } else { 12203 OS << ", "; 12204 } 12205 12206 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12207 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12208 } 12209 12210 OS << " }"; 12211 } 12212 12213 OS << "\n"; 12214 } 12215 } 12216 12217 OS << "Determining loop execution counts for: "; 12218 F.printAsOperand(OS, /*PrintType=*/false); 12219 OS << "\n"; 12220 for (Loop *I : LI) 12221 PrintLoopInfo(OS, &SE, I); 12222 } 12223 12224 ScalarEvolution::LoopDisposition 12225 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12226 auto &Values = LoopDispositions[S]; 12227 for (auto &V : Values) { 12228 if (V.getPointer() == L) 12229 return V.getInt(); 12230 } 12231 Values.emplace_back(L, LoopVariant); 12232 LoopDisposition D = computeLoopDisposition(S, L); 12233 auto &Values2 = LoopDispositions[S]; 12234 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12235 if (V.getPointer() == L) { 12236 V.setInt(D); 12237 break; 12238 } 12239 } 12240 return D; 12241 } 12242 12243 ScalarEvolution::LoopDisposition 12244 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12245 switch (S->getSCEVType()) { 12246 case scConstant: 12247 return LoopInvariant; 12248 case scPtrToInt: 12249 case scTruncate: 12250 case scZeroExtend: 12251 case scSignExtend: 12252 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12253 case scAddRecExpr: { 12254 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12255 12256 // If L is the addrec's loop, it's computable. 12257 if (AR->getLoop() == L) 12258 return LoopComputable; 12259 12260 // Add recurrences are never invariant in the function-body (null loop). 12261 if (!L) 12262 return LoopVariant; 12263 12264 // Everything that is not defined at loop entry is variant. 12265 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12266 return LoopVariant; 12267 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12268 " dominate the contained loop's header?"); 12269 12270 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12271 if (AR->getLoop()->contains(L)) 12272 return LoopInvariant; 12273 12274 // This recurrence is variant w.r.t. L if any of its operands 12275 // are variant. 12276 for (auto *Op : AR->operands()) 12277 if (!isLoopInvariant(Op, L)) 12278 return LoopVariant; 12279 12280 // Otherwise it's loop-invariant. 12281 return LoopInvariant; 12282 } 12283 case scAddExpr: 12284 case scMulExpr: 12285 case scUMaxExpr: 12286 case scSMaxExpr: 12287 case scUMinExpr: 12288 case scSMinExpr: { 12289 bool HasVarying = false; 12290 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12291 LoopDisposition D = getLoopDisposition(Op, L); 12292 if (D == LoopVariant) 12293 return LoopVariant; 12294 if (D == LoopComputable) 12295 HasVarying = true; 12296 } 12297 return HasVarying ? LoopComputable : LoopInvariant; 12298 } 12299 case scUDivExpr: { 12300 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12301 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12302 if (LD == LoopVariant) 12303 return LoopVariant; 12304 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12305 if (RD == LoopVariant) 12306 return LoopVariant; 12307 return (LD == LoopInvariant && RD == LoopInvariant) ? 12308 LoopInvariant : LoopComputable; 12309 } 12310 case scUnknown: 12311 // All non-instruction values are loop invariant. All instructions are loop 12312 // invariant if they are not contained in the specified loop. 12313 // Instructions are never considered invariant in the function body 12314 // (null loop) because they are defined within the "loop". 12315 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12316 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12317 return LoopInvariant; 12318 case scCouldNotCompute: 12319 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12320 } 12321 llvm_unreachable("Unknown SCEV kind!"); 12322 } 12323 12324 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12325 return getLoopDisposition(S, L) == LoopInvariant; 12326 } 12327 12328 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12329 return getLoopDisposition(S, L) == LoopComputable; 12330 } 12331 12332 ScalarEvolution::BlockDisposition 12333 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12334 auto &Values = BlockDispositions[S]; 12335 for (auto &V : Values) { 12336 if (V.getPointer() == BB) 12337 return V.getInt(); 12338 } 12339 Values.emplace_back(BB, DoesNotDominateBlock); 12340 BlockDisposition D = computeBlockDisposition(S, BB); 12341 auto &Values2 = BlockDispositions[S]; 12342 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12343 if (V.getPointer() == BB) { 12344 V.setInt(D); 12345 break; 12346 } 12347 } 12348 return D; 12349 } 12350 12351 ScalarEvolution::BlockDisposition 12352 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12353 switch (S->getSCEVType()) { 12354 case scConstant: 12355 return ProperlyDominatesBlock; 12356 case scPtrToInt: 12357 case scTruncate: 12358 case scZeroExtend: 12359 case scSignExtend: 12360 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12361 case scAddRecExpr: { 12362 // This uses a "dominates" query instead of "properly dominates" query 12363 // to test for proper dominance too, because the instruction which 12364 // produces the addrec's value is a PHI, and a PHI effectively properly 12365 // dominates its entire containing block. 12366 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12367 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12368 return DoesNotDominateBlock; 12369 12370 // Fall through into SCEVNAryExpr handling. 12371 LLVM_FALLTHROUGH; 12372 } 12373 case scAddExpr: 12374 case scMulExpr: 12375 case scUMaxExpr: 12376 case scSMaxExpr: 12377 case scUMinExpr: 12378 case scSMinExpr: { 12379 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12380 bool Proper = true; 12381 for (const SCEV *NAryOp : NAry->operands()) { 12382 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12383 if (D == DoesNotDominateBlock) 12384 return DoesNotDominateBlock; 12385 if (D == DominatesBlock) 12386 Proper = false; 12387 } 12388 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12389 } 12390 case scUDivExpr: { 12391 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12392 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12393 BlockDisposition LD = getBlockDisposition(LHS, BB); 12394 if (LD == DoesNotDominateBlock) 12395 return DoesNotDominateBlock; 12396 BlockDisposition RD = getBlockDisposition(RHS, BB); 12397 if (RD == DoesNotDominateBlock) 12398 return DoesNotDominateBlock; 12399 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12400 ProperlyDominatesBlock : DominatesBlock; 12401 } 12402 case scUnknown: 12403 if (Instruction *I = 12404 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12405 if (I->getParent() == BB) 12406 return DominatesBlock; 12407 if (DT.properlyDominates(I->getParent(), BB)) 12408 return ProperlyDominatesBlock; 12409 return DoesNotDominateBlock; 12410 } 12411 return ProperlyDominatesBlock; 12412 case scCouldNotCompute: 12413 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12414 } 12415 llvm_unreachable("Unknown SCEV kind!"); 12416 } 12417 12418 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12419 return getBlockDisposition(S, BB) >= DominatesBlock; 12420 } 12421 12422 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12423 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12424 } 12425 12426 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12427 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12428 } 12429 12430 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12431 auto IsS = [&](const SCEV *X) { return S == X; }; 12432 auto ContainsS = [&](const SCEV *X) { 12433 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12434 }; 12435 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12436 } 12437 12438 void 12439 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12440 ValuesAtScopes.erase(S); 12441 LoopDispositions.erase(S); 12442 BlockDispositions.erase(S); 12443 UnsignedRanges.erase(S); 12444 SignedRanges.erase(S); 12445 ExprValueMap.erase(S); 12446 HasRecMap.erase(S); 12447 MinTrailingZerosCache.erase(S); 12448 12449 for (auto I = PredicatedSCEVRewrites.begin(); 12450 I != PredicatedSCEVRewrites.end();) { 12451 std::pair<const SCEV *, const Loop *> Entry = I->first; 12452 if (Entry.first == S) 12453 PredicatedSCEVRewrites.erase(I++); 12454 else 12455 ++I; 12456 } 12457 12458 auto RemoveSCEVFromBackedgeMap = 12459 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12460 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12461 BackedgeTakenInfo &BEInfo = I->second; 12462 if (BEInfo.hasOperand(S, this)) { 12463 BEInfo.clear(); 12464 Map.erase(I++); 12465 } else 12466 ++I; 12467 } 12468 }; 12469 12470 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12471 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12472 } 12473 12474 void 12475 ScalarEvolution::getUsedLoops(const SCEV *S, 12476 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12477 struct FindUsedLoops { 12478 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12479 : LoopsUsed(LoopsUsed) {} 12480 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12481 bool follow(const SCEV *S) { 12482 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12483 LoopsUsed.insert(AR->getLoop()); 12484 return true; 12485 } 12486 12487 bool isDone() const { return false; } 12488 }; 12489 12490 FindUsedLoops F(LoopsUsed); 12491 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12492 } 12493 12494 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12495 SmallPtrSet<const Loop *, 8> LoopsUsed; 12496 getUsedLoops(S, LoopsUsed); 12497 for (auto *L : LoopsUsed) 12498 LoopUsers[L].push_back(S); 12499 } 12500 12501 void ScalarEvolution::verify() const { 12502 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12503 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12504 12505 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12506 12507 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12508 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12509 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12510 12511 const SCEV *visitConstant(const SCEVConstant *Constant) { 12512 return SE.getConstant(Constant->getAPInt()); 12513 } 12514 12515 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12516 return SE.getUnknown(Expr->getValue()); 12517 } 12518 12519 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12520 return SE.getCouldNotCompute(); 12521 } 12522 }; 12523 12524 SCEVMapper SCM(SE2); 12525 12526 while (!LoopStack.empty()) { 12527 auto *L = LoopStack.pop_back_val(); 12528 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12529 12530 auto *CurBECount = SCM.visit( 12531 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12532 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12533 12534 if (CurBECount == SE2.getCouldNotCompute() || 12535 NewBECount == SE2.getCouldNotCompute()) { 12536 // NB! This situation is legal, but is very suspicious -- whatever pass 12537 // change the loop to make a trip count go from could not compute to 12538 // computable or vice-versa *should have* invalidated SCEV. However, we 12539 // choose not to assert here (for now) since we don't want false 12540 // positives. 12541 continue; 12542 } 12543 12544 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12545 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12546 // not propagate undef aggressively). This means we can (and do) fail 12547 // verification in cases where a transform makes the trip count of a loop 12548 // go from "undef" to "undef+1" (say). The transform is fine, since in 12549 // both cases the loop iterates "undef" times, but SCEV thinks we 12550 // increased the trip count of the loop by 1 incorrectly. 12551 continue; 12552 } 12553 12554 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12555 SE.getTypeSizeInBits(NewBECount->getType())) 12556 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12557 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12558 SE.getTypeSizeInBits(NewBECount->getType())) 12559 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12560 12561 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12562 12563 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12564 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12565 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12566 dbgs() << "Old: " << *CurBECount << "\n"; 12567 dbgs() << "New: " << *NewBECount << "\n"; 12568 dbgs() << "Delta: " << *Delta << "\n"; 12569 std::abort(); 12570 } 12571 } 12572 12573 // Collect all valid loops currently in LoopInfo. 12574 SmallPtrSet<Loop *, 32> ValidLoops; 12575 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12576 while (!Worklist.empty()) { 12577 Loop *L = Worklist.pop_back_val(); 12578 if (ValidLoops.contains(L)) 12579 continue; 12580 ValidLoops.insert(L); 12581 Worklist.append(L->begin(), L->end()); 12582 } 12583 // Check for SCEV expressions referencing invalid/deleted loops. 12584 for (auto &KV : ValueExprMap) { 12585 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12586 if (!AR) 12587 continue; 12588 assert(ValidLoops.contains(AR->getLoop()) && 12589 "AddRec references invalid loop"); 12590 } 12591 } 12592 12593 bool ScalarEvolution::invalidate( 12594 Function &F, const PreservedAnalyses &PA, 12595 FunctionAnalysisManager::Invalidator &Inv) { 12596 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12597 // of its dependencies is invalidated. 12598 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12599 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12600 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12601 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12602 Inv.invalidate<LoopAnalysis>(F, PA); 12603 } 12604 12605 AnalysisKey ScalarEvolutionAnalysis::Key; 12606 12607 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12608 FunctionAnalysisManager &AM) { 12609 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12610 AM.getResult<AssumptionAnalysis>(F), 12611 AM.getResult<DominatorTreeAnalysis>(F), 12612 AM.getResult<LoopAnalysis>(F)); 12613 } 12614 12615 PreservedAnalyses 12616 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12617 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12618 return PreservedAnalyses::all(); 12619 } 12620 12621 PreservedAnalyses 12622 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12623 // For compatibility with opt's -analyze feature under legacy pass manager 12624 // which was not ported to NPM. This keeps tests using 12625 // update_analyze_test_checks.py working. 12626 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12627 << F.getName() << "':\n"; 12628 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12629 return PreservedAnalyses::all(); 12630 } 12631 12632 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12633 "Scalar Evolution Analysis", false, true) 12634 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12635 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12636 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12637 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12638 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12639 "Scalar Evolution Analysis", false, true) 12640 12641 char ScalarEvolutionWrapperPass::ID = 0; 12642 12643 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12644 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12645 } 12646 12647 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12648 SE.reset(new ScalarEvolution( 12649 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12650 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12651 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12652 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12653 return false; 12654 } 12655 12656 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12657 12658 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12659 SE->print(OS); 12660 } 12661 12662 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12663 if (!VerifySCEV) 12664 return; 12665 12666 SE->verify(); 12667 } 12668 12669 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12670 AU.setPreservesAll(); 12671 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12672 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12673 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12674 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12675 } 12676 12677 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12678 const SCEV *RHS) { 12679 FoldingSetNodeID ID; 12680 assert(LHS->getType() == RHS->getType() && 12681 "Type mismatch between LHS and RHS"); 12682 // Unique this node based on the arguments 12683 ID.AddInteger(SCEVPredicate::P_Equal); 12684 ID.AddPointer(LHS); 12685 ID.AddPointer(RHS); 12686 void *IP = nullptr; 12687 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12688 return S; 12689 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12690 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12691 UniquePreds.InsertNode(Eq, IP); 12692 return Eq; 12693 } 12694 12695 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12696 const SCEVAddRecExpr *AR, 12697 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12698 FoldingSetNodeID ID; 12699 // Unique this node based on the arguments 12700 ID.AddInteger(SCEVPredicate::P_Wrap); 12701 ID.AddPointer(AR); 12702 ID.AddInteger(AddedFlags); 12703 void *IP = nullptr; 12704 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12705 return S; 12706 auto *OF = new (SCEVAllocator) 12707 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12708 UniquePreds.InsertNode(OF, IP); 12709 return OF; 12710 } 12711 12712 namespace { 12713 12714 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12715 public: 12716 12717 /// Rewrites \p S in the context of a loop L and the SCEV predication 12718 /// infrastructure. 12719 /// 12720 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12721 /// equivalences present in \p Pred. 12722 /// 12723 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12724 /// \p NewPreds such that the result will be an AddRecExpr. 12725 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12726 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12727 SCEVUnionPredicate *Pred) { 12728 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12729 return Rewriter.visit(S); 12730 } 12731 12732 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12733 if (Pred) { 12734 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12735 for (auto *Pred : ExprPreds) 12736 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12737 if (IPred->getLHS() == Expr) 12738 return IPred->getRHS(); 12739 } 12740 return convertToAddRecWithPreds(Expr); 12741 } 12742 12743 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12744 const SCEV *Operand = visit(Expr->getOperand()); 12745 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12746 if (AR && AR->getLoop() == L && AR->isAffine()) { 12747 // This couldn't be folded because the operand didn't have the nuw 12748 // flag. Add the nusw flag as an assumption that we could make. 12749 const SCEV *Step = AR->getStepRecurrence(SE); 12750 Type *Ty = Expr->getType(); 12751 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12752 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12753 SE.getSignExtendExpr(Step, Ty), L, 12754 AR->getNoWrapFlags()); 12755 } 12756 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12757 } 12758 12759 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12760 const SCEV *Operand = visit(Expr->getOperand()); 12761 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12762 if (AR && AR->getLoop() == L && AR->isAffine()) { 12763 // This couldn't be folded because the operand didn't have the nsw 12764 // flag. Add the nssw flag as an assumption that we could make. 12765 const SCEV *Step = AR->getStepRecurrence(SE); 12766 Type *Ty = Expr->getType(); 12767 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12768 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12769 SE.getSignExtendExpr(Step, Ty), L, 12770 AR->getNoWrapFlags()); 12771 } 12772 return SE.getSignExtendExpr(Operand, Expr->getType()); 12773 } 12774 12775 private: 12776 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12777 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12778 SCEVUnionPredicate *Pred) 12779 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12780 12781 bool addOverflowAssumption(const SCEVPredicate *P) { 12782 if (!NewPreds) { 12783 // Check if we've already made this assumption. 12784 return Pred && Pred->implies(P); 12785 } 12786 NewPreds->insert(P); 12787 return true; 12788 } 12789 12790 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12791 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12792 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12793 return addOverflowAssumption(A); 12794 } 12795 12796 // If \p Expr represents a PHINode, we try to see if it can be represented 12797 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12798 // to add this predicate as a runtime overflow check, we return the AddRec. 12799 // If \p Expr does not meet these conditions (is not a PHI node, or we 12800 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12801 // return \p Expr. 12802 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12803 if (!isa<PHINode>(Expr->getValue())) 12804 return Expr; 12805 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12806 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12807 if (!PredicatedRewrite) 12808 return Expr; 12809 for (auto *P : PredicatedRewrite->second){ 12810 // Wrap predicates from outer loops are not supported. 12811 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12812 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12813 if (L != AR->getLoop()) 12814 return Expr; 12815 } 12816 if (!addOverflowAssumption(P)) 12817 return Expr; 12818 } 12819 return PredicatedRewrite->first; 12820 } 12821 12822 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12823 SCEVUnionPredicate *Pred; 12824 const Loop *L; 12825 }; 12826 12827 } // end anonymous namespace 12828 12829 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12830 SCEVUnionPredicate &Preds) { 12831 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12832 } 12833 12834 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12835 const SCEV *S, const Loop *L, 12836 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12837 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12838 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12839 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12840 12841 if (!AddRec) 12842 return nullptr; 12843 12844 // Since the transformation was successful, we can now transfer the SCEV 12845 // predicates. 12846 for (auto *P : TransformPreds) 12847 Preds.insert(P); 12848 12849 return AddRec; 12850 } 12851 12852 /// SCEV predicates 12853 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12854 SCEVPredicateKind Kind) 12855 : FastID(ID), Kind(Kind) {} 12856 12857 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12858 const SCEV *LHS, const SCEV *RHS) 12859 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12860 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12861 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12862 } 12863 12864 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12865 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12866 12867 if (!Op) 12868 return false; 12869 12870 return Op->LHS == LHS && Op->RHS == RHS; 12871 } 12872 12873 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12874 12875 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12876 12877 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12878 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12879 } 12880 12881 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12882 const SCEVAddRecExpr *AR, 12883 IncrementWrapFlags Flags) 12884 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12885 12886 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12887 12888 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12889 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12890 12891 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12892 } 12893 12894 bool SCEVWrapPredicate::isAlwaysTrue() const { 12895 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12896 IncrementWrapFlags IFlags = Flags; 12897 12898 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12899 IFlags = clearFlags(IFlags, IncrementNSSW); 12900 12901 return IFlags == IncrementAnyWrap; 12902 } 12903 12904 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12905 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12906 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12907 OS << "<nusw>"; 12908 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12909 OS << "<nssw>"; 12910 OS << "\n"; 12911 } 12912 12913 SCEVWrapPredicate::IncrementWrapFlags 12914 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12915 ScalarEvolution &SE) { 12916 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12917 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12918 12919 // We can safely transfer the NSW flag as NSSW. 12920 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12921 ImpliedFlags = IncrementNSSW; 12922 12923 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12924 // If the increment is positive, the SCEV NUW flag will also imply the 12925 // WrapPredicate NUSW flag. 12926 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12927 if (Step->getValue()->getValue().isNonNegative()) 12928 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12929 } 12930 12931 return ImpliedFlags; 12932 } 12933 12934 /// Union predicates don't get cached so create a dummy set ID for it. 12935 SCEVUnionPredicate::SCEVUnionPredicate() 12936 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12937 12938 bool SCEVUnionPredicate::isAlwaysTrue() const { 12939 return all_of(Preds, 12940 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12941 } 12942 12943 ArrayRef<const SCEVPredicate *> 12944 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12945 auto I = SCEVToPreds.find(Expr); 12946 if (I == SCEVToPreds.end()) 12947 return ArrayRef<const SCEVPredicate *>(); 12948 return I->second; 12949 } 12950 12951 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12952 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12953 return all_of(Set->Preds, 12954 [this](const SCEVPredicate *I) { return this->implies(I); }); 12955 12956 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12957 if (ScevPredsIt == SCEVToPreds.end()) 12958 return false; 12959 auto &SCEVPreds = ScevPredsIt->second; 12960 12961 return any_of(SCEVPreds, 12962 [N](const SCEVPredicate *I) { return I->implies(N); }); 12963 } 12964 12965 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12966 12967 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12968 for (auto Pred : Preds) 12969 Pred->print(OS, Depth); 12970 } 12971 12972 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12973 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12974 for (auto Pred : Set->Preds) 12975 add(Pred); 12976 return; 12977 } 12978 12979 if (implies(N)) 12980 return; 12981 12982 const SCEV *Key = N->getExpr(); 12983 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12984 " associated expression!"); 12985 12986 SCEVToPreds[Key].push_back(N); 12987 Preds.push_back(N); 12988 } 12989 12990 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12991 Loop &L) 12992 : SE(SE), L(L) {} 12993 12994 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12995 const SCEV *Expr = SE.getSCEV(V); 12996 RewriteEntry &Entry = RewriteMap[Expr]; 12997 12998 // If we already have an entry and the version matches, return it. 12999 if (Entry.second && Generation == Entry.first) 13000 return Entry.second; 13001 13002 // We found an entry but it's stale. Rewrite the stale entry 13003 // according to the current predicate. 13004 if (Entry.second) 13005 Expr = Entry.second; 13006 13007 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13008 Entry = {Generation, NewSCEV}; 13009 13010 return NewSCEV; 13011 } 13012 13013 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13014 if (!BackedgeCount) { 13015 SCEVUnionPredicate BackedgePred; 13016 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13017 addPredicate(BackedgePred); 13018 } 13019 return BackedgeCount; 13020 } 13021 13022 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13023 if (Preds.implies(&Pred)) 13024 return; 13025 Preds.add(&Pred); 13026 updateGeneration(); 13027 } 13028 13029 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13030 return Preds; 13031 } 13032 13033 void PredicatedScalarEvolution::updateGeneration() { 13034 // If the generation number wrapped recompute everything. 13035 if (++Generation == 0) { 13036 for (auto &II : RewriteMap) { 13037 const SCEV *Rewritten = II.second.second; 13038 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13039 } 13040 } 13041 } 13042 13043 void PredicatedScalarEvolution::setNoOverflow( 13044 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13045 const SCEV *Expr = getSCEV(V); 13046 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13047 13048 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13049 13050 // Clear the statically implied flags. 13051 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13052 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13053 13054 auto II = FlagsMap.insert({V, Flags}); 13055 if (!II.second) 13056 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13057 } 13058 13059 bool PredicatedScalarEvolution::hasNoOverflow( 13060 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13061 const SCEV *Expr = getSCEV(V); 13062 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13063 13064 Flags = SCEVWrapPredicate::clearFlags( 13065 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13066 13067 auto II = FlagsMap.find(V); 13068 13069 if (II != FlagsMap.end()) 13070 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13071 13072 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13073 } 13074 13075 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13076 const SCEV *Expr = this->getSCEV(V); 13077 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13078 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13079 13080 if (!New) 13081 return nullptr; 13082 13083 for (auto *P : NewPreds) 13084 Preds.add(P); 13085 13086 updateGeneration(); 13087 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13088 return New; 13089 } 13090 13091 PredicatedScalarEvolution::PredicatedScalarEvolution( 13092 const PredicatedScalarEvolution &Init) 13093 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13094 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13095 for (auto I : Init.FlagsMap) 13096 FlagsMap.insert(I); 13097 } 13098 13099 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13100 // For each block. 13101 for (auto *BB : L.getBlocks()) 13102 for (auto &I : *BB) { 13103 if (!SE.isSCEVable(I.getType())) 13104 continue; 13105 13106 auto *Expr = SE.getSCEV(&I); 13107 auto II = RewriteMap.find(Expr); 13108 13109 if (II == RewriteMap.end()) 13110 continue; 13111 13112 // Don't print things that are not interesting. 13113 if (II->second.second == Expr) 13114 continue; 13115 13116 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13117 OS.indent(Depth + 2) << *Expr << "\n"; 13118 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13119 } 13120 } 13121 13122 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13123 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13124 // for URem with constant power-of-2 second operands. 13125 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13126 // 4, A / B becomes X / 8). 13127 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13128 const SCEV *&RHS) { 13129 // Try to match 'zext (trunc A to iB) to iY', which is used 13130 // for URem with constant power-of-2 second operands. Make sure the size of 13131 // the operand A matches the size of the whole expressions. 13132 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13133 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13134 LHS = Trunc->getOperand(); 13135 if (LHS->getType() != Expr->getType()) 13136 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13137 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13138 << getTypeSizeInBits(Trunc->getType())); 13139 return true; 13140 } 13141 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13142 if (Add == nullptr || Add->getNumOperands() != 2) 13143 return false; 13144 13145 const SCEV *A = Add->getOperand(1); 13146 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13147 13148 if (Mul == nullptr) 13149 return false; 13150 13151 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13152 // (SomeExpr + (-(SomeExpr / B) * B)). 13153 if (Expr == getURemExpr(A, B)) { 13154 LHS = A; 13155 RHS = B; 13156 return true; 13157 } 13158 return false; 13159 }; 13160 13161 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13162 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13163 return MatchURemWithDivisor(Mul->getOperand(1)) || 13164 MatchURemWithDivisor(Mul->getOperand(2)); 13165 13166 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13167 if (Mul->getNumOperands() == 2) 13168 return MatchURemWithDivisor(Mul->getOperand(1)) || 13169 MatchURemWithDivisor(Mul->getOperand(0)) || 13170 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13171 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13172 return false; 13173 } 13174 13175 const SCEV * 13176 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13177 SmallVector<BasicBlock*, 16> ExitingBlocks; 13178 L->getExitingBlocks(ExitingBlocks); 13179 13180 // Form an expression for the maximum exit count possible for this loop. We 13181 // merge the max and exact information to approximate a version of 13182 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13183 SmallVector<const SCEV*, 4> ExitCounts; 13184 for (BasicBlock *ExitingBB : ExitingBlocks) { 13185 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13186 if (isa<SCEVCouldNotCompute>(ExitCount)) 13187 ExitCount = getExitCount(L, ExitingBB, 13188 ScalarEvolution::ConstantMaximum); 13189 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13190 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13191 "We should only have known counts for exiting blocks that " 13192 "dominate latch!"); 13193 ExitCounts.push_back(ExitCount); 13194 } 13195 } 13196 if (ExitCounts.empty()) 13197 return getCouldNotCompute(); 13198 return getUMinFromMismatchedTypes(ExitCounts); 13199 } 13200 13201 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13202 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13203 /// we cannot guarantee that the replacement is loop invariant in the loop of 13204 /// the AddRec. 13205 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13206 ValueToSCEVMapTy ⤅ 13207 13208 public: 13209 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13210 : SCEVRewriteVisitor(SE), Map(M) {} 13211 13212 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13213 13214 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13215 auto I = Map.find(Expr->getValue()); 13216 if (I == Map.end()) 13217 return Expr; 13218 return I->second; 13219 } 13220 }; 13221 13222 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13223 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13224 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13225 if (!isa<SCEVUnknown>(LHS)) { 13226 std::swap(LHS, RHS); 13227 Predicate = CmpInst::getSwappedPredicate(Predicate); 13228 } 13229 13230 // For now, limit to conditions that provide information about unknown 13231 // expressions. 13232 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13233 if (!LHSUnknown) 13234 return; 13235 13236 // TODO: use information from more predicates. 13237 switch (Predicate) { 13238 case CmpInst::ICMP_ULT: { 13239 if (!containsAddRecurrence(RHS)) { 13240 const SCEV *Base = LHS; 13241 auto I = RewriteMap.find(LHSUnknown->getValue()); 13242 if (I != RewriteMap.end()) 13243 Base = I->second; 13244 13245 RewriteMap[LHSUnknown->getValue()] = 13246 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13247 } 13248 break; 13249 } 13250 case CmpInst::ICMP_ULE: { 13251 if (!containsAddRecurrence(RHS)) { 13252 const SCEV *Base = LHS; 13253 auto I = RewriteMap.find(LHSUnknown->getValue()); 13254 if (I != RewriteMap.end()) 13255 Base = I->second; 13256 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13257 } 13258 break; 13259 } 13260 case CmpInst::ICMP_EQ: 13261 if (isa<SCEVConstant>(RHS)) 13262 RewriteMap[LHSUnknown->getValue()] = RHS; 13263 break; 13264 case CmpInst::ICMP_NE: 13265 if (isa<SCEVConstant>(RHS) && 13266 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13267 RewriteMap[LHSUnknown->getValue()] = 13268 getUMaxExpr(LHS, getOne(RHS->getType())); 13269 break; 13270 default: 13271 break; 13272 } 13273 }; 13274 // Starting at the loop predecessor, climb up the predecessor chain, as long 13275 // as there are predecessors that can be found that have unique successors 13276 // leading to the original header. 13277 // TODO: share this logic with isLoopEntryGuardedByCond. 13278 ValueToSCEVMapTy RewriteMap; 13279 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13280 L->getLoopPredecessor(), L->getHeader()); 13281 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13282 13283 const BranchInst *LoopEntryPredicate = 13284 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13285 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13286 continue; 13287 13288 // TODO: use information from more complex conditions, e.g. AND expressions. 13289 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13290 if (!Cmp) 13291 continue; 13292 13293 auto Predicate = Cmp->getPredicate(); 13294 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13295 Predicate = CmpInst::getInversePredicate(Predicate); 13296 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13297 getSCEV(Cmp->getOperand(1)), RewriteMap); 13298 } 13299 13300 // Also collect information from assumptions dominating the loop. 13301 for (auto &AssumeVH : AC.assumptions()) { 13302 if (!AssumeVH) 13303 continue; 13304 auto *AssumeI = cast<CallInst>(AssumeVH); 13305 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13306 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13307 continue; 13308 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13309 getSCEV(Cmp->getOperand(1)), RewriteMap); 13310 } 13311 13312 if (RewriteMap.empty()) 13313 return Expr; 13314 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13315 return Rewriter.visit(Expr); 13316 } 13317