1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 case scMulExpr: 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVNAryExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 535 ->getElementType(); 536 return true; 537 } 538 539 return false; 540 } 541 542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 543 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 544 if (VCE->getOpcode() == Instruction::PtrToInt) 545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 546 if (CE->getOpcode() == Instruction::GetElementPtr && 547 CE->getOperand(0)->isNullValue()) { 548 Type *Ty = 549 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = 576 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 577 // Ignore vector types here so that ScalarEvolutionExpander doesn't 578 // emit getelementptrs that index into vectors. 579 if (Ty->isStructTy() || Ty->isArrayTy()) { 580 CTy = Ty; 581 FieldNo = CE->getOperand(2); 582 return true; 583 } 584 } 585 586 return false; 587 } 588 589 //===----------------------------------------------------------------------===// 590 // SCEV Utilities 591 //===----------------------------------------------------------------------===// 592 593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 595 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 596 /// have been previously deemed to be "equally complex" by this routine. It is 597 /// intended to avoid exponential time complexity in cases like: 598 /// 599 /// %a = f(%x, %y) 600 /// %b = f(%a, %a) 601 /// %c = f(%b, %b) 602 /// 603 /// %d = f(%x, %y) 604 /// %e = f(%d, %d) 605 /// %f = f(%e, %e) 606 /// 607 /// CompareValueComplexity(%f, %c) 608 /// 609 /// Since we do not continue running this routine on expression trees once we 610 /// have seen unequal values, there is no need to track them in the cache. 611 static int 612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 613 const LoopInfo *const LI, Value *LV, Value *RV, 614 unsigned Depth) { 615 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 616 return 0; 617 618 // Order pointer values after integer values. This helps SCEVExpander form 619 // GEPs. 620 bool LIsPointer = LV->getType()->isPointerTy(), 621 RIsPointer = RV->getType()->isPointerTy(); 622 if (LIsPointer != RIsPointer) 623 return (int)LIsPointer - (int)RIsPointer; 624 625 // Compare getValueID values. 626 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 627 if (LID != RID) 628 return (int)LID - (int)RID; 629 630 // Sort arguments by their position. 631 if (const auto *LA = dyn_cast<Argument>(LV)) { 632 const auto *RA = cast<Argument>(RV); 633 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 634 return (int)LArgNo - (int)RArgNo; 635 } 636 637 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 638 const auto *RGV = cast<GlobalValue>(RV); 639 640 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 641 auto LT = GV->getLinkage(); 642 return !(GlobalValue::isPrivateLinkage(LT) || 643 GlobalValue::isInternalLinkage(LT)); 644 }; 645 646 // Use the names to distinguish the two values, but only if the 647 // names are semantically important. 648 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 649 return LGV->getName().compare(RGV->getName()); 650 } 651 652 // For instructions, compare their loop depth, and their operand count. This 653 // is pretty loose. 654 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 655 const auto *RInst = cast<Instruction>(RV); 656 657 // Compare loop depths. 658 const BasicBlock *LParent = LInst->getParent(), 659 *RParent = RInst->getParent(); 660 if (LParent != RParent) { 661 unsigned LDepth = LI->getLoopDepth(LParent), 662 RDepth = LI->getLoopDepth(RParent); 663 if (LDepth != RDepth) 664 return (int)LDepth - (int)RDepth; 665 } 666 667 // Compare the number of operands. 668 unsigned LNumOps = LInst->getNumOperands(), 669 RNumOps = RInst->getNumOperands(); 670 if (LNumOps != RNumOps) 671 return (int)LNumOps - (int)RNumOps; 672 673 for (unsigned Idx : seq(0u, LNumOps)) { 674 int Result = 675 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 676 RInst->getOperand(Idx), Depth + 1); 677 if (Result != 0) 678 return Result; 679 } 680 } 681 682 EqCacheValue.unionSets(LV, RV); 683 return 0; 684 } 685 686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 687 // than RHS, respectively. A three-way result allows recursive comparisons to be 688 // more efficient. 689 // If the max analysis depth was reached, return None, assuming we do not know 690 // if they are equivalent for sure. 691 static Optional<int> 692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, 695 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 708 if (Depth > MaxSCEVCompareDepth) 709 return None; 710 711 // Aside from the getSCEVType() ordering, the particular ordering 712 // isn't very important except that it's beneficial to be consistent, 713 // so that (a + b) and (b + a) don't end up as different expressions. 714 switch (LType) { 715 case scUnknown: { 716 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 717 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 718 719 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 720 RU->getValue(), Depth + 1); 721 if (X == 0) 722 EqCacheSCEV.unionSets(LHS, RHS); 723 return X; 724 } 725 726 case scConstant: { 727 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 728 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 729 730 // Compare constant values. 731 const APInt &LA = LC->getAPInt(); 732 const APInt &RA = RC->getAPInt(); 733 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 734 if (LBitWidth != RBitWidth) 735 return (int)LBitWidth - (int)RBitWidth; 736 return LA.ult(RA) ? -1 : 1; 737 } 738 739 case scAddRecExpr: { 740 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 741 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 742 743 // There is always a dominance between two recs that are used by one SCEV, 744 // so we can safely sort recs by loop header dominance. We require such 745 // order in getAddExpr. 746 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 747 if (LLoop != RLoop) { 748 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 749 assert(LHead != RHead && "Two loops share the same header?"); 750 if (DT.dominates(LHead, RHead)) 751 return 1; 752 else 753 assert(DT.dominates(RHead, LHead) && 754 "No dominance between recurrences used by one SCEV?"); 755 return -1; 756 } 757 758 // Addrec complexity grows with operand count. 759 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 760 if (LNumOps != RNumOps) 761 return (int)LNumOps - (int)RNumOps; 762 763 // Lexicographically compare. 764 for (unsigned i = 0; i != LNumOps; ++i) { 765 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 766 LA->getOperand(i), RA->getOperand(i), DT, 767 Depth + 1); 768 if (X != 0) 769 return X; 770 } 771 EqCacheSCEV.unionSets(LHS, RHS); 772 return 0; 773 } 774 775 case scAddExpr: 776 case scMulExpr: 777 case scSMaxExpr: 778 case scUMaxExpr: 779 case scSMinExpr: 780 case scUMinExpr: { 781 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 782 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 783 784 // Lexicographically compare n-ary expressions. 785 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 786 if (LNumOps != RNumOps) 787 return (int)LNumOps - (int)RNumOps; 788 789 for (unsigned i = 0; i != LNumOps; ++i) { 790 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 791 LC->getOperand(i), RC->getOperand(i), DT, 792 Depth + 1); 793 if (X != 0) 794 return X; 795 } 796 EqCacheSCEV.unionSets(LHS, RHS); 797 return 0; 798 } 799 800 case scUDivExpr: { 801 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 802 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 803 804 // Lexicographically compare udiv expressions. 805 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 806 RC->getLHS(), DT, Depth + 1); 807 if (X != 0) 808 return X; 809 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 810 RC->getRHS(), DT, Depth + 1); 811 if (X == 0) 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return X; 814 } 815 816 case scPtrToInt: 817 case scTruncate: 818 case scZeroExtend: 819 case scSignExtend: { 820 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 821 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 822 823 // Compare cast expressions by operand. 824 auto X = 825 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 826 RC->getOperand(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scCouldNotCompute: 833 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 834 } 835 llvm_unreachable("Unknown SCEV kind!"); 836 } 837 838 /// Given a list of SCEV objects, order them by their complexity, and group 839 /// objects of the same complexity together by value. When this routine is 840 /// finished, we know that any duplicates in the vector are consecutive and that 841 /// complexity is monotonically increasing. 842 /// 843 /// Note that we go take special precautions to ensure that we get deterministic 844 /// results from this routine. In other words, we don't want the results of 845 /// this to depend on where the addresses of various SCEV objects happened to 846 /// land in memory. 847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 848 LoopInfo *LI, DominatorTree &DT) { 849 if (Ops.size() < 2) return; // Noop 850 851 EquivalenceClasses<const SCEV *> EqCacheSCEV; 852 EquivalenceClasses<const Value *> EqCacheValue; 853 854 // Whether LHS has provably less complexity than RHS. 855 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 856 auto Complexity = 857 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 858 return Complexity && *Complexity < 0; 859 }; 860 if (Ops.size() == 2) { 861 // This is the common case, which also happens to be trivially simple. 862 // Special case it. 863 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 864 if (IsLessComplex(RHS, LHS)) 865 std::swap(LHS, RHS); 866 return; 867 } 868 869 // Do the rough sort by complexity. 870 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 871 return IsLessComplex(LHS, RHS); 872 }); 873 874 // Now that we are sorted by complexity, group elements of the same 875 // complexity. Note that this is, at worst, N^2, but the vector is likely to 876 // be extremely short in practice. Note that we take this approach because we 877 // do not want to depend on the addresses of the objects we are grouping. 878 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 879 const SCEV *S = Ops[i]; 880 unsigned Complexity = S->getSCEVType(); 881 882 // If there are any objects of the same complexity and same value as this 883 // one, group them. 884 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 885 if (Ops[j] == S) { // Found a duplicate. 886 // Move it to immediately after i'th element. 887 std::swap(Ops[i+1], Ops[j]); 888 ++i; // no need to rescan it. 889 if (i == e-2) return; // Done! 890 } 891 } 892 } 893 } 894 895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 896 /// least HugeExprThreshold nodes). 897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 898 return any_of(Ops, [](const SCEV *S) { 899 return S->getExpressionSize() >= HugeExprThreshold; 900 }); 901 } 902 903 //===----------------------------------------------------------------------===// 904 // Simple SCEV method implementations 905 //===----------------------------------------------------------------------===// 906 907 /// Compute BC(It, K). The result has width W. Assume, K > 0. 908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 909 ScalarEvolution &SE, 910 Type *ResultTy) { 911 // Handle the simplest case efficiently. 912 if (K == 1) 913 return SE.getTruncateOrZeroExtend(It, ResultTy); 914 915 // We are using the following formula for BC(It, K): 916 // 917 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 918 // 919 // Suppose, W is the bitwidth of the return value. We must be prepared for 920 // overflow. Hence, we must assure that the result of our computation is 921 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 922 // safe in modular arithmetic. 923 // 924 // However, this code doesn't use exactly that formula; the formula it uses 925 // is something like the following, where T is the number of factors of 2 in 926 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 927 // exponentiation: 928 // 929 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 930 // 931 // This formula is trivially equivalent to the previous formula. However, 932 // this formula can be implemented much more efficiently. The trick is that 933 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 934 // arithmetic. To do exact division in modular arithmetic, all we have 935 // to do is multiply by the inverse. Therefore, this step can be done at 936 // width W. 937 // 938 // The next issue is how to safely do the division by 2^T. The way this 939 // is done is by doing the multiplication step at a width of at least W + T 940 // bits. This way, the bottom W+T bits of the product are accurate. Then, 941 // when we perform the division by 2^T (which is equivalent to a right shift 942 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 943 // truncated out after the division by 2^T. 944 // 945 // In comparison to just directly using the first formula, this technique 946 // is much more efficient; using the first formula requires W * K bits, 947 // but this formula less than W + K bits. Also, the first formula requires 948 // a division step, whereas this formula only requires multiplies and shifts. 949 // 950 // It doesn't matter whether the subtraction step is done in the calculation 951 // width or the input iteration count's width; if the subtraction overflows, 952 // the result must be zero anyway. We prefer here to do it in the width of 953 // the induction variable because it helps a lot for certain cases; CodeGen 954 // isn't smart enough to ignore the overflow, which leads to much less 955 // efficient code if the width of the subtraction is wider than the native 956 // register width. 957 // 958 // (It's possible to not widen at all by pulling out factors of 2 before 959 // the multiplication; for example, K=2 can be calculated as 960 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 961 // extra arithmetic, so it's not an obvious win, and it gets 962 // much more complicated for K > 3.) 963 964 // Protection from insane SCEVs; this bound is conservative, 965 // but it probably doesn't matter. 966 if (K > 1000) 967 return SE.getCouldNotCompute(); 968 969 unsigned W = SE.getTypeSizeInBits(ResultTy); 970 971 // Calculate K! / 2^T and T; we divide out the factors of two before 972 // multiplying for calculating K! / 2^T to avoid overflow. 973 // Other overflow doesn't matter because we only care about the bottom 974 // W bits of the result. 975 APInt OddFactorial(W, 1); 976 unsigned T = 1; 977 for (unsigned i = 3; i <= K; ++i) { 978 APInt Mult(W, i); 979 unsigned TwoFactors = Mult.countTrailingZeros(); 980 T += TwoFactors; 981 Mult.lshrInPlace(TwoFactors); 982 OddFactorial *= Mult; 983 } 984 985 // We need at least W + T bits for the multiplication step 986 unsigned CalculationBits = W + T; 987 988 // Calculate 2^T, at width T+W. 989 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 990 991 // Calculate the multiplicative inverse of K! / 2^T; 992 // this multiplication factor will perform the exact division by 993 // K! / 2^T. 994 APInt Mod = APInt::getSignedMinValue(W+1); 995 APInt MultiplyFactor = OddFactorial.zext(W+1); 996 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 997 MultiplyFactor = MultiplyFactor.trunc(W); 998 999 // Calculate the product, at width T+W 1000 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1001 CalculationBits); 1002 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1003 for (unsigned i = 1; i != K; ++i) { 1004 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1005 Dividend = SE.getMulExpr(Dividend, 1006 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1007 } 1008 1009 // Divide by 2^T 1010 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1011 1012 // Truncate the result, and divide by K! / 2^T. 1013 1014 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1015 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1016 } 1017 1018 /// Return the value of this chain of recurrences at the specified iteration 1019 /// number. We can evaluate this recurrence by multiplying each element in the 1020 /// chain by the binomial coefficient corresponding to it. In other words, we 1021 /// can evaluate {A,+,B,+,C,+,D} as: 1022 /// 1023 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1024 /// 1025 /// where BC(It, k) stands for binomial coefficient. 1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1027 ScalarEvolution &SE) const { 1028 const SCEV *Result = getStart(); 1029 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1030 // The computation is correct in the face of overflow provided that the 1031 // multiplication is performed _after_ the evaluation of the binomial 1032 // coefficient. 1033 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1034 if (isa<SCEVCouldNotCompute>(Coeff)) 1035 return Coeff; 1036 1037 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1038 } 1039 return Result; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // SCEV Expression folder implementations 1044 //===----------------------------------------------------------------------===// 1045 1046 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1047 unsigned Depth) { 1048 assert(Depth <= 1 && 1049 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1050 1051 // We could be called with an integer-typed operands during SCEV rewrites. 1052 // Since the operand is an integer already, just perform zext/trunc/self cast. 1053 if (!Op->getType()->isPointerTy()) 1054 return Op; 1055 1056 assert(!getDataLayout().isNonIntegralPointerType(Op->getType()) && 1057 "Source pointer type must be integral for ptrtoint!"); 1058 1059 // What would be an ID for such a SCEV cast expression? 1060 FoldingSetNodeID ID; 1061 ID.AddInteger(scPtrToInt); 1062 ID.AddPointer(Op); 1063 1064 void *IP = nullptr; 1065 1066 // Is there already an expression for such a cast? 1067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1068 return S; 1069 1070 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1071 1072 // We can only model ptrtoint if SCEV's effective (integer) type 1073 // is sufficiently wide to represent all possible pointer values. 1074 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1075 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1076 return getCouldNotCompute(); 1077 1078 // If not, is this expression something we can't reduce any further? 1079 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1080 // Perform some basic constant folding. If the operand of the ptr2int cast 1081 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1082 // left as-is), but produce a zero constant. 1083 // NOTE: We could handle a more general case, but lack motivational cases. 1084 if (isa<ConstantPointerNull>(U->getValue())) 1085 return getZero(IntPtrTy); 1086 1087 // Create an explicit cast node. 1088 // We can reuse the existing insert position since if we get here, 1089 // we won't have made any changes which would invalidate it. 1090 SCEV *S = new (SCEVAllocator) 1091 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1092 UniqueSCEVs.InsertNode(S, IP); 1093 addToLoopUseLists(S); 1094 return S; 1095 } 1096 1097 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1098 "non-SCEVUnknown's."); 1099 1100 // Otherwise, we've got some expression that is more complex than just a 1101 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1102 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1103 // only, and the expressions must otherwise be integer-typed. 1104 // So sink the cast down to the SCEVUnknown's. 1105 1106 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1107 /// which computes a pointer-typed value, and rewrites the whole expression 1108 /// tree so that *all* the computations are done on integers, and the only 1109 /// pointer-typed operands in the expression are SCEVUnknown. 1110 class SCEVPtrToIntSinkingRewriter 1111 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1112 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1113 1114 public: 1115 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1116 1117 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1118 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1119 return Rewriter.visit(Scev); 1120 } 1121 1122 const SCEV *visit(const SCEV *S) { 1123 Type *STy = S->getType(); 1124 // If the expression is not pointer-typed, just keep it as-is. 1125 if (!STy->isPointerTy()) 1126 return S; 1127 // Else, recursively sink the cast down into it. 1128 return Base::visit(S); 1129 } 1130 1131 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1132 SmallVector<const SCEV *, 2> Operands; 1133 bool Changed = false; 1134 for (auto *Op : Expr->operands()) { 1135 Operands.push_back(visit(Op)); 1136 Changed |= Op != Operands.back(); 1137 } 1138 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1139 } 1140 1141 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1152 assert(Expr->getType()->isPointerTy() && 1153 "Should only reach pointer-typed SCEVUnknown's."); 1154 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1155 } 1156 }; 1157 1158 // And actually perform the cast sinking. 1159 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1160 assert(IntOp->getType()->isIntegerTy() && 1161 "We must have succeeded in sinking the cast, " 1162 "and ending up with an integer-typed expression!"); 1163 return IntOp; 1164 } 1165 1166 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1167 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1168 1169 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1170 if (isa<SCEVCouldNotCompute>(IntOp)) 1171 return IntOp; 1172 1173 return getTruncateOrZeroExtend(IntOp, Ty); 1174 } 1175 1176 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1177 unsigned Depth) { 1178 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1179 "This is not a truncating conversion!"); 1180 assert(isSCEVable(Ty) && 1181 "This is not a conversion to a SCEVable type!"); 1182 Ty = getEffectiveSCEVType(Ty); 1183 1184 FoldingSetNodeID ID; 1185 ID.AddInteger(scTruncate); 1186 ID.AddPointer(Op); 1187 ID.AddPointer(Ty); 1188 void *IP = nullptr; 1189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1190 1191 // Fold if the operand is constant. 1192 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1193 return getConstant( 1194 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1195 1196 // trunc(trunc(x)) --> trunc(x) 1197 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1198 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1199 1200 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1201 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1202 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1203 1204 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1205 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1206 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1207 1208 if (Depth > MaxCastDepth) { 1209 SCEV *S = 1210 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1211 UniqueSCEVs.InsertNode(S, IP); 1212 addToLoopUseLists(S); 1213 return S; 1214 } 1215 1216 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1217 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1218 // if after transforming we have at most one truncate, not counting truncates 1219 // that replace other casts. 1220 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1221 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1222 SmallVector<const SCEV *, 4> Operands; 1223 unsigned numTruncs = 0; 1224 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1225 ++i) { 1226 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1227 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1228 isa<SCEVTruncateExpr>(S)) 1229 numTruncs++; 1230 Operands.push_back(S); 1231 } 1232 if (numTruncs < 2) { 1233 if (isa<SCEVAddExpr>(Op)) 1234 return getAddExpr(Operands); 1235 else if (isa<SCEVMulExpr>(Op)) 1236 return getMulExpr(Operands); 1237 else 1238 llvm_unreachable("Unexpected SCEV type for Op."); 1239 } 1240 // Although we checked in the beginning that ID is not in the cache, it is 1241 // possible that during recursion and different modification ID was inserted 1242 // into the cache. So if we find it, just return it. 1243 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1244 return S; 1245 } 1246 1247 // If the input value is a chrec scev, truncate the chrec's operands. 1248 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1249 SmallVector<const SCEV *, 4> Operands; 1250 for (const SCEV *Op : AddRec->operands()) 1251 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1252 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1253 } 1254 1255 // Return zero if truncating to known zeros. 1256 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1257 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1258 return getZero(Ty); 1259 1260 // The cast wasn't folded; create an explicit cast node. We can reuse 1261 // the existing insert position since if we get here, we won't have 1262 // made any changes which would invalidate it. 1263 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1264 Op, Ty); 1265 UniqueSCEVs.InsertNode(S, IP); 1266 addToLoopUseLists(S); 1267 return S; 1268 } 1269 1270 // Get the limit of a recurrence such that incrementing by Step cannot cause 1271 // signed overflow as long as the value of the recurrence within the 1272 // loop does not exceed this limit before incrementing. 1273 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1274 ICmpInst::Predicate *Pred, 1275 ScalarEvolution *SE) { 1276 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1277 if (SE->isKnownPositive(Step)) { 1278 *Pred = ICmpInst::ICMP_SLT; 1279 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1280 SE->getSignedRangeMax(Step)); 1281 } 1282 if (SE->isKnownNegative(Step)) { 1283 *Pred = ICmpInst::ICMP_SGT; 1284 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1285 SE->getSignedRangeMin(Step)); 1286 } 1287 return nullptr; 1288 } 1289 1290 // Get the limit of a recurrence such that incrementing by Step cannot cause 1291 // unsigned overflow as long as the value of the recurrence within the loop does 1292 // not exceed this limit before incrementing. 1293 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1297 *Pred = ICmpInst::ICMP_ULT; 1298 1299 return SE->getConstant(APInt::getMinValue(BitWidth) - 1300 SE->getUnsignedRangeMax(Step)); 1301 } 1302 1303 namespace { 1304 1305 struct ExtendOpTraitsBase { 1306 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1307 unsigned); 1308 }; 1309 1310 // Used to make code generic over signed and unsigned overflow. 1311 template <typename ExtendOp> struct ExtendOpTraits { 1312 // Members present: 1313 // 1314 // static const SCEV::NoWrapFlags WrapType; 1315 // 1316 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1317 // 1318 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1319 // ICmpInst::Predicate *Pred, 1320 // ScalarEvolution *SE); 1321 }; 1322 1323 template <> 1324 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1325 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1326 1327 static const GetExtendExprTy GetExtendExpr; 1328 1329 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 ICmpInst::Predicate *Pred, 1331 ScalarEvolution *SE) { 1332 return getSignedOverflowLimitForStep(Step, Pred, SE); 1333 } 1334 }; 1335 1336 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1337 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1338 1339 template <> 1340 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1342 1343 static const GetExtendExprTy GetExtendExpr; 1344 1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1346 ICmpInst::Predicate *Pred, 1347 ScalarEvolution *SE) { 1348 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1349 } 1350 }; 1351 1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1353 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1354 1355 } // end anonymous namespace 1356 1357 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1358 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1359 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1360 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1361 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1362 // expression "Step + sext/zext(PreIncAR)" is congruent with 1363 // "sext/zext(PostIncAR)" 1364 template <typename ExtendOpTy> 1365 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1366 ScalarEvolution *SE, unsigned Depth) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1369 1370 const Loop *L = AR->getLoop(); 1371 const SCEV *Start = AR->getStart(); 1372 const SCEV *Step = AR->getStepRecurrence(*SE); 1373 1374 // Check for a simple looking step prior to loop entry. 1375 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1376 if (!SA) 1377 return nullptr; 1378 1379 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1380 // subtraction is expensive. For this purpose, perform a quick and dirty 1381 // difference, by checking for Step in the operand list. 1382 SmallVector<const SCEV *, 4> DiffOps; 1383 for (const SCEV *Op : SA->operands()) 1384 if (Op != Step) 1385 DiffOps.push_back(Op); 1386 1387 if (DiffOps.size() == SA->getNumOperands()) 1388 return nullptr; 1389 1390 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1391 // `Step`: 1392 1393 // 1. NSW/NUW flags on the step increment. 1394 auto PreStartFlags = 1395 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1396 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1397 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1398 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1399 1400 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1401 // "S+X does not sign/unsign-overflow". 1402 // 1403 1404 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1405 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1406 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1407 return PreStart; 1408 1409 // 2. Direct overflow check on the step operation's expression. 1410 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1411 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1412 const SCEV *OperandExtendedStart = 1413 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1414 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1415 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1416 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1417 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1418 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1419 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1420 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1421 } 1422 return PreStart; 1423 } 1424 1425 // 3. Loop precondition. 1426 ICmpInst::Predicate Pred; 1427 const SCEV *OverflowLimit = 1428 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1429 1430 if (OverflowLimit && 1431 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1432 return PreStart; 1433 1434 return nullptr; 1435 } 1436 1437 // Get the normalized zero or sign extended expression for this AddRec's Start. 1438 template <typename ExtendOpTy> 1439 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1440 ScalarEvolution *SE, 1441 unsigned Depth) { 1442 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1443 1444 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1445 if (!PreStart) 1446 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1447 1448 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1449 Depth), 1450 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1451 } 1452 1453 // Try to prove away overflow by looking at "nearby" add recurrences. A 1454 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1455 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1456 // 1457 // Formally: 1458 // 1459 // {S,+,X} == {S-T,+,X} + T 1460 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1461 // 1462 // If ({S-T,+,X} + T) does not overflow ... (1) 1463 // 1464 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1465 // 1466 // If {S-T,+,X} does not overflow ... (2) 1467 // 1468 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1469 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1470 // 1471 // If (S-T)+T does not overflow ... (3) 1472 // 1473 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1474 // == {Ext(S),+,Ext(X)} == LHS 1475 // 1476 // Thus, if (1), (2) and (3) are true for some T, then 1477 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1478 // 1479 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1480 // does not overflow" restricted to the 0th iteration. Therefore we only need 1481 // to check for (1) and (2). 1482 // 1483 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1484 // is `Delta` (defined below). 1485 template <typename ExtendOpTy> 1486 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1487 const SCEV *Step, 1488 const Loop *L) { 1489 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1490 1491 // We restrict `Start` to a constant to prevent SCEV from spending too much 1492 // time here. It is correct (but more expensive) to continue with a 1493 // non-constant `Start` and do a general SCEV subtraction to compute 1494 // `PreStart` below. 1495 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1496 if (!StartC) 1497 return false; 1498 1499 APInt StartAI = StartC->getAPInt(); 1500 1501 for (unsigned Delta : {-2, -1, 1, 2}) { 1502 const SCEV *PreStart = getConstant(StartAI - Delta); 1503 1504 FoldingSetNodeID ID; 1505 ID.AddInteger(scAddRecExpr); 1506 ID.AddPointer(PreStart); 1507 ID.AddPointer(Step); 1508 ID.AddPointer(L); 1509 void *IP = nullptr; 1510 const auto *PreAR = 1511 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1512 1513 // Give up if we don't already have the add recurrence we need because 1514 // actually constructing an add recurrence is relatively expensive. 1515 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1516 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1517 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1518 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1519 DeltaS, &Pred, this); 1520 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1521 return true; 1522 } 1523 } 1524 1525 return false; 1526 } 1527 1528 // Finds an integer D for an expression (C + x + y + ...) such that the top 1529 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1530 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1531 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1532 // the (C + x + y + ...) expression is \p WholeAddExpr. 1533 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1534 const SCEVConstant *ConstantTerm, 1535 const SCEVAddExpr *WholeAddExpr) { 1536 const APInt &C = ConstantTerm->getAPInt(); 1537 const unsigned BitWidth = C.getBitWidth(); 1538 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1539 uint32_t TZ = BitWidth; 1540 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1541 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1542 if (TZ) { 1543 // Set D to be as many least significant bits of C as possible while still 1544 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1545 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1546 } 1547 return APInt(BitWidth, 0); 1548 } 1549 1550 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1551 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1552 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1553 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1554 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1555 const APInt &ConstantStart, 1556 const SCEV *Step) { 1557 const unsigned BitWidth = ConstantStart.getBitWidth(); 1558 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1559 if (TZ) 1560 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1561 : ConstantStart; 1562 return APInt(BitWidth, 0); 1563 } 1564 1565 const SCEV * 1566 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1567 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1568 "This is not an extending conversion!"); 1569 assert(isSCEVable(Ty) && 1570 "This is not a conversion to a SCEVable type!"); 1571 Ty = getEffectiveSCEVType(Ty); 1572 1573 // Fold if the operand is constant. 1574 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1575 return getConstant( 1576 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1577 1578 // zext(zext(x)) --> zext(x) 1579 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1580 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1581 1582 // Before doing any expensive analysis, check to see if we've already 1583 // computed a SCEV for this Op and Ty. 1584 FoldingSetNodeID ID; 1585 ID.AddInteger(scZeroExtend); 1586 ID.AddPointer(Op); 1587 ID.AddPointer(Ty); 1588 void *IP = nullptr; 1589 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1590 if (Depth > MaxCastDepth) { 1591 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1592 Op, Ty); 1593 UniqueSCEVs.InsertNode(S, IP); 1594 addToLoopUseLists(S); 1595 return S; 1596 } 1597 1598 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1599 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1600 // It's possible the bits taken off by the truncate were all zero bits. If 1601 // so, we should be able to simplify this further. 1602 const SCEV *X = ST->getOperand(); 1603 ConstantRange CR = getUnsignedRange(X); 1604 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1605 unsigned NewBits = getTypeSizeInBits(Ty); 1606 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1607 CR.zextOrTrunc(NewBits))) 1608 return getTruncateOrZeroExtend(X, Ty, Depth); 1609 } 1610 1611 // If the input value is a chrec scev, and we can prove that the value 1612 // did not overflow the old, smaller, value, we can zero extend all of the 1613 // operands (often constants). This allows analysis of something like 1614 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1615 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1616 if (AR->isAffine()) { 1617 const SCEV *Start = AR->getStart(); 1618 const SCEV *Step = AR->getStepRecurrence(*this); 1619 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1620 const Loop *L = AR->getLoop(); 1621 1622 if (!AR->hasNoUnsignedWrap()) { 1623 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1624 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1625 } 1626 1627 // If we have special knowledge that this addrec won't overflow, 1628 // we don't need to do any further analysis. 1629 if (AR->hasNoUnsignedWrap()) 1630 return getAddRecExpr( 1631 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1632 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1633 1634 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1635 // Note that this serves two purposes: It filters out loops that are 1636 // simply not analyzable, and it covers the case where this code is 1637 // being called from within backedge-taken count analysis, such that 1638 // attempting to ask for the backedge-taken count would likely result 1639 // in infinite recursion. In the later case, the analysis code will 1640 // cope with a conservative value, and it will take care to purge 1641 // that value once it has finished. 1642 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1643 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1644 // Manually compute the final value for AR, checking for overflow. 1645 1646 // Check whether the backedge-taken count can be losslessly casted to 1647 // the addrec's type. The count is always unsigned. 1648 const SCEV *CastedMaxBECount = 1649 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1650 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1651 CastedMaxBECount, MaxBECount->getType(), Depth); 1652 if (MaxBECount == RecastedMaxBECount) { 1653 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1654 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1655 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1656 SCEV::FlagAnyWrap, Depth + 1); 1657 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1658 SCEV::FlagAnyWrap, 1659 Depth + 1), 1660 WideTy, Depth + 1); 1661 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1662 const SCEV *WideMaxBECount = 1663 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1664 const SCEV *OperandExtendedAdd = 1665 getAddExpr(WideStart, 1666 getMulExpr(WideMaxBECount, 1667 getZeroExtendExpr(Step, WideTy, Depth + 1), 1668 SCEV::FlagAnyWrap, Depth + 1), 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 if (ZAdd == OperandExtendedAdd) { 1671 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1672 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1673 // Return the expression with the addrec on the outside. 1674 return getAddRecExpr( 1675 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1676 Depth + 1), 1677 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1678 AR->getNoWrapFlags()); 1679 } 1680 // Similar to above, only this time treat the step value as signed. 1681 // This covers loops that count down. 1682 OperandExtendedAdd = 1683 getAddExpr(WideStart, 1684 getMulExpr(WideMaxBECount, 1685 getSignExtendExpr(Step, WideTy, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1), 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 if (ZAdd == OperandExtendedAdd) { 1689 // Cache knowledge of AR NW, which is propagated to this AddRec. 1690 // Negative step causes unsigned wrap, but it still can't self-wrap. 1691 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1692 // Return the expression with the addrec on the outside. 1693 return getAddRecExpr( 1694 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1695 Depth + 1), 1696 getSignExtendExpr(Step, Ty, Depth + 1), L, 1697 AR->getNoWrapFlags()); 1698 } 1699 } 1700 } 1701 1702 // Normally, in the cases we can prove no-overflow via a 1703 // backedge guarding condition, we can also compute a backedge 1704 // taken count for the loop. The exceptions are assumptions and 1705 // guards present in the loop -- SCEV is not great at exploiting 1706 // these to compute max backedge taken counts, but can still use 1707 // these to prove lack of overflow. Use this fact to avoid 1708 // doing extra work that may not pay off. 1709 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1710 !AC.assumptions().empty()) { 1711 1712 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1713 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1714 if (AR->hasNoUnsignedWrap()) { 1715 // Same as nuw case above - duplicated here to avoid a compile time 1716 // issue. It's not clear that the order of checks does matter, but 1717 // it's one of two issue possible causes for a change which was 1718 // reverted. Be conservative for the moment. 1719 return getAddRecExpr( 1720 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1721 Depth + 1), 1722 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1723 AR->getNoWrapFlags()); 1724 } 1725 1726 // For a negative step, we can extend the operands iff doing so only 1727 // traverses values in the range zext([0,UINT_MAX]). 1728 if (isKnownNegative(Step)) { 1729 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1730 getSignedRangeMin(Step)); 1731 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1732 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1733 // Cache knowledge of AR NW, which is propagated to this 1734 // AddRec. Negative step causes unsigned wrap, but it 1735 // still can't self-wrap. 1736 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1737 // Return the expression with the addrec on the outside. 1738 return getAddRecExpr( 1739 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1740 Depth + 1), 1741 getSignExtendExpr(Step, Ty, Depth + 1), L, 1742 AR->getNoWrapFlags()); 1743 } 1744 } 1745 } 1746 1747 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1748 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1749 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1750 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1751 const APInt &C = SC->getAPInt(); 1752 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1753 if (D != 0) { 1754 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1755 const SCEV *SResidual = 1756 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1757 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1758 return getAddExpr(SZExtD, SZExtR, 1759 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1760 Depth + 1); 1761 } 1762 } 1763 1764 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1765 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1766 return getAddRecExpr( 1767 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1768 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1769 } 1770 } 1771 1772 // zext(A % B) --> zext(A) % zext(B) 1773 { 1774 const SCEV *LHS; 1775 const SCEV *RHS; 1776 if (matchURem(Op, LHS, RHS)) 1777 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1778 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1779 } 1780 1781 // zext(A / B) --> zext(A) / zext(B). 1782 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1783 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1784 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1785 1786 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1787 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1788 if (SA->hasNoUnsignedWrap()) { 1789 // If the addition does not unsign overflow then we can, by definition, 1790 // commute the zero extension with the addition operation. 1791 SmallVector<const SCEV *, 4> Ops; 1792 for (const auto *Op : SA->operands()) 1793 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1794 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1795 } 1796 1797 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1798 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1799 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1800 // 1801 // Often address arithmetics contain expressions like 1802 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1803 // This transformation is useful while proving that such expressions are 1804 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1805 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1806 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1807 if (D != 0) { 1808 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1809 const SCEV *SResidual = 1810 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1811 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1812 return getAddExpr(SZExtD, SZExtR, 1813 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1814 Depth + 1); 1815 } 1816 } 1817 } 1818 1819 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1820 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1821 if (SM->hasNoUnsignedWrap()) { 1822 // If the multiply does not unsign overflow then we can, by definition, 1823 // commute the zero extension with the multiply operation. 1824 SmallVector<const SCEV *, 4> Ops; 1825 for (const auto *Op : SM->operands()) 1826 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1827 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1828 } 1829 1830 // zext(2^K * (trunc X to iN)) to iM -> 1831 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1832 // 1833 // Proof: 1834 // 1835 // zext(2^K * (trunc X to iN)) to iM 1836 // = zext((trunc X to iN) << K) to iM 1837 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1838 // (because shl removes the top K bits) 1839 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1840 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1841 // 1842 if (SM->getNumOperands() == 2) 1843 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1844 if (MulLHS->getAPInt().isPowerOf2()) 1845 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1846 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1847 MulLHS->getAPInt().logBase2(); 1848 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1849 return getMulExpr( 1850 getZeroExtendExpr(MulLHS, Ty), 1851 getZeroExtendExpr( 1852 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1853 SCEV::FlagNUW, Depth + 1); 1854 } 1855 } 1856 1857 // The cast wasn't folded; create an explicit cast node. 1858 // Recompute the insert position, as it may have been invalidated. 1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1860 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1861 Op, Ty); 1862 UniqueSCEVs.InsertNode(S, IP); 1863 addToLoopUseLists(S); 1864 return S; 1865 } 1866 1867 const SCEV * 1868 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1869 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1870 "This is not an extending conversion!"); 1871 assert(isSCEVable(Ty) && 1872 "This is not a conversion to a SCEVable type!"); 1873 Ty = getEffectiveSCEVType(Ty); 1874 1875 // Fold if the operand is constant. 1876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1877 return getConstant( 1878 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1879 1880 // sext(sext(x)) --> sext(x) 1881 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1882 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1883 1884 // sext(zext(x)) --> zext(x) 1885 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1886 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1887 1888 // Before doing any expensive analysis, check to see if we've already 1889 // computed a SCEV for this Op and Ty. 1890 FoldingSetNodeID ID; 1891 ID.AddInteger(scSignExtend); 1892 ID.AddPointer(Op); 1893 ID.AddPointer(Ty); 1894 void *IP = nullptr; 1895 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1896 // Limit recursion depth. 1897 if (Depth > MaxCastDepth) { 1898 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1899 Op, Ty); 1900 UniqueSCEVs.InsertNode(S, IP); 1901 addToLoopUseLists(S); 1902 return S; 1903 } 1904 1905 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1906 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1907 // It's possible the bits taken off by the truncate were all sign bits. If 1908 // so, we should be able to simplify this further. 1909 const SCEV *X = ST->getOperand(); 1910 ConstantRange CR = getSignedRange(X); 1911 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1912 unsigned NewBits = getTypeSizeInBits(Ty); 1913 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1914 CR.sextOrTrunc(NewBits))) 1915 return getTruncateOrSignExtend(X, Ty, Depth); 1916 } 1917 1918 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1919 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1920 if (SA->hasNoSignedWrap()) { 1921 // If the addition does not sign overflow then we can, by definition, 1922 // commute the sign extension with the addition operation. 1923 SmallVector<const SCEV *, 4> Ops; 1924 for (const auto *Op : SA->operands()) 1925 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1926 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1927 } 1928 1929 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1930 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1931 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1932 // 1933 // For instance, this will bring two seemingly different expressions: 1934 // 1 + sext(5 + 20 * %x + 24 * %y) and 1935 // sext(6 + 20 * %x + 24 * %y) 1936 // to the same form: 1937 // 2 + sext(4 + 20 * %x + 24 * %y) 1938 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1939 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1940 if (D != 0) { 1941 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1942 const SCEV *SResidual = 1943 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1944 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1945 return getAddExpr(SSExtD, SSExtR, 1946 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1947 Depth + 1); 1948 } 1949 } 1950 } 1951 // If the input value is a chrec scev, and we can prove that the value 1952 // did not overflow the old, smaller, value, we can sign extend all of the 1953 // operands (often constants). This allows analysis of something like 1954 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1956 if (AR->isAffine()) { 1957 const SCEV *Start = AR->getStart(); 1958 const SCEV *Step = AR->getStepRecurrence(*this); 1959 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1960 const Loop *L = AR->getLoop(); 1961 1962 if (!AR->hasNoSignedWrap()) { 1963 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1964 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1965 } 1966 1967 // If we have special knowledge that this addrec won't overflow, 1968 // we don't need to do any further analysis. 1969 if (AR->hasNoSignedWrap()) 1970 return getAddRecExpr( 1971 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1972 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1973 1974 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1975 // Note that this serves two purposes: It filters out loops that are 1976 // simply not analyzable, and it covers the case where this code is 1977 // being called from within backedge-taken count analysis, such that 1978 // attempting to ask for the backedge-taken count would likely result 1979 // in infinite recursion. In the later case, the analysis code will 1980 // cope with a conservative value, and it will take care to purge 1981 // that value once it has finished. 1982 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1983 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1984 // Manually compute the final value for AR, checking for 1985 // overflow. 1986 1987 // Check whether the backedge-taken count can be losslessly casted to 1988 // the addrec's type. The count is always unsigned. 1989 const SCEV *CastedMaxBECount = 1990 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1991 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1992 CastedMaxBECount, MaxBECount->getType(), Depth); 1993 if (MaxBECount == RecastedMaxBECount) { 1994 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1995 // Check whether Start+Step*MaxBECount has no signed overflow. 1996 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1997 SCEV::FlagAnyWrap, Depth + 1); 1998 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1999 SCEV::FlagAnyWrap, 2000 Depth + 1), 2001 WideTy, Depth + 1); 2002 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2003 const SCEV *WideMaxBECount = 2004 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2005 const SCEV *OperandExtendedAdd = 2006 getAddExpr(WideStart, 2007 getMulExpr(WideMaxBECount, 2008 getSignExtendExpr(Step, WideTy, Depth + 1), 2009 SCEV::FlagAnyWrap, Depth + 1), 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 if (SAdd == OperandExtendedAdd) { 2012 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2013 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2014 // Return the expression with the addrec on the outside. 2015 return getAddRecExpr( 2016 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2017 Depth + 1), 2018 getSignExtendExpr(Step, Ty, Depth + 1), L, 2019 AR->getNoWrapFlags()); 2020 } 2021 // Similar to above, only this time treat the step value as unsigned. 2022 // This covers loops that count up with an unsigned step. 2023 OperandExtendedAdd = 2024 getAddExpr(WideStart, 2025 getMulExpr(WideMaxBECount, 2026 getZeroExtendExpr(Step, WideTy, Depth + 1), 2027 SCEV::FlagAnyWrap, Depth + 1), 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 if (SAdd == OperandExtendedAdd) { 2030 // If AR wraps around then 2031 // 2032 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2033 // => SAdd != OperandExtendedAdd 2034 // 2035 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2036 // (SAdd == OperandExtendedAdd => AR is NW) 2037 2038 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2039 2040 // Return the expression with the addrec on the outside. 2041 return getAddRecExpr( 2042 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2043 Depth + 1), 2044 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2045 AR->getNoWrapFlags()); 2046 } 2047 } 2048 } 2049 2050 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2052 if (AR->hasNoSignedWrap()) { 2053 // Same as nsw case above - duplicated here to avoid a compile time 2054 // issue. It's not clear that the order of checks does matter, but 2055 // it's one of two issue possible causes for a change which was 2056 // reverted. Be conservative for the moment. 2057 return getAddRecExpr( 2058 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2059 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2060 } 2061 2062 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2063 // if D + (C - D + Step * n) could be proven to not signed wrap 2064 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2065 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2066 const APInt &C = SC->getAPInt(); 2067 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2068 if (D != 0) { 2069 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2070 const SCEV *SResidual = 2071 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2072 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2073 return getAddExpr(SSExtD, SSExtR, 2074 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2075 Depth + 1); 2076 } 2077 } 2078 2079 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2081 return getAddRecExpr( 2082 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2083 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2084 } 2085 } 2086 2087 // If the input value is provably positive and we could not simplify 2088 // away the sext build a zext instead. 2089 if (isKnownNonNegative(Op)) 2090 return getZeroExtendExpr(Op, Ty, Depth + 1); 2091 2092 // The cast wasn't folded; create an explicit cast node. 2093 // Recompute the insert position, as it may have been invalidated. 2094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2095 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2096 Op, Ty); 2097 UniqueSCEVs.InsertNode(S, IP); 2098 addToLoopUseLists(S); 2099 return S; 2100 } 2101 2102 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2103 /// unspecified bits out to the given type. 2104 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2105 Type *Ty) { 2106 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2107 "This is not an extending conversion!"); 2108 assert(isSCEVable(Ty) && 2109 "This is not a conversion to a SCEVable type!"); 2110 Ty = getEffectiveSCEVType(Ty); 2111 2112 // Sign-extend negative constants. 2113 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2114 if (SC->getAPInt().isNegative()) 2115 return getSignExtendExpr(Op, Ty); 2116 2117 // Peel off a truncate cast. 2118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2119 const SCEV *NewOp = T->getOperand(); 2120 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2121 return getAnyExtendExpr(NewOp, Ty); 2122 return getTruncateOrNoop(NewOp, Ty); 2123 } 2124 2125 // Next try a zext cast. If the cast is folded, use it. 2126 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2127 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2128 return ZExt; 2129 2130 // Next try a sext cast. If the cast is folded, use it. 2131 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2132 if (!isa<SCEVSignExtendExpr>(SExt)) 2133 return SExt; 2134 2135 // Force the cast to be folded into the operands of an addrec. 2136 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2137 SmallVector<const SCEV *, 4> Ops; 2138 for (const SCEV *Op : AR->operands()) 2139 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2140 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2141 } 2142 2143 // If the expression is obviously signed, use the sext cast value. 2144 if (isa<SCEVSMaxExpr>(Op)) 2145 return SExt; 2146 2147 // Absent any other information, use the zext cast value. 2148 return ZExt; 2149 } 2150 2151 /// Process the given Ops list, which is a list of operands to be added under 2152 /// the given scale, update the given map. This is a helper function for 2153 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2154 /// that would form an add expression like this: 2155 /// 2156 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2157 /// 2158 /// where A and B are constants, update the map with these values: 2159 /// 2160 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2161 /// 2162 /// and add 13 + A*B*29 to AccumulatedConstant. 2163 /// This will allow getAddRecExpr to produce this: 2164 /// 2165 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2166 /// 2167 /// This form often exposes folding opportunities that are hidden in 2168 /// the original operand list. 2169 /// 2170 /// Return true iff it appears that any interesting folding opportunities 2171 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2172 /// the common case where no interesting opportunities are present, and 2173 /// is also used as a check to avoid infinite recursion. 2174 static bool 2175 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2176 SmallVectorImpl<const SCEV *> &NewOps, 2177 APInt &AccumulatedConstant, 2178 const SCEV *const *Ops, size_t NumOperands, 2179 const APInt &Scale, 2180 ScalarEvolution &SE) { 2181 bool Interesting = false; 2182 2183 // Iterate over the add operands. They are sorted, with constants first. 2184 unsigned i = 0; 2185 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2186 ++i; 2187 // Pull a buried constant out to the outside. 2188 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2189 Interesting = true; 2190 AccumulatedConstant += Scale * C->getAPInt(); 2191 } 2192 2193 // Next comes everything else. We're especially interested in multiplies 2194 // here, but they're in the middle, so just visit the rest with one loop. 2195 for (; i != NumOperands; ++i) { 2196 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2197 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2198 APInt NewScale = 2199 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2200 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2201 // A multiplication of a constant with another add; recurse. 2202 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2203 Interesting |= 2204 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2205 Add->op_begin(), Add->getNumOperands(), 2206 NewScale, SE); 2207 } else { 2208 // A multiplication of a constant with some other value. Update 2209 // the map. 2210 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2211 const SCEV *Key = SE.getMulExpr(MulOps); 2212 auto Pair = M.insert({Key, NewScale}); 2213 if (Pair.second) { 2214 NewOps.push_back(Pair.first->first); 2215 } else { 2216 Pair.first->second += NewScale; 2217 // The map already had an entry for this value, which may indicate 2218 // a folding opportunity. 2219 Interesting = true; 2220 } 2221 } 2222 } else { 2223 // An ordinary operand. Update the map. 2224 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2225 M.insert({Ops[i], Scale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += Scale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } 2236 2237 return Interesting; 2238 } 2239 2240 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2241 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2242 // can't-overflow flags for the operation if possible. 2243 static SCEV::NoWrapFlags 2244 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2245 const ArrayRef<const SCEV *> Ops, 2246 SCEV::NoWrapFlags Flags) { 2247 using namespace std::placeholders; 2248 2249 using OBO = OverflowingBinaryOperator; 2250 2251 bool CanAnalyze = 2252 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2253 (void)CanAnalyze; 2254 assert(CanAnalyze && "don't call from other places!"); 2255 2256 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2257 SCEV::NoWrapFlags SignOrUnsignWrap = 2258 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2259 2260 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2261 auto IsKnownNonNegative = [&](const SCEV *S) { 2262 return SE->isKnownNonNegative(S); 2263 }; 2264 2265 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2266 Flags = 2267 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2268 2269 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2270 2271 if (SignOrUnsignWrap != SignOrUnsignMask && 2272 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2273 isa<SCEVConstant>(Ops[0])) { 2274 2275 auto Opcode = [&] { 2276 switch (Type) { 2277 case scAddExpr: 2278 return Instruction::Add; 2279 case scMulExpr: 2280 return Instruction::Mul; 2281 default: 2282 llvm_unreachable("Unexpected SCEV op."); 2283 } 2284 }(); 2285 2286 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2287 2288 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2289 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2290 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2291 Opcode, C, OBO::NoSignedWrap); 2292 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2293 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2294 } 2295 2296 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2297 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2298 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2299 Opcode, C, OBO::NoUnsignedWrap); 2300 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2301 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2302 } 2303 } 2304 2305 return Flags; 2306 } 2307 2308 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2309 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2310 } 2311 2312 /// Get a canonical add expression, or something simpler if possible. 2313 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2314 SCEV::NoWrapFlags OrigFlags, 2315 unsigned Depth) { 2316 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2317 "only nuw or nsw allowed"); 2318 assert(!Ops.empty() && "Cannot get empty add!"); 2319 if (Ops.size() == 1) return Ops[0]; 2320 #ifndef NDEBUG 2321 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2322 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2323 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2324 "SCEVAddExpr operand types don't match!"); 2325 #endif 2326 2327 // Sort by complexity, this groups all similar expression types together. 2328 GroupByComplexity(Ops, &LI, DT); 2329 2330 // If there are any constants, fold them together. 2331 unsigned Idx = 0; 2332 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2333 ++Idx; 2334 assert(Idx < Ops.size()); 2335 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2336 // We found two constants, fold them together! 2337 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2338 if (Ops.size() == 2) return Ops[0]; 2339 Ops.erase(Ops.begin()+1); // Erase the folded element 2340 LHSC = cast<SCEVConstant>(Ops[0]); 2341 } 2342 2343 // If we are left with a constant zero being added, strip it off. 2344 if (LHSC->getValue()->isZero()) { 2345 Ops.erase(Ops.begin()); 2346 --Idx; 2347 } 2348 2349 if (Ops.size() == 1) return Ops[0]; 2350 } 2351 2352 // Delay expensive flag strengthening until necessary. 2353 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2354 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2355 }; 2356 2357 // Limit recursion calls depth. 2358 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2359 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2360 2361 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2362 // Don't strengthen flags if we have no new information. 2363 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2364 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2365 Add->setNoWrapFlags(ComputeFlags(Ops)); 2366 return S; 2367 } 2368 2369 // Okay, check to see if the same value occurs in the operand list more than 2370 // once. If so, merge them together into an multiply expression. Since we 2371 // sorted the list, these values are required to be adjacent. 2372 Type *Ty = Ops[0]->getType(); 2373 bool FoundMatch = false; 2374 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2375 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2376 // Scan ahead to count how many equal operands there are. 2377 unsigned Count = 2; 2378 while (i+Count != e && Ops[i+Count] == Ops[i]) 2379 ++Count; 2380 // Merge the values into a multiply. 2381 const SCEV *Scale = getConstant(Ty, Count); 2382 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2383 if (Ops.size() == Count) 2384 return Mul; 2385 Ops[i] = Mul; 2386 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2387 --i; e -= Count - 1; 2388 FoundMatch = true; 2389 } 2390 if (FoundMatch) 2391 return getAddExpr(Ops, OrigFlags, Depth + 1); 2392 2393 // Check for truncates. If all the operands are truncated from the same 2394 // type, see if factoring out the truncate would permit the result to be 2395 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2396 // if the contents of the resulting outer trunc fold to something simple. 2397 auto FindTruncSrcType = [&]() -> Type * { 2398 // We're ultimately looking to fold an addrec of truncs and muls of only 2399 // constants and truncs, so if we find any other types of SCEV 2400 // as operands of the addrec then we bail and return nullptr here. 2401 // Otherwise, we return the type of the operand of a trunc that we find. 2402 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2403 return T->getOperand()->getType(); 2404 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2405 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2406 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2407 return T->getOperand()->getType(); 2408 } 2409 return nullptr; 2410 }; 2411 if (auto *SrcType = FindTruncSrcType()) { 2412 SmallVector<const SCEV *, 8> LargeOps; 2413 bool Ok = true; 2414 // Check all the operands to see if they can be represented in the 2415 // source type of the truncate. 2416 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2417 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2418 if (T->getOperand()->getType() != SrcType) { 2419 Ok = false; 2420 break; 2421 } 2422 LargeOps.push_back(T->getOperand()); 2423 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2424 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2425 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2426 SmallVector<const SCEV *, 8> LargeMulOps; 2427 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2428 if (const SCEVTruncateExpr *T = 2429 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2430 if (T->getOperand()->getType() != SrcType) { 2431 Ok = false; 2432 break; 2433 } 2434 LargeMulOps.push_back(T->getOperand()); 2435 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2436 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2437 } else { 2438 Ok = false; 2439 break; 2440 } 2441 } 2442 if (Ok) 2443 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2444 } else { 2445 Ok = false; 2446 break; 2447 } 2448 } 2449 if (Ok) { 2450 // Evaluate the expression in the larger type. 2451 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2452 // If it folds to something simple, use it. Otherwise, don't. 2453 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2454 return getTruncateExpr(Fold, Ty); 2455 } 2456 } 2457 2458 // Skip past any other cast SCEVs. 2459 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2460 ++Idx; 2461 2462 // If there are add operands they would be next. 2463 if (Idx < Ops.size()) { 2464 bool DeletedAdd = false; 2465 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2466 if (Ops.size() > AddOpsInlineThreshold || 2467 Add->getNumOperands() > AddOpsInlineThreshold) 2468 break; 2469 // If we have an add, expand the add operands onto the end of the operands 2470 // list. 2471 Ops.erase(Ops.begin()+Idx); 2472 Ops.append(Add->op_begin(), Add->op_end()); 2473 DeletedAdd = true; 2474 } 2475 2476 // If we deleted at least one add, we added operands to the end of the list, 2477 // and they are not necessarily sorted. Recurse to resort and resimplify 2478 // any operands we just acquired. 2479 if (DeletedAdd) 2480 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2481 } 2482 2483 // Skip over the add expression until we get to a multiply. 2484 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2485 ++Idx; 2486 2487 // Check to see if there are any folding opportunities present with 2488 // operands multiplied by constant values. 2489 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2490 uint64_t BitWidth = getTypeSizeInBits(Ty); 2491 DenseMap<const SCEV *, APInt> M; 2492 SmallVector<const SCEV *, 8> NewOps; 2493 APInt AccumulatedConstant(BitWidth, 0); 2494 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2495 Ops.data(), Ops.size(), 2496 APInt(BitWidth, 1), *this)) { 2497 struct APIntCompare { 2498 bool operator()(const APInt &LHS, const APInt &RHS) const { 2499 return LHS.ult(RHS); 2500 } 2501 }; 2502 2503 // Some interesting folding opportunity is present, so its worthwhile to 2504 // re-generate the operands list. Group the operands by constant scale, 2505 // to avoid multiplying by the same constant scale multiple times. 2506 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2507 for (const SCEV *NewOp : NewOps) 2508 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2509 // Re-generate the operands list. 2510 Ops.clear(); 2511 if (AccumulatedConstant != 0) 2512 Ops.push_back(getConstant(AccumulatedConstant)); 2513 for (auto &MulOp : MulOpLists) 2514 if (MulOp.first != 0) 2515 Ops.push_back(getMulExpr( 2516 getConstant(MulOp.first), 2517 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2518 SCEV::FlagAnyWrap, Depth + 1)); 2519 if (Ops.empty()) 2520 return getZero(Ty); 2521 if (Ops.size() == 1) 2522 return Ops[0]; 2523 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2524 } 2525 } 2526 2527 // If we are adding something to a multiply expression, make sure the 2528 // something is not already an operand of the multiply. If so, merge it into 2529 // the multiply. 2530 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2531 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2532 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2533 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2534 if (isa<SCEVConstant>(MulOpSCEV)) 2535 continue; 2536 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2537 if (MulOpSCEV == Ops[AddOp]) { 2538 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2539 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2540 if (Mul->getNumOperands() != 2) { 2541 // If the multiply has more than two operands, we must get the 2542 // Y*Z term. 2543 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2544 Mul->op_begin()+MulOp); 2545 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2546 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2547 } 2548 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2549 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2550 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2551 SCEV::FlagAnyWrap, Depth + 1); 2552 if (Ops.size() == 2) return OuterMul; 2553 if (AddOp < Idx) { 2554 Ops.erase(Ops.begin()+AddOp); 2555 Ops.erase(Ops.begin()+Idx-1); 2556 } else { 2557 Ops.erase(Ops.begin()+Idx); 2558 Ops.erase(Ops.begin()+AddOp-1); 2559 } 2560 Ops.push_back(OuterMul); 2561 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2562 } 2563 2564 // Check this multiply against other multiplies being added together. 2565 for (unsigned OtherMulIdx = Idx+1; 2566 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2567 ++OtherMulIdx) { 2568 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2569 // If MulOp occurs in OtherMul, we can fold the two multiplies 2570 // together. 2571 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2572 OMulOp != e; ++OMulOp) 2573 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2574 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2575 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2576 if (Mul->getNumOperands() != 2) { 2577 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2578 Mul->op_begin()+MulOp); 2579 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2580 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2581 } 2582 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2583 if (OtherMul->getNumOperands() != 2) { 2584 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2585 OtherMul->op_begin()+OMulOp); 2586 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2587 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2588 } 2589 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2590 const SCEV *InnerMulSum = 2591 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2592 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2593 SCEV::FlagAnyWrap, Depth + 1); 2594 if (Ops.size() == 2) return OuterMul; 2595 Ops.erase(Ops.begin()+Idx); 2596 Ops.erase(Ops.begin()+OtherMulIdx-1); 2597 Ops.push_back(OuterMul); 2598 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2599 } 2600 } 2601 } 2602 } 2603 2604 // If there are any add recurrences in the operands list, see if any other 2605 // added values are loop invariant. If so, we can fold them into the 2606 // recurrence. 2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2608 ++Idx; 2609 2610 // Scan over all recurrences, trying to fold loop invariants into them. 2611 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2612 // Scan all of the other operands to this add and add them to the vector if 2613 // they are loop invariant w.r.t. the recurrence. 2614 SmallVector<const SCEV *, 8> LIOps; 2615 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2616 const Loop *AddRecLoop = AddRec->getLoop(); 2617 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2618 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2619 LIOps.push_back(Ops[i]); 2620 Ops.erase(Ops.begin()+i); 2621 --i; --e; 2622 } 2623 2624 // If we found some loop invariants, fold them into the recurrence. 2625 if (!LIOps.empty()) { 2626 // Compute nowrap flags for the addition of the loop-invariant ops and 2627 // the addrec. Temporarily push it as an operand for that purpose. 2628 LIOps.push_back(AddRec); 2629 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2630 LIOps.pop_back(); 2631 2632 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2633 LIOps.push_back(AddRec->getStart()); 2634 2635 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2636 // This follows from the fact that the no-wrap flags on the outer add 2637 // expression are applicable on the 0th iteration, when the add recurrence 2638 // will be equal to its start value. 2639 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2640 2641 // Build the new addrec. Propagate the NUW and NSW flags if both the 2642 // outer add and the inner addrec are guaranteed to have no overflow. 2643 // Always propagate NW. 2644 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2645 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2646 2647 // If all of the other operands were loop invariant, we are done. 2648 if (Ops.size() == 1) return NewRec; 2649 2650 // Otherwise, add the folded AddRec by the non-invariant parts. 2651 for (unsigned i = 0;; ++i) 2652 if (Ops[i] == AddRec) { 2653 Ops[i] = NewRec; 2654 break; 2655 } 2656 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2657 } 2658 2659 // Okay, if there weren't any loop invariants to be folded, check to see if 2660 // there are multiple AddRec's with the same loop induction variable being 2661 // added together. If so, we can fold them. 2662 for (unsigned OtherIdx = Idx+1; 2663 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2664 ++OtherIdx) { 2665 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2666 // so that the 1st found AddRecExpr is dominated by all others. 2667 assert(DT.dominates( 2668 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2669 AddRec->getLoop()->getHeader()) && 2670 "AddRecExprs are not sorted in reverse dominance order?"); 2671 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2672 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2673 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2674 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2675 ++OtherIdx) { 2676 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2677 if (OtherAddRec->getLoop() == AddRecLoop) { 2678 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2679 i != e; ++i) { 2680 if (i >= AddRecOps.size()) { 2681 AddRecOps.append(OtherAddRec->op_begin()+i, 2682 OtherAddRec->op_end()); 2683 break; 2684 } 2685 SmallVector<const SCEV *, 2> TwoOps = { 2686 AddRecOps[i], OtherAddRec->getOperand(i)}; 2687 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2688 } 2689 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2690 } 2691 } 2692 // Step size has changed, so we cannot guarantee no self-wraparound. 2693 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2694 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2695 } 2696 } 2697 2698 // Otherwise couldn't fold anything into this recurrence. Move onto the 2699 // next one. 2700 } 2701 2702 // Okay, it looks like we really DO need an add expr. Check to see if we 2703 // already have one, otherwise create a new one. 2704 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2705 } 2706 2707 const SCEV * 2708 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2709 SCEV::NoWrapFlags Flags) { 2710 FoldingSetNodeID ID; 2711 ID.AddInteger(scAddExpr); 2712 for (const SCEV *Op : Ops) 2713 ID.AddPointer(Op); 2714 void *IP = nullptr; 2715 SCEVAddExpr *S = 2716 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2717 if (!S) { 2718 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2719 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2720 S = new (SCEVAllocator) 2721 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2722 UniqueSCEVs.InsertNode(S, IP); 2723 addToLoopUseLists(S); 2724 } 2725 S->setNoWrapFlags(Flags); 2726 return S; 2727 } 2728 2729 const SCEV * 2730 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2731 const Loop *L, SCEV::NoWrapFlags Flags) { 2732 FoldingSetNodeID ID; 2733 ID.AddInteger(scAddRecExpr); 2734 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2735 ID.AddPointer(Ops[i]); 2736 ID.AddPointer(L); 2737 void *IP = nullptr; 2738 SCEVAddRecExpr *S = 2739 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2740 if (!S) { 2741 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2742 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2743 S = new (SCEVAllocator) 2744 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2745 UniqueSCEVs.InsertNode(S, IP); 2746 addToLoopUseLists(S); 2747 } 2748 setNoWrapFlags(S, Flags); 2749 return S; 2750 } 2751 2752 const SCEV * 2753 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2754 SCEV::NoWrapFlags Flags) { 2755 FoldingSetNodeID ID; 2756 ID.AddInteger(scMulExpr); 2757 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2758 ID.AddPointer(Ops[i]); 2759 void *IP = nullptr; 2760 SCEVMulExpr *S = 2761 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2762 if (!S) { 2763 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2764 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2765 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2766 O, Ops.size()); 2767 UniqueSCEVs.InsertNode(S, IP); 2768 addToLoopUseLists(S); 2769 } 2770 S->setNoWrapFlags(Flags); 2771 return S; 2772 } 2773 2774 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2775 uint64_t k = i*j; 2776 if (j > 1 && k / j != i) Overflow = true; 2777 return k; 2778 } 2779 2780 /// Compute the result of "n choose k", the binomial coefficient. If an 2781 /// intermediate computation overflows, Overflow will be set and the return will 2782 /// be garbage. Overflow is not cleared on absence of overflow. 2783 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2784 // We use the multiplicative formula: 2785 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2786 // At each iteration, we take the n-th term of the numeral and divide by the 2787 // (k-n)th term of the denominator. This division will always produce an 2788 // integral result, and helps reduce the chance of overflow in the 2789 // intermediate computations. However, we can still overflow even when the 2790 // final result would fit. 2791 2792 if (n == 0 || n == k) return 1; 2793 if (k > n) return 0; 2794 2795 if (k > n/2) 2796 k = n-k; 2797 2798 uint64_t r = 1; 2799 for (uint64_t i = 1; i <= k; ++i) { 2800 r = umul_ov(r, n-(i-1), Overflow); 2801 r /= i; 2802 } 2803 return r; 2804 } 2805 2806 /// Determine if any of the operands in this SCEV are a constant or if 2807 /// any of the add or multiply expressions in this SCEV contain a constant. 2808 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2809 struct FindConstantInAddMulChain { 2810 bool FoundConstant = false; 2811 2812 bool follow(const SCEV *S) { 2813 FoundConstant |= isa<SCEVConstant>(S); 2814 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2815 } 2816 2817 bool isDone() const { 2818 return FoundConstant; 2819 } 2820 }; 2821 2822 FindConstantInAddMulChain F; 2823 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2824 ST.visitAll(StartExpr); 2825 return F.FoundConstant; 2826 } 2827 2828 /// Get a canonical multiply expression, or something simpler if possible. 2829 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2830 SCEV::NoWrapFlags OrigFlags, 2831 unsigned Depth) { 2832 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2833 "only nuw or nsw allowed"); 2834 assert(!Ops.empty() && "Cannot get empty mul!"); 2835 if (Ops.size() == 1) return Ops[0]; 2836 #ifndef NDEBUG 2837 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2838 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2839 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2840 "SCEVMulExpr operand types don't match!"); 2841 #endif 2842 2843 // Sort by complexity, this groups all similar expression types together. 2844 GroupByComplexity(Ops, &LI, DT); 2845 2846 // If there are any constants, fold them together. 2847 unsigned Idx = 0; 2848 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2849 ++Idx; 2850 assert(Idx < Ops.size()); 2851 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2852 // We found two constants, fold them together! 2853 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2854 if (Ops.size() == 2) return Ops[0]; 2855 Ops.erase(Ops.begin()+1); // Erase the folded element 2856 LHSC = cast<SCEVConstant>(Ops[0]); 2857 } 2858 2859 // If we have a multiply of zero, it will always be zero. 2860 if (LHSC->getValue()->isZero()) 2861 return LHSC; 2862 2863 // If we are left with a constant one being multiplied, strip it off. 2864 if (LHSC->getValue()->isOne()) { 2865 Ops.erase(Ops.begin()); 2866 --Idx; 2867 } 2868 2869 if (Ops.size() == 1) 2870 return Ops[0]; 2871 } 2872 2873 // Delay expensive flag strengthening until necessary. 2874 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2875 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2876 }; 2877 2878 // Limit recursion calls depth. 2879 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2880 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2881 2882 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2883 // Don't strengthen flags if we have no new information. 2884 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2885 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2886 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2887 return S; 2888 } 2889 2890 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2891 if (Ops.size() == 2) { 2892 // C1*(C2+V) -> C1*C2 + C1*V 2893 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2894 // If any of Add's ops are Adds or Muls with a constant, apply this 2895 // transformation as well. 2896 // 2897 // TODO: There are some cases where this transformation is not 2898 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2899 // this transformation should be narrowed down. 2900 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2902 SCEV::FlagAnyWrap, Depth + 1), 2903 getMulExpr(LHSC, Add->getOperand(1), 2904 SCEV::FlagAnyWrap, Depth + 1), 2905 SCEV::FlagAnyWrap, Depth + 1); 2906 2907 if (Ops[0]->isAllOnesValue()) { 2908 // If we have a mul by -1 of an add, try distributing the -1 among the 2909 // add operands. 2910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2911 SmallVector<const SCEV *, 4> NewOps; 2912 bool AnyFolded = false; 2913 for (const SCEV *AddOp : Add->operands()) { 2914 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2915 Depth + 1); 2916 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2917 NewOps.push_back(Mul); 2918 } 2919 if (AnyFolded) 2920 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2921 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2922 // Negation preserves a recurrence's no self-wrap property. 2923 SmallVector<const SCEV *, 4> Operands; 2924 for (const SCEV *AddRecOp : AddRec->operands()) 2925 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2926 Depth + 1)); 2927 2928 return getAddRecExpr(Operands, AddRec->getLoop(), 2929 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2930 } 2931 } 2932 } 2933 } 2934 2935 // Skip over the add expression until we get to a multiply. 2936 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2937 ++Idx; 2938 2939 // If there are mul operands inline them all into this expression. 2940 if (Idx < Ops.size()) { 2941 bool DeletedMul = false; 2942 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2943 if (Ops.size() > MulOpsInlineThreshold) 2944 break; 2945 // If we have an mul, expand the mul operands onto the end of the 2946 // operands list. 2947 Ops.erase(Ops.begin()+Idx); 2948 Ops.append(Mul->op_begin(), Mul->op_end()); 2949 DeletedMul = true; 2950 } 2951 2952 // If we deleted at least one mul, we added operands to the end of the 2953 // list, and they are not necessarily sorted. Recurse to resort and 2954 // resimplify any operands we just acquired. 2955 if (DeletedMul) 2956 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2957 } 2958 2959 // If there are any add recurrences in the operands list, see if any other 2960 // added values are loop invariant. If so, we can fold them into the 2961 // recurrence. 2962 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2963 ++Idx; 2964 2965 // Scan over all recurrences, trying to fold loop invariants into them. 2966 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2967 // Scan all of the other operands to this mul and add them to the vector 2968 // if they are loop invariant w.r.t. the recurrence. 2969 SmallVector<const SCEV *, 8> LIOps; 2970 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2971 const Loop *AddRecLoop = AddRec->getLoop(); 2972 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2973 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2974 LIOps.push_back(Ops[i]); 2975 Ops.erase(Ops.begin()+i); 2976 --i; --e; 2977 } 2978 2979 // If we found some loop invariants, fold them into the recurrence. 2980 if (!LIOps.empty()) { 2981 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2982 SmallVector<const SCEV *, 4> NewOps; 2983 NewOps.reserve(AddRec->getNumOperands()); 2984 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2985 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2986 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2987 SCEV::FlagAnyWrap, Depth + 1)); 2988 2989 // Build the new addrec. Propagate the NUW and NSW flags if both the 2990 // outer mul and the inner addrec are guaranteed to have no overflow. 2991 // 2992 // No self-wrap cannot be guaranteed after changing the step size, but 2993 // will be inferred if either NUW or NSW is true. 2994 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2995 const SCEV *NewRec = getAddRecExpr( 2996 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2997 2998 // If all of the other operands were loop invariant, we are done. 2999 if (Ops.size() == 1) return NewRec; 3000 3001 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3002 for (unsigned i = 0;; ++i) 3003 if (Ops[i] == AddRec) { 3004 Ops[i] = NewRec; 3005 break; 3006 } 3007 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3008 } 3009 3010 // Okay, if there weren't any loop invariants to be folded, check to see 3011 // if there are multiple AddRec's with the same loop induction variable 3012 // being multiplied together. If so, we can fold them. 3013 3014 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3015 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3016 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3017 // ]]],+,...up to x=2n}. 3018 // Note that the arguments to choose() are always integers with values 3019 // known at compile time, never SCEV objects. 3020 // 3021 // The implementation avoids pointless extra computations when the two 3022 // addrec's are of different length (mathematically, it's equivalent to 3023 // an infinite stream of zeros on the right). 3024 bool OpsModified = false; 3025 for (unsigned OtherIdx = Idx+1; 3026 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3027 ++OtherIdx) { 3028 const SCEVAddRecExpr *OtherAddRec = 3029 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3030 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3031 continue; 3032 3033 // Limit max number of arguments to avoid creation of unreasonably big 3034 // SCEVAddRecs with very complex operands. 3035 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3036 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3037 continue; 3038 3039 bool Overflow = false; 3040 Type *Ty = AddRec->getType(); 3041 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3042 SmallVector<const SCEV*, 7> AddRecOps; 3043 for (int x = 0, xe = AddRec->getNumOperands() + 3044 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3045 SmallVector <const SCEV *, 7> SumOps; 3046 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3047 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3048 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3049 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3050 z < ze && !Overflow; ++z) { 3051 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3052 uint64_t Coeff; 3053 if (LargerThan64Bits) 3054 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3055 else 3056 Coeff = Coeff1*Coeff2; 3057 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3058 const SCEV *Term1 = AddRec->getOperand(y-z); 3059 const SCEV *Term2 = OtherAddRec->getOperand(z); 3060 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3061 SCEV::FlagAnyWrap, Depth + 1)); 3062 } 3063 } 3064 if (SumOps.empty()) 3065 SumOps.push_back(getZero(Ty)); 3066 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3067 } 3068 if (!Overflow) { 3069 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3070 SCEV::FlagAnyWrap); 3071 if (Ops.size() == 2) return NewAddRec; 3072 Ops[Idx] = NewAddRec; 3073 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3074 OpsModified = true; 3075 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3076 if (!AddRec) 3077 break; 3078 } 3079 } 3080 if (OpsModified) 3081 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3082 3083 // Otherwise couldn't fold anything into this recurrence. Move onto the 3084 // next one. 3085 } 3086 3087 // Okay, it looks like we really DO need an mul expr. Check to see if we 3088 // already have one, otherwise create a new one. 3089 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3090 } 3091 3092 /// Represents an unsigned remainder expression based on unsigned division. 3093 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3094 const SCEV *RHS) { 3095 assert(getEffectiveSCEVType(LHS->getType()) == 3096 getEffectiveSCEVType(RHS->getType()) && 3097 "SCEVURemExpr operand types don't match!"); 3098 3099 // Short-circuit easy cases 3100 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3101 // If constant is one, the result is trivial 3102 if (RHSC->getValue()->isOne()) 3103 return getZero(LHS->getType()); // X urem 1 --> 0 3104 3105 // If constant is a power of two, fold into a zext(trunc(LHS)). 3106 if (RHSC->getAPInt().isPowerOf2()) { 3107 Type *FullTy = LHS->getType(); 3108 Type *TruncTy = 3109 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3110 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3111 } 3112 } 3113 3114 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3115 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3116 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3117 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3118 } 3119 3120 /// Get a canonical unsigned division expression, or something simpler if 3121 /// possible. 3122 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3123 const SCEV *RHS) { 3124 assert(getEffectiveSCEVType(LHS->getType()) == 3125 getEffectiveSCEVType(RHS->getType()) && 3126 "SCEVUDivExpr operand types don't match!"); 3127 3128 FoldingSetNodeID ID; 3129 ID.AddInteger(scUDivExpr); 3130 ID.AddPointer(LHS); 3131 ID.AddPointer(RHS); 3132 void *IP = nullptr; 3133 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3134 return S; 3135 3136 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3137 if (RHSC->getValue()->isOne()) 3138 return LHS; // X udiv 1 --> x 3139 // If the denominator is zero, the result of the udiv is undefined. Don't 3140 // try to analyze it, because the resolution chosen here may differ from 3141 // the resolution chosen in other parts of the compiler. 3142 if (!RHSC->getValue()->isZero()) { 3143 // Determine if the division can be folded into the operands of 3144 // its operands. 3145 // TODO: Generalize this to non-constants by using known-bits information. 3146 Type *Ty = LHS->getType(); 3147 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3148 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3149 // For non-power-of-two values, effectively round the value up to the 3150 // nearest power of two. 3151 if (!RHSC->getAPInt().isPowerOf2()) 3152 ++MaxShiftAmt; 3153 IntegerType *ExtTy = 3154 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3155 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3156 if (const SCEVConstant *Step = 3157 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3158 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3159 const APInt &StepInt = Step->getAPInt(); 3160 const APInt &DivInt = RHSC->getAPInt(); 3161 if (!StepInt.urem(DivInt) && 3162 getZeroExtendExpr(AR, ExtTy) == 3163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3164 getZeroExtendExpr(Step, ExtTy), 3165 AR->getLoop(), SCEV::FlagAnyWrap)) { 3166 SmallVector<const SCEV *, 4> Operands; 3167 for (const SCEV *Op : AR->operands()) 3168 Operands.push_back(getUDivExpr(Op, RHS)); 3169 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3170 } 3171 /// Get a canonical UDivExpr for a recurrence. 3172 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3173 // We can currently only fold X%N if X is constant. 3174 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3175 if (StartC && !DivInt.urem(StepInt) && 3176 getZeroExtendExpr(AR, ExtTy) == 3177 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3178 getZeroExtendExpr(Step, ExtTy), 3179 AR->getLoop(), SCEV::FlagAnyWrap)) { 3180 const APInt &StartInt = StartC->getAPInt(); 3181 const APInt &StartRem = StartInt.urem(StepInt); 3182 if (StartRem != 0) { 3183 const SCEV *NewLHS = 3184 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3185 AR->getLoop(), SCEV::FlagNW); 3186 if (LHS != NewLHS) { 3187 LHS = NewLHS; 3188 3189 // Reset the ID to include the new LHS, and check if it is 3190 // already cached. 3191 ID.clear(); 3192 ID.AddInteger(scUDivExpr); 3193 ID.AddPointer(LHS); 3194 ID.AddPointer(RHS); 3195 IP = nullptr; 3196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3197 return S; 3198 } 3199 } 3200 } 3201 } 3202 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3203 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3204 SmallVector<const SCEV *, 4> Operands; 3205 for (const SCEV *Op : M->operands()) 3206 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3207 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3208 // Find an operand that's safely divisible. 3209 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3210 const SCEV *Op = M->getOperand(i); 3211 const SCEV *Div = getUDivExpr(Op, RHSC); 3212 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3213 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3214 Operands[i] = Div; 3215 return getMulExpr(Operands); 3216 } 3217 } 3218 } 3219 3220 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3221 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3222 if (auto *DivisorConstant = 3223 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3224 bool Overflow = false; 3225 APInt NewRHS = 3226 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3227 if (Overflow) { 3228 return getConstant(RHSC->getType(), 0, false); 3229 } 3230 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3231 } 3232 } 3233 3234 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3235 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3236 SmallVector<const SCEV *, 4> Operands; 3237 for (const SCEV *Op : A->operands()) 3238 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3239 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3240 Operands.clear(); 3241 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3242 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3243 if (isa<SCEVUDivExpr>(Op) || 3244 getMulExpr(Op, RHS) != A->getOperand(i)) 3245 break; 3246 Operands.push_back(Op); 3247 } 3248 if (Operands.size() == A->getNumOperands()) 3249 return getAddExpr(Operands); 3250 } 3251 } 3252 3253 // Fold if both operands are constant. 3254 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3255 Constant *LHSCV = LHSC->getValue(); 3256 Constant *RHSCV = RHSC->getValue(); 3257 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3258 RHSCV))); 3259 } 3260 } 3261 } 3262 3263 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3264 // changes). Make sure we get a new one. 3265 IP = nullptr; 3266 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3267 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3268 LHS, RHS); 3269 UniqueSCEVs.InsertNode(S, IP); 3270 addToLoopUseLists(S); 3271 return S; 3272 } 3273 3274 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3275 APInt A = C1->getAPInt().abs(); 3276 APInt B = C2->getAPInt().abs(); 3277 uint32_t ABW = A.getBitWidth(); 3278 uint32_t BBW = B.getBitWidth(); 3279 3280 if (ABW > BBW) 3281 B = B.zext(ABW); 3282 else if (ABW < BBW) 3283 A = A.zext(BBW); 3284 3285 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3286 } 3287 3288 /// Get a canonical unsigned division expression, or something simpler if 3289 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3290 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3291 /// it's not exact because the udiv may be clearing bits. 3292 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3293 const SCEV *RHS) { 3294 // TODO: we could try to find factors in all sorts of things, but for now we 3295 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3296 // end of this file for inspiration. 3297 3298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3299 if (!Mul || !Mul->hasNoUnsignedWrap()) 3300 return getUDivExpr(LHS, RHS); 3301 3302 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3303 // If the mulexpr multiplies by a constant, then that constant must be the 3304 // first element of the mulexpr. 3305 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3306 if (LHSCst == RHSCst) { 3307 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3308 return getMulExpr(Operands); 3309 } 3310 3311 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3312 // that there's a factor provided by one of the other terms. We need to 3313 // check. 3314 APInt Factor = gcd(LHSCst, RHSCst); 3315 if (!Factor.isIntN(1)) { 3316 LHSCst = 3317 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3318 RHSCst = 3319 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3320 SmallVector<const SCEV *, 2> Operands; 3321 Operands.push_back(LHSCst); 3322 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3323 LHS = getMulExpr(Operands); 3324 RHS = RHSCst; 3325 Mul = dyn_cast<SCEVMulExpr>(LHS); 3326 if (!Mul) 3327 return getUDivExactExpr(LHS, RHS); 3328 } 3329 } 3330 } 3331 3332 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3333 if (Mul->getOperand(i) == RHS) { 3334 SmallVector<const SCEV *, 2> Operands; 3335 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3336 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3337 return getMulExpr(Operands); 3338 } 3339 } 3340 3341 return getUDivExpr(LHS, RHS); 3342 } 3343 3344 /// Get an add recurrence expression for the specified loop. Simplify the 3345 /// expression as much as possible. 3346 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3347 const Loop *L, 3348 SCEV::NoWrapFlags Flags) { 3349 SmallVector<const SCEV *, 4> Operands; 3350 Operands.push_back(Start); 3351 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3352 if (StepChrec->getLoop() == L) { 3353 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3354 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3355 } 3356 3357 Operands.push_back(Step); 3358 return getAddRecExpr(Operands, L, Flags); 3359 } 3360 3361 /// Get an add recurrence expression for the specified loop. Simplify the 3362 /// expression as much as possible. 3363 const SCEV * 3364 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3365 const Loop *L, SCEV::NoWrapFlags Flags) { 3366 if (Operands.size() == 1) return Operands[0]; 3367 #ifndef NDEBUG 3368 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3369 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3370 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3371 "SCEVAddRecExpr operand types don't match!"); 3372 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3373 assert(isLoopInvariant(Operands[i], L) && 3374 "SCEVAddRecExpr operand is not loop-invariant!"); 3375 #endif 3376 3377 if (Operands.back()->isZero()) { 3378 Operands.pop_back(); 3379 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3380 } 3381 3382 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3383 // use that information to infer NUW and NSW flags. However, computing a 3384 // BE count requires calling getAddRecExpr, so we may not yet have a 3385 // meaningful BE count at this point (and if we don't, we'd be stuck 3386 // with a SCEVCouldNotCompute as the cached BE count). 3387 3388 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3389 3390 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3391 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3392 const Loop *NestedLoop = NestedAR->getLoop(); 3393 if (L->contains(NestedLoop) 3394 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3395 : (!NestedLoop->contains(L) && 3396 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3397 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3398 Operands[0] = NestedAR->getStart(); 3399 // AddRecs require their operands be loop-invariant with respect to their 3400 // loops. Don't perform this transformation if it would break this 3401 // requirement. 3402 bool AllInvariant = all_of( 3403 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3404 3405 if (AllInvariant) { 3406 // Create a recurrence for the outer loop with the same step size. 3407 // 3408 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3409 // inner recurrence has the same property. 3410 SCEV::NoWrapFlags OuterFlags = 3411 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3412 3413 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3414 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3415 return isLoopInvariant(Op, NestedLoop); 3416 }); 3417 3418 if (AllInvariant) { 3419 // Ok, both add recurrences are valid after the transformation. 3420 // 3421 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3422 // the outer recurrence has the same property. 3423 SCEV::NoWrapFlags InnerFlags = 3424 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3425 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3426 } 3427 } 3428 // Reset Operands to its original state. 3429 Operands[0] = NestedAR; 3430 } 3431 } 3432 3433 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3434 // already have one, otherwise create a new one. 3435 return getOrCreateAddRecExpr(Operands, L, Flags); 3436 } 3437 3438 const SCEV * 3439 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3440 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3441 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3442 // getSCEV(Base)->getType() has the same address space as Base->getType() 3443 // because SCEV::getType() preserves the address space. 3444 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3445 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3446 // instruction to its SCEV, because the Instruction may be guarded by control 3447 // flow and the no-overflow bits may not be valid for the expression in any 3448 // context. This can be fixed similarly to how these flags are handled for 3449 // adds. 3450 SCEV::NoWrapFlags OffsetWrap = 3451 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3452 3453 Type *CurTy = GEP->getType(); 3454 bool FirstIter = true; 3455 SmallVector<const SCEV *, 4> Offsets; 3456 for (const SCEV *IndexExpr : IndexExprs) { 3457 // Compute the (potentially symbolic) offset in bytes for this index. 3458 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3459 // For a struct, add the member offset. 3460 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3461 unsigned FieldNo = Index->getZExtValue(); 3462 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3463 Offsets.push_back(FieldOffset); 3464 3465 // Update CurTy to the type of the field at Index. 3466 CurTy = STy->getTypeAtIndex(Index); 3467 } else { 3468 // Update CurTy to its element type. 3469 if (FirstIter) { 3470 assert(isa<PointerType>(CurTy) && 3471 "The first index of a GEP indexes a pointer"); 3472 CurTy = GEP->getSourceElementType(); 3473 FirstIter = false; 3474 } else { 3475 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3476 } 3477 // For an array, add the element offset, explicitly scaled. 3478 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3479 // Getelementptr indices are signed. 3480 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3481 3482 // Multiply the index by the element size to compute the element offset. 3483 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3484 Offsets.push_back(LocalOffset); 3485 } 3486 } 3487 3488 // Handle degenerate case of GEP without offsets. 3489 if (Offsets.empty()) 3490 return BaseExpr; 3491 3492 // Add the offsets together, assuming nsw if inbounds. 3493 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3494 // Add the base address and the offset. We cannot use the nsw flag, as the 3495 // base address is unsigned. However, if we know that the offset is 3496 // non-negative, we can use nuw. 3497 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3498 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3499 return getAddExpr(BaseExpr, Offset, BaseWrap); 3500 } 3501 3502 std::tuple<SCEV *, FoldingSetNodeID, void *> 3503 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3504 ArrayRef<const SCEV *> Ops) { 3505 FoldingSetNodeID ID; 3506 void *IP = nullptr; 3507 ID.AddInteger(SCEVType); 3508 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3509 ID.AddPointer(Ops[i]); 3510 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3511 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3512 } 3513 3514 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3515 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3516 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3517 } 3518 3519 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3520 SmallVectorImpl<const SCEV *> &Ops) { 3521 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3522 if (Ops.size() == 1) return Ops[0]; 3523 #ifndef NDEBUG 3524 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3525 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3526 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3527 "Operand types don't match!"); 3528 #endif 3529 3530 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3531 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3532 3533 // Sort by complexity, this groups all similar expression types together. 3534 GroupByComplexity(Ops, &LI, DT); 3535 3536 // Check if we have created the same expression before. 3537 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3538 return S; 3539 } 3540 3541 // If there are any constants, fold them together. 3542 unsigned Idx = 0; 3543 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3544 ++Idx; 3545 assert(Idx < Ops.size()); 3546 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3547 if (Kind == scSMaxExpr) 3548 return APIntOps::smax(LHS, RHS); 3549 else if (Kind == scSMinExpr) 3550 return APIntOps::smin(LHS, RHS); 3551 else if (Kind == scUMaxExpr) 3552 return APIntOps::umax(LHS, RHS); 3553 else if (Kind == scUMinExpr) 3554 return APIntOps::umin(LHS, RHS); 3555 llvm_unreachable("Unknown SCEV min/max opcode"); 3556 }; 3557 3558 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3559 // We found two constants, fold them together! 3560 ConstantInt *Fold = ConstantInt::get( 3561 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3562 Ops[0] = getConstant(Fold); 3563 Ops.erase(Ops.begin()+1); // Erase the folded element 3564 if (Ops.size() == 1) return Ops[0]; 3565 LHSC = cast<SCEVConstant>(Ops[0]); 3566 } 3567 3568 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3569 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3570 3571 if (IsMax ? IsMinV : IsMaxV) { 3572 // If we are left with a constant minimum(/maximum)-int, strip it off. 3573 Ops.erase(Ops.begin()); 3574 --Idx; 3575 } else if (IsMax ? IsMaxV : IsMinV) { 3576 // If we have a max(/min) with a constant maximum(/minimum)-int, 3577 // it will always be the extremum. 3578 return LHSC; 3579 } 3580 3581 if (Ops.size() == 1) return Ops[0]; 3582 } 3583 3584 // Find the first operation of the same kind 3585 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3586 ++Idx; 3587 3588 // Check to see if one of the operands is of the same kind. If so, expand its 3589 // operands onto our operand list, and recurse to simplify. 3590 if (Idx < Ops.size()) { 3591 bool DeletedAny = false; 3592 while (Ops[Idx]->getSCEVType() == Kind) { 3593 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3594 Ops.erase(Ops.begin()+Idx); 3595 Ops.append(SMME->op_begin(), SMME->op_end()); 3596 DeletedAny = true; 3597 } 3598 3599 if (DeletedAny) 3600 return getMinMaxExpr(Kind, Ops); 3601 } 3602 3603 // Okay, check to see if the same value occurs in the operand list twice. If 3604 // so, delete one. Since we sorted the list, these values are required to 3605 // be adjacent. 3606 llvm::CmpInst::Predicate GEPred = 3607 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3608 llvm::CmpInst::Predicate LEPred = 3609 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3610 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3611 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3612 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3613 if (Ops[i] == Ops[i + 1] || 3614 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3615 // X op Y op Y --> X op Y 3616 // X op Y --> X, if we know X, Y are ordered appropriately 3617 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3618 --i; 3619 --e; 3620 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3621 Ops[i + 1])) { 3622 // X op Y --> Y, if we know X, Y are ordered appropriately 3623 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3624 --i; 3625 --e; 3626 } 3627 } 3628 3629 if (Ops.size() == 1) return Ops[0]; 3630 3631 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3632 3633 // Okay, it looks like we really DO need an expr. Check to see if we 3634 // already have one, otherwise create a new one. 3635 const SCEV *ExistingSCEV; 3636 FoldingSetNodeID ID; 3637 void *IP; 3638 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3639 if (ExistingSCEV) 3640 return ExistingSCEV; 3641 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3642 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3643 SCEV *S = new (SCEVAllocator) 3644 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3645 3646 UniqueSCEVs.InsertNode(S, IP); 3647 addToLoopUseLists(S); 3648 return S; 3649 } 3650 3651 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3652 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3653 return getSMaxExpr(Ops); 3654 } 3655 3656 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3657 return getMinMaxExpr(scSMaxExpr, Ops); 3658 } 3659 3660 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3661 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3662 return getUMaxExpr(Ops); 3663 } 3664 3665 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3666 return getMinMaxExpr(scUMaxExpr, Ops); 3667 } 3668 3669 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3670 const SCEV *RHS) { 3671 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3672 return getSMinExpr(Ops); 3673 } 3674 3675 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3676 return getMinMaxExpr(scSMinExpr, Ops); 3677 } 3678 3679 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3680 const SCEV *RHS) { 3681 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3682 return getUMinExpr(Ops); 3683 } 3684 3685 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3686 return getMinMaxExpr(scUMinExpr, Ops); 3687 } 3688 3689 const SCEV * 3690 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3691 ScalableVectorType *ScalableTy) { 3692 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3693 Constant *One = ConstantInt::get(IntTy, 1); 3694 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3695 // Note that the expression we created is the final expression, we don't 3696 // want to simplify it any further Also, if we call a normal getSCEV(), 3697 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3698 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3699 } 3700 3701 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3702 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3703 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3704 // We can bypass creating a target-independent constant expression and then 3705 // folding it back into a ConstantInt. This is just a compile-time 3706 // optimization. 3707 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3708 } 3709 3710 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3711 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3712 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3713 // We can bypass creating a target-independent constant expression and then 3714 // folding it back into a ConstantInt. This is just a compile-time 3715 // optimization. 3716 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3717 } 3718 3719 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3720 StructType *STy, 3721 unsigned FieldNo) { 3722 // We can bypass creating a target-independent constant expression and then 3723 // folding it back into a ConstantInt. This is just a compile-time 3724 // optimization. 3725 return getConstant( 3726 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3727 } 3728 3729 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3730 // Don't attempt to do anything other than create a SCEVUnknown object 3731 // here. createSCEV only calls getUnknown after checking for all other 3732 // interesting possibilities, and any other code that calls getUnknown 3733 // is doing so in order to hide a value from SCEV canonicalization. 3734 3735 FoldingSetNodeID ID; 3736 ID.AddInteger(scUnknown); 3737 ID.AddPointer(V); 3738 void *IP = nullptr; 3739 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3740 assert(cast<SCEVUnknown>(S)->getValue() == V && 3741 "Stale SCEVUnknown in uniquing map!"); 3742 return S; 3743 } 3744 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3745 FirstUnknown); 3746 FirstUnknown = cast<SCEVUnknown>(S); 3747 UniqueSCEVs.InsertNode(S, IP); 3748 return S; 3749 } 3750 3751 //===----------------------------------------------------------------------===// 3752 // Basic SCEV Analysis and PHI Idiom Recognition Code 3753 // 3754 3755 /// Test if values of the given type are analyzable within the SCEV 3756 /// framework. This primarily includes integer types, and it can optionally 3757 /// include pointer types if the ScalarEvolution class has access to 3758 /// target-specific information. 3759 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3760 // Integers and pointers are always SCEVable. 3761 return Ty->isIntOrPtrTy(); 3762 } 3763 3764 /// Return the size in bits of the specified type, for which isSCEVable must 3765 /// return true. 3766 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3767 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3768 if (Ty->isPointerTy()) 3769 return getDataLayout().getIndexTypeSizeInBits(Ty); 3770 return getDataLayout().getTypeSizeInBits(Ty); 3771 } 3772 3773 /// Return a type with the same bitwidth as the given type and which represents 3774 /// how SCEV will treat the given type, for which isSCEVable must return 3775 /// true. For pointer types, this is the pointer index sized integer type. 3776 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3777 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3778 3779 if (Ty->isIntegerTy()) 3780 return Ty; 3781 3782 // The only other support type is pointer. 3783 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3784 return getDataLayout().getIndexType(Ty); 3785 } 3786 3787 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3788 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3789 } 3790 3791 const SCEV *ScalarEvolution::getCouldNotCompute() { 3792 return CouldNotCompute.get(); 3793 } 3794 3795 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3796 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3797 auto *SU = dyn_cast<SCEVUnknown>(S); 3798 return SU && SU->getValue() == nullptr; 3799 }); 3800 3801 return !ContainsNulls; 3802 } 3803 3804 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3805 HasRecMapType::iterator I = HasRecMap.find(S); 3806 if (I != HasRecMap.end()) 3807 return I->second; 3808 3809 bool FoundAddRec = 3810 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3811 HasRecMap.insert({S, FoundAddRec}); 3812 return FoundAddRec; 3813 } 3814 3815 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3816 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3817 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3818 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3819 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3820 if (!Add) 3821 return {S, nullptr}; 3822 3823 if (Add->getNumOperands() != 2) 3824 return {S, nullptr}; 3825 3826 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3827 if (!ConstOp) 3828 return {S, nullptr}; 3829 3830 return {Add->getOperand(1), ConstOp->getValue()}; 3831 } 3832 3833 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3834 /// by the value and offset from any ValueOffsetPair in the set. 3835 SetVector<ScalarEvolution::ValueOffsetPair> * 3836 ScalarEvolution::getSCEVValues(const SCEV *S) { 3837 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3838 if (SI == ExprValueMap.end()) 3839 return nullptr; 3840 #ifndef NDEBUG 3841 if (VerifySCEVMap) { 3842 // Check there is no dangling Value in the set returned. 3843 for (const auto &VE : SI->second) 3844 assert(ValueExprMap.count(VE.first)); 3845 } 3846 #endif 3847 return &SI->second; 3848 } 3849 3850 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3851 /// cannot be used separately. eraseValueFromMap should be used to remove 3852 /// V from ValueExprMap and ExprValueMap at the same time. 3853 void ScalarEvolution::eraseValueFromMap(Value *V) { 3854 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3855 if (I != ValueExprMap.end()) { 3856 const SCEV *S = I->second; 3857 // Remove {V, 0} from the set of ExprValueMap[S] 3858 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3859 SV->remove({V, nullptr}); 3860 3861 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3862 const SCEV *Stripped; 3863 ConstantInt *Offset; 3864 std::tie(Stripped, Offset) = splitAddExpr(S); 3865 if (Offset != nullptr) { 3866 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3867 SV->remove({V, Offset}); 3868 } 3869 ValueExprMap.erase(V); 3870 } 3871 } 3872 3873 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3874 /// TODO: In reality it is better to check the poison recursively 3875 /// but this is better than nothing. 3876 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3877 if (auto *I = dyn_cast<Instruction>(V)) { 3878 if (isa<OverflowingBinaryOperator>(I)) { 3879 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3880 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3881 return true; 3882 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3883 return true; 3884 } 3885 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3886 return true; 3887 } 3888 return false; 3889 } 3890 3891 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3892 /// create a new one. 3893 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3894 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3895 3896 const SCEV *S = getExistingSCEV(V); 3897 if (S == nullptr) { 3898 S = createSCEV(V); 3899 // During PHI resolution, it is possible to create two SCEVs for the same 3900 // V, so it is needed to double check whether V->S is inserted into 3901 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3902 std::pair<ValueExprMapType::iterator, bool> Pair = 3903 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3904 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3905 ExprValueMap[S].insert({V, nullptr}); 3906 3907 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3908 // ExprValueMap. 3909 const SCEV *Stripped = S; 3910 ConstantInt *Offset = nullptr; 3911 std::tie(Stripped, Offset) = splitAddExpr(S); 3912 // If stripped is SCEVUnknown, don't bother to save 3913 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3914 // increase the complexity of the expansion code. 3915 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3916 // because it may generate add/sub instead of GEP in SCEV expansion. 3917 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3918 !isa<GetElementPtrInst>(V)) 3919 ExprValueMap[Stripped].insert({V, Offset}); 3920 } 3921 } 3922 return S; 3923 } 3924 3925 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3926 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3927 3928 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3929 if (I != ValueExprMap.end()) { 3930 const SCEV *S = I->second; 3931 if (checkValidity(S)) 3932 return S; 3933 eraseValueFromMap(V); 3934 forgetMemoizedResults(S); 3935 } 3936 return nullptr; 3937 } 3938 3939 /// Return a SCEV corresponding to -V = -1*V 3940 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3941 SCEV::NoWrapFlags Flags) { 3942 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3943 return getConstant( 3944 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3945 3946 Type *Ty = V->getType(); 3947 Ty = getEffectiveSCEVType(Ty); 3948 return getMulExpr(V, getMinusOne(Ty), Flags); 3949 } 3950 3951 /// If Expr computes ~A, return A else return nullptr 3952 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3953 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3954 if (!Add || Add->getNumOperands() != 2 || 3955 !Add->getOperand(0)->isAllOnesValue()) 3956 return nullptr; 3957 3958 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3959 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3960 !AddRHS->getOperand(0)->isAllOnesValue()) 3961 return nullptr; 3962 3963 return AddRHS->getOperand(1); 3964 } 3965 3966 /// Return a SCEV corresponding to ~V = -1-V 3967 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3968 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3969 return getConstant( 3970 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3971 3972 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3973 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3974 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3975 SmallVector<const SCEV *, 2> MatchedOperands; 3976 for (const SCEV *Operand : MME->operands()) { 3977 const SCEV *Matched = MatchNotExpr(Operand); 3978 if (!Matched) 3979 return (const SCEV *)nullptr; 3980 MatchedOperands.push_back(Matched); 3981 } 3982 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3983 MatchedOperands); 3984 }; 3985 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3986 return Replaced; 3987 } 3988 3989 Type *Ty = V->getType(); 3990 Ty = getEffectiveSCEVType(Ty); 3991 return getMinusSCEV(getMinusOne(Ty), V); 3992 } 3993 3994 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3995 SCEV::NoWrapFlags Flags, 3996 unsigned Depth) { 3997 // Fast path: X - X --> 0. 3998 if (LHS == RHS) 3999 return getZero(LHS->getType()); 4000 4001 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4002 // makes it so that we cannot make much use of NUW. 4003 auto AddFlags = SCEV::FlagAnyWrap; 4004 const bool RHSIsNotMinSigned = 4005 !getSignedRangeMin(RHS).isMinSignedValue(); 4006 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4007 // Let M be the minimum representable signed value. Then (-1)*RHS 4008 // signed-wraps if and only if RHS is M. That can happen even for 4009 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4010 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4011 // (-1)*RHS, we need to prove that RHS != M. 4012 // 4013 // If LHS is non-negative and we know that LHS - RHS does not 4014 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4015 // either by proving that RHS > M or that LHS >= 0. 4016 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4017 AddFlags = SCEV::FlagNSW; 4018 } 4019 } 4020 4021 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4022 // RHS is NSW and LHS >= 0. 4023 // 4024 // The difficulty here is that the NSW flag may have been proven 4025 // relative to a loop that is to be found in a recurrence in LHS and 4026 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4027 // larger scope than intended. 4028 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4029 4030 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4031 } 4032 4033 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4034 unsigned Depth) { 4035 Type *SrcTy = V->getType(); 4036 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4037 "Cannot truncate or zero extend with non-integer arguments!"); 4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4039 return V; // No conversion 4040 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4041 return getTruncateExpr(V, Ty, Depth); 4042 return getZeroExtendExpr(V, Ty, Depth); 4043 } 4044 4045 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4046 unsigned Depth) { 4047 Type *SrcTy = V->getType(); 4048 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4049 "Cannot truncate or zero extend with non-integer arguments!"); 4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4051 return V; // No conversion 4052 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4053 return getTruncateExpr(V, Ty, Depth); 4054 return getSignExtendExpr(V, Ty, Depth); 4055 } 4056 4057 const SCEV * 4058 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4059 Type *SrcTy = V->getType(); 4060 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4061 "Cannot noop or zero extend with non-integer arguments!"); 4062 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4063 "getNoopOrZeroExtend cannot truncate!"); 4064 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4065 return V; // No conversion 4066 return getZeroExtendExpr(V, Ty); 4067 } 4068 4069 const SCEV * 4070 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4071 Type *SrcTy = V->getType(); 4072 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4073 "Cannot noop or sign extend with non-integer arguments!"); 4074 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4075 "getNoopOrSignExtend cannot truncate!"); 4076 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4077 return V; // No conversion 4078 return getSignExtendExpr(V, Ty); 4079 } 4080 4081 const SCEV * 4082 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4083 Type *SrcTy = V->getType(); 4084 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4085 "Cannot noop or any extend with non-integer arguments!"); 4086 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4087 "getNoopOrAnyExtend cannot truncate!"); 4088 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4089 return V; // No conversion 4090 return getAnyExtendExpr(V, Ty); 4091 } 4092 4093 const SCEV * 4094 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4095 Type *SrcTy = V->getType(); 4096 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4097 "Cannot truncate or noop with non-integer arguments!"); 4098 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4099 "getTruncateOrNoop cannot extend!"); 4100 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4101 return V; // No conversion 4102 return getTruncateExpr(V, Ty); 4103 } 4104 4105 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4106 const SCEV *RHS) { 4107 const SCEV *PromotedLHS = LHS; 4108 const SCEV *PromotedRHS = RHS; 4109 4110 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4111 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4112 else 4113 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4114 4115 return getUMaxExpr(PromotedLHS, PromotedRHS); 4116 } 4117 4118 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4119 const SCEV *RHS) { 4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4121 return getUMinFromMismatchedTypes(Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4125 SmallVectorImpl<const SCEV *> &Ops) { 4126 assert(!Ops.empty() && "At least one operand must be!"); 4127 // Trivial case. 4128 if (Ops.size() == 1) 4129 return Ops[0]; 4130 4131 // Find the max type first. 4132 Type *MaxType = nullptr; 4133 for (auto *S : Ops) 4134 if (MaxType) 4135 MaxType = getWiderType(MaxType, S->getType()); 4136 else 4137 MaxType = S->getType(); 4138 assert(MaxType && "Failed to find maximum type!"); 4139 4140 // Extend all ops to max type. 4141 SmallVector<const SCEV *, 2> PromotedOps; 4142 for (auto *S : Ops) 4143 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4144 4145 // Generate umin. 4146 return getUMinExpr(PromotedOps); 4147 } 4148 4149 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4150 // A pointer operand may evaluate to a nonpointer expression, such as null. 4151 if (!V->getType()->isPointerTy()) 4152 return V; 4153 4154 while (true) { 4155 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4156 V = Cast->getOperand(); 4157 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4158 const SCEV *PtrOp = nullptr; 4159 for (const SCEV *NAryOp : NAry->operands()) { 4160 if (NAryOp->getType()->isPointerTy()) { 4161 // Cannot find the base of an expression with multiple pointer ops. 4162 if (PtrOp) 4163 return V; 4164 PtrOp = NAryOp; 4165 } 4166 } 4167 if (!PtrOp) // All operands were non-pointer. 4168 return V; 4169 V = PtrOp; 4170 } else // Not something we can look further into. 4171 return V; 4172 } 4173 } 4174 4175 /// Push users of the given Instruction onto the given Worklist. 4176 static void 4177 PushDefUseChildren(Instruction *I, 4178 SmallVectorImpl<Instruction *> &Worklist) { 4179 // Push the def-use children onto the Worklist stack. 4180 for (User *U : I->users()) 4181 Worklist.push_back(cast<Instruction>(U)); 4182 } 4183 4184 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4185 SmallVector<Instruction *, 16> Worklist; 4186 PushDefUseChildren(PN, Worklist); 4187 4188 SmallPtrSet<Instruction *, 8> Visited; 4189 Visited.insert(PN); 4190 while (!Worklist.empty()) { 4191 Instruction *I = Worklist.pop_back_val(); 4192 if (!Visited.insert(I).second) 4193 continue; 4194 4195 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4196 if (It != ValueExprMap.end()) { 4197 const SCEV *Old = It->second; 4198 4199 // Short-circuit the def-use traversal if the symbolic name 4200 // ceases to appear in expressions. 4201 if (Old != SymName && !hasOperand(Old, SymName)) 4202 continue; 4203 4204 // SCEVUnknown for a PHI either means that it has an unrecognized 4205 // structure, it's a PHI that's in the progress of being computed 4206 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4207 // additional loop trip count information isn't going to change anything. 4208 // In the second case, createNodeForPHI will perform the necessary 4209 // updates on its own when it gets to that point. In the third, we do 4210 // want to forget the SCEVUnknown. 4211 if (!isa<PHINode>(I) || 4212 !isa<SCEVUnknown>(Old) || 4213 (I != PN && Old == SymName)) { 4214 eraseValueFromMap(It->first); 4215 forgetMemoizedResults(Old); 4216 } 4217 } 4218 4219 PushDefUseChildren(I, Worklist); 4220 } 4221 } 4222 4223 namespace { 4224 4225 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4226 /// expression in case its Loop is L. If it is not L then 4227 /// if IgnoreOtherLoops is true then use AddRec itself 4228 /// otherwise rewrite cannot be done. 4229 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4230 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4231 public: 4232 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4233 bool IgnoreOtherLoops = true) { 4234 SCEVInitRewriter Rewriter(L, SE); 4235 const SCEV *Result = Rewriter.visit(S); 4236 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4237 return SE.getCouldNotCompute(); 4238 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4239 ? SE.getCouldNotCompute() 4240 : Result; 4241 } 4242 4243 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4244 if (!SE.isLoopInvariant(Expr, L)) 4245 SeenLoopVariantSCEVUnknown = true; 4246 return Expr; 4247 } 4248 4249 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4250 // Only re-write AddRecExprs for this loop. 4251 if (Expr->getLoop() == L) 4252 return Expr->getStart(); 4253 SeenOtherLoops = true; 4254 return Expr; 4255 } 4256 4257 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4258 4259 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4260 4261 private: 4262 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4263 : SCEVRewriteVisitor(SE), L(L) {} 4264 4265 const Loop *L; 4266 bool SeenLoopVariantSCEVUnknown = false; 4267 bool SeenOtherLoops = false; 4268 }; 4269 4270 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4271 /// increment expression in case its Loop is L. If it is not L then 4272 /// use AddRec itself. 4273 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4274 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4275 public: 4276 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4277 SCEVPostIncRewriter Rewriter(L, SE); 4278 const SCEV *Result = Rewriter.visit(S); 4279 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4280 ? SE.getCouldNotCompute() 4281 : Result; 4282 } 4283 4284 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4285 if (!SE.isLoopInvariant(Expr, L)) 4286 SeenLoopVariantSCEVUnknown = true; 4287 return Expr; 4288 } 4289 4290 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4291 // Only re-write AddRecExprs for this loop. 4292 if (Expr->getLoop() == L) 4293 return Expr->getPostIncExpr(SE); 4294 SeenOtherLoops = true; 4295 return Expr; 4296 } 4297 4298 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4299 4300 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4301 4302 private: 4303 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4304 : SCEVRewriteVisitor(SE), L(L) {} 4305 4306 const Loop *L; 4307 bool SeenLoopVariantSCEVUnknown = false; 4308 bool SeenOtherLoops = false; 4309 }; 4310 4311 /// This class evaluates the compare condition by matching it against the 4312 /// condition of loop latch. If there is a match we assume a true value 4313 /// for the condition while building SCEV nodes. 4314 class SCEVBackedgeConditionFolder 4315 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4316 public: 4317 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4318 ScalarEvolution &SE) { 4319 bool IsPosBECond = false; 4320 Value *BECond = nullptr; 4321 if (BasicBlock *Latch = L->getLoopLatch()) { 4322 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4323 if (BI && BI->isConditional()) { 4324 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4325 "Both outgoing branches should not target same header!"); 4326 BECond = BI->getCondition(); 4327 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4328 } else { 4329 return S; 4330 } 4331 } 4332 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4333 return Rewriter.visit(S); 4334 } 4335 4336 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4337 const SCEV *Result = Expr; 4338 bool InvariantF = SE.isLoopInvariant(Expr, L); 4339 4340 if (!InvariantF) { 4341 Instruction *I = cast<Instruction>(Expr->getValue()); 4342 switch (I->getOpcode()) { 4343 case Instruction::Select: { 4344 SelectInst *SI = cast<SelectInst>(I); 4345 Optional<const SCEV *> Res = 4346 compareWithBackedgeCondition(SI->getCondition()); 4347 if (Res.hasValue()) { 4348 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4349 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4350 } 4351 break; 4352 } 4353 default: { 4354 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4355 if (Res.hasValue()) 4356 Result = Res.getValue(); 4357 break; 4358 } 4359 } 4360 } 4361 return Result; 4362 } 4363 4364 private: 4365 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4366 bool IsPosBECond, ScalarEvolution &SE) 4367 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4368 IsPositiveBECond(IsPosBECond) {} 4369 4370 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4371 4372 const Loop *L; 4373 /// Loop back condition. 4374 Value *BackedgeCond = nullptr; 4375 /// Set to true if loop back is on positive branch condition. 4376 bool IsPositiveBECond; 4377 }; 4378 4379 Optional<const SCEV *> 4380 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4381 4382 // If value matches the backedge condition for loop latch, 4383 // then return a constant evolution node based on loopback 4384 // branch taken. 4385 if (BackedgeCond == IC) 4386 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4387 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4388 return None; 4389 } 4390 4391 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4392 public: 4393 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4394 ScalarEvolution &SE) { 4395 SCEVShiftRewriter Rewriter(L, SE); 4396 const SCEV *Result = Rewriter.visit(S); 4397 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4398 } 4399 4400 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4401 // Only allow AddRecExprs for this loop. 4402 if (!SE.isLoopInvariant(Expr, L)) 4403 Valid = false; 4404 return Expr; 4405 } 4406 4407 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4408 if (Expr->getLoop() == L && Expr->isAffine()) 4409 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4410 Valid = false; 4411 return Expr; 4412 } 4413 4414 bool isValid() { return Valid; } 4415 4416 private: 4417 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4418 : SCEVRewriteVisitor(SE), L(L) {} 4419 4420 const Loop *L; 4421 bool Valid = true; 4422 }; 4423 4424 } // end anonymous namespace 4425 4426 SCEV::NoWrapFlags 4427 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4428 if (!AR->isAffine()) 4429 return SCEV::FlagAnyWrap; 4430 4431 using OBO = OverflowingBinaryOperator; 4432 4433 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4434 4435 if (!AR->hasNoSignedWrap()) { 4436 ConstantRange AddRecRange = getSignedRange(AR); 4437 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4438 4439 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4440 Instruction::Add, IncRange, OBO::NoSignedWrap); 4441 if (NSWRegion.contains(AddRecRange)) 4442 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4443 } 4444 4445 if (!AR->hasNoUnsignedWrap()) { 4446 ConstantRange AddRecRange = getUnsignedRange(AR); 4447 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4448 4449 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4450 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4451 if (NUWRegion.contains(AddRecRange)) 4452 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4453 } 4454 4455 return Result; 4456 } 4457 4458 SCEV::NoWrapFlags 4459 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4460 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4461 4462 if (AR->hasNoSignedWrap()) 4463 return Result; 4464 4465 if (!AR->isAffine()) 4466 return Result; 4467 4468 const SCEV *Step = AR->getStepRecurrence(*this); 4469 const Loop *L = AR->getLoop(); 4470 4471 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4472 // Note that this serves two purposes: It filters out loops that are 4473 // simply not analyzable, and it covers the case where this code is 4474 // being called from within backedge-taken count analysis, such that 4475 // attempting to ask for the backedge-taken count would likely result 4476 // in infinite recursion. In the later case, the analysis code will 4477 // cope with a conservative value, and it will take care to purge 4478 // that value once it has finished. 4479 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4480 4481 // Normally, in the cases we can prove no-overflow via a 4482 // backedge guarding condition, we can also compute a backedge 4483 // taken count for the loop. The exceptions are assumptions and 4484 // guards present in the loop -- SCEV is not great at exploiting 4485 // these to compute max backedge taken counts, but can still use 4486 // these to prove lack of overflow. Use this fact to avoid 4487 // doing extra work that may not pay off. 4488 4489 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4490 AC.assumptions().empty()) 4491 return Result; 4492 4493 // If the backedge is guarded by a comparison with the pre-inc value the 4494 // addrec is safe. Also, if the entry is guarded by a comparison with the 4495 // start value and the backedge is guarded by a comparison with the post-inc 4496 // value, the addrec is safe. 4497 ICmpInst::Predicate Pred; 4498 const SCEV *OverflowLimit = 4499 getSignedOverflowLimitForStep(Step, &Pred, this); 4500 if (OverflowLimit && 4501 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4502 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4503 Result = setFlags(Result, SCEV::FlagNSW); 4504 } 4505 return Result; 4506 } 4507 SCEV::NoWrapFlags 4508 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4509 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4510 4511 if (AR->hasNoUnsignedWrap()) 4512 return Result; 4513 4514 if (!AR->isAffine()) 4515 return Result; 4516 4517 const SCEV *Step = AR->getStepRecurrence(*this); 4518 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4519 const Loop *L = AR->getLoop(); 4520 4521 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4522 // Note that this serves two purposes: It filters out loops that are 4523 // simply not analyzable, and it covers the case where this code is 4524 // being called from within backedge-taken count analysis, such that 4525 // attempting to ask for the backedge-taken count would likely result 4526 // in infinite recursion. In the later case, the analysis code will 4527 // cope with a conservative value, and it will take care to purge 4528 // that value once it has finished. 4529 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4530 4531 // Normally, in the cases we can prove no-overflow via a 4532 // backedge guarding condition, we can also compute a backedge 4533 // taken count for the loop. The exceptions are assumptions and 4534 // guards present in the loop -- SCEV is not great at exploiting 4535 // these to compute max backedge taken counts, but can still use 4536 // these to prove lack of overflow. Use this fact to avoid 4537 // doing extra work that may not pay off. 4538 4539 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4540 AC.assumptions().empty()) 4541 return Result; 4542 4543 // If the backedge is guarded by a comparison with the pre-inc value the 4544 // addrec is safe. Also, if the entry is guarded by a comparison with the 4545 // start value and the backedge is guarded by a comparison with the post-inc 4546 // value, the addrec is safe. 4547 if (isKnownPositive(Step)) { 4548 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4549 getUnsignedRangeMax(Step)); 4550 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4551 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4552 Result = setFlags(Result, SCEV::FlagNUW); 4553 } 4554 } 4555 4556 return Result; 4557 } 4558 4559 namespace { 4560 4561 /// Represents an abstract binary operation. This may exist as a 4562 /// normal instruction or constant expression, or may have been 4563 /// derived from an expression tree. 4564 struct BinaryOp { 4565 unsigned Opcode; 4566 Value *LHS; 4567 Value *RHS; 4568 bool IsNSW = false; 4569 bool IsNUW = false; 4570 4571 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4572 /// constant expression. 4573 Operator *Op = nullptr; 4574 4575 explicit BinaryOp(Operator *Op) 4576 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4577 Op(Op) { 4578 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4579 IsNSW = OBO->hasNoSignedWrap(); 4580 IsNUW = OBO->hasNoUnsignedWrap(); 4581 } 4582 } 4583 4584 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4585 bool IsNUW = false) 4586 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4587 }; 4588 4589 } // end anonymous namespace 4590 4591 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4592 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4593 auto *Op = dyn_cast<Operator>(V); 4594 if (!Op) 4595 return None; 4596 4597 // Implementation detail: all the cleverness here should happen without 4598 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4599 // SCEV expressions when possible, and we should not break that. 4600 4601 switch (Op->getOpcode()) { 4602 case Instruction::Add: 4603 case Instruction::Sub: 4604 case Instruction::Mul: 4605 case Instruction::UDiv: 4606 case Instruction::URem: 4607 case Instruction::And: 4608 case Instruction::Or: 4609 case Instruction::AShr: 4610 case Instruction::Shl: 4611 return BinaryOp(Op); 4612 4613 case Instruction::Xor: 4614 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4615 // If the RHS of the xor is a signmask, then this is just an add. 4616 // Instcombine turns add of signmask into xor as a strength reduction step. 4617 if (RHSC->getValue().isSignMask()) 4618 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4619 return BinaryOp(Op); 4620 4621 case Instruction::LShr: 4622 // Turn logical shift right of a constant into a unsigned divide. 4623 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4624 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4625 4626 // If the shift count is not less than the bitwidth, the result of 4627 // the shift is undefined. Don't try to analyze it, because the 4628 // resolution chosen here may differ from the resolution chosen in 4629 // other parts of the compiler. 4630 if (SA->getValue().ult(BitWidth)) { 4631 Constant *X = 4632 ConstantInt::get(SA->getContext(), 4633 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4634 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4635 } 4636 } 4637 return BinaryOp(Op); 4638 4639 case Instruction::ExtractValue: { 4640 auto *EVI = cast<ExtractValueInst>(Op); 4641 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4642 break; 4643 4644 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4645 if (!WO) 4646 break; 4647 4648 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4649 bool Signed = WO->isSigned(); 4650 // TODO: Should add nuw/nsw flags for mul as well. 4651 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4652 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4653 4654 // Now that we know that all uses of the arithmetic-result component of 4655 // CI are guarded by the overflow check, we can go ahead and pretend 4656 // that the arithmetic is non-overflowing. 4657 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4658 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4659 } 4660 4661 default: 4662 break; 4663 } 4664 4665 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4666 // semantics as a Sub, return a binary sub expression. 4667 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4668 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4669 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4670 4671 return None; 4672 } 4673 4674 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4675 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4676 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4677 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4678 /// follows one of the following patterns: 4679 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4680 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4681 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4682 /// we return the type of the truncation operation, and indicate whether the 4683 /// truncated type should be treated as signed/unsigned by setting 4684 /// \p Signed to true/false, respectively. 4685 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4686 bool &Signed, ScalarEvolution &SE) { 4687 // The case where Op == SymbolicPHI (that is, with no type conversions on 4688 // the way) is handled by the regular add recurrence creating logic and 4689 // would have already been triggered in createAddRecForPHI. Reaching it here 4690 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4691 // because one of the other operands of the SCEVAddExpr updating this PHI is 4692 // not invariant). 4693 // 4694 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4695 // this case predicates that allow us to prove that Op == SymbolicPHI will 4696 // be added. 4697 if (Op == SymbolicPHI) 4698 return nullptr; 4699 4700 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4701 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4702 if (SourceBits != NewBits) 4703 return nullptr; 4704 4705 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4706 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4707 if (!SExt && !ZExt) 4708 return nullptr; 4709 const SCEVTruncateExpr *Trunc = 4710 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4711 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4712 if (!Trunc) 4713 return nullptr; 4714 const SCEV *X = Trunc->getOperand(); 4715 if (X != SymbolicPHI) 4716 return nullptr; 4717 Signed = SExt != nullptr; 4718 return Trunc->getType(); 4719 } 4720 4721 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4722 if (!PN->getType()->isIntegerTy()) 4723 return nullptr; 4724 const Loop *L = LI.getLoopFor(PN->getParent()); 4725 if (!L || L->getHeader() != PN->getParent()) 4726 return nullptr; 4727 return L; 4728 } 4729 4730 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4731 // computation that updates the phi follows the following pattern: 4732 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4733 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4734 // If so, try to see if it can be rewritten as an AddRecExpr under some 4735 // Predicates. If successful, return them as a pair. Also cache the results 4736 // of the analysis. 4737 // 4738 // Example usage scenario: 4739 // Say the Rewriter is called for the following SCEV: 4740 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4741 // where: 4742 // %X = phi i64 (%Start, %BEValue) 4743 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4744 // and call this function with %SymbolicPHI = %X. 4745 // 4746 // The analysis will find that the value coming around the backedge has 4747 // the following SCEV: 4748 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4749 // Upon concluding that this matches the desired pattern, the function 4750 // will return the pair {NewAddRec, SmallPredsVec} where: 4751 // NewAddRec = {%Start,+,%Step} 4752 // SmallPredsVec = {P1, P2, P3} as follows: 4753 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4754 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4755 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4756 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4757 // under the predicates {P1,P2,P3}. 4758 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4759 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4760 // 4761 // TODO's: 4762 // 4763 // 1) Extend the Induction descriptor to also support inductions that involve 4764 // casts: When needed (namely, when we are called in the context of the 4765 // vectorizer induction analysis), a Set of cast instructions will be 4766 // populated by this method, and provided back to isInductionPHI. This is 4767 // needed to allow the vectorizer to properly record them to be ignored by 4768 // the cost model and to avoid vectorizing them (otherwise these casts, 4769 // which are redundant under the runtime overflow checks, will be 4770 // vectorized, which can be costly). 4771 // 4772 // 2) Support additional induction/PHISCEV patterns: We also want to support 4773 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4774 // after the induction update operation (the induction increment): 4775 // 4776 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4777 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4778 // 4779 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4780 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4781 // 4782 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4783 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4784 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4785 SmallVector<const SCEVPredicate *, 3> Predicates; 4786 4787 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4788 // return an AddRec expression under some predicate. 4789 4790 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4791 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4792 assert(L && "Expecting an integer loop header phi"); 4793 4794 // The loop may have multiple entrances or multiple exits; we can analyze 4795 // this phi as an addrec if it has a unique entry value and a unique 4796 // backedge value. 4797 Value *BEValueV = nullptr, *StartValueV = nullptr; 4798 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4799 Value *V = PN->getIncomingValue(i); 4800 if (L->contains(PN->getIncomingBlock(i))) { 4801 if (!BEValueV) { 4802 BEValueV = V; 4803 } else if (BEValueV != V) { 4804 BEValueV = nullptr; 4805 break; 4806 } 4807 } else if (!StartValueV) { 4808 StartValueV = V; 4809 } else if (StartValueV != V) { 4810 StartValueV = nullptr; 4811 break; 4812 } 4813 } 4814 if (!BEValueV || !StartValueV) 4815 return None; 4816 4817 const SCEV *BEValue = getSCEV(BEValueV); 4818 4819 // If the value coming around the backedge is an add with the symbolic 4820 // value we just inserted, possibly with casts that we can ignore under 4821 // an appropriate runtime guard, then we found a simple induction variable! 4822 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4823 if (!Add) 4824 return None; 4825 4826 // If there is a single occurrence of the symbolic value, possibly 4827 // casted, replace it with a recurrence. 4828 unsigned FoundIndex = Add->getNumOperands(); 4829 Type *TruncTy = nullptr; 4830 bool Signed; 4831 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4832 if ((TruncTy = 4833 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4834 if (FoundIndex == e) { 4835 FoundIndex = i; 4836 break; 4837 } 4838 4839 if (FoundIndex == Add->getNumOperands()) 4840 return None; 4841 4842 // Create an add with everything but the specified operand. 4843 SmallVector<const SCEV *, 8> Ops; 4844 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4845 if (i != FoundIndex) 4846 Ops.push_back(Add->getOperand(i)); 4847 const SCEV *Accum = getAddExpr(Ops); 4848 4849 // The runtime checks will not be valid if the step amount is 4850 // varying inside the loop. 4851 if (!isLoopInvariant(Accum, L)) 4852 return None; 4853 4854 // *** Part2: Create the predicates 4855 4856 // Analysis was successful: we have a phi-with-cast pattern for which we 4857 // can return an AddRec expression under the following predicates: 4858 // 4859 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4860 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4861 // P2: An Equal predicate that guarantees that 4862 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4863 // P3: An Equal predicate that guarantees that 4864 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4865 // 4866 // As we next prove, the above predicates guarantee that: 4867 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4868 // 4869 // 4870 // More formally, we want to prove that: 4871 // Expr(i+1) = Start + (i+1) * Accum 4872 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4873 // 4874 // Given that: 4875 // 1) Expr(0) = Start 4876 // 2) Expr(1) = Start + Accum 4877 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4878 // 3) Induction hypothesis (step i): 4879 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4880 // 4881 // Proof: 4882 // Expr(i+1) = 4883 // = Start + (i+1)*Accum 4884 // = (Start + i*Accum) + Accum 4885 // = Expr(i) + Accum 4886 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4887 // :: from step i 4888 // 4889 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4890 // 4891 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4892 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4893 // + Accum :: from P3 4894 // 4895 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4896 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4897 // 4898 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4899 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4900 // 4901 // By induction, the same applies to all iterations 1<=i<n: 4902 // 4903 4904 // Create a truncated addrec for which we will add a no overflow check (P1). 4905 const SCEV *StartVal = getSCEV(StartValueV); 4906 const SCEV *PHISCEV = 4907 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4908 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4909 4910 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4911 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4912 // will be constant. 4913 // 4914 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4915 // add P1. 4916 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4917 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4918 Signed ? SCEVWrapPredicate::IncrementNSSW 4919 : SCEVWrapPredicate::IncrementNUSW; 4920 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4921 Predicates.push_back(AddRecPred); 4922 } 4923 4924 // Create the Equal Predicates P2,P3: 4925 4926 // It is possible that the predicates P2 and/or P3 are computable at 4927 // compile time due to StartVal and/or Accum being constants. 4928 // If either one is, then we can check that now and escape if either P2 4929 // or P3 is false. 4930 4931 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4932 // for each of StartVal and Accum 4933 auto getExtendedExpr = [&](const SCEV *Expr, 4934 bool CreateSignExtend) -> const SCEV * { 4935 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4936 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4937 const SCEV *ExtendedExpr = 4938 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4939 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4940 return ExtendedExpr; 4941 }; 4942 4943 // Given: 4944 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4945 // = getExtendedExpr(Expr) 4946 // Determine whether the predicate P: Expr == ExtendedExpr 4947 // is known to be false at compile time 4948 auto PredIsKnownFalse = [&](const SCEV *Expr, 4949 const SCEV *ExtendedExpr) -> bool { 4950 return Expr != ExtendedExpr && 4951 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4952 }; 4953 4954 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4955 if (PredIsKnownFalse(StartVal, StartExtended)) { 4956 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4957 return None; 4958 } 4959 4960 // The Step is always Signed (because the overflow checks are either 4961 // NSSW or NUSW) 4962 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4963 if (PredIsKnownFalse(Accum, AccumExtended)) { 4964 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4965 return None; 4966 } 4967 4968 auto AppendPredicate = [&](const SCEV *Expr, 4969 const SCEV *ExtendedExpr) -> void { 4970 if (Expr != ExtendedExpr && 4971 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4972 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4973 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4974 Predicates.push_back(Pred); 4975 } 4976 }; 4977 4978 AppendPredicate(StartVal, StartExtended); 4979 AppendPredicate(Accum, AccumExtended); 4980 4981 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4982 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4983 // into NewAR if it will also add the runtime overflow checks specified in 4984 // Predicates. 4985 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4986 4987 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4988 std::make_pair(NewAR, Predicates); 4989 // Remember the result of the analysis for this SCEV at this locayyytion. 4990 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4991 return PredRewrite; 4992 } 4993 4994 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4995 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4996 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4997 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4998 if (!L) 4999 return None; 5000 5001 // Check to see if we already analyzed this PHI. 5002 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5003 if (I != PredicatedSCEVRewrites.end()) { 5004 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5005 I->second; 5006 // Analysis was done before and failed to create an AddRec: 5007 if (Rewrite.first == SymbolicPHI) 5008 return None; 5009 // Analysis was done before and succeeded to create an AddRec under 5010 // a predicate: 5011 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5012 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5013 return Rewrite; 5014 } 5015 5016 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5017 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5018 5019 // Record in the cache that the analysis failed 5020 if (!Rewrite) { 5021 SmallVector<const SCEVPredicate *, 3> Predicates; 5022 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5023 return None; 5024 } 5025 5026 return Rewrite; 5027 } 5028 5029 // FIXME: This utility is currently required because the Rewriter currently 5030 // does not rewrite this expression: 5031 // {0, +, (sext ix (trunc iy to ix) to iy)} 5032 // into {0, +, %step}, 5033 // even when the following Equal predicate exists: 5034 // "%step == (sext ix (trunc iy to ix) to iy)". 5035 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5036 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5037 if (AR1 == AR2) 5038 return true; 5039 5040 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5041 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5042 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5043 return false; 5044 return true; 5045 }; 5046 5047 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5048 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5049 return false; 5050 return true; 5051 } 5052 5053 /// A helper function for createAddRecFromPHI to handle simple cases. 5054 /// 5055 /// This function tries to find an AddRec expression for the simplest (yet most 5056 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5057 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5058 /// technique for finding the AddRec expression. 5059 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5060 Value *BEValueV, 5061 Value *StartValueV) { 5062 const Loop *L = LI.getLoopFor(PN->getParent()); 5063 assert(L && L->getHeader() == PN->getParent()); 5064 assert(BEValueV && StartValueV); 5065 5066 auto BO = MatchBinaryOp(BEValueV, DT); 5067 if (!BO) 5068 return nullptr; 5069 5070 if (BO->Opcode != Instruction::Add) 5071 return nullptr; 5072 5073 const SCEV *Accum = nullptr; 5074 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5075 Accum = getSCEV(BO->RHS); 5076 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5077 Accum = getSCEV(BO->LHS); 5078 5079 if (!Accum) 5080 return nullptr; 5081 5082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5083 if (BO->IsNUW) 5084 Flags = setFlags(Flags, SCEV::FlagNUW); 5085 if (BO->IsNSW) 5086 Flags = setFlags(Flags, SCEV::FlagNSW); 5087 5088 const SCEV *StartVal = getSCEV(StartValueV); 5089 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5090 5091 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5092 5093 // We can add Flags to the post-inc expression only if we 5094 // know that it is *undefined behavior* for BEValueV to 5095 // overflow. 5096 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5097 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5098 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5099 5100 return PHISCEV; 5101 } 5102 5103 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5104 const Loop *L = LI.getLoopFor(PN->getParent()); 5105 if (!L || L->getHeader() != PN->getParent()) 5106 return nullptr; 5107 5108 // The loop may have multiple entrances or multiple exits; we can analyze 5109 // this phi as an addrec if it has a unique entry value and a unique 5110 // backedge value. 5111 Value *BEValueV = nullptr, *StartValueV = nullptr; 5112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5113 Value *V = PN->getIncomingValue(i); 5114 if (L->contains(PN->getIncomingBlock(i))) { 5115 if (!BEValueV) { 5116 BEValueV = V; 5117 } else if (BEValueV != V) { 5118 BEValueV = nullptr; 5119 break; 5120 } 5121 } else if (!StartValueV) { 5122 StartValueV = V; 5123 } else if (StartValueV != V) { 5124 StartValueV = nullptr; 5125 break; 5126 } 5127 } 5128 if (!BEValueV || !StartValueV) 5129 return nullptr; 5130 5131 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5132 "PHI node already processed?"); 5133 5134 // First, try to find AddRec expression without creating a fictituos symbolic 5135 // value for PN. 5136 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5137 return S; 5138 5139 // Handle PHI node value symbolically. 5140 const SCEV *SymbolicName = getUnknown(PN); 5141 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5142 5143 // Using this symbolic name for the PHI, analyze the value coming around 5144 // the back-edge. 5145 const SCEV *BEValue = getSCEV(BEValueV); 5146 5147 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5148 // has a special value for the first iteration of the loop. 5149 5150 // If the value coming around the backedge is an add with the symbolic 5151 // value we just inserted, then we found a simple induction variable! 5152 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5153 // If there is a single occurrence of the symbolic value, replace it 5154 // with a recurrence. 5155 unsigned FoundIndex = Add->getNumOperands(); 5156 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5157 if (Add->getOperand(i) == SymbolicName) 5158 if (FoundIndex == e) { 5159 FoundIndex = i; 5160 break; 5161 } 5162 5163 if (FoundIndex != Add->getNumOperands()) { 5164 // Create an add with everything but the specified operand. 5165 SmallVector<const SCEV *, 8> Ops; 5166 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5167 if (i != FoundIndex) 5168 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5169 L, *this)); 5170 const SCEV *Accum = getAddExpr(Ops); 5171 5172 // This is not a valid addrec if the step amount is varying each 5173 // loop iteration, but is not itself an addrec in this loop. 5174 if (isLoopInvariant(Accum, L) || 5175 (isa<SCEVAddRecExpr>(Accum) && 5176 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5177 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5178 5179 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5180 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5181 if (BO->IsNUW) 5182 Flags = setFlags(Flags, SCEV::FlagNUW); 5183 if (BO->IsNSW) 5184 Flags = setFlags(Flags, SCEV::FlagNSW); 5185 } 5186 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5187 // If the increment is an inbounds GEP, then we know the address 5188 // space cannot be wrapped around. We cannot make any guarantee 5189 // about signed or unsigned overflow because pointers are 5190 // unsigned but we may have a negative index from the base 5191 // pointer. We can guarantee that no unsigned wrap occurs if the 5192 // indices form a positive value. 5193 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5194 Flags = setFlags(Flags, SCEV::FlagNW); 5195 5196 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5197 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5198 Flags = setFlags(Flags, SCEV::FlagNUW); 5199 } 5200 5201 // We cannot transfer nuw and nsw flags from subtraction 5202 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5203 // for instance. 5204 } 5205 5206 const SCEV *StartVal = getSCEV(StartValueV); 5207 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5208 5209 // Okay, for the entire analysis of this edge we assumed the PHI 5210 // to be symbolic. We now need to go back and purge all of the 5211 // entries for the scalars that use the symbolic expression. 5212 forgetSymbolicName(PN, SymbolicName); 5213 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5214 5215 // We can add Flags to the post-inc expression only if we 5216 // know that it is *undefined behavior* for BEValueV to 5217 // overflow. 5218 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5219 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5220 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5221 5222 return PHISCEV; 5223 } 5224 } 5225 } else { 5226 // Otherwise, this could be a loop like this: 5227 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5228 // In this case, j = {1,+,1} and BEValue is j. 5229 // Because the other in-value of i (0) fits the evolution of BEValue 5230 // i really is an addrec evolution. 5231 // 5232 // We can generalize this saying that i is the shifted value of BEValue 5233 // by one iteration: 5234 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5235 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5236 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5237 if (Shifted != getCouldNotCompute() && 5238 Start != getCouldNotCompute()) { 5239 const SCEV *StartVal = getSCEV(StartValueV); 5240 if (Start == StartVal) { 5241 // Okay, for the entire analysis of this edge we assumed the PHI 5242 // to be symbolic. We now need to go back and purge all of the 5243 // entries for the scalars that use the symbolic expression. 5244 forgetSymbolicName(PN, SymbolicName); 5245 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5246 return Shifted; 5247 } 5248 } 5249 } 5250 5251 // Remove the temporary PHI node SCEV that has been inserted while intending 5252 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5253 // as it will prevent later (possibly simpler) SCEV expressions to be added 5254 // to the ValueExprMap. 5255 eraseValueFromMap(PN); 5256 5257 return nullptr; 5258 } 5259 5260 // Checks if the SCEV S is available at BB. S is considered available at BB 5261 // if S can be materialized at BB without introducing a fault. 5262 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5263 BasicBlock *BB) { 5264 struct CheckAvailable { 5265 bool TraversalDone = false; 5266 bool Available = true; 5267 5268 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5269 BasicBlock *BB = nullptr; 5270 DominatorTree &DT; 5271 5272 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5273 : L(L), BB(BB), DT(DT) {} 5274 5275 bool setUnavailable() { 5276 TraversalDone = true; 5277 Available = false; 5278 return false; 5279 } 5280 5281 bool follow(const SCEV *S) { 5282 switch (S->getSCEVType()) { 5283 case scConstant: 5284 case scPtrToInt: 5285 case scTruncate: 5286 case scZeroExtend: 5287 case scSignExtend: 5288 case scAddExpr: 5289 case scMulExpr: 5290 case scUMaxExpr: 5291 case scSMaxExpr: 5292 case scUMinExpr: 5293 case scSMinExpr: 5294 // These expressions are available if their operand(s) is/are. 5295 return true; 5296 5297 case scAddRecExpr: { 5298 // We allow add recurrences that are on the loop BB is in, or some 5299 // outer loop. This guarantees availability because the value of the 5300 // add recurrence at BB is simply the "current" value of the induction 5301 // variable. We can relax this in the future; for instance an add 5302 // recurrence on a sibling dominating loop is also available at BB. 5303 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5304 if (L && (ARLoop == L || ARLoop->contains(L))) 5305 return true; 5306 5307 return setUnavailable(); 5308 } 5309 5310 case scUnknown: { 5311 // For SCEVUnknown, we check for simple dominance. 5312 const auto *SU = cast<SCEVUnknown>(S); 5313 Value *V = SU->getValue(); 5314 5315 if (isa<Argument>(V)) 5316 return false; 5317 5318 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5319 return false; 5320 5321 return setUnavailable(); 5322 } 5323 5324 case scUDivExpr: 5325 case scCouldNotCompute: 5326 // We do not try to smart about these at all. 5327 return setUnavailable(); 5328 } 5329 llvm_unreachable("Unknown SCEV kind!"); 5330 } 5331 5332 bool isDone() { return TraversalDone; } 5333 }; 5334 5335 CheckAvailable CA(L, BB, DT); 5336 SCEVTraversal<CheckAvailable> ST(CA); 5337 5338 ST.visitAll(S); 5339 return CA.Available; 5340 } 5341 5342 // Try to match a control flow sequence that branches out at BI and merges back 5343 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5344 // match. 5345 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5346 Value *&C, Value *&LHS, Value *&RHS) { 5347 C = BI->getCondition(); 5348 5349 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5350 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5351 5352 if (!LeftEdge.isSingleEdge()) 5353 return false; 5354 5355 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5356 5357 Use &LeftUse = Merge->getOperandUse(0); 5358 Use &RightUse = Merge->getOperandUse(1); 5359 5360 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5361 LHS = LeftUse; 5362 RHS = RightUse; 5363 return true; 5364 } 5365 5366 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5367 LHS = RightUse; 5368 RHS = LeftUse; 5369 return true; 5370 } 5371 5372 return false; 5373 } 5374 5375 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5376 auto IsReachable = 5377 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5378 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5379 const Loop *L = LI.getLoopFor(PN->getParent()); 5380 5381 // We don't want to break LCSSA, even in a SCEV expression tree. 5382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5383 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5384 return nullptr; 5385 5386 // Try to match 5387 // 5388 // br %cond, label %left, label %right 5389 // left: 5390 // br label %merge 5391 // right: 5392 // br label %merge 5393 // merge: 5394 // V = phi [ %x, %left ], [ %y, %right ] 5395 // 5396 // as "select %cond, %x, %y" 5397 5398 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5399 assert(IDom && "At least the entry block should dominate PN"); 5400 5401 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5402 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5403 5404 if (BI && BI->isConditional() && 5405 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5406 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5407 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5408 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5409 } 5410 5411 return nullptr; 5412 } 5413 5414 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5415 if (const SCEV *S = createAddRecFromPHI(PN)) 5416 return S; 5417 5418 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5419 return S; 5420 5421 // If the PHI has a single incoming value, follow that value, unless the 5422 // PHI's incoming blocks are in a different loop, in which case doing so 5423 // risks breaking LCSSA form. Instcombine would normally zap these, but 5424 // it doesn't have DominatorTree information, so it may miss cases. 5425 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5426 if (LI.replacementPreservesLCSSAForm(PN, V)) 5427 return getSCEV(V); 5428 5429 // If it's not a loop phi, we can't handle it yet. 5430 return getUnknown(PN); 5431 } 5432 5433 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5434 Value *Cond, 5435 Value *TrueVal, 5436 Value *FalseVal) { 5437 // Handle "constant" branch or select. This can occur for instance when a 5438 // loop pass transforms an inner loop and moves on to process the outer loop. 5439 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5440 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5441 5442 // Try to match some simple smax or umax patterns. 5443 auto *ICI = dyn_cast<ICmpInst>(Cond); 5444 if (!ICI) 5445 return getUnknown(I); 5446 5447 Value *LHS = ICI->getOperand(0); 5448 Value *RHS = ICI->getOperand(1); 5449 5450 switch (ICI->getPredicate()) { 5451 case ICmpInst::ICMP_SLT: 5452 case ICmpInst::ICMP_SLE: 5453 std::swap(LHS, RHS); 5454 LLVM_FALLTHROUGH; 5455 case ICmpInst::ICMP_SGT: 5456 case ICmpInst::ICMP_SGE: 5457 // a >s b ? a+x : b+x -> smax(a, b)+x 5458 // a >s b ? b+x : a+x -> smin(a, b)+x 5459 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5460 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5461 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5462 const SCEV *LA = getSCEV(TrueVal); 5463 const SCEV *RA = getSCEV(FalseVal); 5464 const SCEV *LDiff = getMinusSCEV(LA, LS); 5465 const SCEV *RDiff = getMinusSCEV(RA, RS); 5466 if (LDiff == RDiff) 5467 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5468 LDiff = getMinusSCEV(LA, RS); 5469 RDiff = getMinusSCEV(RA, LS); 5470 if (LDiff == RDiff) 5471 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5472 } 5473 break; 5474 case ICmpInst::ICMP_ULT: 5475 case ICmpInst::ICMP_ULE: 5476 std::swap(LHS, RHS); 5477 LLVM_FALLTHROUGH; 5478 case ICmpInst::ICMP_UGT: 5479 case ICmpInst::ICMP_UGE: 5480 // a >u b ? a+x : b+x -> umax(a, b)+x 5481 // a >u b ? b+x : a+x -> umin(a, b)+x 5482 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5483 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5484 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5485 const SCEV *LA = getSCEV(TrueVal); 5486 const SCEV *RA = getSCEV(FalseVal); 5487 const SCEV *LDiff = getMinusSCEV(LA, LS); 5488 const SCEV *RDiff = getMinusSCEV(RA, RS); 5489 if (LDiff == RDiff) 5490 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5491 LDiff = getMinusSCEV(LA, RS); 5492 RDiff = getMinusSCEV(RA, LS); 5493 if (LDiff == RDiff) 5494 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5495 } 5496 break; 5497 case ICmpInst::ICMP_NE: 5498 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5499 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5500 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5501 const SCEV *One = getOne(I->getType()); 5502 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5503 const SCEV *LA = getSCEV(TrueVal); 5504 const SCEV *RA = getSCEV(FalseVal); 5505 const SCEV *LDiff = getMinusSCEV(LA, LS); 5506 const SCEV *RDiff = getMinusSCEV(RA, One); 5507 if (LDiff == RDiff) 5508 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5509 } 5510 break; 5511 case ICmpInst::ICMP_EQ: 5512 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5513 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5514 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5515 const SCEV *One = getOne(I->getType()); 5516 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5517 const SCEV *LA = getSCEV(TrueVal); 5518 const SCEV *RA = getSCEV(FalseVal); 5519 const SCEV *LDiff = getMinusSCEV(LA, One); 5520 const SCEV *RDiff = getMinusSCEV(RA, LS); 5521 if (LDiff == RDiff) 5522 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5523 } 5524 break; 5525 default: 5526 break; 5527 } 5528 5529 return getUnknown(I); 5530 } 5531 5532 /// Expand GEP instructions into add and multiply operations. This allows them 5533 /// to be analyzed by regular SCEV code. 5534 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5535 // Don't attempt to analyze GEPs over unsized objects. 5536 if (!GEP->getSourceElementType()->isSized()) 5537 return getUnknown(GEP); 5538 5539 SmallVector<const SCEV *, 4> IndexExprs; 5540 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5541 IndexExprs.push_back(getSCEV(*Index)); 5542 return getGEPExpr(GEP, IndexExprs); 5543 } 5544 5545 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5546 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5547 return C->getAPInt().countTrailingZeros(); 5548 5549 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5550 return GetMinTrailingZeros(I->getOperand()); 5551 5552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5553 return std::min(GetMinTrailingZeros(T->getOperand()), 5554 (uint32_t)getTypeSizeInBits(T->getType())); 5555 5556 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5557 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5558 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5559 ? getTypeSizeInBits(E->getType()) 5560 : OpRes; 5561 } 5562 5563 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5564 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5565 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5566 ? getTypeSizeInBits(E->getType()) 5567 : OpRes; 5568 } 5569 5570 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5571 // The result is the min of all operands results. 5572 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5573 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5574 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5575 return MinOpRes; 5576 } 5577 5578 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5579 // The result is the sum of all operands results. 5580 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5581 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5582 for (unsigned i = 1, e = M->getNumOperands(); 5583 SumOpRes != BitWidth && i != e; ++i) 5584 SumOpRes = 5585 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5586 return SumOpRes; 5587 } 5588 5589 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5590 // The result is the min of all operands results. 5591 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5592 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5593 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5594 return MinOpRes; 5595 } 5596 5597 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5598 // The result is the min of all operands results. 5599 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5600 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5601 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5602 return MinOpRes; 5603 } 5604 5605 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5606 // The result is the min of all operands results. 5607 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5608 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5609 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5610 return MinOpRes; 5611 } 5612 5613 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5614 // For a SCEVUnknown, ask ValueTracking. 5615 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5616 return Known.countMinTrailingZeros(); 5617 } 5618 5619 // SCEVUDivExpr 5620 return 0; 5621 } 5622 5623 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5624 auto I = MinTrailingZerosCache.find(S); 5625 if (I != MinTrailingZerosCache.end()) 5626 return I->second; 5627 5628 uint32_t Result = GetMinTrailingZerosImpl(S); 5629 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5630 assert(InsertPair.second && "Should insert a new key"); 5631 return InsertPair.first->second; 5632 } 5633 5634 /// Helper method to assign a range to V from metadata present in the IR. 5635 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5636 if (Instruction *I = dyn_cast<Instruction>(V)) 5637 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5638 return getConstantRangeFromMetadata(*MD); 5639 5640 return None; 5641 } 5642 5643 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5644 SCEV::NoWrapFlags Flags) { 5645 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5646 AddRec->setNoWrapFlags(Flags); 5647 UnsignedRanges.erase(AddRec); 5648 SignedRanges.erase(AddRec); 5649 } 5650 } 5651 5652 ConstantRange ScalarEvolution:: 5653 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5654 const DataLayout &DL = getDataLayout(); 5655 5656 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5657 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5658 5659 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5660 // use information about the trip count to improve our available range. Note 5661 // that the trip count independent cases are already handled by known bits. 5662 // WARNING: The definition of recurrence used here is subtly different than 5663 // the one used by AddRec (and thus most of this file). Step is allowed to 5664 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5665 // and other addrecs in the same loop (for non-affine addrecs). The code 5666 // below intentionally handles the case where step is not loop invariant. 5667 auto *P = dyn_cast<PHINode>(U->getValue()); 5668 if (!P) 5669 return FullSet; 5670 5671 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5672 // even the values that are not available in these blocks may come from them, 5673 // and this leads to false-positive recurrence test. 5674 for (auto *Pred : predecessors(P->getParent())) 5675 if (!DT.isReachableFromEntry(Pred)) 5676 return FullSet; 5677 5678 BinaryOperator *BO; 5679 Value *Start, *Step; 5680 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5681 return FullSet; 5682 5683 // If we found a recurrence in reachable code, we must be in a loop. Note 5684 // that BO might be in some subloop of L, and that's completely okay. 5685 auto *L = LI.getLoopFor(P->getParent()); 5686 assert(L && L->getHeader() == P->getParent()); 5687 if (!L->contains(BO->getParent())) 5688 // NOTE: This bailout should be an assert instead. However, asserting 5689 // the condition here exposes a case where LoopFusion is querying SCEV 5690 // with malformed loop information during the midst of the transform. 5691 // There doesn't appear to be an obvious fix, so for the moment bailout 5692 // until the caller issue can be fixed. PR49566 tracks the bug. 5693 return FullSet; 5694 5695 // TODO: Extend to other opcodes such as mul, and div 5696 switch (BO->getOpcode()) { 5697 default: 5698 return FullSet; 5699 case Instruction::AShr: 5700 case Instruction::LShr: 5701 case Instruction::Shl: 5702 break; 5703 }; 5704 5705 if (BO->getOperand(0) != P) 5706 // TODO: Handle the power function forms some day. 5707 return FullSet; 5708 5709 unsigned TC = getSmallConstantMaxTripCount(L); 5710 if (!TC || TC >= BitWidth) 5711 return FullSet; 5712 5713 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5714 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5715 assert(KnownStart.getBitWidth() == BitWidth && 5716 KnownStep.getBitWidth() == BitWidth); 5717 5718 // Compute total shift amount, being careful of overflow and bitwidths. 5719 auto MaxShiftAmt = KnownStep.getMaxValue(); 5720 APInt TCAP(BitWidth, TC-1); 5721 bool Overflow = false; 5722 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5723 if (Overflow) 5724 return FullSet; 5725 5726 switch (BO->getOpcode()) { 5727 default: 5728 llvm_unreachable("filtered out above"); 5729 case Instruction::AShr: { 5730 // For each ashr, three cases: 5731 // shift = 0 => unchanged value 5732 // saturation => 0 or -1 5733 // other => a value closer to zero (of the same sign) 5734 // Thus, the end value is closer to zero than the start. 5735 auto KnownEnd = KnownBits::ashr(KnownStart, 5736 KnownBits::makeConstant(TotalShift)); 5737 if (KnownStart.isNonNegative()) 5738 // Analogous to lshr (simply not yet canonicalized) 5739 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5740 KnownStart.getMaxValue() + 1); 5741 if (KnownStart.isNegative()) 5742 // End >=u Start && End <=s Start 5743 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5744 KnownEnd.getMaxValue() + 1); 5745 break; 5746 } 5747 case Instruction::LShr: { 5748 // For each lshr, three cases: 5749 // shift = 0 => unchanged value 5750 // saturation => 0 5751 // other => a smaller positive number 5752 // Thus, the low end of the unsigned range is the last value produced. 5753 auto KnownEnd = KnownBits::lshr(KnownStart, 5754 KnownBits::makeConstant(TotalShift)); 5755 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5756 KnownStart.getMaxValue() + 1); 5757 } 5758 case Instruction::Shl: { 5759 // Iff no bits are shifted out, value increases on every shift. 5760 auto KnownEnd = KnownBits::shl(KnownStart, 5761 KnownBits::makeConstant(TotalShift)); 5762 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5763 return ConstantRange(KnownStart.getMinValue(), 5764 KnownEnd.getMaxValue() + 1); 5765 break; 5766 } 5767 }; 5768 return FullSet; 5769 } 5770 5771 /// Determine the range for a particular SCEV. If SignHint is 5772 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5773 /// with a "cleaner" unsigned (resp. signed) representation. 5774 const ConstantRange & 5775 ScalarEvolution::getRangeRef(const SCEV *S, 5776 ScalarEvolution::RangeSignHint SignHint) { 5777 DenseMap<const SCEV *, ConstantRange> &Cache = 5778 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5779 : SignedRanges; 5780 ConstantRange::PreferredRangeType RangeType = 5781 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5782 ? ConstantRange::Unsigned : ConstantRange::Signed; 5783 5784 // See if we've computed this range already. 5785 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5786 if (I != Cache.end()) 5787 return I->second; 5788 5789 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5790 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5791 5792 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5793 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5794 using OBO = OverflowingBinaryOperator; 5795 5796 // If the value has known zeros, the maximum value will have those known zeros 5797 // as well. 5798 uint32_t TZ = GetMinTrailingZeros(S); 5799 if (TZ != 0) { 5800 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5801 ConservativeResult = 5802 ConstantRange(APInt::getMinValue(BitWidth), 5803 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5804 else 5805 ConservativeResult = ConstantRange( 5806 APInt::getSignedMinValue(BitWidth), 5807 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5808 } 5809 5810 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5811 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5812 unsigned WrapType = OBO::AnyWrap; 5813 if (Add->hasNoSignedWrap()) 5814 WrapType |= OBO::NoSignedWrap; 5815 if (Add->hasNoUnsignedWrap()) 5816 WrapType |= OBO::NoUnsignedWrap; 5817 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5818 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5819 WrapType, RangeType); 5820 return setRange(Add, SignHint, 5821 ConservativeResult.intersectWith(X, RangeType)); 5822 } 5823 5824 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5825 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5826 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5827 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5828 return setRange(Mul, SignHint, 5829 ConservativeResult.intersectWith(X, RangeType)); 5830 } 5831 5832 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5833 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5834 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5835 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5836 return setRange(SMax, SignHint, 5837 ConservativeResult.intersectWith(X, RangeType)); 5838 } 5839 5840 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5841 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5842 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5843 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5844 return setRange(UMax, SignHint, 5845 ConservativeResult.intersectWith(X, RangeType)); 5846 } 5847 5848 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5849 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5850 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5851 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5852 return setRange(SMin, SignHint, 5853 ConservativeResult.intersectWith(X, RangeType)); 5854 } 5855 5856 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5857 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5858 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5859 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5860 return setRange(UMin, SignHint, 5861 ConservativeResult.intersectWith(X, RangeType)); 5862 } 5863 5864 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5865 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5866 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5867 return setRange(UDiv, SignHint, 5868 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5869 } 5870 5871 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5872 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5873 return setRange(ZExt, SignHint, 5874 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5875 RangeType)); 5876 } 5877 5878 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5879 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5880 return setRange(SExt, SignHint, 5881 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5882 RangeType)); 5883 } 5884 5885 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5886 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5887 return setRange(PtrToInt, SignHint, X); 5888 } 5889 5890 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5891 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5892 return setRange(Trunc, SignHint, 5893 ConservativeResult.intersectWith(X.truncate(BitWidth), 5894 RangeType)); 5895 } 5896 5897 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5898 // If there's no unsigned wrap, the value will never be less than its 5899 // initial value. 5900 if (AddRec->hasNoUnsignedWrap()) { 5901 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5902 if (!UnsignedMinValue.isNullValue()) 5903 ConservativeResult = ConservativeResult.intersectWith( 5904 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5905 } 5906 5907 // If there's no signed wrap, and all the operands except initial value have 5908 // the same sign or zero, the value won't ever be: 5909 // 1: smaller than initial value if operands are non negative, 5910 // 2: bigger than initial value if operands are non positive. 5911 // For both cases, value can not cross signed min/max boundary. 5912 if (AddRec->hasNoSignedWrap()) { 5913 bool AllNonNeg = true; 5914 bool AllNonPos = true; 5915 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5916 if (!isKnownNonNegative(AddRec->getOperand(i))) 5917 AllNonNeg = false; 5918 if (!isKnownNonPositive(AddRec->getOperand(i))) 5919 AllNonPos = false; 5920 } 5921 if (AllNonNeg) 5922 ConservativeResult = ConservativeResult.intersectWith( 5923 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5924 APInt::getSignedMinValue(BitWidth)), 5925 RangeType); 5926 else if (AllNonPos) 5927 ConservativeResult = ConservativeResult.intersectWith( 5928 ConstantRange::getNonEmpty( 5929 APInt::getSignedMinValue(BitWidth), 5930 getSignedRangeMax(AddRec->getStart()) + 1), 5931 RangeType); 5932 } 5933 5934 // TODO: non-affine addrec 5935 if (AddRec->isAffine()) { 5936 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5937 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5938 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5939 auto RangeFromAffine = getRangeForAffineAR( 5940 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5941 BitWidth); 5942 ConservativeResult = 5943 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5944 5945 auto RangeFromFactoring = getRangeViaFactoring( 5946 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5947 BitWidth); 5948 ConservativeResult = 5949 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5950 } 5951 5952 // Now try symbolic BE count and more powerful methods. 5953 if (UseExpensiveRangeSharpening) { 5954 const SCEV *SymbolicMaxBECount = 5955 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5956 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5957 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5958 AddRec->hasNoSelfWrap()) { 5959 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5960 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5961 ConservativeResult = 5962 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5963 } 5964 } 5965 } 5966 5967 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5968 } 5969 5970 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5971 5972 // Check if the IR explicitly contains !range metadata. 5973 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5974 if (MDRange.hasValue()) 5975 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5976 RangeType); 5977 5978 // Use facts about recurrences in the underlying IR. Note that add 5979 // recurrences are AddRecExprs and thus don't hit this path. This 5980 // primarily handles shift recurrences. 5981 auto CR = getRangeForUnknownRecurrence(U); 5982 ConservativeResult = ConservativeResult.intersectWith(CR); 5983 5984 // See if ValueTracking can give us a useful range. 5985 const DataLayout &DL = getDataLayout(); 5986 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5987 if (Known.getBitWidth() != BitWidth) 5988 Known = Known.zextOrTrunc(BitWidth); 5989 5990 // ValueTracking may be able to compute a tighter result for the number of 5991 // sign bits than for the value of those sign bits. 5992 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5993 if (U->getType()->isPointerTy()) { 5994 // If the pointer size is larger than the index size type, this can cause 5995 // NS to be larger than BitWidth. So compensate for this. 5996 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5997 int ptrIdxDiff = ptrSize - BitWidth; 5998 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5999 NS -= ptrIdxDiff; 6000 } 6001 6002 if (NS > 1) { 6003 // If we know any of the sign bits, we know all of the sign bits. 6004 if (!Known.Zero.getHiBits(NS).isNullValue()) 6005 Known.Zero.setHighBits(NS); 6006 if (!Known.One.getHiBits(NS).isNullValue()) 6007 Known.One.setHighBits(NS); 6008 } 6009 6010 if (Known.getMinValue() != Known.getMaxValue() + 1) 6011 ConservativeResult = ConservativeResult.intersectWith( 6012 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6013 RangeType); 6014 if (NS > 1) 6015 ConservativeResult = ConservativeResult.intersectWith( 6016 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6017 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6018 RangeType); 6019 6020 // A range of Phi is a subset of union of all ranges of its input. 6021 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6022 // Make sure that we do not run over cycled Phis. 6023 if (PendingPhiRanges.insert(Phi).second) { 6024 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6025 for (auto &Op : Phi->operands()) { 6026 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6027 RangeFromOps = RangeFromOps.unionWith(OpRange); 6028 // No point to continue if we already have a full set. 6029 if (RangeFromOps.isFullSet()) 6030 break; 6031 } 6032 ConservativeResult = 6033 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6034 bool Erased = PendingPhiRanges.erase(Phi); 6035 assert(Erased && "Failed to erase Phi properly?"); 6036 (void) Erased; 6037 } 6038 } 6039 6040 return setRange(U, SignHint, std::move(ConservativeResult)); 6041 } 6042 6043 return setRange(S, SignHint, std::move(ConservativeResult)); 6044 } 6045 6046 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6047 // values that the expression can take. Initially, the expression has a value 6048 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6049 // argument defines if we treat Step as signed or unsigned. 6050 static ConstantRange getRangeForAffineARHelper(APInt Step, 6051 const ConstantRange &StartRange, 6052 const APInt &MaxBECount, 6053 unsigned BitWidth, bool Signed) { 6054 // If either Step or MaxBECount is 0, then the expression won't change, and we 6055 // just need to return the initial range. 6056 if (Step == 0 || MaxBECount == 0) 6057 return StartRange; 6058 6059 // If we don't know anything about the initial value (i.e. StartRange is 6060 // FullRange), then we don't know anything about the final range either. 6061 // Return FullRange. 6062 if (StartRange.isFullSet()) 6063 return ConstantRange::getFull(BitWidth); 6064 6065 // If Step is signed and negative, then we use its absolute value, but we also 6066 // note that we're moving in the opposite direction. 6067 bool Descending = Signed && Step.isNegative(); 6068 6069 if (Signed) 6070 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6071 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6072 // This equations hold true due to the well-defined wrap-around behavior of 6073 // APInt. 6074 Step = Step.abs(); 6075 6076 // Check if Offset is more than full span of BitWidth. If it is, the 6077 // expression is guaranteed to overflow. 6078 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6079 return ConstantRange::getFull(BitWidth); 6080 6081 // Offset is by how much the expression can change. Checks above guarantee no 6082 // overflow here. 6083 APInt Offset = Step * MaxBECount; 6084 6085 // Minimum value of the final range will match the minimal value of StartRange 6086 // if the expression is increasing and will be decreased by Offset otherwise. 6087 // Maximum value of the final range will match the maximal value of StartRange 6088 // if the expression is decreasing and will be increased by Offset otherwise. 6089 APInt StartLower = StartRange.getLower(); 6090 APInt StartUpper = StartRange.getUpper() - 1; 6091 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6092 : (StartUpper + std::move(Offset)); 6093 6094 // It's possible that the new minimum/maximum value will fall into the initial 6095 // range (due to wrap around). This means that the expression can take any 6096 // value in this bitwidth, and we have to return full range. 6097 if (StartRange.contains(MovedBoundary)) 6098 return ConstantRange::getFull(BitWidth); 6099 6100 APInt NewLower = 6101 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6102 APInt NewUpper = 6103 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6104 NewUpper += 1; 6105 6106 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6107 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6108 } 6109 6110 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6111 const SCEV *Step, 6112 const SCEV *MaxBECount, 6113 unsigned BitWidth) { 6114 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6115 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6116 "Precondition!"); 6117 6118 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6119 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6120 6121 // First, consider step signed. 6122 ConstantRange StartSRange = getSignedRange(Start); 6123 ConstantRange StepSRange = getSignedRange(Step); 6124 6125 // If Step can be both positive and negative, we need to find ranges for the 6126 // maximum absolute step values in both directions and union them. 6127 ConstantRange SR = 6128 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6129 MaxBECountValue, BitWidth, /* Signed = */ true); 6130 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6131 StartSRange, MaxBECountValue, 6132 BitWidth, /* Signed = */ true)); 6133 6134 // Next, consider step unsigned. 6135 ConstantRange UR = getRangeForAffineARHelper( 6136 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6137 MaxBECountValue, BitWidth, /* Signed = */ false); 6138 6139 // Finally, intersect signed and unsigned ranges. 6140 return SR.intersectWith(UR, ConstantRange::Smallest); 6141 } 6142 6143 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6144 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6145 ScalarEvolution::RangeSignHint SignHint) { 6146 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6147 assert(AddRec->hasNoSelfWrap() && 6148 "This only works for non-self-wrapping AddRecs!"); 6149 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6150 const SCEV *Step = AddRec->getStepRecurrence(*this); 6151 // Only deal with constant step to save compile time. 6152 if (!isa<SCEVConstant>(Step)) 6153 return ConstantRange::getFull(BitWidth); 6154 // Let's make sure that we can prove that we do not self-wrap during 6155 // MaxBECount iterations. We need this because MaxBECount is a maximum 6156 // iteration count estimate, and we might infer nw from some exit for which we 6157 // do not know max exit count (or any other side reasoning). 6158 // TODO: Turn into assert at some point. 6159 if (getTypeSizeInBits(MaxBECount->getType()) > 6160 getTypeSizeInBits(AddRec->getType())) 6161 return ConstantRange::getFull(BitWidth); 6162 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6163 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6164 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6165 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6166 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6167 MaxItersWithoutWrap)) 6168 return ConstantRange::getFull(BitWidth); 6169 6170 ICmpInst::Predicate LEPred = 6171 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6172 ICmpInst::Predicate GEPred = 6173 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6174 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6175 6176 // We know that there is no self-wrap. Let's take Start and End values and 6177 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6178 // the iteration. They either lie inside the range [Min(Start, End), 6179 // Max(Start, End)] or outside it: 6180 // 6181 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6182 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6183 // 6184 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6185 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6186 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6187 // Start <= End and step is positive, or Start >= End and step is negative. 6188 const SCEV *Start = AddRec->getStart(); 6189 ConstantRange StartRange = getRangeRef(Start, SignHint); 6190 ConstantRange EndRange = getRangeRef(End, SignHint); 6191 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6192 // If they already cover full iteration space, we will know nothing useful 6193 // even if we prove what we want to prove. 6194 if (RangeBetween.isFullSet()) 6195 return RangeBetween; 6196 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6197 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6198 : RangeBetween.isWrappedSet(); 6199 if (IsWrappedSet) 6200 return ConstantRange::getFull(BitWidth); 6201 6202 if (isKnownPositive(Step) && 6203 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6204 return RangeBetween; 6205 else if (isKnownNegative(Step) && 6206 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6207 return RangeBetween; 6208 return ConstantRange::getFull(BitWidth); 6209 } 6210 6211 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6212 const SCEV *Step, 6213 const SCEV *MaxBECount, 6214 unsigned BitWidth) { 6215 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6216 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6217 6218 struct SelectPattern { 6219 Value *Condition = nullptr; 6220 APInt TrueValue; 6221 APInt FalseValue; 6222 6223 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6224 const SCEV *S) { 6225 Optional<unsigned> CastOp; 6226 APInt Offset(BitWidth, 0); 6227 6228 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6229 "Should be!"); 6230 6231 // Peel off a constant offset: 6232 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6233 // In the future we could consider being smarter here and handle 6234 // {Start+Step,+,Step} too. 6235 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6236 return; 6237 6238 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6239 S = SA->getOperand(1); 6240 } 6241 6242 // Peel off a cast operation 6243 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6244 CastOp = SCast->getSCEVType(); 6245 S = SCast->getOperand(); 6246 } 6247 6248 using namespace llvm::PatternMatch; 6249 6250 auto *SU = dyn_cast<SCEVUnknown>(S); 6251 const APInt *TrueVal, *FalseVal; 6252 if (!SU || 6253 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6254 m_APInt(FalseVal)))) { 6255 Condition = nullptr; 6256 return; 6257 } 6258 6259 TrueValue = *TrueVal; 6260 FalseValue = *FalseVal; 6261 6262 // Re-apply the cast we peeled off earlier 6263 if (CastOp.hasValue()) 6264 switch (*CastOp) { 6265 default: 6266 llvm_unreachable("Unknown SCEV cast type!"); 6267 6268 case scTruncate: 6269 TrueValue = TrueValue.trunc(BitWidth); 6270 FalseValue = FalseValue.trunc(BitWidth); 6271 break; 6272 case scZeroExtend: 6273 TrueValue = TrueValue.zext(BitWidth); 6274 FalseValue = FalseValue.zext(BitWidth); 6275 break; 6276 case scSignExtend: 6277 TrueValue = TrueValue.sext(BitWidth); 6278 FalseValue = FalseValue.sext(BitWidth); 6279 break; 6280 } 6281 6282 // Re-apply the constant offset we peeled off earlier 6283 TrueValue += Offset; 6284 FalseValue += Offset; 6285 } 6286 6287 bool isRecognized() { return Condition != nullptr; } 6288 }; 6289 6290 SelectPattern StartPattern(*this, BitWidth, Start); 6291 if (!StartPattern.isRecognized()) 6292 return ConstantRange::getFull(BitWidth); 6293 6294 SelectPattern StepPattern(*this, BitWidth, Step); 6295 if (!StepPattern.isRecognized()) 6296 return ConstantRange::getFull(BitWidth); 6297 6298 if (StartPattern.Condition != StepPattern.Condition) { 6299 // We don't handle this case today; but we could, by considering four 6300 // possibilities below instead of two. I'm not sure if there are cases where 6301 // that will help over what getRange already does, though. 6302 return ConstantRange::getFull(BitWidth); 6303 } 6304 6305 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6306 // construct arbitrary general SCEV expressions here. This function is called 6307 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6308 // say) can end up caching a suboptimal value. 6309 6310 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6311 // C2352 and C2512 (otherwise it isn't needed). 6312 6313 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6314 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6315 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6316 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6317 6318 ConstantRange TrueRange = 6319 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6320 ConstantRange FalseRange = 6321 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6322 6323 return TrueRange.unionWith(FalseRange); 6324 } 6325 6326 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6327 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6328 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6329 6330 // Return early if there are no flags to propagate to the SCEV. 6331 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6332 if (BinOp->hasNoUnsignedWrap()) 6333 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6334 if (BinOp->hasNoSignedWrap()) 6335 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6336 if (Flags == SCEV::FlagAnyWrap) 6337 return SCEV::FlagAnyWrap; 6338 6339 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6340 } 6341 6342 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6343 // Here we check that I is in the header of the innermost loop containing I, 6344 // since we only deal with instructions in the loop header. The actual loop we 6345 // need to check later will come from an add recurrence, but getting that 6346 // requires computing the SCEV of the operands, which can be expensive. This 6347 // check we can do cheaply to rule out some cases early. 6348 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6349 if (InnermostContainingLoop == nullptr || 6350 InnermostContainingLoop->getHeader() != I->getParent()) 6351 return false; 6352 6353 // Only proceed if we can prove that I does not yield poison. 6354 if (!programUndefinedIfPoison(I)) 6355 return false; 6356 6357 // At this point we know that if I is executed, then it does not wrap 6358 // according to at least one of NSW or NUW. If I is not executed, then we do 6359 // not know if the calculation that I represents would wrap. Multiple 6360 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6361 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6362 // derived from other instructions that map to the same SCEV. We cannot make 6363 // that guarantee for cases where I is not executed. So we need to find the 6364 // loop that I is considered in relation to and prove that I is executed for 6365 // every iteration of that loop. That implies that the value that I 6366 // calculates does not wrap anywhere in the loop, so then we can apply the 6367 // flags to the SCEV. 6368 // 6369 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6370 // from different loops, so that we know which loop to prove that I is 6371 // executed in. 6372 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6373 // I could be an extractvalue from a call to an overflow intrinsic. 6374 // TODO: We can do better here in some cases. 6375 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6376 return false; 6377 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6378 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6379 bool AllOtherOpsLoopInvariant = true; 6380 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6381 ++OtherOpIndex) { 6382 if (OtherOpIndex != OpIndex) { 6383 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6384 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6385 AllOtherOpsLoopInvariant = false; 6386 break; 6387 } 6388 } 6389 } 6390 if (AllOtherOpsLoopInvariant && 6391 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6392 return true; 6393 } 6394 } 6395 return false; 6396 } 6397 6398 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6399 // If we know that \c I can never be poison period, then that's enough. 6400 if (isSCEVExprNeverPoison(I)) 6401 return true; 6402 6403 // For an add recurrence specifically, we assume that infinite loops without 6404 // side effects are undefined behavior, and then reason as follows: 6405 // 6406 // If the add recurrence is poison in any iteration, it is poison on all 6407 // future iterations (since incrementing poison yields poison). If the result 6408 // of the add recurrence is fed into the loop latch condition and the loop 6409 // does not contain any throws or exiting blocks other than the latch, we now 6410 // have the ability to "choose" whether the backedge is taken or not (by 6411 // choosing a sufficiently evil value for the poison feeding into the branch) 6412 // for every iteration including and after the one in which \p I first became 6413 // poison. There are two possibilities (let's call the iteration in which \p 6414 // I first became poison as K): 6415 // 6416 // 1. In the set of iterations including and after K, the loop body executes 6417 // no side effects. In this case executing the backege an infinte number 6418 // of times will yield undefined behavior. 6419 // 6420 // 2. In the set of iterations including and after K, the loop body executes 6421 // at least one side effect. In this case, that specific instance of side 6422 // effect is control dependent on poison, which also yields undefined 6423 // behavior. 6424 6425 auto *ExitingBB = L->getExitingBlock(); 6426 auto *LatchBB = L->getLoopLatch(); 6427 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6428 return false; 6429 6430 SmallPtrSet<const Instruction *, 16> Pushed; 6431 SmallVector<const Instruction *, 8> PoisonStack; 6432 6433 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6434 // things that are known to be poison under that assumption go on the 6435 // PoisonStack. 6436 Pushed.insert(I); 6437 PoisonStack.push_back(I); 6438 6439 bool LatchControlDependentOnPoison = false; 6440 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6441 const Instruction *Poison = PoisonStack.pop_back_val(); 6442 6443 for (auto *PoisonUser : Poison->users()) { 6444 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6445 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6446 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6447 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6448 assert(BI->isConditional() && "Only possibility!"); 6449 if (BI->getParent() == LatchBB) { 6450 LatchControlDependentOnPoison = true; 6451 break; 6452 } 6453 } 6454 } 6455 } 6456 6457 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6458 } 6459 6460 ScalarEvolution::LoopProperties 6461 ScalarEvolution::getLoopProperties(const Loop *L) { 6462 using LoopProperties = ScalarEvolution::LoopProperties; 6463 6464 auto Itr = LoopPropertiesCache.find(L); 6465 if (Itr == LoopPropertiesCache.end()) { 6466 auto HasSideEffects = [](Instruction *I) { 6467 if (auto *SI = dyn_cast<StoreInst>(I)) 6468 return !SI->isSimple(); 6469 6470 return I->mayHaveSideEffects(); 6471 }; 6472 6473 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6474 /*HasNoSideEffects*/ true}; 6475 6476 for (auto *BB : L->getBlocks()) 6477 for (auto &I : *BB) { 6478 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6479 LP.HasNoAbnormalExits = false; 6480 if (HasSideEffects(&I)) 6481 LP.HasNoSideEffects = false; 6482 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6483 break; // We're already as pessimistic as we can get. 6484 } 6485 6486 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6487 assert(InsertPair.second && "We just checked!"); 6488 Itr = InsertPair.first; 6489 } 6490 6491 return Itr->second; 6492 } 6493 6494 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6495 if (!isSCEVable(V->getType())) 6496 return getUnknown(V); 6497 6498 if (Instruction *I = dyn_cast<Instruction>(V)) { 6499 // Don't attempt to analyze instructions in blocks that aren't 6500 // reachable. Such instructions don't matter, and they aren't required 6501 // to obey basic rules for definitions dominating uses which this 6502 // analysis depends on. 6503 if (!DT.isReachableFromEntry(I->getParent())) 6504 return getUnknown(UndefValue::get(V->getType())); 6505 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6506 return getConstant(CI); 6507 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6508 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6509 else if (!isa<ConstantExpr>(V)) 6510 return getUnknown(V); 6511 6512 Operator *U = cast<Operator>(V); 6513 if (auto BO = MatchBinaryOp(U, DT)) { 6514 switch (BO->Opcode) { 6515 case Instruction::Add: { 6516 // The simple thing to do would be to just call getSCEV on both operands 6517 // and call getAddExpr with the result. However if we're looking at a 6518 // bunch of things all added together, this can be quite inefficient, 6519 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6520 // Instead, gather up all the operands and make a single getAddExpr call. 6521 // LLVM IR canonical form means we need only traverse the left operands. 6522 SmallVector<const SCEV *, 4> AddOps; 6523 do { 6524 if (BO->Op) { 6525 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6526 AddOps.push_back(OpSCEV); 6527 break; 6528 } 6529 6530 // If a NUW or NSW flag can be applied to the SCEV for this 6531 // addition, then compute the SCEV for this addition by itself 6532 // with a separate call to getAddExpr. We need to do that 6533 // instead of pushing the operands of the addition onto AddOps, 6534 // since the flags are only known to apply to this particular 6535 // addition - they may not apply to other additions that can be 6536 // formed with operands from AddOps. 6537 const SCEV *RHS = getSCEV(BO->RHS); 6538 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6539 if (Flags != SCEV::FlagAnyWrap) { 6540 const SCEV *LHS = getSCEV(BO->LHS); 6541 if (BO->Opcode == Instruction::Sub) 6542 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6543 else 6544 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6545 break; 6546 } 6547 } 6548 6549 if (BO->Opcode == Instruction::Sub) 6550 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6551 else 6552 AddOps.push_back(getSCEV(BO->RHS)); 6553 6554 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6555 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6556 NewBO->Opcode != Instruction::Sub)) { 6557 AddOps.push_back(getSCEV(BO->LHS)); 6558 break; 6559 } 6560 BO = NewBO; 6561 } while (true); 6562 6563 return getAddExpr(AddOps); 6564 } 6565 6566 case Instruction::Mul: { 6567 SmallVector<const SCEV *, 4> MulOps; 6568 do { 6569 if (BO->Op) { 6570 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6571 MulOps.push_back(OpSCEV); 6572 break; 6573 } 6574 6575 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6576 if (Flags != SCEV::FlagAnyWrap) { 6577 MulOps.push_back( 6578 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6579 break; 6580 } 6581 } 6582 6583 MulOps.push_back(getSCEV(BO->RHS)); 6584 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6585 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6586 MulOps.push_back(getSCEV(BO->LHS)); 6587 break; 6588 } 6589 BO = NewBO; 6590 } while (true); 6591 6592 return getMulExpr(MulOps); 6593 } 6594 case Instruction::UDiv: 6595 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6596 case Instruction::URem: 6597 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6598 case Instruction::Sub: { 6599 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6600 if (BO->Op) 6601 Flags = getNoWrapFlagsFromUB(BO->Op); 6602 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6603 } 6604 case Instruction::And: 6605 // For an expression like x&255 that merely masks off the high bits, 6606 // use zext(trunc(x)) as the SCEV expression. 6607 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6608 if (CI->isZero()) 6609 return getSCEV(BO->RHS); 6610 if (CI->isMinusOne()) 6611 return getSCEV(BO->LHS); 6612 const APInt &A = CI->getValue(); 6613 6614 // Instcombine's ShrinkDemandedConstant may strip bits out of 6615 // constants, obscuring what would otherwise be a low-bits mask. 6616 // Use computeKnownBits to compute what ShrinkDemandedConstant 6617 // knew about to reconstruct a low-bits mask value. 6618 unsigned LZ = A.countLeadingZeros(); 6619 unsigned TZ = A.countTrailingZeros(); 6620 unsigned BitWidth = A.getBitWidth(); 6621 KnownBits Known(BitWidth); 6622 computeKnownBits(BO->LHS, Known, getDataLayout(), 6623 0, &AC, nullptr, &DT); 6624 6625 APInt EffectiveMask = 6626 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6627 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6628 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6629 const SCEV *LHS = getSCEV(BO->LHS); 6630 const SCEV *ShiftedLHS = nullptr; 6631 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6632 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6633 // For an expression like (x * 8) & 8, simplify the multiply. 6634 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6635 unsigned GCD = std::min(MulZeros, TZ); 6636 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6637 SmallVector<const SCEV*, 4> MulOps; 6638 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6639 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6640 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6641 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6642 } 6643 } 6644 if (!ShiftedLHS) 6645 ShiftedLHS = getUDivExpr(LHS, MulCount); 6646 return getMulExpr( 6647 getZeroExtendExpr( 6648 getTruncateExpr(ShiftedLHS, 6649 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6650 BO->LHS->getType()), 6651 MulCount); 6652 } 6653 } 6654 break; 6655 6656 case Instruction::Or: 6657 // If the RHS of the Or is a constant, we may have something like: 6658 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6659 // optimizations will transparently handle this case. 6660 // 6661 // In order for this transformation to be safe, the LHS must be of the 6662 // form X*(2^n) and the Or constant must be less than 2^n. 6663 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6664 const SCEV *LHS = getSCEV(BO->LHS); 6665 const APInt &CIVal = CI->getValue(); 6666 if (GetMinTrailingZeros(LHS) >= 6667 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6668 // Build a plain add SCEV. 6669 return getAddExpr(LHS, getSCEV(CI), 6670 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6671 } 6672 } 6673 break; 6674 6675 case Instruction::Xor: 6676 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6677 // If the RHS of xor is -1, then this is a not operation. 6678 if (CI->isMinusOne()) 6679 return getNotSCEV(getSCEV(BO->LHS)); 6680 6681 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6682 // This is a variant of the check for xor with -1, and it handles 6683 // the case where instcombine has trimmed non-demanded bits out 6684 // of an xor with -1. 6685 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6686 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6687 if (LBO->getOpcode() == Instruction::And && 6688 LCI->getValue() == CI->getValue()) 6689 if (const SCEVZeroExtendExpr *Z = 6690 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6691 Type *UTy = BO->LHS->getType(); 6692 const SCEV *Z0 = Z->getOperand(); 6693 Type *Z0Ty = Z0->getType(); 6694 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6695 6696 // If C is a low-bits mask, the zero extend is serving to 6697 // mask off the high bits. Complement the operand and 6698 // re-apply the zext. 6699 if (CI->getValue().isMask(Z0TySize)) 6700 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6701 6702 // If C is a single bit, it may be in the sign-bit position 6703 // before the zero-extend. In this case, represent the xor 6704 // using an add, which is equivalent, and re-apply the zext. 6705 APInt Trunc = CI->getValue().trunc(Z0TySize); 6706 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6707 Trunc.isSignMask()) 6708 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6709 UTy); 6710 } 6711 } 6712 break; 6713 6714 case Instruction::Shl: 6715 // Turn shift left of a constant amount into a multiply. 6716 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6717 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6718 6719 // If the shift count is not less than the bitwidth, the result of 6720 // the shift is undefined. Don't try to analyze it, because the 6721 // resolution chosen here may differ from the resolution chosen in 6722 // other parts of the compiler. 6723 if (SA->getValue().uge(BitWidth)) 6724 break; 6725 6726 // We can safely preserve the nuw flag in all cases. It's also safe to 6727 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6728 // requires special handling. It can be preserved as long as we're not 6729 // left shifting by bitwidth - 1. 6730 auto Flags = SCEV::FlagAnyWrap; 6731 if (BO->Op) { 6732 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6733 if ((MulFlags & SCEV::FlagNSW) && 6734 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6735 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6736 if (MulFlags & SCEV::FlagNUW) 6737 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6738 } 6739 6740 Constant *X = ConstantInt::get( 6741 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6742 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6743 } 6744 break; 6745 6746 case Instruction::AShr: { 6747 // AShr X, C, where C is a constant. 6748 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6749 if (!CI) 6750 break; 6751 6752 Type *OuterTy = BO->LHS->getType(); 6753 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6754 // If the shift count is not less than the bitwidth, the result of 6755 // the shift is undefined. Don't try to analyze it, because the 6756 // resolution chosen here may differ from the resolution chosen in 6757 // other parts of the compiler. 6758 if (CI->getValue().uge(BitWidth)) 6759 break; 6760 6761 if (CI->isZero()) 6762 return getSCEV(BO->LHS); // shift by zero --> noop 6763 6764 uint64_t AShrAmt = CI->getZExtValue(); 6765 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6766 6767 Operator *L = dyn_cast<Operator>(BO->LHS); 6768 if (L && L->getOpcode() == Instruction::Shl) { 6769 // X = Shl A, n 6770 // Y = AShr X, m 6771 // Both n and m are constant. 6772 6773 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6774 if (L->getOperand(1) == BO->RHS) 6775 // For a two-shift sext-inreg, i.e. n = m, 6776 // use sext(trunc(x)) as the SCEV expression. 6777 return getSignExtendExpr( 6778 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6779 6780 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6781 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6782 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6783 if (ShlAmt > AShrAmt) { 6784 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6785 // expression. We already checked that ShlAmt < BitWidth, so 6786 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6787 // ShlAmt - AShrAmt < Amt. 6788 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6789 ShlAmt - AShrAmt); 6790 return getSignExtendExpr( 6791 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6792 getConstant(Mul)), OuterTy); 6793 } 6794 } 6795 } 6796 break; 6797 } 6798 } 6799 } 6800 6801 switch (U->getOpcode()) { 6802 case Instruction::Trunc: 6803 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6804 6805 case Instruction::ZExt: 6806 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6807 6808 case Instruction::SExt: 6809 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6810 // The NSW flag of a subtract does not always survive the conversion to 6811 // A + (-1)*B. By pushing sign extension onto its operands we are much 6812 // more likely to preserve NSW and allow later AddRec optimisations. 6813 // 6814 // NOTE: This is effectively duplicating this logic from getSignExtend: 6815 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6816 // but by that point the NSW information has potentially been lost. 6817 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6818 Type *Ty = U->getType(); 6819 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6820 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6821 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6822 } 6823 } 6824 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6825 6826 case Instruction::BitCast: 6827 // BitCasts are no-op casts so we just eliminate the cast. 6828 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6829 return getSCEV(U->getOperand(0)); 6830 break; 6831 6832 case Instruction::PtrToInt: { 6833 // Pointer to integer cast is straight-forward, so do model it. 6834 const SCEV *Op = getSCEV(U->getOperand(0)); 6835 Type *DstIntTy = U->getType(); 6836 // But only if effective SCEV (integer) type is wide enough to represent 6837 // all possible pointer values. 6838 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 6839 if (isa<SCEVCouldNotCompute>(IntOp)) 6840 return getUnknown(V); 6841 return IntOp; 6842 } 6843 case Instruction::IntToPtr: 6844 // Just don't deal with inttoptr casts. 6845 return getUnknown(V); 6846 6847 case Instruction::SDiv: 6848 // If both operands are non-negative, this is just an udiv. 6849 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6850 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6851 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6852 break; 6853 6854 case Instruction::SRem: 6855 // If both operands are non-negative, this is just an urem. 6856 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6857 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6858 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6859 break; 6860 6861 case Instruction::GetElementPtr: 6862 return createNodeForGEP(cast<GEPOperator>(U)); 6863 6864 case Instruction::PHI: 6865 return createNodeForPHI(cast<PHINode>(U)); 6866 6867 case Instruction::Select: 6868 // U can also be a select constant expr, which let fall through. Since 6869 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6870 // constant expressions cannot have instructions as operands, we'd have 6871 // returned getUnknown for a select constant expressions anyway. 6872 if (isa<Instruction>(U)) 6873 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6874 U->getOperand(1), U->getOperand(2)); 6875 break; 6876 6877 case Instruction::Call: 6878 case Instruction::Invoke: 6879 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6880 return getSCEV(RV); 6881 6882 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6883 switch (II->getIntrinsicID()) { 6884 case Intrinsic::abs: 6885 return getAbsExpr( 6886 getSCEV(II->getArgOperand(0)), 6887 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6888 case Intrinsic::umax: 6889 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6890 getSCEV(II->getArgOperand(1))); 6891 case Intrinsic::umin: 6892 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6893 getSCEV(II->getArgOperand(1))); 6894 case Intrinsic::smax: 6895 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6896 getSCEV(II->getArgOperand(1))); 6897 case Intrinsic::smin: 6898 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6899 getSCEV(II->getArgOperand(1))); 6900 case Intrinsic::usub_sat: { 6901 const SCEV *X = getSCEV(II->getArgOperand(0)); 6902 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6903 const SCEV *ClampedY = getUMinExpr(X, Y); 6904 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6905 } 6906 case Intrinsic::uadd_sat: { 6907 const SCEV *X = getSCEV(II->getArgOperand(0)); 6908 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6909 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6910 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6911 } 6912 case Intrinsic::start_loop_iterations: 6913 // A start_loop_iterations is just equivalent to the first operand for 6914 // SCEV purposes. 6915 return getSCEV(II->getArgOperand(0)); 6916 default: 6917 break; 6918 } 6919 } 6920 break; 6921 } 6922 6923 return getUnknown(V); 6924 } 6925 6926 //===----------------------------------------------------------------------===// 6927 // Iteration Count Computation Code 6928 // 6929 6930 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6931 if (!ExitCount) 6932 return 0; 6933 6934 ConstantInt *ExitConst = ExitCount->getValue(); 6935 6936 // Guard against huge trip counts. 6937 if (ExitConst->getValue().getActiveBits() > 32) 6938 return 0; 6939 6940 // In case of integer overflow, this returns 0, which is correct. 6941 return ((unsigned)ExitConst->getZExtValue()) + 1; 6942 } 6943 6944 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6945 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6946 return getSmallConstantTripCount(L, ExitingBB); 6947 6948 // No trip count information for multiple exits. 6949 return 0; 6950 } 6951 6952 unsigned 6953 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6954 const BasicBlock *ExitingBlock) { 6955 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6956 assert(L->isLoopExiting(ExitingBlock) && 6957 "Exiting block must actually branch out of the loop!"); 6958 const SCEVConstant *ExitCount = 6959 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6960 return getConstantTripCount(ExitCount); 6961 } 6962 6963 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6964 const auto *MaxExitCount = 6965 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6966 return getConstantTripCount(MaxExitCount); 6967 } 6968 6969 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6970 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6971 return getSmallConstantTripMultiple(L, ExitingBB); 6972 6973 // No trip multiple information for multiple exits. 6974 return 0; 6975 } 6976 6977 /// Returns the largest constant divisor of the trip count of this loop as a 6978 /// normal unsigned value, if possible. This means that the actual trip count is 6979 /// always a multiple of the returned value (don't forget the trip count could 6980 /// very well be zero as well!). 6981 /// 6982 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6983 /// multiple of a constant (which is also the case if the trip count is simply 6984 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6985 /// if the trip count is very large (>= 2^32). 6986 /// 6987 /// As explained in the comments for getSmallConstantTripCount, this assumes 6988 /// that control exits the loop via ExitingBlock. 6989 unsigned 6990 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6991 const BasicBlock *ExitingBlock) { 6992 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6993 assert(L->isLoopExiting(ExitingBlock) && 6994 "Exiting block must actually branch out of the loop!"); 6995 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6996 if (ExitCount == getCouldNotCompute()) 6997 return 1; 6998 6999 // Get the trip count from the BE count by adding 1. 7000 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 7001 7002 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7003 if (!TC) 7004 // Attempt to factor more general cases. Returns the greatest power of 7005 // two divisor. If overflow happens, the trip count expression is still 7006 // divisible by the greatest power of 2 divisor returned. 7007 return 1U << std::min((uint32_t)31, 7008 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7009 7010 ConstantInt *Result = TC->getValue(); 7011 7012 // Guard against huge trip counts (this requires checking 7013 // for zero to handle the case where the trip count == -1 and the 7014 // addition wraps). 7015 if (!Result || Result->getValue().getActiveBits() > 32 || 7016 Result->getValue().getActiveBits() == 0) 7017 return 1; 7018 7019 return (unsigned)Result->getZExtValue(); 7020 } 7021 7022 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7023 const BasicBlock *ExitingBlock, 7024 ExitCountKind Kind) { 7025 switch (Kind) { 7026 case Exact: 7027 case SymbolicMaximum: 7028 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7029 case ConstantMaximum: 7030 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7031 }; 7032 llvm_unreachable("Invalid ExitCountKind!"); 7033 } 7034 7035 const SCEV * 7036 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7037 SCEVUnionPredicate &Preds) { 7038 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7039 } 7040 7041 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7042 ExitCountKind Kind) { 7043 switch (Kind) { 7044 case Exact: 7045 return getBackedgeTakenInfo(L).getExact(L, this); 7046 case ConstantMaximum: 7047 return getBackedgeTakenInfo(L).getConstantMax(this); 7048 case SymbolicMaximum: 7049 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7050 }; 7051 llvm_unreachable("Invalid ExitCountKind!"); 7052 } 7053 7054 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7055 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7056 } 7057 7058 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7059 static void 7060 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7061 BasicBlock *Header = L->getHeader(); 7062 7063 // Push all Loop-header PHIs onto the Worklist stack. 7064 for (PHINode &PN : Header->phis()) 7065 Worklist.push_back(&PN); 7066 } 7067 7068 const ScalarEvolution::BackedgeTakenInfo & 7069 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7070 auto &BTI = getBackedgeTakenInfo(L); 7071 if (BTI.hasFullInfo()) 7072 return BTI; 7073 7074 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7075 7076 if (!Pair.second) 7077 return Pair.first->second; 7078 7079 BackedgeTakenInfo Result = 7080 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7081 7082 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7083 } 7084 7085 ScalarEvolution::BackedgeTakenInfo & 7086 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7087 // Initially insert an invalid entry for this loop. If the insertion 7088 // succeeds, proceed to actually compute a backedge-taken count and 7089 // update the value. The temporary CouldNotCompute value tells SCEV 7090 // code elsewhere that it shouldn't attempt to request a new 7091 // backedge-taken count, which could result in infinite recursion. 7092 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7093 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7094 if (!Pair.second) 7095 return Pair.first->second; 7096 7097 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7098 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7099 // must be cleared in this scope. 7100 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7101 7102 // In product build, there are no usage of statistic. 7103 (void)NumTripCountsComputed; 7104 (void)NumTripCountsNotComputed; 7105 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7106 const SCEV *BEExact = Result.getExact(L, this); 7107 if (BEExact != getCouldNotCompute()) { 7108 assert(isLoopInvariant(BEExact, L) && 7109 isLoopInvariant(Result.getConstantMax(this), L) && 7110 "Computed backedge-taken count isn't loop invariant for loop!"); 7111 ++NumTripCountsComputed; 7112 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7113 isa<PHINode>(L->getHeader()->begin())) { 7114 // Only count loops that have phi nodes as not being computable. 7115 ++NumTripCountsNotComputed; 7116 } 7117 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7118 7119 // Now that we know more about the trip count for this loop, forget any 7120 // existing SCEV values for PHI nodes in this loop since they are only 7121 // conservative estimates made without the benefit of trip count 7122 // information. This is similar to the code in forgetLoop, except that 7123 // it handles SCEVUnknown PHI nodes specially. 7124 if (Result.hasAnyInfo()) { 7125 SmallVector<Instruction *, 16> Worklist; 7126 PushLoopPHIs(L, Worklist); 7127 7128 SmallPtrSet<Instruction *, 8> Discovered; 7129 while (!Worklist.empty()) { 7130 Instruction *I = Worklist.pop_back_val(); 7131 7132 ValueExprMapType::iterator It = 7133 ValueExprMap.find_as(static_cast<Value *>(I)); 7134 if (It != ValueExprMap.end()) { 7135 const SCEV *Old = It->second; 7136 7137 // SCEVUnknown for a PHI either means that it has an unrecognized 7138 // structure, or it's a PHI that's in the progress of being computed 7139 // by createNodeForPHI. In the former case, additional loop trip 7140 // count information isn't going to change anything. In the later 7141 // case, createNodeForPHI will perform the necessary updates on its 7142 // own when it gets to that point. 7143 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7144 eraseValueFromMap(It->first); 7145 forgetMemoizedResults(Old); 7146 } 7147 if (PHINode *PN = dyn_cast<PHINode>(I)) 7148 ConstantEvolutionLoopExitValue.erase(PN); 7149 } 7150 7151 // Since we don't need to invalidate anything for correctness and we're 7152 // only invalidating to make SCEV's results more precise, we get to stop 7153 // early to avoid invalidating too much. This is especially important in 7154 // cases like: 7155 // 7156 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7157 // loop0: 7158 // %pn0 = phi 7159 // ... 7160 // loop1: 7161 // %pn1 = phi 7162 // ... 7163 // 7164 // where both loop0 and loop1's backedge taken count uses the SCEV 7165 // expression for %v. If we don't have the early stop below then in cases 7166 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7167 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7168 // count for loop1, effectively nullifying SCEV's trip count cache. 7169 for (auto *U : I->users()) 7170 if (auto *I = dyn_cast<Instruction>(U)) { 7171 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7172 if (LoopForUser && L->contains(LoopForUser) && 7173 Discovered.insert(I).second) 7174 Worklist.push_back(I); 7175 } 7176 } 7177 } 7178 7179 // Re-lookup the insert position, since the call to 7180 // computeBackedgeTakenCount above could result in a 7181 // recusive call to getBackedgeTakenInfo (on a different 7182 // loop), which would invalidate the iterator computed 7183 // earlier. 7184 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7185 } 7186 7187 void ScalarEvolution::forgetAllLoops() { 7188 // This method is intended to forget all info about loops. It should 7189 // invalidate caches as if the following happened: 7190 // - The trip counts of all loops have changed arbitrarily 7191 // - Every llvm::Value has been updated in place to produce a different 7192 // result. 7193 BackedgeTakenCounts.clear(); 7194 PredicatedBackedgeTakenCounts.clear(); 7195 LoopPropertiesCache.clear(); 7196 ConstantEvolutionLoopExitValue.clear(); 7197 ValueExprMap.clear(); 7198 ValuesAtScopes.clear(); 7199 LoopDispositions.clear(); 7200 BlockDispositions.clear(); 7201 UnsignedRanges.clear(); 7202 SignedRanges.clear(); 7203 ExprValueMap.clear(); 7204 HasRecMap.clear(); 7205 MinTrailingZerosCache.clear(); 7206 PredicatedSCEVRewrites.clear(); 7207 } 7208 7209 void ScalarEvolution::forgetLoop(const Loop *L) { 7210 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7211 SmallVector<Instruction *, 32> Worklist; 7212 SmallPtrSet<Instruction *, 16> Visited; 7213 7214 // Iterate over all the loops and sub-loops to drop SCEV information. 7215 while (!LoopWorklist.empty()) { 7216 auto *CurrL = LoopWorklist.pop_back_val(); 7217 7218 // Drop any stored trip count value. 7219 BackedgeTakenCounts.erase(CurrL); 7220 PredicatedBackedgeTakenCounts.erase(CurrL); 7221 7222 // Drop information about predicated SCEV rewrites for this loop. 7223 for (auto I = PredicatedSCEVRewrites.begin(); 7224 I != PredicatedSCEVRewrites.end();) { 7225 std::pair<const SCEV *, const Loop *> Entry = I->first; 7226 if (Entry.second == CurrL) 7227 PredicatedSCEVRewrites.erase(I++); 7228 else 7229 ++I; 7230 } 7231 7232 auto LoopUsersItr = LoopUsers.find(CurrL); 7233 if (LoopUsersItr != LoopUsers.end()) { 7234 for (auto *S : LoopUsersItr->second) 7235 forgetMemoizedResults(S); 7236 LoopUsers.erase(LoopUsersItr); 7237 } 7238 7239 // Drop information about expressions based on loop-header PHIs. 7240 PushLoopPHIs(CurrL, Worklist); 7241 7242 while (!Worklist.empty()) { 7243 Instruction *I = Worklist.pop_back_val(); 7244 if (!Visited.insert(I).second) 7245 continue; 7246 7247 ValueExprMapType::iterator It = 7248 ValueExprMap.find_as(static_cast<Value *>(I)); 7249 if (It != ValueExprMap.end()) { 7250 eraseValueFromMap(It->first); 7251 forgetMemoizedResults(It->second); 7252 if (PHINode *PN = dyn_cast<PHINode>(I)) 7253 ConstantEvolutionLoopExitValue.erase(PN); 7254 } 7255 7256 PushDefUseChildren(I, Worklist); 7257 } 7258 7259 LoopPropertiesCache.erase(CurrL); 7260 // Forget all contained loops too, to avoid dangling entries in the 7261 // ValuesAtScopes map. 7262 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7263 } 7264 } 7265 7266 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7267 while (Loop *Parent = L->getParentLoop()) 7268 L = Parent; 7269 forgetLoop(L); 7270 } 7271 7272 void ScalarEvolution::forgetValue(Value *V) { 7273 Instruction *I = dyn_cast<Instruction>(V); 7274 if (!I) return; 7275 7276 // Drop information about expressions based on loop-header PHIs. 7277 SmallVector<Instruction *, 16> Worklist; 7278 Worklist.push_back(I); 7279 7280 SmallPtrSet<Instruction *, 8> Visited; 7281 while (!Worklist.empty()) { 7282 I = Worklist.pop_back_val(); 7283 if (!Visited.insert(I).second) 7284 continue; 7285 7286 ValueExprMapType::iterator It = 7287 ValueExprMap.find_as(static_cast<Value *>(I)); 7288 if (It != ValueExprMap.end()) { 7289 eraseValueFromMap(It->first); 7290 forgetMemoizedResults(It->second); 7291 if (PHINode *PN = dyn_cast<PHINode>(I)) 7292 ConstantEvolutionLoopExitValue.erase(PN); 7293 } 7294 7295 PushDefUseChildren(I, Worklist); 7296 } 7297 } 7298 7299 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7300 LoopDispositions.clear(); 7301 } 7302 7303 /// Get the exact loop backedge taken count considering all loop exits. A 7304 /// computable result can only be returned for loops with all exiting blocks 7305 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7306 /// is never skipped. This is a valid assumption as long as the loop exits via 7307 /// that test. For precise results, it is the caller's responsibility to specify 7308 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7309 const SCEV * 7310 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7311 SCEVUnionPredicate *Preds) const { 7312 // If any exits were not computable, the loop is not computable. 7313 if (!isComplete() || ExitNotTaken.empty()) 7314 return SE->getCouldNotCompute(); 7315 7316 const BasicBlock *Latch = L->getLoopLatch(); 7317 // All exiting blocks we have collected must dominate the only backedge. 7318 if (!Latch) 7319 return SE->getCouldNotCompute(); 7320 7321 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7322 // count is simply a minimum out of all these calculated exit counts. 7323 SmallVector<const SCEV *, 2> Ops; 7324 for (auto &ENT : ExitNotTaken) { 7325 const SCEV *BECount = ENT.ExactNotTaken; 7326 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7327 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7328 "We should only have known counts for exiting blocks that dominate " 7329 "latch!"); 7330 7331 Ops.push_back(BECount); 7332 7333 if (Preds && !ENT.hasAlwaysTruePredicate()) 7334 Preds->add(ENT.Predicate.get()); 7335 7336 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7337 "Predicate should be always true!"); 7338 } 7339 7340 return SE->getUMinFromMismatchedTypes(Ops); 7341 } 7342 7343 /// Get the exact not taken count for this loop exit. 7344 const SCEV * 7345 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7346 ScalarEvolution *SE) const { 7347 for (auto &ENT : ExitNotTaken) 7348 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7349 return ENT.ExactNotTaken; 7350 7351 return SE->getCouldNotCompute(); 7352 } 7353 7354 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7355 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7356 for (auto &ENT : ExitNotTaken) 7357 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7358 return ENT.MaxNotTaken; 7359 7360 return SE->getCouldNotCompute(); 7361 } 7362 7363 /// getConstantMax - Get the constant max backedge taken count for the loop. 7364 const SCEV * 7365 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7366 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7367 return !ENT.hasAlwaysTruePredicate(); 7368 }; 7369 7370 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7371 return SE->getCouldNotCompute(); 7372 7373 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7374 isa<SCEVConstant>(getConstantMax())) && 7375 "No point in having a non-constant max backedge taken count!"); 7376 return getConstantMax(); 7377 } 7378 7379 const SCEV * 7380 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7381 ScalarEvolution *SE) { 7382 if (!SymbolicMax) 7383 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7384 return SymbolicMax; 7385 } 7386 7387 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7388 ScalarEvolution *SE) const { 7389 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7390 return !ENT.hasAlwaysTruePredicate(); 7391 }; 7392 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7393 } 7394 7395 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7396 ScalarEvolution *SE) const { 7397 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7398 SE->hasOperand(getConstantMax(), S)) 7399 return true; 7400 7401 for (auto &ENT : ExitNotTaken) 7402 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7403 SE->hasOperand(ENT.ExactNotTaken, S)) 7404 return true; 7405 7406 return false; 7407 } 7408 7409 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7410 : ExactNotTaken(E), MaxNotTaken(E) { 7411 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7412 isa<SCEVConstant>(MaxNotTaken)) && 7413 "No point in having a non-constant max backedge taken count!"); 7414 } 7415 7416 ScalarEvolution::ExitLimit::ExitLimit( 7417 const SCEV *E, const SCEV *M, bool MaxOrZero, 7418 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7419 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7420 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7421 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7422 "Exact is not allowed to be less precise than Max"); 7423 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7424 isa<SCEVConstant>(MaxNotTaken)) && 7425 "No point in having a non-constant max backedge taken count!"); 7426 for (auto *PredSet : PredSetList) 7427 for (auto *P : *PredSet) 7428 addPredicate(P); 7429 } 7430 7431 ScalarEvolution::ExitLimit::ExitLimit( 7432 const SCEV *E, const SCEV *M, bool MaxOrZero, 7433 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7434 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7435 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7436 isa<SCEVConstant>(MaxNotTaken)) && 7437 "No point in having a non-constant max backedge taken count!"); 7438 } 7439 7440 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7441 bool MaxOrZero) 7442 : ExitLimit(E, M, MaxOrZero, None) { 7443 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7444 isa<SCEVConstant>(MaxNotTaken)) && 7445 "No point in having a non-constant max backedge taken count!"); 7446 } 7447 7448 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7449 /// computable exit into a persistent ExitNotTakenInfo array. 7450 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7451 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7452 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7453 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7454 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7455 7456 ExitNotTaken.reserve(ExitCounts.size()); 7457 std::transform( 7458 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7459 [&](const EdgeExitInfo &EEI) { 7460 BasicBlock *ExitBB = EEI.first; 7461 const ExitLimit &EL = EEI.second; 7462 if (EL.Predicates.empty()) 7463 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7464 nullptr); 7465 7466 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7467 for (auto *Pred : EL.Predicates) 7468 Predicate->add(Pred); 7469 7470 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7471 std::move(Predicate)); 7472 }); 7473 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7474 isa<SCEVConstant>(ConstantMax)) && 7475 "No point in having a non-constant max backedge taken count!"); 7476 } 7477 7478 /// Compute the number of times the backedge of the specified loop will execute. 7479 ScalarEvolution::BackedgeTakenInfo 7480 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7481 bool AllowPredicates) { 7482 SmallVector<BasicBlock *, 8> ExitingBlocks; 7483 L->getExitingBlocks(ExitingBlocks); 7484 7485 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7486 7487 SmallVector<EdgeExitInfo, 4> ExitCounts; 7488 bool CouldComputeBECount = true; 7489 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7490 const SCEV *MustExitMaxBECount = nullptr; 7491 const SCEV *MayExitMaxBECount = nullptr; 7492 bool MustExitMaxOrZero = false; 7493 7494 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7495 // and compute maxBECount. 7496 // Do a union of all the predicates here. 7497 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7498 BasicBlock *ExitBB = ExitingBlocks[i]; 7499 7500 // We canonicalize untaken exits to br (constant), ignore them so that 7501 // proving an exit untaken doesn't negatively impact our ability to reason 7502 // about the loop as whole. 7503 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7504 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7505 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7506 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7507 continue; 7508 } 7509 7510 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7511 7512 assert((AllowPredicates || EL.Predicates.empty()) && 7513 "Predicated exit limit when predicates are not allowed!"); 7514 7515 // 1. For each exit that can be computed, add an entry to ExitCounts. 7516 // CouldComputeBECount is true only if all exits can be computed. 7517 if (EL.ExactNotTaken == getCouldNotCompute()) 7518 // We couldn't compute an exact value for this exit, so 7519 // we won't be able to compute an exact value for the loop. 7520 CouldComputeBECount = false; 7521 else 7522 ExitCounts.emplace_back(ExitBB, EL); 7523 7524 // 2. Derive the loop's MaxBECount from each exit's max number of 7525 // non-exiting iterations. Partition the loop exits into two kinds: 7526 // LoopMustExits and LoopMayExits. 7527 // 7528 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7529 // is a LoopMayExit. If any computable LoopMustExit is found, then 7530 // MaxBECount is the minimum EL.MaxNotTaken of computable 7531 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7532 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7533 // computable EL.MaxNotTaken. 7534 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7535 DT.dominates(ExitBB, Latch)) { 7536 if (!MustExitMaxBECount) { 7537 MustExitMaxBECount = EL.MaxNotTaken; 7538 MustExitMaxOrZero = EL.MaxOrZero; 7539 } else { 7540 MustExitMaxBECount = 7541 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7542 } 7543 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7544 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7545 MayExitMaxBECount = EL.MaxNotTaken; 7546 else { 7547 MayExitMaxBECount = 7548 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7549 } 7550 } 7551 } 7552 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7553 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7554 // The loop backedge will be taken the maximum or zero times if there's 7555 // a single exit that must be taken the maximum or zero times. 7556 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7557 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7558 MaxBECount, MaxOrZero); 7559 } 7560 7561 ScalarEvolution::ExitLimit 7562 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7563 bool AllowPredicates) { 7564 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7565 // If our exiting block does not dominate the latch, then its connection with 7566 // loop's exit limit may be far from trivial. 7567 const BasicBlock *Latch = L->getLoopLatch(); 7568 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7569 return getCouldNotCompute(); 7570 7571 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7572 Instruction *Term = ExitingBlock->getTerminator(); 7573 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7574 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7575 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7576 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7577 "It should have one successor in loop and one exit block!"); 7578 // Proceed to the next level to examine the exit condition expression. 7579 return computeExitLimitFromCond( 7580 L, BI->getCondition(), ExitIfTrue, 7581 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7582 } 7583 7584 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7585 // For switch, make sure that there is a single exit from the loop. 7586 BasicBlock *Exit = nullptr; 7587 for (auto *SBB : successors(ExitingBlock)) 7588 if (!L->contains(SBB)) { 7589 if (Exit) // Multiple exit successors. 7590 return getCouldNotCompute(); 7591 Exit = SBB; 7592 } 7593 assert(Exit && "Exiting block must have at least one exit"); 7594 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7595 /*ControlsExit=*/IsOnlyExit); 7596 } 7597 7598 return getCouldNotCompute(); 7599 } 7600 7601 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7602 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7603 bool ControlsExit, bool AllowPredicates) { 7604 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7605 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7606 ControlsExit, AllowPredicates); 7607 } 7608 7609 Optional<ScalarEvolution::ExitLimit> 7610 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7611 bool ExitIfTrue, bool ControlsExit, 7612 bool AllowPredicates) { 7613 (void)this->L; 7614 (void)this->ExitIfTrue; 7615 (void)this->AllowPredicates; 7616 7617 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7618 this->AllowPredicates == AllowPredicates && 7619 "Variance in assumed invariant key components!"); 7620 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7621 if (Itr == TripCountMap.end()) 7622 return None; 7623 return Itr->second; 7624 } 7625 7626 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7627 bool ExitIfTrue, 7628 bool ControlsExit, 7629 bool AllowPredicates, 7630 const ExitLimit &EL) { 7631 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7632 this->AllowPredicates == AllowPredicates && 7633 "Variance in assumed invariant key components!"); 7634 7635 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7636 assert(InsertResult.second && "Expected successful insertion!"); 7637 (void)InsertResult; 7638 (void)ExitIfTrue; 7639 } 7640 7641 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7642 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7643 bool ControlsExit, bool AllowPredicates) { 7644 7645 if (auto MaybeEL = 7646 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7647 return *MaybeEL; 7648 7649 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7650 ControlsExit, AllowPredicates); 7651 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7652 return EL; 7653 } 7654 7655 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7656 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7657 bool ControlsExit, bool AllowPredicates) { 7658 // Handle BinOp conditions (And, Or). 7659 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7660 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7661 return *LimitFromBinOp; 7662 7663 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7664 // Proceed to the next level to examine the icmp. 7665 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7666 ExitLimit EL = 7667 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7668 if (EL.hasFullInfo() || !AllowPredicates) 7669 return EL; 7670 7671 // Try again, but use SCEV predicates this time. 7672 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7673 /*AllowPredicates=*/true); 7674 } 7675 7676 // Check for a constant condition. These are normally stripped out by 7677 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7678 // preserve the CFG and is temporarily leaving constant conditions 7679 // in place. 7680 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7681 if (ExitIfTrue == !CI->getZExtValue()) 7682 // The backedge is always taken. 7683 return getCouldNotCompute(); 7684 else 7685 // The backedge is never taken. 7686 return getZero(CI->getType()); 7687 } 7688 7689 // If it's not an integer or pointer comparison then compute it the hard way. 7690 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7691 } 7692 7693 Optional<ScalarEvolution::ExitLimit> 7694 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7695 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7696 bool ControlsExit, bool AllowPredicates) { 7697 // Check if the controlling expression for this loop is an And or Or. 7698 Value *Op0, *Op1; 7699 bool IsAnd = false; 7700 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7701 IsAnd = true; 7702 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7703 IsAnd = false; 7704 else 7705 return None; 7706 7707 // EitherMayExit is true in these two cases: 7708 // br (and Op0 Op1), loop, exit 7709 // br (or Op0 Op1), exit, loop 7710 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7711 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7712 ControlsExit && !EitherMayExit, 7713 AllowPredicates); 7714 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7715 ControlsExit && !EitherMayExit, 7716 AllowPredicates); 7717 7718 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7719 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7720 if (isa<ConstantInt>(Op1)) 7721 return Op1 == NeutralElement ? EL0 : EL1; 7722 if (isa<ConstantInt>(Op0)) 7723 return Op0 == NeutralElement ? EL1 : EL0; 7724 7725 const SCEV *BECount = getCouldNotCompute(); 7726 const SCEV *MaxBECount = getCouldNotCompute(); 7727 if (EitherMayExit) { 7728 // Both conditions must be same for the loop to continue executing. 7729 // Choose the less conservative count. 7730 // If ExitCond is a short-circuit form (select), using 7731 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7732 // To see the detailed examples, please see 7733 // test/Analysis/ScalarEvolution/exit-count-select.ll 7734 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7735 if (!PoisonSafe) 7736 // Even if ExitCond is select, we can safely derive BECount using both 7737 // EL0 and EL1 in these cases: 7738 // (1) EL0.ExactNotTaken is non-zero 7739 // (2) EL1.ExactNotTaken is non-poison 7740 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7741 // it cannot be umin(0, ..)) 7742 // The PoisonSafe assignment below is simplified and the assertion after 7743 // BECount calculation fully guarantees the condition (3). 7744 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7745 isa<SCEVConstant>(EL1.ExactNotTaken); 7746 if (EL0.ExactNotTaken != getCouldNotCompute() && 7747 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7748 BECount = 7749 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7750 7751 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7752 // it should have been simplified to zero (see the condition (3) above) 7753 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7754 BECount->isZero()); 7755 } 7756 if (EL0.MaxNotTaken == getCouldNotCompute()) 7757 MaxBECount = EL1.MaxNotTaken; 7758 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7759 MaxBECount = EL0.MaxNotTaken; 7760 else 7761 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7762 } else { 7763 // Both conditions must be same at the same time for the loop to exit. 7764 // For now, be conservative. 7765 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7766 BECount = EL0.ExactNotTaken; 7767 } 7768 7769 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7770 // to be more aggressive when computing BECount than when computing 7771 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7772 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7773 // to not. 7774 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7775 !isa<SCEVCouldNotCompute>(BECount)) 7776 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7777 7778 return ExitLimit(BECount, MaxBECount, false, 7779 { &EL0.Predicates, &EL1.Predicates }); 7780 } 7781 7782 ScalarEvolution::ExitLimit 7783 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7784 ICmpInst *ExitCond, 7785 bool ExitIfTrue, 7786 bool ControlsExit, 7787 bool AllowPredicates) { 7788 // If the condition was exit on true, convert the condition to exit on false 7789 ICmpInst::Predicate Pred; 7790 if (!ExitIfTrue) 7791 Pred = ExitCond->getPredicate(); 7792 else 7793 Pred = ExitCond->getInversePredicate(); 7794 const ICmpInst::Predicate OriginalPred = Pred; 7795 7796 // Handle common loops like: for (X = "string"; *X; ++X) 7797 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7798 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7799 ExitLimit ItCnt = 7800 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7801 if (ItCnt.hasAnyInfo()) 7802 return ItCnt; 7803 } 7804 7805 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7806 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7807 7808 // Try to evaluate any dependencies out of the loop. 7809 LHS = getSCEVAtScope(LHS, L); 7810 RHS = getSCEVAtScope(RHS, L); 7811 7812 // At this point, we would like to compute how many iterations of the 7813 // loop the predicate will return true for these inputs. 7814 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7815 // If there is a loop-invariant, force it into the RHS. 7816 std::swap(LHS, RHS); 7817 Pred = ICmpInst::getSwappedPredicate(Pred); 7818 } 7819 7820 // Simplify the operands before analyzing them. 7821 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7822 7823 // If we have a comparison of a chrec against a constant, try to use value 7824 // ranges to answer this query. 7825 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7826 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7827 if (AddRec->getLoop() == L) { 7828 // Form the constant range. 7829 ConstantRange CompRange = 7830 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7831 7832 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7833 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7834 } 7835 7836 switch (Pred) { 7837 case ICmpInst::ICMP_NE: { // while (X != Y) 7838 // Convert to: while (X-Y != 0) 7839 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7840 AllowPredicates); 7841 if (EL.hasAnyInfo()) return EL; 7842 break; 7843 } 7844 case ICmpInst::ICMP_EQ: { // while (X == Y) 7845 // Convert to: while (X-Y == 0) 7846 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7847 if (EL.hasAnyInfo()) return EL; 7848 break; 7849 } 7850 case ICmpInst::ICMP_SLT: 7851 case ICmpInst::ICMP_ULT: { // while (X < Y) 7852 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7853 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7854 AllowPredicates); 7855 if (EL.hasAnyInfo()) return EL; 7856 break; 7857 } 7858 case ICmpInst::ICMP_SGT: 7859 case ICmpInst::ICMP_UGT: { // while (X > Y) 7860 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7861 ExitLimit EL = 7862 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7863 AllowPredicates); 7864 if (EL.hasAnyInfo()) return EL; 7865 break; 7866 } 7867 default: 7868 break; 7869 } 7870 7871 auto *ExhaustiveCount = 7872 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7873 7874 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7875 return ExhaustiveCount; 7876 7877 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7878 ExitCond->getOperand(1), L, OriginalPred); 7879 } 7880 7881 ScalarEvolution::ExitLimit 7882 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7883 SwitchInst *Switch, 7884 BasicBlock *ExitingBlock, 7885 bool ControlsExit) { 7886 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7887 7888 // Give up if the exit is the default dest of a switch. 7889 if (Switch->getDefaultDest() == ExitingBlock) 7890 return getCouldNotCompute(); 7891 7892 assert(L->contains(Switch->getDefaultDest()) && 7893 "Default case must not exit the loop!"); 7894 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7895 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7896 7897 // while (X != Y) --> while (X-Y != 0) 7898 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7899 if (EL.hasAnyInfo()) 7900 return EL; 7901 7902 return getCouldNotCompute(); 7903 } 7904 7905 static ConstantInt * 7906 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7907 ScalarEvolution &SE) { 7908 const SCEV *InVal = SE.getConstant(C); 7909 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7910 assert(isa<SCEVConstant>(Val) && 7911 "Evaluation of SCEV at constant didn't fold correctly?"); 7912 return cast<SCEVConstant>(Val)->getValue(); 7913 } 7914 7915 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7916 /// compute the backedge execution count. 7917 ScalarEvolution::ExitLimit 7918 ScalarEvolution::computeLoadConstantCompareExitLimit( 7919 LoadInst *LI, 7920 Constant *RHS, 7921 const Loop *L, 7922 ICmpInst::Predicate predicate) { 7923 if (LI->isVolatile()) return getCouldNotCompute(); 7924 7925 // Check to see if the loaded pointer is a getelementptr of a global. 7926 // TODO: Use SCEV instead of manually grubbing with GEPs. 7927 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7928 if (!GEP) return getCouldNotCompute(); 7929 7930 // Make sure that it is really a constant global we are gepping, with an 7931 // initializer, and make sure the first IDX is really 0. 7932 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7933 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7934 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7935 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7936 return getCouldNotCompute(); 7937 7938 // Okay, we allow one non-constant index into the GEP instruction. 7939 Value *VarIdx = nullptr; 7940 std::vector<Constant*> Indexes; 7941 unsigned VarIdxNum = 0; 7942 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7943 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7944 Indexes.push_back(CI); 7945 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7946 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7947 VarIdx = GEP->getOperand(i); 7948 VarIdxNum = i-2; 7949 Indexes.push_back(nullptr); 7950 } 7951 7952 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7953 if (!VarIdx) 7954 return getCouldNotCompute(); 7955 7956 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7957 // Check to see if X is a loop variant variable value now. 7958 const SCEV *Idx = getSCEV(VarIdx); 7959 Idx = getSCEVAtScope(Idx, L); 7960 7961 // We can only recognize very limited forms of loop index expressions, in 7962 // particular, only affine AddRec's like {C1,+,C2}<L>. 7963 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7964 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 7965 isLoopInvariant(IdxExpr, L) || 7966 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7967 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7968 return getCouldNotCompute(); 7969 7970 unsigned MaxSteps = MaxBruteForceIterations; 7971 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7972 ConstantInt *ItCst = ConstantInt::get( 7973 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7974 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7975 7976 // Form the GEP offset. 7977 Indexes[VarIdxNum] = Val; 7978 7979 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7980 Indexes); 7981 if (!Result) break; // Cannot compute! 7982 7983 // Evaluate the condition for this iteration. 7984 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7985 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7986 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7987 ++NumArrayLenItCounts; 7988 return getConstant(ItCst); // Found terminating iteration! 7989 } 7990 } 7991 return getCouldNotCompute(); 7992 } 7993 7994 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7995 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7996 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7997 if (!RHS) 7998 return getCouldNotCompute(); 7999 8000 const BasicBlock *Latch = L->getLoopLatch(); 8001 if (!Latch) 8002 return getCouldNotCompute(); 8003 8004 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8005 if (!Predecessor) 8006 return getCouldNotCompute(); 8007 8008 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8009 // Return LHS in OutLHS and shift_opt in OutOpCode. 8010 auto MatchPositiveShift = 8011 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8012 8013 using namespace PatternMatch; 8014 8015 ConstantInt *ShiftAmt; 8016 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8017 OutOpCode = Instruction::LShr; 8018 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8019 OutOpCode = Instruction::AShr; 8020 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8021 OutOpCode = Instruction::Shl; 8022 else 8023 return false; 8024 8025 return ShiftAmt->getValue().isStrictlyPositive(); 8026 }; 8027 8028 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8029 // 8030 // loop: 8031 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8032 // %iv.shifted = lshr i32 %iv, <positive constant> 8033 // 8034 // Return true on a successful match. Return the corresponding PHI node (%iv 8035 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8036 auto MatchShiftRecurrence = 8037 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8038 Optional<Instruction::BinaryOps> PostShiftOpCode; 8039 8040 { 8041 Instruction::BinaryOps OpC; 8042 Value *V; 8043 8044 // If we encounter a shift instruction, "peel off" the shift operation, 8045 // and remember that we did so. Later when we inspect %iv's backedge 8046 // value, we will make sure that the backedge value uses the same 8047 // operation. 8048 // 8049 // Note: the peeled shift operation does not have to be the same 8050 // instruction as the one feeding into the PHI's backedge value. We only 8051 // really care about it being the same *kind* of shift instruction -- 8052 // that's all that is required for our later inferences to hold. 8053 if (MatchPositiveShift(LHS, V, OpC)) { 8054 PostShiftOpCode = OpC; 8055 LHS = V; 8056 } 8057 } 8058 8059 PNOut = dyn_cast<PHINode>(LHS); 8060 if (!PNOut || PNOut->getParent() != L->getHeader()) 8061 return false; 8062 8063 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8064 Value *OpLHS; 8065 8066 return 8067 // The backedge value for the PHI node must be a shift by a positive 8068 // amount 8069 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8070 8071 // of the PHI node itself 8072 OpLHS == PNOut && 8073 8074 // and the kind of shift should be match the kind of shift we peeled 8075 // off, if any. 8076 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8077 }; 8078 8079 PHINode *PN; 8080 Instruction::BinaryOps OpCode; 8081 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8082 return getCouldNotCompute(); 8083 8084 const DataLayout &DL = getDataLayout(); 8085 8086 // The key rationale for this optimization is that for some kinds of shift 8087 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8088 // within a finite number of iterations. If the condition guarding the 8089 // backedge (in the sense that the backedge is taken if the condition is true) 8090 // is false for the value the shift recurrence stabilizes to, then we know 8091 // that the backedge is taken only a finite number of times. 8092 8093 ConstantInt *StableValue = nullptr; 8094 switch (OpCode) { 8095 default: 8096 llvm_unreachable("Impossible case!"); 8097 8098 case Instruction::AShr: { 8099 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8100 // bitwidth(K) iterations. 8101 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8102 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8103 Predecessor->getTerminator(), &DT); 8104 auto *Ty = cast<IntegerType>(RHS->getType()); 8105 if (Known.isNonNegative()) 8106 StableValue = ConstantInt::get(Ty, 0); 8107 else if (Known.isNegative()) 8108 StableValue = ConstantInt::get(Ty, -1, true); 8109 else 8110 return getCouldNotCompute(); 8111 8112 break; 8113 } 8114 case Instruction::LShr: 8115 case Instruction::Shl: 8116 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8117 // stabilize to 0 in at most bitwidth(K) iterations. 8118 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8119 break; 8120 } 8121 8122 auto *Result = 8123 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8124 assert(Result->getType()->isIntegerTy(1) && 8125 "Otherwise cannot be an operand to a branch instruction"); 8126 8127 if (Result->isZeroValue()) { 8128 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8129 const SCEV *UpperBound = 8130 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8131 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8132 } 8133 8134 return getCouldNotCompute(); 8135 } 8136 8137 /// Return true if we can constant fold an instruction of the specified type, 8138 /// assuming that all operands were constants. 8139 static bool CanConstantFold(const Instruction *I) { 8140 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8141 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8142 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8143 return true; 8144 8145 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8146 if (const Function *F = CI->getCalledFunction()) 8147 return canConstantFoldCallTo(CI, F); 8148 return false; 8149 } 8150 8151 /// Determine whether this instruction can constant evolve within this loop 8152 /// assuming its operands can all constant evolve. 8153 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8154 // An instruction outside of the loop can't be derived from a loop PHI. 8155 if (!L->contains(I)) return false; 8156 8157 if (isa<PHINode>(I)) { 8158 // We don't currently keep track of the control flow needed to evaluate 8159 // PHIs, so we cannot handle PHIs inside of loops. 8160 return L->getHeader() == I->getParent(); 8161 } 8162 8163 // If we won't be able to constant fold this expression even if the operands 8164 // are constants, bail early. 8165 return CanConstantFold(I); 8166 } 8167 8168 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8169 /// recursing through each instruction operand until reaching a loop header phi. 8170 static PHINode * 8171 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8172 DenseMap<Instruction *, PHINode *> &PHIMap, 8173 unsigned Depth) { 8174 if (Depth > MaxConstantEvolvingDepth) 8175 return nullptr; 8176 8177 // Otherwise, we can evaluate this instruction if all of its operands are 8178 // constant or derived from a PHI node themselves. 8179 PHINode *PHI = nullptr; 8180 for (Value *Op : UseInst->operands()) { 8181 if (isa<Constant>(Op)) continue; 8182 8183 Instruction *OpInst = dyn_cast<Instruction>(Op); 8184 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8185 8186 PHINode *P = dyn_cast<PHINode>(OpInst); 8187 if (!P) 8188 // If this operand is already visited, reuse the prior result. 8189 // We may have P != PHI if this is the deepest point at which the 8190 // inconsistent paths meet. 8191 P = PHIMap.lookup(OpInst); 8192 if (!P) { 8193 // Recurse and memoize the results, whether a phi is found or not. 8194 // This recursive call invalidates pointers into PHIMap. 8195 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8196 PHIMap[OpInst] = P; 8197 } 8198 if (!P) 8199 return nullptr; // Not evolving from PHI 8200 if (PHI && PHI != P) 8201 return nullptr; // Evolving from multiple different PHIs. 8202 PHI = P; 8203 } 8204 // This is a expression evolving from a constant PHI! 8205 return PHI; 8206 } 8207 8208 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8209 /// in the loop that V is derived from. We allow arbitrary operations along the 8210 /// way, but the operands of an operation must either be constants or a value 8211 /// derived from a constant PHI. If this expression does not fit with these 8212 /// constraints, return null. 8213 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8214 Instruction *I = dyn_cast<Instruction>(V); 8215 if (!I || !canConstantEvolve(I, L)) return nullptr; 8216 8217 if (PHINode *PN = dyn_cast<PHINode>(I)) 8218 return PN; 8219 8220 // Record non-constant instructions contained by the loop. 8221 DenseMap<Instruction *, PHINode *> PHIMap; 8222 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8223 } 8224 8225 /// EvaluateExpression - Given an expression that passes the 8226 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8227 /// in the loop has the value PHIVal. If we can't fold this expression for some 8228 /// reason, return null. 8229 static Constant *EvaluateExpression(Value *V, const Loop *L, 8230 DenseMap<Instruction *, Constant *> &Vals, 8231 const DataLayout &DL, 8232 const TargetLibraryInfo *TLI) { 8233 // Convenient constant check, but redundant for recursive calls. 8234 if (Constant *C = dyn_cast<Constant>(V)) return C; 8235 Instruction *I = dyn_cast<Instruction>(V); 8236 if (!I) return nullptr; 8237 8238 if (Constant *C = Vals.lookup(I)) return C; 8239 8240 // An instruction inside the loop depends on a value outside the loop that we 8241 // weren't given a mapping for, or a value such as a call inside the loop. 8242 if (!canConstantEvolve(I, L)) return nullptr; 8243 8244 // An unmapped PHI can be due to a branch or another loop inside this loop, 8245 // or due to this not being the initial iteration through a loop where we 8246 // couldn't compute the evolution of this particular PHI last time. 8247 if (isa<PHINode>(I)) return nullptr; 8248 8249 std::vector<Constant*> Operands(I->getNumOperands()); 8250 8251 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8252 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8253 if (!Operand) { 8254 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8255 if (!Operands[i]) return nullptr; 8256 continue; 8257 } 8258 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8259 Vals[Operand] = C; 8260 if (!C) return nullptr; 8261 Operands[i] = C; 8262 } 8263 8264 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8265 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8266 Operands[1], DL, TLI); 8267 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8268 if (!LI->isVolatile()) 8269 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8270 } 8271 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8272 } 8273 8274 8275 // If every incoming value to PN except the one for BB is a specific Constant, 8276 // return that, else return nullptr. 8277 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8278 Constant *IncomingVal = nullptr; 8279 8280 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8281 if (PN->getIncomingBlock(i) == BB) 8282 continue; 8283 8284 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8285 if (!CurrentVal) 8286 return nullptr; 8287 8288 if (IncomingVal != CurrentVal) { 8289 if (IncomingVal) 8290 return nullptr; 8291 IncomingVal = CurrentVal; 8292 } 8293 } 8294 8295 return IncomingVal; 8296 } 8297 8298 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8299 /// in the header of its containing loop, we know the loop executes a 8300 /// constant number of times, and the PHI node is just a recurrence 8301 /// involving constants, fold it. 8302 Constant * 8303 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8304 const APInt &BEs, 8305 const Loop *L) { 8306 auto I = ConstantEvolutionLoopExitValue.find(PN); 8307 if (I != ConstantEvolutionLoopExitValue.end()) 8308 return I->second; 8309 8310 if (BEs.ugt(MaxBruteForceIterations)) 8311 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8312 8313 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8314 8315 DenseMap<Instruction *, Constant *> CurrentIterVals; 8316 BasicBlock *Header = L->getHeader(); 8317 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8318 8319 BasicBlock *Latch = L->getLoopLatch(); 8320 if (!Latch) 8321 return nullptr; 8322 8323 for (PHINode &PHI : Header->phis()) { 8324 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8325 CurrentIterVals[&PHI] = StartCST; 8326 } 8327 if (!CurrentIterVals.count(PN)) 8328 return RetVal = nullptr; 8329 8330 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8331 8332 // Execute the loop symbolically to determine the exit value. 8333 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8334 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8335 8336 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8337 unsigned IterationNum = 0; 8338 const DataLayout &DL = getDataLayout(); 8339 for (; ; ++IterationNum) { 8340 if (IterationNum == NumIterations) 8341 return RetVal = CurrentIterVals[PN]; // Got exit value! 8342 8343 // Compute the value of the PHIs for the next iteration. 8344 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8345 DenseMap<Instruction *, Constant *> NextIterVals; 8346 Constant *NextPHI = 8347 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8348 if (!NextPHI) 8349 return nullptr; // Couldn't evaluate! 8350 NextIterVals[PN] = NextPHI; 8351 8352 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8353 8354 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8355 // cease to be able to evaluate one of them or if they stop evolving, 8356 // because that doesn't necessarily prevent us from computing PN. 8357 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8358 for (const auto &I : CurrentIterVals) { 8359 PHINode *PHI = dyn_cast<PHINode>(I.first); 8360 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8361 PHIsToCompute.emplace_back(PHI, I.second); 8362 } 8363 // We use two distinct loops because EvaluateExpression may invalidate any 8364 // iterators into CurrentIterVals. 8365 for (const auto &I : PHIsToCompute) { 8366 PHINode *PHI = I.first; 8367 Constant *&NextPHI = NextIterVals[PHI]; 8368 if (!NextPHI) { // Not already computed. 8369 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8370 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8371 } 8372 if (NextPHI != I.second) 8373 StoppedEvolving = false; 8374 } 8375 8376 // If all entries in CurrentIterVals == NextIterVals then we can stop 8377 // iterating, the loop can't continue to change. 8378 if (StoppedEvolving) 8379 return RetVal = CurrentIterVals[PN]; 8380 8381 CurrentIterVals.swap(NextIterVals); 8382 } 8383 } 8384 8385 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8386 Value *Cond, 8387 bool ExitWhen) { 8388 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8389 if (!PN) return getCouldNotCompute(); 8390 8391 // If the loop is canonicalized, the PHI will have exactly two entries. 8392 // That's the only form we support here. 8393 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8394 8395 DenseMap<Instruction *, Constant *> CurrentIterVals; 8396 BasicBlock *Header = L->getHeader(); 8397 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8398 8399 BasicBlock *Latch = L->getLoopLatch(); 8400 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8401 8402 for (PHINode &PHI : Header->phis()) { 8403 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8404 CurrentIterVals[&PHI] = StartCST; 8405 } 8406 if (!CurrentIterVals.count(PN)) 8407 return getCouldNotCompute(); 8408 8409 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8410 // the loop symbolically to determine when the condition gets a value of 8411 // "ExitWhen". 8412 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8413 const DataLayout &DL = getDataLayout(); 8414 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8415 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8416 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8417 8418 // Couldn't symbolically evaluate. 8419 if (!CondVal) return getCouldNotCompute(); 8420 8421 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8422 ++NumBruteForceTripCountsComputed; 8423 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8424 } 8425 8426 // Update all the PHI nodes for the next iteration. 8427 DenseMap<Instruction *, Constant *> NextIterVals; 8428 8429 // Create a list of which PHIs we need to compute. We want to do this before 8430 // calling EvaluateExpression on them because that may invalidate iterators 8431 // into CurrentIterVals. 8432 SmallVector<PHINode *, 8> PHIsToCompute; 8433 for (const auto &I : CurrentIterVals) { 8434 PHINode *PHI = dyn_cast<PHINode>(I.first); 8435 if (!PHI || PHI->getParent() != Header) continue; 8436 PHIsToCompute.push_back(PHI); 8437 } 8438 for (PHINode *PHI : PHIsToCompute) { 8439 Constant *&NextPHI = NextIterVals[PHI]; 8440 if (NextPHI) continue; // Already computed! 8441 8442 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8443 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8444 } 8445 CurrentIterVals.swap(NextIterVals); 8446 } 8447 8448 // Too many iterations were needed to evaluate. 8449 return getCouldNotCompute(); 8450 } 8451 8452 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8453 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8454 ValuesAtScopes[V]; 8455 // Check to see if we've folded this expression at this loop before. 8456 for (auto &LS : Values) 8457 if (LS.first == L) 8458 return LS.second ? LS.second : V; 8459 8460 Values.emplace_back(L, nullptr); 8461 8462 // Otherwise compute it. 8463 const SCEV *C = computeSCEVAtScope(V, L); 8464 for (auto &LS : reverse(ValuesAtScopes[V])) 8465 if (LS.first == L) { 8466 LS.second = C; 8467 break; 8468 } 8469 return C; 8470 } 8471 8472 /// This builds up a Constant using the ConstantExpr interface. That way, we 8473 /// will return Constants for objects which aren't represented by a 8474 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8475 /// Returns NULL if the SCEV isn't representable as a Constant. 8476 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8477 switch (V->getSCEVType()) { 8478 case scCouldNotCompute: 8479 case scAddRecExpr: 8480 return nullptr; 8481 case scConstant: 8482 return cast<SCEVConstant>(V)->getValue(); 8483 case scUnknown: 8484 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8485 case scSignExtend: { 8486 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8487 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8488 return ConstantExpr::getSExt(CastOp, SS->getType()); 8489 return nullptr; 8490 } 8491 case scZeroExtend: { 8492 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8493 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8494 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8495 return nullptr; 8496 } 8497 case scPtrToInt: { 8498 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8499 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8500 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8501 8502 return nullptr; 8503 } 8504 case scTruncate: { 8505 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8506 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8507 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8508 return nullptr; 8509 } 8510 case scAddExpr: { 8511 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8512 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8513 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8514 unsigned AS = PTy->getAddressSpace(); 8515 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8516 C = ConstantExpr::getBitCast(C, DestPtrTy); 8517 } 8518 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8519 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8520 if (!C2) 8521 return nullptr; 8522 8523 // First pointer! 8524 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8525 unsigned AS = C2->getType()->getPointerAddressSpace(); 8526 std::swap(C, C2); 8527 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8528 // The offsets have been converted to bytes. We can add bytes to an 8529 // i8* by GEP with the byte count in the first index. 8530 C = ConstantExpr::getBitCast(C, DestPtrTy); 8531 } 8532 8533 // Don't bother trying to sum two pointers. We probably can't 8534 // statically compute a load that results from it anyway. 8535 if (C2->getType()->isPointerTy()) 8536 return nullptr; 8537 8538 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8539 if (PTy->getElementType()->isStructTy()) 8540 C2 = ConstantExpr::getIntegerCast( 8541 C2, Type::getInt32Ty(C->getContext()), true); 8542 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8543 } else 8544 C = ConstantExpr::getAdd(C, C2); 8545 } 8546 return C; 8547 } 8548 return nullptr; 8549 } 8550 case scMulExpr: { 8551 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8552 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8553 // Don't bother with pointers at all. 8554 if (C->getType()->isPointerTy()) 8555 return nullptr; 8556 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8557 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8558 if (!C2 || C2->getType()->isPointerTy()) 8559 return nullptr; 8560 C = ConstantExpr::getMul(C, C2); 8561 } 8562 return C; 8563 } 8564 return nullptr; 8565 } 8566 case scUDivExpr: { 8567 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8568 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8569 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8570 if (LHS->getType() == RHS->getType()) 8571 return ConstantExpr::getUDiv(LHS, RHS); 8572 return nullptr; 8573 } 8574 case scSMaxExpr: 8575 case scUMaxExpr: 8576 case scSMinExpr: 8577 case scUMinExpr: 8578 return nullptr; // TODO: smax, umax, smin, umax. 8579 } 8580 llvm_unreachable("Unknown SCEV kind!"); 8581 } 8582 8583 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8584 if (isa<SCEVConstant>(V)) return V; 8585 8586 // If this instruction is evolved from a constant-evolving PHI, compute the 8587 // exit value from the loop without using SCEVs. 8588 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8589 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8590 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8591 const Loop *CurrLoop = this->LI[I->getParent()]; 8592 // Looking for loop exit value. 8593 if (CurrLoop && CurrLoop->getParentLoop() == L && 8594 PN->getParent() == CurrLoop->getHeader()) { 8595 // Okay, there is no closed form solution for the PHI node. Check 8596 // to see if the loop that contains it has a known backedge-taken 8597 // count. If so, we may be able to force computation of the exit 8598 // value. 8599 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8600 // This trivial case can show up in some degenerate cases where 8601 // the incoming IR has not yet been fully simplified. 8602 if (BackedgeTakenCount->isZero()) { 8603 Value *InitValue = nullptr; 8604 bool MultipleInitValues = false; 8605 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8606 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8607 if (!InitValue) 8608 InitValue = PN->getIncomingValue(i); 8609 else if (InitValue != PN->getIncomingValue(i)) { 8610 MultipleInitValues = true; 8611 break; 8612 } 8613 } 8614 } 8615 if (!MultipleInitValues && InitValue) 8616 return getSCEV(InitValue); 8617 } 8618 // Do we have a loop invariant value flowing around the backedge 8619 // for a loop which must execute the backedge? 8620 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8621 isKnownPositive(BackedgeTakenCount) && 8622 PN->getNumIncomingValues() == 2) { 8623 8624 unsigned InLoopPred = 8625 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8626 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8627 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8628 return getSCEV(BackedgeVal); 8629 } 8630 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8631 // Okay, we know how many times the containing loop executes. If 8632 // this is a constant evolving PHI node, get the final value at 8633 // the specified iteration number. 8634 Constant *RV = getConstantEvolutionLoopExitValue( 8635 PN, BTCC->getAPInt(), CurrLoop); 8636 if (RV) return getSCEV(RV); 8637 } 8638 } 8639 8640 // If there is a single-input Phi, evaluate it at our scope. If we can 8641 // prove that this replacement does not break LCSSA form, use new value. 8642 if (PN->getNumOperands() == 1) { 8643 const SCEV *Input = getSCEV(PN->getOperand(0)); 8644 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8645 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8646 // for the simplest case just support constants. 8647 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8648 } 8649 } 8650 8651 // Okay, this is an expression that we cannot symbolically evaluate 8652 // into a SCEV. Check to see if it's possible to symbolically evaluate 8653 // the arguments into constants, and if so, try to constant propagate the 8654 // result. This is particularly useful for computing loop exit values. 8655 if (CanConstantFold(I)) { 8656 SmallVector<Constant *, 4> Operands; 8657 bool MadeImprovement = false; 8658 for (Value *Op : I->operands()) { 8659 if (Constant *C = dyn_cast<Constant>(Op)) { 8660 Operands.push_back(C); 8661 continue; 8662 } 8663 8664 // If any of the operands is non-constant and if they are 8665 // non-integer and non-pointer, don't even try to analyze them 8666 // with scev techniques. 8667 if (!isSCEVable(Op->getType())) 8668 return V; 8669 8670 const SCEV *OrigV = getSCEV(Op); 8671 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8672 MadeImprovement |= OrigV != OpV; 8673 8674 Constant *C = BuildConstantFromSCEV(OpV); 8675 if (!C) return V; 8676 if (C->getType() != Op->getType()) 8677 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8678 Op->getType(), 8679 false), 8680 C, Op->getType()); 8681 Operands.push_back(C); 8682 } 8683 8684 // Check to see if getSCEVAtScope actually made an improvement. 8685 if (MadeImprovement) { 8686 Constant *C = nullptr; 8687 const DataLayout &DL = getDataLayout(); 8688 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8689 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8690 Operands[1], DL, &TLI); 8691 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8692 if (!Load->isVolatile()) 8693 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8694 DL); 8695 } else 8696 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8697 if (!C) return V; 8698 return getSCEV(C); 8699 } 8700 } 8701 } 8702 8703 // This is some other type of SCEVUnknown, just return it. 8704 return V; 8705 } 8706 8707 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8708 // Avoid performing the look-up in the common case where the specified 8709 // expression has no loop-variant portions. 8710 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8711 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8712 if (OpAtScope != Comm->getOperand(i)) { 8713 // Okay, at least one of these operands is loop variant but might be 8714 // foldable. Build a new instance of the folded commutative expression. 8715 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8716 Comm->op_begin()+i); 8717 NewOps.push_back(OpAtScope); 8718 8719 for (++i; i != e; ++i) { 8720 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8721 NewOps.push_back(OpAtScope); 8722 } 8723 if (isa<SCEVAddExpr>(Comm)) 8724 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8725 if (isa<SCEVMulExpr>(Comm)) 8726 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8727 if (isa<SCEVMinMaxExpr>(Comm)) 8728 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8729 llvm_unreachable("Unknown commutative SCEV type!"); 8730 } 8731 } 8732 // If we got here, all operands are loop invariant. 8733 return Comm; 8734 } 8735 8736 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8737 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8738 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8739 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8740 return Div; // must be loop invariant 8741 return getUDivExpr(LHS, RHS); 8742 } 8743 8744 // If this is a loop recurrence for a loop that does not contain L, then we 8745 // are dealing with the final value computed by the loop. 8746 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8747 // First, attempt to evaluate each operand. 8748 // Avoid performing the look-up in the common case where the specified 8749 // expression has no loop-variant portions. 8750 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8751 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8752 if (OpAtScope == AddRec->getOperand(i)) 8753 continue; 8754 8755 // Okay, at least one of these operands is loop variant but might be 8756 // foldable. Build a new instance of the folded commutative expression. 8757 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8758 AddRec->op_begin()+i); 8759 NewOps.push_back(OpAtScope); 8760 for (++i; i != e; ++i) 8761 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8762 8763 const SCEV *FoldedRec = 8764 getAddRecExpr(NewOps, AddRec->getLoop(), 8765 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8766 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8767 // The addrec may be folded to a nonrecurrence, for example, if the 8768 // induction variable is multiplied by zero after constant folding. Go 8769 // ahead and return the folded value. 8770 if (!AddRec) 8771 return FoldedRec; 8772 break; 8773 } 8774 8775 // If the scope is outside the addrec's loop, evaluate it by using the 8776 // loop exit value of the addrec. 8777 if (!AddRec->getLoop()->contains(L)) { 8778 // To evaluate this recurrence, we need to know how many times the AddRec 8779 // loop iterates. Compute this now. 8780 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8781 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8782 8783 // Then, evaluate the AddRec. 8784 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8785 } 8786 8787 return AddRec; 8788 } 8789 8790 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8791 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8792 if (Op == Cast->getOperand()) 8793 return Cast; // must be loop invariant 8794 return getZeroExtendExpr(Op, Cast->getType()); 8795 } 8796 8797 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8798 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8799 if (Op == Cast->getOperand()) 8800 return Cast; // must be loop invariant 8801 return getSignExtendExpr(Op, Cast->getType()); 8802 } 8803 8804 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8805 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8806 if (Op == Cast->getOperand()) 8807 return Cast; // must be loop invariant 8808 return getTruncateExpr(Op, Cast->getType()); 8809 } 8810 8811 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8812 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8813 if (Op == Cast->getOperand()) 8814 return Cast; // must be loop invariant 8815 return getPtrToIntExpr(Op, Cast->getType()); 8816 } 8817 8818 llvm_unreachable("Unknown SCEV type!"); 8819 } 8820 8821 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8822 return getSCEVAtScope(getSCEV(V), L); 8823 } 8824 8825 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8826 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8827 return stripInjectiveFunctions(ZExt->getOperand()); 8828 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8829 return stripInjectiveFunctions(SExt->getOperand()); 8830 return S; 8831 } 8832 8833 /// Finds the minimum unsigned root of the following equation: 8834 /// 8835 /// A * X = B (mod N) 8836 /// 8837 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8838 /// A and B isn't important. 8839 /// 8840 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8841 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8842 ScalarEvolution &SE) { 8843 uint32_t BW = A.getBitWidth(); 8844 assert(BW == SE.getTypeSizeInBits(B->getType())); 8845 assert(A != 0 && "A must be non-zero."); 8846 8847 // 1. D = gcd(A, N) 8848 // 8849 // The gcd of A and N may have only one prime factor: 2. The number of 8850 // trailing zeros in A is its multiplicity 8851 uint32_t Mult2 = A.countTrailingZeros(); 8852 // D = 2^Mult2 8853 8854 // 2. Check if B is divisible by D. 8855 // 8856 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8857 // is not less than multiplicity of this prime factor for D. 8858 if (SE.GetMinTrailingZeros(B) < Mult2) 8859 return SE.getCouldNotCompute(); 8860 8861 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8862 // modulo (N / D). 8863 // 8864 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8865 // (N / D) in general. The inverse itself always fits into BW bits, though, 8866 // so we immediately truncate it. 8867 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8868 APInt Mod(BW + 1, 0); 8869 Mod.setBit(BW - Mult2); // Mod = N / D 8870 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8871 8872 // 4. Compute the minimum unsigned root of the equation: 8873 // I * (B / D) mod (N / D) 8874 // To simplify the computation, we factor out the divide by D: 8875 // (I * B mod N) / D 8876 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8877 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8878 } 8879 8880 /// For a given quadratic addrec, generate coefficients of the corresponding 8881 /// quadratic equation, multiplied by a common value to ensure that they are 8882 /// integers. 8883 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8884 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8885 /// were multiplied by, and BitWidth is the bit width of the original addrec 8886 /// coefficients. 8887 /// This function returns None if the addrec coefficients are not compile- 8888 /// time constants. 8889 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8890 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8891 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8892 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8893 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8894 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8895 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8896 << *AddRec << '\n'); 8897 8898 // We currently can only solve this if the coefficients are constants. 8899 if (!LC || !MC || !NC) { 8900 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8901 return None; 8902 } 8903 8904 APInt L = LC->getAPInt(); 8905 APInt M = MC->getAPInt(); 8906 APInt N = NC->getAPInt(); 8907 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8908 8909 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8910 unsigned NewWidth = BitWidth + 1; 8911 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8912 << BitWidth << '\n'); 8913 // The sign-extension (as opposed to a zero-extension) here matches the 8914 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8915 N = N.sext(NewWidth); 8916 M = M.sext(NewWidth); 8917 L = L.sext(NewWidth); 8918 8919 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8920 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8921 // L+M, L+2M+N, L+3M+3N, ... 8922 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8923 // 8924 // The equation Acc = 0 is then 8925 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8926 // In a quadratic form it becomes: 8927 // N n^2 + (2M-N) n + 2L = 0. 8928 8929 APInt A = N; 8930 APInt B = 2 * M - A; 8931 APInt C = 2 * L; 8932 APInt T = APInt(NewWidth, 2); 8933 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8934 << "x + " << C << ", coeff bw: " << NewWidth 8935 << ", multiplied by " << T << '\n'); 8936 return std::make_tuple(A, B, C, T, BitWidth); 8937 } 8938 8939 /// Helper function to compare optional APInts: 8940 /// (a) if X and Y both exist, return min(X, Y), 8941 /// (b) if neither X nor Y exist, return None, 8942 /// (c) if exactly one of X and Y exists, return that value. 8943 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8944 if (X.hasValue() && Y.hasValue()) { 8945 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8946 APInt XW = X->sextOrSelf(W); 8947 APInt YW = Y->sextOrSelf(W); 8948 return XW.slt(YW) ? *X : *Y; 8949 } 8950 if (!X.hasValue() && !Y.hasValue()) 8951 return None; 8952 return X.hasValue() ? *X : *Y; 8953 } 8954 8955 /// Helper function to truncate an optional APInt to a given BitWidth. 8956 /// When solving addrec-related equations, it is preferable to return a value 8957 /// that has the same bit width as the original addrec's coefficients. If the 8958 /// solution fits in the original bit width, truncate it (except for i1). 8959 /// Returning a value of a different bit width may inhibit some optimizations. 8960 /// 8961 /// In general, a solution to a quadratic equation generated from an addrec 8962 /// may require BW+1 bits, where BW is the bit width of the addrec's 8963 /// coefficients. The reason is that the coefficients of the quadratic 8964 /// equation are BW+1 bits wide (to avoid truncation when converting from 8965 /// the addrec to the equation). 8966 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8967 if (!X.hasValue()) 8968 return None; 8969 unsigned W = X->getBitWidth(); 8970 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8971 return X->trunc(BitWidth); 8972 return X; 8973 } 8974 8975 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8976 /// iterations. The values L, M, N are assumed to be signed, and they 8977 /// should all have the same bit widths. 8978 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8979 /// where BW is the bit width of the addrec's coefficients. 8980 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8981 /// returned as such, otherwise the bit width of the returned value may 8982 /// be greater than BW. 8983 /// 8984 /// This function returns None if 8985 /// (a) the addrec coefficients are not constant, or 8986 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8987 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8988 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8989 static Optional<APInt> 8990 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8991 APInt A, B, C, M; 8992 unsigned BitWidth; 8993 auto T = GetQuadraticEquation(AddRec); 8994 if (!T.hasValue()) 8995 return None; 8996 8997 std::tie(A, B, C, M, BitWidth) = *T; 8998 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8999 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9000 if (!X.hasValue()) 9001 return None; 9002 9003 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9004 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9005 if (!V->isZero()) 9006 return None; 9007 9008 return TruncIfPossible(X, BitWidth); 9009 } 9010 9011 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9012 /// iterations. The values M, N are assumed to be signed, and they 9013 /// should all have the same bit widths. 9014 /// Find the least n such that c(n) does not belong to the given range, 9015 /// while c(n-1) does. 9016 /// 9017 /// This function returns None if 9018 /// (a) the addrec coefficients are not constant, or 9019 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9020 /// bounds of the range. 9021 static Optional<APInt> 9022 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9023 const ConstantRange &Range, ScalarEvolution &SE) { 9024 assert(AddRec->getOperand(0)->isZero() && 9025 "Starting value of addrec should be 0"); 9026 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9027 << Range << ", addrec " << *AddRec << '\n'); 9028 // This case is handled in getNumIterationsInRange. Here we can assume that 9029 // we start in the range. 9030 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9031 "Addrec's initial value should be in range"); 9032 9033 APInt A, B, C, M; 9034 unsigned BitWidth; 9035 auto T = GetQuadraticEquation(AddRec); 9036 if (!T.hasValue()) 9037 return None; 9038 9039 // Be careful about the return value: there can be two reasons for not 9040 // returning an actual number. First, if no solutions to the equations 9041 // were found, and second, if the solutions don't leave the given range. 9042 // The first case means that the actual solution is "unknown", the second 9043 // means that it's known, but not valid. If the solution is unknown, we 9044 // cannot make any conclusions. 9045 // Return a pair: the optional solution and a flag indicating if the 9046 // solution was found. 9047 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9048 // Solve for signed overflow and unsigned overflow, pick the lower 9049 // solution. 9050 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9051 << Bound << " (before multiplying by " << M << ")\n"); 9052 Bound *= M; // The quadratic equation multiplier. 9053 9054 Optional<APInt> SO = None; 9055 if (BitWidth > 1) { 9056 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9057 "signed overflow\n"); 9058 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9059 } 9060 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9061 "unsigned overflow\n"); 9062 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9063 BitWidth+1); 9064 9065 auto LeavesRange = [&] (const APInt &X) { 9066 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9067 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9068 if (Range.contains(V0->getValue())) 9069 return false; 9070 // X should be at least 1, so X-1 is non-negative. 9071 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9072 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9073 if (Range.contains(V1->getValue())) 9074 return true; 9075 return false; 9076 }; 9077 9078 // If SolveQuadraticEquationWrap returns None, it means that there can 9079 // be a solution, but the function failed to find it. We cannot treat it 9080 // as "no solution". 9081 if (!SO.hasValue() || !UO.hasValue()) 9082 return { None, false }; 9083 9084 // Check the smaller value first to see if it leaves the range. 9085 // At this point, both SO and UO must have values. 9086 Optional<APInt> Min = MinOptional(SO, UO); 9087 if (LeavesRange(*Min)) 9088 return { Min, true }; 9089 Optional<APInt> Max = Min == SO ? UO : SO; 9090 if (LeavesRange(*Max)) 9091 return { Max, true }; 9092 9093 // Solutions were found, but were eliminated, hence the "true". 9094 return { None, true }; 9095 }; 9096 9097 std::tie(A, B, C, M, BitWidth) = *T; 9098 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9099 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9100 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9101 auto SL = SolveForBoundary(Lower); 9102 auto SU = SolveForBoundary(Upper); 9103 // If any of the solutions was unknown, no meaninigful conclusions can 9104 // be made. 9105 if (!SL.second || !SU.second) 9106 return None; 9107 9108 // Claim: The correct solution is not some value between Min and Max. 9109 // 9110 // Justification: Assuming that Min and Max are different values, one of 9111 // them is when the first signed overflow happens, the other is when the 9112 // first unsigned overflow happens. Crossing the range boundary is only 9113 // possible via an overflow (treating 0 as a special case of it, modeling 9114 // an overflow as crossing k*2^W for some k). 9115 // 9116 // The interesting case here is when Min was eliminated as an invalid 9117 // solution, but Max was not. The argument is that if there was another 9118 // overflow between Min and Max, it would also have been eliminated if 9119 // it was considered. 9120 // 9121 // For a given boundary, it is possible to have two overflows of the same 9122 // type (signed/unsigned) without having the other type in between: this 9123 // can happen when the vertex of the parabola is between the iterations 9124 // corresponding to the overflows. This is only possible when the two 9125 // overflows cross k*2^W for the same k. In such case, if the second one 9126 // left the range (and was the first one to do so), the first overflow 9127 // would have to enter the range, which would mean that either we had left 9128 // the range before or that we started outside of it. Both of these cases 9129 // are contradictions. 9130 // 9131 // Claim: In the case where SolveForBoundary returns None, the correct 9132 // solution is not some value between the Max for this boundary and the 9133 // Min of the other boundary. 9134 // 9135 // Justification: Assume that we had such Max_A and Min_B corresponding 9136 // to range boundaries A and B and such that Max_A < Min_B. If there was 9137 // a solution between Max_A and Min_B, it would have to be caused by an 9138 // overflow corresponding to either A or B. It cannot correspond to B, 9139 // since Min_B is the first occurrence of such an overflow. If it 9140 // corresponded to A, it would have to be either a signed or an unsigned 9141 // overflow that is larger than both eliminated overflows for A. But 9142 // between the eliminated overflows and this overflow, the values would 9143 // cover the entire value space, thus crossing the other boundary, which 9144 // is a contradiction. 9145 9146 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9147 } 9148 9149 ScalarEvolution::ExitLimit 9150 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9151 bool AllowPredicates) { 9152 9153 // This is only used for loops with a "x != y" exit test. The exit condition 9154 // is now expressed as a single expression, V = x-y. So the exit test is 9155 // effectively V != 0. We know and take advantage of the fact that this 9156 // expression only being used in a comparison by zero context. 9157 9158 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9159 // If the value is a constant 9160 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9161 // If the value is already zero, the branch will execute zero times. 9162 if (C->getValue()->isZero()) return C; 9163 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9164 } 9165 9166 const SCEVAddRecExpr *AddRec = 9167 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9168 9169 if (!AddRec && AllowPredicates) 9170 // Try to make this an AddRec using runtime tests, in the first X 9171 // iterations of this loop, where X is the SCEV expression found by the 9172 // algorithm below. 9173 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9174 9175 if (!AddRec || AddRec->getLoop() != L) 9176 return getCouldNotCompute(); 9177 9178 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9179 // the quadratic equation to solve it. 9180 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9181 // We can only use this value if the chrec ends up with an exact zero 9182 // value at this index. When solving for "X*X != 5", for example, we 9183 // should not accept a root of 2. 9184 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9185 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9186 return ExitLimit(R, R, false, Predicates); 9187 } 9188 return getCouldNotCompute(); 9189 } 9190 9191 // Otherwise we can only handle this if it is affine. 9192 if (!AddRec->isAffine()) 9193 return getCouldNotCompute(); 9194 9195 // If this is an affine expression, the execution count of this branch is 9196 // the minimum unsigned root of the following equation: 9197 // 9198 // Start + Step*N = 0 (mod 2^BW) 9199 // 9200 // equivalent to: 9201 // 9202 // Step*N = -Start (mod 2^BW) 9203 // 9204 // where BW is the common bit width of Start and Step. 9205 9206 // Get the initial value for the loop. 9207 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9208 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9209 9210 // For now we handle only constant steps. 9211 // 9212 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9213 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9214 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9215 // We have not yet seen any such cases. 9216 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9217 if (!StepC || StepC->getValue()->isZero()) 9218 return getCouldNotCompute(); 9219 9220 // For positive steps (counting up until unsigned overflow): 9221 // N = -Start/Step (as unsigned) 9222 // For negative steps (counting down to zero): 9223 // N = Start/-Step 9224 // First compute the unsigned distance from zero in the direction of Step. 9225 bool CountDown = StepC->getAPInt().isNegative(); 9226 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9227 9228 // Handle unitary steps, which cannot wraparound. 9229 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9230 // N = Distance (as unsigned) 9231 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9232 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9233 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9234 if (MaxBECountBase.ult(MaxBECount)) 9235 MaxBECount = MaxBECountBase; 9236 9237 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9238 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9239 // case, and see if we can improve the bound. 9240 // 9241 // Explicitly handling this here is necessary because getUnsignedRange 9242 // isn't context-sensitive; it doesn't know that we only care about the 9243 // range inside the loop. 9244 const SCEV *Zero = getZero(Distance->getType()); 9245 const SCEV *One = getOne(Distance->getType()); 9246 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9247 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9248 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9249 // as "unsigned_max(Distance + 1) - 1". 9250 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9251 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9252 } 9253 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9254 } 9255 9256 // If the condition controls loop exit (the loop exits only if the expression 9257 // is true) and the addition is no-wrap we can use unsigned divide to 9258 // compute the backedge count. In this case, the step may not divide the 9259 // distance, but we don't care because if the condition is "missed" the loop 9260 // will have undefined behavior due to wrapping. 9261 if (ControlsExit && AddRec->hasNoSelfWrap() && 9262 loopHasNoAbnormalExits(AddRec->getLoop())) { 9263 const SCEV *Exact = 9264 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9265 const SCEV *Max = getCouldNotCompute(); 9266 if (Exact != getCouldNotCompute()) { 9267 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9268 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9269 if (BaseMaxInt.ult(MaxInt)) 9270 Max = getConstant(BaseMaxInt); 9271 else 9272 Max = getConstant(MaxInt); 9273 } 9274 return ExitLimit(Exact, Max, false, Predicates); 9275 } 9276 9277 // Solve the general equation. 9278 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9279 getNegativeSCEV(Start), *this); 9280 const SCEV *M = E == getCouldNotCompute() 9281 ? E 9282 : getConstant(getUnsignedRangeMax(E)); 9283 return ExitLimit(E, M, false, Predicates); 9284 } 9285 9286 ScalarEvolution::ExitLimit 9287 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9288 // Loops that look like: while (X == 0) are very strange indeed. We don't 9289 // handle them yet except for the trivial case. This could be expanded in the 9290 // future as needed. 9291 9292 // If the value is a constant, check to see if it is known to be non-zero 9293 // already. If so, the backedge will execute zero times. 9294 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9295 if (!C->getValue()->isZero()) 9296 return getZero(C->getType()); 9297 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9298 } 9299 9300 // We could implement others, but I really doubt anyone writes loops like 9301 // this, and if they did, they would already be constant folded. 9302 return getCouldNotCompute(); 9303 } 9304 9305 std::pair<const BasicBlock *, const BasicBlock *> 9306 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9307 const { 9308 // If the block has a unique predecessor, then there is no path from the 9309 // predecessor to the block that does not go through the direct edge 9310 // from the predecessor to the block. 9311 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9312 return {Pred, BB}; 9313 9314 // A loop's header is defined to be a block that dominates the loop. 9315 // If the header has a unique predecessor outside the loop, it must be 9316 // a block that has exactly one successor that can reach the loop. 9317 if (const Loop *L = LI.getLoopFor(BB)) 9318 return {L->getLoopPredecessor(), L->getHeader()}; 9319 9320 return {nullptr, nullptr}; 9321 } 9322 9323 /// SCEV structural equivalence is usually sufficient for testing whether two 9324 /// expressions are equal, however for the purposes of looking for a condition 9325 /// guarding a loop, it can be useful to be a little more general, since a 9326 /// front-end may have replicated the controlling expression. 9327 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9328 // Quick check to see if they are the same SCEV. 9329 if (A == B) return true; 9330 9331 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9332 // Not all instructions that are "identical" compute the same value. For 9333 // instance, two distinct alloca instructions allocating the same type are 9334 // identical and do not read memory; but compute distinct values. 9335 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9336 }; 9337 9338 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9339 // two different instructions with the same value. Check for this case. 9340 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9341 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9342 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9343 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9344 if (ComputesEqualValues(AI, BI)) 9345 return true; 9346 9347 // Otherwise assume they may have a different value. 9348 return false; 9349 } 9350 9351 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9352 const SCEV *&LHS, const SCEV *&RHS, 9353 unsigned Depth) { 9354 bool Changed = false; 9355 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9356 // '0 != 0'. 9357 auto TrivialCase = [&](bool TriviallyTrue) { 9358 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9359 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9360 return true; 9361 }; 9362 // If we hit the max recursion limit bail out. 9363 if (Depth >= 3) 9364 return false; 9365 9366 // Canonicalize a constant to the right side. 9367 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9368 // Check for both operands constant. 9369 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9370 if (ConstantExpr::getICmp(Pred, 9371 LHSC->getValue(), 9372 RHSC->getValue())->isNullValue()) 9373 return TrivialCase(false); 9374 else 9375 return TrivialCase(true); 9376 } 9377 // Otherwise swap the operands to put the constant on the right. 9378 std::swap(LHS, RHS); 9379 Pred = ICmpInst::getSwappedPredicate(Pred); 9380 Changed = true; 9381 } 9382 9383 // If we're comparing an addrec with a value which is loop-invariant in the 9384 // addrec's loop, put the addrec on the left. Also make a dominance check, 9385 // as both operands could be addrecs loop-invariant in each other's loop. 9386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9387 const Loop *L = AR->getLoop(); 9388 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9389 std::swap(LHS, RHS); 9390 Pred = ICmpInst::getSwappedPredicate(Pred); 9391 Changed = true; 9392 } 9393 } 9394 9395 // If there's a constant operand, canonicalize comparisons with boundary 9396 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9397 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9398 const APInt &RA = RC->getAPInt(); 9399 9400 bool SimplifiedByConstantRange = false; 9401 9402 if (!ICmpInst::isEquality(Pred)) { 9403 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9404 if (ExactCR.isFullSet()) 9405 return TrivialCase(true); 9406 else if (ExactCR.isEmptySet()) 9407 return TrivialCase(false); 9408 9409 APInt NewRHS; 9410 CmpInst::Predicate NewPred; 9411 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9412 ICmpInst::isEquality(NewPred)) { 9413 // We were able to convert an inequality to an equality. 9414 Pred = NewPred; 9415 RHS = getConstant(NewRHS); 9416 Changed = SimplifiedByConstantRange = true; 9417 } 9418 } 9419 9420 if (!SimplifiedByConstantRange) { 9421 switch (Pred) { 9422 default: 9423 break; 9424 case ICmpInst::ICMP_EQ: 9425 case ICmpInst::ICMP_NE: 9426 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9427 if (!RA) 9428 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9429 if (const SCEVMulExpr *ME = 9430 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9431 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9432 ME->getOperand(0)->isAllOnesValue()) { 9433 RHS = AE->getOperand(1); 9434 LHS = ME->getOperand(1); 9435 Changed = true; 9436 } 9437 break; 9438 9439 9440 // The "Should have been caught earlier!" messages refer to the fact 9441 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9442 // should have fired on the corresponding cases, and canonicalized the 9443 // check to trivial case. 9444 9445 case ICmpInst::ICMP_UGE: 9446 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9447 Pred = ICmpInst::ICMP_UGT; 9448 RHS = getConstant(RA - 1); 9449 Changed = true; 9450 break; 9451 case ICmpInst::ICMP_ULE: 9452 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9453 Pred = ICmpInst::ICMP_ULT; 9454 RHS = getConstant(RA + 1); 9455 Changed = true; 9456 break; 9457 case ICmpInst::ICMP_SGE: 9458 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9459 Pred = ICmpInst::ICMP_SGT; 9460 RHS = getConstant(RA - 1); 9461 Changed = true; 9462 break; 9463 case ICmpInst::ICMP_SLE: 9464 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9465 Pred = ICmpInst::ICMP_SLT; 9466 RHS = getConstant(RA + 1); 9467 Changed = true; 9468 break; 9469 } 9470 } 9471 } 9472 9473 // Check for obvious equality. 9474 if (HasSameValue(LHS, RHS)) { 9475 if (ICmpInst::isTrueWhenEqual(Pred)) 9476 return TrivialCase(true); 9477 if (ICmpInst::isFalseWhenEqual(Pred)) 9478 return TrivialCase(false); 9479 } 9480 9481 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9482 // adding or subtracting 1 from one of the operands. 9483 switch (Pred) { 9484 case ICmpInst::ICMP_SLE: 9485 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9486 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9487 SCEV::FlagNSW); 9488 Pred = ICmpInst::ICMP_SLT; 9489 Changed = true; 9490 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9491 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9492 SCEV::FlagNSW); 9493 Pred = ICmpInst::ICMP_SLT; 9494 Changed = true; 9495 } 9496 break; 9497 case ICmpInst::ICMP_SGE: 9498 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9499 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9500 SCEV::FlagNSW); 9501 Pred = ICmpInst::ICMP_SGT; 9502 Changed = true; 9503 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9504 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9505 SCEV::FlagNSW); 9506 Pred = ICmpInst::ICMP_SGT; 9507 Changed = true; 9508 } 9509 break; 9510 case ICmpInst::ICMP_ULE: 9511 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9512 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9513 SCEV::FlagNUW); 9514 Pred = ICmpInst::ICMP_ULT; 9515 Changed = true; 9516 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9517 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9518 Pred = ICmpInst::ICMP_ULT; 9519 Changed = true; 9520 } 9521 break; 9522 case ICmpInst::ICMP_UGE: 9523 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9524 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9525 Pred = ICmpInst::ICMP_UGT; 9526 Changed = true; 9527 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9528 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9529 SCEV::FlagNUW); 9530 Pred = ICmpInst::ICMP_UGT; 9531 Changed = true; 9532 } 9533 break; 9534 default: 9535 break; 9536 } 9537 9538 // TODO: More simplifications are possible here. 9539 9540 // Recursively simplify until we either hit a recursion limit or nothing 9541 // changes. 9542 if (Changed) 9543 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9544 9545 return Changed; 9546 } 9547 9548 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9549 return getSignedRangeMax(S).isNegative(); 9550 } 9551 9552 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9553 return getSignedRangeMin(S).isStrictlyPositive(); 9554 } 9555 9556 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9557 return !getSignedRangeMin(S).isNegative(); 9558 } 9559 9560 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9561 return !getSignedRangeMax(S).isStrictlyPositive(); 9562 } 9563 9564 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9565 return isKnownNegative(S) || isKnownPositive(S); 9566 } 9567 9568 std::pair<const SCEV *, const SCEV *> 9569 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9570 // Compute SCEV on entry of loop L. 9571 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9572 if (Start == getCouldNotCompute()) 9573 return { Start, Start }; 9574 // Compute post increment SCEV for loop L. 9575 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9576 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9577 return { Start, PostInc }; 9578 } 9579 9580 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9581 const SCEV *LHS, const SCEV *RHS) { 9582 // First collect all loops. 9583 SmallPtrSet<const Loop *, 8> LoopsUsed; 9584 getUsedLoops(LHS, LoopsUsed); 9585 getUsedLoops(RHS, LoopsUsed); 9586 9587 if (LoopsUsed.empty()) 9588 return false; 9589 9590 // Domination relationship must be a linear order on collected loops. 9591 #ifndef NDEBUG 9592 for (auto *L1 : LoopsUsed) 9593 for (auto *L2 : LoopsUsed) 9594 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9595 DT.dominates(L2->getHeader(), L1->getHeader())) && 9596 "Domination relationship is not a linear order"); 9597 #endif 9598 9599 const Loop *MDL = 9600 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9601 [&](const Loop *L1, const Loop *L2) { 9602 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9603 }); 9604 9605 // Get init and post increment value for LHS. 9606 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9607 // if LHS contains unknown non-invariant SCEV then bail out. 9608 if (SplitLHS.first == getCouldNotCompute()) 9609 return false; 9610 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9611 // Get init and post increment value for RHS. 9612 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9613 // if RHS contains unknown non-invariant SCEV then bail out. 9614 if (SplitRHS.first == getCouldNotCompute()) 9615 return false; 9616 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9617 // It is possible that init SCEV contains an invariant load but it does 9618 // not dominate MDL and is not available at MDL loop entry, so we should 9619 // check it here. 9620 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9621 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9622 return false; 9623 9624 // It seems backedge guard check is faster than entry one so in some cases 9625 // it can speed up whole estimation by short circuit 9626 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9627 SplitRHS.second) && 9628 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9629 } 9630 9631 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9632 const SCEV *LHS, const SCEV *RHS) { 9633 // Canonicalize the inputs first. 9634 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9635 9636 if (isKnownViaInduction(Pred, LHS, RHS)) 9637 return true; 9638 9639 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9640 return true; 9641 9642 // Otherwise see what can be done with some simple reasoning. 9643 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9644 } 9645 9646 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9647 const SCEV *LHS, 9648 const SCEV *RHS) { 9649 if (isKnownPredicate(Pred, LHS, RHS)) 9650 return true; 9651 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9652 return false; 9653 return None; 9654 } 9655 9656 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9657 const SCEV *LHS, const SCEV *RHS, 9658 const Instruction *Context) { 9659 // TODO: Analyze guards and assumes from Context's block. 9660 return isKnownPredicate(Pred, LHS, RHS) || 9661 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9662 } 9663 9664 Optional<bool> 9665 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9666 const SCEV *RHS, 9667 const Instruction *Context) { 9668 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9669 if (KnownWithoutContext) 9670 return KnownWithoutContext; 9671 9672 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9673 return true; 9674 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9675 ICmpInst::getInversePredicate(Pred), 9676 LHS, RHS)) 9677 return false; 9678 return None; 9679 } 9680 9681 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9682 const SCEVAddRecExpr *LHS, 9683 const SCEV *RHS) { 9684 const Loop *L = LHS->getLoop(); 9685 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9686 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9687 } 9688 9689 Optional<ScalarEvolution::MonotonicPredicateType> 9690 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9691 ICmpInst::Predicate Pred) { 9692 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9693 9694 #ifndef NDEBUG 9695 // Verify an invariant: inverting the predicate should turn a monotonically 9696 // increasing change to a monotonically decreasing one, and vice versa. 9697 if (Result) { 9698 auto ResultSwapped = 9699 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9700 9701 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9702 assert(ResultSwapped.getValue() != Result.getValue() && 9703 "monotonicity should flip as we flip the predicate"); 9704 } 9705 #endif 9706 9707 return Result; 9708 } 9709 9710 Optional<ScalarEvolution::MonotonicPredicateType> 9711 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9712 ICmpInst::Predicate Pred) { 9713 // A zero step value for LHS means the induction variable is essentially a 9714 // loop invariant value. We don't really depend on the predicate actually 9715 // flipping from false to true (for increasing predicates, and the other way 9716 // around for decreasing predicates), all we care about is that *if* the 9717 // predicate changes then it only changes from false to true. 9718 // 9719 // A zero step value in itself is not very useful, but there may be places 9720 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9721 // as general as possible. 9722 9723 // Only handle LE/LT/GE/GT predicates. 9724 if (!ICmpInst::isRelational(Pred)) 9725 return None; 9726 9727 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9728 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9729 "Should be greater or less!"); 9730 9731 // Check that AR does not wrap. 9732 if (ICmpInst::isUnsigned(Pred)) { 9733 if (!LHS->hasNoUnsignedWrap()) 9734 return None; 9735 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9736 } else { 9737 assert(ICmpInst::isSigned(Pred) && 9738 "Relational predicate is either signed or unsigned!"); 9739 if (!LHS->hasNoSignedWrap()) 9740 return None; 9741 9742 const SCEV *Step = LHS->getStepRecurrence(*this); 9743 9744 if (isKnownNonNegative(Step)) 9745 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9746 9747 if (isKnownNonPositive(Step)) 9748 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9749 9750 return None; 9751 } 9752 } 9753 9754 Optional<ScalarEvolution::LoopInvariantPredicate> 9755 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9756 const SCEV *LHS, const SCEV *RHS, 9757 const Loop *L) { 9758 9759 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9760 if (!isLoopInvariant(RHS, L)) { 9761 if (!isLoopInvariant(LHS, L)) 9762 return None; 9763 9764 std::swap(LHS, RHS); 9765 Pred = ICmpInst::getSwappedPredicate(Pred); 9766 } 9767 9768 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9769 if (!ArLHS || ArLHS->getLoop() != L) 9770 return None; 9771 9772 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9773 if (!MonotonicType) 9774 return None; 9775 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9776 // true as the loop iterates, and the backedge is control dependent on 9777 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9778 // 9779 // * if the predicate was false in the first iteration then the predicate 9780 // is never evaluated again, since the loop exits without taking the 9781 // backedge. 9782 // * if the predicate was true in the first iteration then it will 9783 // continue to be true for all future iterations since it is 9784 // monotonically increasing. 9785 // 9786 // For both the above possibilities, we can replace the loop varying 9787 // predicate with its value on the first iteration of the loop (which is 9788 // loop invariant). 9789 // 9790 // A similar reasoning applies for a monotonically decreasing predicate, by 9791 // replacing true with false and false with true in the above two bullets. 9792 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9793 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9794 9795 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9796 return None; 9797 9798 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9799 } 9800 9801 Optional<ScalarEvolution::LoopInvariantPredicate> 9802 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9803 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9804 const Instruction *Context, const SCEV *MaxIter) { 9805 // Try to prove the following set of facts: 9806 // - The predicate is monotonic in the iteration space. 9807 // - If the check does not fail on the 1st iteration: 9808 // - No overflow will happen during first MaxIter iterations; 9809 // - It will not fail on the MaxIter'th iteration. 9810 // If the check does fail on the 1st iteration, we leave the loop and no 9811 // other checks matter. 9812 9813 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9814 if (!isLoopInvariant(RHS, L)) { 9815 if (!isLoopInvariant(LHS, L)) 9816 return None; 9817 9818 std::swap(LHS, RHS); 9819 Pred = ICmpInst::getSwappedPredicate(Pred); 9820 } 9821 9822 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9823 if (!AR || AR->getLoop() != L) 9824 return None; 9825 9826 // The predicate must be relational (i.e. <, <=, >=, >). 9827 if (!ICmpInst::isRelational(Pred)) 9828 return None; 9829 9830 // TODO: Support steps other than +/- 1. 9831 const SCEV *Step = AR->getStepRecurrence(*this); 9832 auto *One = getOne(Step->getType()); 9833 auto *MinusOne = getNegativeSCEV(One); 9834 if (Step != One && Step != MinusOne) 9835 return None; 9836 9837 // Type mismatch here means that MaxIter is potentially larger than max 9838 // unsigned value in start type, which mean we cannot prove no wrap for the 9839 // indvar. 9840 if (AR->getType() != MaxIter->getType()) 9841 return None; 9842 9843 // Value of IV on suggested last iteration. 9844 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9845 // Does it still meet the requirement? 9846 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 9847 return None; 9848 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 9849 // not exceed max unsigned value of this type), this effectively proves 9850 // that there is no wrap during the iteration. To prove that there is no 9851 // signed/unsigned wrap, we need to check that 9852 // Start <= Last for step = 1 or Start >= Last for step = -1. 9853 ICmpInst::Predicate NoOverflowPred = 9854 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9855 if (Step == MinusOne) 9856 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9857 const SCEV *Start = AR->getStart(); 9858 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9859 return None; 9860 9861 // Everything is fine. 9862 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 9863 } 9864 9865 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9866 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9867 if (HasSameValue(LHS, RHS)) 9868 return ICmpInst::isTrueWhenEqual(Pred); 9869 9870 // This code is split out from isKnownPredicate because it is called from 9871 // within isLoopEntryGuardedByCond. 9872 9873 auto CheckRanges = [&](const ConstantRange &RangeLHS, 9874 const ConstantRange &RangeRHS) { 9875 return RangeLHS.icmp(Pred, RangeRHS); 9876 }; 9877 9878 // The check at the top of the function catches the case where the values are 9879 // known to be equal. 9880 if (Pred == CmpInst::ICMP_EQ) 9881 return false; 9882 9883 if (Pred == CmpInst::ICMP_NE) 9884 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9885 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9886 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9887 9888 if (CmpInst::isSigned(Pred)) 9889 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9890 9891 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9892 } 9893 9894 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9895 const SCEV *LHS, 9896 const SCEV *RHS) { 9897 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9898 // Return Y via OutY. 9899 auto MatchBinaryAddToConst = 9900 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9901 SCEV::NoWrapFlags ExpectedFlags) { 9902 const SCEV *NonConstOp, *ConstOp; 9903 SCEV::NoWrapFlags FlagsPresent; 9904 9905 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9906 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9907 return false; 9908 9909 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9910 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9911 }; 9912 9913 APInt C; 9914 9915 switch (Pred) { 9916 default: 9917 break; 9918 9919 case ICmpInst::ICMP_SGE: 9920 std::swap(LHS, RHS); 9921 LLVM_FALLTHROUGH; 9922 case ICmpInst::ICMP_SLE: 9923 // X s<= (X + C)<nsw> if C >= 0 9924 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9925 return true; 9926 9927 // (X + C)<nsw> s<= X if C <= 0 9928 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9929 !C.isStrictlyPositive()) 9930 return true; 9931 break; 9932 9933 case ICmpInst::ICMP_SGT: 9934 std::swap(LHS, RHS); 9935 LLVM_FALLTHROUGH; 9936 case ICmpInst::ICMP_SLT: 9937 // X s< (X + C)<nsw> if C > 0 9938 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9939 C.isStrictlyPositive()) 9940 return true; 9941 9942 // (X + C)<nsw> s< X if C < 0 9943 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9944 return true; 9945 break; 9946 9947 case ICmpInst::ICMP_UGE: 9948 std::swap(LHS, RHS); 9949 LLVM_FALLTHROUGH; 9950 case ICmpInst::ICMP_ULE: 9951 // X u<= (X + C)<nuw> for any C 9952 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9953 return true; 9954 break; 9955 9956 case ICmpInst::ICMP_UGT: 9957 std::swap(LHS, RHS); 9958 LLVM_FALLTHROUGH; 9959 case ICmpInst::ICMP_ULT: 9960 // X u< (X + C)<nuw> if C != 0 9961 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9962 return true; 9963 break; 9964 } 9965 9966 return false; 9967 } 9968 9969 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9970 const SCEV *LHS, 9971 const SCEV *RHS) { 9972 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9973 return false; 9974 9975 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9976 // the stack can result in exponential time complexity. 9977 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9978 9979 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9980 // 9981 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9982 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9983 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9984 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9985 // use isKnownPredicate later if needed. 9986 return isKnownNonNegative(RHS) && 9987 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9988 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9989 } 9990 9991 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9992 ICmpInst::Predicate Pred, 9993 const SCEV *LHS, const SCEV *RHS) { 9994 // No need to even try if we know the module has no guards. 9995 if (!HasGuards) 9996 return false; 9997 9998 return any_of(*BB, [&](const Instruction &I) { 9999 using namespace llvm::PatternMatch; 10000 10001 Value *Condition; 10002 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10003 m_Value(Condition))) && 10004 isImpliedCond(Pred, LHS, RHS, Condition, false); 10005 }); 10006 } 10007 10008 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10009 /// protected by a conditional between LHS and RHS. This is used to 10010 /// to eliminate casts. 10011 bool 10012 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10013 ICmpInst::Predicate Pred, 10014 const SCEV *LHS, const SCEV *RHS) { 10015 // Interpret a null as meaning no loop, where there is obviously no guard 10016 // (interprocedural conditions notwithstanding). 10017 if (!L) return true; 10018 10019 if (VerifyIR) 10020 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10021 "This cannot be done on broken IR!"); 10022 10023 10024 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10025 return true; 10026 10027 BasicBlock *Latch = L->getLoopLatch(); 10028 if (!Latch) 10029 return false; 10030 10031 BranchInst *LoopContinuePredicate = 10032 dyn_cast<BranchInst>(Latch->getTerminator()); 10033 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10034 isImpliedCond(Pred, LHS, RHS, 10035 LoopContinuePredicate->getCondition(), 10036 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10037 return true; 10038 10039 // We don't want more than one activation of the following loops on the stack 10040 // -- that can lead to O(n!) time complexity. 10041 if (WalkingBEDominatingConds) 10042 return false; 10043 10044 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10045 10046 // See if we can exploit a trip count to prove the predicate. 10047 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10048 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10049 if (LatchBECount != getCouldNotCompute()) { 10050 // We know that Latch branches back to the loop header exactly 10051 // LatchBECount times. This means the backdege condition at Latch is 10052 // equivalent to "{0,+,1} u< LatchBECount". 10053 Type *Ty = LatchBECount->getType(); 10054 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10055 const SCEV *LoopCounter = 10056 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10057 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10058 LatchBECount)) 10059 return true; 10060 } 10061 10062 // Check conditions due to any @llvm.assume intrinsics. 10063 for (auto &AssumeVH : AC.assumptions()) { 10064 if (!AssumeVH) 10065 continue; 10066 auto *CI = cast<CallInst>(AssumeVH); 10067 if (!DT.dominates(CI, Latch->getTerminator())) 10068 continue; 10069 10070 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10071 return true; 10072 } 10073 10074 // If the loop is not reachable from the entry block, we risk running into an 10075 // infinite loop as we walk up into the dom tree. These loops do not matter 10076 // anyway, so we just return a conservative answer when we see them. 10077 if (!DT.isReachableFromEntry(L->getHeader())) 10078 return false; 10079 10080 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10081 return true; 10082 10083 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10084 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10085 assert(DTN && "should reach the loop header before reaching the root!"); 10086 10087 BasicBlock *BB = DTN->getBlock(); 10088 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10089 return true; 10090 10091 BasicBlock *PBB = BB->getSinglePredecessor(); 10092 if (!PBB) 10093 continue; 10094 10095 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10096 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10097 continue; 10098 10099 Value *Condition = ContinuePredicate->getCondition(); 10100 10101 // If we have an edge `E` within the loop body that dominates the only 10102 // latch, the condition guarding `E` also guards the backedge. This 10103 // reasoning works only for loops with a single latch. 10104 10105 BasicBlockEdge DominatingEdge(PBB, BB); 10106 if (DominatingEdge.isSingleEdge()) { 10107 // We're constructively (and conservatively) enumerating edges within the 10108 // loop body that dominate the latch. The dominator tree better agree 10109 // with us on this: 10110 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10111 10112 if (isImpliedCond(Pred, LHS, RHS, Condition, 10113 BB != ContinuePredicate->getSuccessor(0))) 10114 return true; 10115 } 10116 } 10117 10118 return false; 10119 } 10120 10121 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10122 ICmpInst::Predicate Pred, 10123 const SCEV *LHS, 10124 const SCEV *RHS) { 10125 if (VerifyIR) 10126 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10127 "This cannot be done on broken IR!"); 10128 10129 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10130 // the facts (a >= b && a != b) separately. A typical situation is when the 10131 // non-strict comparison is known from ranges and non-equality is known from 10132 // dominating predicates. If we are proving strict comparison, we always try 10133 // to prove non-equality and non-strict comparison separately. 10134 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10135 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10136 bool ProvedNonStrictComparison = false; 10137 bool ProvedNonEquality = false; 10138 10139 auto SplitAndProve = 10140 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10141 if (!ProvedNonStrictComparison) 10142 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10143 if (!ProvedNonEquality) 10144 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10145 if (ProvedNonStrictComparison && ProvedNonEquality) 10146 return true; 10147 return false; 10148 }; 10149 10150 if (ProvingStrictComparison) { 10151 auto ProofFn = [&](ICmpInst::Predicate P) { 10152 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10153 }; 10154 if (SplitAndProve(ProofFn)) 10155 return true; 10156 } 10157 10158 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10159 auto ProveViaGuard = [&](const BasicBlock *Block) { 10160 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10161 return true; 10162 if (ProvingStrictComparison) { 10163 auto ProofFn = [&](ICmpInst::Predicate P) { 10164 return isImpliedViaGuard(Block, P, LHS, RHS); 10165 }; 10166 if (SplitAndProve(ProofFn)) 10167 return true; 10168 } 10169 return false; 10170 }; 10171 10172 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10173 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10174 const Instruction *Context = &BB->front(); 10175 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10176 return true; 10177 if (ProvingStrictComparison) { 10178 auto ProofFn = [&](ICmpInst::Predicate P) { 10179 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10180 }; 10181 if (SplitAndProve(ProofFn)) 10182 return true; 10183 } 10184 return false; 10185 }; 10186 10187 // Starting at the block's predecessor, climb up the predecessor chain, as long 10188 // as there are predecessors that can be found that have unique successors 10189 // leading to the original block. 10190 const Loop *ContainingLoop = LI.getLoopFor(BB); 10191 const BasicBlock *PredBB; 10192 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10193 PredBB = ContainingLoop->getLoopPredecessor(); 10194 else 10195 PredBB = BB->getSinglePredecessor(); 10196 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10197 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10198 if (ProveViaGuard(Pair.first)) 10199 return true; 10200 10201 const BranchInst *LoopEntryPredicate = 10202 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10203 if (!LoopEntryPredicate || 10204 LoopEntryPredicate->isUnconditional()) 10205 continue; 10206 10207 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10208 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10209 return true; 10210 } 10211 10212 // Check conditions due to any @llvm.assume intrinsics. 10213 for (auto &AssumeVH : AC.assumptions()) { 10214 if (!AssumeVH) 10215 continue; 10216 auto *CI = cast<CallInst>(AssumeVH); 10217 if (!DT.dominates(CI, BB)) 10218 continue; 10219 10220 if (ProveViaCond(CI->getArgOperand(0), false)) 10221 return true; 10222 } 10223 10224 return false; 10225 } 10226 10227 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10228 ICmpInst::Predicate Pred, 10229 const SCEV *LHS, 10230 const SCEV *RHS) { 10231 // Interpret a null as meaning no loop, where there is obviously no guard 10232 // (interprocedural conditions notwithstanding). 10233 if (!L) 10234 return false; 10235 10236 // Both LHS and RHS must be available at loop entry. 10237 assert(isAvailableAtLoopEntry(LHS, L) && 10238 "LHS is not available at Loop Entry"); 10239 assert(isAvailableAtLoopEntry(RHS, L) && 10240 "RHS is not available at Loop Entry"); 10241 10242 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10243 return true; 10244 10245 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10246 } 10247 10248 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10249 const SCEV *RHS, 10250 const Value *FoundCondValue, bool Inverse, 10251 const Instruction *Context) { 10252 // False conditions implies anything. Do not bother analyzing it further. 10253 if (FoundCondValue == 10254 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10255 return true; 10256 10257 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10258 return false; 10259 10260 auto ClearOnExit = 10261 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10262 10263 // Recursively handle And and Or conditions. 10264 const Value *Op0, *Op1; 10265 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10266 if (!Inverse) 10267 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10268 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10269 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10270 if (Inverse) 10271 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10272 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10273 } 10274 10275 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10276 if (!ICI) return false; 10277 10278 // Now that we found a conditional branch that dominates the loop or controls 10279 // the loop latch. Check to see if it is the comparison we are looking for. 10280 ICmpInst::Predicate FoundPred; 10281 if (Inverse) 10282 FoundPred = ICI->getInversePredicate(); 10283 else 10284 FoundPred = ICI->getPredicate(); 10285 10286 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10287 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10288 10289 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10290 } 10291 10292 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10293 const SCEV *RHS, 10294 ICmpInst::Predicate FoundPred, 10295 const SCEV *FoundLHS, const SCEV *FoundRHS, 10296 const Instruction *Context) { 10297 // Balance the types. 10298 if (getTypeSizeInBits(LHS->getType()) < 10299 getTypeSizeInBits(FoundLHS->getType())) { 10300 // For unsigned and equality predicates, try to prove that both found 10301 // operands fit into narrow unsigned range. If so, try to prove facts in 10302 // narrow types. 10303 if (!CmpInst::isSigned(FoundPred)) { 10304 auto *NarrowType = LHS->getType(); 10305 auto *WideType = FoundLHS->getType(); 10306 auto BitWidth = getTypeSizeInBits(NarrowType); 10307 const SCEV *MaxValue = getZeroExtendExpr( 10308 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10309 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10310 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10311 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10312 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10313 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10314 TruncFoundRHS, Context)) 10315 return true; 10316 } 10317 } 10318 10319 if (CmpInst::isSigned(Pred)) { 10320 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10321 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10322 } else { 10323 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10324 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10325 } 10326 } else if (getTypeSizeInBits(LHS->getType()) > 10327 getTypeSizeInBits(FoundLHS->getType())) { 10328 if (CmpInst::isSigned(FoundPred)) { 10329 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10330 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10331 } else { 10332 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10333 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10334 } 10335 } 10336 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10337 FoundRHS, Context); 10338 } 10339 10340 bool ScalarEvolution::isImpliedCondBalancedTypes( 10341 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10342 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10343 const Instruction *Context) { 10344 assert(getTypeSizeInBits(LHS->getType()) == 10345 getTypeSizeInBits(FoundLHS->getType()) && 10346 "Types should be balanced!"); 10347 // Canonicalize the query to match the way instcombine will have 10348 // canonicalized the comparison. 10349 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10350 if (LHS == RHS) 10351 return CmpInst::isTrueWhenEqual(Pred); 10352 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10353 if (FoundLHS == FoundRHS) 10354 return CmpInst::isFalseWhenEqual(FoundPred); 10355 10356 // Check to see if we can make the LHS or RHS match. 10357 if (LHS == FoundRHS || RHS == FoundLHS) { 10358 if (isa<SCEVConstant>(RHS)) { 10359 std::swap(FoundLHS, FoundRHS); 10360 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10361 } else { 10362 std::swap(LHS, RHS); 10363 Pred = ICmpInst::getSwappedPredicate(Pred); 10364 } 10365 } 10366 10367 // Check whether the found predicate is the same as the desired predicate. 10368 if (FoundPred == Pred) 10369 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10370 10371 // Check whether swapping the found predicate makes it the same as the 10372 // desired predicate. 10373 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10374 // We can write the implication 10375 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10376 // using one of the following ways: 10377 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10378 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10379 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10380 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10381 // Forms 1. and 2. require swapping the operands of one condition. Don't 10382 // do this if it would break canonical constant/addrec ordering. 10383 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10384 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10385 Context); 10386 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10387 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10388 10389 // There's no clear preference between forms 3. and 4., try both. 10390 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10391 FoundLHS, FoundRHS, Context) || 10392 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10393 getNotSCEV(FoundRHS), Context); 10394 } 10395 10396 // Unsigned comparison is the same as signed comparison when both the operands 10397 // are non-negative. 10398 if (CmpInst::isUnsigned(FoundPred) && 10399 CmpInst::getSignedPredicate(FoundPred) == Pred && 10400 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10401 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10402 10403 // Check if we can make progress by sharpening ranges. 10404 if (FoundPred == ICmpInst::ICMP_NE && 10405 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10406 10407 const SCEVConstant *C = nullptr; 10408 const SCEV *V = nullptr; 10409 10410 if (isa<SCEVConstant>(FoundLHS)) { 10411 C = cast<SCEVConstant>(FoundLHS); 10412 V = FoundRHS; 10413 } else { 10414 C = cast<SCEVConstant>(FoundRHS); 10415 V = FoundLHS; 10416 } 10417 10418 // The guarding predicate tells us that C != V. If the known range 10419 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10420 // range we consider has to correspond to same signedness as the 10421 // predicate we're interested in folding. 10422 10423 APInt Min = ICmpInst::isSigned(Pred) ? 10424 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10425 10426 if (Min == C->getAPInt()) { 10427 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10428 // This is true even if (Min + 1) wraps around -- in case of 10429 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10430 10431 APInt SharperMin = Min + 1; 10432 10433 switch (Pred) { 10434 case ICmpInst::ICMP_SGE: 10435 case ICmpInst::ICMP_UGE: 10436 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10437 // RHS, we're done. 10438 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10439 Context)) 10440 return true; 10441 LLVM_FALLTHROUGH; 10442 10443 case ICmpInst::ICMP_SGT: 10444 case ICmpInst::ICMP_UGT: 10445 // We know from the range information that (V `Pred` Min || 10446 // V == Min). We know from the guarding condition that !(V 10447 // == Min). This gives us 10448 // 10449 // V `Pred` Min || V == Min && !(V == Min) 10450 // => V `Pred` Min 10451 // 10452 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10453 10454 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10455 Context)) 10456 return true; 10457 break; 10458 10459 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10460 case ICmpInst::ICMP_SLE: 10461 case ICmpInst::ICMP_ULE: 10462 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10463 LHS, V, getConstant(SharperMin), Context)) 10464 return true; 10465 LLVM_FALLTHROUGH; 10466 10467 case ICmpInst::ICMP_SLT: 10468 case ICmpInst::ICMP_ULT: 10469 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10470 LHS, V, getConstant(Min), Context)) 10471 return true; 10472 break; 10473 10474 default: 10475 // No change 10476 break; 10477 } 10478 } 10479 } 10480 10481 // Check whether the actual condition is beyond sufficient. 10482 if (FoundPred == ICmpInst::ICMP_EQ) 10483 if (ICmpInst::isTrueWhenEqual(Pred)) 10484 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10485 return true; 10486 if (Pred == ICmpInst::ICMP_NE) 10487 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10488 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10489 Context)) 10490 return true; 10491 10492 // Otherwise assume the worst. 10493 return false; 10494 } 10495 10496 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10497 const SCEV *&L, const SCEV *&R, 10498 SCEV::NoWrapFlags &Flags) { 10499 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10500 if (!AE || AE->getNumOperands() != 2) 10501 return false; 10502 10503 L = AE->getOperand(0); 10504 R = AE->getOperand(1); 10505 Flags = AE->getNoWrapFlags(); 10506 return true; 10507 } 10508 10509 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10510 const SCEV *Less) { 10511 // We avoid subtracting expressions here because this function is usually 10512 // fairly deep in the call stack (i.e. is called many times). 10513 10514 // X - X = 0. 10515 if (More == Less) 10516 return APInt(getTypeSizeInBits(More->getType()), 0); 10517 10518 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10519 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10520 const auto *MAR = cast<SCEVAddRecExpr>(More); 10521 10522 if (LAR->getLoop() != MAR->getLoop()) 10523 return None; 10524 10525 // We look at affine expressions only; not for correctness but to keep 10526 // getStepRecurrence cheap. 10527 if (!LAR->isAffine() || !MAR->isAffine()) 10528 return None; 10529 10530 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10531 return None; 10532 10533 Less = LAR->getStart(); 10534 More = MAR->getStart(); 10535 10536 // fall through 10537 } 10538 10539 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10540 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10541 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10542 return M - L; 10543 } 10544 10545 SCEV::NoWrapFlags Flags; 10546 const SCEV *LLess = nullptr, *RLess = nullptr; 10547 const SCEV *LMore = nullptr, *RMore = nullptr; 10548 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10549 // Compare (X + C1) vs X. 10550 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10551 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10552 if (RLess == More) 10553 return -(C1->getAPInt()); 10554 10555 // Compare X vs (X + C2). 10556 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10557 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10558 if (RMore == Less) 10559 return C2->getAPInt(); 10560 10561 // Compare (X + C1) vs (X + C2). 10562 if (C1 && C2 && RLess == RMore) 10563 return C2->getAPInt() - C1->getAPInt(); 10564 10565 return None; 10566 } 10567 10568 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10569 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10570 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10571 // Try to recognize the following pattern: 10572 // 10573 // FoundRHS = ... 10574 // ... 10575 // loop: 10576 // FoundLHS = {Start,+,W} 10577 // context_bb: // Basic block from the same loop 10578 // known(Pred, FoundLHS, FoundRHS) 10579 // 10580 // If some predicate is known in the context of a loop, it is also known on 10581 // each iteration of this loop, including the first iteration. Therefore, in 10582 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10583 // prove the original pred using this fact. 10584 if (!Context) 10585 return false; 10586 const BasicBlock *ContextBB = Context->getParent(); 10587 // Make sure AR varies in the context block. 10588 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10589 const Loop *L = AR->getLoop(); 10590 // Make sure that context belongs to the loop and executes on 1st iteration 10591 // (if it ever executes at all). 10592 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10593 return false; 10594 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10595 return false; 10596 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10597 } 10598 10599 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10600 const Loop *L = AR->getLoop(); 10601 // Make sure that context belongs to the loop and executes on 1st iteration 10602 // (if it ever executes at all). 10603 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10604 return false; 10605 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10606 return false; 10607 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10608 } 10609 10610 return false; 10611 } 10612 10613 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10614 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10615 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10616 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10617 return false; 10618 10619 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10620 if (!AddRecLHS) 10621 return false; 10622 10623 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10624 if (!AddRecFoundLHS) 10625 return false; 10626 10627 // We'd like to let SCEV reason about control dependencies, so we constrain 10628 // both the inequalities to be about add recurrences on the same loop. This 10629 // way we can use isLoopEntryGuardedByCond later. 10630 10631 const Loop *L = AddRecFoundLHS->getLoop(); 10632 if (L != AddRecLHS->getLoop()) 10633 return false; 10634 10635 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10636 // 10637 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10638 // ... (2) 10639 // 10640 // Informal proof for (2), assuming (1) [*]: 10641 // 10642 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10643 // 10644 // Then 10645 // 10646 // FoundLHS s< FoundRHS s< INT_MIN - C 10647 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10648 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10649 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10650 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10651 // <=> FoundLHS + C s< FoundRHS + C 10652 // 10653 // [*]: (1) can be proved by ruling out overflow. 10654 // 10655 // [**]: This can be proved by analyzing all the four possibilities: 10656 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10657 // (A s>= 0, B s>= 0). 10658 // 10659 // Note: 10660 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10661 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10662 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10663 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10664 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10665 // C)". 10666 10667 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10668 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10669 if (!LDiff || !RDiff || *LDiff != *RDiff) 10670 return false; 10671 10672 if (LDiff->isMinValue()) 10673 return true; 10674 10675 APInt FoundRHSLimit; 10676 10677 if (Pred == CmpInst::ICMP_ULT) { 10678 FoundRHSLimit = -(*RDiff); 10679 } else { 10680 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10681 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10682 } 10683 10684 // Try to prove (1) or (2), as needed. 10685 return isAvailableAtLoopEntry(FoundRHS, L) && 10686 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10687 getConstant(FoundRHSLimit)); 10688 } 10689 10690 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10691 const SCEV *LHS, const SCEV *RHS, 10692 const SCEV *FoundLHS, 10693 const SCEV *FoundRHS, unsigned Depth) { 10694 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10695 10696 auto ClearOnExit = make_scope_exit([&]() { 10697 if (LPhi) { 10698 bool Erased = PendingMerges.erase(LPhi); 10699 assert(Erased && "Failed to erase LPhi!"); 10700 (void)Erased; 10701 } 10702 if (RPhi) { 10703 bool Erased = PendingMerges.erase(RPhi); 10704 assert(Erased && "Failed to erase RPhi!"); 10705 (void)Erased; 10706 } 10707 }); 10708 10709 // Find respective Phis and check that they are not being pending. 10710 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10711 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10712 if (!PendingMerges.insert(Phi).second) 10713 return false; 10714 LPhi = Phi; 10715 } 10716 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10717 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10718 // If we detect a loop of Phi nodes being processed by this method, for 10719 // example: 10720 // 10721 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10722 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10723 // 10724 // we don't want to deal with a case that complex, so return conservative 10725 // answer false. 10726 if (!PendingMerges.insert(Phi).second) 10727 return false; 10728 RPhi = Phi; 10729 } 10730 10731 // If none of LHS, RHS is a Phi, nothing to do here. 10732 if (!LPhi && !RPhi) 10733 return false; 10734 10735 // If there is a SCEVUnknown Phi we are interested in, make it left. 10736 if (!LPhi) { 10737 std::swap(LHS, RHS); 10738 std::swap(FoundLHS, FoundRHS); 10739 std::swap(LPhi, RPhi); 10740 Pred = ICmpInst::getSwappedPredicate(Pred); 10741 } 10742 10743 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10744 const BasicBlock *LBB = LPhi->getParent(); 10745 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10746 10747 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10748 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10749 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10750 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10751 }; 10752 10753 if (RPhi && RPhi->getParent() == LBB) { 10754 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10755 // If we compare two Phis from the same block, and for each entry block 10756 // the predicate is true for incoming values from this block, then the 10757 // predicate is also true for the Phis. 10758 for (const BasicBlock *IncBB : predecessors(LBB)) { 10759 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10760 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10761 if (!ProvedEasily(L, R)) 10762 return false; 10763 } 10764 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10765 // Case two: RHS is also a Phi from the same basic block, and it is an 10766 // AddRec. It means that there is a loop which has both AddRec and Unknown 10767 // PHIs, for it we can compare incoming values of AddRec from above the loop 10768 // and latch with their respective incoming values of LPhi. 10769 // TODO: Generalize to handle loops with many inputs in a header. 10770 if (LPhi->getNumIncomingValues() != 2) return false; 10771 10772 auto *RLoop = RAR->getLoop(); 10773 auto *Predecessor = RLoop->getLoopPredecessor(); 10774 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10775 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10776 if (!ProvedEasily(L1, RAR->getStart())) 10777 return false; 10778 auto *Latch = RLoop->getLoopLatch(); 10779 assert(Latch && "Loop with AddRec with no latch?"); 10780 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10781 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10782 return false; 10783 } else { 10784 // In all other cases go over inputs of LHS and compare each of them to RHS, 10785 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10786 // At this point RHS is either a non-Phi, or it is a Phi from some block 10787 // different from LBB. 10788 for (const BasicBlock *IncBB : predecessors(LBB)) { 10789 // Check that RHS is available in this block. 10790 if (!dominates(RHS, IncBB)) 10791 return false; 10792 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10793 // Make sure L does not refer to a value from a potentially previous 10794 // iteration of a loop. 10795 if (!properlyDominates(L, IncBB)) 10796 return false; 10797 if (!ProvedEasily(L, RHS)) 10798 return false; 10799 } 10800 } 10801 return true; 10802 } 10803 10804 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10805 const SCEV *LHS, const SCEV *RHS, 10806 const SCEV *FoundLHS, 10807 const SCEV *FoundRHS, 10808 const Instruction *Context) { 10809 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10810 return true; 10811 10812 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10813 return true; 10814 10815 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10816 Context)) 10817 return true; 10818 10819 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10820 FoundLHS, FoundRHS); 10821 } 10822 10823 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10824 template <typename MinMaxExprType> 10825 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10826 const SCEV *Candidate) { 10827 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10828 if (!MinMaxExpr) 10829 return false; 10830 10831 return is_contained(MinMaxExpr->operands(), Candidate); 10832 } 10833 10834 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10835 ICmpInst::Predicate Pred, 10836 const SCEV *LHS, const SCEV *RHS) { 10837 // If both sides are affine addrecs for the same loop, with equal 10838 // steps, and we know the recurrences don't wrap, then we only 10839 // need to check the predicate on the starting values. 10840 10841 if (!ICmpInst::isRelational(Pred)) 10842 return false; 10843 10844 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10845 if (!LAR) 10846 return false; 10847 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10848 if (!RAR) 10849 return false; 10850 if (LAR->getLoop() != RAR->getLoop()) 10851 return false; 10852 if (!LAR->isAffine() || !RAR->isAffine()) 10853 return false; 10854 10855 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10856 return false; 10857 10858 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10859 SCEV::FlagNSW : SCEV::FlagNUW; 10860 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10861 return false; 10862 10863 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10864 } 10865 10866 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10867 /// expression? 10868 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10869 ICmpInst::Predicate Pred, 10870 const SCEV *LHS, const SCEV *RHS) { 10871 switch (Pred) { 10872 default: 10873 return false; 10874 10875 case ICmpInst::ICMP_SGE: 10876 std::swap(LHS, RHS); 10877 LLVM_FALLTHROUGH; 10878 case ICmpInst::ICMP_SLE: 10879 return 10880 // min(A, ...) <= A 10881 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10882 // A <= max(A, ...) 10883 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10884 10885 case ICmpInst::ICMP_UGE: 10886 std::swap(LHS, RHS); 10887 LLVM_FALLTHROUGH; 10888 case ICmpInst::ICMP_ULE: 10889 return 10890 // min(A, ...) <= A 10891 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10892 // A <= max(A, ...) 10893 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10894 } 10895 10896 llvm_unreachable("covered switch fell through?!"); 10897 } 10898 10899 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10900 const SCEV *LHS, const SCEV *RHS, 10901 const SCEV *FoundLHS, 10902 const SCEV *FoundRHS, 10903 unsigned Depth) { 10904 assert(getTypeSizeInBits(LHS->getType()) == 10905 getTypeSizeInBits(RHS->getType()) && 10906 "LHS and RHS have different sizes?"); 10907 assert(getTypeSizeInBits(FoundLHS->getType()) == 10908 getTypeSizeInBits(FoundRHS->getType()) && 10909 "FoundLHS and FoundRHS have different sizes?"); 10910 // We want to avoid hurting the compile time with analysis of too big trees. 10911 if (Depth > MaxSCEVOperationsImplicationDepth) 10912 return false; 10913 10914 // We only want to work with GT comparison so far. 10915 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10916 Pred = CmpInst::getSwappedPredicate(Pred); 10917 std::swap(LHS, RHS); 10918 std::swap(FoundLHS, FoundRHS); 10919 } 10920 10921 // For unsigned, try to reduce it to corresponding signed comparison. 10922 if (Pred == ICmpInst::ICMP_UGT) 10923 // We can replace unsigned predicate with its signed counterpart if all 10924 // involved values are non-negative. 10925 // TODO: We could have better support for unsigned. 10926 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10927 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10928 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10929 // use this fact to prove that LHS and RHS are non-negative. 10930 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10931 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10932 FoundRHS) && 10933 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10934 FoundRHS)) 10935 Pred = ICmpInst::ICMP_SGT; 10936 } 10937 10938 if (Pred != ICmpInst::ICMP_SGT) 10939 return false; 10940 10941 auto GetOpFromSExt = [&](const SCEV *S) { 10942 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10943 return Ext->getOperand(); 10944 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10945 // the constant in some cases. 10946 return S; 10947 }; 10948 10949 // Acquire values from extensions. 10950 auto *OrigLHS = LHS; 10951 auto *OrigFoundLHS = FoundLHS; 10952 LHS = GetOpFromSExt(LHS); 10953 FoundLHS = GetOpFromSExt(FoundLHS); 10954 10955 // Is the SGT predicate can be proved trivially or using the found context. 10956 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10957 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10958 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10959 FoundRHS, Depth + 1); 10960 }; 10961 10962 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10963 // We want to avoid creation of any new non-constant SCEV. Since we are 10964 // going to compare the operands to RHS, we should be certain that we don't 10965 // need any size extensions for this. So let's decline all cases when the 10966 // sizes of types of LHS and RHS do not match. 10967 // TODO: Maybe try to get RHS from sext to catch more cases? 10968 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10969 return false; 10970 10971 // Should not overflow. 10972 if (!LHSAddExpr->hasNoSignedWrap()) 10973 return false; 10974 10975 auto *LL = LHSAddExpr->getOperand(0); 10976 auto *LR = LHSAddExpr->getOperand(1); 10977 auto *MinusOne = getMinusOne(RHS->getType()); 10978 10979 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10980 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10981 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10982 }; 10983 // Try to prove the following rule: 10984 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10985 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10986 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10987 return true; 10988 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10989 Value *LL, *LR; 10990 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10991 10992 using namespace llvm::PatternMatch; 10993 10994 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10995 // Rules for division. 10996 // We are going to perform some comparisons with Denominator and its 10997 // derivative expressions. In general case, creating a SCEV for it may 10998 // lead to a complex analysis of the entire graph, and in particular it 10999 // can request trip count recalculation for the same loop. This would 11000 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11001 // this, we only want to create SCEVs that are constants in this section. 11002 // So we bail if Denominator is not a constant. 11003 if (!isa<ConstantInt>(LR)) 11004 return false; 11005 11006 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11007 11008 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11009 // then a SCEV for the numerator already exists and matches with FoundLHS. 11010 auto *Numerator = getExistingSCEV(LL); 11011 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11012 return false; 11013 11014 // Make sure that the numerator matches with FoundLHS and the denominator 11015 // is positive. 11016 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11017 return false; 11018 11019 auto *DTy = Denominator->getType(); 11020 auto *FRHSTy = FoundRHS->getType(); 11021 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11022 // One of types is a pointer and another one is not. We cannot extend 11023 // them properly to a wider type, so let us just reject this case. 11024 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11025 // to avoid this check. 11026 return false; 11027 11028 // Given that: 11029 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11030 auto *WTy = getWiderType(DTy, FRHSTy); 11031 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11032 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11033 11034 // Try to prove the following rule: 11035 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11036 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11037 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11038 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11039 if (isKnownNonPositive(RHS) && 11040 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11041 return true; 11042 11043 // Try to prove the following rule: 11044 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11045 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11046 // If we divide it by Denominator > 2, then: 11047 // 1. If FoundLHS is negative, then the result is 0. 11048 // 2. If FoundLHS is non-negative, then the result is non-negative. 11049 // Anyways, the result is non-negative. 11050 auto *MinusOne = getMinusOne(WTy); 11051 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11052 if (isKnownNegative(RHS) && 11053 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11054 return true; 11055 } 11056 } 11057 11058 // If our expression contained SCEVUnknown Phis, and we split it down and now 11059 // need to prove something for them, try to prove the predicate for every 11060 // possible incoming values of those Phis. 11061 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11062 return true; 11063 11064 return false; 11065 } 11066 11067 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11068 const SCEV *LHS, const SCEV *RHS) { 11069 // zext x u<= sext x, sext x s<= zext x 11070 switch (Pred) { 11071 case ICmpInst::ICMP_SGE: 11072 std::swap(LHS, RHS); 11073 LLVM_FALLTHROUGH; 11074 case ICmpInst::ICMP_SLE: { 11075 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11076 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11077 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11078 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11079 return true; 11080 break; 11081 } 11082 case ICmpInst::ICMP_UGE: 11083 std::swap(LHS, RHS); 11084 LLVM_FALLTHROUGH; 11085 case ICmpInst::ICMP_ULE: { 11086 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11087 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11088 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11089 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11090 return true; 11091 break; 11092 } 11093 default: 11094 break; 11095 }; 11096 return false; 11097 } 11098 11099 bool 11100 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11101 const SCEV *LHS, const SCEV *RHS) { 11102 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11103 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11104 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11105 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11106 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11107 } 11108 11109 bool 11110 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11111 const SCEV *LHS, const SCEV *RHS, 11112 const SCEV *FoundLHS, 11113 const SCEV *FoundRHS) { 11114 switch (Pred) { 11115 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11116 case ICmpInst::ICMP_EQ: 11117 case ICmpInst::ICMP_NE: 11118 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11119 return true; 11120 break; 11121 case ICmpInst::ICMP_SLT: 11122 case ICmpInst::ICMP_SLE: 11123 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11124 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11125 return true; 11126 break; 11127 case ICmpInst::ICMP_SGT: 11128 case ICmpInst::ICMP_SGE: 11129 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11130 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11131 return true; 11132 break; 11133 case ICmpInst::ICMP_ULT: 11134 case ICmpInst::ICMP_ULE: 11135 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11136 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11137 return true; 11138 break; 11139 case ICmpInst::ICMP_UGT: 11140 case ICmpInst::ICMP_UGE: 11141 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11142 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11143 return true; 11144 break; 11145 } 11146 11147 // Maybe it can be proved via operations? 11148 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11149 return true; 11150 11151 return false; 11152 } 11153 11154 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11155 const SCEV *LHS, 11156 const SCEV *RHS, 11157 const SCEV *FoundLHS, 11158 const SCEV *FoundRHS) { 11159 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11160 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11161 // reduce the compile time impact of this optimization. 11162 return false; 11163 11164 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11165 if (!Addend) 11166 return false; 11167 11168 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11169 11170 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11171 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11172 ConstantRange FoundLHSRange = 11173 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 11174 11175 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11176 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11177 11178 // We can also compute the range of values for `LHS` that satisfy the 11179 // consequent, "`LHS` `Pred` `RHS`": 11180 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11181 // The antecedent implies the consequent if every value of `LHS` that 11182 // satisfies the antecedent also satisfies the consequent. 11183 return LHSRange.icmp(Pred, ConstRHS); 11184 } 11185 11186 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11187 bool IsSigned, bool NoWrap) { 11188 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11189 11190 if (NoWrap) return false; 11191 11192 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11193 const SCEV *One = getOne(Stride->getType()); 11194 11195 if (IsSigned) { 11196 APInt MaxRHS = getSignedRangeMax(RHS); 11197 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11198 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11199 11200 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11201 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11202 } 11203 11204 APInt MaxRHS = getUnsignedRangeMax(RHS); 11205 APInt MaxValue = APInt::getMaxValue(BitWidth); 11206 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11207 11208 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11209 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11210 } 11211 11212 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11213 bool IsSigned, bool NoWrap) { 11214 if (NoWrap) return false; 11215 11216 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11217 const SCEV *One = getOne(Stride->getType()); 11218 11219 if (IsSigned) { 11220 APInt MinRHS = getSignedRangeMin(RHS); 11221 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11222 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11223 11224 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11225 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11226 } 11227 11228 APInt MinRHS = getUnsignedRangeMin(RHS); 11229 APInt MinValue = APInt::getMinValue(BitWidth); 11230 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11231 11232 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11233 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11234 } 11235 11236 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 11237 bool Equality) { 11238 const SCEV *One = getOne(Step->getType()); 11239 Delta = Equality ? getAddExpr(Delta, Step) 11240 : getAddExpr(Delta, getMinusSCEV(Step, One)); 11241 return getUDivExpr(Delta, Step); 11242 } 11243 11244 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11245 const SCEV *Stride, 11246 const SCEV *End, 11247 unsigned BitWidth, 11248 bool IsSigned) { 11249 11250 assert(!isKnownNonPositive(Stride) && 11251 "Stride is expected strictly positive!"); 11252 // Calculate the maximum backedge count based on the range of values 11253 // permitted by Start, End, and Stride. 11254 const SCEV *MaxBECount; 11255 APInt MinStart = 11256 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11257 11258 APInt StrideForMaxBECount = 11259 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11260 11261 // We already know that the stride is positive, so we paper over conservatism 11262 // in our range computation by forcing StrideForMaxBECount to be at least one. 11263 // In theory this is unnecessary, but we expect MaxBECount to be a 11264 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11265 // is nothing to constant fold it to). 11266 APInt One(BitWidth, 1, IsSigned); 11267 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11268 11269 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11270 : APInt::getMaxValue(BitWidth); 11271 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11272 11273 // Although End can be a MAX expression we estimate MaxEnd considering only 11274 // the case End = RHS of the loop termination condition. This is safe because 11275 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11276 // taken count. 11277 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11278 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11279 11280 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11281 getConstant(StrideForMaxBECount) /* Step */, 11282 false /* Equality */); 11283 11284 return MaxBECount; 11285 } 11286 11287 ScalarEvolution::ExitLimit 11288 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11289 const Loop *L, bool IsSigned, 11290 bool ControlsExit, bool AllowPredicates) { 11291 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11292 11293 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11294 bool PredicatedIV = false; 11295 11296 if (!IV && AllowPredicates) { 11297 // Try to make this an AddRec using runtime tests, in the first X 11298 // iterations of this loop, where X is the SCEV expression found by the 11299 // algorithm below. 11300 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11301 PredicatedIV = true; 11302 } 11303 11304 // Avoid weird loops 11305 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11306 return getCouldNotCompute(); 11307 11308 bool NoWrap = ControlsExit && 11309 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11310 11311 const SCEV *Stride = IV->getStepRecurrence(*this); 11312 11313 bool PositiveStride = isKnownPositive(Stride); 11314 11315 // Avoid negative or zero stride values. 11316 if (!PositiveStride) { 11317 // We can compute the correct backedge taken count for loops with unknown 11318 // strides if we can prove that the loop is not an infinite loop with side 11319 // effects. Here's the loop structure we are trying to handle - 11320 // 11321 // i = start 11322 // do { 11323 // A[i] = i; 11324 // i += s; 11325 // } while (i < end); 11326 // 11327 // The backedge taken count for such loops is evaluated as - 11328 // (max(end, start + stride) - start - 1) /u stride 11329 // 11330 // The additional preconditions that we need to check to prove correctness 11331 // of the above formula is as follows - 11332 // 11333 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11334 // NoWrap flag). 11335 // b) loop is single exit with no side effects. 11336 // 11337 // 11338 // Precondition a) implies that if the stride is negative, this is a single 11339 // trip loop. The backedge taken count formula reduces to zero in this case. 11340 // 11341 // Precondition b) implies that the unknown stride cannot be zero otherwise 11342 // we have UB. 11343 // 11344 // The positive stride case is the same as isKnownPositive(Stride) returning 11345 // true (original behavior of the function). 11346 // 11347 // We want to make sure that the stride is truly unknown as there are edge 11348 // cases where ScalarEvolution propagates no wrap flags to the 11349 // post-increment/decrement IV even though the increment/decrement operation 11350 // itself is wrapping. The computed backedge taken count may be wrong in 11351 // such cases. This is prevented by checking that the stride is not known to 11352 // be either positive or non-positive. For example, no wrap flags are 11353 // propagated to the post-increment IV of this loop with a trip count of 2 - 11354 // 11355 // unsigned char i; 11356 // for(i=127; i<128; i+=129) 11357 // A[i] = i; 11358 // 11359 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11360 !loopHasNoSideEffects(L)) 11361 return getCouldNotCompute(); 11362 } else if (!Stride->isOne() && 11363 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11364 // Avoid proven overflow cases: this will ensure that the backedge taken 11365 // count will not generate any unsigned overflow. Relaxed no-overflow 11366 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11367 // undefined behaviors like the case of C language. 11368 return getCouldNotCompute(); 11369 11370 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11371 : ICmpInst::ICMP_ULT; 11372 const SCEV *Start = IV->getStart(); 11373 const SCEV *End = RHS; 11374 // When the RHS is not invariant, we do not know the end bound of the loop and 11375 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11376 // calculate the MaxBECount, given the start, stride and max value for the end 11377 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11378 // checked above). 11379 if (!isLoopInvariant(RHS, L)) { 11380 const SCEV *MaxBECount = computeMaxBECountForLT( 11381 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11382 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11383 false /*MaxOrZero*/, Predicates); 11384 } 11385 // If the backedge is taken at least once, then it will be taken 11386 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11387 // is the LHS value of the less-than comparison the first time it is evaluated 11388 // and End is the RHS. 11389 const SCEV *BECountIfBackedgeTaken = 11390 computeBECount(getMinusSCEV(End, Start), Stride, false); 11391 // If the loop entry is guarded by the result of the backedge test of the 11392 // first loop iteration, then we know the backedge will be taken at least 11393 // once and so the backedge taken count is as above. If not then we use the 11394 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11395 // as if the backedge is taken at least once max(End,Start) is End and so the 11396 // result is as above, and if not max(End,Start) is Start so we get a backedge 11397 // count of zero. 11398 const SCEV *BECount; 11399 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11400 BECount = BECountIfBackedgeTaken; 11401 else { 11402 // If we know that RHS >= Start in the context of loop, then we know that 11403 // max(RHS, Start) = RHS at this point. 11404 if (isLoopEntryGuardedByCond( 11405 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11406 End = RHS; 11407 else 11408 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11409 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11410 } 11411 11412 const SCEV *MaxBECount; 11413 bool MaxOrZero = false; 11414 if (isa<SCEVConstant>(BECount)) 11415 MaxBECount = BECount; 11416 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11417 // If we know exactly how many times the backedge will be taken if it's 11418 // taken at least once, then the backedge count will either be that or 11419 // zero. 11420 MaxBECount = BECountIfBackedgeTaken; 11421 MaxOrZero = true; 11422 } else { 11423 MaxBECount = computeMaxBECountForLT( 11424 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11425 } 11426 11427 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11428 !isa<SCEVCouldNotCompute>(BECount)) 11429 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11430 11431 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11432 } 11433 11434 ScalarEvolution::ExitLimit 11435 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11436 const Loop *L, bool IsSigned, 11437 bool ControlsExit, bool AllowPredicates) { 11438 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11439 // We handle only IV > Invariant 11440 if (!isLoopInvariant(RHS, L)) 11441 return getCouldNotCompute(); 11442 11443 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11444 if (!IV && AllowPredicates) 11445 // Try to make this an AddRec using runtime tests, in the first X 11446 // iterations of this loop, where X is the SCEV expression found by the 11447 // algorithm below. 11448 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11449 11450 // Avoid weird loops 11451 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11452 return getCouldNotCompute(); 11453 11454 bool NoWrap = ControlsExit && 11455 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11456 11457 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11458 11459 // Avoid negative or zero stride values 11460 if (!isKnownPositive(Stride)) 11461 return getCouldNotCompute(); 11462 11463 // Avoid proven overflow cases: this will ensure that the backedge taken count 11464 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11465 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11466 // behaviors like the case of C language. 11467 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11468 return getCouldNotCompute(); 11469 11470 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11471 : ICmpInst::ICMP_UGT; 11472 11473 const SCEV *Start = IV->getStart(); 11474 const SCEV *End = RHS; 11475 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11476 // If we know that Start >= RHS in the context of loop, then we know that 11477 // min(RHS, Start) = RHS at this point. 11478 if (isLoopEntryGuardedByCond( 11479 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11480 End = RHS; 11481 else 11482 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11483 } 11484 11485 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11486 11487 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11488 : getUnsignedRangeMax(Start); 11489 11490 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11491 : getUnsignedRangeMin(Stride); 11492 11493 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11494 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11495 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11496 11497 // Although End can be a MIN expression we estimate MinEnd considering only 11498 // the case End = RHS. This is safe because in the other case (Start - End) 11499 // is zero, leading to a zero maximum backedge taken count. 11500 APInt MinEnd = 11501 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11502 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11503 11504 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11505 ? BECount 11506 : computeBECount(getConstant(MaxStart - MinEnd), 11507 getConstant(MinStride), false); 11508 11509 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11510 MaxBECount = BECount; 11511 11512 return ExitLimit(BECount, MaxBECount, false, Predicates); 11513 } 11514 11515 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11516 ScalarEvolution &SE) const { 11517 if (Range.isFullSet()) // Infinite loop. 11518 return SE.getCouldNotCompute(); 11519 11520 // If the start is a non-zero constant, shift the range to simplify things. 11521 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11522 if (!SC->getValue()->isZero()) { 11523 SmallVector<const SCEV *, 4> Operands(operands()); 11524 Operands[0] = SE.getZero(SC->getType()); 11525 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11526 getNoWrapFlags(FlagNW)); 11527 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11528 return ShiftedAddRec->getNumIterationsInRange( 11529 Range.subtract(SC->getAPInt()), SE); 11530 // This is strange and shouldn't happen. 11531 return SE.getCouldNotCompute(); 11532 } 11533 11534 // The only time we can solve this is when we have all constant indices. 11535 // Otherwise, we cannot determine the overflow conditions. 11536 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11537 return SE.getCouldNotCompute(); 11538 11539 // Okay at this point we know that all elements of the chrec are constants and 11540 // that the start element is zero. 11541 11542 // First check to see if the range contains zero. If not, the first 11543 // iteration exits. 11544 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11545 if (!Range.contains(APInt(BitWidth, 0))) 11546 return SE.getZero(getType()); 11547 11548 if (isAffine()) { 11549 // If this is an affine expression then we have this situation: 11550 // Solve {0,+,A} in Range === Ax in Range 11551 11552 // We know that zero is in the range. If A is positive then we know that 11553 // the upper value of the range must be the first possible exit value. 11554 // If A is negative then the lower of the range is the last possible loop 11555 // value. Also note that we already checked for a full range. 11556 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11557 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11558 11559 // The exit value should be (End+A)/A. 11560 APInt ExitVal = (End + A).udiv(A); 11561 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11562 11563 // Evaluate at the exit value. If we really did fall out of the valid 11564 // range, then we computed our trip count, otherwise wrap around or other 11565 // things must have happened. 11566 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11567 if (Range.contains(Val->getValue())) 11568 return SE.getCouldNotCompute(); // Something strange happened 11569 11570 // Ensure that the previous value is in the range. This is a sanity check. 11571 assert(Range.contains( 11572 EvaluateConstantChrecAtConstant(this, 11573 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11574 "Linear scev computation is off in a bad way!"); 11575 return SE.getConstant(ExitValue); 11576 } 11577 11578 if (isQuadratic()) { 11579 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11580 return SE.getConstant(S.getValue()); 11581 } 11582 11583 return SE.getCouldNotCompute(); 11584 } 11585 11586 const SCEVAddRecExpr * 11587 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11588 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11589 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11590 // but in this case we cannot guarantee that the value returned will be an 11591 // AddRec because SCEV does not have a fixed point where it stops 11592 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11593 // may happen if we reach arithmetic depth limit while simplifying. So we 11594 // construct the returned value explicitly. 11595 SmallVector<const SCEV *, 3> Ops; 11596 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11597 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11598 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11599 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11600 // We know that the last operand is not a constant zero (otherwise it would 11601 // have been popped out earlier). This guarantees us that if the result has 11602 // the same last operand, then it will also not be popped out, meaning that 11603 // the returned value will be an AddRec. 11604 const SCEV *Last = getOperand(getNumOperands() - 1); 11605 assert(!Last->isZero() && "Recurrency with zero step?"); 11606 Ops.push_back(Last); 11607 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11608 SCEV::FlagAnyWrap)); 11609 } 11610 11611 // Return true when S contains at least an undef value. 11612 static inline bool containsUndefs(const SCEV *S) { 11613 return SCEVExprContains(S, [](const SCEV *S) { 11614 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11615 return isa<UndefValue>(SU->getValue()); 11616 return false; 11617 }); 11618 } 11619 11620 namespace { 11621 11622 // Collect all steps of SCEV expressions. 11623 struct SCEVCollectStrides { 11624 ScalarEvolution &SE; 11625 SmallVectorImpl<const SCEV *> &Strides; 11626 11627 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11628 : SE(SE), Strides(S) {} 11629 11630 bool follow(const SCEV *S) { 11631 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11632 Strides.push_back(AR->getStepRecurrence(SE)); 11633 return true; 11634 } 11635 11636 bool isDone() const { return false; } 11637 }; 11638 11639 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11640 struct SCEVCollectTerms { 11641 SmallVectorImpl<const SCEV *> &Terms; 11642 11643 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11644 11645 bool follow(const SCEV *S) { 11646 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11647 isa<SCEVSignExtendExpr>(S)) { 11648 if (!containsUndefs(S)) 11649 Terms.push_back(S); 11650 11651 // Stop recursion: once we collected a term, do not walk its operands. 11652 return false; 11653 } 11654 11655 // Keep looking. 11656 return true; 11657 } 11658 11659 bool isDone() const { return false; } 11660 }; 11661 11662 // Check if a SCEV contains an AddRecExpr. 11663 struct SCEVHasAddRec { 11664 bool &ContainsAddRec; 11665 11666 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11667 ContainsAddRec = false; 11668 } 11669 11670 bool follow(const SCEV *S) { 11671 if (isa<SCEVAddRecExpr>(S)) { 11672 ContainsAddRec = true; 11673 11674 // Stop recursion: once we collected a term, do not walk its operands. 11675 return false; 11676 } 11677 11678 // Keep looking. 11679 return true; 11680 } 11681 11682 bool isDone() const { return false; } 11683 }; 11684 11685 // Find factors that are multiplied with an expression that (possibly as a 11686 // subexpression) contains an AddRecExpr. In the expression: 11687 // 11688 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11689 // 11690 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11691 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11692 // parameters as they form a product with an induction variable. 11693 // 11694 // This collector expects all array size parameters to be in the same MulExpr. 11695 // It might be necessary to later add support for collecting parameters that are 11696 // spread over different nested MulExpr. 11697 struct SCEVCollectAddRecMultiplies { 11698 SmallVectorImpl<const SCEV *> &Terms; 11699 ScalarEvolution &SE; 11700 11701 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11702 : Terms(T), SE(SE) {} 11703 11704 bool follow(const SCEV *S) { 11705 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11706 bool HasAddRec = false; 11707 SmallVector<const SCEV *, 0> Operands; 11708 for (auto Op : Mul->operands()) { 11709 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11710 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11711 Operands.push_back(Op); 11712 } else if (Unknown) { 11713 HasAddRec = true; 11714 } else { 11715 bool ContainsAddRec = false; 11716 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11717 visitAll(Op, ContiansAddRec); 11718 HasAddRec |= ContainsAddRec; 11719 } 11720 } 11721 if (Operands.size() == 0) 11722 return true; 11723 11724 if (!HasAddRec) 11725 return false; 11726 11727 Terms.push_back(SE.getMulExpr(Operands)); 11728 // Stop recursion: once we collected a term, do not walk its operands. 11729 return false; 11730 } 11731 11732 // Keep looking. 11733 return true; 11734 } 11735 11736 bool isDone() const { return false; } 11737 }; 11738 11739 } // end anonymous namespace 11740 11741 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11742 /// two places: 11743 /// 1) The strides of AddRec expressions. 11744 /// 2) Unknowns that are multiplied with AddRec expressions. 11745 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11746 SmallVectorImpl<const SCEV *> &Terms) { 11747 SmallVector<const SCEV *, 4> Strides; 11748 SCEVCollectStrides StrideCollector(*this, Strides); 11749 visitAll(Expr, StrideCollector); 11750 11751 LLVM_DEBUG({ 11752 dbgs() << "Strides:\n"; 11753 for (const SCEV *S : Strides) 11754 dbgs() << *S << "\n"; 11755 }); 11756 11757 for (const SCEV *S : Strides) { 11758 SCEVCollectTerms TermCollector(Terms); 11759 visitAll(S, TermCollector); 11760 } 11761 11762 LLVM_DEBUG({ 11763 dbgs() << "Terms:\n"; 11764 for (const SCEV *T : Terms) 11765 dbgs() << *T << "\n"; 11766 }); 11767 11768 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11769 visitAll(Expr, MulCollector); 11770 } 11771 11772 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11773 SmallVectorImpl<const SCEV *> &Terms, 11774 SmallVectorImpl<const SCEV *> &Sizes) { 11775 int Last = Terms.size() - 1; 11776 const SCEV *Step = Terms[Last]; 11777 11778 // End of recursion. 11779 if (Last == 0) { 11780 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11781 SmallVector<const SCEV *, 2> Qs; 11782 for (const SCEV *Op : M->operands()) 11783 if (!isa<SCEVConstant>(Op)) 11784 Qs.push_back(Op); 11785 11786 Step = SE.getMulExpr(Qs); 11787 } 11788 11789 Sizes.push_back(Step); 11790 return true; 11791 } 11792 11793 for (const SCEV *&Term : Terms) { 11794 // Normalize the terms before the next call to findArrayDimensionsRec. 11795 const SCEV *Q, *R; 11796 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11797 11798 // Bail out when GCD does not evenly divide one of the terms. 11799 if (!R->isZero()) 11800 return false; 11801 11802 Term = Q; 11803 } 11804 11805 // Remove all SCEVConstants. 11806 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 11807 11808 if (Terms.size() > 0) 11809 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11810 return false; 11811 11812 Sizes.push_back(Step); 11813 return true; 11814 } 11815 11816 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11817 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11818 for (const SCEV *T : Terms) 11819 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11820 return true; 11821 11822 return false; 11823 } 11824 11825 // Return the number of product terms in S. 11826 static inline int numberOfTerms(const SCEV *S) { 11827 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11828 return Expr->getNumOperands(); 11829 return 1; 11830 } 11831 11832 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11833 if (isa<SCEVConstant>(T)) 11834 return nullptr; 11835 11836 if (isa<SCEVUnknown>(T)) 11837 return T; 11838 11839 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11840 SmallVector<const SCEV *, 2> Factors; 11841 for (const SCEV *Op : M->operands()) 11842 if (!isa<SCEVConstant>(Op)) 11843 Factors.push_back(Op); 11844 11845 return SE.getMulExpr(Factors); 11846 } 11847 11848 return T; 11849 } 11850 11851 /// Return the size of an element read or written by Inst. 11852 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11853 Type *Ty; 11854 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11855 Ty = Store->getValueOperand()->getType(); 11856 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11857 Ty = Load->getType(); 11858 else 11859 return nullptr; 11860 11861 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11862 return getSizeOfExpr(ETy, Ty); 11863 } 11864 11865 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11866 SmallVectorImpl<const SCEV *> &Sizes, 11867 const SCEV *ElementSize) { 11868 if (Terms.size() < 1 || !ElementSize) 11869 return; 11870 11871 // Early return when Terms do not contain parameters: we do not delinearize 11872 // non parametric SCEVs. 11873 if (!containsParameters(Terms)) 11874 return; 11875 11876 LLVM_DEBUG({ 11877 dbgs() << "Terms:\n"; 11878 for (const SCEV *T : Terms) 11879 dbgs() << *T << "\n"; 11880 }); 11881 11882 // Remove duplicates. 11883 array_pod_sort(Terms.begin(), Terms.end()); 11884 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11885 11886 // Put larger terms first. 11887 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11888 return numberOfTerms(LHS) > numberOfTerms(RHS); 11889 }); 11890 11891 // Try to divide all terms by the element size. If term is not divisible by 11892 // element size, proceed with the original term. 11893 for (const SCEV *&Term : Terms) { 11894 const SCEV *Q, *R; 11895 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11896 if (!Q->isZero()) 11897 Term = Q; 11898 } 11899 11900 SmallVector<const SCEV *, 4> NewTerms; 11901 11902 // Remove constant factors. 11903 for (const SCEV *T : Terms) 11904 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11905 NewTerms.push_back(NewT); 11906 11907 LLVM_DEBUG({ 11908 dbgs() << "Terms after sorting:\n"; 11909 for (const SCEV *T : NewTerms) 11910 dbgs() << *T << "\n"; 11911 }); 11912 11913 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11914 Sizes.clear(); 11915 return; 11916 } 11917 11918 // The last element to be pushed into Sizes is the size of an element. 11919 Sizes.push_back(ElementSize); 11920 11921 LLVM_DEBUG({ 11922 dbgs() << "Sizes:\n"; 11923 for (const SCEV *S : Sizes) 11924 dbgs() << *S << "\n"; 11925 }); 11926 } 11927 11928 void ScalarEvolution::computeAccessFunctions( 11929 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11930 SmallVectorImpl<const SCEV *> &Sizes) { 11931 // Early exit in case this SCEV is not an affine multivariate function. 11932 if (Sizes.empty()) 11933 return; 11934 11935 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11936 if (!AR->isAffine()) 11937 return; 11938 11939 const SCEV *Res = Expr; 11940 int Last = Sizes.size() - 1; 11941 for (int i = Last; i >= 0; i--) { 11942 const SCEV *Q, *R; 11943 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11944 11945 LLVM_DEBUG({ 11946 dbgs() << "Res: " << *Res << "\n"; 11947 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11948 dbgs() << "Res divided by Sizes[i]:\n"; 11949 dbgs() << "Quotient: " << *Q << "\n"; 11950 dbgs() << "Remainder: " << *R << "\n"; 11951 }); 11952 11953 Res = Q; 11954 11955 // Do not record the last subscript corresponding to the size of elements in 11956 // the array. 11957 if (i == Last) { 11958 11959 // Bail out if the remainder is too complex. 11960 if (isa<SCEVAddRecExpr>(R)) { 11961 Subscripts.clear(); 11962 Sizes.clear(); 11963 return; 11964 } 11965 11966 continue; 11967 } 11968 11969 // Record the access function for the current subscript. 11970 Subscripts.push_back(R); 11971 } 11972 11973 // Also push in last position the remainder of the last division: it will be 11974 // the access function of the innermost dimension. 11975 Subscripts.push_back(Res); 11976 11977 std::reverse(Subscripts.begin(), Subscripts.end()); 11978 11979 LLVM_DEBUG({ 11980 dbgs() << "Subscripts:\n"; 11981 for (const SCEV *S : Subscripts) 11982 dbgs() << *S << "\n"; 11983 }); 11984 } 11985 11986 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11987 /// sizes of an array access. Returns the remainder of the delinearization that 11988 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11989 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11990 /// expressions in the stride and base of a SCEV corresponding to the 11991 /// computation of a GCD (greatest common divisor) of base and stride. When 11992 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11993 /// 11994 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11995 /// 11996 /// void foo(long n, long m, long o, double A[n][m][o]) { 11997 /// 11998 /// for (long i = 0; i < n; i++) 11999 /// for (long j = 0; j < m; j++) 12000 /// for (long k = 0; k < o; k++) 12001 /// A[i][j][k] = 1.0; 12002 /// } 12003 /// 12004 /// the delinearization input is the following AddRec SCEV: 12005 /// 12006 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12007 /// 12008 /// From this SCEV, we are able to say that the base offset of the access is %A 12009 /// because it appears as an offset that does not divide any of the strides in 12010 /// the loops: 12011 /// 12012 /// CHECK: Base offset: %A 12013 /// 12014 /// and then SCEV->delinearize determines the size of some of the dimensions of 12015 /// the array as these are the multiples by which the strides are happening: 12016 /// 12017 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12018 /// 12019 /// Note that the outermost dimension remains of UnknownSize because there are 12020 /// no strides that would help identifying the size of the last dimension: when 12021 /// the array has been statically allocated, one could compute the size of that 12022 /// dimension by dividing the overall size of the array by the size of the known 12023 /// dimensions: %m * %o * 8. 12024 /// 12025 /// Finally delinearize provides the access functions for the array reference 12026 /// that does correspond to A[i][j][k] of the above C testcase: 12027 /// 12028 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12029 /// 12030 /// The testcases are checking the output of a function pass: 12031 /// DelinearizationPass that walks through all loads and stores of a function 12032 /// asking for the SCEV of the memory access with respect to all enclosing 12033 /// loops, calling SCEV->delinearize on that and printing the results. 12034 void ScalarEvolution::delinearize(const SCEV *Expr, 12035 SmallVectorImpl<const SCEV *> &Subscripts, 12036 SmallVectorImpl<const SCEV *> &Sizes, 12037 const SCEV *ElementSize) { 12038 // First step: collect parametric terms. 12039 SmallVector<const SCEV *, 4> Terms; 12040 collectParametricTerms(Expr, Terms); 12041 12042 if (Terms.empty()) 12043 return; 12044 12045 // Second step: find subscript sizes. 12046 findArrayDimensions(Terms, Sizes, ElementSize); 12047 12048 if (Sizes.empty()) 12049 return; 12050 12051 // Third step: compute the access functions for each subscript. 12052 computeAccessFunctions(Expr, Subscripts, Sizes); 12053 12054 if (Subscripts.empty()) 12055 return; 12056 12057 LLVM_DEBUG({ 12058 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12059 dbgs() << "ArrayDecl[UnknownSize]"; 12060 for (const SCEV *S : Sizes) 12061 dbgs() << "[" << *S << "]"; 12062 12063 dbgs() << "\nArrayRef"; 12064 for (const SCEV *S : Subscripts) 12065 dbgs() << "[" << *S << "]"; 12066 dbgs() << "\n"; 12067 }); 12068 } 12069 12070 bool ScalarEvolution::getIndexExpressionsFromGEP( 12071 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12072 SmallVectorImpl<int> &Sizes) { 12073 assert(Subscripts.empty() && Sizes.empty() && 12074 "Expected output lists to be empty on entry to this function."); 12075 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12076 Type *Ty = GEP->getPointerOperandType(); 12077 bool DroppedFirstDim = false; 12078 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12079 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12080 if (i == 1) { 12081 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 12082 Ty = PtrTy->getElementType(); 12083 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 12084 Ty = ArrayTy->getElementType(); 12085 } else { 12086 Subscripts.clear(); 12087 Sizes.clear(); 12088 return false; 12089 } 12090 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12091 if (Const->getValue()->isZero()) { 12092 DroppedFirstDim = true; 12093 continue; 12094 } 12095 Subscripts.push_back(Expr); 12096 continue; 12097 } 12098 12099 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12100 if (!ArrayTy) { 12101 Subscripts.clear(); 12102 Sizes.clear(); 12103 return false; 12104 } 12105 12106 Subscripts.push_back(Expr); 12107 if (!(DroppedFirstDim && i == 2)) 12108 Sizes.push_back(ArrayTy->getNumElements()); 12109 12110 Ty = ArrayTy->getElementType(); 12111 } 12112 return !Subscripts.empty(); 12113 } 12114 12115 //===----------------------------------------------------------------------===// 12116 // SCEVCallbackVH Class Implementation 12117 //===----------------------------------------------------------------------===// 12118 12119 void ScalarEvolution::SCEVCallbackVH::deleted() { 12120 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12121 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12122 SE->ConstantEvolutionLoopExitValue.erase(PN); 12123 SE->eraseValueFromMap(getValPtr()); 12124 // this now dangles! 12125 } 12126 12127 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12128 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12129 12130 // Forget all the expressions associated with users of the old value, 12131 // so that future queries will recompute the expressions using the new 12132 // value. 12133 Value *Old = getValPtr(); 12134 SmallVector<User *, 16> Worklist(Old->users()); 12135 SmallPtrSet<User *, 8> Visited; 12136 while (!Worklist.empty()) { 12137 User *U = Worklist.pop_back_val(); 12138 // Deleting the Old value will cause this to dangle. Postpone 12139 // that until everything else is done. 12140 if (U == Old) 12141 continue; 12142 if (!Visited.insert(U).second) 12143 continue; 12144 if (PHINode *PN = dyn_cast<PHINode>(U)) 12145 SE->ConstantEvolutionLoopExitValue.erase(PN); 12146 SE->eraseValueFromMap(U); 12147 llvm::append_range(Worklist, U->users()); 12148 } 12149 // Delete the Old value. 12150 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12151 SE->ConstantEvolutionLoopExitValue.erase(PN); 12152 SE->eraseValueFromMap(Old); 12153 // this now dangles! 12154 } 12155 12156 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12157 : CallbackVH(V), SE(se) {} 12158 12159 //===----------------------------------------------------------------------===// 12160 // ScalarEvolution Class Implementation 12161 //===----------------------------------------------------------------------===// 12162 12163 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12164 AssumptionCache &AC, DominatorTree &DT, 12165 LoopInfo &LI) 12166 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12167 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12168 LoopDispositions(64), BlockDispositions(64) { 12169 // To use guards for proving predicates, we need to scan every instruction in 12170 // relevant basic blocks, and not just terminators. Doing this is a waste of 12171 // time if the IR does not actually contain any calls to 12172 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12173 // 12174 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12175 // to _add_ guards to the module when there weren't any before, and wants 12176 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12177 // efficient in lieu of being smart in that rather obscure case. 12178 12179 auto *GuardDecl = F.getParent()->getFunction( 12180 Intrinsic::getName(Intrinsic::experimental_guard)); 12181 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12182 } 12183 12184 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12185 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12186 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12187 ValueExprMap(std::move(Arg.ValueExprMap)), 12188 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12189 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12190 PendingMerges(std::move(Arg.PendingMerges)), 12191 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12192 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12193 PredicatedBackedgeTakenCounts( 12194 std::move(Arg.PredicatedBackedgeTakenCounts)), 12195 ConstantEvolutionLoopExitValue( 12196 std::move(Arg.ConstantEvolutionLoopExitValue)), 12197 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12198 LoopDispositions(std::move(Arg.LoopDispositions)), 12199 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12200 BlockDispositions(std::move(Arg.BlockDispositions)), 12201 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12202 SignedRanges(std::move(Arg.SignedRanges)), 12203 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12204 UniquePreds(std::move(Arg.UniquePreds)), 12205 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12206 LoopUsers(std::move(Arg.LoopUsers)), 12207 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12208 FirstUnknown(Arg.FirstUnknown) { 12209 Arg.FirstUnknown = nullptr; 12210 } 12211 12212 ScalarEvolution::~ScalarEvolution() { 12213 // Iterate through all the SCEVUnknown instances and call their 12214 // destructors, so that they release their references to their values. 12215 for (SCEVUnknown *U = FirstUnknown; U;) { 12216 SCEVUnknown *Tmp = U; 12217 U = U->Next; 12218 Tmp->~SCEVUnknown(); 12219 } 12220 FirstUnknown = nullptr; 12221 12222 ExprValueMap.clear(); 12223 ValueExprMap.clear(); 12224 HasRecMap.clear(); 12225 BackedgeTakenCounts.clear(); 12226 PredicatedBackedgeTakenCounts.clear(); 12227 12228 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12229 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12230 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12231 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12232 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12233 } 12234 12235 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12236 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12237 } 12238 12239 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12240 const Loop *L) { 12241 // Print all inner loops first 12242 for (Loop *I : *L) 12243 PrintLoopInfo(OS, SE, I); 12244 12245 OS << "Loop "; 12246 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12247 OS << ": "; 12248 12249 SmallVector<BasicBlock *, 8> ExitingBlocks; 12250 L->getExitingBlocks(ExitingBlocks); 12251 if (ExitingBlocks.size() != 1) 12252 OS << "<multiple exits> "; 12253 12254 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12255 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12256 else 12257 OS << "Unpredictable backedge-taken count.\n"; 12258 12259 if (ExitingBlocks.size() > 1) 12260 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12261 OS << " exit count for " << ExitingBlock->getName() << ": " 12262 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12263 } 12264 12265 OS << "Loop "; 12266 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12267 OS << ": "; 12268 12269 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12270 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12271 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12272 OS << ", actual taken count either this or zero."; 12273 } else { 12274 OS << "Unpredictable max backedge-taken count. "; 12275 } 12276 12277 OS << "\n" 12278 "Loop "; 12279 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12280 OS << ": "; 12281 12282 SCEVUnionPredicate Pred; 12283 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12284 if (!isa<SCEVCouldNotCompute>(PBT)) { 12285 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12286 OS << " Predicates:\n"; 12287 Pred.print(OS, 4); 12288 } else { 12289 OS << "Unpredictable predicated backedge-taken count. "; 12290 } 12291 OS << "\n"; 12292 12293 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12294 OS << "Loop "; 12295 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12296 OS << ": "; 12297 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12298 } 12299 } 12300 12301 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12302 switch (LD) { 12303 case ScalarEvolution::LoopVariant: 12304 return "Variant"; 12305 case ScalarEvolution::LoopInvariant: 12306 return "Invariant"; 12307 case ScalarEvolution::LoopComputable: 12308 return "Computable"; 12309 } 12310 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12311 } 12312 12313 void ScalarEvolution::print(raw_ostream &OS) const { 12314 // ScalarEvolution's implementation of the print method is to print 12315 // out SCEV values of all instructions that are interesting. Doing 12316 // this potentially causes it to create new SCEV objects though, 12317 // which technically conflicts with the const qualifier. This isn't 12318 // observable from outside the class though, so casting away the 12319 // const isn't dangerous. 12320 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12321 12322 if (ClassifyExpressions) { 12323 OS << "Classifying expressions for: "; 12324 F.printAsOperand(OS, /*PrintType=*/false); 12325 OS << "\n"; 12326 for (Instruction &I : instructions(F)) 12327 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12328 OS << I << '\n'; 12329 OS << " --> "; 12330 const SCEV *SV = SE.getSCEV(&I); 12331 SV->print(OS); 12332 if (!isa<SCEVCouldNotCompute>(SV)) { 12333 OS << " U: "; 12334 SE.getUnsignedRange(SV).print(OS); 12335 OS << " S: "; 12336 SE.getSignedRange(SV).print(OS); 12337 } 12338 12339 const Loop *L = LI.getLoopFor(I.getParent()); 12340 12341 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12342 if (AtUse != SV) { 12343 OS << " --> "; 12344 AtUse->print(OS); 12345 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12346 OS << " U: "; 12347 SE.getUnsignedRange(AtUse).print(OS); 12348 OS << " S: "; 12349 SE.getSignedRange(AtUse).print(OS); 12350 } 12351 } 12352 12353 if (L) { 12354 OS << "\t\t" "Exits: "; 12355 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12356 if (!SE.isLoopInvariant(ExitValue, L)) { 12357 OS << "<<Unknown>>"; 12358 } else { 12359 OS << *ExitValue; 12360 } 12361 12362 bool First = true; 12363 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12364 if (First) { 12365 OS << "\t\t" "LoopDispositions: { "; 12366 First = false; 12367 } else { 12368 OS << ", "; 12369 } 12370 12371 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12372 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12373 } 12374 12375 for (auto *InnerL : depth_first(L)) { 12376 if (InnerL == L) 12377 continue; 12378 if (First) { 12379 OS << "\t\t" "LoopDispositions: { "; 12380 First = false; 12381 } else { 12382 OS << ", "; 12383 } 12384 12385 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12386 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12387 } 12388 12389 OS << " }"; 12390 } 12391 12392 OS << "\n"; 12393 } 12394 } 12395 12396 OS << "Determining loop execution counts for: "; 12397 F.printAsOperand(OS, /*PrintType=*/false); 12398 OS << "\n"; 12399 for (Loop *I : LI) 12400 PrintLoopInfo(OS, &SE, I); 12401 } 12402 12403 ScalarEvolution::LoopDisposition 12404 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12405 auto &Values = LoopDispositions[S]; 12406 for (auto &V : Values) { 12407 if (V.getPointer() == L) 12408 return V.getInt(); 12409 } 12410 Values.emplace_back(L, LoopVariant); 12411 LoopDisposition D = computeLoopDisposition(S, L); 12412 auto &Values2 = LoopDispositions[S]; 12413 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12414 if (V.getPointer() == L) { 12415 V.setInt(D); 12416 break; 12417 } 12418 } 12419 return D; 12420 } 12421 12422 ScalarEvolution::LoopDisposition 12423 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12424 switch (S->getSCEVType()) { 12425 case scConstant: 12426 return LoopInvariant; 12427 case scPtrToInt: 12428 case scTruncate: 12429 case scZeroExtend: 12430 case scSignExtend: 12431 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12432 case scAddRecExpr: { 12433 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12434 12435 // If L is the addrec's loop, it's computable. 12436 if (AR->getLoop() == L) 12437 return LoopComputable; 12438 12439 // Add recurrences are never invariant in the function-body (null loop). 12440 if (!L) 12441 return LoopVariant; 12442 12443 // Everything that is not defined at loop entry is variant. 12444 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12445 return LoopVariant; 12446 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12447 " dominate the contained loop's header?"); 12448 12449 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12450 if (AR->getLoop()->contains(L)) 12451 return LoopInvariant; 12452 12453 // This recurrence is variant w.r.t. L if any of its operands 12454 // are variant. 12455 for (auto *Op : AR->operands()) 12456 if (!isLoopInvariant(Op, L)) 12457 return LoopVariant; 12458 12459 // Otherwise it's loop-invariant. 12460 return LoopInvariant; 12461 } 12462 case scAddExpr: 12463 case scMulExpr: 12464 case scUMaxExpr: 12465 case scSMaxExpr: 12466 case scUMinExpr: 12467 case scSMinExpr: { 12468 bool HasVarying = false; 12469 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12470 LoopDisposition D = getLoopDisposition(Op, L); 12471 if (D == LoopVariant) 12472 return LoopVariant; 12473 if (D == LoopComputable) 12474 HasVarying = true; 12475 } 12476 return HasVarying ? LoopComputable : LoopInvariant; 12477 } 12478 case scUDivExpr: { 12479 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12480 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12481 if (LD == LoopVariant) 12482 return LoopVariant; 12483 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12484 if (RD == LoopVariant) 12485 return LoopVariant; 12486 return (LD == LoopInvariant && RD == LoopInvariant) ? 12487 LoopInvariant : LoopComputable; 12488 } 12489 case scUnknown: 12490 // All non-instruction values are loop invariant. All instructions are loop 12491 // invariant if they are not contained in the specified loop. 12492 // Instructions are never considered invariant in the function body 12493 // (null loop) because they are defined within the "loop". 12494 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12495 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12496 return LoopInvariant; 12497 case scCouldNotCompute: 12498 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12499 } 12500 llvm_unreachable("Unknown SCEV kind!"); 12501 } 12502 12503 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12504 return getLoopDisposition(S, L) == LoopInvariant; 12505 } 12506 12507 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12508 return getLoopDisposition(S, L) == LoopComputable; 12509 } 12510 12511 ScalarEvolution::BlockDisposition 12512 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12513 auto &Values = BlockDispositions[S]; 12514 for (auto &V : Values) { 12515 if (V.getPointer() == BB) 12516 return V.getInt(); 12517 } 12518 Values.emplace_back(BB, DoesNotDominateBlock); 12519 BlockDisposition D = computeBlockDisposition(S, BB); 12520 auto &Values2 = BlockDispositions[S]; 12521 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12522 if (V.getPointer() == BB) { 12523 V.setInt(D); 12524 break; 12525 } 12526 } 12527 return D; 12528 } 12529 12530 ScalarEvolution::BlockDisposition 12531 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12532 switch (S->getSCEVType()) { 12533 case scConstant: 12534 return ProperlyDominatesBlock; 12535 case scPtrToInt: 12536 case scTruncate: 12537 case scZeroExtend: 12538 case scSignExtend: 12539 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12540 case scAddRecExpr: { 12541 // This uses a "dominates" query instead of "properly dominates" query 12542 // to test for proper dominance too, because the instruction which 12543 // produces the addrec's value is a PHI, and a PHI effectively properly 12544 // dominates its entire containing block. 12545 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12546 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12547 return DoesNotDominateBlock; 12548 12549 // Fall through into SCEVNAryExpr handling. 12550 LLVM_FALLTHROUGH; 12551 } 12552 case scAddExpr: 12553 case scMulExpr: 12554 case scUMaxExpr: 12555 case scSMaxExpr: 12556 case scUMinExpr: 12557 case scSMinExpr: { 12558 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12559 bool Proper = true; 12560 for (const SCEV *NAryOp : NAry->operands()) { 12561 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12562 if (D == DoesNotDominateBlock) 12563 return DoesNotDominateBlock; 12564 if (D == DominatesBlock) 12565 Proper = false; 12566 } 12567 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12568 } 12569 case scUDivExpr: { 12570 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12571 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12572 BlockDisposition LD = getBlockDisposition(LHS, BB); 12573 if (LD == DoesNotDominateBlock) 12574 return DoesNotDominateBlock; 12575 BlockDisposition RD = getBlockDisposition(RHS, BB); 12576 if (RD == DoesNotDominateBlock) 12577 return DoesNotDominateBlock; 12578 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12579 ProperlyDominatesBlock : DominatesBlock; 12580 } 12581 case scUnknown: 12582 if (Instruction *I = 12583 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12584 if (I->getParent() == BB) 12585 return DominatesBlock; 12586 if (DT.properlyDominates(I->getParent(), BB)) 12587 return ProperlyDominatesBlock; 12588 return DoesNotDominateBlock; 12589 } 12590 return ProperlyDominatesBlock; 12591 case scCouldNotCompute: 12592 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12593 } 12594 llvm_unreachable("Unknown SCEV kind!"); 12595 } 12596 12597 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12598 return getBlockDisposition(S, BB) >= DominatesBlock; 12599 } 12600 12601 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12602 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12603 } 12604 12605 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12606 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12607 } 12608 12609 void 12610 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12611 ValuesAtScopes.erase(S); 12612 LoopDispositions.erase(S); 12613 BlockDispositions.erase(S); 12614 UnsignedRanges.erase(S); 12615 SignedRanges.erase(S); 12616 ExprValueMap.erase(S); 12617 HasRecMap.erase(S); 12618 MinTrailingZerosCache.erase(S); 12619 12620 for (auto I = PredicatedSCEVRewrites.begin(); 12621 I != PredicatedSCEVRewrites.end();) { 12622 std::pair<const SCEV *, const Loop *> Entry = I->first; 12623 if (Entry.first == S) 12624 PredicatedSCEVRewrites.erase(I++); 12625 else 12626 ++I; 12627 } 12628 12629 auto RemoveSCEVFromBackedgeMap = 12630 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12631 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12632 BackedgeTakenInfo &BEInfo = I->second; 12633 if (BEInfo.hasOperand(S, this)) 12634 Map.erase(I++); 12635 else 12636 ++I; 12637 } 12638 }; 12639 12640 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12641 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12642 } 12643 12644 void 12645 ScalarEvolution::getUsedLoops(const SCEV *S, 12646 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12647 struct FindUsedLoops { 12648 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12649 : LoopsUsed(LoopsUsed) {} 12650 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12651 bool follow(const SCEV *S) { 12652 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12653 LoopsUsed.insert(AR->getLoop()); 12654 return true; 12655 } 12656 12657 bool isDone() const { return false; } 12658 }; 12659 12660 FindUsedLoops F(LoopsUsed); 12661 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12662 } 12663 12664 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12665 SmallPtrSet<const Loop *, 8> LoopsUsed; 12666 getUsedLoops(S, LoopsUsed); 12667 for (auto *L : LoopsUsed) 12668 LoopUsers[L].push_back(S); 12669 } 12670 12671 void ScalarEvolution::verify() const { 12672 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12673 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12674 12675 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12676 12677 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12678 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12679 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12680 12681 const SCEV *visitConstant(const SCEVConstant *Constant) { 12682 return SE.getConstant(Constant->getAPInt()); 12683 } 12684 12685 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12686 return SE.getUnknown(Expr->getValue()); 12687 } 12688 12689 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12690 return SE.getCouldNotCompute(); 12691 } 12692 }; 12693 12694 SCEVMapper SCM(SE2); 12695 12696 while (!LoopStack.empty()) { 12697 auto *L = LoopStack.pop_back_val(); 12698 llvm::append_range(LoopStack, *L); 12699 12700 auto *CurBECount = SCM.visit( 12701 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12702 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12703 12704 if (CurBECount == SE2.getCouldNotCompute() || 12705 NewBECount == SE2.getCouldNotCompute()) { 12706 // NB! This situation is legal, but is very suspicious -- whatever pass 12707 // change the loop to make a trip count go from could not compute to 12708 // computable or vice-versa *should have* invalidated SCEV. However, we 12709 // choose not to assert here (for now) since we don't want false 12710 // positives. 12711 continue; 12712 } 12713 12714 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12715 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12716 // not propagate undef aggressively). This means we can (and do) fail 12717 // verification in cases where a transform makes the trip count of a loop 12718 // go from "undef" to "undef+1" (say). The transform is fine, since in 12719 // both cases the loop iterates "undef" times, but SCEV thinks we 12720 // increased the trip count of the loop by 1 incorrectly. 12721 continue; 12722 } 12723 12724 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12725 SE.getTypeSizeInBits(NewBECount->getType())) 12726 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12727 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12728 SE.getTypeSizeInBits(NewBECount->getType())) 12729 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12730 12731 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12732 12733 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12734 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12735 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12736 dbgs() << "Old: " << *CurBECount << "\n"; 12737 dbgs() << "New: " << *NewBECount << "\n"; 12738 dbgs() << "Delta: " << *Delta << "\n"; 12739 std::abort(); 12740 } 12741 } 12742 12743 // Collect all valid loops currently in LoopInfo. 12744 SmallPtrSet<Loop *, 32> ValidLoops; 12745 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12746 while (!Worklist.empty()) { 12747 Loop *L = Worklist.pop_back_val(); 12748 if (ValidLoops.contains(L)) 12749 continue; 12750 ValidLoops.insert(L); 12751 Worklist.append(L->begin(), L->end()); 12752 } 12753 // Check for SCEV expressions referencing invalid/deleted loops. 12754 for (auto &KV : ValueExprMap) { 12755 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12756 if (!AR) 12757 continue; 12758 assert(ValidLoops.contains(AR->getLoop()) && 12759 "AddRec references invalid loop"); 12760 } 12761 } 12762 12763 bool ScalarEvolution::invalidate( 12764 Function &F, const PreservedAnalyses &PA, 12765 FunctionAnalysisManager::Invalidator &Inv) { 12766 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12767 // of its dependencies is invalidated. 12768 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12769 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12770 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12771 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12772 Inv.invalidate<LoopAnalysis>(F, PA); 12773 } 12774 12775 AnalysisKey ScalarEvolutionAnalysis::Key; 12776 12777 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12778 FunctionAnalysisManager &AM) { 12779 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12780 AM.getResult<AssumptionAnalysis>(F), 12781 AM.getResult<DominatorTreeAnalysis>(F), 12782 AM.getResult<LoopAnalysis>(F)); 12783 } 12784 12785 PreservedAnalyses 12786 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12787 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12788 return PreservedAnalyses::all(); 12789 } 12790 12791 PreservedAnalyses 12792 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12793 // For compatibility with opt's -analyze feature under legacy pass manager 12794 // which was not ported to NPM. This keeps tests using 12795 // update_analyze_test_checks.py working. 12796 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12797 << F.getName() << "':\n"; 12798 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12799 return PreservedAnalyses::all(); 12800 } 12801 12802 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12803 "Scalar Evolution Analysis", false, true) 12804 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12805 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12806 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12807 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12808 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12809 "Scalar Evolution Analysis", false, true) 12810 12811 char ScalarEvolutionWrapperPass::ID = 0; 12812 12813 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12814 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12815 } 12816 12817 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12818 SE.reset(new ScalarEvolution( 12819 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12820 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12821 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12822 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12823 return false; 12824 } 12825 12826 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12827 12828 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12829 SE->print(OS); 12830 } 12831 12832 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12833 if (!VerifySCEV) 12834 return; 12835 12836 SE->verify(); 12837 } 12838 12839 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12840 AU.setPreservesAll(); 12841 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12842 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12843 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12844 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12845 } 12846 12847 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12848 const SCEV *RHS) { 12849 FoldingSetNodeID ID; 12850 assert(LHS->getType() == RHS->getType() && 12851 "Type mismatch between LHS and RHS"); 12852 // Unique this node based on the arguments 12853 ID.AddInteger(SCEVPredicate::P_Equal); 12854 ID.AddPointer(LHS); 12855 ID.AddPointer(RHS); 12856 void *IP = nullptr; 12857 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12858 return S; 12859 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12860 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12861 UniquePreds.InsertNode(Eq, IP); 12862 return Eq; 12863 } 12864 12865 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12866 const SCEVAddRecExpr *AR, 12867 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12868 FoldingSetNodeID ID; 12869 // Unique this node based on the arguments 12870 ID.AddInteger(SCEVPredicate::P_Wrap); 12871 ID.AddPointer(AR); 12872 ID.AddInteger(AddedFlags); 12873 void *IP = nullptr; 12874 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12875 return S; 12876 auto *OF = new (SCEVAllocator) 12877 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12878 UniquePreds.InsertNode(OF, IP); 12879 return OF; 12880 } 12881 12882 namespace { 12883 12884 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12885 public: 12886 12887 /// Rewrites \p S in the context of a loop L and the SCEV predication 12888 /// infrastructure. 12889 /// 12890 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12891 /// equivalences present in \p Pred. 12892 /// 12893 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12894 /// \p NewPreds such that the result will be an AddRecExpr. 12895 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12896 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12897 SCEVUnionPredicate *Pred) { 12898 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12899 return Rewriter.visit(S); 12900 } 12901 12902 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12903 if (Pred) { 12904 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12905 for (auto *Pred : ExprPreds) 12906 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12907 if (IPred->getLHS() == Expr) 12908 return IPred->getRHS(); 12909 } 12910 return convertToAddRecWithPreds(Expr); 12911 } 12912 12913 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12914 const SCEV *Operand = visit(Expr->getOperand()); 12915 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12916 if (AR && AR->getLoop() == L && AR->isAffine()) { 12917 // This couldn't be folded because the operand didn't have the nuw 12918 // flag. Add the nusw flag as an assumption that we could make. 12919 const SCEV *Step = AR->getStepRecurrence(SE); 12920 Type *Ty = Expr->getType(); 12921 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12922 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12923 SE.getSignExtendExpr(Step, Ty), L, 12924 AR->getNoWrapFlags()); 12925 } 12926 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12927 } 12928 12929 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12930 const SCEV *Operand = visit(Expr->getOperand()); 12931 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12932 if (AR && AR->getLoop() == L && AR->isAffine()) { 12933 // This couldn't be folded because the operand didn't have the nsw 12934 // flag. Add the nssw flag as an assumption that we could make. 12935 const SCEV *Step = AR->getStepRecurrence(SE); 12936 Type *Ty = Expr->getType(); 12937 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12938 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12939 SE.getSignExtendExpr(Step, Ty), L, 12940 AR->getNoWrapFlags()); 12941 } 12942 return SE.getSignExtendExpr(Operand, Expr->getType()); 12943 } 12944 12945 private: 12946 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12947 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12948 SCEVUnionPredicate *Pred) 12949 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12950 12951 bool addOverflowAssumption(const SCEVPredicate *P) { 12952 if (!NewPreds) { 12953 // Check if we've already made this assumption. 12954 return Pred && Pred->implies(P); 12955 } 12956 NewPreds->insert(P); 12957 return true; 12958 } 12959 12960 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12961 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12962 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12963 return addOverflowAssumption(A); 12964 } 12965 12966 // If \p Expr represents a PHINode, we try to see if it can be represented 12967 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12968 // to add this predicate as a runtime overflow check, we return the AddRec. 12969 // If \p Expr does not meet these conditions (is not a PHI node, or we 12970 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12971 // return \p Expr. 12972 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12973 if (!isa<PHINode>(Expr->getValue())) 12974 return Expr; 12975 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12976 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12977 if (!PredicatedRewrite) 12978 return Expr; 12979 for (auto *P : PredicatedRewrite->second){ 12980 // Wrap predicates from outer loops are not supported. 12981 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12982 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12983 if (L != AR->getLoop()) 12984 return Expr; 12985 } 12986 if (!addOverflowAssumption(P)) 12987 return Expr; 12988 } 12989 return PredicatedRewrite->first; 12990 } 12991 12992 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12993 SCEVUnionPredicate *Pred; 12994 const Loop *L; 12995 }; 12996 12997 } // end anonymous namespace 12998 12999 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13000 SCEVUnionPredicate &Preds) { 13001 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13002 } 13003 13004 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13005 const SCEV *S, const Loop *L, 13006 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13007 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13008 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13009 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13010 13011 if (!AddRec) 13012 return nullptr; 13013 13014 // Since the transformation was successful, we can now transfer the SCEV 13015 // predicates. 13016 for (auto *P : TransformPreds) 13017 Preds.insert(P); 13018 13019 return AddRec; 13020 } 13021 13022 /// SCEV predicates 13023 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13024 SCEVPredicateKind Kind) 13025 : FastID(ID), Kind(Kind) {} 13026 13027 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13028 const SCEV *LHS, const SCEV *RHS) 13029 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13030 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13031 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13032 } 13033 13034 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13035 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13036 13037 if (!Op) 13038 return false; 13039 13040 return Op->LHS == LHS && Op->RHS == RHS; 13041 } 13042 13043 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13044 13045 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13046 13047 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13048 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13049 } 13050 13051 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13052 const SCEVAddRecExpr *AR, 13053 IncrementWrapFlags Flags) 13054 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13055 13056 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13057 13058 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13059 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13060 13061 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13062 } 13063 13064 bool SCEVWrapPredicate::isAlwaysTrue() const { 13065 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13066 IncrementWrapFlags IFlags = Flags; 13067 13068 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13069 IFlags = clearFlags(IFlags, IncrementNSSW); 13070 13071 return IFlags == IncrementAnyWrap; 13072 } 13073 13074 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13075 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13076 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13077 OS << "<nusw>"; 13078 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13079 OS << "<nssw>"; 13080 OS << "\n"; 13081 } 13082 13083 SCEVWrapPredicate::IncrementWrapFlags 13084 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13085 ScalarEvolution &SE) { 13086 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13087 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13088 13089 // We can safely transfer the NSW flag as NSSW. 13090 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13091 ImpliedFlags = IncrementNSSW; 13092 13093 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13094 // If the increment is positive, the SCEV NUW flag will also imply the 13095 // WrapPredicate NUSW flag. 13096 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13097 if (Step->getValue()->getValue().isNonNegative()) 13098 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13099 } 13100 13101 return ImpliedFlags; 13102 } 13103 13104 /// Union predicates don't get cached so create a dummy set ID for it. 13105 SCEVUnionPredicate::SCEVUnionPredicate() 13106 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13107 13108 bool SCEVUnionPredicate::isAlwaysTrue() const { 13109 return all_of(Preds, 13110 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13111 } 13112 13113 ArrayRef<const SCEVPredicate *> 13114 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13115 auto I = SCEVToPreds.find(Expr); 13116 if (I == SCEVToPreds.end()) 13117 return ArrayRef<const SCEVPredicate *>(); 13118 return I->second; 13119 } 13120 13121 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13122 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13123 return all_of(Set->Preds, 13124 [this](const SCEVPredicate *I) { return this->implies(I); }); 13125 13126 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13127 if (ScevPredsIt == SCEVToPreds.end()) 13128 return false; 13129 auto &SCEVPreds = ScevPredsIt->second; 13130 13131 return any_of(SCEVPreds, 13132 [N](const SCEVPredicate *I) { return I->implies(N); }); 13133 } 13134 13135 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13136 13137 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13138 for (auto Pred : Preds) 13139 Pred->print(OS, Depth); 13140 } 13141 13142 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13143 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13144 for (auto Pred : Set->Preds) 13145 add(Pred); 13146 return; 13147 } 13148 13149 if (implies(N)) 13150 return; 13151 13152 const SCEV *Key = N->getExpr(); 13153 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13154 " associated expression!"); 13155 13156 SCEVToPreds[Key].push_back(N); 13157 Preds.push_back(N); 13158 } 13159 13160 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13161 Loop &L) 13162 : SE(SE), L(L) {} 13163 13164 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13165 const SCEV *Expr = SE.getSCEV(V); 13166 RewriteEntry &Entry = RewriteMap[Expr]; 13167 13168 // If we already have an entry and the version matches, return it. 13169 if (Entry.second && Generation == Entry.first) 13170 return Entry.second; 13171 13172 // We found an entry but it's stale. Rewrite the stale entry 13173 // according to the current predicate. 13174 if (Entry.second) 13175 Expr = Entry.second; 13176 13177 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13178 Entry = {Generation, NewSCEV}; 13179 13180 return NewSCEV; 13181 } 13182 13183 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13184 if (!BackedgeCount) { 13185 SCEVUnionPredicate BackedgePred; 13186 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13187 addPredicate(BackedgePred); 13188 } 13189 return BackedgeCount; 13190 } 13191 13192 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13193 if (Preds.implies(&Pred)) 13194 return; 13195 Preds.add(&Pred); 13196 updateGeneration(); 13197 } 13198 13199 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13200 return Preds; 13201 } 13202 13203 void PredicatedScalarEvolution::updateGeneration() { 13204 // If the generation number wrapped recompute everything. 13205 if (++Generation == 0) { 13206 for (auto &II : RewriteMap) { 13207 const SCEV *Rewritten = II.second.second; 13208 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13209 } 13210 } 13211 } 13212 13213 void PredicatedScalarEvolution::setNoOverflow( 13214 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13215 const SCEV *Expr = getSCEV(V); 13216 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13217 13218 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13219 13220 // Clear the statically implied flags. 13221 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13222 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13223 13224 auto II = FlagsMap.insert({V, Flags}); 13225 if (!II.second) 13226 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13227 } 13228 13229 bool PredicatedScalarEvolution::hasNoOverflow( 13230 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13231 const SCEV *Expr = getSCEV(V); 13232 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13233 13234 Flags = SCEVWrapPredicate::clearFlags( 13235 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13236 13237 auto II = FlagsMap.find(V); 13238 13239 if (II != FlagsMap.end()) 13240 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13241 13242 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13243 } 13244 13245 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13246 const SCEV *Expr = this->getSCEV(V); 13247 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13248 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13249 13250 if (!New) 13251 return nullptr; 13252 13253 for (auto *P : NewPreds) 13254 Preds.add(P); 13255 13256 updateGeneration(); 13257 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13258 return New; 13259 } 13260 13261 PredicatedScalarEvolution::PredicatedScalarEvolution( 13262 const PredicatedScalarEvolution &Init) 13263 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13264 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13265 for (auto I : Init.FlagsMap) 13266 FlagsMap.insert(I); 13267 } 13268 13269 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13270 // For each block. 13271 for (auto *BB : L.getBlocks()) 13272 for (auto &I : *BB) { 13273 if (!SE.isSCEVable(I.getType())) 13274 continue; 13275 13276 auto *Expr = SE.getSCEV(&I); 13277 auto II = RewriteMap.find(Expr); 13278 13279 if (II == RewriteMap.end()) 13280 continue; 13281 13282 // Don't print things that are not interesting. 13283 if (II->second.second == Expr) 13284 continue; 13285 13286 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13287 OS.indent(Depth + 2) << *Expr << "\n"; 13288 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13289 } 13290 } 13291 13292 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13293 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13294 // for URem with constant power-of-2 second operands. 13295 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13296 // 4, A / B becomes X / 8). 13297 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13298 const SCEV *&RHS) { 13299 // Try to match 'zext (trunc A to iB) to iY', which is used 13300 // for URem with constant power-of-2 second operands. Make sure the size of 13301 // the operand A matches the size of the whole expressions. 13302 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13303 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13304 LHS = Trunc->getOperand(); 13305 // Bail out if the type of the LHS is larger than the type of the 13306 // expression for now. 13307 if (getTypeSizeInBits(LHS->getType()) > 13308 getTypeSizeInBits(Expr->getType())) 13309 return false; 13310 if (LHS->getType() != Expr->getType()) 13311 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13312 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13313 << getTypeSizeInBits(Trunc->getType())); 13314 return true; 13315 } 13316 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13317 if (Add == nullptr || Add->getNumOperands() != 2) 13318 return false; 13319 13320 const SCEV *A = Add->getOperand(1); 13321 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13322 13323 if (Mul == nullptr) 13324 return false; 13325 13326 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13327 // (SomeExpr + (-(SomeExpr / B) * B)). 13328 if (Expr == getURemExpr(A, B)) { 13329 LHS = A; 13330 RHS = B; 13331 return true; 13332 } 13333 return false; 13334 }; 13335 13336 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13337 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13338 return MatchURemWithDivisor(Mul->getOperand(1)) || 13339 MatchURemWithDivisor(Mul->getOperand(2)); 13340 13341 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13342 if (Mul->getNumOperands() == 2) 13343 return MatchURemWithDivisor(Mul->getOperand(1)) || 13344 MatchURemWithDivisor(Mul->getOperand(0)) || 13345 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13346 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13347 return false; 13348 } 13349 13350 const SCEV * 13351 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13352 SmallVector<BasicBlock*, 16> ExitingBlocks; 13353 L->getExitingBlocks(ExitingBlocks); 13354 13355 // Form an expression for the maximum exit count possible for this loop. We 13356 // merge the max and exact information to approximate a version of 13357 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13358 SmallVector<const SCEV*, 4> ExitCounts; 13359 for (BasicBlock *ExitingBB : ExitingBlocks) { 13360 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13361 if (isa<SCEVCouldNotCompute>(ExitCount)) 13362 ExitCount = getExitCount(L, ExitingBB, 13363 ScalarEvolution::ConstantMaximum); 13364 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13365 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13366 "We should only have known counts for exiting blocks that " 13367 "dominate latch!"); 13368 ExitCounts.push_back(ExitCount); 13369 } 13370 } 13371 if (ExitCounts.empty()) 13372 return getCouldNotCompute(); 13373 return getUMinFromMismatchedTypes(ExitCounts); 13374 } 13375 13376 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13377 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13378 /// we cannot guarantee that the replacement is loop invariant in the loop of 13379 /// the AddRec. 13380 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13381 ValueToSCEVMapTy ⤅ 13382 13383 public: 13384 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13385 : SCEVRewriteVisitor(SE), Map(M) {} 13386 13387 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13388 13389 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13390 auto I = Map.find(Expr->getValue()); 13391 if (I == Map.end()) 13392 return Expr; 13393 return I->second; 13394 } 13395 }; 13396 13397 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13398 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13399 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13400 // If we have LHS == 0, check if LHS is computing a property of some unknown 13401 // SCEV %v which we can rewrite %v to express explicitly. 13402 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13403 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13404 RHSC->getValue()->isNullValue()) { 13405 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13406 // explicitly express that. 13407 const SCEV *URemLHS = nullptr; 13408 const SCEV *URemRHS = nullptr; 13409 if (matchURem(LHS, URemLHS, URemRHS)) { 13410 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13411 Value *V = LHSUnknown->getValue(); 13412 auto Multiple = 13413 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13414 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13415 RewriteMap[V] = Multiple; 13416 return; 13417 } 13418 } 13419 } 13420 13421 if (!isa<SCEVUnknown>(LHS)) { 13422 std::swap(LHS, RHS); 13423 Predicate = CmpInst::getSwappedPredicate(Predicate); 13424 } 13425 13426 // For now, limit to conditions that provide information about unknown 13427 // expressions. 13428 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13429 if (!LHSUnknown) 13430 return; 13431 13432 // Check whether LHS has already been rewritten. In that case we want to 13433 // chain further rewrites onto the already rewritten value. 13434 auto I = RewriteMap.find(LHSUnknown->getValue()); 13435 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13436 13437 // TODO: use information from more predicates. 13438 switch (Predicate) { 13439 case CmpInst::ICMP_ULT: 13440 if (!containsAddRecurrence(RHS)) 13441 RewriteMap[LHSUnknown->getValue()] = getUMinExpr( 13442 RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13443 break; 13444 case CmpInst::ICMP_ULE: 13445 if (!containsAddRecurrence(RHS)) 13446 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(RewrittenLHS, RHS); 13447 break; 13448 case CmpInst::ICMP_UGT: 13449 if (!containsAddRecurrence(RHS)) 13450 RewriteMap[LHSUnknown->getValue()] = 13451 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13452 break; 13453 case CmpInst::ICMP_UGE: 13454 if (!containsAddRecurrence(RHS)) 13455 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(RewrittenLHS, RHS); 13456 break; 13457 case CmpInst::ICMP_EQ: 13458 if (isa<SCEVConstant>(RHS)) 13459 RewriteMap[LHSUnknown->getValue()] = RHS; 13460 break; 13461 case CmpInst::ICMP_NE: 13462 if (isa<SCEVConstant>(RHS) && 13463 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13464 RewriteMap[LHSUnknown->getValue()] = 13465 getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13466 break; 13467 default: 13468 break; 13469 } 13470 }; 13471 // Starting at the loop predecessor, climb up the predecessor chain, as long 13472 // as there are predecessors that can be found that have unique successors 13473 // leading to the original header. 13474 // TODO: share this logic with isLoopEntryGuardedByCond. 13475 ValueToSCEVMapTy RewriteMap; 13476 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13477 L->getLoopPredecessor(), L->getHeader()); 13478 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13479 13480 const BranchInst *LoopEntryPredicate = 13481 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13482 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13483 continue; 13484 13485 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13486 SmallVector<Value *, 8> Worklist; 13487 SmallPtrSet<Value *, 8> Visited; 13488 Worklist.push_back(LoopEntryPredicate->getCondition()); 13489 while (!Worklist.empty()) { 13490 Value *Cond = Worklist.pop_back_val(); 13491 if (!Visited.insert(Cond).second) 13492 continue; 13493 13494 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13495 auto Predicate = 13496 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13497 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13498 getSCEV(Cmp->getOperand(1)), RewriteMap); 13499 continue; 13500 } 13501 13502 Value *L, *R; 13503 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13504 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13505 Worklist.push_back(L); 13506 Worklist.push_back(R); 13507 } 13508 } 13509 } 13510 13511 // Also collect information from assumptions dominating the loop. 13512 for (auto &AssumeVH : AC.assumptions()) { 13513 if (!AssumeVH) 13514 continue; 13515 auto *AssumeI = cast<CallInst>(AssumeVH); 13516 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13517 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13518 continue; 13519 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13520 getSCEV(Cmp->getOperand(1)), RewriteMap); 13521 } 13522 13523 if (RewriteMap.empty()) 13524 return Expr; 13525 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13526 return Rewriter.visit(Expr); 13527 } 13528