1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/CallSite.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/GlobalVariable.h"
99 #include "llvm/IR/InstIterator.h"
100 #include "llvm/IR/InstrTypes.h"
101 #include "llvm/IR/Instruction.h"
102 #include "llvm/IR/Instructions.h"
103 #include "llvm/IR/IntrinsicInst.h"
104 #include "llvm/IR/Intrinsics.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Metadata.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/PatternMatch.h"
109 #include "llvm/IR/Type.h"
110 #include "llvm/IR/Use.h"
111 #include "llvm/IR/User.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <climits>
125 #include <cstddef>
126 #include <cstdint>
127 #include <cstdlib>
128 #include <map>
129 #include <memory>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "scalar-evolution"
137 
138 STATISTIC(NumArrayLenItCounts,
139           "Number of trip counts computed with array length");
140 STATISTIC(NumTripCountsComputed,
141           "Number of loops with predictable loop counts");
142 STATISTIC(NumTripCountsNotComputed,
143           "Number of loops without predictable loop counts");
144 STATISTIC(NumBruteForceTripCountsComputed,
145           "Number of loops with trip counts computed by force");
146 
147 static cl::opt<unsigned>
148 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
149                         cl::desc("Maximum number of iterations SCEV will "
150                                  "symbolically execute a constant "
151                                  "derived loop"),
152                         cl::init(100));
153 
154 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
155 static cl::opt<bool>
156 VerifySCEV("verify-scev",
157            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
158 static cl::opt<bool>
159     VerifySCEVMap("verify-scev-maps",
160                   cl::desc("Verify no dangling value in ScalarEvolution's "
161                            "ExprValueMap (slow)"));
162 
163 static cl::opt<unsigned> MulOpsInlineThreshold(
164     "scev-mulops-inline-threshold", cl::Hidden,
165     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
166     cl::init(32));
167 
168 static cl::opt<unsigned> AddOpsInlineThreshold(
169     "scev-addops-inline-threshold", cl::Hidden,
170     cl::desc("Threshold for inlining addition operands into a SCEV"),
171     cl::init(500));
172 
173 static cl::opt<unsigned> MaxSCEVCompareDepth(
174     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
175     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
176     cl::init(32));
177 
178 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
179     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
180     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
181     cl::init(2));
182 
183 static cl::opt<unsigned> MaxValueCompareDepth(
184     "scalar-evolution-max-value-compare-depth", cl::Hidden,
185     cl::desc("Maximum depth of recursive value complexity comparisons"),
186     cl::init(2));
187 
188 static cl::opt<unsigned>
189     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
190                   cl::desc("Maximum depth of recursive arithmetics"),
191                   cl::init(32));
192 
193 static cl::opt<unsigned> MaxConstantEvolvingDepth(
194     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
195     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
196 
197 static cl::opt<unsigned>
198     MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
199                 cl::desc("Maximum depth of recursive SExt/ZExt"),
200                 cl::init(8));
201 
202 static cl::opt<unsigned>
203     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
204                   cl::desc("Max coefficients in AddRec during evolving"),
205                   cl::init(16));
206 
207 //===----------------------------------------------------------------------===//
208 //                           SCEV class definitions
209 //===----------------------------------------------------------------------===//
210 
211 //===----------------------------------------------------------------------===//
212 // Implementation of the SCEV class.
213 //
214 
215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
216 LLVM_DUMP_METHOD void SCEV::dump() const {
217   print(dbgs());
218   dbgs() << '\n';
219 }
220 #endif
221 
222 void SCEV::print(raw_ostream &OS) const {
223   switch (static_cast<SCEVTypes>(getSCEVType())) {
224   case scConstant:
225     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
226     return;
227   case scTruncate: {
228     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
229     const SCEV *Op = Trunc->getOperand();
230     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
231        << *Trunc->getType() << ")";
232     return;
233   }
234   case scZeroExtend: {
235     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
236     const SCEV *Op = ZExt->getOperand();
237     OS << "(zext " << *Op->getType() << " " << *Op << " to "
238        << *ZExt->getType() << ")";
239     return;
240   }
241   case scSignExtend: {
242     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
243     const SCEV *Op = SExt->getOperand();
244     OS << "(sext " << *Op->getType() << " " << *Op << " to "
245        << *SExt->getType() << ")";
246     return;
247   }
248   case scAddRecExpr: {
249     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
250     OS << "{" << *AR->getOperand(0);
251     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
252       OS << ",+," << *AR->getOperand(i);
253     OS << "}<";
254     if (AR->hasNoUnsignedWrap())
255       OS << "nuw><";
256     if (AR->hasNoSignedWrap())
257       OS << "nsw><";
258     if (AR->hasNoSelfWrap() &&
259         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
260       OS << "nw><";
261     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
262     OS << ">";
263     return;
264   }
265   case scAddExpr:
266   case scMulExpr:
267   case scUMaxExpr:
268   case scSMaxExpr: {
269     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
270     const char *OpStr = nullptr;
271     switch (NAry->getSCEVType()) {
272     case scAddExpr: OpStr = " + "; break;
273     case scMulExpr: OpStr = " * "; break;
274     case scUMaxExpr: OpStr = " umax "; break;
275     case scSMaxExpr: OpStr = " smax "; break;
276     }
277     OS << "(";
278     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
279          I != E; ++I) {
280       OS << **I;
281       if (std::next(I) != E)
282         OS << OpStr;
283     }
284     OS << ")";
285     switch (NAry->getSCEVType()) {
286     case scAddExpr:
287     case scMulExpr:
288       if (NAry->hasNoUnsignedWrap())
289         OS << "<nuw>";
290       if (NAry->hasNoSignedWrap())
291         OS << "<nsw>";
292     }
293     return;
294   }
295   case scUDivExpr: {
296     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
297     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
298     return;
299   }
300   case scUnknown: {
301     const SCEVUnknown *U = cast<SCEVUnknown>(this);
302     Type *AllocTy;
303     if (U->isSizeOf(AllocTy)) {
304       OS << "sizeof(" << *AllocTy << ")";
305       return;
306     }
307     if (U->isAlignOf(AllocTy)) {
308       OS << "alignof(" << *AllocTy << ")";
309       return;
310     }
311 
312     Type *CTy;
313     Constant *FieldNo;
314     if (U->isOffsetOf(CTy, FieldNo)) {
315       OS << "offsetof(" << *CTy << ", ";
316       FieldNo->printAsOperand(OS, false);
317       OS << ")";
318       return;
319     }
320 
321     // Otherwise just print it normally.
322     U->getValue()->printAsOperand(OS, false);
323     return;
324   }
325   case scCouldNotCompute:
326     OS << "***COULDNOTCOMPUTE***";
327     return;
328   }
329   llvm_unreachable("Unknown SCEV kind!");
330 }
331 
332 Type *SCEV::getType() const {
333   switch (static_cast<SCEVTypes>(getSCEVType())) {
334   case scConstant:
335     return cast<SCEVConstant>(this)->getType();
336   case scTruncate:
337   case scZeroExtend:
338   case scSignExtend:
339     return cast<SCEVCastExpr>(this)->getType();
340   case scAddRecExpr:
341   case scMulExpr:
342   case scUMaxExpr:
343   case scSMaxExpr:
344     return cast<SCEVNAryExpr>(this)->getType();
345   case scAddExpr:
346     return cast<SCEVAddExpr>(this)->getType();
347   case scUDivExpr:
348     return cast<SCEVUDivExpr>(this)->getType();
349   case scUnknown:
350     return cast<SCEVUnknown>(this)->getType();
351   case scCouldNotCompute:
352     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
353   }
354   llvm_unreachable("Unknown SCEV kind!");
355 }
356 
357 bool SCEV::isZero() const {
358   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
359     return SC->getValue()->isZero();
360   return false;
361 }
362 
363 bool SCEV::isOne() const {
364   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
365     return SC->getValue()->isOne();
366   return false;
367 }
368 
369 bool SCEV::isAllOnesValue() const {
370   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371     return SC->getValue()->isMinusOne();
372   return false;
373 }
374 
375 bool SCEV::isNonConstantNegative() const {
376   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
377   if (!Mul) return false;
378 
379   // If there is a constant factor, it will be first.
380   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
381   if (!SC) return false;
382 
383   // Return true if the value is negative, this matches things like (-42 * V).
384   return SC->getAPInt().isNegative();
385 }
386 
387 SCEVCouldNotCompute::SCEVCouldNotCompute() :
388   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
389 
390 bool SCEVCouldNotCompute::classof(const SCEV *S) {
391   return S->getSCEVType() == scCouldNotCompute;
392 }
393 
394 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
395   FoldingSetNodeID ID;
396   ID.AddInteger(scConstant);
397   ID.AddPointer(V);
398   void *IP = nullptr;
399   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
400   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
401   UniqueSCEVs.InsertNode(S, IP);
402   return S;
403 }
404 
405 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
406   return getConstant(ConstantInt::get(getContext(), Val));
407 }
408 
409 const SCEV *
410 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
411   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
412   return getConstant(ConstantInt::get(ITy, V, isSigned));
413 }
414 
415 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
416                            unsigned SCEVTy, const SCEV *op, Type *ty)
417   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
418 
419 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
420                                    const SCEV *op, Type *ty)
421   : SCEVCastExpr(ID, scTruncate, op, ty) {
422   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
423          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
424          "Cannot truncate non-integer value!");
425 }
426 
427 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
428                                        const SCEV *op, Type *ty)
429   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
430   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
431          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
432          "Cannot zero extend non-integer value!");
433 }
434 
435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
436                                        const SCEV *op, Type *ty)
437   : SCEVCastExpr(ID, scSignExtend, op, ty) {
438   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
439          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
440          "Cannot sign extend non-integer value!");
441 }
442 
443 void SCEVUnknown::deleted() {
444   // Clear this SCEVUnknown from various maps.
445   SE->forgetMemoizedResults(this);
446 
447   // Remove this SCEVUnknown from the uniquing map.
448   SE->UniqueSCEVs.RemoveNode(this);
449 
450   // Release the value.
451   setValPtr(nullptr);
452 }
453 
454 void SCEVUnknown::allUsesReplacedWith(Value *New) {
455   // Remove this SCEVUnknown from the uniquing map.
456   SE->UniqueSCEVs.RemoveNode(this);
457 
458   // Update this SCEVUnknown to point to the new value. This is needed
459   // because there may still be outstanding SCEVs which still point to
460   // this SCEVUnknown.
461   setValPtr(New);
462 }
463 
464 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
465   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
466     if (VCE->getOpcode() == Instruction::PtrToInt)
467       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
468         if (CE->getOpcode() == Instruction::GetElementPtr &&
469             CE->getOperand(0)->isNullValue() &&
470             CE->getNumOperands() == 2)
471           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
472             if (CI->isOne()) {
473               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
474                                  ->getElementType();
475               return true;
476             }
477 
478   return false;
479 }
480 
481 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
482   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
483     if (VCE->getOpcode() == Instruction::PtrToInt)
484       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
485         if (CE->getOpcode() == Instruction::GetElementPtr &&
486             CE->getOperand(0)->isNullValue()) {
487           Type *Ty =
488             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
489           if (StructType *STy = dyn_cast<StructType>(Ty))
490             if (!STy->isPacked() &&
491                 CE->getNumOperands() == 3 &&
492                 CE->getOperand(1)->isNullValue()) {
493               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
494                 if (CI->isOne() &&
495                     STy->getNumElements() == 2 &&
496                     STy->getElementType(0)->isIntegerTy(1)) {
497                   AllocTy = STy->getElementType(1);
498                   return true;
499                 }
500             }
501         }
502 
503   return false;
504 }
505 
506 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
507   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
508     if (VCE->getOpcode() == Instruction::PtrToInt)
509       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
510         if (CE->getOpcode() == Instruction::GetElementPtr &&
511             CE->getNumOperands() == 3 &&
512             CE->getOperand(0)->isNullValue() &&
513             CE->getOperand(1)->isNullValue()) {
514           Type *Ty =
515             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
516           // Ignore vector types here so that ScalarEvolutionExpander doesn't
517           // emit getelementptrs that index into vectors.
518           if (Ty->isStructTy() || Ty->isArrayTy()) {
519             CTy = Ty;
520             FieldNo = CE->getOperand(2);
521             return true;
522           }
523         }
524 
525   return false;
526 }
527 
528 //===----------------------------------------------------------------------===//
529 //                               SCEV Utilities
530 //===----------------------------------------------------------------------===//
531 
532 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
533 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
534 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
535 /// have been previously deemed to be "equally complex" by this routine.  It is
536 /// intended to avoid exponential time complexity in cases like:
537 ///
538 ///   %a = f(%x, %y)
539 ///   %b = f(%a, %a)
540 ///   %c = f(%b, %b)
541 ///
542 ///   %d = f(%x, %y)
543 ///   %e = f(%d, %d)
544 ///   %f = f(%e, %e)
545 ///
546 ///   CompareValueComplexity(%f, %c)
547 ///
548 /// Since we do not continue running this routine on expression trees once we
549 /// have seen unequal values, there is no need to track them in the cache.
550 static int
551 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
552                        const LoopInfo *const LI, Value *LV, Value *RV,
553                        unsigned Depth) {
554   if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV}))
555     return 0;
556 
557   // Order pointer values after integer values. This helps SCEVExpander form
558   // GEPs.
559   bool LIsPointer = LV->getType()->isPointerTy(),
560        RIsPointer = RV->getType()->isPointerTy();
561   if (LIsPointer != RIsPointer)
562     return (int)LIsPointer - (int)RIsPointer;
563 
564   // Compare getValueID values.
565   unsigned LID = LV->getValueID(), RID = RV->getValueID();
566   if (LID != RID)
567     return (int)LID - (int)RID;
568 
569   // Sort arguments by their position.
570   if (const auto *LA = dyn_cast<Argument>(LV)) {
571     const auto *RA = cast<Argument>(RV);
572     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573     return (int)LArgNo - (int)RArgNo;
574   }
575 
576   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
577     const auto *RGV = cast<GlobalValue>(RV);
578 
579     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
580       auto LT = GV->getLinkage();
581       return !(GlobalValue::isPrivateLinkage(LT) ||
582                GlobalValue::isInternalLinkage(LT));
583     };
584 
585     // Use the names to distinguish the two values, but only if the
586     // names are semantically important.
587     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
588       return LGV->getName().compare(RGV->getName());
589   }
590 
591   // For instructions, compare their loop depth, and their operand count.  This
592   // is pretty loose.
593   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
594     const auto *RInst = cast<Instruction>(RV);
595 
596     // Compare loop depths.
597     const BasicBlock *LParent = LInst->getParent(),
598                      *RParent = RInst->getParent();
599     if (LParent != RParent) {
600       unsigned LDepth = LI->getLoopDepth(LParent),
601                RDepth = LI->getLoopDepth(RParent);
602       if (LDepth != RDepth)
603         return (int)LDepth - (int)RDepth;
604     }
605 
606     // Compare the number of operands.
607     unsigned LNumOps = LInst->getNumOperands(),
608              RNumOps = RInst->getNumOperands();
609     if (LNumOps != RNumOps)
610       return (int)LNumOps - (int)RNumOps;
611 
612     for (unsigned Idx : seq(0u, LNumOps)) {
613       int Result =
614           CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
615                                  RInst->getOperand(Idx), Depth + 1);
616       if (Result != 0)
617         return Result;
618     }
619   }
620 
621   EqCache.insert({LV, RV});
622   return 0;
623 }
624 
625 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
626 // than RHS, respectively. A three-way result allows recursive comparisons to be
627 // more efficient.
628 static int CompareSCEVComplexity(
629     SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
630     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
631     DominatorTree &DT, unsigned Depth = 0) {
632   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
633   if (LHS == RHS)
634     return 0;
635 
636   // Primarily, sort the SCEVs by their getSCEVType().
637   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
638   if (LType != RType)
639     return (int)LType - (int)RType;
640 
641   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS}))
642     return 0;
643   // Aside from the getSCEVType() ordering, the particular ordering
644   // isn't very important except that it's beneficial to be consistent,
645   // so that (a + b) and (b + a) don't end up as different expressions.
646   switch (static_cast<SCEVTypes>(LType)) {
647   case scUnknown: {
648     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
649     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
650 
651     SmallSet<std::pair<Value *, Value *>, 8> EqCache;
652     int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(),
653                                    Depth + 1);
654     if (X == 0)
655       EqCacheSCEV.insert({LHS, RHS});
656     return X;
657   }
658 
659   case scConstant: {
660     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
661     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
662 
663     // Compare constant values.
664     const APInt &LA = LC->getAPInt();
665     const APInt &RA = RC->getAPInt();
666     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
667     if (LBitWidth != RBitWidth)
668       return (int)LBitWidth - (int)RBitWidth;
669     return LA.ult(RA) ? -1 : 1;
670   }
671 
672   case scAddRecExpr: {
673     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
674     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
675 
676     // There is always a dominance between two recs that are used by one SCEV,
677     // so we can safely sort recs by loop header dominance. We require such
678     // order in getAddExpr.
679     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
680     if (LLoop != RLoop) {
681       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
682       assert(LHead != RHead && "Two loops share the same header?");
683       if (DT.dominates(LHead, RHead))
684         return 1;
685       else
686         assert(DT.dominates(RHead, LHead) &&
687                "No dominance between recurrences used by one SCEV?");
688       return -1;
689     }
690 
691     // Addrec complexity grows with operand count.
692     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
693     if (LNumOps != RNumOps)
694       return (int)LNumOps - (int)RNumOps;
695 
696     // Lexicographically compare.
697     for (unsigned i = 0; i != LNumOps; ++i) {
698       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
699                                     RA->getOperand(i), DT,  Depth + 1);
700       if (X != 0)
701         return X;
702     }
703     EqCacheSCEV.insert({LHS, RHS});
704     return 0;
705   }
706 
707   case scAddExpr:
708   case scMulExpr:
709   case scSMaxExpr:
710   case scUMaxExpr: {
711     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
712     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
713 
714     // Lexicographically compare n-ary expressions.
715     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
716     if (LNumOps != RNumOps)
717       return (int)LNumOps - (int)RNumOps;
718 
719     for (unsigned i = 0; i != LNumOps; ++i) {
720       if (i >= RNumOps)
721         return 1;
722       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
723                                     RC->getOperand(i), DT, Depth + 1);
724       if (X != 0)
725         return X;
726     }
727     EqCacheSCEV.insert({LHS, RHS});
728     return 0;
729   }
730 
731   case scUDivExpr: {
732     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
733     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
734 
735     // Lexicographically compare udiv expressions.
736     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
737                                   DT, Depth + 1);
738     if (X != 0)
739       return X;
740     X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT,
741                               Depth + 1);
742     if (X == 0)
743       EqCacheSCEV.insert({LHS, RHS});
744     return X;
745   }
746 
747   case scTruncate:
748   case scZeroExtend:
749   case scSignExtend: {
750     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
751     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
752 
753     // Compare cast expressions by operand.
754     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
755                                   RC->getOperand(), DT, Depth + 1);
756     if (X == 0)
757       EqCacheSCEV.insert({LHS, RHS});
758     return X;
759   }
760 
761   case scCouldNotCompute:
762     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
763   }
764   llvm_unreachable("Unknown SCEV kind!");
765 }
766 
767 /// Given a list of SCEV objects, order them by their complexity, and group
768 /// objects of the same complexity together by value.  When this routine is
769 /// finished, we know that any duplicates in the vector are consecutive and that
770 /// complexity is monotonically increasing.
771 ///
772 /// Note that we go take special precautions to ensure that we get deterministic
773 /// results from this routine.  In other words, we don't want the results of
774 /// this to depend on where the addresses of various SCEV objects happened to
775 /// land in memory.
776 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
777                               LoopInfo *LI, DominatorTree &DT) {
778   if (Ops.size() < 2) return;  // Noop
779 
780   SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
781   if (Ops.size() == 2) {
782     // This is the common case, which also happens to be trivially simple.
783     // Special case it.
784     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
785     if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0)
786       std::swap(LHS, RHS);
787     return;
788   }
789 
790   // Do the rough sort by complexity.
791   std::stable_sort(Ops.begin(), Ops.end(),
792                    [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) {
793                      return
794                          CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0;
795                    });
796 
797   // Now that we are sorted by complexity, group elements of the same
798   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
799   // be extremely short in practice.  Note that we take this approach because we
800   // do not want to depend on the addresses of the objects we are grouping.
801   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
802     const SCEV *S = Ops[i];
803     unsigned Complexity = S->getSCEVType();
804 
805     // If there are any objects of the same complexity and same value as this
806     // one, group them.
807     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
808       if (Ops[j] == S) { // Found a duplicate.
809         // Move it to immediately after i'th element.
810         std::swap(Ops[i+1], Ops[j]);
811         ++i;   // no need to rescan it.
812         if (i == e-2) return;  // Done!
813       }
814     }
815   }
816 }
817 
818 // Returns the size of the SCEV S.
819 static inline int sizeOfSCEV(const SCEV *S) {
820   struct FindSCEVSize {
821     int Size = 0;
822 
823     FindSCEVSize() = default;
824 
825     bool follow(const SCEV *S) {
826       ++Size;
827       // Keep looking at all operands of S.
828       return true;
829     }
830 
831     bool isDone() const {
832       return false;
833     }
834   };
835 
836   FindSCEVSize F;
837   SCEVTraversal<FindSCEVSize> ST(F);
838   ST.visitAll(S);
839   return F.Size;
840 }
841 
842 namespace {
843 
844 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
845 public:
846   // Computes the Quotient and Remainder of the division of Numerator by
847   // Denominator.
848   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
849                      const SCEV *Denominator, const SCEV **Quotient,
850                      const SCEV **Remainder) {
851     assert(Numerator && Denominator && "Uninitialized SCEV");
852 
853     SCEVDivision D(SE, Numerator, Denominator);
854 
855     // Check for the trivial case here to avoid having to check for it in the
856     // rest of the code.
857     if (Numerator == Denominator) {
858       *Quotient = D.One;
859       *Remainder = D.Zero;
860       return;
861     }
862 
863     if (Numerator->isZero()) {
864       *Quotient = D.Zero;
865       *Remainder = D.Zero;
866       return;
867     }
868 
869     // A simple case when N/1. The quotient is N.
870     if (Denominator->isOne()) {
871       *Quotient = Numerator;
872       *Remainder = D.Zero;
873       return;
874     }
875 
876     // Split the Denominator when it is a product.
877     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
878       const SCEV *Q, *R;
879       *Quotient = Numerator;
880       for (const SCEV *Op : T->operands()) {
881         divide(SE, *Quotient, Op, &Q, &R);
882         *Quotient = Q;
883 
884         // Bail out when the Numerator is not divisible by one of the terms of
885         // the Denominator.
886         if (!R->isZero()) {
887           *Quotient = D.Zero;
888           *Remainder = Numerator;
889           return;
890         }
891       }
892       *Remainder = D.Zero;
893       return;
894     }
895 
896     D.visit(Numerator);
897     *Quotient = D.Quotient;
898     *Remainder = D.Remainder;
899   }
900 
901   // Except in the trivial case described above, we do not know how to divide
902   // Expr by Denominator for the following functions with empty implementation.
903   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
904   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
905   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
906   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
907   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
908   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
909   void visitUnknown(const SCEVUnknown *Numerator) {}
910   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
911 
912   void visitConstant(const SCEVConstant *Numerator) {
913     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
914       APInt NumeratorVal = Numerator->getAPInt();
915       APInt DenominatorVal = D->getAPInt();
916       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
917       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
918 
919       if (NumeratorBW > DenominatorBW)
920         DenominatorVal = DenominatorVal.sext(NumeratorBW);
921       else if (NumeratorBW < DenominatorBW)
922         NumeratorVal = NumeratorVal.sext(DenominatorBW);
923 
924       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
925       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
926       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
927       Quotient = SE.getConstant(QuotientVal);
928       Remainder = SE.getConstant(RemainderVal);
929       return;
930     }
931   }
932 
933   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
934     const SCEV *StartQ, *StartR, *StepQ, *StepR;
935     if (!Numerator->isAffine())
936       return cannotDivide(Numerator);
937     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
938     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
939     // Bail out if the types do not match.
940     Type *Ty = Denominator->getType();
941     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
942         Ty != StepQ->getType() || Ty != StepR->getType())
943       return cannotDivide(Numerator);
944     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
945                                 Numerator->getNoWrapFlags());
946     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
947                                  Numerator->getNoWrapFlags());
948   }
949 
950   void visitAddExpr(const SCEVAddExpr *Numerator) {
951     SmallVector<const SCEV *, 2> Qs, Rs;
952     Type *Ty = Denominator->getType();
953 
954     for (const SCEV *Op : Numerator->operands()) {
955       const SCEV *Q, *R;
956       divide(SE, Op, Denominator, &Q, &R);
957 
958       // Bail out if types do not match.
959       if (Ty != Q->getType() || Ty != R->getType())
960         return cannotDivide(Numerator);
961 
962       Qs.push_back(Q);
963       Rs.push_back(R);
964     }
965 
966     if (Qs.size() == 1) {
967       Quotient = Qs[0];
968       Remainder = Rs[0];
969       return;
970     }
971 
972     Quotient = SE.getAddExpr(Qs);
973     Remainder = SE.getAddExpr(Rs);
974   }
975 
976   void visitMulExpr(const SCEVMulExpr *Numerator) {
977     SmallVector<const SCEV *, 2> Qs;
978     Type *Ty = Denominator->getType();
979 
980     bool FoundDenominatorTerm = false;
981     for (const SCEV *Op : Numerator->operands()) {
982       // Bail out if types do not match.
983       if (Ty != Op->getType())
984         return cannotDivide(Numerator);
985 
986       if (FoundDenominatorTerm) {
987         Qs.push_back(Op);
988         continue;
989       }
990 
991       // Check whether Denominator divides one of the product operands.
992       const SCEV *Q, *R;
993       divide(SE, Op, Denominator, &Q, &R);
994       if (!R->isZero()) {
995         Qs.push_back(Op);
996         continue;
997       }
998 
999       // Bail out if types do not match.
1000       if (Ty != Q->getType())
1001         return cannotDivide(Numerator);
1002 
1003       FoundDenominatorTerm = true;
1004       Qs.push_back(Q);
1005     }
1006 
1007     if (FoundDenominatorTerm) {
1008       Remainder = Zero;
1009       if (Qs.size() == 1)
1010         Quotient = Qs[0];
1011       else
1012         Quotient = SE.getMulExpr(Qs);
1013       return;
1014     }
1015 
1016     if (!isa<SCEVUnknown>(Denominator))
1017       return cannotDivide(Numerator);
1018 
1019     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1020     ValueToValueMap RewriteMap;
1021     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1022         cast<SCEVConstant>(Zero)->getValue();
1023     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1024 
1025     if (Remainder->isZero()) {
1026       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1027       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1028           cast<SCEVConstant>(One)->getValue();
1029       Quotient =
1030           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1031       return;
1032     }
1033 
1034     // Quotient is (Numerator - Remainder) divided by Denominator.
1035     const SCEV *Q, *R;
1036     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1037     // This SCEV does not seem to simplify: fail the division here.
1038     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1039       return cannotDivide(Numerator);
1040     divide(SE, Diff, Denominator, &Q, &R);
1041     if (R != Zero)
1042       return cannotDivide(Numerator);
1043     Quotient = Q;
1044   }
1045 
1046 private:
1047   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1048                const SCEV *Denominator)
1049       : SE(S), Denominator(Denominator) {
1050     Zero = SE.getZero(Denominator->getType());
1051     One = SE.getOne(Denominator->getType());
1052 
1053     // We generally do not know how to divide Expr by Denominator. We
1054     // initialize the division to a "cannot divide" state to simplify the rest
1055     // of the code.
1056     cannotDivide(Numerator);
1057   }
1058 
1059   // Convenience function for giving up on the division. We set the quotient to
1060   // be equal to zero and the remainder to be equal to the numerator.
1061   void cannotDivide(const SCEV *Numerator) {
1062     Quotient = Zero;
1063     Remainder = Numerator;
1064   }
1065 
1066   ScalarEvolution &SE;
1067   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1068 };
1069 
1070 } // end anonymous namespace
1071 
1072 //===----------------------------------------------------------------------===//
1073 //                      Simple SCEV method implementations
1074 //===----------------------------------------------------------------------===//
1075 
1076 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1077 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1078                                        ScalarEvolution &SE,
1079                                        Type *ResultTy) {
1080   // Handle the simplest case efficiently.
1081   if (K == 1)
1082     return SE.getTruncateOrZeroExtend(It, ResultTy);
1083 
1084   // We are using the following formula for BC(It, K):
1085   //
1086   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1087   //
1088   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1089   // overflow.  Hence, we must assure that the result of our computation is
1090   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1091   // safe in modular arithmetic.
1092   //
1093   // However, this code doesn't use exactly that formula; the formula it uses
1094   // is something like the following, where T is the number of factors of 2 in
1095   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1096   // exponentiation:
1097   //
1098   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1099   //
1100   // This formula is trivially equivalent to the previous formula.  However,
1101   // this formula can be implemented much more efficiently.  The trick is that
1102   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1103   // arithmetic.  To do exact division in modular arithmetic, all we have
1104   // to do is multiply by the inverse.  Therefore, this step can be done at
1105   // width W.
1106   //
1107   // The next issue is how to safely do the division by 2^T.  The way this
1108   // is done is by doing the multiplication step at a width of at least W + T
1109   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1110   // when we perform the division by 2^T (which is equivalent to a right shift
1111   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1112   // truncated out after the division by 2^T.
1113   //
1114   // In comparison to just directly using the first formula, this technique
1115   // is much more efficient; using the first formula requires W * K bits,
1116   // but this formula less than W + K bits. Also, the first formula requires
1117   // a division step, whereas this formula only requires multiplies and shifts.
1118   //
1119   // It doesn't matter whether the subtraction step is done in the calculation
1120   // width or the input iteration count's width; if the subtraction overflows,
1121   // the result must be zero anyway.  We prefer here to do it in the width of
1122   // the induction variable because it helps a lot for certain cases; CodeGen
1123   // isn't smart enough to ignore the overflow, which leads to much less
1124   // efficient code if the width of the subtraction is wider than the native
1125   // register width.
1126   //
1127   // (It's possible to not widen at all by pulling out factors of 2 before
1128   // the multiplication; for example, K=2 can be calculated as
1129   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1130   // extra arithmetic, so it's not an obvious win, and it gets
1131   // much more complicated for K > 3.)
1132 
1133   // Protection from insane SCEVs; this bound is conservative,
1134   // but it probably doesn't matter.
1135   if (K > 1000)
1136     return SE.getCouldNotCompute();
1137 
1138   unsigned W = SE.getTypeSizeInBits(ResultTy);
1139 
1140   // Calculate K! / 2^T and T; we divide out the factors of two before
1141   // multiplying for calculating K! / 2^T to avoid overflow.
1142   // Other overflow doesn't matter because we only care about the bottom
1143   // W bits of the result.
1144   APInt OddFactorial(W, 1);
1145   unsigned T = 1;
1146   for (unsigned i = 3; i <= K; ++i) {
1147     APInt Mult(W, i);
1148     unsigned TwoFactors = Mult.countTrailingZeros();
1149     T += TwoFactors;
1150     Mult.lshrInPlace(TwoFactors);
1151     OddFactorial *= Mult;
1152   }
1153 
1154   // We need at least W + T bits for the multiplication step
1155   unsigned CalculationBits = W + T;
1156 
1157   // Calculate 2^T, at width T+W.
1158   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1159 
1160   // Calculate the multiplicative inverse of K! / 2^T;
1161   // this multiplication factor will perform the exact division by
1162   // K! / 2^T.
1163   APInt Mod = APInt::getSignedMinValue(W+1);
1164   APInt MultiplyFactor = OddFactorial.zext(W+1);
1165   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1166   MultiplyFactor = MultiplyFactor.trunc(W);
1167 
1168   // Calculate the product, at width T+W
1169   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1170                                                       CalculationBits);
1171   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1172   for (unsigned i = 1; i != K; ++i) {
1173     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1174     Dividend = SE.getMulExpr(Dividend,
1175                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1176   }
1177 
1178   // Divide by 2^T
1179   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1180 
1181   // Truncate the result, and divide by K! / 2^T.
1182 
1183   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1184                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1185 }
1186 
1187 /// Return the value of this chain of recurrences at the specified iteration
1188 /// number.  We can evaluate this recurrence by multiplying each element in the
1189 /// chain by the binomial coefficient corresponding to it.  In other words, we
1190 /// can evaluate {A,+,B,+,C,+,D} as:
1191 ///
1192 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1193 ///
1194 /// where BC(It, k) stands for binomial coefficient.
1195 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1196                                                 ScalarEvolution &SE) const {
1197   const SCEV *Result = getStart();
1198   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1199     // The computation is correct in the face of overflow provided that the
1200     // multiplication is performed _after_ the evaluation of the binomial
1201     // coefficient.
1202     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1203     if (isa<SCEVCouldNotCompute>(Coeff))
1204       return Coeff;
1205 
1206     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1207   }
1208   return Result;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 //                    SCEV Expression folder implementations
1213 //===----------------------------------------------------------------------===//
1214 
1215 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1216                                              Type *Ty) {
1217   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1218          "This is not a truncating conversion!");
1219   assert(isSCEVable(Ty) &&
1220          "This is not a conversion to a SCEVable type!");
1221   Ty = getEffectiveSCEVType(Ty);
1222 
1223   FoldingSetNodeID ID;
1224   ID.AddInteger(scTruncate);
1225   ID.AddPointer(Op);
1226   ID.AddPointer(Ty);
1227   void *IP = nullptr;
1228   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1229 
1230   // Fold if the operand is constant.
1231   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1232     return getConstant(
1233       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1234 
1235   // trunc(trunc(x)) --> trunc(x)
1236   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1237     return getTruncateExpr(ST->getOperand(), Ty);
1238 
1239   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1240   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1241     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1242 
1243   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1244   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1245     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1246 
1247   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1248   // eliminate all the truncates, or we replace other casts with truncates.
1249   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1250     SmallVector<const SCEV *, 4> Operands;
1251     bool hasTrunc = false;
1252     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1253       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1254       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1255         hasTrunc = isa<SCEVTruncateExpr>(S);
1256       Operands.push_back(S);
1257     }
1258     if (!hasTrunc)
1259       return getAddExpr(Operands);
1260     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1261   }
1262 
1263   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1264   // eliminate all the truncates, or we replace other casts with truncates.
1265   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1266     SmallVector<const SCEV *, 4> Operands;
1267     bool hasTrunc = false;
1268     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1269       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1270       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1271         hasTrunc = isa<SCEVTruncateExpr>(S);
1272       Operands.push_back(S);
1273     }
1274     if (!hasTrunc)
1275       return getMulExpr(Operands);
1276     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1277   }
1278 
1279   // If the input value is a chrec scev, truncate the chrec's operands.
1280   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1281     SmallVector<const SCEV *, 4> Operands;
1282     for (const SCEV *Op : AddRec->operands())
1283       Operands.push_back(getTruncateExpr(Op, Ty));
1284     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1285   }
1286 
1287   // The cast wasn't folded; create an explicit cast node. We can reuse
1288   // the existing insert position since if we get here, we won't have
1289   // made any changes which would invalidate it.
1290   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1291                                                  Op, Ty);
1292   UniqueSCEVs.InsertNode(S, IP);
1293   return S;
1294 }
1295 
1296 // Get the limit of a recurrence such that incrementing by Step cannot cause
1297 // signed overflow as long as the value of the recurrence within the
1298 // loop does not exceed this limit before incrementing.
1299 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1300                                                  ICmpInst::Predicate *Pred,
1301                                                  ScalarEvolution *SE) {
1302   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1303   if (SE->isKnownPositive(Step)) {
1304     *Pred = ICmpInst::ICMP_SLT;
1305     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1306                            SE->getSignedRangeMax(Step));
1307   }
1308   if (SE->isKnownNegative(Step)) {
1309     *Pred = ICmpInst::ICMP_SGT;
1310     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1311                            SE->getSignedRangeMin(Step));
1312   }
1313   return nullptr;
1314 }
1315 
1316 // Get the limit of a recurrence such that incrementing by Step cannot cause
1317 // unsigned overflow as long as the value of the recurrence within the loop does
1318 // not exceed this limit before incrementing.
1319 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1320                                                    ICmpInst::Predicate *Pred,
1321                                                    ScalarEvolution *SE) {
1322   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1323   *Pred = ICmpInst::ICMP_ULT;
1324 
1325   return SE->getConstant(APInt::getMinValue(BitWidth) -
1326                          SE->getUnsignedRangeMax(Step));
1327 }
1328 
1329 namespace {
1330 
1331 struct ExtendOpTraitsBase {
1332   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1333                                                           unsigned);
1334 };
1335 
1336 // Used to make code generic over signed and unsigned overflow.
1337 template <typename ExtendOp> struct ExtendOpTraits {
1338   // Members present:
1339   //
1340   // static const SCEV::NoWrapFlags WrapType;
1341   //
1342   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1343   //
1344   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1345   //                                           ICmpInst::Predicate *Pred,
1346   //                                           ScalarEvolution *SE);
1347 };
1348 
1349 template <>
1350 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1351   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1352 
1353   static const GetExtendExprTy GetExtendExpr;
1354 
1355   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1356                                              ICmpInst::Predicate *Pred,
1357                                              ScalarEvolution *SE) {
1358     return getSignedOverflowLimitForStep(Step, Pred, SE);
1359   }
1360 };
1361 
1362 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1363     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1364 
1365 template <>
1366 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1367   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1368 
1369   static const GetExtendExprTy GetExtendExpr;
1370 
1371   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1372                                              ICmpInst::Predicate *Pred,
1373                                              ScalarEvolution *SE) {
1374     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1375   }
1376 };
1377 
1378 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1379     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1380 
1381 } // end anonymous namespace
1382 
1383 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1384 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1385 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1386 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1387 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1388 // expression "Step + sext/zext(PreIncAR)" is congruent with
1389 // "sext/zext(PostIncAR)"
1390 template <typename ExtendOpTy>
1391 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1392                                         ScalarEvolution *SE, unsigned Depth) {
1393   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1394   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1395 
1396   const Loop *L = AR->getLoop();
1397   const SCEV *Start = AR->getStart();
1398   const SCEV *Step = AR->getStepRecurrence(*SE);
1399 
1400   // Check for a simple looking step prior to loop entry.
1401   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1402   if (!SA)
1403     return nullptr;
1404 
1405   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1406   // subtraction is expensive. For this purpose, perform a quick and dirty
1407   // difference, by checking for Step in the operand list.
1408   SmallVector<const SCEV *, 4> DiffOps;
1409   for (const SCEV *Op : SA->operands())
1410     if (Op != Step)
1411       DiffOps.push_back(Op);
1412 
1413   if (DiffOps.size() == SA->getNumOperands())
1414     return nullptr;
1415 
1416   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1417   // `Step`:
1418 
1419   // 1. NSW/NUW flags on the step increment.
1420   auto PreStartFlags =
1421     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1422   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1423   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1424       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1425 
1426   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1427   // "S+X does not sign/unsign-overflow".
1428   //
1429 
1430   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1431   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1432       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1433     return PreStart;
1434 
1435   // 2. Direct overflow check on the step operation's expression.
1436   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1437   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1438   const SCEV *OperandExtendedStart =
1439       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1440                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1441   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1442     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1443       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1444       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1445       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1446       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1447     }
1448     return PreStart;
1449   }
1450 
1451   // 3. Loop precondition.
1452   ICmpInst::Predicate Pred;
1453   const SCEV *OverflowLimit =
1454       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1455 
1456   if (OverflowLimit &&
1457       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1458     return PreStart;
1459 
1460   return nullptr;
1461 }
1462 
1463 // Get the normalized zero or sign extended expression for this AddRec's Start.
1464 template <typename ExtendOpTy>
1465 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1466                                         ScalarEvolution *SE,
1467                                         unsigned Depth) {
1468   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1469 
1470   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1471   if (!PreStart)
1472     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1473 
1474   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1475                                              Depth),
1476                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1477 }
1478 
1479 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1480 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1481 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1482 //
1483 // Formally:
1484 //
1485 //     {S,+,X} == {S-T,+,X} + T
1486 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1487 //
1488 // If ({S-T,+,X} + T) does not overflow  ... (1)
1489 //
1490 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1491 //
1492 // If {S-T,+,X} does not overflow  ... (2)
1493 //
1494 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1495 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1496 //
1497 // If (S-T)+T does not overflow  ... (3)
1498 //
1499 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1500 //      == {Ext(S),+,Ext(X)} == LHS
1501 //
1502 // Thus, if (1), (2) and (3) are true for some T, then
1503 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1504 //
1505 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1506 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1507 // to check for (1) and (2).
1508 //
1509 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1510 // is `Delta` (defined below).
1511 template <typename ExtendOpTy>
1512 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1513                                                 const SCEV *Step,
1514                                                 const Loop *L) {
1515   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1516 
1517   // We restrict `Start` to a constant to prevent SCEV from spending too much
1518   // time here.  It is correct (but more expensive) to continue with a
1519   // non-constant `Start` and do a general SCEV subtraction to compute
1520   // `PreStart` below.
1521   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1522   if (!StartC)
1523     return false;
1524 
1525   APInt StartAI = StartC->getAPInt();
1526 
1527   for (unsigned Delta : {-2, -1, 1, 2}) {
1528     const SCEV *PreStart = getConstant(StartAI - Delta);
1529 
1530     FoldingSetNodeID ID;
1531     ID.AddInteger(scAddRecExpr);
1532     ID.AddPointer(PreStart);
1533     ID.AddPointer(Step);
1534     ID.AddPointer(L);
1535     void *IP = nullptr;
1536     const auto *PreAR =
1537       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1538 
1539     // Give up if we don't already have the add recurrence we need because
1540     // actually constructing an add recurrence is relatively expensive.
1541     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1542       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1543       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1544       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1545           DeltaS, &Pred, this);
1546       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1547         return true;
1548     }
1549   }
1550 
1551   return false;
1552 }
1553 
1554 const SCEV *
1555 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1556   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1557          "This is not an extending conversion!");
1558   assert(isSCEVable(Ty) &&
1559          "This is not a conversion to a SCEVable type!");
1560   Ty = getEffectiveSCEVType(Ty);
1561 
1562   // Fold if the operand is constant.
1563   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1564     return getConstant(
1565       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1566 
1567   // zext(zext(x)) --> zext(x)
1568   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1569     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1570 
1571   // Before doing any expensive analysis, check to see if we've already
1572   // computed a SCEV for this Op and Ty.
1573   FoldingSetNodeID ID;
1574   ID.AddInteger(scZeroExtend);
1575   ID.AddPointer(Op);
1576   ID.AddPointer(Ty);
1577   void *IP = nullptr;
1578   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1579   if (Depth > MaxExtDepth) {
1580     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1581                                                      Op, Ty);
1582     UniqueSCEVs.InsertNode(S, IP);
1583     return S;
1584   }
1585 
1586   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1587   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1588     // It's possible the bits taken off by the truncate were all zero bits. If
1589     // so, we should be able to simplify this further.
1590     const SCEV *X = ST->getOperand();
1591     ConstantRange CR = getUnsignedRange(X);
1592     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1593     unsigned NewBits = getTypeSizeInBits(Ty);
1594     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1595             CR.zextOrTrunc(NewBits)))
1596       return getTruncateOrZeroExtend(X, Ty);
1597   }
1598 
1599   // If the input value is a chrec scev, and we can prove that the value
1600   // did not overflow the old, smaller, value, we can zero extend all of the
1601   // operands (often constants).  This allows analysis of something like
1602   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1603   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1604     if (AR->isAffine()) {
1605       const SCEV *Start = AR->getStart();
1606       const SCEV *Step = AR->getStepRecurrence(*this);
1607       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1608       const Loop *L = AR->getLoop();
1609 
1610       if (!AR->hasNoUnsignedWrap()) {
1611         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1612         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1613       }
1614 
1615       // If we have special knowledge that this addrec won't overflow,
1616       // we don't need to do any further analysis.
1617       if (AR->hasNoUnsignedWrap())
1618         return getAddRecExpr(
1619             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1620             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1621 
1622       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1623       // Note that this serves two purposes: It filters out loops that are
1624       // simply not analyzable, and it covers the case where this code is
1625       // being called from within backedge-taken count analysis, such that
1626       // attempting to ask for the backedge-taken count would likely result
1627       // in infinite recursion. In the later case, the analysis code will
1628       // cope with a conservative value, and it will take care to purge
1629       // that value once it has finished.
1630       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1631       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1632         // Manually compute the final value for AR, checking for
1633         // overflow.
1634 
1635         // Check whether the backedge-taken count can be losslessly casted to
1636         // the addrec's type. The count is always unsigned.
1637         const SCEV *CastedMaxBECount =
1638           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1639         const SCEV *RecastedMaxBECount =
1640           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1641         if (MaxBECount == RecastedMaxBECount) {
1642           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1643           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1644           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1645                                         SCEV::FlagAnyWrap, Depth + 1);
1646           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1647                                                           SCEV::FlagAnyWrap,
1648                                                           Depth + 1),
1649                                                WideTy, Depth + 1);
1650           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1651           const SCEV *WideMaxBECount =
1652             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1653           const SCEV *OperandExtendedAdd =
1654             getAddExpr(WideStart,
1655                        getMulExpr(WideMaxBECount,
1656                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1657                                   SCEV::FlagAnyWrap, Depth + 1),
1658                        SCEV::FlagAnyWrap, Depth + 1);
1659           if (ZAdd == OperandExtendedAdd) {
1660             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1661             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1662             // Return the expression with the addrec on the outside.
1663             return getAddRecExpr(
1664                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1665                                                          Depth + 1),
1666                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1667                 AR->getNoWrapFlags());
1668           }
1669           // Similar to above, only this time treat the step value as signed.
1670           // This covers loops that count down.
1671           OperandExtendedAdd =
1672             getAddExpr(WideStart,
1673                        getMulExpr(WideMaxBECount,
1674                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1675                                   SCEV::FlagAnyWrap, Depth + 1),
1676                        SCEV::FlagAnyWrap, Depth + 1);
1677           if (ZAdd == OperandExtendedAdd) {
1678             // Cache knowledge of AR NW, which is propagated to this AddRec.
1679             // Negative step causes unsigned wrap, but it still can't self-wrap.
1680             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1681             // Return the expression with the addrec on the outside.
1682             return getAddRecExpr(
1683                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1684                                                          Depth + 1),
1685                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1686                 AR->getNoWrapFlags());
1687           }
1688         }
1689       }
1690 
1691       // Normally, in the cases we can prove no-overflow via a
1692       // backedge guarding condition, we can also compute a backedge
1693       // taken count for the loop.  The exceptions are assumptions and
1694       // guards present in the loop -- SCEV is not great at exploiting
1695       // these to compute max backedge taken counts, but can still use
1696       // these to prove lack of overflow.  Use this fact to avoid
1697       // doing extra work that may not pay off.
1698       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1699           !AC.assumptions().empty()) {
1700         // If the backedge is guarded by a comparison with the pre-inc
1701         // value the addrec is safe. Also, if the entry is guarded by
1702         // a comparison with the start value and the backedge is
1703         // guarded by a comparison with the post-inc value, the addrec
1704         // is safe.
1705         if (isKnownPositive(Step)) {
1706           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1707                                       getUnsignedRangeMax(Step));
1708           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1709               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1710                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1711                                            AR->getPostIncExpr(*this), N))) {
1712             // Cache knowledge of AR NUW, which is propagated to this
1713             // AddRec.
1714             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1715             // Return the expression with the addrec on the outside.
1716             return getAddRecExpr(
1717                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1718                                                          Depth + 1),
1719                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1720                 AR->getNoWrapFlags());
1721           }
1722         } else if (isKnownNegative(Step)) {
1723           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1724                                       getSignedRangeMin(Step));
1725           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1726               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1727                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1728                                            AR->getPostIncExpr(*this), N))) {
1729             // Cache knowledge of AR NW, which is propagated to this
1730             // AddRec.  Negative step causes unsigned wrap, but it
1731             // still can't self-wrap.
1732             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1733             // Return the expression with the addrec on the outside.
1734             return getAddRecExpr(
1735                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1736                                                          Depth + 1),
1737                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1738                 AR->getNoWrapFlags());
1739           }
1740         }
1741       }
1742 
1743       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1744         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1745         return getAddRecExpr(
1746             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1747             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1748       }
1749     }
1750 
1751   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1752     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1753     if (SA->hasNoUnsignedWrap()) {
1754       // If the addition does not unsign overflow then we can, by definition,
1755       // commute the zero extension with the addition operation.
1756       SmallVector<const SCEV *, 4> Ops;
1757       for (const auto *Op : SA->operands())
1758         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1759       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1760     }
1761   }
1762 
1763   // The cast wasn't folded; create an explicit cast node.
1764   // Recompute the insert position, as it may have been invalidated.
1765   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1766   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1767                                                    Op, Ty);
1768   UniqueSCEVs.InsertNode(S, IP);
1769   return S;
1770 }
1771 
1772 const SCEV *
1773 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1774   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1775          "This is not an extending conversion!");
1776   assert(isSCEVable(Ty) &&
1777          "This is not a conversion to a SCEVable type!");
1778   Ty = getEffectiveSCEVType(Ty);
1779 
1780   // Fold if the operand is constant.
1781   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1782     return getConstant(
1783       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1784 
1785   // sext(sext(x)) --> sext(x)
1786   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1787     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1788 
1789   // sext(zext(x)) --> zext(x)
1790   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1791     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1792 
1793   // Before doing any expensive analysis, check to see if we've already
1794   // computed a SCEV for this Op and Ty.
1795   FoldingSetNodeID ID;
1796   ID.AddInteger(scSignExtend);
1797   ID.AddPointer(Op);
1798   ID.AddPointer(Ty);
1799   void *IP = nullptr;
1800   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1801   // Limit recursion depth.
1802   if (Depth > MaxExtDepth) {
1803     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1804                                                      Op, Ty);
1805     UniqueSCEVs.InsertNode(S, IP);
1806     return S;
1807   }
1808 
1809   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1810   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1811     // It's possible the bits taken off by the truncate were all sign bits. If
1812     // so, we should be able to simplify this further.
1813     const SCEV *X = ST->getOperand();
1814     ConstantRange CR = getSignedRange(X);
1815     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1816     unsigned NewBits = getTypeSizeInBits(Ty);
1817     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1818             CR.sextOrTrunc(NewBits)))
1819       return getTruncateOrSignExtend(X, Ty);
1820   }
1821 
1822   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1823   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1824     if (SA->getNumOperands() == 2) {
1825       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1826       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1827       if (SMul && SC1) {
1828         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1829           const APInt &C1 = SC1->getAPInt();
1830           const APInt &C2 = SC2->getAPInt();
1831           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1832               C2.ugt(C1) && C2.isPowerOf2())
1833             return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1),
1834                               getSignExtendExpr(SMul, Ty, Depth + 1),
1835                               SCEV::FlagAnyWrap, Depth + 1);
1836         }
1837       }
1838     }
1839 
1840     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1841     if (SA->hasNoSignedWrap()) {
1842       // If the addition does not sign overflow then we can, by definition,
1843       // commute the sign extension with the addition operation.
1844       SmallVector<const SCEV *, 4> Ops;
1845       for (const auto *Op : SA->operands())
1846         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1847       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1848     }
1849   }
1850   // If the input value is a chrec scev, and we can prove that the value
1851   // did not overflow the old, smaller, value, we can sign extend all of the
1852   // operands (often constants).  This allows analysis of something like
1853   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1854   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1855     if (AR->isAffine()) {
1856       const SCEV *Start = AR->getStart();
1857       const SCEV *Step = AR->getStepRecurrence(*this);
1858       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1859       const Loop *L = AR->getLoop();
1860 
1861       if (!AR->hasNoSignedWrap()) {
1862         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1863         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1864       }
1865 
1866       // If we have special knowledge that this addrec won't overflow,
1867       // we don't need to do any further analysis.
1868       if (AR->hasNoSignedWrap())
1869         return getAddRecExpr(
1870             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1871             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1872 
1873       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1874       // Note that this serves two purposes: It filters out loops that are
1875       // simply not analyzable, and it covers the case where this code is
1876       // being called from within backedge-taken count analysis, such that
1877       // attempting to ask for the backedge-taken count would likely result
1878       // in infinite recursion. In the later case, the analysis code will
1879       // cope with a conservative value, and it will take care to purge
1880       // that value once it has finished.
1881       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1882       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1883         // Manually compute the final value for AR, checking for
1884         // overflow.
1885 
1886         // Check whether the backedge-taken count can be losslessly casted to
1887         // the addrec's type. The count is always unsigned.
1888         const SCEV *CastedMaxBECount =
1889           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1890         const SCEV *RecastedMaxBECount =
1891           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1892         if (MaxBECount == RecastedMaxBECount) {
1893           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1894           // Check whether Start+Step*MaxBECount has no signed overflow.
1895           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1896                                         SCEV::FlagAnyWrap, Depth + 1);
1897           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1898                                                           SCEV::FlagAnyWrap,
1899                                                           Depth + 1),
1900                                                WideTy, Depth + 1);
1901           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1902           const SCEV *WideMaxBECount =
1903             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1904           const SCEV *OperandExtendedAdd =
1905             getAddExpr(WideStart,
1906                        getMulExpr(WideMaxBECount,
1907                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1908                                   SCEV::FlagAnyWrap, Depth + 1),
1909                        SCEV::FlagAnyWrap, Depth + 1);
1910           if (SAdd == OperandExtendedAdd) {
1911             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1912             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1913             // Return the expression with the addrec on the outside.
1914             return getAddRecExpr(
1915                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1916                                                          Depth + 1),
1917                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1918                 AR->getNoWrapFlags());
1919           }
1920           // Similar to above, only this time treat the step value as unsigned.
1921           // This covers loops that count up with an unsigned step.
1922           OperandExtendedAdd =
1923             getAddExpr(WideStart,
1924                        getMulExpr(WideMaxBECount,
1925                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1926                                   SCEV::FlagAnyWrap, Depth + 1),
1927                        SCEV::FlagAnyWrap, Depth + 1);
1928           if (SAdd == OperandExtendedAdd) {
1929             // If AR wraps around then
1930             //
1931             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1932             // => SAdd != OperandExtendedAdd
1933             //
1934             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1935             // (SAdd == OperandExtendedAdd => AR is NW)
1936 
1937             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1938 
1939             // Return the expression with the addrec on the outside.
1940             return getAddRecExpr(
1941                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1942                                                          Depth + 1),
1943                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1944                 AR->getNoWrapFlags());
1945           }
1946         }
1947       }
1948 
1949       // Normally, in the cases we can prove no-overflow via a
1950       // backedge guarding condition, we can also compute a backedge
1951       // taken count for the loop.  The exceptions are assumptions and
1952       // guards present in the loop -- SCEV is not great at exploiting
1953       // these to compute max backedge taken counts, but can still use
1954       // these to prove lack of overflow.  Use this fact to avoid
1955       // doing extra work that may not pay off.
1956 
1957       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1958           !AC.assumptions().empty()) {
1959         // If the backedge is guarded by a comparison with the pre-inc
1960         // value the addrec is safe. Also, if the entry is guarded by
1961         // a comparison with the start value and the backedge is
1962         // guarded by a comparison with the post-inc value, the addrec
1963         // is safe.
1964         ICmpInst::Predicate Pred;
1965         const SCEV *OverflowLimit =
1966             getSignedOverflowLimitForStep(Step, &Pred, this);
1967         if (OverflowLimit &&
1968             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1969              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1970               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1971                                           OverflowLimit)))) {
1972           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1973           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1974           return getAddRecExpr(
1975               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1976               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1977         }
1978       }
1979 
1980       // If Start and Step are constants, check if we can apply this
1981       // transformation:
1982       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1983       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1984       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1985       if (SC1 && SC2) {
1986         const APInt &C1 = SC1->getAPInt();
1987         const APInt &C2 = SC2->getAPInt();
1988         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1989             C2.isPowerOf2()) {
1990           Start = getSignExtendExpr(Start, Ty, Depth + 1);
1991           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1992                                             AR->getNoWrapFlags());
1993           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1),
1994                             SCEV::FlagAnyWrap, Depth + 1);
1995         }
1996       }
1997 
1998       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1999         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2000         return getAddRecExpr(
2001             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2002             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2003       }
2004     }
2005 
2006   // If the input value is provably positive and we could not simplify
2007   // away the sext build a zext instead.
2008   if (isKnownNonNegative(Op))
2009     return getZeroExtendExpr(Op, Ty, Depth + 1);
2010 
2011   // The cast wasn't folded; create an explicit cast node.
2012   // Recompute the insert position, as it may have been invalidated.
2013   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2014   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2015                                                    Op, Ty);
2016   UniqueSCEVs.InsertNode(S, IP);
2017   return S;
2018 }
2019 
2020 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2021 /// unspecified bits out to the given type.
2022 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2023                                               Type *Ty) {
2024   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2025          "This is not an extending conversion!");
2026   assert(isSCEVable(Ty) &&
2027          "This is not a conversion to a SCEVable type!");
2028   Ty = getEffectiveSCEVType(Ty);
2029 
2030   // Sign-extend negative constants.
2031   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2032     if (SC->getAPInt().isNegative())
2033       return getSignExtendExpr(Op, Ty);
2034 
2035   // Peel off a truncate cast.
2036   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2037     const SCEV *NewOp = T->getOperand();
2038     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2039       return getAnyExtendExpr(NewOp, Ty);
2040     return getTruncateOrNoop(NewOp, Ty);
2041   }
2042 
2043   // Next try a zext cast. If the cast is folded, use it.
2044   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2045   if (!isa<SCEVZeroExtendExpr>(ZExt))
2046     return ZExt;
2047 
2048   // Next try a sext cast. If the cast is folded, use it.
2049   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2050   if (!isa<SCEVSignExtendExpr>(SExt))
2051     return SExt;
2052 
2053   // Force the cast to be folded into the operands of an addrec.
2054   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2055     SmallVector<const SCEV *, 4> Ops;
2056     for (const SCEV *Op : AR->operands())
2057       Ops.push_back(getAnyExtendExpr(Op, Ty));
2058     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2059   }
2060 
2061   // If the expression is obviously signed, use the sext cast value.
2062   if (isa<SCEVSMaxExpr>(Op))
2063     return SExt;
2064 
2065   // Absent any other information, use the zext cast value.
2066   return ZExt;
2067 }
2068 
2069 /// Process the given Ops list, which is a list of operands to be added under
2070 /// the given scale, update the given map. This is a helper function for
2071 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2072 /// that would form an add expression like this:
2073 ///
2074 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2075 ///
2076 /// where A and B are constants, update the map with these values:
2077 ///
2078 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2079 ///
2080 /// and add 13 + A*B*29 to AccumulatedConstant.
2081 /// This will allow getAddRecExpr to produce this:
2082 ///
2083 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2084 ///
2085 /// This form often exposes folding opportunities that are hidden in
2086 /// the original operand list.
2087 ///
2088 /// Return true iff it appears that any interesting folding opportunities
2089 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2090 /// the common case where no interesting opportunities are present, and
2091 /// is also used as a check to avoid infinite recursion.
2092 static bool
2093 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2094                              SmallVectorImpl<const SCEV *> &NewOps,
2095                              APInt &AccumulatedConstant,
2096                              const SCEV *const *Ops, size_t NumOperands,
2097                              const APInt &Scale,
2098                              ScalarEvolution &SE) {
2099   bool Interesting = false;
2100 
2101   // Iterate over the add operands. They are sorted, with constants first.
2102   unsigned i = 0;
2103   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2104     ++i;
2105     // Pull a buried constant out to the outside.
2106     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2107       Interesting = true;
2108     AccumulatedConstant += Scale * C->getAPInt();
2109   }
2110 
2111   // Next comes everything else. We're especially interested in multiplies
2112   // here, but they're in the middle, so just visit the rest with one loop.
2113   for (; i != NumOperands; ++i) {
2114     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2115     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2116       APInt NewScale =
2117           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2118       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2119         // A multiplication of a constant with another add; recurse.
2120         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2121         Interesting |=
2122           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2123                                        Add->op_begin(), Add->getNumOperands(),
2124                                        NewScale, SE);
2125       } else {
2126         // A multiplication of a constant with some other value. Update
2127         // the map.
2128         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2129         const SCEV *Key = SE.getMulExpr(MulOps);
2130         auto Pair = M.insert({Key, NewScale});
2131         if (Pair.second) {
2132           NewOps.push_back(Pair.first->first);
2133         } else {
2134           Pair.first->second += NewScale;
2135           // The map already had an entry for this value, which may indicate
2136           // a folding opportunity.
2137           Interesting = true;
2138         }
2139       }
2140     } else {
2141       // An ordinary operand. Update the map.
2142       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2143           M.insert({Ops[i], Scale});
2144       if (Pair.second) {
2145         NewOps.push_back(Pair.first->first);
2146       } else {
2147         Pair.first->second += Scale;
2148         // The map already had an entry for this value, which may indicate
2149         // a folding opportunity.
2150         Interesting = true;
2151       }
2152     }
2153   }
2154 
2155   return Interesting;
2156 }
2157 
2158 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2159 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2160 // can't-overflow flags for the operation if possible.
2161 static SCEV::NoWrapFlags
2162 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2163                       const SmallVectorImpl<const SCEV *> &Ops,
2164                       SCEV::NoWrapFlags Flags) {
2165   using namespace std::placeholders;
2166 
2167   using OBO = OverflowingBinaryOperator;
2168 
2169   bool CanAnalyze =
2170       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2171   (void)CanAnalyze;
2172   assert(CanAnalyze && "don't call from other places!");
2173 
2174   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2175   SCEV::NoWrapFlags SignOrUnsignWrap =
2176       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2177 
2178   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2179   auto IsKnownNonNegative = [&](const SCEV *S) {
2180     return SE->isKnownNonNegative(S);
2181   };
2182 
2183   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2184     Flags =
2185         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2186 
2187   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2188 
2189   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2190       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2191 
2192     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2193     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2194 
2195     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2196     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2197       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2198           Instruction::Add, C, OBO::NoSignedWrap);
2199       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2200         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2201     }
2202     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2203       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2204           Instruction::Add, C, OBO::NoUnsignedWrap);
2205       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2206         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2207     }
2208   }
2209 
2210   return Flags;
2211 }
2212 
2213 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2214   if (!isLoopInvariant(S, L))
2215     return false;
2216   // If a value depends on a SCEVUnknown which is defined after the loop, we
2217   // conservatively assume that we cannot calculate it at the loop's entry.
2218   struct FindDominatedSCEVUnknown {
2219     bool Found = false;
2220     const Loop *L;
2221     DominatorTree &DT;
2222     LoopInfo &LI;
2223 
2224     FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI)
2225         : L(L), DT(DT), LI(LI) {}
2226 
2227     bool checkSCEVUnknown(const SCEVUnknown *SU) {
2228       if (auto *I = dyn_cast<Instruction>(SU->getValue())) {
2229         if (DT.dominates(L->getHeader(), I->getParent()))
2230           Found = true;
2231         else
2232           assert(DT.dominates(I->getParent(), L->getHeader()) &&
2233                  "No dominance relationship between SCEV and loop?");
2234       }
2235       return false;
2236     }
2237 
2238     bool follow(const SCEV *S) {
2239       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
2240       case scConstant:
2241         return false;
2242       case scAddRecExpr:
2243       case scTruncate:
2244       case scZeroExtend:
2245       case scSignExtend:
2246       case scAddExpr:
2247       case scMulExpr:
2248       case scUMaxExpr:
2249       case scSMaxExpr:
2250       case scUDivExpr:
2251         return true;
2252       case scUnknown:
2253         return checkSCEVUnknown(cast<SCEVUnknown>(S));
2254       case scCouldNotCompute:
2255         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2256       }
2257       return false;
2258     }
2259 
2260     bool isDone() { return Found; }
2261   };
2262 
2263   FindDominatedSCEVUnknown FSU(L, DT, LI);
2264   SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU);
2265   ST.visitAll(S);
2266   return !FSU.Found;
2267 }
2268 
2269 /// Get a canonical add expression, or something simpler if possible.
2270 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2271                                         SCEV::NoWrapFlags Flags,
2272                                         unsigned Depth) {
2273   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2274          "only nuw or nsw allowed");
2275   assert(!Ops.empty() && "Cannot get empty add!");
2276   if (Ops.size() == 1) return Ops[0];
2277 #ifndef NDEBUG
2278   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2279   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2280     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2281            "SCEVAddExpr operand types don't match!");
2282 #endif
2283 
2284   // Sort by complexity, this groups all similar expression types together.
2285   GroupByComplexity(Ops, &LI, DT);
2286 
2287   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2288 
2289   // If there are any constants, fold them together.
2290   unsigned Idx = 0;
2291   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2292     ++Idx;
2293     assert(Idx < Ops.size());
2294     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2295       // We found two constants, fold them together!
2296       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2297       if (Ops.size() == 2) return Ops[0];
2298       Ops.erase(Ops.begin()+1);  // Erase the folded element
2299       LHSC = cast<SCEVConstant>(Ops[0]);
2300     }
2301 
2302     // If we are left with a constant zero being added, strip it off.
2303     if (LHSC->getValue()->isZero()) {
2304       Ops.erase(Ops.begin());
2305       --Idx;
2306     }
2307 
2308     if (Ops.size() == 1) return Ops[0];
2309   }
2310 
2311   // Limit recursion calls depth.
2312   if (Depth > MaxArithDepth)
2313     return getOrCreateAddExpr(Ops, Flags);
2314 
2315   // Okay, check to see if the same value occurs in the operand list more than
2316   // once.  If so, merge them together into an multiply expression.  Since we
2317   // sorted the list, these values are required to be adjacent.
2318   Type *Ty = Ops[0]->getType();
2319   bool FoundMatch = false;
2320   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2321     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2322       // Scan ahead to count how many equal operands there are.
2323       unsigned Count = 2;
2324       while (i+Count != e && Ops[i+Count] == Ops[i])
2325         ++Count;
2326       // Merge the values into a multiply.
2327       const SCEV *Scale = getConstant(Ty, Count);
2328       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2329       if (Ops.size() == Count)
2330         return Mul;
2331       Ops[i] = Mul;
2332       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2333       --i; e -= Count - 1;
2334       FoundMatch = true;
2335     }
2336   if (FoundMatch)
2337     return getAddExpr(Ops, Flags);
2338 
2339   // Check for truncates. If all the operands are truncated from the same
2340   // type, see if factoring out the truncate would permit the result to be
2341   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2342   // if the contents of the resulting outer trunc fold to something simple.
2343   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2344     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2345     Type *DstType = Trunc->getType();
2346     Type *SrcType = Trunc->getOperand()->getType();
2347     SmallVector<const SCEV *, 8> LargeOps;
2348     bool Ok = true;
2349     // Check all the operands to see if they can be represented in the
2350     // source type of the truncate.
2351     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2352       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2353         if (T->getOperand()->getType() != SrcType) {
2354           Ok = false;
2355           break;
2356         }
2357         LargeOps.push_back(T->getOperand());
2358       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2359         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2360       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2361         SmallVector<const SCEV *, 8> LargeMulOps;
2362         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2363           if (const SCEVTruncateExpr *T =
2364                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2365             if (T->getOperand()->getType() != SrcType) {
2366               Ok = false;
2367               break;
2368             }
2369             LargeMulOps.push_back(T->getOperand());
2370           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2371             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2372           } else {
2373             Ok = false;
2374             break;
2375           }
2376         }
2377         if (Ok)
2378           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2379       } else {
2380         Ok = false;
2381         break;
2382       }
2383     }
2384     if (Ok) {
2385       // Evaluate the expression in the larger type.
2386       const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1);
2387       // If it folds to something simple, use it. Otherwise, don't.
2388       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2389         return getTruncateExpr(Fold, DstType);
2390     }
2391   }
2392 
2393   // Skip past any other cast SCEVs.
2394   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2395     ++Idx;
2396 
2397   // If there are add operands they would be next.
2398   if (Idx < Ops.size()) {
2399     bool DeletedAdd = false;
2400     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2401       if (Ops.size() > AddOpsInlineThreshold ||
2402           Add->getNumOperands() > AddOpsInlineThreshold)
2403         break;
2404       // If we have an add, expand the add operands onto the end of the operands
2405       // list.
2406       Ops.erase(Ops.begin()+Idx);
2407       Ops.append(Add->op_begin(), Add->op_end());
2408       DeletedAdd = true;
2409     }
2410 
2411     // If we deleted at least one add, we added operands to the end of the list,
2412     // and they are not necessarily sorted.  Recurse to resort and resimplify
2413     // any operands we just acquired.
2414     if (DeletedAdd)
2415       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2416   }
2417 
2418   // Skip over the add expression until we get to a multiply.
2419   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2420     ++Idx;
2421 
2422   // Check to see if there are any folding opportunities present with
2423   // operands multiplied by constant values.
2424   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2425     uint64_t BitWidth = getTypeSizeInBits(Ty);
2426     DenseMap<const SCEV *, APInt> M;
2427     SmallVector<const SCEV *, 8> NewOps;
2428     APInt AccumulatedConstant(BitWidth, 0);
2429     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2430                                      Ops.data(), Ops.size(),
2431                                      APInt(BitWidth, 1), *this)) {
2432       struct APIntCompare {
2433         bool operator()(const APInt &LHS, const APInt &RHS) const {
2434           return LHS.ult(RHS);
2435         }
2436       };
2437 
2438       // Some interesting folding opportunity is present, so its worthwhile to
2439       // re-generate the operands list. Group the operands by constant scale,
2440       // to avoid multiplying by the same constant scale multiple times.
2441       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2442       for (const SCEV *NewOp : NewOps)
2443         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2444       // Re-generate the operands list.
2445       Ops.clear();
2446       if (AccumulatedConstant != 0)
2447         Ops.push_back(getConstant(AccumulatedConstant));
2448       for (auto &MulOp : MulOpLists)
2449         if (MulOp.first != 0)
2450           Ops.push_back(getMulExpr(
2451               getConstant(MulOp.first),
2452               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2453               SCEV::FlagAnyWrap, Depth + 1));
2454       if (Ops.empty())
2455         return getZero(Ty);
2456       if (Ops.size() == 1)
2457         return Ops[0];
2458       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2459     }
2460   }
2461 
2462   // If we are adding something to a multiply expression, make sure the
2463   // something is not already an operand of the multiply.  If so, merge it into
2464   // the multiply.
2465   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2466     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2467     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2468       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2469       if (isa<SCEVConstant>(MulOpSCEV))
2470         continue;
2471       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2472         if (MulOpSCEV == Ops[AddOp]) {
2473           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2474           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2475           if (Mul->getNumOperands() != 2) {
2476             // If the multiply has more than two operands, we must get the
2477             // Y*Z term.
2478             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2479                                                 Mul->op_begin()+MulOp);
2480             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2481             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2482           }
2483           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2484           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2485           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2486                                             SCEV::FlagAnyWrap, Depth + 1);
2487           if (Ops.size() == 2) return OuterMul;
2488           if (AddOp < Idx) {
2489             Ops.erase(Ops.begin()+AddOp);
2490             Ops.erase(Ops.begin()+Idx-1);
2491           } else {
2492             Ops.erase(Ops.begin()+Idx);
2493             Ops.erase(Ops.begin()+AddOp-1);
2494           }
2495           Ops.push_back(OuterMul);
2496           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2497         }
2498 
2499       // Check this multiply against other multiplies being added together.
2500       for (unsigned OtherMulIdx = Idx+1;
2501            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2502            ++OtherMulIdx) {
2503         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2504         // If MulOp occurs in OtherMul, we can fold the two multiplies
2505         // together.
2506         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2507              OMulOp != e; ++OMulOp)
2508           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2509             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2510             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2511             if (Mul->getNumOperands() != 2) {
2512               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2513                                                   Mul->op_begin()+MulOp);
2514               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2515               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2516             }
2517             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2518             if (OtherMul->getNumOperands() != 2) {
2519               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2520                                                   OtherMul->op_begin()+OMulOp);
2521               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2522               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2523             }
2524             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2525             const SCEV *InnerMulSum =
2526                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2527             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2528                                               SCEV::FlagAnyWrap, Depth + 1);
2529             if (Ops.size() == 2) return OuterMul;
2530             Ops.erase(Ops.begin()+Idx);
2531             Ops.erase(Ops.begin()+OtherMulIdx-1);
2532             Ops.push_back(OuterMul);
2533             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2534           }
2535       }
2536     }
2537   }
2538 
2539   // If there are any add recurrences in the operands list, see if any other
2540   // added values are loop invariant.  If so, we can fold them into the
2541   // recurrence.
2542   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2543     ++Idx;
2544 
2545   // Scan over all recurrences, trying to fold loop invariants into them.
2546   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2547     // Scan all of the other operands to this add and add them to the vector if
2548     // they are loop invariant w.r.t. the recurrence.
2549     SmallVector<const SCEV *, 8> LIOps;
2550     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2551     const Loop *AddRecLoop = AddRec->getLoop();
2552     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2553       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2554         LIOps.push_back(Ops[i]);
2555         Ops.erase(Ops.begin()+i);
2556         --i; --e;
2557       }
2558 
2559     // If we found some loop invariants, fold them into the recurrence.
2560     if (!LIOps.empty()) {
2561       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2562       LIOps.push_back(AddRec->getStart());
2563 
2564       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2565                                              AddRec->op_end());
2566       // This follows from the fact that the no-wrap flags on the outer add
2567       // expression are applicable on the 0th iteration, when the add recurrence
2568       // will be equal to its start value.
2569       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2570 
2571       // Build the new addrec. Propagate the NUW and NSW flags if both the
2572       // outer add and the inner addrec are guaranteed to have no overflow.
2573       // Always propagate NW.
2574       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2575       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2576 
2577       // If all of the other operands were loop invariant, we are done.
2578       if (Ops.size() == 1) return NewRec;
2579 
2580       // Otherwise, add the folded AddRec by the non-invariant parts.
2581       for (unsigned i = 0;; ++i)
2582         if (Ops[i] == AddRec) {
2583           Ops[i] = NewRec;
2584           break;
2585         }
2586       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2587     }
2588 
2589     // Okay, if there weren't any loop invariants to be folded, check to see if
2590     // there are multiple AddRec's with the same loop induction variable being
2591     // added together.  If so, we can fold them.
2592     for (unsigned OtherIdx = Idx+1;
2593          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2594          ++OtherIdx) {
2595       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2596       // so that the 1st found AddRecExpr is dominated by all others.
2597       assert(DT.dominates(
2598            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2599            AddRec->getLoop()->getHeader()) &&
2600         "AddRecExprs are not sorted in reverse dominance order?");
2601       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2602         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2603         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2604                                                AddRec->op_end());
2605         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2606              ++OtherIdx) {
2607           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2608           if (OtherAddRec->getLoop() == AddRecLoop) {
2609             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2610                  i != e; ++i) {
2611               if (i >= AddRecOps.size()) {
2612                 AddRecOps.append(OtherAddRec->op_begin()+i,
2613                                  OtherAddRec->op_end());
2614                 break;
2615               }
2616               SmallVector<const SCEV *, 2> TwoOps = {
2617                   AddRecOps[i], OtherAddRec->getOperand(i)};
2618               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2619             }
2620             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2621           }
2622         }
2623         // Step size has changed, so we cannot guarantee no self-wraparound.
2624         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2625         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2626       }
2627     }
2628 
2629     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2630     // next one.
2631   }
2632 
2633   // Okay, it looks like we really DO need an add expr.  Check to see if we
2634   // already have one, otherwise create a new one.
2635   return getOrCreateAddExpr(Ops, Flags);
2636 }
2637 
2638 const SCEV *
2639 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2640                                     SCEV::NoWrapFlags Flags) {
2641   FoldingSetNodeID ID;
2642   ID.AddInteger(scAddExpr);
2643   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2644     ID.AddPointer(Ops[i]);
2645   void *IP = nullptr;
2646   SCEVAddExpr *S =
2647       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2648   if (!S) {
2649     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2650     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2651     S = new (SCEVAllocator)
2652         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2653     UniqueSCEVs.InsertNode(S, IP);
2654   }
2655   S->setNoWrapFlags(Flags);
2656   return S;
2657 }
2658 
2659 const SCEV *
2660 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2661                                     SCEV::NoWrapFlags Flags) {
2662   FoldingSetNodeID ID;
2663   ID.AddInteger(scMulExpr);
2664   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2665     ID.AddPointer(Ops[i]);
2666   void *IP = nullptr;
2667   SCEVMulExpr *S =
2668     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2669   if (!S) {
2670     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2671     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2672     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2673                                         O, Ops.size());
2674     UniqueSCEVs.InsertNode(S, IP);
2675   }
2676   S->setNoWrapFlags(Flags);
2677   return S;
2678 }
2679 
2680 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2681   uint64_t k = i*j;
2682   if (j > 1 && k / j != i) Overflow = true;
2683   return k;
2684 }
2685 
2686 /// Compute the result of "n choose k", the binomial coefficient.  If an
2687 /// intermediate computation overflows, Overflow will be set and the return will
2688 /// be garbage. Overflow is not cleared on absence of overflow.
2689 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2690   // We use the multiplicative formula:
2691   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2692   // At each iteration, we take the n-th term of the numeral and divide by the
2693   // (k-n)th term of the denominator.  This division will always produce an
2694   // integral result, and helps reduce the chance of overflow in the
2695   // intermediate computations. However, we can still overflow even when the
2696   // final result would fit.
2697 
2698   if (n == 0 || n == k) return 1;
2699   if (k > n) return 0;
2700 
2701   if (k > n/2)
2702     k = n-k;
2703 
2704   uint64_t r = 1;
2705   for (uint64_t i = 1; i <= k; ++i) {
2706     r = umul_ov(r, n-(i-1), Overflow);
2707     r /= i;
2708   }
2709   return r;
2710 }
2711 
2712 /// Determine if any of the operands in this SCEV are a constant or if
2713 /// any of the add or multiply expressions in this SCEV contain a constant.
2714 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2715   struct FindConstantInAddMulChain {
2716     bool FoundConstant = false;
2717 
2718     bool follow(const SCEV *S) {
2719       FoundConstant |= isa<SCEVConstant>(S);
2720       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2721     }
2722 
2723     bool isDone() const {
2724       return FoundConstant;
2725     }
2726   };
2727 
2728   FindConstantInAddMulChain F;
2729   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2730   ST.visitAll(StartExpr);
2731   return F.FoundConstant;
2732 }
2733 
2734 /// Get a canonical multiply expression, or something simpler if possible.
2735 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2736                                         SCEV::NoWrapFlags Flags,
2737                                         unsigned Depth) {
2738   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2739          "only nuw or nsw allowed");
2740   assert(!Ops.empty() && "Cannot get empty mul!");
2741   if (Ops.size() == 1) return Ops[0];
2742 #ifndef NDEBUG
2743   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2744   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2745     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2746            "SCEVMulExpr operand types don't match!");
2747 #endif
2748 
2749   // Sort by complexity, this groups all similar expression types together.
2750   GroupByComplexity(Ops, &LI, DT);
2751 
2752   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2753 
2754   // Limit recursion calls depth.
2755   if (Depth > MaxArithDepth)
2756     return getOrCreateMulExpr(Ops, Flags);
2757 
2758   // If there are any constants, fold them together.
2759   unsigned Idx = 0;
2760   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2761 
2762     // C1*(C2+V) -> C1*C2 + C1*V
2763     if (Ops.size() == 2)
2764         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2765           // If any of Add's ops are Adds or Muls with a constant,
2766           // apply this transformation as well.
2767           if (Add->getNumOperands() == 2)
2768             // TODO: There are some cases where this transformation is not
2769             // profitable, for example:
2770             // Add = (C0 + X) * Y + Z.
2771             // Maybe the scope of this transformation should be narrowed down.
2772             if (containsConstantInAddMulChain(Add))
2773               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2774                                            SCEV::FlagAnyWrap, Depth + 1),
2775                                 getMulExpr(LHSC, Add->getOperand(1),
2776                                            SCEV::FlagAnyWrap, Depth + 1),
2777                                 SCEV::FlagAnyWrap, Depth + 1);
2778 
2779     ++Idx;
2780     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2781       // We found two constants, fold them together!
2782       ConstantInt *Fold =
2783           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2784       Ops[0] = getConstant(Fold);
2785       Ops.erase(Ops.begin()+1);  // Erase the folded element
2786       if (Ops.size() == 1) return Ops[0];
2787       LHSC = cast<SCEVConstant>(Ops[0]);
2788     }
2789 
2790     // If we are left with a constant one being multiplied, strip it off.
2791     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2792       Ops.erase(Ops.begin());
2793       --Idx;
2794     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2795       // If we have a multiply of zero, it will always be zero.
2796       return Ops[0];
2797     } else if (Ops[0]->isAllOnesValue()) {
2798       // If we have a mul by -1 of an add, try distributing the -1 among the
2799       // add operands.
2800       if (Ops.size() == 2) {
2801         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2802           SmallVector<const SCEV *, 4> NewOps;
2803           bool AnyFolded = false;
2804           for (const SCEV *AddOp : Add->operands()) {
2805             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2806                                          Depth + 1);
2807             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2808             NewOps.push_back(Mul);
2809           }
2810           if (AnyFolded)
2811             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2812         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2813           // Negation preserves a recurrence's no self-wrap property.
2814           SmallVector<const SCEV *, 4> Operands;
2815           for (const SCEV *AddRecOp : AddRec->operands())
2816             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2817                                           Depth + 1));
2818 
2819           return getAddRecExpr(Operands, AddRec->getLoop(),
2820                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2821         }
2822       }
2823     }
2824 
2825     if (Ops.size() == 1)
2826       return Ops[0];
2827   }
2828 
2829   // Skip over the add expression until we get to a multiply.
2830   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2831     ++Idx;
2832 
2833   // If there are mul operands inline them all into this expression.
2834   if (Idx < Ops.size()) {
2835     bool DeletedMul = false;
2836     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2837       if (Ops.size() > MulOpsInlineThreshold)
2838         break;
2839       // If we have an mul, expand the mul operands onto the end of the
2840       // operands list.
2841       Ops.erase(Ops.begin()+Idx);
2842       Ops.append(Mul->op_begin(), Mul->op_end());
2843       DeletedMul = true;
2844     }
2845 
2846     // If we deleted at least one mul, we added operands to the end of the
2847     // list, and they are not necessarily sorted.  Recurse to resort and
2848     // resimplify any operands we just acquired.
2849     if (DeletedMul)
2850       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2851   }
2852 
2853   // If there are any add recurrences in the operands list, see if any other
2854   // added values are loop invariant.  If so, we can fold them into the
2855   // recurrence.
2856   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2857     ++Idx;
2858 
2859   // Scan over all recurrences, trying to fold loop invariants into them.
2860   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2861     // Scan all of the other operands to this mul and add them to the vector
2862     // if they are loop invariant w.r.t. the recurrence.
2863     SmallVector<const SCEV *, 8> LIOps;
2864     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2865     const Loop *AddRecLoop = AddRec->getLoop();
2866     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2867       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2868         LIOps.push_back(Ops[i]);
2869         Ops.erase(Ops.begin()+i);
2870         --i; --e;
2871       }
2872 
2873     // If we found some loop invariants, fold them into the recurrence.
2874     if (!LIOps.empty()) {
2875       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2876       SmallVector<const SCEV *, 4> NewOps;
2877       NewOps.reserve(AddRec->getNumOperands());
2878       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2879       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2880         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2881                                     SCEV::FlagAnyWrap, Depth + 1));
2882 
2883       // Build the new addrec. Propagate the NUW and NSW flags if both the
2884       // outer mul and the inner addrec are guaranteed to have no overflow.
2885       //
2886       // No self-wrap cannot be guaranteed after changing the step size, but
2887       // will be inferred if either NUW or NSW is true.
2888       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2889       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2890 
2891       // If all of the other operands were loop invariant, we are done.
2892       if (Ops.size() == 1) return NewRec;
2893 
2894       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2895       for (unsigned i = 0;; ++i)
2896         if (Ops[i] == AddRec) {
2897           Ops[i] = NewRec;
2898           break;
2899         }
2900       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2901     }
2902 
2903     // Okay, if there weren't any loop invariants to be folded, check to see
2904     // if there are multiple AddRec's with the same loop induction variable
2905     // being multiplied together.  If so, we can fold them.
2906 
2907     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2908     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2909     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2910     //   ]]],+,...up to x=2n}.
2911     // Note that the arguments to choose() are always integers with values
2912     // known at compile time, never SCEV objects.
2913     //
2914     // The implementation avoids pointless extra computations when the two
2915     // addrec's are of different length (mathematically, it's equivalent to
2916     // an infinite stream of zeros on the right).
2917     bool OpsModified = false;
2918     for (unsigned OtherIdx = Idx+1;
2919          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2920          ++OtherIdx) {
2921       const SCEVAddRecExpr *OtherAddRec =
2922         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2923       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2924         continue;
2925 
2926       // Limit max number of arguments to avoid creation of unreasonably big
2927       // SCEVAddRecs with very complex operands.
2928       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2929           MaxAddRecSize)
2930         continue;
2931 
2932       bool Overflow = false;
2933       Type *Ty = AddRec->getType();
2934       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2935       SmallVector<const SCEV*, 7> AddRecOps;
2936       for (int x = 0, xe = AddRec->getNumOperands() +
2937              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2938         const SCEV *Term = getZero(Ty);
2939         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2940           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2941           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2942                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2943                z < ze && !Overflow; ++z) {
2944             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2945             uint64_t Coeff;
2946             if (LargerThan64Bits)
2947               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2948             else
2949               Coeff = Coeff1*Coeff2;
2950             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2951             const SCEV *Term1 = AddRec->getOperand(y-z);
2952             const SCEV *Term2 = OtherAddRec->getOperand(z);
2953             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
2954                                                SCEV::FlagAnyWrap, Depth + 1),
2955                               SCEV::FlagAnyWrap, Depth + 1);
2956           }
2957         }
2958         AddRecOps.push_back(Term);
2959       }
2960       if (!Overflow) {
2961         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2962                                               SCEV::FlagAnyWrap);
2963         if (Ops.size() == 2) return NewAddRec;
2964         Ops[Idx] = NewAddRec;
2965         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2966         OpsModified = true;
2967         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2968         if (!AddRec)
2969           break;
2970       }
2971     }
2972     if (OpsModified)
2973       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2974 
2975     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2976     // next one.
2977   }
2978 
2979   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2980   // already have one, otherwise create a new one.
2981   return getOrCreateMulExpr(Ops, Flags);
2982 }
2983 
2984 /// Get a canonical unsigned division expression, or something simpler if
2985 /// possible.
2986 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2987                                          const SCEV *RHS) {
2988   assert(getEffectiveSCEVType(LHS->getType()) ==
2989          getEffectiveSCEVType(RHS->getType()) &&
2990          "SCEVUDivExpr operand types don't match!");
2991 
2992   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2993     if (RHSC->getValue()->isOne())
2994       return LHS;                               // X udiv 1 --> x
2995     // If the denominator is zero, the result of the udiv is undefined. Don't
2996     // try to analyze it, because the resolution chosen here may differ from
2997     // the resolution chosen in other parts of the compiler.
2998     if (!RHSC->getValue()->isZero()) {
2999       // Determine if the division can be folded into the operands of
3000       // its operands.
3001       // TODO: Generalize this to non-constants by using known-bits information.
3002       Type *Ty = LHS->getType();
3003       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3004       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3005       // For non-power-of-two values, effectively round the value up to the
3006       // nearest power of two.
3007       if (!RHSC->getAPInt().isPowerOf2())
3008         ++MaxShiftAmt;
3009       IntegerType *ExtTy =
3010         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3011       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3012         if (const SCEVConstant *Step =
3013             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3014           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3015           const APInt &StepInt = Step->getAPInt();
3016           const APInt &DivInt = RHSC->getAPInt();
3017           if (!StepInt.urem(DivInt) &&
3018               getZeroExtendExpr(AR, ExtTy) ==
3019               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3020                             getZeroExtendExpr(Step, ExtTy),
3021                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3022             SmallVector<const SCEV *, 4> Operands;
3023             for (const SCEV *Op : AR->operands())
3024               Operands.push_back(getUDivExpr(Op, RHS));
3025             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3026           }
3027           /// Get a canonical UDivExpr for a recurrence.
3028           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3029           // We can currently only fold X%N if X is constant.
3030           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3031           if (StartC && !DivInt.urem(StepInt) &&
3032               getZeroExtendExpr(AR, ExtTy) ==
3033               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3034                             getZeroExtendExpr(Step, ExtTy),
3035                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3036             const APInt &StartInt = StartC->getAPInt();
3037             const APInt &StartRem = StartInt.urem(StepInt);
3038             if (StartRem != 0)
3039               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3040                                   AR->getLoop(), SCEV::FlagNW);
3041           }
3042         }
3043       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3044       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3045         SmallVector<const SCEV *, 4> Operands;
3046         for (const SCEV *Op : M->operands())
3047           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3048         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3049           // Find an operand that's safely divisible.
3050           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3051             const SCEV *Op = M->getOperand(i);
3052             const SCEV *Div = getUDivExpr(Op, RHSC);
3053             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3054               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3055                                                       M->op_end());
3056               Operands[i] = Div;
3057               return getMulExpr(Operands);
3058             }
3059           }
3060       }
3061       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3062       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3063         SmallVector<const SCEV *, 4> Operands;
3064         for (const SCEV *Op : A->operands())
3065           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3066         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3067           Operands.clear();
3068           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3069             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3070             if (isa<SCEVUDivExpr>(Op) ||
3071                 getMulExpr(Op, RHS) != A->getOperand(i))
3072               break;
3073             Operands.push_back(Op);
3074           }
3075           if (Operands.size() == A->getNumOperands())
3076             return getAddExpr(Operands);
3077         }
3078       }
3079 
3080       // Fold if both operands are constant.
3081       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3082         Constant *LHSCV = LHSC->getValue();
3083         Constant *RHSCV = RHSC->getValue();
3084         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3085                                                                    RHSCV)));
3086       }
3087     }
3088   }
3089 
3090   FoldingSetNodeID ID;
3091   ID.AddInteger(scUDivExpr);
3092   ID.AddPointer(LHS);
3093   ID.AddPointer(RHS);
3094   void *IP = nullptr;
3095   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3096   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3097                                              LHS, RHS);
3098   UniqueSCEVs.InsertNode(S, IP);
3099   return S;
3100 }
3101 
3102 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3103   APInt A = C1->getAPInt().abs();
3104   APInt B = C2->getAPInt().abs();
3105   uint32_t ABW = A.getBitWidth();
3106   uint32_t BBW = B.getBitWidth();
3107 
3108   if (ABW > BBW)
3109     B = B.zext(ABW);
3110   else if (ABW < BBW)
3111     A = A.zext(BBW);
3112 
3113   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3114 }
3115 
3116 /// Get a canonical unsigned division expression, or something simpler if
3117 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3118 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3119 /// it's not exact because the udiv may be clearing bits.
3120 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3121                                               const SCEV *RHS) {
3122   // TODO: we could try to find factors in all sorts of things, but for now we
3123   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3124   // end of this file for inspiration.
3125 
3126   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3127   if (!Mul || !Mul->hasNoUnsignedWrap())
3128     return getUDivExpr(LHS, RHS);
3129 
3130   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3131     // If the mulexpr multiplies by a constant, then that constant must be the
3132     // first element of the mulexpr.
3133     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3134       if (LHSCst == RHSCst) {
3135         SmallVector<const SCEV *, 2> Operands;
3136         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3137         return getMulExpr(Operands);
3138       }
3139 
3140       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3141       // that there's a factor provided by one of the other terms. We need to
3142       // check.
3143       APInt Factor = gcd(LHSCst, RHSCst);
3144       if (!Factor.isIntN(1)) {
3145         LHSCst =
3146             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3147         RHSCst =
3148             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3149         SmallVector<const SCEV *, 2> Operands;
3150         Operands.push_back(LHSCst);
3151         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3152         LHS = getMulExpr(Operands);
3153         RHS = RHSCst;
3154         Mul = dyn_cast<SCEVMulExpr>(LHS);
3155         if (!Mul)
3156           return getUDivExactExpr(LHS, RHS);
3157       }
3158     }
3159   }
3160 
3161   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3162     if (Mul->getOperand(i) == RHS) {
3163       SmallVector<const SCEV *, 2> Operands;
3164       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3165       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3166       return getMulExpr(Operands);
3167     }
3168   }
3169 
3170   return getUDivExpr(LHS, RHS);
3171 }
3172 
3173 /// Get an add recurrence expression for the specified loop.  Simplify the
3174 /// expression as much as possible.
3175 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3176                                            const Loop *L,
3177                                            SCEV::NoWrapFlags Flags) {
3178   SmallVector<const SCEV *, 4> Operands;
3179   Operands.push_back(Start);
3180   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3181     if (StepChrec->getLoop() == L) {
3182       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3183       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3184     }
3185 
3186   Operands.push_back(Step);
3187   return getAddRecExpr(Operands, L, Flags);
3188 }
3189 
3190 /// Get an add recurrence expression for the specified loop.  Simplify the
3191 /// expression as much as possible.
3192 const SCEV *
3193 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3194                                const Loop *L, SCEV::NoWrapFlags Flags) {
3195   if (Operands.size() == 1) return Operands[0];
3196 #ifndef NDEBUG
3197   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3198   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3199     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3200            "SCEVAddRecExpr operand types don't match!");
3201   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3202     assert(isLoopInvariant(Operands[i], L) &&
3203            "SCEVAddRecExpr operand is not loop-invariant!");
3204 #endif
3205 
3206   if (Operands.back()->isZero()) {
3207     Operands.pop_back();
3208     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3209   }
3210 
3211   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3212   // use that information to infer NUW and NSW flags. However, computing a
3213   // BE count requires calling getAddRecExpr, so we may not yet have a
3214   // meaningful BE count at this point (and if we don't, we'd be stuck
3215   // with a SCEVCouldNotCompute as the cached BE count).
3216 
3217   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3218 
3219   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3220   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3221     const Loop *NestedLoop = NestedAR->getLoop();
3222     if (L->contains(NestedLoop)
3223             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3224             : (!NestedLoop->contains(L) &&
3225                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3226       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3227                                                   NestedAR->op_end());
3228       Operands[0] = NestedAR->getStart();
3229       // AddRecs require their operands be loop-invariant with respect to their
3230       // loops. Don't perform this transformation if it would break this
3231       // requirement.
3232       bool AllInvariant = all_of(
3233           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3234 
3235       if (AllInvariant) {
3236         // Create a recurrence for the outer loop with the same step size.
3237         //
3238         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3239         // inner recurrence has the same property.
3240         SCEV::NoWrapFlags OuterFlags =
3241           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3242 
3243         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3244         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3245           return isLoopInvariant(Op, NestedLoop);
3246         });
3247 
3248         if (AllInvariant) {
3249           // Ok, both add recurrences are valid after the transformation.
3250           //
3251           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3252           // the outer recurrence has the same property.
3253           SCEV::NoWrapFlags InnerFlags =
3254             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3255           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3256         }
3257       }
3258       // Reset Operands to its original state.
3259       Operands[0] = NestedAR;
3260     }
3261   }
3262 
3263   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3264   // already have one, otherwise create a new one.
3265   FoldingSetNodeID ID;
3266   ID.AddInteger(scAddRecExpr);
3267   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3268     ID.AddPointer(Operands[i]);
3269   ID.AddPointer(L);
3270   void *IP = nullptr;
3271   SCEVAddRecExpr *S =
3272     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3273   if (!S) {
3274     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3275     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3276     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3277                                            O, Operands.size(), L);
3278     UniqueSCEVs.InsertNode(S, IP);
3279   }
3280   S->setNoWrapFlags(Flags);
3281   return S;
3282 }
3283 
3284 const SCEV *
3285 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3286                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3287   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3288   // getSCEV(Base)->getType() has the same address space as Base->getType()
3289   // because SCEV::getType() preserves the address space.
3290   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3291   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3292   // instruction to its SCEV, because the Instruction may be guarded by control
3293   // flow and the no-overflow bits may not be valid for the expression in any
3294   // context. This can be fixed similarly to how these flags are handled for
3295   // adds.
3296   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3297                                              : SCEV::FlagAnyWrap;
3298 
3299   const SCEV *TotalOffset = getZero(IntPtrTy);
3300   // The array size is unimportant. The first thing we do on CurTy is getting
3301   // its element type.
3302   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3303   for (const SCEV *IndexExpr : IndexExprs) {
3304     // Compute the (potentially symbolic) offset in bytes for this index.
3305     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3306       // For a struct, add the member offset.
3307       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3308       unsigned FieldNo = Index->getZExtValue();
3309       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3310 
3311       // Add the field offset to the running total offset.
3312       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3313 
3314       // Update CurTy to the type of the field at Index.
3315       CurTy = STy->getTypeAtIndex(Index);
3316     } else {
3317       // Update CurTy to its element type.
3318       CurTy = cast<SequentialType>(CurTy)->getElementType();
3319       // For an array, add the element offset, explicitly scaled.
3320       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3321       // Getelementptr indices are signed.
3322       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3323 
3324       // Multiply the index by the element size to compute the element offset.
3325       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3326 
3327       // Add the element offset to the running total offset.
3328       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3329     }
3330   }
3331 
3332   // Add the total offset from all the GEP indices to the base.
3333   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3334 }
3335 
3336 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3337                                          const SCEV *RHS) {
3338   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3339   return getSMaxExpr(Ops);
3340 }
3341 
3342 const SCEV *
3343 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3344   assert(!Ops.empty() && "Cannot get empty smax!");
3345   if (Ops.size() == 1) return Ops[0];
3346 #ifndef NDEBUG
3347   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3348   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3349     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3350            "SCEVSMaxExpr operand types don't match!");
3351 #endif
3352 
3353   // Sort by complexity, this groups all similar expression types together.
3354   GroupByComplexity(Ops, &LI, DT);
3355 
3356   // If there are any constants, fold them together.
3357   unsigned Idx = 0;
3358   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3359     ++Idx;
3360     assert(Idx < Ops.size());
3361     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3362       // We found two constants, fold them together!
3363       ConstantInt *Fold = ConstantInt::get(
3364           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3365       Ops[0] = getConstant(Fold);
3366       Ops.erase(Ops.begin()+1);  // Erase the folded element
3367       if (Ops.size() == 1) return Ops[0];
3368       LHSC = cast<SCEVConstant>(Ops[0]);
3369     }
3370 
3371     // If we are left with a constant minimum-int, strip it off.
3372     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3373       Ops.erase(Ops.begin());
3374       --Idx;
3375     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3376       // If we have an smax with a constant maximum-int, it will always be
3377       // maximum-int.
3378       return Ops[0];
3379     }
3380 
3381     if (Ops.size() == 1) return Ops[0];
3382   }
3383 
3384   // Find the first SMax
3385   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3386     ++Idx;
3387 
3388   // Check to see if one of the operands is an SMax. If so, expand its operands
3389   // onto our operand list, and recurse to simplify.
3390   if (Idx < Ops.size()) {
3391     bool DeletedSMax = false;
3392     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3393       Ops.erase(Ops.begin()+Idx);
3394       Ops.append(SMax->op_begin(), SMax->op_end());
3395       DeletedSMax = true;
3396     }
3397 
3398     if (DeletedSMax)
3399       return getSMaxExpr(Ops);
3400   }
3401 
3402   // Okay, check to see if the same value occurs in the operand list twice.  If
3403   // so, delete one.  Since we sorted the list, these values are required to
3404   // be adjacent.
3405   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3406     //  X smax Y smax Y  -->  X smax Y
3407     //  X smax Y         -->  X, if X is always greater than Y
3408     if (Ops[i] == Ops[i+1] ||
3409         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3410       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3411       --i; --e;
3412     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3413       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3414       --i; --e;
3415     }
3416 
3417   if (Ops.size() == 1) return Ops[0];
3418 
3419   assert(!Ops.empty() && "Reduced smax down to nothing!");
3420 
3421   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3422   // already have one, otherwise create a new one.
3423   FoldingSetNodeID ID;
3424   ID.AddInteger(scSMaxExpr);
3425   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3426     ID.AddPointer(Ops[i]);
3427   void *IP = nullptr;
3428   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3429   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3430   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3431   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3432                                              O, Ops.size());
3433   UniqueSCEVs.InsertNode(S, IP);
3434   return S;
3435 }
3436 
3437 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3438                                          const SCEV *RHS) {
3439   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3440   return getUMaxExpr(Ops);
3441 }
3442 
3443 const SCEV *
3444 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3445   assert(!Ops.empty() && "Cannot get empty umax!");
3446   if (Ops.size() == 1) return Ops[0];
3447 #ifndef NDEBUG
3448   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3449   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3450     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3451            "SCEVUMaxExpr operand types don't match!");
3452 #endif
3453 
3454   // Sort by complexity, this groups all similar expression types together.
3455   GroupByComplexity(Ops, &LI, DT);
3456 
3457   // If there are any constants, fold them together.
3458   unsigned Idx = 0;
3459   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3460     ++Idx;
3461     assert(Idx < Ops.size());
3462     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3463       // We found two constants, fold them together!
3464       ConstantInt *Fold = ConstantInt::get(
3465           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3466       Ops[0] = getConstant(Fold);
3467       Ops.erase(Ops.begin()+1);  // Erase the folded element
3468       if (Ops.size() == 1) return Ops[0];
3469       LHSC = cast<SCEVConstant>(Ops[0]);
3470     }
3471 
3472     // If we are left with a constant minimum-int, strip it off.
3473     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3474       Ops.erase(Ops.begin());
3475       --Idx;
3476     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3477       // If we have an umax with a constant maximum-int, it will always be
3478       // maximum-int.
3479       return Ops[0];
3480     }
3481 
3482     if (Ops.size() == 1) return Ops[0];
3483   }
3484 
3485   // Find the first UMax
3486   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3487     ++Idx;
3488 
3489   // Check to see if one of the operands is a UMax. If so, expand its operands
3490   // onto our operand list, and recurse to simplify.
3491   if (Idx < Ops.size()) {
3492     bool DeletedUMax = false;
3493     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3494       Ops.erase(Ops.begin()+Idx);
3495       Ops.append(UMax->op_begin(), UMax->op_end());
3496       DeletedUMax = true;
3497     }
3498 
3499     if (DeletedUMax)
3500       return getUMaxExpr(Ops);
3501   }
3502 
3503   // Okay, check to see if the same value occurs in the operand list twice.  If
3504   // so, delete one.  Since we sorted the list, these values are required to
3505   // be adjacent.
3506   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3507     //  X umax Y umax Y  -->  X umax Y
3508     //  X umax Y         -->  X, if X is always greater than Y
3509     if (Ops[i] == Ops[i+1] ||
3510         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3511       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3512       --i; --e;
3513     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3514       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3515       --i; --e;
3516     }
3517 
3518   if (Ops.size() == 1) return Ops[0];
3519 
3520   assert(!Ops.empty() && "Reduced umax down to nothing!");
3521 
3522   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3523   // already have one, otherwise create a new one.
3524   FoldingSetNodeID ID;
3525   ID.AddInteger(scUMaxExpr);
3526   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3527     ID.AddPointer(Ops[i]);
3528   void *IP = nullptr;
3529   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3530   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3531   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3532   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3533                                              O, Ops.size());
3534   UniqueSCEVs.InsertNode(S, IP);
3535   return S;
3536 }
3537 
3538 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3539                                          const SCEV *RHS) {
3540   // ~smax(~x, ~y) == smin(x, y).
3541   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3542 }
3543 
3544 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3545                                          const SCEV *RHS) {
3546   // ~umax(~x, ~y) == umin(x, y)
3547   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3548 }
3549 
3550 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3551   // We can bypass creating a target-independent
3552   // constant expression and then folding it back into a ConstantInt.
3553   // This is just a compile-time optimization.
3554   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3555 }
3556 
3557 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3558                                              StructType *STy,
3559                                              unsigned FieldNo) {
3560   // We can bypass creating a target-independent
3561   // constant expression and then folding it back into a ConstantInt.
3562   // This is just a compile-time optimization.
3563   return getConstant(
3564       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3565 }
3566 
3567 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3568   // Don't attempt to do anything other than create a SCEVUnknown object
3569   // here.  createSCEV only calls getUnknown after checking for all other
3570   // interesting possibilities, and any other code that calls getUnknown
3571   // is doing so in order to hide a value from SCEV canonicalization.
3572 
3573   FoldingSetNodeID ID;
3574   ID.AddInteger(scUnknown);
3575   ID.AddPointer(V);
3576   void *IP = nullptr;
3577   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3578     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3579            "Stale SCEVUnknown in uniquing map!");
3580     return S;
3581   }
3582   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3583                                             FirstUnknown);
3584   FirstUnknown = cast<SCEVUnknown>(S);
3585   UniqueSCEVs.InsertNode(S, IP);
3586   return S;
3587 }
3588 
3589 //===----------------------------------------------------------------------===//
3590 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3591 //
3592 
3593 /// Test if values of the given type are analyzable within the SCEV
3594 /// framework. This primarily includes integer types, and it can optionally
3595 /// include pointer types if the ScalarEvolution class has access to
3596 /// target-specific information.
3597 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3598   // Integers and pointers are always SCEVable.
3599   return Ty->isIntegerTy() || Ty->isPointerTy();
3600 }
3601 
3602 /// Return the size in bits of the specified type, for which isSCEVable must
3603 /// return true.
3604 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3605   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3606   return getDataLayout().getTypeSizeInBits(Ty);
3607 }
3608 
3609 /// Return a type with the same bitwidth as the given type and which represents
3610 /// how SCEV will treat the given type, for which isSCEVable must return
3611 /// true. For pointer types, this is the pointer-sized integer type.
3612 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3613   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3614 
3615   if (Ty->isIntegerTy())
3616     return Ty;
3617 
3618   // The only other support type is pointer.
3619   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3620   return getDataLayout().getIntPtrType(Ty);
3621 }
3622 
3623 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3624   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3625 }
3626 
3627 const SCEV *ScalarEvolution::getCouldNotCompute() {
3628   return CouldNotCompute.get();
3629 }
3630 
3631 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3632   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3633     auto *SU = dyn_cast<SCEVUnknown>(S);
3634     return SU && SU->getValue() == nullptr;
3635   });
3636 
3637   return !ContainsNulls;
3638 }
3639 
3640 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3641   HasRecMapType::iterator I = HasRecMap.find(S);
3642   if (I != HasRecMap.end())
3643     return I->second;
3644 
3645   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3646   HasRecMap.insert({S, FoundAddRec});
3647   return FoundAddRec;
3648 }
3649 
3650 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3651 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3652 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3653 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3654   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3655   if (!Add)
3656     return {S, nullptr};
3657 
3658   if (Add->getNumOperands() != 2)
3659     return {S, nullptr};
3660 
3661   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3662   if (!ConstOp)
3663     return {S, nullptr};
3664 
3665   return {Add->getOperand(1), ConstOp->getValue()};
3666 }
3667 
3668 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3669 /// by the value and offset from any ValueOffsetPair in the set.
3670 SetVector<ScalarEvolution::ValueOffsetPair> *
3671 ScalarEvolution::getSCEVValues(const SCEV *S) {
3672   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3673   if (SI == ExprValueMap.end())
3674     return nullptr;
3675 #ifndef NDEBUG
3676   if (VerifySCEVMap) {
3677     // Check there is no dangling Value in the set returned.
3678     for (const auto &VE : SI->second)
3679       assert(ValueExprMap.count(VE.first));
3680   }
3681 #endif
3682   return &SI->second;
3683 }
3684 
3685 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3686 /// cannot be used separately. eraseValueFromMap should be used to remove
3687 /// V from ValueExprMap and ExprValueMap at the same time.
3688 void ScalarEvolution::eraseValueFromMap(Value *V) {
3689   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3690   if (I != ValueExprMap.end()) {
3691     const SCEV *S = I->second;
3692     // Remove {V, 0} from the set of ExprValueMap[S]
3693     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3694       SV->remove({V, nullptr});
3695 
3696     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3697     const SCEV *Stripped;
3698     ConstantInt *Offset;
3699     std::tie(Stripped, Offset) = splitAddExpr(S);
3700     if (Offset != nullptr) {
3701       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3702         SV->remove({V, Offset});
3703     }
3704     ValueExprMap.erase(V);
3705   }
3706 }
3707 
3708 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3709 /// create a new one.
3710 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3711   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3712 
3713   const SCEV *S = getExistingSCEV(V);
3714   if (S == nullptr) {
3715     S = createSCEV(V);
3716     // During PHI resolution, it is possible to create two SCEVs for the same
3717     // V, so it is needed to double check whether V->S is inserted into
3718     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3719     std::pair<ValueExprMapType::iterator, bool> Pair =
3720         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3721     if (Pair.second) {
3722       ExprValueMap[S].insert({V, nullptr});
3723 
3724       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3725       // ExprValueMap.
3726       const SCEV *Stripped = S;
3727       ConstantInt *Offset = nullptr;
3728       std::tie(Stripped, Offset) = splitAddExpr(S);
3729       // If stripped is SCEVUnknown, don't bother to save
3730       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3731       // increase the complexity of the expansion code.
3732       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3733       // because it may generate add/sub instead of GEP in SCEV expansion.
3734       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3735           !isa<GetElementPtrInst>(V))
3736         ExprValueMap[Stripped].insert({V, Offset});
3737     }
3738   }
3739   return S;
3740 }
3741 
3742 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3743   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3744 
3745   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3746   if (I != ValueExprMap.end()) {
3747     const SCEV *S = I->second;
3748     if (checkValidity(S))
3749       return S;
3750     eraseValueFromMap(V);
3751     forgetMemoizedResults(S);
3752   }
3753   return nullptr;
3754 }
3755 
3756 /// Return a SCEV corresponding to -V = -1*V
3757 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3758                                              SCEV::NoWrapFlags Flags) {
3759   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3760     return getConstant(
3761                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3762 
3763   Type *Ty = V->getType();
3764   Ty = getEffectiveSCEVType(Ty);
3765   return getMulExpr(
3766       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3767 }
3768 
3769 /// Return a SCEV corresponding to ~V = -1-V
3770 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3771   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3772     return getConstant(
3773                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3774 
3775   Type *Ty = V->getType();
3776   Ty = getEffectiveSCEVType(Ty);
3777   const SCEV *AllOnes =
3778                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3779   return getMinusSCEV(AllOnes, V);
3780 }
3781 
3782 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3783                                           SCEV::NoWrapFlags Flags,
3784                                           unsigned Depth) {
3785   // Fast path: X - X --> 0.
3786   if (LHS == RHS)
3787     return getZero(LHS->getType());
3788 
3789   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3790   // makes it so that we cannot make much use of NUW.
3791   auto AddFlags = SCEV::FlagAnyWrap;
3792   const bool RHSIsNotMinSigned =
3793       !getSignedRangeMin(RHS).isMinSignedValue();
3794   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3795     // Let M be the minimum representable signed value. Then (-1)*RHS
3796     // signed-wraps if and only if RHS is M. That can happen even for
3797     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3798     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3799     // (-1)*RHS, we need to prove that RHS != M.
3800     //
3801     // If LHS is non-negative and we know that LHS - RHS does not
3802     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3803     // either by proving that RHS > M or that LHS >= 0.
3804     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3805       AddFlags = SCEV::FlagNSW;
3806     }
3807   }
3808 
3809   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3810   // RHS is NSW and LHS >= 0.
3811   //
3812   // The difficulty here is that the NSW flag may have been proven
3813   // relative to a loop that is to be found in a recurrence in LHS and
3814   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3815   // larger scope than intended.
3816   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3817 
3818   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3819 }
3820 
3821 const SCEV *
3822 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3823   Type *SrcTy = V->getType();
3824   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3825          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3826          "Cannot truncate or zero extend with non-integer arguments!");
3827   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3828     return V;  // No conversion
3829   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3830     return getTruncateExpr(V, Ty);
3831   return getZeroExtendExpr(V, Ty);
3832 }
3833 
3834 const SCEV *
3835 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3836                                          Type *Ty) {
3837   Type *SrcTy = V->getType();
3838   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3839          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3840          "Cannot truncate or zero extend with non-integer arguments!");
3841   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3842     return V;  // No conversion
3843   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3844     return getTruncateExpr(V, Ty);
3845   return getSignExtendExpr(V, Ty);
3846 }
3847 
3848 const SCEV *
3849 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3850   Type *SrcTy = V->getType();
3851   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3852          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3853          "Cannot noop or zero extend with non-integer arguments!");
3854   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3855          "getNoopOrZeroExtend cannot truncate!");
3856   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3857     return V;  // No conversion
3858   return getZeroExtendExpr(V, Ty);
3859 }
3860 
3861 const SCEV *
3862 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3863   Type *SrcTy = V->getType();
3864   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3865          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3866          "Cannot noop or sign extend with non-integer arguments!");
3867   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3868          "getNoopOrSignExtend cannot truncate!");
3869   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3870     return V;  // No conversion
3871   return getSignExtendExpr(V, Ty);
3872 }
3873 
3874 const SCEV *
3875 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3876   Type *SrcTy = V->getType();
3877   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3878          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3879          "Cannot noop or any extend with non-integer arguments!");
3880   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3881          "getNoopOrAnyExtend cannot truncate!");
3882   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3883     return V;  // No conversion
3884   return getAnyExtendExpr(V, Ty);
3885 }
3886 
3887 const SCEV *
3888 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3889   Type *SrcTy = V->getType();
3890   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3891          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3892          "Cannot truncate or noop with non-integer arguments!");
3893   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3894          "getTruncateOrNoop cannot extend!");
3895   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3896     return V;  // No conversion
3897   return getTruncateExpr(V, Ty);
3898 }
3899 
3900 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3901                                                         const SCEV *RHS) {
3902   const SCEV *PromotedLHS = LHS;
3903   const SCEV *PromotedRHS = RHS;
3904 
3905   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3906     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3907   else
3908     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3909 
3910   return getUMaxExpr(PromotedLHS, PromotedRHS);
3911 }
3912 
3913 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3914                                                         const SCEV *RHS) {
3915   const SCEV *PromotedLHS = LHS;
3916   const SCEV *PromotedRHS = RHS;
3917 
3918   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3919     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3920   else
3921     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3922 
3923   return getUMinExpr(PromotedLHS, PromotedRHS);
3924 }
3925 
3926 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3927   // A pointer operand may evaluate to a nonpointer expression, such as null.
3928   if (!V->getType()->isPointerTy())
3929     return V;
3930 
3931   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3932     return getPointerBase(Cast->getOperand());
3933   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3934     const SCEV *PtrOp = nullptr;
3935     for (const SCEV *NAryOp : NAry->operands()) {
3936       if (NAryOp->getType()->isPointerTy()) {
3937         // Cannot find the base of an expression with multiple pointer operands.
3938         if (PtrOp)
3939           return V;
3940         PtrOp = NAryOp;
3941       }
3942     }
3943     if (!PtrOp)
3944       return V;
3945     return getPointerBase(PtrOp);
3946   }
3947   return V;
3948 }
3949 
3950 /// Push users of the given Instruction onto the given Worklist.
3951 static void
3952 PushDefUseChildren(Instruction *I,
3953                    SmallVectorImpl<Instruction *> &Worklist) {
3954   // Push the def-use children onto the Worklist stack.
3955   for (User *U : I->users())
3956     Worklist.push_back(cast<Instruction>(U));
3957 }
3958 
3959 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3960   SmallVector<Instruction *, 16> Worklist;
3961   PushDefUseChildren(PN, Worklist);
3962 
3963   SmallPtrSet<Instruction *, 8> Visited;
3964   Visited.insert(PN);
3965   while (!Worklist.empty()) {
3966     Instruction *I = Worklist.pop_back_val();
3967     if (!Visited.insert(I).second)
3968       continue;
3969 
3970     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3971     if (It != ValueExprMap.end()) {
3972       const SCEV *Old = It->second;
3973 
3974       // Short-circuit the def-use traversal if the symbolic name
3975       // ceases to appear in expressions.
3976       if (Old != SymName && !hasOperand(Old, SymName))
3977         continue;
3978 
3979       // SCEVUnknown for a PHI either means that it has an unrecognized
3980       // structure, it's a PHI that's in the progress of being computed
3981       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3982       // additional loop trip count information isn't going to change anything.
3983       // In the second case, createNodeForPHI will perform the necessary
3984       // updates on its own when it gets to that point. In the third, we do
3985       // want to forget the SCEVUnknown.
3986       if (!isa<PHINode>(I) ||
3987           !isa<SCEVUnknown>(Old) ||
3988           (I != PN && Old == SymName)) {
3989         eraseValueFromMap(It->first);
3990         forgetMemoizedResults(Old);
3991       }
3992     }
3993 
3994     PushDefUseChildren(I, Worklist);
3995   }
3996 }
3997 
3998 namespace {
3999 
4000 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4001 public:
4002   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4003       : SCEVRewriteVisitor(SE), L(L) {}
4004 
4005   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4006                              ScalarEvolution &SE) {
4007     SCEVInitRewriter Rewriter(L, SE);
4008     const SCEV *Result = Rewriter.visit(S);
4009     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4010   }
4011 
4012   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4013     if (!SE.isLoopInvariant(Expr, L))
4014       Valid = false;
4015     return Expr;
4016   }
4017 
4018   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4019     // Only allow AddRecExprs for this loop.
4020     if (Expr->getLoop() == L)
4021       return Expr->getStart();
4022     Valid = false;
4023     return Expr;
4024   }
4025 
4026   bool isValid() { return Valid; }
4027 
4028 private:
4029   const Loop *L;
4030   bool Valid = true;
4031 };
4032 
4033 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4034 public:
4035   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4036       : SCEVRewriteVisitor(SE), L(L) {}
4037 
4038   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4039                              ScalarEvolution &SE) {
4040     SCEVShiftRewriter Rewriter(L, SE);
4041     const SCEV *Result = Rewriter.visit(S);
4042     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4043   }
4044 
4045   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4046     // Only allow AddRecExprs for this loop.
4047     if (!SE.isLoopInvariant(Expr, L))
4048       Valid = false;
4049     return Expr;
4050   }
4051 
4052   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4053     if (Expr->getLoop() == L && Expr->isAffine())
4054       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4055     Valid = false;
4056     return Expr;
4057   }
4058 
4059   bool isValid() { return Valid; }
4060 
4061 private:
4062   const Loop *L;
4063   bool Valid = true;
4064 };
4065 
4066 } // end anonymous namespace
4067 
4068 SCEV::NoWrapFlags
4069 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4070   if (!AR->isAffine())
4071     return SCEV::FlagAnyWrap;
4072 
4073   using OBO = OverflowingBinaryOperator;
4074 
4075   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4076 
4077   if (!AR->hasNoSignedWrap()) {
4078     ConstantRange AddRecRange = getSignedRange(AR);
4079     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4080 
4081     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4082         Instruction::Add, IncRange, OBO::NoSignedWrap);
4083     if (NSWRegion.contains(AddRecRange))
4084       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4085   }
4086 
4087   if (!AR->hasNoUnsignedWrap()) {
4088     ConstantRange AddRecRange = getUnsignedRange(AR);
4089     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4090 
4091     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4092         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4093     if (NUWRegion.contains(AddRecRange))
4094       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4095   }
4096 
4097   return Result;
4098 }
4099 
4100 namespace {
4101 
4102 /// Represents an abstract binary operation.  This may exist as a
4103 /// normal instruction or constant expression, or may have been
4104 /// derived from an expression tree.
4105 struct BinaryOp {
4106   unsigned Opcode;
4107   Value *LHS;
4108   Value *RHS;
4109   bool IsNSW = false;
4110   bool IsNUW = false;
4111 
4112   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4113   /// constant expression.
4114   Operator *Op = nullptr;
4115 
4116   explicit BinaryOp(Operator *Op)
4117       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4118         Op(Op) {
4119     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4120       IsNSW = OBO->hasNoSignedWrap();
4121       IsNUW = OBO->hasNoUnsignedWrap();
4122     }
4123   }
4124 
4125   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4126                     bool IsNUW = false)
4127       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4128 };
4129 
4130 } // end anonymous namespace
4131 
4132 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4133 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4134   auto *Op = dyn_cast<Operator>(V);
4135   if (!Op)
4136     return None;
4137 
4138   // Implementation detail: all the cleverness here should happen without
4139   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4140   // SCEV expressions when possible, and we should not break that.
4141 
4142   switch (Op->getOpcode()) {
4143   case Instruction::Add:
4144   case Instruction::Sub:
4145   case Instruction::Mul:
4146   case Instruction::UDiv:
4147   case Instruction::And:
4148   case Instruction::Or:
4149   case Instruction::AShr:
4150   case Instruction::Shl:
4151     return BinaryOp(Op);
4152 
4153   case Instruction::Xor:
4154     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4155       // If the RHS of the xor is a signmask, then this is just an add.
4156       // Instcombine turns add of signmask into xor as a strength reduction step.
4157       if (RHSC->getValue().isSignMask())
4158         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4159     return BinaryOp(Op);
4160 
4161   case Instruction::LShr:
4162     // Turn logical shift right of a constant into a unsigned divide.
4163     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4164       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4165 
4166       // If the shift count is not less than the bitwidth, the result of
4167       // the shift is undefined. Don't try to analyze it, because the
4168       // resolution chosen here may differ from the resolution chosen in
4169       // other parts of the compiler.
4170       if (SA->getValue().ult(BitWidth)) {
4171         Constant *X =
4172             ConstantInt::get(SA->getContext(),
4173                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4174         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4175       }
4176     }
4177     return BinaryOp(Op);
4178 
4179   case Instruction::ExtractValue: {
4180     auto *EVI = cast<ExtractValueInst>(Op);
4181     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4182       break;
4183 
4184     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4185     if (!CI)
4186       break;
4187 
4188     if (auto *F = CI->getCalledFunction())
4189       switch (F->getIntrinsicID()) {
4190       case Intrinsic::sadd_with_overflow:
4191       case Intrinsic::uadd_with_overflow:
4192         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4193           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4194                           CI->getArgOperand(1));
4195 
4196         // Now that we know that all uses of the arithmetic-result component of
4197         // CI are guarded by the overflow check, we can go ahead and pretend
4198         // that the arithmetic is non-overflowing.
4199         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4200           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4201                           CI->getArgOperand(1), /* IsNSW = */ true,
4202                           /* IsNUW = */ false);
4203         else
4204           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4205                           CI->getArgOperand(1), /* IsNSW = */ false,
4206                           /* IsNUW*/ true);
4207       case Intrinsic::ssub_with_overflow:
4208       case Intrinsic::usub_with_overflow:
4209         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4210           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4211                           CI->getArgOperand(1));
4212 
4213         // The same reasoning as sadd/uadd above.
4214         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4215           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4216                           CI->getArgOperand(1), /* IsNSW = */ true,
4217                           /* IsNUW = */ false);
4218         else
4219           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4220                           CI->getArgOperand(1), /* IsNSW = */ false,
4221                           /* IsNUW = */ true);
4222       case Intrinsic::smul_with_overflow:
4223       case Intrinsic::umul_with_overflow:
4224         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4225                         CI->getArgOperand(1));
4226       default:
4227         break;
4228       }
4229   }
4230 
4231   default:
4232     break;
4233   }
4234 
4235   return None;
4236 }
4237 
4238 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4239 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4240 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4241 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4242 /// follows one of the following patterns:
4243 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4244 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4245 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4246 /// we return the type of the truncation operation, and indicate whether the
4247 /// truncated type should be treated as signed/unsigned by setting
4248 /// \p Signed to true/false, respectively.
4249 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4250                                bool &Signed, ScalarEvolution &SE) {
4251   // The case where Op == SymbolicPHI (that is, with no type conversions on
4252   // the way) is handled by the regular add recurrence creating logic and
4253   // would have already been triggered in createAddRecForPHI. Reaching it here
4254   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4255   // because one of the other operands of the SCEVAddExpr updating this PHI is
4256   // not invariant).
4257   //
4258   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4259   // this case predicates that allow us to prove that Op == SymbolicPHI will
4260   // be added.
4261   if (Op == SymbolicPHI)
4262     return nullptr;
4263 
4264   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4265   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4266   if (SourceBits != NewBits)
4267     return nullptr;
4268 
4269   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4270   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4271   if (!SExt && !ZExt)
4272     return nullptr;
4273   const SCEVTruncateExpr *Trunc =
4274       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4275            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4276   if (!Trunc)
4277     return nullptr;
4278   const SCEV *X = Trunc->getOperand();
4279   if (X != SymbolicPHI)
4280     return nullptr;
4281   Signed = SExt != nullptr;
4282   return Trunc->getType();
4283 }
4284 
4285 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4286   if (!PN->getType()->isIntegerTy())
4287     return nullptr;
4288   const Loop *L = LI.getLoopFor(PN->getParent());
4289   if (!L || L->getHeader() != PN->getParent())
4290     return nullptr;
4291   return L;
4292 }
4293 
4294 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4295 // computation that updates the phi follows the following pattern:
4296 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4297 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4298 // If so, try to see if it can be rewritten as an AddRecExpr under some
4299 // Predicates. If successful, return them as a pair. Also cache the results
4300 // of the analysis.
4301 //
4302 // Example usage scenario:
4303 //    Say the Rewriter is called for the following SCEV:
4304 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4305 //    where:
4306 //         %X = phi i64 (%Start, %BEValue)
4307 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4308 //    and call this function with %SymbolicPHI = %X.
4309 //
4310 //    The analysis will find that the value coming around the backedge has
4311 //    the following SCEV:
4312 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4313 //    Upon concluding that this matches the desired pattern, the function
4314 //    will return the pair {NewAddRec, SmallPredsVec} where:
4315 //         NewAddRec = {%Start,+,%Step}
4316 //         SmallPredsVec = {P1, P2, P3} as follows:
4317 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4318 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4319 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4320 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4321 //    under the predicates {P1,P2,P3}.
4322 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4323 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4324 //
4325 // TODO's:
4326 //
4327 // 1) Extend the Induction descriptor to also support inductions that involve
4328 //    casts: When needed (namely, when we are called in the context of the
4329 //    vectorizer induction analysis), a Set of cast instructions will be
4330 //    populated by this method, and provided back to isInductionPHI. This is
4331 //    needed to allow the vectorizer to properly record them to be ignored by
4332 //    the cost model and to avoid vectorizing them (otherwise these casts,
4333 //    which are redundant under the runtime overflow checks, will be
4334 //    vectorized, which can be costly).
4335 //
4336 // 2) Support additional induction/PHISCEV patterns: We also want to support
4337 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4338 //    after the induction update operation (the induction increment):
4339 //
4340 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4341 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4342 //
4343 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4344 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4345 //
4346 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4347 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4348 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4349   SmallVector<const SCEVPredicate *, 3> Predicates;
4350 
4351   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4352   // return an AddRec expression under some predicate.
4353 
4354   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4355   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4356   assert(L && "Expecting an integer loop header phi");
4357 
4358   // The loop may have multiple entrances or multiple exits; we can analyze
4359   // this phi as an addrec if it has a unique entry value and a unique
4360   // backedge value.
4361   Value *BEValueV = nullptr, *StartValueV = nullptr;
4362   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4363     Value *V = PN->getIncomingValue(i);
4364     if (L->contains(PN->getIncomingBlock(i))) {
4365       if (!BEValueV) {
4366         BEValueV = V;
4367       } else if (BEValueV != V) {
4368         BEValueV = nullptr;
4369         break;
4370       }
4371     } else if (!StartValueV) {
4372       StartValueV = V;
4373     } else if (StartValueV != V) {
4374       StartValueV = nullptr;
4375       break;
4376     }
4377   }
4378   if (!BEValueV || !StartValueV)
4379     return None;
4380 
4381   const SCEV *BEValue = getSCEV(BEValueV);
4382 
4383   // If the value coming around the backedge is an add with the symbolic
4384   // value we just inserted, possibly with casts that we can ignore under
4385   // an appropriate runtime guard, then we found a simple induction variable!
4386   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4387   if (!Add)
4388     return None;
4389 
4390   // If there is a single occurrence of the symbolic value, possibly
4391   // casted, replace it with a recurrence.
4392   unsigned FoundIndex = Add->getNumOperands();
4393   Type *TruncTy = nullptr;
4394   bool Signed;
4395   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4396     if ((TruncTy =
4397              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4398       if (FoundIndex == e) {
4399         FoundIndex = i;
4400         break;
4401       }
4402 
4403   if (FoundIndex == Add->getNumOperands())
4404     return None;
4405 
4406   // Create an add with everything but the specified operand.
4407   SmallVector<const SCEV *, 8> Ops;
4408   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4409     if (i != FoundIndex)
4410       Ops.push_back(Add->getOperand(i));
4411   const SCEV *Accum = getAddExpr(Ops);
4412 
4413   // The runtime checks will not be valid if the step amount is
4414   // varying inside the loop.
4415   if (!isLoopInvariant(Accum, L))
4416     return None;
4417 
4418   // *** Part2: Create the predicates
4419 
4420   // Analysis was successful: we have a phi-with-cast pattern for which we
4421   // can return an AddRec expression under the following predicates:
4422   //
4423   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4424   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4425   // P2: An Equal predicate that guarantees that
4426   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4427   // P3: An Equal predicate that guarantees that
4428   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4429   //
4430   // As we next prove, the above predicates guarantee that:
4431   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4432   //
4433   //
4434   // More formally, we want to prove that:
4435   //     Expr(i+1) = Start + (i+1) * Accum
4436   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4437   //
4438   // Given that:
4439   // 1) Expr(0) = Start
4440   // 2) Expr(1) = Start + Accum
4441   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4442   // 3) Induction hypothesis (step i):
4443   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4444   //
4445   // Proof:
4446   //  Expr(i+1) =
4447   //   = Start + (i+1)*Accum
4448   //   = (Start + i*Accum) + Accum
4449   //   = Expr(i) + Accum
4450   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4451   //                                                             :: from step i
4452   //
4453   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4454   //
4455   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4456   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4457   //     + Accum                                                     :: from P3
4458   //
4459   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4460   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4461   //
4462   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4463   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4464   //
4465   // By induction, the same applies to all iterations 1<=i<n:
4466   //
4467 
4468   // Create a truncated addrec for which we will add a no overflow check (P1).
4469   const SCEV *StartVal = getSCEV(StartValueV);
4470   const SCEV *PHISCEV =
4471       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4472                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4473   const auto *AR = cast<SCEVAddRecExpr>(PHISCEV);
4474 
4475   SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4476       Signed ? SCEVWrapPredicate::IncrementNSSW
4477              : SCEVWrapPredicate::IncrementNUSW;
4478   const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4479   Predicates.push_back(AddRecPred);
4480 
4481   // Create the Equal Predicates P2,P3:
4482   auto AppendPredicate = [&](const SCEV *Expr) -> void {
4483     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4484     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4485     const SCEV *ExtendedExpr =
4486         Signed ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4487                : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4488     if (Expr != ExtendedExpr &&
4489         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4490       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4491       DEBUG (dbgs() << "Added Predicate: " << *Pred);
4492       Predicates.push_back(Pred);
4493     }
4494   };
4495 
4496   AppendPredicate(StartVal);
4497   AppendPredicate(Accum);
4498 
4499   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4500   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4501   // into NewAR if it will also add the runtime overflow checks specified in
4502   // Predicates.
4503   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4504 
4505   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4506       std::make_pair(NewAR, Predicates);
4507   // Remember the result of the analysis for this SCEV at this locayyytion.
4508   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4509   return PredRewrite;
4510 }
4511 
4512 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4513 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4514   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4515   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4516   if (!L)
4517     return None;
4518 
4519   // Check to see if we already analyzed this PHI.
4520   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4521   if (I != PredicatedSCEVRewrites.end()) {
4522     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4523         I->second;
4524     // Analysis was done before and failed to create an AddRec:
4525     if (Rewrite.first == SymbolicPHI)
4526       return None;
4527     // Analysis was done before and succeeded to create an AddRec under
4528     // a predicate:
4529     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4530     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4531     return Rewrite;
4532   }
4533 
4534   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4535     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4536 
4537   // Record in the cache that the analysis failed
4538   if (!Rewrite) {
4539     SmallVector<const SCEVPredicate *, 3> Predicates;
4540     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4541     return None;
4542   }
4543 
4544   return Rewrite;
4545 }
4546 
4547 /// A helper function for createAddRecFromPHI to handle simple cases.
4548 ///
4549 /// This function tries to find an AddRec expression for the simplest (yet most
4550 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4551 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4552 /// technique for finding the AddRec expression.
4553 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4554                                                       Value *BEValueV,
4555                                                       Value *StartValueV) {
4556   const Loop *L = LI.getLoopFor(PN->getParent());
4557   assert(L && L->getHeader() == PN->getParent());
4558   assert(BEValueV && StartValueV);
4559 
4560   auto BO = MatchBinaryOp(BEValueV, DT);
4561   if (!BO)
4562     return nullptr;
4563 
4564   if (BO->Opcode != Instruction::Add)
4565     return nullptr;
4566 
4567   const SCEV *Accum = nullptr;
4568   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4569     Accum = getSCEV(BO->RHS);
4570   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4571     Accum = getSCEV(BO->LHS);
4572 
4573   if (!Accum)
4574     return nullptr;
4575 
4576   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4577   if (BO->IsNUW)
4578     Flags = setFlags(Flags, SCEV::FlagNUW);
4579   if (BO->IsNSW)
4580     Flags = setFlags(Flags, SCEV::FlagNSW);
4581 
4582   const SCEV *StartVal = getSCEV(StartValueV);
4583   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4584 
4585   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4586 
4587   // We can add Flags to the post-inc expression only if we
4588   // know that it is *undefined behavior* for BEValueV to
4589   // overflow.
4590   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4591     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4592       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4593 
4594   return PHISCEV;
4595 }
4596 
4597 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4598   const Loop *L = LI.getLoopFor(PN->getParent());
4599   if (!L || L->getHeader() != PN->getParent())
4600     return nullptr;
4601 
4602   // The loop may have multiple entrances or multiple exits; we can analyze
4603   // this phi as an addrec if it has a unique entry value and a unique
4604   // backedge value.
4605   Value *BEValueV = nullptr, *StartValueV = nullptr;
4606   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4607     Value *V = PN->getIncomingValue(i);
4608     if (L->contains(PN->getIncomingBlock(i))) {
4609       if (!BEValueV) {
4610         BEValueV = V;
4611       } else if (BEValueV != V) {
4612         BEValueV = nullptr;
4613         break;
4614       }
4615     } else if (!StartValueV) {
4616       StartValueV = V;
4617     } else if (StartValueV != V) {
4618       StartValueV = nullptr;
4619       break;
4620     }
4621   }
4622   if (!BEValueV || !StartValueV)
4623     return nullptr;
4624 
4625   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4626          "PHI node already processed?");
4627 
4628   // First, try to find AddRec expression without creating a fictituos symbolic
4629   // value for PN.
4630   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4631     return S;
4632 
4633   // Handle PHI node value symbolically.
4634   const SCEV *SymbolicName = getUnknown(PN);
4635   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4636 
4637   // Using this symbolic name for the PHI, analyze the value coming around
4638   // the back-edge.
4639   const SCEV *BEValue = getSCEV(BEValueV);
4640 
4641   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4642   // has a special value for the first iteration of the loop.
4643 
4644   // If the value coming around the backedge is an add with the symbolic
4645   // value we just inserted, then we found a simple induction variable!
4646   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4647     // If there is a single occurrence of the symbolic value, replace it
4648     // with a recurrence.
4649     unsigned FoundIndex = Add->getNumOperands();
4650     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4651       if (Add->getOperand(i) == SymbolicName)
4652         if (FoundIndex == e) {
4653           FoundIndex = i;
4654           break;
4655         }
4656 
4657     if (FoundIndex != Add->getNumOperands()) {
4658       // Create an add with everything but the specified operand.
4659       SmallVector<const SCEV *, 8> Ops;
4660       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4661         if (i != FoundIndex)
4662           Ops.push_back(Add->getOperand(i));
4663       const SCEV *Accum = getAddExpr(Ops);
4664 
4665       // This is not a valid addrec if the step amount is varying each
4666       // loop iteration, but is not itself an addrec in this loop.
4667       if (isLoopInvariant(Accum, L) ||
4668           (isa<SCEVAddRecExpr>(Accum) &&
4669            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4670         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4671 
4672         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4673           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4674             if (BO->IsNUW)
4675               Flags = setFlags(Flags, SCEV::FlagNUW);
4676             if (BO->IsNSW)
4677               Flags = setFlags(Flags, SCEV::FlagNSW);
4678           }
4679         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4680           // If the increment is an inbounds GEP, then we know the address
4681           // space cannot be wrapped around. We cannot make any guarantee
4682           // about signed or unsigned overflow because pointers are
4683           // unsigned but we may have a negative index from the base
4684           // pointer. We can guarantee that no unsigned wrap occurs if the
4685           // indices form a positive value.
4686           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4687             Flags = setFlags(Flags, SCEV::FlagNW);
4688 
4689             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4690             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4691               Flags = setFlags(Flags, SCEV::FlagNUW);
4692           }
4693 
4694           // We cannot transfer nuw and nsw flags from subtraction
4695           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4696           // for instance.
4697         }
4698 
4699         const SCEV *StartVal = getSCEV(StartValueV);
4700         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4701 
4702         // Okay, for the entire analysis of this edge we assumed the PHI
4703         // to be symbolic.  We now need to go back and purge all of the
4704         // entries for the scalars that use the symbolic expression.
4705         forgetSymbolicName(PN, SymbolicName);
4706         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4707 
4708         // We can add Flags to the post-inc expression only if we
4709         // know that it is *undefined behavior* for BEValueV to
4710         // overflow.
4711         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4712           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4713             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4714 
4715         return PHISCEV;
4716       }
4717     }
4718   } else {
4719     // Otherwise, this could be a loop like this:
4720     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4721     // In this case, j = {1,+,1}  and BEValue is j.
4722     // Because the other in-value of i (0) fits the evolution of BEValue
4723     // i really is an addrec evolution.
4724     //
4725     // We can generalize this saying that i is the shifted value of BEValue
4726     // by one iteration:
4727     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4728     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4729     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4730     if (Shifted != getCouldNotCompute() &&
4731         Start != getCouldNotCompute()) {
4732       const SCEV *StartVal = getSCEV(StartValueV);
4733       if (Start == StartVal) {
4734         // Okay, for the entire analysis of this edge we assumed the PHI
4735         // to be symbolic.  We now need to go back and purge all of the
4736         // entries for the scalars that use the symbolic expression.
4737         forgetSymbolicName(PN, SymbolicName);
4738         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4739         return Shifted;
4740       }
4741     }
4742   }
4743 
4744   // Remove the temporary PHI node SCEV that has been inserted while intending
4745   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4746   // as it will prevent later (possibly simpler) SCEV expressions to be added
4747   // to the ValueExprMap.
4748   eraseValueFromMap(PN);
4749 
4750   return nullptr;
4751 }
4752 
4753 // Checks if the SCEV S is available at BB.  S is considered available at BB
4754 // if S can be materialized at BB without introducing a fault.
4755 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4756                                BasicBlock *BB) {
4757   struct CheckAvailable {
4758     bool TraversalDone = false;
4759     bool Available = true;
4760 
4761     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4762     BasicBlock *BB = nullptr;
4763     DominatorTree &DT;
4764 
4765     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4766       : L(L), BB(BB), DT(DT) {}
4767 
4768     bool setUnavailable() {
4769       TraversalDone = true;
4770       Available = false;
4771       return false;
4772     }
4773 
4774     bool follow(const SCEV *S) {
4775       switch (S->getSCEVType()) {
4776       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4777       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4778         // These expressions are available if their operand(s) is/are.
4779         return true;
4780 
4781       case scAddRecExpr: {
4782         // We allow add recurrences that are on the loop BB is in, or some
4783         // outer loop.  This guarantees availability because the value of the
4784         // add recurrence at BB is simply the "current" value of the induction
4785         // variable.  We can relax this in the future; for instance an add
4786         // recurrence on a sibling dominating loop is also available at BB.
4787         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4788         if (L && (ARLoop == L || ARLoop->contains(L)))
4789           return true;
4790 
4791         return setUnavailable();
4792       }
4793 
4794       case scUnknown: {
4795         // For SCEVUnknown, we check for simple dominance.
4796         const auto *SU = cast<SCEVUnknown>(S);
4797         Value *V = SU->getValue();
4798 
4799         if (isa<Argument>(V))
4800           return false;
4801 
4802         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4803           return false;
4804 
4805         return setUnavailable();
4806       }
4807 
4808       case scUDivExpr:
4809       case scCouldNotCompute:
4810         // We do not try to smart about these at all.
4811         return setUnavailable();
4812       }
4813       llvm_unreachable("switch should be fully covered!");
4814     }
4815 
4816     bool isDone() { return TraversalDone; }
4817   };
4818 
4819   CheckAvailable CA(L, BB, DT);
4820   SCEVTraversal<CheckAvailable> ST(CA);
4821 
4822   ST.visitAll(S);
4823   return CA.Available;
4824 }
4825 
4826 // Try to match a control flow sequence that branches out at BI and merges back
4827 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4828 // match.
4829 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4830                           Value *&C, Value *&LHS, Value *&RHS) {
4831   C = BI->getCondition();
4832 
4833   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4834   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4835 
4836   if (!LeftEdge.isSingleEdge())
4837     return false;
4838 
4839   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4840 
4841   Use &LeftUse = Merge->getOperandUse(0);
4842   Use &RightUse = Merge->getOperandUse(1);
4843 
4844   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4845     LHS = LeftUse;
4846     RHS = RightUse;
4847     return true;
4848   }
4849 
4850   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4851     LHS = RightUse;
4852     RHS = LeftUse;
4853     return true;
4854   }
4855 
4856   return false;
4857 }
4858 
4859 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4860   auto IsReachable =
4861       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4862   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4863     const Loop *L = LI.getLoopFor(PN->getParent());
4864 
4865     // We don't want to break LCSSA, even in a SCEV expression tree.
4866     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4867       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4868         return nullptr;
4869 
4870     // Try to match
4871     //
4872     //  br %cond, label %left, label %right
4873     // left:
4874     //  br label %merge
4875     // right:
4876     //  br label %merge
4877     // merge:
4878     //  V = phi [ %x, %left ], [ %y, %right ]
4879     //
4880     // as "select %cond, %x, %y"
4881 
4882     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4883     assert(IDom && "At least the entry block should dominate PN");
4884 
4885     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4886     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4887 
4888     if (BI && BI->isConditional() &&
4889         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4890         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4891         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4892       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4893   }
4894 
4895   return nullptr;
4896 }
4897 
4898 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4899   if (const SCEV *S = createAddRecFromPHI(PN))
4900     return S;
4901 
4902   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4903     return S;
4904 
4905   // If the PHI has a single incoming value, follow that value, unless the
4906   // PHI's incoming blocks are in a different loop, in which case doing so
4907   // risks breaking LCSSA form. Instcombine would normally zap these, but
4908   // it doesn't have DominatorTree information, so it may miss cases.
4909   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
4910     if (LI.replacementPreservesLCSSAForm(PN, V))
4911       return getSCEV(V);
4912 
4913   // If it's not a loop phi, we can't handle it yet.
4914   return getUnknown(PN);
4915 }
4916 
4917 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4918                                                       Value *Cond,
4919                                                       Value *TrueVal,
4920                                                       Value *FalseVal) {
4921   // Handle "constant" branch or select. This can occur for instance when a
4922   // loop pass transforms an inner loop and moves on to process the outer loop.
4923   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4924     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4925 
4926   // Try to match some simple smax or umax patterns.
4927   auto *ICI = dyn_cast<ICmpInst>(Cond);
4928   if (!ICI)
4929     return getUnknown(I);
4930 
4931   Value *LHS = ICI->getOperand(0);
4932   Value *RHS = ICI->getOperand(1);
4933 
4934   switch (ICI->getPredicate()) {
4935   case ICmpInst::ICMP_SLT:
4936   case ICmpInst::ICMP_SLE:
4937     std::swap(LHS, RHS);
4938     LLVM_FALLTHROUGH;
4939   case ICmpInst::ICMP_SGT:
4940   case ICmpInst::ICMP_SGE:
4941     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4942     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4943     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4944       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4945       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4946       const SCEV *LA = getSCEV(TrueVal);
4947       const SCEV *RA = getSCEV(FalseVal);
4948       const SCEV *LDiff = getMinusSCEV(LA, LS);
4949       const SCEV *RDiff = getMinusSCEV(RA, RS);
4950       if (LDiff == RDiff)
4951         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4952       LDiff = getMinusSCEV(LA, RS);
4953       RDiff = getMinusSCEV(RA, LS);
4954       if (LDiff == RDiff)
4955         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4956     }
4957     break;
4958   case ICmpInst::ICMP_ULT:
4959   case ICmpInst::ICMP_ULE:
4960     std::swap(LHS, RHS);
4961     LLVM_FALLTHROUGH;
4962   case ICmpInst::ICMP_UGT:
4963   case ICmpInst::ICMP_UGE:
4964     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4965     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4966     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4967       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4968       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4969       const SCEV *LA = getSCEV(TrueVal);
4970       const SCEV *RA = getSCEV(FalseVal);
4971       const SCEV *LDiff = getMinusSCEV(LA, LS);
4972       const SCEV *RDiff = getMinusSCEV(RA, RS);
4973       if (LDiff == RDiff)
4974         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4975       LDiff = getMinusSCEV(LA, RS);
4976       RDiff = getMinusSCEV(RA, LS);
4977       if (LDiff == RDiff)
4978         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4979     }
4980     break;
4981   case ICmpInst::ICMP_NE:
4982     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4983     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4984         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4985       const SCEV *One = getOne(I->getType());
4986       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4987       const SCEV *LA = getSCEV(TrueVal);
4988       const SCEV *RA = getSCEV(FalseVal);
4989       const SCEV *LDiff = getMinusSCEV(LA, LS);
4990       const SCEV *RDiff = getMinusSCEV(RA, One);
4991       if (LDiff == RDiff)
4992         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4993     }
4994     break;
4995   case ICmpInst::ICMP_EQ:
4996     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4997     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4998         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4999       const SCEV *One = getOne(I->getType());
5000       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5001       const SCEV *LA = getSCEV(TrueVal);
5002       const SCEV *RA = getSCEV(FalseVal);
5003       const SCEV *LDiff = getMinusSCEV(LA, One);
5004       const SCEV *RDiff = getMinusSCEV(RA, LS);
5005       if (LDiff == RDiff)
5006         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5007     }
5008     break;
5009   default:
5010     break;
5011   }
5012 
5013   return getUnknown(I);
5014 }
5015 
5016 /// Expand GEP instructions into add and multiply operations. This allows them
5017 /// to be analyzed by regular SCEV code.
5018 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5019   // Don't attempt to analyze GEPs over unsized objects.
5020   if (!GEP->getSourceElementType()->isSized())
5021     return getUnknown(GEP);
5022 
5023   SmallVector<const SCEV *, 4> IndexExprs;
5024   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5025     IndexExprs.push_back(getSCEV(*Index));
5026   return getGEPExpr(GEP, IndexExprs);
5027 }
5028 
5029 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5030   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5031     return C->getAPInt().countTrailingZeros();
5032 
5033   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5034     return std::min(GetMinTrailingZeros(T->getOperand()),
5035                     (uint32_t)getTypeSizeInBits(T->getType()));
5036 
5037   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5038     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5039     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5040                ? getTypeSizeInBits(E->getType())
5041                : OpRes;
5042   }
5043 
5044   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5045     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5046     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5047                ? getTypeSizeInBits(E->getType())
5048                : OpRes;
5049   }
5050 
5051   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5052     // The result is the min of all operands results.
5053     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5054     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5055       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5056     return MinOpRes;
5057   }
5058 
5059   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5060     // The result is the sum of all operands results.
5061     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5062     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5063     for (unsigned i = 1, e = M->getNumOperands();
5064          SumOpRes != BitWidth && i != e; ++i)
5065       SumOpRes =
5066           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5067     return SumOpRes;
5068   }
5069 
5070   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5071     // The result is the min of all operands results.
5072     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5073     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5074       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5075     return MinOpRes;
5076   }
5077 
5078   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5079     // The result is the min of all operands results.
5080     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5081     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5082       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5083     return MinOpRes;
5084   }
5085 
5086   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5087     // The result is the min of all operands results.
5088     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5089     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5090       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5091     return MinOpRes;
5092   }
5093 
5094   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5095     // For a SCEVUnknown, ask ValueTracking.
5096     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5097     return Known.countMinTrailingZeros();
5098   }
5099 
5100   // SCEVUDivExpr
5101   return 0;
5102 }
5103 
5104 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5105   auto I = MinTrailingZerosCache.find(S);
5106   if (I != MinTrailingZerosCache.end())
5107     return I->second;
5108 
5109   uint32_t Result = GetMinTrailingZerosImpl(S);
5110   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5111   assert(InsertPair.second && "Should insert a new key");
5112   return InsertPair.first->second;
5113 }
5114 
5115 /// Helper method to assign a range to V from metadata present in the IR.
5116 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5117   if (Instruction *I = dyn_cast<Instruction>(V))
5118     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5119       return getConstantRangeFromMetadata(*MD);
5120 
5121   return None;
5122 }
5123 
5124 /// Determine the range for a particular SCEV.  If SignHint is
5125 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5126 /// with a "cleaner" unsigned (resp. signed) representation.
5127 const ConstantRange &
5128 ScalarEvolution::getRangeRef(const SCEV *S,
5129                              ScalarEvolution::RangeSignHint SignHint) {
5130   DenseMap<const SCEV *, ConstantRange> &Cache =
5131       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5132                                                        : SignedRanges;
5133 
5134   // See if we've computed this range already.
5135   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5136   if (I != Cache.end())
5137     return I->second;
5138 
5139   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5140     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5141 
5142   unsigned BitWidth = getTypeSizeInBits(S->getType());
5143   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5144 
5145   // If the value has known zeros, the maximum value will have those known zeros
5146   // as well.
5147   uint32_t TZ = GetMinTrailingZeros(S);
5148   if (TZ != 0) {
5149     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5150       ConservativeResult =
5151           ConstantRange(APInt::getMinValue(BitWidth),
5152                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5153     else
5154       ConservativeResult = ConstantRange(
5155           APInt::getSignedMinValue(BitWidth),
5156           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5157   }
5158 
5159   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5160     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5161     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5162       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5163     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5164   }
5165 
5166   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5167     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5168     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5169       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5170     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5171   }
5172 
5173   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5174     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5175     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5176       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5177     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5178   }
5179 
5180   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5181     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5182     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5183       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5184     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5185   }
5186 
5187   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5188     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5189     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5190     return setRange(UDiv, SignHint,
5191                     ConservativeResult.intersectWith(X.udiv(Y)));
5192   }
5193 
5194   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5195     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5196     return setRange(ZExt, SignHint,
5197                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5198   }
5199 
5200   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5201     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5202     return setRange(SExt, SignHint,
5203                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5204   }
5205 
5206   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5207     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5208     return setRange(Trunc, SignHint,
5209                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5210   }
5211 
5212   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5213     // If there's no unsigned wrap, the value will never be less than its
5214     // initial value.
5215     if (AddRec->hasNoUnsignedWrap())
5216       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5217         if (!C->getValue()->isZero())
5218           ConservativeResult = ConservativeResult.intersectWith(
5219               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5220 
5221     // If there's no signed wrap, and all the operands have the same sign or
5222     // zero, the value won't ever change sign.
5223     if (AddRec->hasNoSignedWrap()) {
5224       bool AllNonNeg = true;
5225       bool AllNonPos = true;
5226       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5227         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5228         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5229       }
5230       if (AllNonNeg)
5231         ConservativeResult = ConservativeResult.intersectWith(
5232           ConstantRange(APInt(BitWidth, 0),
5233                         APInt::getSignedMinValue(BitWidth)));
5234       else if (AllNonPos)
5235         ConservativeResult = ConservativeResult.intersectWith(
5236           ConstantRange(APInt::getSignedMinValue(BitWidth),
5237                         APInt(BitWidth, 1)));
5238     }
5239 
5240     // TODO: non-affine addrec
5241     if (AddRec->isAffine()) {
5242       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5243       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5244           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5245         auto RangeFromAffine = getRangeForAffineAR(
5246             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5247             BitWidth);
5248         if (!RangeFromAffine.isFullSet())
5249           ConservativeResult =
5250               ConservativeResult.intersectWith(RangeFromAffine);
5251 
5252         auto RangeFromFactoring = getRangeViaFactoring(
5253             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5254             BitWidth);
5255         if (!RangeFromFactoring.isFullSet())
5256           ConservativeResult =
5257               ConservativeResult.intersectWith(RangeFromFactoring);
5258       }
5259     }
5260 
5261     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5262   }
5263 
5264   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5265     // Check if the IR explicitly contains !range metadata.
5266     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5267     if (MDRange.hasValue())
5268       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5269 
5270     // Split here to avoid paying the compile-time cost of calling both
5271     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5272     // if needed.
5273     const DataLayout &DL = getDataLayout();
5274     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5275       // For a SCEVUnknown, ask ValueTracking.
5276       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5277       if (Known.One != ~Known.Zero + 1)
5278         ConservativeResult =
5279             ConservativeResult.intersectWith(ConstantRange(Known.One,
5280                                                            ~Known.Zero + 1));
5281     } else {
5282       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5283              "generalize as needed!");
5284       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5285       if (NS > 1)
5286         ConservativeResult = ConservativeResult.intersectWith(
5287             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5288                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5289     }
5290 
5291     return setRange(U, SignHint, std::move(ConservativeResult));
5292   }
5293 
5294   return setRange(S, SignHint, std::move(ConservativeResult));
5295 }
5296 
5297 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5298 // values that the expression can take. Initially, the expression has a value
5299 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5300 // argument defines if we treat Step as signed or unsigned.
5301 static ConstantRange getRangeForAffineARHelper(APInt Step,
5302                                                const ConstantRange &StartRange,
5303                                                const APInt &MaxBECount,
5304                                                unsigned BitWidth, bool Signed) {
5305   // If either Step or MaxBECount is 0, then the expression won't change, and we
5306   // just need to return the initial range.
5307   if (Step == 0 || MaxBECount == 0)
5308     return StartRange;
5309 
5310   // If we don't know anything about the initial value (i.e. StartRange is
5311   // FullRange), then we don't know anything about the final range either.
5312   // Return FullRange.
5313   if (StartRange.isFullSet())
5314     return ConstantRange(BitWidth, /* isFullSet = */ true);
5315 
5316   // If Step is signed and negative, then we use its absolute value, but we also
5317   // note that we're moving in the opposite direction.
5318   bool Descending = Signed && Step.isNegative();
5319 
5320   if (Signed)
5321     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5322     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5323     // This equations hold true due to the well-defined wrap-around behavior of
5324     // APInt.
5325     Step = Step.abs();
5326 
5327   // Check if Offset is more than full span of BitWidth. If it is, the
5328   // expression is guaranteed to overflow.
5329   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5330     return ConstantRange(BitWidth, /* isFullSet = */ true);
5331 
5332   // Offset is by how much the expression can change. Checks above guarantee no
5333   // overflow here.
5334   APInt Offset = Step * MaxBECount;
5335 
5336   // Minimum value of the final range will match the minimal value of StartRange
5337   // if the expression is increasing and will be decreased by Offset otherwise.
5338   // Maximum value of the final range will match the maximal value of StartRange
5339   // if the expression is decreasing and will be increased by Offset otherwise.
5340   APInt StartLower = StartRange.getLower();
5341   APInt StartUpper = StartRange.getUpper() - 1;
5342   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5343                                    : (StartUpper + std::move(Offset));
5344 
5345   // It's possible that the new minimum/maximum value will fall into the initial
5346   // range (due to wrap around). This means that the expression can take any
5347   // value in this bitwidth, and we have to return full range.
5348   if (StartRange.contains(MovedBoundary))
5349     return ConstantRange(BitWidth, /* isFullSet = */ true);
5350 
5351   APInt NewLower =
5352       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5353   APInt NewUpper =
5354       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5355   NewUpper += 1;
5356 
5357   // If we end up with full range, return a proper full range.
5358   if (NewLower == NewUpper)
5359     return ConstantRange(BitWidth, /* isFullSet = */ true);
5360 
5361   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5362   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5363 }
5364 
5365 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5366                                                    const SCEV *Step,
5367                                                    const SCEV *MaxBECount,
5368                                                    unsigned BitWidth) {
5369   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5370          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5371          "Precondition!");
5372 
5373   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5374   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5375 
5376   // First, consider step signed.
5377   ConstantRange StartSRange = getSignedRange(Start);
5378   ConstantRange StepSRange = getSignedRange(Step);
5379 
5380   // If Step can be both positive and negative, we need to find ranges for the
5381   // maximum absolute step values in both directions and union them.
5382   ConstantRange SR =
5383       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5384                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5385   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5386                                               StartSRange, MaxBECountValue,
5387                                               BitWidth, /* Signed = */ true));
5388 
5389   // Next, consider step unsigned.
5390   ConstantRange UR = getRangeForAffineARHelper(
5391       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5392       MaxBECountValue, BitWidth, /* Signed = */ false);
5393 
5394   // Finally, intersect signed and unsigned ranges.
5395   return SR.intersectWith(UR);
5396 }
5397 
5398 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5399                                                     const SCEV *Step,
5400                                                     const SCEV *MaxBECount,
5401                                                     unsigned BitWidth) {
5402   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5403   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5404 
5405   struct SelectPattern {
5406     Value *Condition = nullptr;
5407     APInt TrueValue;
5408     APInt FalseValue;
5409 
5410     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5411                            const SCEV *S) {
5412       Optional<unsigned> CastOp;
5413       APInt Offset(BitWidth, 0);
5414 
5415       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5416              "Should be!");
5417 
5418       // Peel off a constant offset:
5419       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5420         // In the future we could consider being smarter here and handle
5421         // {Start+Step,+,Step} too.
5422         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5423           return;
5424 
5425         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5426         S = SA->getOperand(1);
5427       }
5428 
5429       // Peel off a cast operation
5430       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5431         CastOp = SCast->getSCEVType();
5432         S = SCast->getOperand();
5433       }
5434 
5435       using namespace llvm::PatternMatch;
5436 
5437       auto *SU = dyn_cast<SCEVUnknown>(S);
5438       const APInt *TrueVal, *FalseVal;
5439       if (!SU ||
5440           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5441                                           m_APInt(FalseVal)))) {
5442         Condition = nullptr;
5443         return;
5444       }
5445 
5446       TrueValue = *TrueVal;
5447       FalseValue = *FalseVal;
5448 
5449       // Re-apply the cast we peeled off earlier
5450       if (CastOp.hasValue())
5451         switch (*CastOp) {
5452         default:
5453           llvm_unreachable("Unknown SCEV cast type!");
5454 
5455         case scTruncate:
5456           TrueValue = TrueValue.trunc(BitWidth);
5457           FalseValue = FalseValue.trunc(BitWidth);
5458           break;
5459         case scZeroExtend:
5460           TrueValue = TrueValue.zext(BitWidth);
5461           FalseValue = FalseValue.zext(BitWidth);
5462           break;
5463         case scSignExtend:
5464           TrueValue = TrueValue.sext(BitWidth);
5465           FalseValue = FalseValue.sext(BitWidth);
5466           break;
5467         }
5468 
5469       // Re-apply the constant offset we peeled off earlier
5470       TrueValue += Offset;
5471       FalseValue += Offset;
5472     }
5473 
5474     bool isRecognized() { return Condition != nullptr; }
5475   };
5476 
5477   SelectPattern StartPattern(*this, BitWidth, Start);
5478   if (!StartPattern.isRecognized())
5479     return ConstantRange(BitWidth, /* isFullSet = */ true);
5480 
5481   SelectPattern StepPattern(*this, BitWidth, Step);
5482   if (!StepPattern.isRecognized())
5483     return ConstantRange(BitWidth, /* isFullSet = */ true);
5484 
5485   if (StartPattern.Condition != StepPattern.Condition) {
5486     // We don't handle this case today; but we could, by considering four
5487     // possibilities below instead of two. I'm not sure if there are cases where
5488     // that will help over what getRange already does, though.
5489     return ConstantRange(BitWidth, /* isFullSet = */ true);
5490   }
5491 
5492   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5493   // construct arbitrary general SCEV expressions here.  This function is called
5494   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5495   // say) can end up caching a suboptimal value.
5496 
5497   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5498   // C2352 and C2512 (otherwise it isn't needed).
5499 
5500   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5501   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5502   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5503   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5504 
5505   ConstantRange TrueRange =
5506       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5507   ConstantRange FalseRange =
5508       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5509 
5510   return TrueRange.unionWith(FalseRange);
5511 }
5512 
5513 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5514   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5515   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5516 
5517   // Return early if there are no flags to propagate to the SCEV.
5518   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5519   if (BinOp->hasNoUnsignedWrap())
5520     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5521   if (BinOp->hasNoSignedWrap())
5522     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5523   if (Flags == SCEV::FlagAnyWrap)
5524     return SCEV::FlagAnyWrap;
5525 
5526   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5527 }
5528 
5529 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5530   // Here we check that I is in the header of the innermost loop containing I,
5531   // since we only deal with instructions in the loop header. The actual loop we
5532   // need to check later will come from an add recurrence, but getting that
5533   // requires computing the SCEV of the operands, which can be expensive. This
5534   // check we can do cheaply to rule out some cases early.
5535   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5536   if (InnermostContainingLoop == nullptr ||
5537       InnermostContainingLoop->getHeader() != I->getParent())
5538     return false;
5539 
5540   // Only proceed if we can prove that I does not yield poison.
5541   if (!programUndefinedIfFullPoison(I))
5542     return false;
5543 
5544   // At this point we know that if I is executed, then it does not wrap
5545   // according to at least one of NSW or NUW. If I is not executed, then we do
5546   // not know if the calculation that I represents would wrap. Multiple
5547   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5548   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5549   // derived from other instructions that map to the same SCEV. We cannot make
5550   // that guarantee for cases where I is not executed. So we need to find the
5551   // loop that I is considered in relation to and prove that I is executed for
5552   // every iteration of that loop. That implies that the value that I
5553   // calculates does not wrap anywhere in the loop, so then we can apply the
5554   // flags to the SCEV.
5555   //
5556   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5557   // from different loops, so that we know which loop to prove that I is
5558   // executed in.
5559   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5560     // I could be an extractvalue from a call to an overflow intrinsic.
5561     // TODO: We can do better here in some cases.
5562     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5563       return false;
5564     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5565     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5566       bool AllOtherOpsLoopInvariant = true;
5567       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5568            ++OtherOpIndex) {
5569         if (OtherOpIndex != OpIndex) {
5570           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5571           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5572             AllOtherOpsLoopInvariant = false;
5573             break;
5574           }
5575         }
5576       }
5577       if (AllOtherOpsLoopInvariant &&
5578           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5579         return true;
5580     }
5581   }
5582   return false;
5583 }
5584 
5585 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5586   // If we know that \c I can never be poison period, then that's enough.
5587   if (isSCEVExprNeverPoison(I))
5588     return true;
5589 
5590   // For an add recurrence specifically, we assume that infinite loops without
5591   // side effects are undefined behavior, and then reason as follows:
5592   //
5593   // If the add recurrence is poison in any iteration, it is poison on all
5594   // future iterations (since incrementing poison yields poison). If the result
5595   // of the add recurrence is fed into the loop latch condition and the loop
5596   // does not contain any throws or exiting blocks other than the latch, we now
5597   // have the ability to "choose" whether the backedge is taken or not (by
5598   // choosing a sufficiently evil value for the poison feeding into the branch)
5599   // for every iteration including and after the one in which \p I first became
5600   // poison.  There are two possibilities (let's call the iteration in which \p
5601   // I first became poison as K):
5602   //
5603   //  1. In the set of iterations including and after K, the loop body executes
5604   //     no side effects.  In this case executing the backege an infinte number
5605   //     of times will yield undefined behavior.
5606   //
5607   //  2. In the set of iterations including and after K, the loop body executes
5608   //     at least one side effect.  In this case, that specific instance of side
5609   //     effect is control dependent on poison, which also yields undefined
5610   //     behavior.
5611 
5612   auto *ExitingBB = L->getExitingBlock();
5613   auto *LatchBB = L->getLoopLatch();
5614   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5615     return false;
5616 
5617   SmallPtrSet<const Instruction *, 16> Pushed;
5618   SmallVector<const Instruction *, 8> PoisonStack;
5619 
5620   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5621   // things that are known to be fully poison under that assumption go on the
5622   // PoisonStack.
5623   Pushed.insert(I);
5624   PoisonStack.push_back(I);
5625 
5626   bool LatchControlDependentOnPoison = false;
5627   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5628     const Instruction *Poison = PoisonStack.pop_back_val();
5629 
5630     for (auto *PoisonUser : Poison->users()) {
5631       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
5632         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5633           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5634       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5635         assert(BI->isConditional() && "Only possibility!");
5636         if (BI->getParent() == LatchBB) {
5637           LatchControlDependentOnPoison = true;
5638           break;
5639         }
5640       }
5641     }
5642   }
5643 
5644   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5645 }
5646 
5647 ScalarEvolution::LoopProperties
5648 ScalarEvolution::getLoopProperties(const Loop *L) {
5649   using LoopProperties = ScalarEvolution::LoopProperties;
5650 
5651   auto Itr = LoopPropertiesCache.find(L);
5652   if (Itr == LoopPropertiesCache.end()) {
5653     auto HasSideEffects = [](Instruction *I) {
5654       if (auto *SI = dyn_cast<StoreInst>(I))
5655         return !SI->isSimple();
5656 
5657       return I->mayHaveSideEffects();
5658     };
5659 
5660     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5661                          /*HasNoSideEffects*/ true};
5662 
5663     for (auto *BB : L->getBlocks())
5664       for (auto &I : *BB) {
5665         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5666           LP.HasNoAbnormalExits = false;
5667         if (HasSideEffects(&I))
5668           LP.HasNoSideEffects = false;
5669         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5670           break; // We're already as pessimistic as we can get.
5671       }
5672 
5673     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5674     assert(InsertPair.second && "We just checked!");
5675     Itr = InsertPair.first;
5676   }
5677 
5678   return Itr->second;
5679 }
5680 
5681 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5682   if (!isSCEVable(V->getType()))
5683     return getUnknown(V);
5684 
5685   if (Instruction *I = dyn_cast<Instruction>(V)) {
5686     // Don't attempt to analyze instructions in blocks that aren't
5687     // reachable. Such instructions don't matter, and they aren't required
5688     // to obey basic rules for definitions dominating uses which this
5689     // analysis depends on.
5690     if (!DT.isReachableFromEntry(I->getParent()))
5691       return getUnknown(V);
5692   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5693     return getConstant(CI);
5694   else if (isa<ConstantPointerNull>(V))
5695     return getZero(V->getType());
5696   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5697     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5698   else if (!isa<ConstantExpr>(V))
5699     return getUnknown(V);
5700 
5701   Operator *U = cast<Operator>(V);
5702   if (auto BO = MatchBinaryOp(U, DT)) {
5703     switch (BO->Opcode) {
5704     case Instruction::Add: {
5705       // The simple thing to do would be to just call getSCEV on both operands
5706       // and call getAddExpr with the result. However if we're looking at a
5707       // bunch of things all added together, this can be quite inefficient,
5708       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5709       // Instead, gather up all the operands and make a single getAddExpr call.
5710       // LLVM IR canonical form means we need only traverse the left operands.
5711       SmallVector<const SCEV *, 4> AddOps;
5712       do {
5713         if (BO->Op) {
5714           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5715             AddOps.push_back(OpSCEV);
5716             break;
5717           }
5718 
5719           // If a NUW or NSW flag can be applied to the SCEV for this
5720           // addition, then compute the SCEV for this addition by itself
5721           // with a separate call to getAddExpr. We need to do that
5722           // instead of pushing the operands of the addition onto AddOps,
5723           // since the flags are only known to apply to this particular
5724           // addition - they may not apply to other additions that can be
5725           // formed with operands from AddOps.
5726           const SCEV *RHS = getSCEV(BO->RHS);
5727           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5728           if (Flags != SCEV::FlagAnyWrap) {
5729             const SCEV *LHS = getSCEV(BO->LHS);
5730             if (BO->Opcode == Instruction::Sub)
5731               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5732             else
5733               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5734             break;
5735           }
5736         }
5737 
5738         if (BO->Opcode == Instruction::Sub)
5739           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5740         else
5741           AddOps.push_back(getSCEV(BO->RHS));
5742 
5743         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5744         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5745                        NewBO->Opcode != Instruction::Sub)) {
5746           AddOps.push_back(getSCEV(BO->LHS));
5747           break;
5748         }
5749         BO = NewBO;
5750       } while (true);
5751 
5752       return getAddExpr(AddOps);
5753     }
5754 
5755     case Instruction::Mul: {
5756       SmallVector<const SCEV *, 4> MulOps;
5757       do {
5758         if (BO->Op) {
5759           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5760             MulOps.push_back(OpSCEV);
5761             break;
5762           }
5763 
5764           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5765           if (Flags != SCEV::FlagAnyWrap) {
5766             MulOps.push_back(
5767                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5768             break;
5769           }
5770         }
5771 
5772         MulOps.push_back(getSCEV(BO->RHS));
5773         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5774         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5775           MulOps.push_back(getSCEV(BO->LHS));
5776           break;
5777         }
5778         BO = NewBO;
5779       } while (true);
5780 
5781       return getMulExpr(MulOps);
5782     }
5783     case Instruction::UDiv:
5784       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5785     case Instruction::Sub: {
5786       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5787       if (BO->Op)
5788         Flags = getNoWrapFlagsFromUB(BO->Op);
5789       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5790     }
5791     case Instruction::And:
5792       // For an expression like x&255 that merely masks off the high bits,
5793       // use zext(trunc(x)) as the SCEV expression.
5794       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5795         if (CI->isZero())
5796           return getSCEV(BO->RHS);
5797         if (CI->isMinusOne())
5798           return getSCEV(BO->LHS);
5799         const APInt &A = CI->getValue();
5800 
5801         // Instcombine's ShrinkDemandedConstant may strip bits out of
5802         // constants, obscuring what would otherwise be a low-bits mask.
5803         // Use computeKnownBits to compute what ShrinkDemandedConstant
5804         // knew about to reconstruct a low-bits mask value.
5805         unsigned LZ = A.countLeadingZeros();
5806         unsigned TZ = A.countTrailingZeros();
5807         unsigned BitWidth = A.getBitWidth();
5808         KnownBits Known(BitWidth);
5809         computeKnownBits(BO->LHS, Known, getDataLayout(),
5810                          0, &AC, nullptr, &DT);
5811 
5812         APInt EffectiveMask =
5813             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5814         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
5815           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
5816           const SCEV *LHS = getSCEV(BO->LHS);
5817           const SCEV *ShiftedLHS = nullptr;
5818           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
5819             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
5820               // For an expression like (x * 8) & 8, simplify the multiply.
5821               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
5822               unsigned GCD = std::min(MulZeros, TZ);
5823               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
5824               SmallVector<const SCEV*, 4> MulOps;
5825               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
5826               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
5827               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
5828               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
5829             }
5830           }
5831           if (!ShiftedLHS)
5832             ShiftedLHS = getUDivExpr(LHS, MulCount);
5833           return getMulExpr(
5834               getZeroExtendExpr(
5835                   getTruncateExpr(ShiftedLHS,
5836                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5837                   BO->LHS->getType()),
5838               MulCount);
5839         }
5840       }
5841       break;
5842 
5843     case Instruction::Or:
5844       // If the RHS of the Or is a constant, we may have something like:
5845       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5846       // optimizations will transparently handle this case.
5847       //
5848       // In order for this transformation to be safe, the LHS must be of the
5849       // form X*(2^n) and the Or constant must be less than 2^n.
5850       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5851         const SCEV *LHS = getSCEV(BO->LHS);
5852         const APInt &CIVal = CI->getValue();
5853         if (GetMinTrailingZeros(LHS) >=
5854             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5855           // Build a plain add SCEV.
5856           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5857           // If the LHS of the add was an addrec and it has no-wrap flags,
5858           // transfer the no-wrap flags, since an or won't introduce a wrap.
5859           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5860             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5861             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5862                 OldAR->getNoWrapFlags());
5863           }
5864           return S;
5865         }
5866       }
5867       break;
5868 
5869     case Instruction::Xor:
5870       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5871         // If the RHS of xor is -1, then this is a not operation.
5872         if (CI->isMinusOne())
5873           return getNotSCEV(getSCEV(BO->LHS));
5874 
5875         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5876         // This is a variant of the check for xor with -1, and it handles
5877         // the case where instcombine has trimmed non-demanded bits out
5878         // of an xor with -1.
5879         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5880           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5881             if (LBO->getOpcode() == Instruction::And &&
5882                 LCI->getValue() == CI->getValue())
5883               if (const SCEVZeroExtendExpr *Z =
5884                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5885                 Type *UTy = BO->LHS->getType();
5886                 const SCEV *Z0 = Z->getOperand();
5887                 Type *Z0Ty = Z0->getType();
5888                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5889 
5890                 // If C is a low-bits mask, the zero extend is serving to
5891                 // mask off the high bits. Complement the operand and
5892                 // re-apply the zext.
5893                 if (CI->getValue().isMask(Z0TySize))
5894                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5895 
5896                 // If C is a single bit, it may be in the sign-bit position
5897                 // before the zero-extend. In this case, represent the xor
5898                 // using an add, which is equivalent, and re-apply the zext.
5899                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5900                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5901                     Trunc.isSignMask())
5902                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5903                                            UTy);
5904               }
5905       }
5906       break;
5907 
5908   case Instruction::Shl:
5909     // Turn shift left of a constant amount into a multiply.
5910     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5911       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5912 
5913       // If the shift count is not less than the bitwidth, the result of
5914       // the shift is undefined. Don't try to analyze it, because the
5915       // resolution chosen here may differ from the resolution chosen in
5916       // other parts of the compiler.
5917       if (SA->getValue().uge(BitWidth))
5918         break;
5919 
5920       // It is currently not resolved how to interpret NSW for left
5921       // shift by BitWidth - 1, so we avoid applying flags in that
5922       // case. Remove this check (or this comment) once the situation
5923       // is resolved. See
5924       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5925       // and http://reviews.llvm.org/D8890 .
5926       auto Flags = SCEV::FlagAnyWrap;
5927       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5928         Flags = getNoWrapFlagsFromUB(BO->Op);
5929 
5930       Constant *X = ConstantInt::get(getContext(),
5931         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5932       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5933     }
5934     break;
5935 
5936     case Instruction::AShr: {
5937       // AShr X, C, where C is a constant.
5938       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
5939       if (!CI)
5940         break;
5941 
5942       Type *OuterTy = BO->LHS->getType();
5943       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
5944       // If the shift count is not less than the bitwidth, the result of
5945       // the shift is undefined. Don't try to analyze it, because the
5946       // resolution chosen here may differ from the resolution chosen in
5947       // other parts of the compiler.
5948       if (CI->getValue().uge(BitWidth))
5949         break;
5950 
5951       if (CI->isZero())
5952         return getSCEV(BO->LHS); // shift by zero --> noop
5953 
5954       uint64_t AShrAmt = CI->getZExtValue();
5955       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
5956 
5957       Operator *L = dyn_cast<Operator>(BO->LHS);
5958       if (L && L->getOpcode() == Instruction::Shl) {
5959         // X = Shl A, n
5960         // Y = AShr X, m
5961         // Both n and m are constant.
5962 
5963         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
5964         if (L->getOperand(1) == BO->RHS)
5965           // For a two-shift sext-inreg, i.e. n = m,
5966           // use sext(trunc(x)) as the SCEV expression.
5967           return getSignExtendExpr(
5968               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
5969 
5970         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
5971         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
5972           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
5973           if (ShlAmt > AShrAmt) {
5974             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
5975             // expression. We already checked that ShlAmt < BitWidth, so
5976             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
5977             // ShlAmt - AShrAmt < Amt.
5978             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
5979                                             ShlAmt - AShrAmt);
5980             return getSignExtendExpr(
5981                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
5982                 getConstant(Mul)), OuterTy);
5983           }
5984         }
5985       }
5986       break;
5987     }
5988     }
5989   }
5990 
5991   switch (U->getOpcode()) {
5992   case Instruction::Trunc:
5993     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5994 
5995   case Instruction::ZExt:
5996     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5997 
5998   case Instruction::SExt:
5999     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6000       // The NSW flag of a subtract does not always survive the conversion to
6001       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6002       // more likely to preserve NSW and allow later AddRec optimisations.
6003       //
6004       // NOTE: This is effectively duplicating this logic from getSignExtend:
6005       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6006       // but by that point the NSW information has potentially been lost.
6007       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6008         Type *Ty = U->getType();
6009         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6010         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6011         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6012       }
6013     }
6014     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6015 
6016   case Instruction::BitCast:
6017     // BitCasts are no-op casts so we just eliminate the cast.
6018     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6019       return getSCEV(U->getOperand(0));
6020     break;
6021 
6022   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6023   // lead to pointer expressions which cannot safely be expanded to GEPs,
6024   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6025   // simplifying integer expressions.
6026 
6027   case Instruction::GetElementPtr:
6028     return createNodeForGEP(cast<GEPOperator>(U));
6029 
6030   case Instruction::PHI:
6031     return createNodeForPHI(cast<PHINode>(U));
6032 
6033   case Instruction::Select:
6034     // U can also be a select constant expr, which let fall through.  Since
6035     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6036     // constant expressions cannot have instructions as operands, we'd have
6037     // returned getUnknown for a select constant expressions anyway.
6038     if (isa<Instruction>(U))
6039       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6040                                       U->getOperand(1), U->getOperand(2));
6041     break;
6042 
6043   case Instruction::Call:
6044   case Instruction::Invoke:
6045     if (Value *RV = CallSite(U).getReturnedArgOperand())
6046       return getSCEV(RV);
6047     break;
6048   }
6049 
6050   return getUnknown(V);
6051 }
6052 
6053 //===----------------------------------------------------------------------===//
6054 //                   Iteration Count Computation Code
6055 //
6056 
6057 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6058   if (!ExitCount)
6059     return 0;
6060 
6061   ConstantInt *ExitConst = ExitCount->getValue();
6062 
6063   // Guard against huge trip counts.
6064   if (ExitConst->getValue().getActiveBits() > 32)
6065     return 0;
6066 
6067   // In case of integer overflow, this returns 0, which is correct.
6068   return ((unsigned)ExitConst->getZExtValue()) + 1;
6069 }
6070 
6071 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6072   if (BasicBlock *ExitingBB = L->getExitingBlock())
6073     return getSmallConstantTripCount(L, ExitingBB);
6074 
6075   // No trip count information for multiple exits.
6076   return 0;
6077 }
6078 
6079 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6080                                                     BasicBlock *ExitingBlock) {
6081   assert(ExitingBlock && "Must pass a non-null exiting block!");
6082   assert(L->isLoopExiting(ExitingBlock) &&
6083          "Exiting block must actually branch out of the loop!");
6084   const SCEVConstant *ExitCount =
6085       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6086   return getConstantTripCount(ExitCount);
6087 }
6088 
6089 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6090   const auto *MaxExitCount =
6091       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6092   return getConstantTripCount(MaxExitCount);
6093 }
6094 
6095 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6096   if (BasicBlock *ExitingBB = L->getExitingBlock())
6097     return getSmallConstantTripMultiple(L, ExitingBB);
6098 
6099   // No trip multiple information for multiple exits.
6100   return 0;
6101 }
6102 
6103 /// Returns the largest constant divisor of the trip count of this loop as a
6104 /// normal unsigned value, if possible. This means that the actual trip count is
6105 /// always a multiple of the returned value (don't forget the trip count could
6106 /// very well be zero as well!).
6107 ///
6108 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6109 /// multiple of a constant (which is also the case if the trip count is simply
6110 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6111 /// if the trip count is very large (>= 2^32).
6112 ///
6113 /// As explained in the comments for getSmallConstantTripCount, this assumes
6114 /// that control exits the loop via ExitingBlock.
6115 unsigned
6116 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6117                                               BasicBlock *ExitingBlock) {
6118   assert(ExitingBlock && "Must pass a non-null exiting block!");
6119   assert(L->isLoopExiting(ExitingBlock) &&
6120          "Exiting block must actually branch out of the loop!");
6121   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6122   if (ExitCount == getCouldNotCompute())
6123     return 1;
6124 
6125   // Get the trip count from the BE count by adding 1.
6126   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6127 
6128   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6129   if (!TC)
6130     // Attempt to factor more general cases. Returns the greatest power of
6131     // two divisor. If overflow happens, the trip count expression is still
6132     // divisible by the greatest power of 2 divisor returned.
6133     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6134 
6135   ConstantInt *Result = TC->getValue();
6136 
6137   // Guard against huge trip counts (this requires checking
6138   // for zero to handle the case where the trip count == -1 and the
6139   // addition wraps).
6140   if (!Result || Result->getValue().getActiveBits() > 32 ||
6141       Result->getValue().getActiveBits() == 0)
6142     return 1;
6143 
6144   return (unsigned)Result->getZExtValue();
6145 }
6146 
6147 /// Get the expression for the number of loop iterations for which this loop is
6148 /// guaranteed not to exit via ExitingBlock. Otherwise return
6149 /// SCEVCouldNotCompute.
6150 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6151                                           BasicBlock *ExitingBlock) {
6152   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6153 }
6154 
6155 const SCEV *
6156 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6157                                                  SCEVUnionPredicate &Preds) {
6158   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
6159 }
6160 
6161 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6162   return getBackedgeTakenInfo(L).getExact(this);
6163 }
6164 
6165 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6166 /// known never to be less than the actual backedge taken count.
6167 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6168   return getBackedgeTakenInfo(L).getMax(this);
6169 }
6170 
6171 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6172   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6173 }
6174 
6175 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6176 static void
6177 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6178   BasicBlock *Header = L->getHeader();
6179 
6180   // Push all Loop-header PHIs onto the Worklist stack.
6181   for (BasicBlock::iterator I = Header->begin();
6182        PHINode *PN = dyn_cast<PHINode>(I); ++I)
6183     Worklist.push_back(PN);
6184 }
6185 
6186 const ScalarEvolution::BackedgeTakenInfo &
6187 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6188   auto &BTI = getBackedgeTakenInfo(L);
6189   if (BTI.hasFullInfo())
6190     return BTI;
6191 
6192   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6193 
6194   if (!Pair.second)
6195     return Pair.first->second;
6196 
6197   BackedgeTakenInfo Result =
6198       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6199 
6200   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6201 }
6202 
6203 const ScalarEvolution::BackedgeTakenInfo &
6204 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6205   // Initially insert an invalid entry for this loop. If the insertion
6206   // succeeds, proceed to actually compute a backedge-taken count and
6207   // update the value. The temporary CouldNotCompute value tells SCEV
6208   // code elsewhere that it shouldn't attempt to request a new
6209   // backedge-taken count, which could result in infinite recursion.
6210   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6211       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6212   if (!Pair.second)
6213     return Pair.first->second;
6214 
6215   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6216   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6217   // must be cleared in this scope.
6218   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6219 
6220   if (Result.getExact(this) != getCouldNotCompute()) {
6221     assert(isLoopInvariant(Result.getExact(this), L) &&
6222            isLoopInvariant(Result.getMax(this), L) &&
6223            "Computed backedge-taken count isn't loop invariant for loop!");
6224     ++NumTripCountsComputed;
6225   }
6226   else if (Result.getMax(this) == getCouldNotCompute() &&
6227            isa<PHINode>(L->getHeader()->begin())) {
6228     // Only count loops that have phi nodes as not being computable.
6229     ++NumTripCountsNotComputed;
6230   }
6231 
6232   // Now that we know more about the trip count for this loop, forget any
6233   // existing SCEV values for PHI nodes in this loop since they are only
6234   // conservative estimates made without the benefit of trip count
6235   // information. This is similar to the code in forgetLoop, except that
6236   // it handles SCEVUnknown PHI nodes specially.
6237   if (Result.hasAnyInfo()) {
6238     SmallVector<Instruction *, 16> Worklist;
6239     PushLoopPHIs(L, Worklist);
6240 
6241     SmallPtrSet<Instruction *, 8> Visited;
6242     while (!Worklist.empty()) {
6243       Instruction *I = Worklist.pop_back_val();
6244       if (!Visited.insert(I).second)
6245         continue;
6246 
6247       ValueExprMapType::iterator It =
6248         ValueExprMap.find_as(static_cast<Value *>(I));
6249       if (It != ValueExprMap.end()) {
6250         const SCEV *Old = It->second;
6251 
6252         // SCEVUnknown for a PHI either means that it has an unrecognized
6253         // structure, or it's a PHI that's in the progress of being computed
6254         // by createNodeForPHI.  In the former case, additional loop trip
6255         // count information isn't going to change anything. In the later
6256         // case, createNodeForPHI will perform the necessary updates on its
6257         // own when it gets to that point.
6258         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6259           eraseValueFromMap(It->first);
6260           forgetMemoizedResults(Old, false);
6261         }
6262         if (PHINode *PN = dyn_cast<PHINode>(I))
6263           ConstantEvolutionLoopExitValue.erase(PN);
6264       }
6265 
6266       PushDefUseChildren(I, Worklist);
6267     }
6268   }
6269 
6270   // Re-lookup the insert position, since the call to
6271   // computeBackedgeTakenCount above could result in a
6272   // recusive call to getBackedgeTakenInfo (on a different
6273   // loop), which would invalidate the iterator computed
6274   // earlier.
6275   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6276 }
6277 
6278 void ScalarEvolution::forgetLoop(const Loop *L) {
6279   // Drop any stored trip count value.
6280   auto RemoveLoopFromBackedgeMap =
6281       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
6282         auto BTCPos = Map.find(L);
6283         if (BTCPos != Map.end()) {
6284           BTCPos->second.clear();
6285           Map.erase(BTCPos);
6286         }
6287       };
6288 
6289   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
6290   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
6291 
6292   // Drop information about predicated SCEV rewrites for this loop.
6293   for (auto I = PredicatedSCEVRewrites.begin();
6294        I != PredicatedSCEVRewrites.end();) {
6295     std::pair<const SCEV *, const Loop *> Entry = I->first;
6296     if (Entry.second == L)
6297       PredicatedSCEVRewrites.erase(I++);
6298     else
6299       ++I;
6300   }
6301 
6302   // Drop information about expressions based on loop-header PHIs.
6303   SmallVector<Instruction *, 16> Worklist;
6304   PushLoopPHIs(L, Worklist);
6305 
6306   SmallPtrSet<Instruction *, 8> Visited;
6307   while (!Worklist.empty()) {
6308     Instruction *I = Worklist.pop_back_val();
6309     if (!Visited.insert(I).second)
6310       continue;
6311 
6312     ValueExprMapType::iterator It =
6313       ValueExprMap.find_as(static_cast<Value *>(I));
6314     if (It != ValueExprMap.end()) {
6315       eraseValueFromMap(It->first);
6316       forgetMemoizedResults(It->second);
6317       if (PHINode *PN = dyn_cast<PHINode>(I))
6318         ConstantEvolutionLoopExitValue.erase(PN);
6319     }
6320 
6321     PushDefUseChildren(I, Worklist);
6322   }
6323 
6324   for (auto I = ExitLimits.begin(); I != ExitLimits.end(); ++I) {
6325     auto &Query = I->first;
6326     if (Query.L == L)
6327       ExitLimits.erase(I);
6328   }
6329 
6330   // Forget all contained loops too, to avoid dangling entries in the
6331   // ValuesAtScopes map.
6332   for (Loop *I : *L)
6333     forgetLoop(I);
6334 
6335   LoopPropertiesCache.erase(L);
6336 }
6337 
6338 void ScalarEvolution::forgetValue(Value *V) {
6339   Instruction *I = dyn_cast<Instruction>(V);
6340   if (!I) return;
6341 
6342   // Drop information about expressions based on loop-header PHIs.
6343   SmallVector<Instruction *, 16> Worklist;
6344   Worklist.push_back(I);
6345 
6346   SmallPtrSet<Instruction *, 8> Visited;
6347   while (!Worklist.empty()) {
6348     I = Worklist.pop_back_val();
6349     if (!Visited.insert(I).second)
6350       continue;
6351 
6352     ValueExprMapType::iterator It =
6353       ValueExprMap.find_as(static_cast<Value *>(I));
6354     if (It != ValueExprMap.end()) {
6355       eraseValueFromMap(It->first);
6356       forgetMemoizedResults(It->second);
6357       if (PHINode *PN = dyn_cast<PHINode>(I))
6358         ConstantEvolutionLoopExitValue.erase(PN);
6359     }
6360 
6361     PushDefUseChildren(I, Worklist);
6362   }
6363 }
6364 
6365 /// Get the exact loop backedge taken count considering all loop exits. A
6366 /// computable result can only be returned for loops with a single exit.
6367 /// Returning the minimum taken count among all exits is incorrect because one
6368 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
6369 /// the limit of each loop test is never skipped. This is a valid assumption as
6370 /// long as the loop exits via that test. For precise results, it is the
6371 /// caller's responsibility to specify the relevant loop exit using
6372 /// getExact(ExitingBlock, SE).
6373 const SCEV *
6374 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
6375                                              SCEVUnionPredicate *Preds) const {
6376   // If any exits were not computable, the loop is not computable.
6377   if (!isComplete() || ExitNotTaken.empty())
6378     return SE->getCouldNotCompute();
6379 
6380   const SCEV *BECount = nullptr;
6381   for (auto &ENT : ExitNotTaken) {
6382     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
6383 
6384     if (!BECount)
6385       BECount = ENT.ExactNotTaken;
6386     else if (BECount != ENT.ExactNotTaken)
6387       return SE->getCouldNotCompute();
6388     if (Preds && !ENT.hasAlwaysTruePredicate())
6389       Preds->add(ENT.Predicate.get());
6390 
6391     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6392            "Predicate should be always true!");
6393   }
6394 
6395   assert(BECount && "Invalid not taken count for loop exit");
6396   return BECount;
6397 }
6398 
6399 /// Get the exact not taken count for this loop exit.
6400 const SCEV *
6401 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6402                                              ScalarEvolution *SE) const {
6403   for (auto &ENT : ExitNotTaken)
6404     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6405       return ENT.ExactNotTaken;
6406 
6407   return SE->getCouldNotCompute();
6408 }
6409 
6410 /// getMax - Get the max backedge taken count for the loop.
6411 const SCEV *
6412 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6413   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6414     return !ENT.hasAlwaysTruePredicate();
6415   };
6416 
6417   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6418     return SE->getCouldNotCompute();
6419 
6420   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6421          "No point in having a non-constant max backedge taken count!");
6422   return getMax();
6423 }
6424 
6425 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6426   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6427     return !ENT.hasAlwaysTruePredicate();
6428   };
6429   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6430 }
6431 
6432 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6433                                                     ScalarEvolution *SE) const {
6434   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6435       SE->hasOperand(getMax(), S))
6436     return true;
6437 
6438   for (auto &ENT : ExitNotTaken)
6439     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6440         SE->hasOperand(ENT.ExactNotTaken, S))
6441       return true;
6442 
6443   return false;
6444 }
6445 
6446 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6447     : ExactNotTaken(E), MaxNotTaken(E) {
6448   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6449           isa<SCEVConstant>(MaxNotTaken)) &&
6450          "No point in having a non-constant max backedge taken count!");
6451 }
6452 
6453 ScalarEvolution::ExitLimit::ExitLimit(
6454     const SCEV *E, const SCEV *M, bool MaxOrZero,
6455     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6456     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6457   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6458           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6459          "Exact is not allowed to be less precise than Max");
6460   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6461           isa<SCEVConstant>(MaxNotTaken)) &&
6462          "No point in having a non-constant max backedge taken count!");
6463   for (auto *PredSet : PredSetList)
6464     for (auto *P : *PredSet)
6465       addPredicate(P);
6466 }
6467 
6468 ScalarEvolution::ExitLimit::ExitLimit(
6469     const SCEV *E, const SCEV *M, bool MaxOrZero,
6470     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6471     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6472   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6473           isa<SCEVConstant>(MaxNotTaken)) &&
6474          "No point in having a non-constant max backedge taken count!");
6475 }
6476 
6477 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6478                                       bool MaxOrZero)
6479     : ExitLimit(E, M, MaxOrZero, None) {
6480   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6481           isa<SCEVConstant>(MaxNotTaken)) &&
6482          "No point in having a non-constant max backedge taken count!");
6483 }
6484 
6485 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6486 /// computable exit into a persistent ExitNotTakenInfo array.
6487 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6488     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6489         &&ExitCounts,
6490     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6491     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6492   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6493 
6494   ExitNotTaken.reserve(ExitCounts.size());
6495   std::transform(
6496       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6497       [&](const EdgeExitInfo &EEI) {
6498         BasicBlock *ExitBB = EEI.first;
6499         const ExitLimit &EL = EEI.second;
6500         if (EL.Predicates.empty())
6501           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6502 
6503         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6504         for (auto *Pred : EL.Predicates)
6505           Predicate->add(Pred);
6506 
6507         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6508       });
6509   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6510          "No point in having a non-constant max backedge taken count!");
6511 }
6512 
6513 /// Invalidate this result and free the ExitNotTakenInfo array.
6514 void ScalarEvolution::BackedgeTakenInfo::clear() {
6515   ExitNotTaken.clear();
6516 }
6517 
6518 /// Compute the number of times the backedge of the specified loop will execute.
6519 ScalarEvolution::BackedgeTakenInfo
6520 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6521                                            bool AllowPredicates) {
6522   SmallVector<BasicBlock *, 8> ExitingBlocks;
6523   L->getExitingBlocks(ExitingBlocks);
6524 
6525   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6526 
6527   SmallVector<EdgeExitInfo, 4> ExitCounts;
6528   bool CouldComputeBECount = true;
6529   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6530   const SCEV *MustExitMaxBECount = nullptr;
6531   const SCEV *MayExitMaxBECount = nullptr;
6532   bool MustExitMaxOrZero = false;
6533 
6534   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6535   // and compute maxBECount.
6536   // Do a union of all the predicates here.
6537   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6538     BasicBlock *ExitBB = ExitingBlocks[i];
6539     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6540 
6541     assert((AllowPredicates || EL.Predicates.empty()) &&
6542            "Predicated exit limit when predicates are not allowed!");
6543 
6544     // 1. For each exit that can be computed, add an entry to ExitCounts.
6545     // CouldComputeBECount is true only if all exits can be computed.
6546     if (EL.ExactNotTaken == getCouldNotCompute())
6547       // We couldn't compute an exact value for this exit, so
6548       // we won't be able to compute an exact value for the loop.
6549       CouldComputeBECount = false;
6550     else
6551       ExitCounts.emplace_back(ExitBB, EL);
6552 
6553     // 2. Derive the loop's MaxBECount from each exit's max number of
6554     // non-exiting iterations. Partition the loop exits into two kinds:
6555     // LoopMustExits and LoopMayExits.
6556     //
6557     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6558     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6559     // MaxBECount is the minimum EL.MaxNotTaken of computable
6560     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6561     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6562     // computable EL.MaxNotTaken.
6563     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6564         DT.dominates(ExitBB, Latch)) {
6565       if (!MustExitMaxBECount) {
6566         MustExitMaxBECount = EL.MaxNotTaken;
6567         MustExitMaxOrZero = EL.MaxOrZero;
6568       } else {
6569         MustExitMaxBECount =
6570             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6571       }
6572     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6573       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6574         MayExitMaxBECount = EL.MaxNotTaken;
6575       else {
6576         MayExitMaxBECount =
6577             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6578       }
6579     }
6580   }
6581   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6582     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6583   // The loop backedge will be taken the maximum or zero times if there's
6584   // a single exit that must be taken the maximum or zero times.
6585   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6586   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6587                            MaxBECount, MaxOrZero);
6588 }
6589 
6590 ScalarEvolution::ExitLimit
6591 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6592                                   bool AllowPredicates) {
6593   ExitLimitQuery Query(L, ExitingBlock, AllowPredicates);
6594   auto MaybeEL = ExitLimits.find(Query);
6595   if (MaybeEL != ExitLimits.end())
6596     return MaybeEL->second;
6597   ExitLimit EL = computeExitLimitImpl(L, ExitingBlock, AllowPredicates);
6598   ExitLimits.insert({Query, EL});
6599   return EL;
6600 }
6601 
6602 ScalarEvolution::ExitLimit
6603 ScalarEvolution::computeExitLimitImpl(const Loop *L, BasicBlock *ExitingBlock,
6604                                       bool AllowPredicates) {
6605   // Okay, we've chosen an exiting block.  See what condition causes us to exit
6606   // at this block and remember the exit block and whether all other targets
6607   // lead to the loop header.
6608   bool MustExecuteLoopHeader = true;
6609   BasicBlock *Exit = nullptr;
6610   for (auto *SBB : successors(ExitingBlock))
6611     if (!L->contains(SBB)) {
6612       if (Exit) // Multiple exit successors.
6613         return getCouldNotCompute();
6614       Exit = SBB;
6615     } else if (SBB != L->getHeader()) {
6616       MustExecuteLoopHeader = false;
6617     }
6618 
6619   // At this point, we know we have a conditional branch that determines whether
6620   // the loop is exited.  However, we don't know if the branch is executed each
6621   // time through the loop.  If not, then the execution count of the branch will
6622   // not be equal to the trip count of the loop.
6623   //
6624   // Currently we check for this by checking to see if the Exit branch goes to
6625   // the loop header.  If so, we know it will always execute the same number of
6626   // times as the loop.  We also handle the case where the exit block *is* the
6627   // loop header.  This is common for un-rotated loops.
6628   //
6629   // If both of those tests fail, walk up the unique predecessor chain to the
6630   // header, stopping if there is an edge that doesn't exit the loop. If the
6631   // header is reached, the execution count of the branch will be equal to the
6632   // trip count of the loop.
6633   //
6634   //  More extensive analysis could be done to handle more cases here.
6635   //
6636   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
6637     // The simple checks failed, try climbing the unique predecessor chain
6638     // up to the header.
6639     bool Ok = false;
6640     for (BasicBlock *BB = ExitingBlock; BB; ) {
6641       BasicBlock *Pred = BB->getUniquePredecessor();
6642       if (!Pred)
6643         return getCouldNotCompute();
6644       TerminatorInst *PredTerm = Pred->getTerminator();
6645       for (const BasicBlock *PredSucc : PredTerm->successors()) {
6646         if (PredSucc == BB)
6647           continue;
6648         // If the predecessor has a successor that isn't BB and isn't
6649         // outside the loop, assume the worst.
6650         if (L->contains(PredSucc))
6651           return getCouldNotCompute();
6652       }
6653       if (Pred == L->getHeader()) {
6654         Ok = true;
6655         break;
6656       }
6657       BB = Pred;
6658     }
6659     if (!Ok)
6660       return getCouldNotCompute();
6661   }
6662 
6663   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6664   TerminatorInst *Term = ExitingBlock->getTerminator();
6665   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
6666     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
6667     // Proceed to the next level to examine the exit condition expression.
6668     return computeExitLimitFromCond(
6669         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
6670         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
6671   }
6672 
6673   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
6674     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
6675                                                 /*ControlsExit=*/IsOnlyExit);
6676 
6677   return getCouldNotCompute();
6678 }
6679 
6680 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
6681     const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB,
6682     bool ControlsExit, bool AllowPredicates) {
6683   ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates);
6684   return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB,
6685                                         ControlsExit, AllowPredicates);
6686 }
6687 
6688 Optional<ScalarEvolution::ExitLimit>
6689 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
6690                                       BasicBlock *TBB, BasicBlock *FBB,
6691                                       bool ControlsExit, bool AllowPredicates) {
6692   (void)this->L;
6693   (void)this->TBB;
6694   (void)this->FBB;
6695   (void)this->AllowPredicates;
6696 
6697   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6698          this->AllowPredicates == AllowPredicates &&
6699          "Variance in assumed invariant key components!");
6700   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
6701   if (Itr == TripCountMap.end())
6702     return None;
6703   return Itr->second;
6704 }
6705 
6706 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
6707                                              BasicBlock *TBB, BasicBlock *FBB,
6708                                              bool ControlsExit,
6709                                              bool AllowPredicates,
6710                                              const ExitLimit &EL) {
6711   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6712          this->AllowPredicates == AllowPredicates &&
6713          "Variance in assumed invariant key components!");
6714 
6715   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
6716   assert(InsertResult.second && "Expected successful insertion!");
6717   (void)InsertResult;
6718 }
6719 
6720 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
6721     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6722     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6723 
6724   if (auto MaybeEL =
6725           Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates))
6726     return *MaybeEL;
6727 
6728   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB,
6729                                               ControlsExit, AllowPredicates);
6730   Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL);
6731   return EL;
6732 }
6733 
6734 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
6735     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6736     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6737   // Check if the controlling expression for this loop is an And or Or.
6738   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
6739     if (BO->getOpcode() == Instruction::And) {
6740       // Recurse on the operands of the and.
6741       bool EitherMayExit = L->contains(TBB);
6742       ExitLimit EL0 = computeExitLimitFromCondCached(
6743           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6744           AllowPredicates);
6745       ExitLimit EL1 = computeExitLimitFromCondCached(
6746           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6747           AllowPredicates);
6748       const SCEV *BECount = getCouldNotCompute();
6749       const SCEV *MaxBECount = getCouldNotCompute();
6750       if (EitherMayExit) {
6751         // Both conditions must be true for the loop to continue executing.
6752         // Choose the less conservative count.
6753         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6754             EL1.ExactNotTaken == getCouldNotCompute())
6755           BECount = getCouldNotCompute();
6756         else
6757           BECount =
6758               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6759         if (EL0.MaxNotTaken == getCouldNotCompute())
6760           MaxBECount = EL1.MaxNotTaken;
6761         else if (EL1.MaxNotTaken == getCouldNotCompute())
6762           MaxBECount = EL0.MaxNotTaken;
6763         else
6764           MaxBECount =
6765               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6766       } else {
6767         // Both conditions must be true at the same time for the loop to exit.
6768         // For now, be conservative.
6769         assert(L->contains(FBB) && "Loop block has no successor in loop!");
6770         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6771           MaxBECount = EL0.MaxNotTaken;
6772         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6773           BECount = EL0.ExactNotTaken;
6774       }
6775 
6776       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
6777       // to be more aggressive when computing BECount than when computing
6778       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
6779       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
6780       // to not.
6781       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
6782           !isa<SCEVCouldNotCompute>(BECount))
6783         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
6784 
6785       return ExitLimit(BECount, MaxBECount, false,
6786                        {&EL0.Predicates, &EL1.Predicates});
6787     }
6788     if (BO->getOpcode() == Instruction::Or) {
6789       // Recurse on the operands of the or.
6790       bool EitherMayExit = L->contains(FBB);
6791       ExitLimit EL0 = computeExitLimitFromCondCached(
6792           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6793           AllowPredicates);
6794       ExitLimit EL1 = computeExitLimitFromCondCached(
6795           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6796           AllowPredicates);
6797       const SCEV *BECount = getCouldNotCompute();
6798       const SCEV *MaxBECount = getCouldNotCompute();
6799       if (EitherMayExit) {
6800         // Both conditions must be false for the loop to continue executing.
6801         // Choose the less conservative count.
6802         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6803             EL1.ExactNotTaken == getCouldNotCompute())
6804           BECount = getCouldNotCompute();
6805         else
6806           BECount =
6807               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6808         if (EL0.MaxNotTaken == getCouldNotCompute())
6809           MaxBECount = EL1.MaxNotTaken;
6810         else if (EL1.MaxNotTaken == getCouldNotCompute())
6811           MaxBECount = EL0.MaxNotTaken;
6812         else
6813           MaxBECount =
6814               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6815       } else {
6816         // Both conditions must be false at the same time for the loop to exit.
6817         // For now, be conservative.
6818         assert(L->contains(TBB) && "Loop block has no successor in loop!");
6819         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6820           MaxBECount = EL0.MaxNotTaken;
6821         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6822           BECount = EL0.ExactNotTaken;
6823       }
6824 
6825       return ExitLimit(BECount, MaxBECount, false,
6826                        {&EL0.Predicates, &EL1.Predicates});
6827     }
6828   }
6829 
6830   // With an icmp, it may be feasible to compute an exact backedge-taken count.
6831   // Proceed to the next level to examine the icmp.
6832   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
6833     ExitLimit EL =
6834         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
6835     if (EL.hasFullInfo() || !AllowPredicates)
6836       return EL;
6837 
6838     // Try again, but use SCEV predicates this time.
6839     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
6840                                     /*AllowPredicates=*/true);
6841   }
6842 
6843   // Check for a constant condition. These are normally stripped out by
6844   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6845   // preserve the CFG and is temporarily leaving constant conditions
6846   // in place.
6847   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6848     if (L->contains(FBB) == !CI->getZExtValue())
6849       // The backedge is always taken.
6850       return getCouldNotCompute();
6851     else
6852       // The backedge is never taken.
6853       return getZero(CI->getType());
6854   }
6855 
6856   // If it's not an integer or pointer comparison then compute it the hard way.
6857   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6858 }
6859 
6860 ScalarEvolution::ExitLimit
6861 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6862                                           ICmpInst *ExitCond,
6863                                           BasicBlock *TBB,
6864                                           BasicBlock *FBB,
6865                                           bool ControlsExit,
6866                                           bool AllowPredicates) {
6867   // If the condition was exit on true, convert the condition to exit on false
6868   ICmpInst::Predicate Cond;
6869   if (!L->contains(FBB))
6870     Cond = ExitCond->getPredicate();
6871   else
6872     Cond = ExitCond->getInversePredicate();
6873 
6874   // Handle common loops like: for (X = "string"; *X; ++X)
6875   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6876     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6877       ExitLimit ItCnt =
6878         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6879       if (ItCnt.hasAnyInfo())
6880         return ItCnt;
6881     }
6882 
6883   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6884   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6885 
6886   // Try to evaluate any dependencies out of the loop.
6887   LHS = getSCEVAtScope(LHS, L);
6888   RHS = getSCEVAtScope(RHS, L);
6889 
6890   // At this point, we would like to compute how many iterations of the
6891   // loop the predicate will return true for these inputs.
6892   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6893     // If there is a loop-invariant, force it into the RHS.
6894     std::swap(LHS, RHS);
6895     Cond = ICmpInst::getSwappedPredicate(Cond);
6896   }
6897 
6898   // Simplify the operands before analyzing them.
6899   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6900 
6901   // If we have a comparison of a chrec against a constant, try to use value
6902   // ranges to answer this query.
6903   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6904     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6905       if (AddRec->getLoop() == L) {
6906         // Form the constant range.
6907         ConstantRange CompRange =
6908             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
6909 
6910         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6911         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6912       }
6913 
6914   switch (Cond) {
6915   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6916     // Convert to: while (X-Y != 0)
6917     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6918                                 AllowPredicates);
6919     if (EL.hasAnyInfo()) return EL;
6920     break;
6921   }
6922   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6923     // Convert to: while (X-Y == 0)
6924     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6925     if (EL.hasAnyInfo()) return EL;
6926     break;
6927   }
6928   case ICmpInst::ICMP_SLT:
6929   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6930     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6931     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6932                                     AllowPredicates);
6933     if (EL.hasAnyInfo()) return EL;
6934     break;
6935   }
6936   case ICmpInst::ICMP_SGT:
6937   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6938     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6939     ExitLimit EL =
6940         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6941                             AllowPredicates);
6942     if (EL.hasAnyInfo()) return EL;
6943     break;
6944   }
6945   default:
6946     break;
6947   }
6948 
6949   auto *ExhaustiveCount =
6950       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6951 
6952   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6953     return ExhaustiveCount;
6954 
6955   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6956                                       ExitCond->getOperand(1), L, Cond);
6957 }
6958 
6959 ScalarEvolution::ExitLimit
6960 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6961                                                       SwitchInst *Switch,
6962                                                       BasicBlock *ExitingBlock,
6963                                                       bool ControlsExit) {
6964   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6965 
6966   // Give up if the exit is the default dest of a switch.
6967   if (Switch->getDefaultDest() == ExitingBlock)
6968     return getCouldNotCompute();
6969 
6970   assert(L->contains(Switch->getDefaultDest()) &&
6971          "Default case must not exit the loop!");
6972   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6973   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6974 
6975   // while (X != Y) --> while (X-Y != 0)
6976   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6977   if (EL.hasAnyInfo())
6978     return EL;
6979 
6980   return getCouldNotCompute();
6981 }
6982 
6983 static ConstantInt *
6984 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6985                                 ScalarEvolution &SE) {
6986   const SCEV *InVal = SE.getConstant(C);
6987   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6988   assert(isa<SCEVConstant>(Val) &&
6989          "Evaluation of SCEV at constant didn't fold correctly?");
6990   return cast<SCEVConstant>(Val)->getValue();
6991 }
6992 
6993 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6994 /// compute the backedge execution count.
6995 ScalarEvolution::ExitLimit
6996 ScalarEvolution::computeLoadConstantCompareExitLimit(
6997   LoadInst *LI,
6998   Constant *RHS,
6999   const Loop *L,
7000   ICmpInst::Predicate predicate) {
7001   if (LI->isVolatile()) return getCouldNotCompute();
7002 
7003   // Check to see if the loaded pointer is a getelementptr of a global.
7004   // TODO: Use SCEV instead of manually grubbing with GEPs.
7005   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7006   if (!GEP) return getCouldNotCompute();
7007 
7008   // Make sure that it is really a constant global we are gepping, with an
7009   // initializer, and make sure the first IDX is really 0.
7010   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7011   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7012       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7013       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7014     return getCouldNotCompute();
7015 
7016   // Okay, we allow one non-constant index into the GEP instruction.
7017   Value *VarIdx = nullptr;
7018   std::vector<Constant*> Indexes;
7019   unsigned VarIdxNum = 0;
7020   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7021     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7022       Indexes.push_back(CI);
7023     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7024       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7025       VarIdx = GEP->getOperand(i);
7026       VarIdxNum = i-2;
7027       Indexes.push_back(nullptr);
7028     }
7029 
7030   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7031   if (!VarIdx)
7032     return getCouldNotCompute();
7033 
7034   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7035   // Check to see if X is a loop variant variable value now.
7036   const SCEV *Idx = getSCEV(VarIdx);
7037   Idx = getSCEVAtScope(Idx, L);
7038 
7039   // We can only recognize very limited forms of loop index expressions, in
7040   // particular, only affine AddRec's like {C1,+,C2}.
7041   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7042   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7043       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7044       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7045     return getCouldNotCompute();
7046 
7047   unsigned MaxSteps = MaxBruteForceIterations;
7048   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7049     ConstantInt *ItCst = ConstantInt::get(
7050                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7051     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7052 
7053     // Form the GEP offset.
7054     Indexes[VarIdxNum] = Val;
7055 
7056     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7057                                                          Indexes);
7058     if (!Result) break;  // Cannot compute!
7059 
7060     // Evaluate the condition for this iteration.
7061     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7062     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7063     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7064       ++NumArrayLenItCounts;
7065       return getConstant(ItCst);   // Found terminating iteration!
7066     }
7067   }
7068   return getCouldNotCompute();
7069 }
7070 
7071 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7072     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7073   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7074   if (!RHS)
7075     return getCouldNotCompute();
7076 
7077   const BasicBlock *Latch = L->getLoopLatch();
7078   if (!Latch)
7079     return getCouldNotCompute();
7080 
7081   const BasicBlock *Predecessor = L->getLoopPredecessor();
7082   if (!Predecessor)
7083     return getCouldNotCompute();
7084 
7085   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7086   // Return LHS in OutLHS and shift_opt in OutOpCode.
7087   auto MatchPositiveShift =
7088       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7089 
7090     using namespace PatternMatch;
7091 
7092     ConstantInt *ShiftAmt;
7093     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7094       OutOpCode = Instruction::LShr;
7095     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7096       OutOpCode = Instruction::AShr;
7097     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7098       OutOpCode = Instruction::Shl;
7099     else
7100       return false;
7101 
7102     return ShiftAmt->getValue().isStrictlyPositive();
7103   };
7104 
7105   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7106   //
7107   // loop:
7108   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7109   //   %iv.shifted = lshr i32 %iv, <positive constant>
7110   //
7111   // Return true on a successful match.  Return the corresponding PHI node (%iv
7112   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7113   auto MatchShiftRecurrence =
7114       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7115     Optional<Instruction::BinaryOps> PostShiftOpCode;
7116 
7117     {
7118       Instruction::BinaryOps OpC;
7119       Value *V;
7120 
7121       // If we encounter a shift instruction, "peel off" the shift operation,
7122       // and remember that we did so.  Later when we inspect %iv's backedge
7123       // value, we will make sure that the backedge value uses the same
7124       // operation.
7125       //
7126       // Note: the peeled shift operation does not have to be the same
7127       // instruction as the one feeding into the PHI's backedge value.  We only
7128       // really care about it being the same *kind* of shift instruction --
7129       // that's all that is required for our later inferences to hold.
7130       if (MatchPositiveShift(LHS, V, OpC)) {
7131         PostShiftOpCode = OpC;
7132         LHS = V;
7133       }
7134     }
7135 
7136     PNOut = dyn_cast<PHINode>(LHS);
7137     if (!PNOut || PNOut->getParent() != L->getHeader())
7138       return false;
7139 
7140     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7141     Value *OpLHS;
7142 
7143     return
7144         // The backedge value for the PHI node must be a shift by a positive
7145         // amount
7146         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7147 
7148         // of the PHI node itself
7149         OpLHS == PNOut &&
7150 
7151         // and the kind of shift should be match the kind of shift we peeled
7152         // off, if any.
7153         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7154   };
7155 
7156   PHINode *PN;
7157   Instruction::BinaryOps OpCode;
7158   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7159     return getCouldNotCompute();
7160 
7161   const DataLayout &DL = getDataLayout();
7162 
7163   // The key rationale for this optimization is that for some kinds of shift
7164   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7165   // within a finite number of iterations.  If the condition guarding the
7166   // backedge (in the sense that the backedge is taken if the condition is true)
7167   // is false for the value the shift recurrence stabilizes to, then we know
7168   // that the backedge is taken only a finite number of times.
7169 
7170   ConstantInt *StableValue = nullptr;
7171   switch (OpCode) {
7172   default:
7173     llvm_unreachable("Impossible case!");
7174 
7175   case Instruction::AShr: {
7176     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7177     // bitwidth(K) iterations.
7178     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7179     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7180                                        Predecessor->getTerminator(), &DT);
7181     auto *Ty = cast<IntegerType>(RHS->getType());
7182     if (Known.isNonNegative())
7183       StableValue = ConstantInt::get(Ty, 0);
7184     else if (Known.isNegative())
7185       StableValue = ConstantInt::get(Ty, -1, true);
7186     else
7187       return getCouldNotCompute();
7188 
7189     break;
7190   }
7191   case Instruction::LShr:
7192   case Instruction::Shl:
7193     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7194     // stabilize to 0 in at most bitwidth(K) iterations.
7195     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7196     break;
7197   }
7198 
7199   auto *Result =
7200       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7201   assert(Result->getType()->isIntegerTy(1) &&
7202          "Otherwise cannot be an operand to a branch instruction");
7203 
7204   if (Result->isZeroValue()) {
7205     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7206     const SCEV *UpperBound =
7207         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7208     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7209   }
7210 
7211   return getCouldNotCompute();
7212 }
7213 
7214 /// Return true if we can constant fold an instruction of the specified type,
7215 /// assuming that all operands were constants.
7216 static bool CanConstantFold(const Instruction *I) {
7217   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7218       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7219       isa<LoadInst>(I))
7220     return true;
7221 
7222   if (const CallInst *CI = dyn_cast<CallInst>(I))
7223     if (const Function *F = CI->getCalledFunction())
7224       return canConstantFoldCallTo(CI, F);
7225   return false;
7226 }
7227 
7228 /// Determine whether this instruction can constant evolve within this loop
7229 /// assuming its operands can all constant evolve.
7230 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7231   // An instruction outside of the loop can't be derived from a loop PHI.
7232   if (!L->contains(I)) return false;
7233 
7234   if (isa<PHINode>(I)) {
7235     // We don't currently keep track of the control flow needed to evaluate
7236     // PHIs, so we cannot handle PHIs inside of loops.
7237     return L->getHeader() == I->getParent();
7238   }
7239 
7240   // If we won't be able to constant fold this expression even if the operands
7241   // are constants, bail early.
7242   return CanConstantFold(I);
7243 }
7244 
7245 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7246 /// recursing through each instruction operand until reaching a loop header phi.
7247 static PHINode *
7248 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7249                                DenseMap<Instruction *, PHINode *> &PHIMap,
7250                                unsigned Depth) {
7251   if (Depth > MaxConstantEvolvingDepth)
7252     return nullptr;
7253 
7254   // Otherwise, we can evaluate this instruction if all of its operands are
7255   // constant or derived from a PHI node themselves.
7256   PHINode *PHI = nullptr;
7257   for (Value *Op : UseInst->operands()) {
7258     if (isa<Constant>(Op)) continue;
7259 
7260     Instruction *OpInst = dyn_cast<Instruction>(Op);
7261     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7262 
7263     PHINode *P = dyn_cast<PHINode>(OpInst);
7264     if (!P)
7265       // If this operand is already visited, reuse the prior result.
7266       // We may have P != PHI if this is the deepest point at which the
7267       // inconsistent paths meet.
7268       P = PHIMap.lookup(OpInst);
7269     if (!P) {
7270       // Recurse and memoize the results, whether a phi is found or not.
7271       // This recursive call invalidates pointers into PHIMap.
7272       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7273       PHIMap[OpInst] = P;
7274     }
7275     if (!P)
7276       return nullptr;  // Not evolving from PHI
7277     if (PHI && PHI != P)
7278       return nullptr;  // Evolving from multiple different PHIs.
7279     PHI = P;
7280   }
7281   // This is a expression evolving from a constant PHI!
7282   return PHI;
7283 }
7284 
7285 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7286 /// in the loop that V is derived from.  We allow arbitrary operations along the
7287 /// way, but the operands of an operation must either be constants or a value
7288 /// derived from a constant PHI.  If this expression does not fit with these
7289 /// constraints, return null.
7290 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7291   Instruction *I = dyn_cast<Instruction>(V);
7292   if (!I || !canConstantEvolve(I, L)) return nullptr;
7293 
7294   if (PHINode *PN = dyn_cast<PHINode>(I))
7295     return PN;
7296 
7297   // Record non-constant instructions contained by the loop.
7298   DenseMap<Instruction *, PHINode *> PHIMap;
7299   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7300 }
7301 
7302 /// EvaluateExpression - Given an expression that passes the
7303 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7304 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7305 /// reason, return null.
7306 static Constant *EvaluateExpression(Value *V, const Loop *L,
7307                                     DenseMap<Instruction *, Constant *> &Vals,
7308                                     const DataLayout &DL,
7309                                     const TargetLibraryInfo *TLI) {
7310   // Convenient constant check, but redundant for recursive calls.
7311   if (Constant *C = dyn_cast<Constant>(V)) return C;
7312   Instruction *I = dyn_cast<Instruction>(V);
7313   if (!I) return nullptr;
7314 
7315   if (Constant *C = Vals.lookup(I)) return C;
7316 
7317   // An instruction inside the loop depends on a value outside the loop that we
7318   // weren't given a mapping for, or a value such as a call inside the loop.
7319   if (!canConstantEvolve(I, L)) return nullptr;
7320 
7321   // An unmapped PHI can be due to a branch or another loop inside this loop,
7322   // or due to this not being the initial iteration through a loop where we
7323   // couldn't compute the evolution of this particular PHI last time.
7324   if (isa<PHINode>(I)) return nullptr;
7325 
7326   std::vector<Constant*> Operands(I->getNumOperands());
7327 
7328   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7329     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7330     if (!Operand) {
7331       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7332       if (!Operands[i]) return nullptr;
7333       continue;
7334     }
7335     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7336     Vals[Operand] = C;
7337     if (!C) return nullptr;
7338     Operands[i] = C;
7339   }
7340 
7341   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7342     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7343                                            Operands[1], DL, TLI);
7344   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7345     if (!LI->isVolatile())
7346       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7347   }
7348   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7349 }
7350 
7351 
7352 // If every incoming value to PN except the one for BB is a specific Constant,
7353 // return that, else return nullptr.
7354 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7355   Constant *IncomingVal = nullptr;
7356 
7357   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7358     if (PN->getIncomingBlock(i) == BB)
7359       continue;
7360 
7361     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7362     if (!CurrentVal)
7363       return nullptr;
7364 
7365     if (IncomingVal != CurrentVal) {
7366       if (IncomingVal)
7367         return nullptr;
7368       IncomingVal = CurrentVal;
7369     }
7370   }
7371 
7372   return IncomingVal;
7373 }
7374 
7375 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7376 /// in the header of its containing loop, we know the loop executes a
7377 /// constant number of times, and the PHI node is just a recurrence
7378 /// involving constants, fold it.
7379 Constant *
7380 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7381                                                    const APInt &BEs,
7382                                                    const Loop *L) {
7383   auto I = ConstantEvolutionLoopExitValue.find(PN);
7384   if (I != ConstantEvolutionLoopExitValue.end())
7385     return I->second;
7386 
7387   if (BEs.ugt(MaxBruteForceIterations))
7388     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7389 
7390   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7391 
7392   DenseMap<Instruction *, Constant *> CurrentIterVals;
7393   BasicBlock *Header = L->getHeader();
7394   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7395 
7396   BasicBlock *Latch = L->getLoopLatch();
7397   if (!Latch)
7398     return nullptr;
7399 
7400   for (auto &I : *Header) {
7401     PHINode *PHI = dyn_cast<PHINode>(&I);
7402     if (!PHI) break;
7403     auto *StartCST = getOtherIncomingValue(PHI, Latch);
7404     if (!StartCST) continue;
7405     CurrentIterVals[PHI] = StartCST;
7406   }
7407   if (!CurrentIterVals.count(PN))
7408     return RetVal = nullptr;
7409 
7410   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7411 
7412   // Execute the loop symbolically to determine the exit value.
7413   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7414          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7415 
7416   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7417   unsigned IterationNum = 0;
7418   const DataLayout &DL = getDataLayout();
7419   for (; ; ++IterationNum) {
7420     if (IterationNum == NumIterations)
7421       return RetVal = CurrentIterVals[PN];  // Got exit value!
7422 
7423     // Compute the value of the PHIs for the next iteration.
7424     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7425     DenseMap<Instruction *, Constant *> NextIterVals;
7426     Constant *NextPHI =
7427         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7428     if (!NextPHI)
7429       return nullptr;        // Couldn't evaluate!
7430     NextIterVals[PN] = NextPHI;
7431 
7432     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7433 
7434     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7435     // cease to be able to evaluate one of them or if they stop evolving,
7436     // because that doesn't necessarily prevent us from computing PN.
7437     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7438     for (const auto &I : CurrentIterVals) {
7439       PHINode *PHI = dyn_cast<PHINode>(I.first);
7440       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7441       PHIsToCompute.emplace_back(PHI, I.second);
7442     }
7443     // We use two distinct loops because EvaluateExpression may invalidate any
7444     // iterators into CurrentIterVals.
7445     for (const auto &I : PHIsToCompute) {
7446       PHINode *PHI = I.first;
7447       Constant *&NextPHI = NextIterVals[PHI];
7448       if (!NextPHI) {   // Not already computed.
7449         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7450         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7451       }
7452       if (NextPHI != I.second)
7453         StoppedEvolving = false;
7454     }
7455 
7456     // If all entries in CurrentIterVals == NextIterVals then we can stop
7457     // iterating, the loop can't continue to change.
7458     if (StoppedEvolving)
7459       return RetVal = CurrentIterVals[PN];
7460 
7461     CurrentIterVals.swap(NextIterVals);
7462   }
7463 }
7464 
7465 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7466                                                           Value *Cond,
7467                                                           bool ExitWhen) {
7468   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7469   if (!PN) return getCouldNotCompute();
7470 
7471   // If the loop is canonicalized, the PHI will have exactly two entries.
7472   // That's the only form we support here.
7473   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7474 
7475   DenseMap<Instruction *, Constant *> CurrentIterVals;
7476   BasicBlock *Header = L->getHeader();
7477   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7478 
7479   BasicBlock *Latch = L->getLoopLatch();
7480   assert(Latch && "Should follow from NumIncomingValues == 2!");
7481 
7482   for (auto &I : *Header) {
7483     PHINode *PHI = dyn_cast<PHINode>(&I);
7484     if (!PHI)
7485       break;
7486     auto *StartCST = getOtherIncomingValue(PHI, Latch);
7487     if (!StartCST) continue;
7488     CurrentIterVals[PHI] = StartCST;
7489   }
7490   if (!CurrentIterVals.count(PN))
7491     return getCouldNotCompute();
7492 
7493   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7494   // the loop symbolically to determine when the condition gets a value of
7495   // "ExitWhen".
7496   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7497   const DataLayout &DL = getDataLayout();
7498   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7499     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7500         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7501 
7502     // Couldn't symbolically evaluate.
7503     if (!CondVal) return getCouldNotCompute();
7504 
7505     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7506       ++NumBruteForceTripCountsComputed;
7507       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7508     }
7509 
7510     // Update all the PHI nodes for the next iteration.
7511     DenseMap<Instruction *, Constant *> NextIterVals;
7512 
7513     // Create a list of which PHIs we need to compute. We want to do this before
7514     // calling EvaluateExpression on them because that may invalidate iterators
7515     // into CurrentIterVals.
7516     SmallVector<PHINode *, 8> PHIsToCompute;
7517     for (const auto &I : CurrentIterVals) {
7518       PHINode *PHI = dyn_cast<PHINode>(I.first);
7519       if (!PHI || PHI->getParent() != Header) continue;
7520       PHIsToCompute.push_back(PHI);
7521     }
7522     for (PHINode *PHI : PHIsToCompute) {
7523       Constant *&NextPHI = NextIterVals[PHI];
7524       if (NextPHI) continue;    // Already computed!
7525 
7526       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7527       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7528     }
7529     CurrentIterVals.swap(NextIterVals);
7530   }
7531 
7532   // Too many iterations were needed to evaluate.
7533   return getCouldNotCompute();
7534 }
7535 
7536 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7537   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7538       ValuesAtScopes[V];
7539   // Check to see if we've folded this expression at this loop before.
7540   for (auto &LS : Values)
7541     if (LS.first == L)
7542       return LS.second ? LS.second : V;
7543 
7544   Values.emplace_back(L, nullptr);
7545 
7546   // Otherwise compute it.
7547   const SCEV *C = computeSCEVAtScope(V, L);
7548   for (auto &LS : reverse(ValuesAtScopes[V]))
7549     if (LS.first == L) {
7550       LS.second = C;
7551       break;
7552     }
7553   return C;
7554 }
7555 
7556 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7557 /// will return Constants for objects which aren't represented by a
7558 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7559 /// Returns NULL if the SCEV isn't representable as a Constant.
7560 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7561   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7562     case scCouldNotCompute:
7563     case scAddRecExpr:
7564       break;
7565     case scConstant:
7566       return cast<SCEVConstant>(V)->getValue();
7567     case scUnknown:
7568       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7569     case scSignExtend: {
7570       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7571       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7572         return ConstantExpr::getSExt(CastOp, SS->getType());
7573       break;
7574     }
7575     case scZeroExtend: {
7576       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7577       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7578         return ConstantExpr::getZExt(CastOp, SZ->getType());
7579       break;
7580     }
7581     case scTruncate: {
7582       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7583       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7584         return ConstantExpr::getTrunc(CastOp, ST->getType());
7585       break;
7586     }
7587     case scAddExpr: {
7588       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7589       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7590         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7591           unsigned AS = PTy->getAddressSpace();
7592           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7593           C = ConstantExpr::getBitCast(C, DestPtrTy);
7594         }
7595         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7596           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7597           if (!C2) return nullptr;
7598 
7599           // First pointer!
7600           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7601             unsigned AS = C2->getType()->getPointerAddressSpace();
7602             std::swap(C, C2);
7603             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7604             // The offsets have been converted to bytes.  We can add bytes to an
7605             // i8* by GEP with the byte count in the first index.
7606             C = ConstantExpr::getBitCast(C, DestPtrTy);
7607           }
7608 
7609           // Don't bother trying to sum two pointers. We probably can't
7610           // statically compute a load that results from it anyway.
7611           if (C2->getType()->isPointerTy())
7612             return nullptr;
7613 
7614           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7615             if (PTy->getElementType()->isStructTy())
7616               C2 = ConstantExpr::getIntegerCast(
7617                   C2, Type::getInt32Ty(C->getContext()), true);
7618             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7619           } else
7620             C = ConstantExpr::getAdd(C, C2);
7621         }
7622         return C;
7623       }
7624       break;
7625     }
7626     case scMulExpr: {
7627       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7628       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7629         // Don't bother with pointers at all.
7630         if (C->getType()->isPointerTy()) return nullptr;
7631         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7632           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7633           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7634           C = ConstantExpr::getMul(C, C2);
7635         }
7636         return C;
7637       }
7638       break;
7639     }
7640     case scUDivExpr: {
7641       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7642       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7643         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
7644           if (LHS->getType() == RHS->getType())
7645             return ConstantExpr::getUDiv(LHS, RHS);
7646       break;
7647     }
7648     case scSMaxExpr:
7649     case scUMaxExpr:
7650       break; // TODO: smax, umax.
7651   }
7652   return nullptr;
7653 }
7654 
7655 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
7656   if (isa<SCEVConstant>(V)) return V;
7657 
7658   // If this instruction is evolved from a constant-evolving PHI, compute the
7659   // exit value from the loop without using SCEVs.
7660   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
7661     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
7662       const Loop *LI = this->LI[I->getParent()];
7663       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
7664         if (PHINode *PN = dyn_cast<PHINode>(I))
7665           if (PN->getParent() == LI->getHeader()) {
7666             // Okay, there is no closed form solution for the PHI node.  Check
7667             // to see if the loop that contains it has a known backedge-taken
7668             // count.  If so, we may be able to force computation of the exit
7669             // value.
7670             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
7671             if (const SCEVConstant *BTCC =
7672                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
7673 
7674               // This trivial case can show up in some degenerate cases where
7675               // the incoming IR has not yet been fully simplified.
7676               if (BTCC->getValue()->isZero()) {
7677                 Value *InitValue = nullptr;
7678                 bool MultipleInitValues = false;
7679                 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
7680                   if (!LI->contains(PN->getIncomingBlock(i))) {
7681                     if (!InitValue)
7682                       InitValue = PN->getIncomingValue(i);
7683                     else if (InitValue != PN->getIncomingValue(i)) {
7684                       MultipleInitValues = true;
7685                       break;
7686                     }
7687                   }
7688                   if (!MultipleInitValues && InitValue)
7689                     return getSCEV(InitValue);
7690                 }
7691               }
7692               // Okay, we know how many times the containing loop executes.  If
7693               // this is a constant evolving PHI node, get the final value at
7694               // the specified iteration number.
7695               Constant *RV =
7696                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
7697               if (RV) return getSCEV(RV);
7698             }
7699           }
7700 
7701       // Okay, this is an expression that we cannot symbolically evaluate
7702       // into a SCEV.  Check to see if it's possible to symbolically evaluate
7703       // the arguments into constants, and if so, try to constant propagate the
7704       // result.  This is particularly useful for computing loop exit values.
7705       if (CanConstantFold(I)) {
7706         SmallVector<Constant *, 4> Operands;
7707         bool MadeImprovement = false;
7708         for (Value *Op : I->operands()) {
7709           if (Constant *C = dyn_cast<Constant>(Op)) {
7710             Operands.push_back(C);
7711             continue;
7712           }
7713 
7714           // If any of the operands is non-constant and if they are
7715           // non-integer and non-pointer, don't even try to analyze them
7716           // with scev techniques.
7717           if (!isSCEVable(Op->getType()))
7718             return V;
7719 
7720           const SCEV *OrigV = getSCEV(Op);
7721           const SCEV *OpV = getSCEVAtScope(OrigV, L);
7722           MadeImprovement |= OrigV != OpV;
7723 
7724           Constant *C = BuildConstantFromSCEV(OpV);
7725           if (!C) return V;
7726           if (C->getType() != Op->getType())
7727             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
7728                                                               Op->getType(),
7729                                                               false),
7730                                       C, Op->getType());
7731           Operands.push_back(C);
7732         }
7733 
7734         // Check to see if getSCEVAtScope actually made an improvement.
7735         if (MadeImprovement) {
7736           Constant *C = nullptr;
7737           const DataLayout &DL = getDataLayout();
7738           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
7739             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7740                                                 Operands[1], DL, &TLI);
7741           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
7742             if (!LI->isVolatile())
7743               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7744           } else
7745             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
7746           if (!C) return V;
7747           return getSCEV(C);
7748         }
7749       }
7750     }
7751 
7752     // This is some other type of SCEVUnknown, just return it.
7753     return V;
7754   }
7755 
7756   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
7757     // Avoid performing the look-up in the common case where the specified
7758     // expression has no loop-variant portions.
7759     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
7760       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7761       if (OpAtScope != Comm->getOperand(i)) {
7762         // Okay, at least one of these operands is loop variant but might be
7763         // foldable.  Build a new instance of the folded commutative expression.
7764         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
7765                                             Comm->op_begin()+i);
7766         NewOps.push_back(OpAtScope);
7767 
7768         for (++i; i != e; ++i) {
7769           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7770           NewOps.push_back(OpAtScope);
7771         }
7772         if (isa<SCEVAddExpr>(Comm))
7773           return getAddExpr(NewOps);
7774         if (isa<SCEVMulExpr>(Comm))
7775           return getMulExpr(NewOps);
7776         if (isa<SCEVSMaxExpr>(Comm))
7777           return getSMaxExpr(NewOps);
7778         if (isa<SCEVUMaxExpr>(Comm))
7779           return getUMaxExpr(NewOps);
7780         llvm_unreachable("Unknown commutative SCEV type!");
7781       }
7782     }
7783     // If we got here, all operands are loop invariant.
7784     return Comm;
7785   }
7786 
7787   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
7788     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
7789     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
7790     if (LHS == Div->getLHS() && RHS == Div->getRHS())
7791       return Div;   // must be loop invariant
7792     return getUDivExpr(LHS, RHS);
7793   }
7794 
7795   // If this is a loop recurrence for a loop that does not contain L, then we
7796   // are dealing with the final value computed by the loop.
7797   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
7798     // First, attempt to evaluate each operand.
7799     // Avoid performing the look-up in the common case where the specified
7800     // expression has no loop-variant portions.
7801     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
7802       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
7803       if (OpAtScope == AddRec->getOperand(i))
7804         continue;
7805 
7806       // Okay, at least one of these operands is loop variant but might be
7807       // foldable.  Build a new instance of the folded commutative expression.
7808       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
7809                                           AddRec->op_begin()+i);
7810       NewOps.push_back(OpAtScope);
7811       for (++i; i != e; ++i)
7812         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
7813 
7814       const SCEV *FoldedRec =
7815         getAddRecExpr(NewOps, AddRec->getLoop(),
7816                       AddRec->getNoWrapFlags(SCEV::FlagNW));
7817       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
7818       // The addrec may be folded to a nonrecurrence, for example, if the
7819       // induction variable is multiplied by zero after constant folding. Go
7820       // ahead and return the folded value.
7821       if (!AddRec)
7822         return FoldedRec;
7823       break;
7824     }
7825 
7826     // If the scope is outside the addrec's loop, evaluate it by using the
7827     // loop exit value of the addrec.
7828     if (!AddRec->getLoop()->contains(L)) {
7829       // To evaluate this recurrence, we need to know how many times the AddRec
7830       // loop iterates.  Compute this now.
7831       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
7832       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
7833 
7834       // Then, evaluate the AddRec.
7835       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
7836     }
7837 
7838     return AddRec;
7839   }
7840 
7841   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
7842     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7843     if (Op == Cast->getOperand())
7844       return Cast;  // must be loop invariant
7845     return getZeroExtendExpr(Op, Cast->getType());
7846   }
7847 
7848   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
7849     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7850     if (Op == Cast->getOperand())
7851       return Cast;  // must be loop invariant
7852     return getSignExtendExpr(Op, Cast->getType());
7853   }
7854 
7855   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
7856     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7857     if (Op == Cast->getOperand())
7858       return Cast;  // must be loop invariant
7859     return getTruncateExpr(Op, Cast->getType());
7860   }
7861 
7862   llvm_unreachable("Unknown SCEV type!");
7863 }
7864 
7865 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
7866   return getSCEVAtScope(getSCEV(V), L);
7867 }
7868 
7869 /// Finds the minimum unsigned root of the following equation:
7870 ///
7871 ///     A * X = B (mod N)
7872 ///
7873 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7874 /// A and B isn't important.
7875 ///
7876 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7877 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
7878                                                ScalarEvolution &SE) {
7879   uint32_t BW = A.getBitWidth();
7880   assert(BW == SE.getTypeSizeInBits(B->getType()));
7881   assert(A != 0 && "A must be non-zero.");
7882 
7883   // 1. D = gcd(A, N)
7884   //
7885   // The gcd of A and N may have only one prime factor: 2. The number of
7886   // trailing zeros in A is its multiplicity
7887   uint32_t Mult2 = A.countTrailingZeros();
7888   // D = 2^Mult2
7889 
7890   // 2. Check if B is divisible by D.
7891   //
7892   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7893   // is not less than multiplicity of this prime factor for D.
7894   if (SE.GetMinTrailingZeros(B) < Mult2)
7895     return SE.getCouldNotCompute();
7896 
7897   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7898   // modulo (N / D).
7899   //
7900   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
7901   // (N / D) in general. The inverse itself always fits into BW bits, though,
7902   // so we immediately truncate it.
7903   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7904   APInt Mod(BW + 1, 0);
7905   Mod.setBit(BW - Mult2);  // Mod = N / D
7906   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
7907 
7908   // 4. Compute the minimum unsigned root of the equation:
7909   // I * (B / D) mod (N / D)
7910   // To simplify the computation, we factor out the divide by D:
7911   // (I * B mod N) / D
7912   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
7913   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
7914 }
7915 
7916 /// Find the roots of the quadratic equation for the given quadratic chrec
7917 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7918 /// two SCEVCouldNotCompute objects.
7919 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7920 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7921   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7922   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7923   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7924   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7925 
7926   // We currently can only solve this if the coefficients are constants.
7927   if (!LC || !MC || !NC)
7928     return None;
7929 
7930   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7931   const APInt &L = LC->getAPInt();
7932   const APInt &M = MC->getAPInt();
7933   const APInt &N = NC->getAPInt();
7934   APInt Two(BitWidth, 2);
7935 
7936   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7937 
7938   // The A coefficient is N/2
7939   APInt A = N.sdiv(Two);
7940 
7941   // The B coefficient is M-N/2
7942   APInt B = M;
7943   B -= A; // A is the same as N/2.
7944 
7945   // The C coefficient is L.
7946   const APInt& C = L;
7947 
7948   // Compute the B^2-4ac term.
7949   APInt SqrtTerm = B;
7950   SqrtTerm *= B;
7951   SqrtTerm -= 4 * (A * C);
7952 
7953   if (SqrtTerm.isNegative()) {
7954     // The loop is provably infinite.
7955     return None;
7956   }
7957 
7958   // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7959   // integer value or else APInt::sqrt() will assert.
7960   APInt SqrtVal = SqrtTerm.sqrt();
7961 
7962   // Compute the two solutions for the quadratic formula.
7963   // The divisions must be performed as signed divisions.
7964   APInt NegB = -std::move(B);
7965   APInt TwoA = std::move(A);
7966   TwoA <<= 1;
7967   if (TwoA.isNullValue())
7968     return None;
7969 
7970   LLVMContext &Context = SE.getContext();
7971 
7972   ConstantInt *Solution1 =
7973     ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7974   ConstantInt *Solution2 =
7975     ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7976 
7977   return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7978                         cast<SCEVConstant>(SE.getConstant(Solution2)));
7979 }
7980 
7981 ScalarEvolution::ExitLimit
7982 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7983                               bool AllowPredicates) {
7984 
7985   // This is only used for loops with a "x != y" exit test. The exit condition
7986   // is now expressed as a single expression, V = x-y. So the exit test is
7987   // effectively V != 0.  We know and take advantage of the fact that this
7988   // expression only being used in a comparison by zero context.
7989 
7990   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
7991   // If the value is a constant
7992   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7993     // If the value is already zero, the branch will execute zero times.
7994     if (C->getValue()->isZero()) return C;
7995     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7996   }
7997 
7998   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7999   if (!AddRec && AllowPredicates)
8000     // Try to make this an AddRec using runtime tests, in the first X
8001     // iterations of this loop, where X is the SCEV expression found by the
8002     // algorithm below.
8003     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8004 
8005   if (!AddRec || AddRec->getLoop() != L)
8006     return getCouldNotCompute();
8007 
8008   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8009   // the quadratic equation to solve it.
8010   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8011     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
8012       const SCEVConstant *R1 = Roots->first;
8013       const SCEVConstant *R2 = Roots->second;
8014       // Pick the smallest positive root value.
8015       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8016               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8017         if (!CB->getZExtValue())
8018           std::swap(R1, R2); // R1 is the minimum root now.
8019 
8020         // We can only use this value if the chrec ends up with an exact zero
8021         // value at this index.  When solving for "X*X != 5", for example, we
8022         // should not accept a root of 2.
8023         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
8024         if (Val->isZero())
8025           // We found a quadratic root!
8026           return ExitLimit(R1, R1, false, Predicates);
8027       }
8028     }
8029     return getCouldNotCompute();
8030   }
8031 
8032   // Otherwise we can only handle this if it is affine.
8033   if (!AddRec->isAffine())
8034     return getCouldNotCompute();
8035 
8036   // If this is an affine expression, the execution count of this branch is
8037   // the minimum unsigned root of the following equation:
8038   //
8039   //     Start + Step*N = 0 (mod 2^BW)
8040   //
8041   // equivalent to:
8042   //
8043   //             Step*N = -Start (mod 2^BW)
8044   //
8045   // where BW is the common bit width of Start and Step.
8046 
8047   // Get the initial value for the loop.
8048   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8049   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8050 
8051   // For now we handle only constant steps.
8052   //
8053   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8054   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8055   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8056   // We have not yet seen any such cases.
8057   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8058   if (!StepC || StepC->getValue()->isZero())
8059     return getCouldNotCompute();
8060 
8061   // For positive steps (counting up until unsigned overflow):
8062   //   N = -Start/Step (as unsigned)
8063   // For negative steps (counting down to zero):
8064   //   N = Start/-Step
8065   // First compute the unsigned distance from zero in the direction of Step.
8066   bool CountDown = StepC->getAPInt().isNegative();
8067   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8068 
8069   // Handle unitary steps, which cannot wraparound.
8070   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8071   //   N = Distance (as unsigned)
8072   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8073     APInt MaxBECount = getUnsignedRangeMax(Distance);
8074 
8075     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8076     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8077     // case, and see if we can improve the bound.
8078     //
8079     // Explicitly handling this here is necessary because getUnsignedRange
8080     // isn't context-sensitive; it doesn't know that we only care about the
8081     // range inside the loop.
8082     const SCEV *Zero = getZero(Distance->getType());
8083     const SCEV *One = getOne(Distance->getType());
8084     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8085     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8086       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8087       // as "unsigned_max(Distance + 1) - 1".
8088       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8089       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8090     }
8091     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8092   }
8093 
8094   // If the condition controls loop exit (the loop exits only if the expression
8095   // is true) and the addition is no-wrap we can use unsigned divide to
8096   // compute the backedge count.  In this case, the step may not divide the
8097   // distance, but we don't care because if the condition is "missed" the loop
8098   // will have undefined behavior due to wrapping.
8099   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8100       loopHasNoAbnormalExits(AddRec->getLoop())) {
8101     const SCEV *Exact =
8102         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8103     const SCEV *Max =
8104         Exact == getCouldNotCompute()
8105             ? Exact
8106             : getConstant(getUnsignedRangeMax(Exact));
8107     return ExitLimit(Exact, Max, false, Predicates);
8108   }
8109 
8110   // Solve the general equation.
8111   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8112                                                getNegativeSCEV(Start), *this);
8113   const SCEV *M = E == getCouldNotCompute()
8114                       ? E
8115                       : getConstant(getUnsignedRangeMax(E));
8116   return ExitLimit(E, M, false, Predicates);
8117 }
8118 
8119 ScalarEvolution::ExitLimit
8120 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8121   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8122   // handle them yet except for the trivial case.  This could be expanded in the
8123   // future as needed.
8124 
8125   // If the value is a constant, check to see if it is known to be non-zero
8126   // already.  If so, the backedge will execute zero times.
8127   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8128     if (!C->getValue()->isZero())
8129       return getZero(C->getType());
8130     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8131   }
8132 
8133   // We could implement others, but I really doubt anyone writes loops like
8134   // this, and if they did, they would already be constant folded.
8135   return getCouldNotCompute();
8136 }
8137 
8138 std::pair<BasicBlock *, BasicBlock *>
8139 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8140   // If the block has a unique predecessor, then there is no path from the
8141   // predecessor to the block that does not go through the direct edge
8142   // from the predecessor to the block.
8143   if (BasicBlock *Pred = BB->getSinglePredecessor())
8144     return {Pred, BB};
8145 
8146   // A loop's header is defined to be a block that dominates the loop.
8147   // If the header has a unique predecessor outside the loop, it must be
8148   // a block that has exactly one successor that can reach the loop.
8149   if (Loop *L = LI.getLoopFor(BB))
8150     return {L->getLoopPredecessor(), L->getHeader()};
8151 
8152   return {nullptr, nullptr};
8153 }
8154 
8155 /// SCEV structural equivalence is usually sufficient for testing whether two
8156 /// expressions are equal, however for the purposes of looking for a condition
8157 /// guarding a loop, it can be useful to be a little more general, since a
8158 /// front-end may have replicated the controlling expression.
8159 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8160   // Quick check to see if they are the same SCEV.
8161   if (A == B) return true;
8162 
8163   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8164     // Not all instructions that are "identical" compute the same value.  For
8165     // instance, two distinct alloca instructions allocating the same type are
8166     // identical and do not read memory; but compute distinct values.
8167     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8168   };
8169 
8170   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8171   // two different instructions with the same value. Check for this case.
8172   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8173     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8174       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8175         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8176           if (ComputesEqualValues(AI, BI))
8177             return true;
8178 
8179   // Otherwise assume they may have a different value.
8180   return false;
8181 }
8182 
8183 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8184                                            const SCEV *&LHS, const SCEV *&RHS,
8185                                            unsigned Depth) {
8186   bool Changed = false;
8187 
8188   // If we hit the max recursion limit bail out.
8189   if (Depth >= 3)
8190     return false;
8191 
8192   // Canonicalize a constant to the right side.
8193   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8194     // Check for both operands constant.
8195     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8196       if (ConstantExpr::getICmp(Pred,
8197                                 LHSC->getValue(),
8198                                 RHSC->getValue())->isNullValue())
8199         goto trivially_false;
8200       else
8201         goto trivially_true;
8202     }
8203     // Otherwise swap the operands to put the constant on the right.
8204     std::swap(LHS, RHS);
8205     Pred = ICmpInst::getSwappedPredicate(Pred);
8206     Changed = true;
8207   }
8208 
8209   // If we're comparing an addrec with a value which is loop-invariant in the
8210   // addrec's loop, put the addrec on the left. Also make a dominance check,
8211   // as both operands could be addrecs loop-invariant in each other's loop.
8212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8213     const Loop *L = AR->getLoop();
8214     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8215       std::swap(LHS, RHS);
8216       Pred = ICmpInst::getSwappedPredicate(Pred);
8217       Changed = true;
8218     }
8219   }
8220 
8221   // If there's a constant operand, canonicalize comparisons with boundary
8222   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8223   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8224     const APInt &RA = RC->getAPInt();
8225 
8226     bool SimplifiedByConstantRange = false;
8227 
8228     if (!ICmpInst::isEquality(Pred)) {
8229       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8230       if (ExactCR.isFullSet())
8231         goto trivially_true;
8232       else if (ExactCR.isEmptySet())
8233         goto trivially_false;
8234 
8235       APInt NewRHS;
8236       CmpInst::Predicate NewPred;
8237       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8238           ICmpInst::isEquality(NewPred)) {
8239         // We were able to convert an inequality to an equality.
8240         Pred = NewPred;
8241         RHS = getConstant(NewRHS);
8242         Changed = SimplifiedByConstantRange = true;
8243       }
8244     }
8245 
8246     if (!SimplifiedByConstantRange) {
8247       switch (Pred) {
8248       default:
8249         break;
8250       case ICmpInst::ICMP_EQ:
8251       case ICmpInst::ICMP_NE:
8252         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8253         if (!RA)
8254           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8255             if (const SCEVMulExpr *ME =
8256                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8257               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8258                   ME->getOperand(0)->isAllOnesValue()) {
8259                 RHS = AE->getOperand(1);
8260                 LHS = ME->getOperand(1);
8261                 Changed = true;
8262               }
8263         break;
8264 
8265 
8266         // The "Should have been caught earlier!" messages refer to the fact
8267         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8268         // should have fired on the corresponding cases, and canonicalized the
8269         // check to trivially_true or trivially_false.
8270 
8271       case ICmpInst::ICMP_UGE:
8272         assert(!RA.isMinValue() && "Should have been caught earlier!");
8273         Pred = ICmpInst::ICMP_UGT;
8274         RHS = getConstant(RA - 1);
8275         Changed = true;
8276         break;
8277       case ICmpInst::ICMP_ULE:
8278         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8279         Pred = ICmpInst::ICMP_ULT;
8280         RHS = getConstant(RA + 1);
8281         Changed = true;
8282         break;
8283       case ICmpInst::ICMP_SGE:
8284         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8285         Pred = ICmpInst::ICMP_SGT;
8286         RHS = getConstant(RA - 1);
8287         Changed = true;
8288         break;
8289       case ICmpInst::ICMP_SLE:
8290         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8291         Pred = ICmpInst::ICMP_SLT;
8292         RHS = getConstant(RA + 1);
8293         Changed = true;
8294         break;
8295       }
8296     }
8297   }
8298 
8299   // Check for obvious equality.
8300   if (HasSameValue(LHS, RHS)) {
8301     if (ICmpInst::isTrueWhenEqual(Pred))
8302       goto trivially_true;
8303     if (ICmpInst::isFalseWhenEqual(Pred))
8304       goto trivially_false;
8305   }
8306 
8307   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8308   // adding or subtracting 1 from one of the operands.
8309   switch (Pred) {
8310   case ICmpInst::ICMP_SLE:
8311     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8312       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8313                        SCEV::FlagNSW);
8314       Pred = ICmpInst::ICMP_SLT;
8315       Changed = true;
8316     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8317       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8318                        SCEV::FlagNSW);
8319       Pred = ICmpInst::ICMP_SLT;
8320       Changed = true;
8321     }
8322     break;
8323   case ICmpInst::ICMP_SGE:
8324     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8325       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8326                        SCEV::FlagNSW);
8327       Pred = ICmpInst::ICMP_SGT;
8328       Changed = true;
8329     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8330       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8331                        SCEV::FlagNSW);
8332       Pred = ICmpInst::ICMP_SGT;
8333       Changed = true;
8334     }
8335     break;
8336   case ICmpInst::ICMP_ULE:
8337     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8338       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8339                        SCEV::FlagNUW);
8340       Pred = ICmpInst::ICMP_ULT;
8341       Changed = true;
8342     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8343       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8344       Pred = ICmpInst::ICMP_ULT;
8345       Changed = true;
8346     }
8347     break;
8348   case ICmpInst::ICMP_UGE:
8349     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8350       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8351       Pred = ICmpInst::ICMP_UGT;
8352       Changed = true;
8353     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8354       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8355                        SCEV::FlagNUW);
8356       Pred = ICmpInst::ICMP_UGT;
8357       Changed = true;
8358     }
8359     break;
8360   default:
8361     break;
8362   }
8363 
8364   // TODO: More simplifications are possible here.
8365 
8366   // Recursively simplify until we either hit a recursion limit or nothing
8367   // changes.
8368   if (Changed)
8369     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8370 
8371   return Changed;
8372 
8373 trivially_true:
8374   // Return 0 == 0.
8375   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8376   Pred = ICmpInst::ICMP_EQ;
8377   return true;
8378 
8379 trivially_false:
8380   // Return 0 != 0.
8381   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8382   Pred = ICmpInst::ICMP_NE;
8383   return true;
8384 }
8385 
8386 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8387   return getSignedRangeMax(S).isNegative();
8388 }
8389 
8390 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8391   return getSignedRangeMin(S).isStrictlyPositive();
8392 }
8393 
8394 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8395   return !getSignedRangeMin(S).isNegative();
8396 }
8397 
8398 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8399   return !getSignedRangeMax(S).isStrictlyPositive();
8400 }
8401 
8402 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8403   return isKnownNegative(S) || isKnownPositive(S);
8404 }
8405 
8406 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
8407                                        const SCEV *LHS, const SCEV *RHS) {
8408   // Canonicalize the inputs first.
8409   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8410 
8411   // If LHS or RHS is an addrec, check to see if the condition is true in
8412   // every iteration of the loop.
8413   // If LHS and RHS are both addrec, both conditions must be true in
8414   // every iteration of the loop.
8415   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8416   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8417   bool LeftGuarded = false;
8418   bool RightGuarded = false;
8419   if (LAR) {
8420     const Loop *L = LAR->getLoop();
8421     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
8422         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
8423       if (!RAR) return true;
8424       LeftGuarded = true;
8425     }
8426   }
8427   if (RAR) {
8428     const Loop *L = RAR->getLoop();
8429     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
8430         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
8431       if (!LAR) return true;
8432       RightGuarded = true;
8433     }
8434   }
8435   if (LeftGuarded && RightGuarded)
8436     return true;
8437 
8438   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
8439     return true;
8440 
8441   // Otherwise see what can be done with known constant ranges.
8442   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
8443 }
8444 
8445 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
8446                                            ICmpInst::Predicate Pred,
8447                                            bool &Increasing) {
8448   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
8449 
8450 #ifndef NDEBUG
8451   // Verify an invariant: inverting the predicate should turn a monotonically
8452   // increasing change to a monotonically decreasing one, and vice versa.
8453   bool IncreasingSwapped;
8454   bool ResultSwapped = isMonotonicPredicateImpl(
8455       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
8456 
8457   assert(Result == ResultSwapped && "should be able to analyze both!");
8458   if (ResultSwapped)
8459     assert(Increasing == !IncreasingSwapped &&
8460            "monotonicity should flip as we flip the predicate");
8461 #endif
8462 
8463   return Result;
8464 }
8465 
8466 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
8467                                                ICmpInst::Predicate Pred,
8468                                                bool &Increasing) {
8469 
8470   // A zero step value for LHS means the induction variable is essentially a
8471   // loop invariant value. We don't really depend on the predicate actually
8472   // flipping from false to true (for increasing predicates, and the other way
8473   // around for decreasing predicates), all we care about is that *if* the
8474   // predicate changes then it only changes from false to true.
8475   //
8476   // A zero step value in itself is not very useful, but there may be places
8477   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
8478   // as general as possible.
8479 
8480   switch (Pred) {
8481   default:
8482     return false; // Conservative answer
8483 
8484   case ICmpInst::ICMP_UGT:
8485   case ICmpInst::ICMP_UGE:
8486   case ICmpInst::ICMP_ULT:
8487   case ICmpInst::ICMP_ULE:
8488     if (!LHS->hasNoUnsignedWrap())
8489       return false;
8490 
8491     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
8492     return true;
8493 
8494   case ICmpInst::ICMP_SGT:
8495   case ICmpInst::ICMP_SGE:
8496   case ICmpInst::ICMP_SLT:
8497   case ICmpInst::ICMP_SLE: {
8498     if (!LHS->hasNoSignedWrap())
8499       return false;
8500 
8501     const SCEV *Step = LHS->getStepRecurrence(*this);
8502 
8503     if (isKnownNonNegative(Step)) {
8504       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8505       return true;
8506     }
8507 
8508     if (isKnownNonPositive(Step)) {
8509       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8510       return true;
8511     }
8512 
8513     return false;
8514   }
8515 
8516   }
8517 
8518   llvm_unreachable("switch has default clause!");
8519 }
8520 
8521 bool ScalarEvolution::isLoopInvariantPredicate(
8522     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
8523     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
8524     const SCEV *&InvariantRHS) {
8525 
8526   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
8527   if (!isLoopInvariant(RHS, L)) {
8528     if (!isLoopInvariant(LHS, L))
8529       return false;
8530 
8531     std::swap(LHS, RHS);
8532     Pred = ICmpInst::getSwappedPredicate(Pred);
8533   }
8534 
8535   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8536   if (!ArLHS || ArLHS->getLoop() != L)
8537     return false;
8538 
8539   bool Increasing;
8540   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
8541     return false;
8542 
8543   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
8544   // true as the loop iterates, and the backedge is control dependent on
8545   // "ArLHS `Pred` RHS" == true then we can reason as follows:
8546   //
8547   //   * if the predicate was false in the first iteration then the predicate
8548   //     is never evaluated again, since the loop exits without taking the
8549   //     backedge.
8550   //   * if the predicate was true in the first iteration then it will
8551   //     continue to be true for all future iterations since it is
8552   //     monotonically increasing.
8553   //
8554   // For both the above possibilities, we can replace the loop varying
8555   // predicate with its value on the first iteration of the loop (which is
8556   // loop invariant).
8557   //
8558   // A similar reasoning applies for a monotonically decreasing predicate, by
8559   // replacing true with false and false with true in the above two bullets.
8560 
8561   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
8562 
8563   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
8564     return false;
8565 
8566   InvariantPred = Pred;
8567   InvariantLHS = ArLHS->getStart();
8568   InvariantRHS = RHS;
8569   return true;
8570 }
8571 
8572 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
8573     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8574   if (HasSameValue(LHS, RHS))
8575     return ICmpInst::isTrueWhenEqual(Pred);
8576 
8577   // This code is split out from isKnownPredicate because it is called from
8578   // within isLoopEntryGuardedByCond.
8579 
8580   auto CheckRanges =
8581       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
8582     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
8583         .contains(RangeLHS);
8584   };
8585 
8586   // The check at the top of the function catches the case where the values are
8587   // known to be equal.
8588   if (Pred == CmpInst::ICMP_EQ)
8589     return false;
8590 
8591   if (Pred == CmpInst::ICMP_NE)
8592     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
8593            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
8594            isKnownNonZero(getMinusSCEV(LHS, RHS));
8595 
8596   if (CmpInst::isSigned(Pred))
8597     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
8598 
8599   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
8600 }
8601 
8602 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
8603                                                     const SCEV *LHS,
8604                                                     const SCEV *RHS) {
8605   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
8606   // Return Y via OutY.
8607   auto MatchBinaryAddToConst =
8608       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
8609              SCEV::NoWrapFlags ExpectedFlags) {
8610     const SCEV *NonConstOp, *ConstOp;
8611     SCEV::NoWrapFlags FlagsPresent;
8612 
8613     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
8614         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
8615       return false;
8616 
8617     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
8618     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
8619   };
8620 
8621   APInt C;
8622 
8623   switch (Pred) {
8624   default:
8625     break;
8626 
8627   case ICmpInst::ICMP_SGE:
8628     std::swap(LHS, RHS);
8629     LLVM_FALLTHROUGH;
8630   case ICmpInst::ICMP_SLE:
8631     // X s<= (X + C)<nsw> if C >= 0
8632     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
8633       return true;
8634 
8635     // (X + C)<nsw> s<= X if C <= 0
8636     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
8637         !C.isStrictlyPositive())
8638       return true;
8639     break;
8640 
8641   case ICmpInst::ICMP_SGT:
8642     std::swap(LHS, RHS);
8643     LLVM_FALLTHROUGH;
8644   case ICmpInst::ICMP_SLT:
8645     // X s< (X + C)<nsw> if C > 0
8646     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
8647         C.isStrictlyPositive())
8648       return true;
8649 
8650     // (X + C)<nsw> s< X if C < 0
8651     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
8652       return true;
8653     break;
8654   }
8655 
8656   return false;
8657 }
8658 
8659 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
8660                                                    const SCEV *LHS,
8661                                                    const SCEV *RHS) {
8662   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
8663     return false;
8664 
8665   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
8666   // the stack can result in exponential time complexity.
8667   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
8668 
8669   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
8670   //
8671   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
8672   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
8673   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
8674   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
8675   // use isKnownPredicate later if needed.
8676   return isKnownNonNegative(RHS) &&
8677          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
8678          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
8679 }
8680 
8681 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
8682                                         ICmpInst::Predicate Pred,
8683                                         const SCEV *LHS, const SCEV *RHS) {
8684   // No need to even try if we know the module has no guards.
8685   if (!HasGuards)
8686     return false;
8687 
8688   return any_of(*BB, [&](Instruction &I) {
8689     using namespace llvm::PatternMatch;
8690 
8691     Value *Condition;
8692     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
8693                          m_Value(Condition))) &&
8694            isImpliedCond(Pred, LHS, RHS, Condition, false);
8695   });
8696 }
8697 
8698 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
8699 /// protected by a conditional between LHS and RHS.  This is used to
8700 /// to eliminate casts.
8701 bool
8702 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
8703                                              ICmpInst::Predicate Pred,
8704                                              const SCEV *LHS, const SCEV *RHS) {
8705   // Interpret a null as meaning no loop, where there is obviously no guard
8706   // (interprocedural conditions notwithstanding).
8707   if (!L) return true;
8708 
8709   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8710     return true;
8711 
8712   BasicBlock *Latch = L->getLoopLatch();
8713   if (!Latch)
8714     return false;
8715 
8716   BranchInst *LoopContinuePredicate =
8717     dyn_cast<BranchInst>(Latch->getTerminator());
8718   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
8719       isImpliedCond(Pred, LHS, RHS,
8720                     LoopContinuePredicate->getCondition(),
8721                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
8722     return true;
8723 
8724   // We don't want more than one activation of the following loops on the stack
8725   // -- that can lead to O(n!) time complexity.
8726   if (WalkingBEDominatingConds)
8727     return false;
8728 
8729   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
8730 
8731   // See if we can exploit a trip count to prove the predicate.
8732   const auto &BETakenInfo = getBackedgeTakenInfo(L);
8733   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
8734   if (LatchBECount != getCouldNotCompute()) {
8735     // We know that Latch branches back to the loop header exactly
8736     // LatchBECount times.  This means the backdege condition at Latch is
8737     // equivalent to  "{0,+,1} u< LatchBECount".
8738     Type *Ty = LatchBECount->getType();
8739     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
8740     const SCEV *LoopCounter =
8741       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
8742     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
8743                       LatchBECount))
8744       return true;
8745   }
8746 
8747   // Check conditions due to any @llvm.assume intrinsics.
8748   for (auto &AssumeVH : AC.assumptions()) {
8749     if (!AssumeVH)
8750       continue;
8751     auto *CI = cast<CallInst>(AssumeVH);
8752     if (!DT.dominates(CI, Latch->getTerminator()))
8753       continue;
8754 
8755     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8756       return true;
8757   }
8758 
8759   // If the loop is not reachable from the entry block, we risk running into an
8760   // infinite loop as we walk up into the dom tree.  These loops do not matter
8761   // anyway, so we just return a conservative answer when we see them.
8762   if (!DT.isReachableFromEntry(L->getHeader()))
8763     return false;
8764 
8765   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
8766     return true;
8767 
8768   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
8769        DTN != HeaderDTN; DTN = DTN->getIDom()) {
8770     assert(DTN && "should reach the loop header before reaching the root!");
8771 
8772     BasicBlock *BB = DTN->getBlock();
8773     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
8774       return true;
8775 
8776     BasicBlock *PBB = BB->getSinglePredecessor();
8777     if (!PBB)
8778       continue;
8779 
8780     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
8781     if (!ContinuePredicate || !ContinuePredicate->isConditional())
8782       continue;
8783 
8784     Value *Condition = ContinuePredicate->getCondition();
8785 
8786     // If we have an edge `E` within the loop body that dominates the only
8787     // latch, the condition guarding `E` also guards the backedge.  This
8788     // reasoning works only for loops with a single latch.
8789 
8790     BasicBlockEdge DominatingEdge(PBB, BB);
8791     if (DominatingEdge.isSingleEdge()) {
8792       // We're constructively (and conservatively) enumerating edges within the
8793       // loop body that dominate the latch.  The dominator tree better agree
8794       // with us on this:
8795       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8796 
8797       if (isImpliedCond(Pred, LHS, RHS, Condition,
8798                         BB != ContinuePredicate->getSuccessor(0)))
8799         return true;
8800     }
8801   }
8802 
8803   return false;
8804 }
8805 
8806 bool
8807 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8808                                           ICmpInst::Predicate Pred,
8809                                           const SCEV *LHS, const SCEV *RHS) {
8810   // Interpret a null as meaning no loop, where there is obviously no guard
8811   // (interprocedural conditions notwithstanding).
8812   if (!L) return false;
8813 
8814   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8815     return true;
8816 
8817   // Starting at the loop predecessor, climb up the predecessor chain, as long
8818   // as there are predecessors that can be found that have unique successors
8819   // leading to the original header.
8820   for (std::pair<BasicBlock *, BasicBlock *>
8821          Pair(L->getLoopPredecessor(), L->getHeader());
8822        Pair.first;
8823        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8824 
8825     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8826       return true;
8827 
8828     BranchInst *LoopEntryPredicate =
8829       dyn_cast<BranchInst>(Pair.first->getTerminator());
8830     if (!LoopEntryPredicate ||
8831         LoopEntryPredicate->isUnconditional())
8832       continue;
8833 
8834     if (isImpliedCond(Pred, LHS, RHS,
8835                       LoopEntryPredicate->getCondition(),
8836                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8837       return true;
8838   }
8839 
8840   // Check conditions due to any @llvm.assume intrinsics.
8841   for (auto &AssumeVH : AC.assumptions()) {
8842     if (!AssumeVH)
8843       continue;
8844     auto *CI = cast<CallInst>(AssumeVH);
8845     if (!DT.dominates(CI, L->getHeader()))
8846       continue;
8847 
8848     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8849       return true;
8850   }
8851 
8852   return false;
8853 }
8854 
8855 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8856                                     const SCEV *LHS, const SCEV *RHS,
8857                                     Value *FoundCondValue,
8858                                     bool Inverse) {
8859   if (!PendingLoopPredicates.insert(FoundCondValue).second)
8860     return false;
8861 
8862   auto ClearOnExit =
8863       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8864 
8865   // Recursively handle And and Or conditions.
8866   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8867     if (BO->getOpcode() == Instruction::And) {
8868       if (!Inverse)
8869         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8870                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8871     } else if (BO->getOpcode() == Instruction::Or) {
8872       if (Inverse)
8873         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8874                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8875     }
8876   }
8877 
8878   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8879   if (!ICI) return false;
8880 
8881   // Now that we found a conditional branch that dominates the loop or controls
8882   // the loop latch. Check to see if it is the comparison we are looking for.
8883   ICmpInst::Predicate FoundPred;
8884   if (Inverse)
8885     FoundPred = ICI->getInversePredicate();
8886   else
8887     FoundPred = ICI->getPredicate();
8888 
8889   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8890   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8891 
8892   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8893 }
8894 
8895 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8896                                     const SCEV *RHS,
8897                                     ICmpInst::Predicate FoundPred,
8898                                     const SCEV *FoundLHS,
8899                                     const SCEV *FoundRHS) {
8900   // Balance the types.
8901   if (getTypeSizeInBits(LHS->getType()) <
8902       getTypeSizeInBits(FoundLHS->getType())) {
8903     if (CmpInst::isSigned(Pred)) {
8904       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8905       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8906     } else {
8907       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8908       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8909     }
8910   } else if (getTypeSizeInBits(LHS->getType()) >
8911       getTypeSizeInBits(FoundLHS->getType())) {
8912     if (CmpInst::isSigned(FoundPred)) {
8913       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8914       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8915     } else {
8916       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8917       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8918     }
8919   }
8920 
8921   // Canonicalize the query to match the way instcombine will have
8922   // canonicalized the comparison.
8923   if (SimplifyICmpOperands(Pred, LHS, RHS))
8924     if (LHS == RHS)
8925       return CmpInst::isTrueWhenEqual(Pred);
8926   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8927     if (FoundLHS == FoundRHS)
8928       return CmpInst::isFalseWhenEqual(FoundPred);
8929 
8930   // Check to see if we can make the LHS or RHS match.
8931   if (LHS == FoundRHS || RHS == FoundLHS) {
8932     if (isa<SCEVConstant>(RHS)) {
8933       std::swap(FoundLHS, FoundRHS);
8934       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8935     } else {
8936       std::swap(LHS, RHS);
8937       Pred = ICmpInst::getSwappedPredicate(Pred);
8938     }
8939   }
8940 
8941   // Check whether the found predicate is the same as the desired predicate.
8942   if (FoundPred == Pred)
8943     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8944 
8945   // Check whether swapping the found predicate makes it the same as the
8946   // desired predicate.
8947   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8948     if (isa<SCEVConstant>(RHS))
8949       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8950     else
8951       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8952                                    RHS, LHS, FoundLHS, FoundRHS);
8953   }
8954 
8955   // Unsigned comparison is the same as signed comparison when both the operands
8956   // are non-negative.
8957   if (CmpInst::isUnsigned(FoundPred) &&
8958       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8959       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8960     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8961 
8962   // Check if we can make progress by sharpening ranges.
8963   if (FoundPred == ICmpInst::ICMP_NE &&
8964       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8965 
8966     const SCEVConstant *C = nullptr;
8967     const SCEV *V = nullptr;
8968 
8969     if (isa<SCEVConstant>(FoundLHS)) {
8970       C = cast<SCEVConstant>(FoundLHS);
8971       V = FoundRHS;
8972     } else {
8973       C = cast<SCEVConstant>(FoundRHS);
8974       V = FoundLHS;
8975     }
8976 
8977     // The guarding predicate tells us that C != V. If the known range
8978     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8979     // range we consider has to correspond to same signedness as the
8980     // predicate we're interested in folding.
8981 
8982     APInt Min = ICmpInst::isSigned(Pred) ?
8983         getSignedRangeMin(V) : getUnsignedRangeMin(V);
8984 
8985     if (Min == C->getAPInt()) {
8986       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8987       // This is true even if (Min + 1) wraps around -- in case of
8988       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8989 
8990       APInt SharperMin = Min + 1;
8991 
8992       switch (Pred) {
8993         case ICmpInst::ICMP_SGE:
8994         case ICmpInst::ICMP_UGE:
8995           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8996           // RHS, we're done.
8997           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8998                                     getConstant(SharperMin)))
8999             return true;
9000           LLVM_FALLTHROUGH;
9001 
9002         case ICmpInst::ICMP_SGT:
9003         case ICmpInst::ICMP_UGT:
9004           // We know from the range information that (V `Pred` Min ||
9005           // V == Min).  We know from the guarding condition that !(V
9006           // == Min).  This gives us
9007           //
9008           //       V `Pred` Min || V == Min && !(V == Min)
9009           //   =>  V `Pred` Min
9010           //
9011           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9012 
9013           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9014             return true;
9015           LLVM_FALLTHROUGH;
9016 
9017         default:
9018           // No change
9019           break;
9020       }
9021     }
9022   }
9023 
9024   // Check whether the actual condition is beyond sufficient.
9025   if (FoundPred == ICmpInst::ICMP_EQ)
9026     if (ICmpInst::isTrueWhenEqual(Pred))
9027       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9028         return true;
9029   if (Pred == ICmpInst::ICMP_NE)
9030     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9031       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9032         return true;
9033 
9034   // Otherwise assume the worst.
9035   return false;
9036 }
9037 
9038 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9039                                      const SCEV *&L, const SCEV *&R,
9040                                      SCEV::NoWrapFlags &Flags) {
9041   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9042   if (!AE || AE->getNumOperands() != 2)
9043     return false;
9044 
9045   L = AE->getOperand(0);
9046   R = AE->getOperand(1);
9047   Flags = AE->getNoWrapFlags();
9048   return true;
9049 }
9050 
9051 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9052                                                            const SCEV *Less) {
9053   // We avoid subtracting expressions here because this function is usually
9054   // fairly deep in the call stack (i.e. is called many times).
9055 
9056   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9057     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9058     const auto *MAR = cast<SCEVAddRecExpr>(More);
9059 
9060     if (LAR->getLoop() != MAR->getLoop())
9061       return None;
9062 
9063     // We look at affine expressions only; not for correctness but to keep
9064     // getStepRecurrence cheap.
9065     if (!LAR->isAffine() || !MAR->isAffine())
9066       return None;
9067 
9068     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9069       return None;
9070 
9071     Less = LAR->getStart();
9072     More = MAR->getStart();
9073 
9074     // fall through
9075   }
9076 
9077   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9078     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9079     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9080     return M - L;
9081   }
9082 
9083   const SCEV *L, *R;
9084   SCEV::NoWrapFlags Flags;
9085   if (splitBinaryAdd(Less, L, R, Flags))
9086     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9087       if (R == More)
9088         return -(LC->getAPInt());
9089 
9090   if (splitBinaryAdd(More, L, R, Flags))
9091     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9092       if (R == Less)
9093         return LC->getAPInt();
9094 
9095   return None;
9096 }
9097 
9098 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9099     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9100     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9101   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9102     return false;
9103 
9104   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9105   if (!AddRecLHS)
9106     return false;
9107 
9108   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9109   if (!AddRecFoundLHS)
9110     return false;
9111 
9112   // We'd like to let SCEV reason about control dependencies, so we constrain
9113   // both the inequalities to be about add recurrences on the same loop.  This
9114   // way we can use isLoopEntryGuardedByCond later.
9115 
9116   const Loop *L = AddRecFoundLHS->getLoop();
9117   if (L != AddRecLHS->getLoop())
9118     return false;
9119 
9120   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9121   //
9122   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9123   //                                                                  ... (2)
9124   //
9125   // Informal proof for (2), assuming (1) [*]:
9126   //
9127   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9128   //
9129   // Then
9130   //
9131   //       FoundLHS s< FoundRHS s< INT_MIN - C
9132   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9133   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9134   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9135   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9136   // <=>  FoundLHS + C s< FoundRHS + C
9137   //
9138   // [*]: (1) can be proved by ruling out overflow.
9139   //
9140   // [**]: This can be proved by analyzing all the four possibilities:
9141   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9142   //    (A s>= 0, B s>= 0).
9143   //
9144   // Note:
9145   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9146   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9147   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9148   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9149   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9150   // C)".
9151 
9152   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9153   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9154   if (!LDiff || !RDiff || *LDiff != *RDiff)
9155     return false;
9156 
9157   if (LDiff->isMinValue())
9158     return true;
9159 
9160   APInt FoundRHSLimit;
9161 
9162   if (Pred == CmpInst::ICMP_ULT) {
9163     FoundRHSLimit = -(*RDiff);
9164   } else {
9165     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9166     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9167   }
9168 
9169   // Try to prove (1) or (2), as needed.
9170   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9171                                   getConstant(FoundRHSLimit));
9172 }
9173 
9174 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9175                                             const SCEV *LHS, const SCEV *RHS,
9176                                             const SCEV *FoundLHS,
9177                                             const SCEV *FoundRHS) {
9178   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9179     return true;
9180 
9181   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9182     return true;
9183 
9184   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9185                                      FoundLHS, FoundRHS) ||
9186          // ~x < ~y --> x > y
9187          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9188                                      getNotSCEV(FoundRHS),
9189                                      getNotSCEV(FoundLHS));
9190 }
9191 
9192 /// If Expr computes ~A, return A else return nullptr
9193 static const SCEV *MatchNotExpr(const SCEV *Expr) {
9194   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
9195   if (!Add || Add->getNumOperands() != 2 ||
9196       !Add->getOperand(0)->isAllOnesValue())
9197     return nullptr;
9198 
9199   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
9200   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
9201       !AddRHS->getOperand(0)->isAllOnesValue())
9202     return nullptr;
9203 
9204   return AddRHS->getOperand(1);
9205 }
9206 
9207 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
9208 template<typename MaxExprType>
9209 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
9210                               const SCEV *Candidate) {
9211   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
9212   if (!MaxExpr) return false;
9213 
9214   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
9215 }
9216 
9217 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
9218 template<typename MaxExprType>
9219 static bool IsMinConsistingOf(ScalarEvolution &SE,
9220                               const SCEV *MaybeMinExpr,
9221                               const SCEV *Candidate) {
9222   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
9223   if (!MaybeMaxExpr)
9224     return false;
9225 
9226   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
9227 }
9228 
9229 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
9230                                            ICmpInst::Predicate Pred,
9231                                            const SCEV *LHS, const SCEV *RHS) {
9232   // If both sides are affine addrecs for the same loop, with equal
9233   // steps, and we know the recurrences don't wrap, then we only
9234   // need to check the predicate on the starting values.
9235 
9236   if (!ICmpInst::isRelational(Pred))
9237     return false;
9238 
9239   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
9240   if (!LAR)
9241     return false;
9242   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9243   if (!RAR)
9244     return false;
9245   if (LAR->getLoop() != RAR->getLoop())
9246     return false;
9247   if (!LAR->isAffine() || !RAR->isAffine())
9248     return false;
9249 
9250   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
9251     return false;
9252 
9253   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
9254                          SCEV::FlagNSW : SCEV::FlagNUW;
9255   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
9256     return false;
9257 
9258   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
9259 }
9260 
9261 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
9262 /// expression?
9263 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
9264                                         ICmpInst::Predicate Pred,
9265                                         const SCEV *LHS, const SCEV *RHS) {
9266   switch (Pred) {
9267   default:
9268     return false;
9269 
9270   case ICmpInst::ICMP_SGE:
9271     std::swap(LHS, RHS);
9272     LLVM_FALLTHROUGH;
9273   case ICmpInst::ICMP_SLE:
9274     return
9275       // min(A, ...) <= A
9276       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
9277       // A <= max(A, ...)
9278       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
9279 
9280   case ICmpInst::ICMP_UGE:
9281     std::swap(LHS, RHS);
9282     LLVM_FALLTHROUGH;
9283   case ICmpInst::ICMP_ULE:
9284     return
9285       // min(A, ...) <= A
9286       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
9287       // A <= max(A, ...)
9288       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
9289   }
9290 
9291   llvm_unreachable("covered switch fell through?!");
9292 }
9293 
9294 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
9295                                              const SCEV *LHS, const SCEV *RHS,
9296                                              const SCEV *FoundLHS,
9297                                              const SCEV *FoundRHS,
9298                                              unsigned Depth) {
9299   assert(getTypeSizeInBits(LHS->getType()) ==
9300              getTypeSizeInBits(RHS->getType()) &&
9301          "LHS and RHS have different sizes?");
9302   assert(getTypeSizeInBits(FoundLHS->getType()) ==
9303              getTypeSizeInBits(FoundRHS->getType()) &&
9304          "FoundLHS and FoundRHS have different sizes?");
9305   // We want to avoid hurting the compile time with analysis of too big trees.
9306   if (Depth > MaxSCEVOperationsImplicationDepth)
9307     return false;
9308   // We only want to work with ICMP_SGT comparison so far.
9309   // TODO: Extend to ICMP_UGT?
9310   if (Pred == ICmpInst::ICMP_SLT) {
9311     Pred = ICmpInst::ICMP_SGT;
9312     std::swap(LHS, RHS);
9313     std::swap(FoundLHS, FoundRHS);
9314   }
9315   if (Pred != ICmpInst::ICMP_SGT)
9316     return false;
9317 
9318   auto GetOpFromSExt = [&](const SCEV *S) {
9319     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
9320       return Ext->getOperand();
9321     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
9322     // the constant in some cases.
9323     return S;
9324   };
9325 
9326   // Acquire values from extensions.
9327   auto *OrigFoundLHS = FoundLHS;
9328   LHS = GetOpFromSExt(LHS);
9329   FoundLHS = GetOpFromSExt(FoundLHS);
9330 
9331   // Is the SGT predicate can be proved trivially or using the found context.
9332   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
9333     return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
9334            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
9335                                   FoundRHS, Depth + 1);
9336   };
9337 
9338   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
9339     // We want to avoid creation of any new non-constant SCEV. Since we are
9340     // going to compare the operands to RHS, we should be certain that we don't
9341     // need any size extensions for this. So let's decline all cases when the
9342     // sizes of types of LHS and RHS do not match.
9343     // TODO: Maybe try to get RHS from sext to catch more cases?
9344     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
9345       return false;
9346 
9347     // Should not overflow.
9348     if (!LHSAddExpr->hasNoSignedWrap())
9349       return false;
9350 
9351     auto *LL = LHSAddExpr->getOperand(0);
9352     auto *LR = LHSAddExpr->getOperand(1);
9353     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
9354 
9355     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
9356     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
9357       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
9358     };
9359     // Try to prove the following rule:
9360     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
9361     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
9362     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
9363       return true;
9364   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
9365     Value *LL, *LR;
9366     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
9367 
9368     using namespace llvm::PatternMatch;
9369 
9370     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
9371       // Rules for division.
9372       // We are going to perform some comparisons with Denominator and its
9373       // derivative expressions. In general case, creating a SCEV for it may
9374       // lead to a complex analysis of the entire graph, and in particular it
9375       // can request trip count recalculation for the same loop. This would
9376       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
9377       // this, we only want to create SCEVs that are constants in this section.
9378       // So we bail if Denominator is not a constant.
9379       if (!isa<ConstantInt>(LR))
9380         return false;
9381 
9382       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
9383 
9384       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
9385       // then a SCEV for the numerator already exists and matches with FoundLHS.
9386       auto *Numerator = getExistingSCEV(LL);
9387       if (!Numerator || Numerator->getType() != FoundLHS->getType())
9388         return false;
9389 
9390       // Make sure that the numerator matches with FoundLHS and the denominator
9391       // is positive.
9392       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
9393         return false;
9394 
9395       auto *DTy = Denominator->getType();
9396       auto *FRHSTy = FoundRHS->getType();
9397       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
9398         // One of types is a pointer and another one is not. We cannot extend
9399         // them properly to a wider type, so let us just reject this case.
9400         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
9401         // to avoid this check.
9402         return false;
9403 
9404       // Given that:
9405       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
9406       auto *WTy = getWiderType(DTy, FRHSTy);
9407       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
9408       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
9409 
9410       // Try to prove the following rule:
9411       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
9412       // For example, given that FoundLHS > 2. It means that FoundLHS is at
9413       // least 3. If we divide it by Denominator < 4, we will have at least 1.
9414       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
9415       if (isKnownNonPositive(RHS) &&
9416           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
9417         return true;
9418 
9419       // Try to prove the following rule:
9420       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
9421       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
9422       // If we divide it by Denominator > 2, then:
9423       // 1. If FoundLHS is negative, then the result is 0.
9424       // 2. If FoundLHS is non-negative, then the result is non-negative.
9425       // Anyways, the result is non-negative.
9426       auto *MinusOne = getNegativeSCEV(getOne(WTy));
9427       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
9428       if (isKnownNegative(RHS) &&
9429           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
9430         return true;
9431     }
9432   }
9433 
9434   return false;
9435 }
9436 
9437 bool
9438 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
9439                                            const SCEV *LHS, const SCEV *RHS) {
9440   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
9441          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
9442          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
9443          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
9444 }
9445 
9446 bool
9447 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
9448                                              const SCEV *LHS, const SCEV *RHS,
9449                                              const SCEV *FoundLHS,
9450                                              const SCEV *FoundRHS) {
9451   switch (Pred) {
9452   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
9453   case ICmpInst::ICMP_EQ:
9454   case ICmpInst::ICMP_NE:
9455     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
9456       return true;
9457     break;
9458   case ICmpInst::ICMP_SLT:
9459   case ICmpInst::ICMP_SLE:
9460     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
9461         isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
9462       return true;
9463     break;
9464   case ICmpInst::ICMP_SGT:
9465   case ICmpInst::ICMP_SGE:
9466     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
9467         isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
9468       return true;
9469     break;
9470   case ICmpInst::ICMP_ULT:
9471   case ICmpInst::ICMP_ULE:
9472     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
9473         isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
9474       return true;
9475     break;
9476   case ICmpInst::ICMP_UGT:
9477   case ICmpInst::ICMP_UGE:
9478     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
9479         isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
9480       return true;
9481     break;
9482   }
9483 
9484   // Maybe it can be proved via operations?
9485   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
9486     return true;
9487 
9488   return false;
9489 }
9490 
9491 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
9492                                                      const SCEV *LHS,
9493                                                      const SCEV *RHS,
9494                                                      const SCEV *FoundLHS,
9495                                                      const SCEV *FoundRHS) {
9496   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
9497     // The restriction on `FoundRHS` be lifted easily -- it exists only to
9498     // reduce the compile time impact of this optimization.
9499     return false;
9500 
9501   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
9502   if (!Addend)
9503     return false;
9504 
9505   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
9506 
9507   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
9508   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
9509   ConstantRange FoundLHSRange =
9510       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
9511 
9512   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
9513   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
9514 
9515   // We can also compute the range of values for `LHS` that satisfy the
9516   // consequent, "`LHS` `Pred` `RHS`":
9517   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
9518   ConstantRange SatisfyingLHSRange =
9519       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
9520 
9521   // The antecedent implies the consequent if every value of `LHS` that
9522   // satisfies the antecedent also satisfies the consequent.
9523   return SatisfyingLHSRange.contains(LHSRange);
9524 }
9525 
9526 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
9527                                          bool IsSigned, bool NoWrap) {
9528   assert(isKnownPositive(Stride) && "Positive stride expected!");
9529 
9530   if (NoWrap) return false;
9531 
9532   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9533   const SCEV *One = getOne(Stride->getType());
9534 
9535   if (IsSigned) {
9536     APInt MaxRHS = getSignedRangeMax(RHS);
9537     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
9538     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9539 
9540     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
9541     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
9542   }
9543 
9544   APInt MaxRHS = getUnsignedRangeMax(RHS);
9545   APInt MaxValue = APInt::getMaxValue(BitWidth);
9546   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9547 
9548   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
9549   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
9550 }
9551 
9552 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
9553                                          bool IsSigned, bool NoWrap) {
9554   if (NoWrap) return false;
9555 
9556   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9557   const SCEV *One = getOne(Stride->getType());
9558 
9559   if (IsSigned) {
9560     APInt MinRHS = getSignedRangeMin(RHS);
9561     APInt MinValue = APInt::getSignedMinValue(BitWidth);
9562     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9563 
9564     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
9565     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
9566   }
9567 
9568   APInt MinRHS = getUnsignedRangeMin(RHS);
9569   APInt MinValue = APInt::getMinValue(BitWidth);
9570   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9571 
9572   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
9573   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
9574 }
9575 
9576 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
9577                                             bool Equality) {
9578   const SCEV *One = getOne(Step->getType());
9579   Delta = Equality ? getAddExpr(Delta, Step)
9580                    : getAddExpr(Delta, getMinusSCEV(Step, One));
9581   return getUDivExpr(Delta, Step);
9582 }
9583 
9584 ScalarEvolution::ExitLimit
9585 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
9586                                   const Loop *L, bool IsSigned,
9587                                   bool ControlsExit, bool AllowPredicates) {
9588   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9589   // We handle only IV < Invariant
9590   if (!isLoopInvariant(RHS, L))
9591     return getCouldNotCompute();
9592 
9593   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9594   bool PredicatedIV = false;
9595 
9596   if (!IV && AllowPredicates) {
9597     // Try to make this an AddRec using runtime tests, in the first X
9598     // iterations of this loop, where X is the SCEV expression found by the
9599     // algorithm below.
9600     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9601     PredicatedIV = true;
9602   }
9603 
9604   // Avoid weird loops
9605   if (!IV || IV->getLoop() != L || !IV->isAffine())
9606     return getCouldNotCompute();
9607 
9608   bool NoWrap = ControlsExit &&
9609                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9610 
9611   const SCEV *Stride = IV->getStepRecurrence(*this);
9612 
9613   bool PositiveStride = isKnownPositive(Stride);
9614 
9615   // Avoid negative or zero stride values.
9616   if (!PositiveStride) {
9617     // We can compute the correct backedge taken count for loops with unknown
9618     // strides if we can prove that the loop is not an infinite loop with side
9619     // effects. Here's the loop structure we are trying to handle -
9620     //
9621     // i = start
9622     // do {
9623     //   A[i] = i;
9624     //   i += s;
9625     // } while (i < end);
9626     //
9627     // The backedge taken count for such loops is evaluated as -
9628     // (max(end, start + stride) - start - 1) /u stride
9629     //
9630     // The additional preconditions that we need to check to prove correctness
9631     // of the above formula is as follows -
9632     //
9633     // a) IV is either nuw or nsw depending upon signedness (indicated by the
9634     //    NoWrap flag).
9635     // b) loop is single exit with no side effects.
9636     //
9637     //
9638     // Precondition a) implies that if the stride is negative, this is a single
9639     // trip loop. The backedge taken count formula reduces to zero in this case.
9640     //
9641     // Precondition b) implies that the unknown stride cannot be zero otherwise
9642     // we have UB.
9643     //
9644     // The positive stride case is the same as isKnownPositive(Stride) returning
9645     // true (original behavior of the function).
9646     //
9647     // We want to make sure that the stride is truly unknown as there are edge
9648     // cases where ScalarEvolution propagates no wrap flags to the
9649     // post-increment/decrement IV even though the increment/decrement operation
9650     // itself is wrapping. The computed backedge taken count may be wrong in
9651     // such cases. This is prevented by checking that the stride is not known to
9652     // be either positive or non-positive. For example, no wrap flags are
9653     // propagated to the post-increment IV of this loop with a trip count of 2 -
9654     //
9655     // unsigned char i;
9656     // for(i=127; i<128; i+=129)
9657     //   A[i] = i;
9658     //
9659     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
9660         !loopHasNoSideEffects(L))
9661       return getCouldNotCompute();
9662   } else if (!Stride->isOne() &&
9663              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
9664     // Avoid proven overflow cases: this will ensure that the backedge taken
9665     // count will not generate any unsigned overflow. Relaxed no-overflow
9666     // conditions exploit NoWrapFlags, allowing to optimize in presence of
9667     // undefined behaviors like the case of C language.
9668     return getCouldNotCompute();
9669 
9670   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
9671                                       : ICmpInst::ICMP_ULT;
9672   const SCEV *Start = IV->getStart();
9673   const SCEV *End = RHS;
9674   // If the backedge is taken at least once, then it will be taken
9675   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
9676   // is the LHS value of the less-than comparison the first time it is evaluated
9677   // and End is the RHS.
9678   const SCEV *BECountIfBackedgeTaken =
9679     computeBECount(getMinusSCEV(End, Start), Stride, false);
9680   // If the loop entry is guarded by the result of the backedge test of the
9681   // first loop iteration, then we know the backedge will be taken at least
9682   // once and so the backedge taken count is as above. If not then we use the
9683   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
9684   // as if the backedge is taken at least once max(End,Start) is End and so the
9685   // result is as above, and if not max(End,Start) is Start so we get a backedge
9686   // count of zero.
9687   const SCEV *BECount;
9688   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
9689     BECount = BECountIfBackedgeTaken;
9690   else {
9691     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
9692     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
9693   }
9694 
9695   const SCEV *MaxBECount;
9696   bool MaxOrZero = false;
9697   if (isa<SCEVConstant>(BECount))
9698     MaxBECount = BECount;
9699   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
9700     // If we know exactly how many times the backedge will be taken if it's
9701     // taken at least once, then the backedge count will either be that or
9702     // zero.
9703     MaxBECount = BECountIfBackedgeTaken;
9704     MaxOrZero = true;
9705   } else {
9706     // Calculate the maximum backedge count based on the range of values
9707     // permitted by Start, End, and Stride.
9708     APInt MinStart = IsSigned ? getSignedRangeMin(Start)
9709                               : getUnsignedRangeMin(Start);
9710 
9711     unsigned BitWidth = getTypeSizeInBits(LHS->getType());
9712 
9713     APInt StrideForMaxBECount;
9714 
9715     if (PositiveStride)
9716       StrideForMaxBECount =
9717         IsSigned ? getSignedRangeMin(Stride)
9718                  : getUnsignedRangeMin(Stride);
9719     else
9720       // Using a stride of 1 is safe when computing max backedge taken count for
9721       // a loop with unknown stride.
9722       StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
9723 
9724     APInt Limit =
9725       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
9726                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
9727 
9728     // Although End can be a MAX expression we estimate MaxEnd considering only
9729     // the case End = RHS. This is safe because in the other case (End - Start)
9730     // is zero, leading to a zero maximum backedge taken count.
9731     APInt MaxEnd =
9732       IsSigned ? APIntOps::smin(getSignedRangeMax(RHS), Limit)
9733                : APIntOps::umin(getUnsignedRangeMax(RHS), Limit);
9734 
9735     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
9736                                 getConstant(StrideForMaxBECount), false);
9737   }
9738 
9739   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
9740       !isa<SCEVCouldNotCompute>(BECount))
9741     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
9742 
9743   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
9744 }
9745 
9746 ScalarEvolution::ExitLimit
9747 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
9748                                      const Loop *L, bool IsSigned,
9749                                      bool ControlsExit, bool AllowPredicates) {
9750   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9751   // We handle only IV > Invariant
9752   if (!isLoopInvariant(RHS, L))
9753     return getCouldNotCompute();
9754 
9755   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9756   if (!IV && AllowPredicates)
9757     // Try to make this an AddRec using runtime tests, in the first X
9758     // iterations of this loop, where X is the SCEV expression found by the
9759     // algorithm below.
9760     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9761 
9762   // Avoid weird loops
9763   if (!IV || IV->getLoop() != L || !IV->isAffine())
9764     return getCouldNotCompute();
9765 
9766   bool NoWrap = ControlsExit &&
9767                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9768 
9769   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
9770 
9771   // Avoid negative or zero stride values
9772   if (!isKnownPositive(Stride))
9773     return getCouldNotCompute();
9774 
9775   // Avoid proven overflow cases: this will ensure that the backedge taken count
9776   // will not generate any unsigned overflow. Relaxed no-overflow conditions
9777   // exploit NoWrapFlags, allowing to optimize in presence of undefined
9778   // behaviors like the case of C language.
9779   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
9780     return getCouldNotCompute();
9781 
9782   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
9783                                       : ICmpInst::ICMP_UGT;
9784 
9785   const SCEV *Start = IV->getStart();
9786   const SCEV *End = RHS;
9787   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
9788     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
9789 
9790   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
9791 
9792   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
9793                             : getUnsignedRangeMax(Start);
9794 
9795   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
9796                              : getUnsignedRangeMin(Stride);
9797 
9798   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
9799   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
9800                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
9801 
9802   // Although End can be a MIN expression we estimate MinEnd considering only
9803   // the case End = RHS. This is safe because in the other case (Start - End)
9804   // is zero, leading to a zero maximum backedge taken count.
9805   APInt MinEnd =
9806     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
9807              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
9808 
9809 
9810   const SCEV *MaxBECount = getCouldNotCompute();
9811   if (isa<SCEVConstant>(BECount))
9812     MaxBECount = BECount;
9813   else
9814     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
9815                                 getConstant(MinStride), false);
9816 
9817   if (isa<SCEVCouldNotCompute>(MaxBECount))
9818     MaxBECount = BECount;
9819 
9820   return ExitLimit(BECount, MaxBECount, false, Predicates);
9821 }
9822 
9823 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
9824                                                     ScalarEvolution &SE) const {
9825   if (Range.isFullSet())  // Infinite loop.
9826     return SE.getCouldNotCompute();
9827 
9828   // If the start is a non-zero constant, shift the range to simplify things.
9829   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
9830     if (!SC->getValue()->isZero()) {
9831       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
9832       Operands[0] = SE.getZero(SC->getType());
9833       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
9834                                              getNoWrapFlags(FlagNW));
9835       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
9836         return ShiftedAddRec->getNumIterationsInRange(
9837             Range.subtract(SC->getAPInt()), SE);
9838       // This is strange and shouldn't happen.
9839       return SE.getCouldNotCompute();
9840     }
9841 
9842   // The only time we can solve this is when we have all constant indices.
9843   // Otherwise, we cannot determine the overflow conditions.
9844   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
9845     return SE.getCouldNotCompute();
9846 
9847   // Okay at this point we know that all elements of the chrec are constants and
9848   // that the start element is zero.
9849 
9850   // First check to see if the range contains zero.  If not, the first
9851   // iteration exits.
9852   unsigned BitWidth = SE.getTypeSizeInBits(getType());
9853   if (!Range.contains(APInt(BitWidth, 0)))
9854     return SE.getZero(getType());
9855 
9856   if (isAffine()) {
9857     // If this is an affine expression then we have this situation:
9858     //   Solve {0,+,A} in Range  ===  Ax in Range
9859 
9860     // We know that zero is in the range.  If A is positive then we know that
9861     // the upper value of the range must be the first possible exit value.
9862     // If A is negative then the lower of the range is the last possible loop
9863     // value.  Also note that we already checked for a full range.
9864     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
9865     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
9866 
9867     // The exit value should be (End+A)/A.
9868     APInt ExitVal = (End + A).udiv(A);
9869     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
9870 
9871     // Evaluate at the exit value.  If we really did fall out of the valid
9872     // range, then we computed our trip count, otherwise wrap around or other
9873     // things must have happened.
9874     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
9875     if (Range.contains(Val->getValue()))
9876       return SE.getCouldNotCompute();  // Something strange happened
9877 
9878     // Ensure that the previous value is in the range.  This is a sanity check.
9879     assert(Range.contains(
9880            EvaluateConstantChrecAtConstant(this,
9881            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
9882            "Linear scev computation is off in a bad way!");
9883     return SE.getConstant(ExitValue);
9884   } else if (isQuadratic()) {
9885     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
9886     // quadratic equation to solve it.  To do this, we must frame our problem in
9887     // terms of figuring out when zero is crossed, instead of when
9888     // Range.getUpper() is crossed.
9889     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
9890     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
9891     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
9892 
9893     // Next, solve the constructed addrec
9894     if (auto Roots =
9895             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
9896       const SCEVConstant *R1 = Roots->first;
9897       const SCEVConstant *R2 = Roots->second;
9898       // Pick the smallest positive root value.
9899       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
9900               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
9901         if (!CB->getZExtValue())
9902           std::swap(R1, R2); // R1 is the minimum root now.
9903 
9904         // Make sure the root is not off by one.  The returned iteration should
9905         // not be in the range, but the previous one should be.  When solving
9906         // for "X*X < 5", for example, we should not return a root of 2.
9907         ConstantInt *R1Val =
9908             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
9909         if (Range.contains(R1Val->getValue())) {
9910           // The next iteration must be out of the range...
9911           ConstantInt *NextVal =
9912               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
9913 
9914           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9915           if (!Range.contains(R1Val->getValue()))
9916             return SE.getConstant(NextVal);
9917           return SE.getCouldNotCompute(); // Something strange happened
9918         }
9919 
9920         // If R1 was not in the range, then it is a good return value.  Make
9921         // sure that R1-1 WAS in the range though, just in case.
9922         ConstantInt *NextVal =
9923             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
9924         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9925         if (Range.contains(R1Val->getValue()))
9926           return R1;
9927         return SE.getCouldNotCompute(); // Something strange happened
9928       }
9929     }
9930   }
9931 
9932   return SE.getCouldNotCompute();
9933 }
9934 
9935 // Return true when S contains at least an undef value.
9936 static inline bool containsUndefs(const SCEV *S) {
9937   return SCEVExprContains(S, [](const SCEV *S) {
9938     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
9939       return isa<UndefValue>(SU->getValue());
9940     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
9941       return isa<UndefValue>(SC->getValue());
9942     return false;
9943   });
9944 }
9945 
9946 namespace {
9947 
9948 // Collect all steps of SCEV expressions.
9949 struct SCEVCollectStrides {
9950   ScalarEvolution &SE;
9951   SmallVectorImpl<const SCEV *> &Strides;
9952 
9953   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9954       : SE(SE), Strides(S) {}
9955 
9956   bool follow(const SCEV *S) {
9957     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9958       Strides.push_back(AR->getStepRecurrence(SE));
9959     return true;
9960   }
9961 
9962   bool isDone() const { return false; }
9963 };
9964 
9965 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9966 struct SCEVCollectTerms {
9967   SmallVectorImpl<const SCEV *> &Terms;
9968 
9969   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
9970 
9971   bool follow(const SCEV *S) {
9972     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
9973         isa<SCEVSignExtendExpr>(S)) {
9974       if (!containsUndefs(S))
9975         Terms.push_back(S);
9976 
9977       // Stop recursion: once we collected a term, do not walk its operands.
9978       return false;
9979     }
9980 
9981     // Keep looking.
9982     return true;
9983   }
9984 
9985   bool isDone() const { return false; }
9986 };
9987 
9988 // Check if a SCEV contains an AddRecExpr.
9989 struct SCEVHasAddRec {
9990   bool &ContainsAddRec;
9991 
9992   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9993     ContainsAddRec = false;
9994   }
9995 
9996   bool follow(const SCEV *S) {
9997     if (isa<SCEVAddRecExpr>(S)) {
9998       ContainsAddRec = true;
9999 
10000       // Stop recursion: once we collected a term, do not walk its operands.
10001       return false;
10002     }
10003 
10004     // Keep looking.
10005     return true;
10006   }
10007 
10008   bool isDone() const { return false; }
10009 };
10010 
10011 // Find factors that are multiplied with an expression that (possibly as a
10012 // subexpression) contains an AddRecExpr. In the expression:
10013 //
10014 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10015 //
10016 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10017 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10018 // parameters as they form a product with an induction variable.
10019 //
10020 // This collector expects all array size parameters to be in the same MulExpr.
10021 // It might be necessary to later add support for collecting parameters that are
10022 // spread over different nested MulExpr.
10023 struct SCEVCollectAddRecMultiplies {
10024   SmallVectorImpl<const SCEV *> &Terms;
10025   ScalarEvolution &SE;
10026 
10027   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10028       : Terms(T), SE(SE) {}
10029 
10030   bool follow(const SCEV *S) {
10031     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10032       bool HasAddRec = false;
10033       SmallVector<const SCEV *, 0> Operands;
10034       for (auto Op : Mul->operands()) {
10035         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10036         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10037           Operands.push_back(Op);
10038         } else if (Unknown) {
10039           HasAddRec = true;
10040         } else {
10041           bool ContainsAddRec;
10042           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10043           visitAll(Op, ContiansAddRec);
10044           HasAddRec |= ContainsAddRec;
10045         }
10046       }
10047       if (Operands.size() == 0)
10048         return true;
10049 
10050       if (!HasAddRec)
10051         return false;
10052 
10053       Terms.push_back(SE.getMulExpr(Operands));
10054       // Stop recursion: once we collected a term, do not walk its operands.
10055       return false;
10056     }
10057 
10058     // Keep looking.
10059     return true;
10060   }
10061 
10062   bool isDone() const { return false; }
10063 };
10064 
10065 } // end anonymous namespace
10066 
10067 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10068 /// two places:
10069 ///   1) The strides of AddRec expressions.
10070 ///   2) Unknowns that are multiplied with AddRec expressions.
10071 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10072     SmallVectorImpl<const SCEV *> &Terms) {
10073   SmallVector<const SCEV *, 4> Strides;
10074   SCEVCollectStrides StrideCollector(*this, Strides);
10075   visitAll(Expr, StrideCollector);
10076 
10077   DEBUG({
10078       dbgs() << "Strides:\n";
10079       for (const SCEV *S : Strides)
10080         dbgs() << *S << "\n";
10081     });
10082 
10083   for (const SCEV *S : Strides) {
10084     SCEVCollectTerms TermCollector(Terms);
10085     visitAll(S, TermCollector);
10086   }
10087 
10088   DEBUG({
10089       dbgs() << "Terms:\n";
10090       for (const SCEV *T : Terms)
10091         dbgs() << *T << "\n";
10092     });
10093 
10094   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10095   visitAll(Expr, MulCollector);
10096 }
10097 
10098 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10099                                    SmallVectorImpl<const SCEV *> &Terms,
10100                                    SmallVectorImpl<const SCEV *> &Sizes) {
10101   int Last = Terms.size() - 1;
10102   const SCEV *Step = Terms[Last];
10103 
10104   // End of recursion.
10105   if (Last == 0) {
10106     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10107       SmallVector<const SCEV *, 2> Qs;
10108       for (const SCEV *Op : M->operands())
10109         if (!isa<SCEVConstant>(Op))
10110           Qs.push_back(Op);
10111 
10112       Step = SE.getMulExpr(Qs);
10113     }
10114 
10115     Sizes.push_back(Step);
10116     return true;
10117   }
10118 
10119   for (const SCEV *&Term : Terms) {
10120     // Normalize the terms before the next call to findArrayDimensionsRec.
10121     const SCEV *Q, *R;
10122     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10123 
10124     // Bail out when GCD does not evenly divide one of the terms.
10125     if (!R->isZero())
10126       return false;
10127 
10128     Term = Q;
10129   }
10130 
10131   // Remove all SCEVConstants.
10132   Terms.erase(
10133       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10134       Terms.end());
10135 
10136   if (Terms.size() > 0)
10137     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10138       return false;
10139 
10140   Sizes.push_back(Step);
10141   return true;
10142 }
10143 
10144 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
10145 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10146   for (const SCEV *T : Terms)
10147     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
10148       return true;
10149   return false;
10150 }
10151 
10152 // Return the number of product terms in S.
10153 static inline int numberOfTerms(const SCEV *S) {
10154   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10155     return Expr->getNumOperands();
10156   return 1;
10157 }
10158 
10159 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10160   if (isa<SCEVConstant>(T))
10161     return nullptr;
10162 
10163   if (isa<SCEVUnknown>(T))
10164     return T;
10165 
10166   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10167     SmallVector<const SCEV *, 2> Factors;
10168     for (const SCEV *Op : M->operands())
10169       if (!isa<SCEVConstant>(Op))
10170         Factors.push_back(Op);
10171 
10172     return SE.getMulExpr(Factors);
10173   }
10174 
10175   return T;
10176 }
10177 
10178 /// Return the size of an element read or written by Inst.
10179 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
10180   Type *Ty;
10181   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
10182     Ty = Store->getValueOperand()->getType();
10183   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
10184     Ty = Load->getType();
10185   else
10186     return nullptr;
10187 
10188   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
10189   return getSizeOfExpr(ETy, Ty);
10190 }
10191 
10192 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
10193                                           SmallVectorImpl<const SCEV *> &Sizes,
10194                                           const SCEV *ElementSize) {
10195   if (Terms.size() < 1 || !ElementSize)
10196     return;
10197 
10198   // Early return when Terms do not contain parameters: we do not delinearize
10199   // non parametric SCEVs.
10200   if (!containsParameters(Terms))
10201     return;
10202 
10203   DEBUG({
10204       dbgs() << "Terms:\n";
10205       for (const SCEV *T : Terms)
10206         dbgs() << *T << "\n";
10207     });
10208 
10209   // Remove duplicates.
10210   array_pod_sort(Terms.begin(), Terms.end());
10211   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
10212 
10213   // Put larger terms first.
10214   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
10215     return numberOfTerms(LHS) > numberOfTerms(RHS);
10216   });
10217 
10218   // Try to divide all terms by the element size. If term is not divisible by
10219   // element size, proceed with the original term.
10220   for (const SCEV *&Term : Terms) {
10221     const SCEV *Q, *R;
10222     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
10223     if (!Q->isZero())
10224       Term = Q;
10225   }
10226 
10227   SmallVector<const SCEV *, 4> NewTerms;
10228 
10229   // Remove constant factors.
10230   for (const SCEV *T : Terms)
10231     if (const SCEV *NewT = removeConstantFactors(*this, T))
10232       NewTerms.push_back(NewT);
10233 
10234   DEBUG({
10235       dbgs() << "Terms after sorting:\n";
10236       for (const SCEV *T : NewTerms)
10237         dbgs() << *T << "\n";
10238     });
10239 
10240   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
10241     Sizes.clear();
10242     return;
10243   }
10244 
10245   // The last element to be pushed into Sizes is the size of an element.
10246   Sizes.push_back(ElementSize);
10247 
10248   DEBUG({
10249       dbgs() << "Sizes:\n";
10250       for (const SCEV *S : Sizes)
10251         dbgs() << *S << "\n";
10252     });
10253 }
10254 
10255 void ScalarEvolution::computeAccessFunctions(
10256     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
10257     SmallVectorImpl<const SCEV *> &Sizes) {
10258   // Early exit in case this SCEV is not an affine multivariate function.
10259   if (Sizes.empty())
10260     return;
10261 
10262   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
10263     if (!AR->isAffine())
10264       return;
10265 
10266   const SCEV *Res = Expr;
10267   int Last = Sizes.size() - 1;
10268   for (int i = Last; i >= 0; i--) {
10269     const SCEV *Q, *R;
10270     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
10271 
10272     DEBUG({
10273         dbgs() << "Res: " << *Res << "\n";
10274         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
10275         dbgs() << "Res divided by Sizes[i]:\n";
10276         dbgs() << "Quotient: " << *Q << "\n";
10277         dbgs() << "Remainder: " << *R << "\n";
10278       });
10279 
10280     Res = Q;
10281 
10282     // Do not record the last subscript corresponding to the size of elements in
10283     // the array.
10284     if (i == Last) {
10285 
10286       // Bail out if the remainder is too complex.
10287       if (isa<SCEVAddRecExpr>(R)) {
10288         Subscripts.clear();
10289         Sizes.clear();
10290         return;
10291       }
10292 
10293       continue;
10294     }
10295 
10296     // Record the access function for the current subscript.
10297     Subscripts.push_back(R);
10298   }
10299 
10300   // Also push in last position the remainder of the last division: it will be
10301   // the access function of the innermost dimension.
10302   Subscripts.push_back(Res);
10303 
10304   std::reverse(Subscripts.begin(), Subscripts.end());
10305 
10306   DEBUG({
10307       dbgs() << "Subscripts:\n";
10308       for (const SCEV *S : Subscripts)
10309         dbgs() << *S << "\n";
10310     });
10311 }
10312 
10313 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
10314 /// sizes of an array access. Returns the remainder of the delinearization that
10315 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
10316 /// the multiples of SCEV coefficients: that is a pattern matching of sub
10317 /// expressions in the stride and base of a SCEV corresponding to the
10318 /// computation of a GCD (greatest common divisor) of base and stride.  When
10319 /// SCEV->delinearize fails, it returns the SCEV unchanged.
10320 ///
10321 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
10322 ///
10323 ///  void foo(long n, long m, long o, double A[n][m][o]) {
10324 ///
10325 ///    for (long i = 0; i < n; i++)
10326 ///      for (long j = 0; j < m; j++)
10327 ///        for (long k = 0; k < o; k++)
10328 ///          A[i][j][k] = 1.0;
10329 ///  }
10330 ///
10331 /// the delinearization input is the following AddRec SCEV:
10332 ///
10333 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
10334 ///
10335 /// From this SCEV, we are able to say that the base offset of the access is %A
10336 /// because it appears as an offset that does not divide any of the strides in
10337 /// the loops:
10338 ///
10339 ///  CHECK: Base offset: %A
10340 ///
10341 /// and then SCEV->delinearize determines the size of some of the dimensions of
10342 /// the array as these are the multiples by which the strides are happening:
10343 ///
10344 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
10345 ///
10346 /// Note that the outermost dimension remains of UnknownSize because there are
10347 /// no strides that would help identifying the size of the last dimension: when
10348 /// the array has been statically allocated, one could compute the size of that
10349 /// dimension by dividing the overall size of the array by the size of the known
10350 /// dimensions: %m * %o * 8.
10351 ///
10352 /// Finally delinearize provides the access functions for the array reference
10353 /// that does correspond to A[i][j][k] of the above C testcase:
10354 ///
10355 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
10356 ///
10357 /// The testcases are checking the output of a function pass:
10358 /// DelinearizationPass that walks through all loads and stores of a function
10359 /// asking for the SCEV of the memory access with respect to all enclosing
10360 /// loops, calling SCEV->delinearize on that and printing the results.
10361 void ScalarEvolution::delinearize(const SCEV *Expr,
10362                                  SmallVectorImpl<const SCEV *> &Subscripts,
10363                                  SmallVectorImpl<const SCEV *> &Sizes,
10364                                  const SCEV *ElementSize) {
10365   // First step: collect parametric terms.
10366   SmallVector<const SCEV *, 4> Terms;
10367   collectParametricTerms(Expr, Terms);
10368 
10369   if (Terms.empty())
10370     return;
10371 
10372   // Second step: find subscript sizes.
10373   findArrayDimensions(Terms, Sizes, ElementSize);
10374 
10375   if (Sizes.empty())
10376     return;
10377 
10378   // Third step: compute the access functions for each subscript.
10379   computeAccessFunctions(Expr, Subscripts, Sizes);
10380 
10381   if (Subscripts.empty())
10382     return;
10383 
10384   DEBUG({
10385       dbgs() << "succeeded to delinearize " << *Expr << "\n";
10386       dbgs() << "ArrayDecl[UnknownSize]";
10387       for (const SCEV *S : Sizes)
10388         dbgs() << "[" << *S << "]";
10389 
10390       dbgs() << "\nArrayRef";
10391       for (const SCEV *S : Subscripts)
10392         dbgs() << "[" << *S << "]";
10393       dbgs() << "\n";
10394     });
10395 }
10396 
10397 //===----------------------------------------------------------------------===//
10398 //                   SCEVCallbackVH Class Implementation
10399 //===----------------------------------------------------------------------===//
10400 
10401 void ScalarEvolution::SCEVCallbackVH::deleted() {
10402   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10403   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
10404     SE->ConstantEvolutionLoopExitValue.erase(PN);
10405   SE->eraseValueFromMap(getValPtr());
10406   // this now dangles!
10407 }
10408 
10409 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
10410   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10411 
10412   // Forget all the expressions associated with users of the old value,
10413   // so that future queries will recompute the expressions using the new
10414   // value.
10415   Value *Old = getValPtr();
10416   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
10417   SmallPtrSet<User *, 8> Visited;
10418   while (!Worklist.empty()) {
10419     User *U = Worklist.pop_back_val();
10420     // Deleting the Old value will cause this to dangle. Postpone
10421     // that until everything else is done.
10422     if (U == Old)
10423       continue;
10424     if (!Visited.insert(U).second)
10425       continue;
10426     if (PHINode *PN = dyn_cast<PHINode>(U))
10427       SE->ConstantEvolutionLoopExitValue.erase(PN);
10428     SE->eraseValueFromMap(U);
10429     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
10430   }
10431   // Delete the Old value.
10432   if (PHINode *PN = dyn_cast<PHINode>(Old))
10433     SE->ConstantEvolutionLoopExitValue.erase(PN);
10434   SE->eraseValueFromMap(Old);
10435   // this now dangles!
10436 }
10437 
10438 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
10439   : CallbackVH(V), SE(se) {}
10440 
10441 //===----------------------------------------------------------------------===//
10442 //                   ScalarEvolution Class Implementation
10443 //===----------------------------------------------------------------------===//
10444 
10445 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
10446                                  AssumptionCache &AC, DominatorTree &DT,
10447                                  LoopInfo &LI)
10448     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
10449       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
10450       LoopDispositions(64), BlockDispositions(64) {
10451   // To use guards for proving predicates, we need to scan every instruction in
10452   // relevant basic blocks, and not just terminators.  Doing this is a waste of
10453   // time if the IR does not actually contain any calls to
10454   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
10455   //
10456   // This pessimizes the case where a pass that preserves ScalarEvolution wants
10457   // to _add_ guards to the module when there weren't any before, and wants
10458   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
10459   // efficient in lieu of being smart in that rather obscure case.
10460 
10461   auto *GuardDecl = F.getParent()->getFunction(
10462       Intrinsic::getName(Intrinsic::experimental_guard));
10463   HasGuards = GuardDecl && !GuardDecl->use_empty();
10464 }
10465 
10466 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
10467     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
10468       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
10469       ValueExprMap(std::move(Arg.ValueExprMap)),
10470       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
10471       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
10472       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
10473       PredicatedBackedgeTakenCounts(
10474           std::move(Arg.PredicatedBackedgeTakenCounts)),
10475       ExitLimits(std::move(Arg.ExitLimits)),
10476       ConstantEvolutionLoopExitValue(
10477           std::move(Arg.ConstantEvolutionLoopExitValue)),
10478       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
10479       LoopDispositions(std::move(Arg.LoopDispositions)),
10480       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
10481       BlockDispositions(std::move(Arg.BlockDispositions)),
10482       UnsignedRanges(std::move(Arg.UnsignedRanges)),
10483       SignedRanges(std::move(Arg.SignedRanges)),
10484       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
10485       UniquePreds(std::move(Arg.UniquePreds)),
10486       SCEVAllocator(std::move(Arg.SCEVAllocator)),
10487       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
10488       FirstUnknown(Arg.FirstUnknown) {
10489   Arg.FirstUnknown = nullptr;
10490 }
10491 
10492 ScalarEvolution::~ScalarEvolution() {
10493   // Iterate through all the SCEVUnknown instances and call their
10494   // destructors, so that they release their references to their values.
10495   for (SCEVUnknown *U = FirstUnknown; U;) {
10496     SCEVUnknown *Tmp = U;
10497     U = U->Next;
10498     Tmp->~SCEVUnknown();
10499   }
10500   FirstUnknown = nullptr;
10501 
10502   ExprValueMap.clear();
10503   ValueExprMap.clear();
10504   HasRecMap.clear();
10505 
10506   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
10507   // that a loop had multiple computable exits.
10508   for (auto &BTCI : BackedgeTakenCounts)
10509     BTCI.second.clear();
10510   for (auto &BTCI : PredicatedBackedgeTakenCounts)
10511     BTCI.second.clear();
10512 
10513   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
10514   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
10515   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
10516 }
10517 
10518 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
10519   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
10520 }
10521 
10522 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
10523                           const Loop *L) {
10524   // Print all inner loops first
10525   for (Loop *I : *L)
10526     PrintLoopInfo(OS, SE, I);
10527 
10528   OS << "Loop ";
10529   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10530   OS << ": ";
10531 
10532   SmallVector<BasicBlock *, 8> ExitBlocks;
10533   L->getExitBlocks(ExitBlocks);
10534   if (ExitBlocks.size() != 1)
10535     OS << "<multiple exits> ";
10536 
10537   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10538     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
10539   } else {
10540     OS << "Unpredictable backedge-taken count. ";
10541   }
10542 
10543   OS << "\n"
10544         "Loop ";
10545   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10546   OS << ": ";
10547 
10548   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
10549     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
10550     if (SE->isBackedgeTakenCountMaxOrZero(L))
10551       OS << ", actual taken count either this or zero.";
10552   } else {
10553     OS << "Unpredictable max backedge-taken count. ";
10554   }
10555 
10556   OS << "\n"
10557         "Loop ";
10558   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10559   OS << ": ";
10560 
10561   SCEVUnionPredicate Pred;
10562   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
10563   if (!isa<SCEVCouldNotCompute>(PBT)) {
10564     OS << "Predicated backedge-taken count is " << *PBT << "\n";
10565     OS << " Predicates:\n";
10566     Pred.print(OS, 4);
10567   } else {
10568     OS << "Unpredictable predicated backedge-taken count. ";
10569   }
10570   OS << "\n";
10571 
10572   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10573     OS << "Loop ";
10574     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10575     OS << ": ";
10576     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
10577   }
10578 }
10579 
10580 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
10581   switch (LD) {
10582   case ScalarEvolution::LoopVariant:
10583     return "Variant";
10584   case ScalarEvolution::LoopInvariant:
10585     return "Invariant";
10586   case ScalarEvolution::LoopComputable:
10587     return "Computable";
10588   }
10589   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
10590 }
10591 
10592 void ScalarEvolution::print(raw_ostream &OS) const {
10593   // ScalarEvolution's implementation of the print method is to print
10594   // out SCEV values of all instructions that are interesting. Doing
10595   // this potentially causes it to create new SCEV objects though,
10596   // which technically conflicts with the const qualifier. This isn't
10597   // observable from outside the class though, so casting away the
10598   // const isn't dangerous.
10599   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10600 
10601   OS << "Classifying expressions for: ";
10602   F.printAsOperand(OS, /*PrintType=*/false);
10603   OS << "\n";
10604   for (Instruction &I : instructions(F))
10605     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
10606       OS << I << '\n';
10607       OS << "  -->  ";
10608       const SCEV *SV = SE.getSCEV(&I);
10609       SV->print(OS);
10610       if (!isa<SCEVCouldNotCompute>(SV)) {
10611         OS << " U: ";
10612         SE.getUnsignedRange(SV).print(OS);
10613         OS << " S: ";
10614         SE.getSignedRange(SV).print(OS);
10615       }
10616 
10617       const Loop *L = LI.getLoopFor(I.getParent());
10618 
10619       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
10620       if (AtUse != SV) {
10621         OS << "  -->  ";
10622         AtUse->print(OS);
10623         if (!isa<SCEVCouldNotCompute>(AtUse)) {
10624           OS << " U: ";
10625           SE.getUnsignedRange(AtUse).print(OS);
10626           OS << " S: ";
10627           SE.getSignedRange(AtUse).print(OS);
10628         }
10629       }
10630 
10631       if (L) {
10632         OS << "\t\t" "Exits: ";
10633         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
10634         if (!SE.isLoopInvariant(ExitValue, L)) {
10635           OS << "<<Unknown>>";
10636         } else {
10637           OS << *ExitValue;
10638         }
10639 
10640         bool First = true;
10641         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
10642           if (First) {
10643             OS << "\t\t" "LoopDispositions: { ";
10644             First = false;
10645           } else {
10646             OS << ", ";
10647           }
10648 
10649           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10650           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
10651         }
10652 
10653         for (auto *InnerL : depth_first(L)) {
10654           if (InnerL == L)
10655             continue;
10656           if (First) {
10657             OS << "\t\t" "LoopDispositions: { ";
10658             First = false;
10659           } else {
10660             OS << ", ";
10661           }
10662 
10663           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10664           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
10665         }
10666 
10667         OS << " }";
10668       }
10669 
10670       OS << "\n";
10671     }
10672 
10673   OS << "Determining loop execution counts for: ";
10674   F.printAsOperand(OS, /*PrintType=*/false);
10675   OS << "\n";
10676   for (Loop *I : LI)
10677     PrintLoopInfo(OS, &SE, I);
10678 }
10679 
10680 ScalarEvolution::LoopDisposition
10681 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
10682   auto &Values = LoopDispositions[S];
10683   for (auto &V : Values) {
10684     if (V.getPointer() == L)
10685       return V.getInt();
10686   }
10687   Values.emplace_back(L, LoopVariant);
10688   LoopDisposition D = computeLoopDisposition(S, L);
10689   auto &Values2 = LoopDispositions[S];
10690   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10691     if (V.getPointer() == L) {
10692       V.setInt(D);
10693       break;
10694     }
10695   }
10696   return D;
10697 }
10698 
10699 ScalarEvolution::LoopDisposition
10700 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
10701   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10702   case scConstant:
10703     return LoopInvariant;
10704   case scTruncate:
10705   case scZeroExtend:
10706   case scSignExtend:
10707     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
10708   case scAddRecExpr: {
10709     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10710 
10711     // If L is the addrec's loop, it's computable.
10712     if (AR->getLoop() == L)
10713       return LoopComputable;
10714 
10715     // Add recurrences are never invariant in the function-body (null loop).
10716     if (!L)
10717       return LoopVariant;
10718 
10719     // This recurrence is variant w.r.t. L if L contains AR's loop.
10720     if (L->contains(AR->getLoop()))
10721       return LoopVariant;
10722 
10723     // This recurrence is invariant w.r.t. L if AR's loop contains L.
10724     if (AR->getLoop()->contains(L))
10725       return LoopInvariant;
10726 
10727     // This recurrence is variant w.r.t. L if any of its operands
10728     // are variant.
10729     for (auto *Op : AR->operands())
10730       if (!isLoopInvariant(Op, L))
10731         return LoopVariant;
10732 
10733     // Otherwise it's loop-invariant.
10734     return LoopInvariant;
10735   }
10736   case scAddExpr:
10737   case scMulExpr:
10738   case scUMaxExpr:
10739   case scSMaxExpr: {
10740     bool HasVarying = false;
10741     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
10742       LoopDisposition D = getLoopDisposition(Op, L);
10743       if (D == LoopVariant)
10744         return LoopVariant;
10745       if (D == LoopComputable)
10746         HasVarying = true;
10747     }
10748     return HasVarying ? LoopComputable : LoopInvariant;
10749   }
10750   case scUDivExpr: {
10751     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10752     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
10753     if (LD == LoopVariant)
10754       return LoopVariant;
10755     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
10756     if (RD == LoopVariant)
10757       return LoopVariant;
10758     return (LD == LoopInvariant && RD == LoopInvariant) ?
10759            LoopInvariant : LoopComputable;
10760   }
10761   case scUnknown:
10762     // All non-instruction values are loop invariant.  All instructions are loop
10763     // invariant if they are not contained in the specified loop.
10764     // Instructions are never considered invariant in the function body
10765     // (null loop) because they are defined within the "loop".
10766     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
10767       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
10768     return LoopInvariant;
10769   case scCouldNotCompute:
10770     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10771   }
10772   llvm_unreachable("Unknown SCEV kind!");
10773 }
10774 
10775 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
10776   return getLoopDisposition(S, L) == LoopInvariant;
10777 }
10778 
10779 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
10780   return getLoopDisposition(S, L) == LoopComputable;
10781 }
10782 
10783 ScalarEvolution::BlockDisposition
10784 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10785   auto &Values = BlockDispositions[S];
10786   for (auto &V : Values) {
10787     if (V.getPointer() == BB)
10788       return V.getInt();
10789   }
10790   Values.emplace_back(BB, DoesNotDominateBlock);
10791   BlockDisposition D = computeBlockDisposition(S, BB);
10792   auto &Values2 = BlockDispositions[S];
10793   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10794     if (V.getPointer() == BB) {
10795       V.setInt(D);
10796       break;
10797     }
10798   }
10799   return D;
10800 }
10801 
10802 ScalarEvolution::BlockDisposition
10803 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10804   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10805   case scConstant:
10806     return ProperlyDominatesBlock;
10807   case scTruncate:
10808   case scZeroExtend:
10809   case scSignExtend:
10810     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
10811   case scAddRecExpr: {
10812     // This uses a "dominates" query instead of "properly dominates" query
10813     // to test for proper dominance too, because the instruction which
10814     // produces the addrec's value is a PHI, and a PHI effectively properly
10815     // dominates its entire containing block.
10816     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10817     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
10818       return DoesNotDominateBlock;
10819 
10820     // Fall through into SCEVNAryExpr handling.
10821     LLVM_FALLTHROUGH;
10822   }
10823   case scAddExpr:
10824   case scMulExpr:
10825   case scUMaxExpr:
10826   case scSMaxExpr: {
10827     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
10828     bool Proper = true;
10829     for (const SCEV *NAryOp : NAry->operands()) {
10830       BlockDisposition D = getBlockDisposition(NAryOp, BB);
10831       if (D == DoesNotDominateBlock)
10832         return DoesNotDominateBlock;
10833       if (D == DominatesBlock)
10834         Proper = false;
10835     }
10836     return Proper ? ProperlyDominatesBlock : DominatesBlock;
10837   }
10838   case scUDivExpr: {
10839     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10840     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
10841     BlockDisposition LD = getBlockDisposition(LHS, BB);
10842     if (LD == DoesNotDominateBlock)
10843       return DoesNotDominateBlock;
10844     BlockDisposition RD = getBlockDisposition(RHS, BB);
10845     if (RD == DoesNotDominateBlock)
10846       return DoesNotDominateBlock;
10847     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
10848       ProperlyDominatesBlock : DominatesBlock;
10849   }
10850   case scUnknown:
10851     if (Instruction *I =
10852           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
10853       if (I->getParent() == BB)
10854         return DominatesBlock;
10855       if (DT.properlyDominates(I->getParent(), BB))
10856         return ProperlyDominatesBlock;
10857       return DoesNotDominateBlock;
10858     }
10859     return ProperlyDominatesBlock;
10860   case scCouldNotCompute:
10861     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10862   }
10863   llvm_unreachable("Unknown SCEV kind!");
10864 }
10865 
10866 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
10867   return getBlockDisposition(S, BB) >= DominatesBlock;
10868 }
10869 
10870 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
10871   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
10872 }
10873 
10874 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
10875   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
10876 }
10877 
10878 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
10879   auto IsS = [&](const SCEV *X) { return S == X; };
10880   auto ContainsS = [&](const SCEV *X) {
10881     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
10882   };
10883   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
10884 }
10885 
10886 void
10887 ScalarEvolution::forgetMemoizedResults(const SCEV *S, bool EraseExitLimit) {
10888   ValuesAtScopes.erase(S);
10889   LoopDispositions.erase(S);
10890   BlockDispositions.erase(S);
10891   UnsignedRanges.erase(S);
10892   SignedRanges.erase(S);
10893   ExprValueMap.erase(S);
10894   HasRecMap.erase(S);
10895   MinTrailingZerosCache.erase(S);
10896 
10897   for (auto I = PredicatedSCEVRewrites.begin();
10898        I != PredicatedSCEVRewrites.end();) {
10899     std::pair<const SCEV *, const Loop *> Entry = I->first;
10900     if (Entry.first == S)
10901       PredicatedSCEVRewrites.erase(I++);
10902     else
10903       ++I;
10904   }
10905 
10906   auto RemoveSCEVFromBackedgeMap =
10907       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
10908         for (auto I = Map.begin(), E = Map.end(); I != E;) {
10909           BackedgeTakenInfo &BEInfo = I->second;
10910           if (BEInfo.hasOperand(S, this)) {
10911             BEInfo.clear();
10912             Map.erase(I++);
10913           } else
10914             ++I;
10915         }
10916       };
10917 
10918   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
10919   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
10920 
10921   // TODO: There is a suspicion that we only need to do it when there is a
10922   // SCEVUnknown somewhere inside S. Need to check this.
10923   if (EraseExitLimit)
10924     for (auto I = ExitLimits.begin(), E = ExitLimits.end(); I != E; ++I)
10925       if (I->second.hasOperand(S))
10926         ExitLimits.erase(I);
10927 }
10928 
10929 void ScalarEvolution::verify() const {
10930   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10931   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10932 
10933   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
10934 
10935   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
10936   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
10937     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
10938 
10939     const SCEV *visitConstant(const SCEVConstant *Constant) {
10940       return SE.getConstant(Constant->getAPInt());
10941     }
10942 
10943     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10944       return SE.getUnknown(Expr->getValue());
10945     }
10946 
10947     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
10948       return SE.getCouldNotCompute();
10949     }
10950   };
10951 
10952   SCEVMapper SCM(SE2);
10953 
10954   while (!LoopStack.empty()) {
10955     auto *L = LoopStack.pop_back_val();
10956     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
10957 
10958     auto *CurBECount = SCM.visit(
10959         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
10960     auto *NewBECount = SE2.getBackedgeTakenCount(L);
10961 
10962     if (CurBECount == SE2.getCouldNotCompute() ||
10963         NewBECount == SE2.getCouldNotCompute()) {
10964       // NB! This situation is legal, but is very suspicious -- whatever pass
10965       // change the loop to make a trip count go from could not compute to
10966       // computable or vice-versa *should have* invalidated SCEV.  However, we
10967       // choose not to assert here (for now) since we don't want false
10968       // positives.
10969       continue;
10970     }
10971 
10972     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
10973       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
10974       // not propagate undef aggressively).  This means we can (and do) fail
10975       // verification in cases where a transform makes the trip count of a loop
10976       // go from "undef" to "undef+1" (say).  The transform is fine, since in
10977       // both cases the loop iterates "undef" times, but SCEV thinks we
10978       // increased the trip count of the loop by 1 incorrectly.
10979       continue;
10980     }
10981 
10982     if (SE.getTypeSizeInBits(CurBECount->getType()) >
10983         SE.getTypeSizeInBits(NewBECount->getType()))
10984       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
10985     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
10986              SE.getTypeSizeInBits(NewBECount->getType()))
10987       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
10988 
10989     auto *ConstantDelta =
10990         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
10991 
10992     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
10993       dbgs() << "Trip Count Changed!\n";
10994       dbgs() << "Old: " << *CurBECount << "\n";
10995       dbgs() << "New: " << *NewBECount << "\n";
10996       dbgs() << "Delta: " << *ConstantDelta << "\n";
10997       std::abort();
10998     }
10999   }
11000 }
11001 
11002 bool ScalarEvolution::invalidate(
11003     Function &F, const PreservedAnalyses &PA,
11004     FunctionAnalysisManager::Invalidator &Inv) {
11005   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11006   // of its dependencies is invalidated.
11007   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11008   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11009          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11010          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11011          Inv.invalidate<LoopAnalysis>(F, PA);
11012 }
11013 
11014 AnalysisKey ScalarEvolutionAnalysis::Key;
11015 
11016 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11017                                              FunctionAnalysisManager &AM) {
11018   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11019                          AM.getResult<AssumptionAnalysis>(F),
11020                          AM.getResult<DominatorTreeAnalysis>(F),
11021                          AM.getResult<LoopAnalysis>(F));
11022 }
11023 
11024 PreservedAnalyses
11025 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11026   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11027   return PreservedAnalyses::all();
11028 }
11029 
11030 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11031                       "Scalar Evolution Analysis", false, true)
11032 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11033 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11034 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11035 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11036 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11037                     "Scalar Evolution Analysis", false, true)
11038 
11039 char ScalarEvolutionWrapperPass::ID = 0;
11040 
11041 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11042   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11043 }
11044 
11045 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11046   SE.reset(new ScalarEvolution(
11047       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11048       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11049       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11050       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11051   return false;
11052 }
11053 
11054 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11055 
11056 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11057   SE->print(OS);
11058 }
11059 
11060 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11061   if (!VerifySCEV)
11062     return;
11063 
11064   SE->verify();
11065 }
11066 
11067 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11068   AU.setPreservesAll();
11069   AU.addRequiredTransitive<AssumptionCacheTracker>();
11070   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11071   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11072   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11073 }
11074 
11075 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11076                                                         const SCEV *RHS) {
11077   FoldingSetNodeID ID;
11078   assert(LHS->getType() == RHS->getType() &&
11079          "Type mismatch between LHS and RHS");
11080   // Unique this node based on the arguments
11081   ID.AddInteger(SCEVPredicate::P_Equal);
11082   ID.AddPointer(LHS);
11083   ID.AddPointer(RHS);
11084   void *IP = nullptr;
11085   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11086     return S;
11087   SCEVEqualPredicate *Eq = new (SCEVAllocator)
11088       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11089   UniquePreds.InsertNode(Eq, IP);
11090   return Eq;
11091 }
11092 
11093 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11094     const SCEVAddRecExpr *AR,
11095     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11096   FoldingSetNodeID ID;
11097   // Unique this node based on the arguments
11098   ID.AddInteger(SCEVPredicate::P_Wrap);
11099   ID.AddPointer(AR);
11100   ID.AddInteger(AddedFlags);
11101   void *IP = nullptr;
11102   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11103     return S;
11104   auto *OF = new (SCEVAllocator)
11105       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11106   UniquePreds.InsertNode(OF, IP);
11107   return OF;
11108 }
11109 
11110 namespace {
11111 
11112 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11113 public:
11114   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
11115                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11116                         SCEVUnionPredicate *Pred)
11117       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
11118 
11119   /// Rewrites \p S in the context of a loop L and the SCEV predication
11120   /// infrastructure.
11121   ///
11122   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
11123   /// equivalences present in \p Pred.
11124   ///
11125   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
11126   /// \p NewPreds such that the result will be an AddRecExpr.
11127   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
11128                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11129                              SCEVUnionPredicate *Pred) {
11130     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
11131     return Rewriter.visit(S);
11132   }
11133 
11134   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11135     if (Pred) {
11136       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
11137       for (auto *Pred : ExprPreds)
11138         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
11139           if (IPred->getLHS() == Expr)
11140             return IPred->getRHS();
11141     }
11142     return convertToAddRecWithPreds(Expr);
11143   }
11144 
11145   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
11146     const SCEV *Operand = visit(Expr->getOperand());
11147     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11148     if (AR && AR->getLoop() == L && AR->isAffine()) {
11149       // This couldn't be folded because the operand didn't have the nuw
11150       // flag. Add the nusw flag as an assumption that we could make.
11151       const SCEV *Step = AR->getStepRecurrence(SE);
11152       Type *Ty = Expr->getType();
11153       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
11154         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
11155                                 SE.getSignExtendExpr(Step, Ty), L,
11156                                 AR->getNoWrapFlags());
11157     }
11158     return SE.getZeroExtendExpr(Operand, Expr->getType());
11159   }
11160 
11161   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
11162     const SCEV *Operand = visit(Expr->getOperand());
11163     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11164     if (AR && AR->getLoop() == L && AR->isAffine()) {
11165       // This couldn't be folded because the operand didn't have the nsw
11166       // flag. Add the nssw flag as an assumption that we could make.
11167       const SCEV *Step = AR->getStepRecurrence(SE);
11168       Type *Ty = Expr->getType();
11169       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
11170         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
11171                                 SE.getSignExtendExpr(Step, Ty), L,
11172                                 AR->getNoWrapFlags());
11173     }
11174     return SE.getSignExtendExpr(Operand, Expr->getType());
11175   }
11176 
11177 private:
11178   bool addOverflowAssumption(const SCEVPredicate *P) {
11179     if (!NewPreds) {
11180       // Check if we've already made this assumption.
11181       return Pred && Pred->implies(P);
11182     }
11183     NewPreds->insert(P);
11184     return true;
11185   }
11186 
11187   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
11188                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11189     auto *A = SE.getWrapPredicate(AR, AddedFlags);
11190     return addOverflowAssumption(A);
11191   }
11192 
11193   // If \p Expr represents a PHINode, we try to see if it can be represented
11194   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
11195   // to add this predicate as a runtime overflow check, we return the AddRec.
11196   // If \p Expr does not meet these conditions (is not a PHI node, or we
11197   // couldn't create an AddRec for it, or couldn't add the predicate), we just
11198   // return \p Expr.
11199   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
11200     if (!isa<PHINode>(Expr->getValue()))
11201       return Expr;
11202     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
11203     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
11204     if (!PredicatedRewrite)
11205       return Expr;
11206     for (auto *P : PredicatedRewrite->second){
11207       if (!addOverflowAssumption(P))
11208         return Expr;
11209     }
11210     return PredicatedRewrite->first;
11211   }
11212 
11213   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
11214   SCEVUnionPredicate *Pred;
11215   const Loop *L;
11216 };
11217 
11218 } // end anonymous namespace
11219 
11220 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
11221                                                    SCEVUnionPredicate &Preds) {
11222   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
11223 }
11224 
11225 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
11226     const SCEV *S, const Loop *L,
11227     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
11228   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
11229   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
11230   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
11231 
11232   if (!AddRec)
11233     return nullptr;
11234 
11235   // Since the transformation was successful, we can now transfer the SCEV
11236   // predicates.
11237   for (auto *P : TransformPreds)
11238     Preds.insert(P);
11239 
11240   return AddRec;
11241 }
11242 
11243 /// SCEV predicates
11244 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
11245                              SCEVPredicateKind Kind)
11246     : FastID(ID), Kind(Kind) {}
11247 
11248 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
11249                                        const SCEV *LHS, const SCEV *RHS)
11250     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
11251   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
11252   assert(LHS != RHS && "LHS and RHS are the same SCEV");
11253 }
11254 
11255 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
11256   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
11257 
11258   if (!Op)
11259     return false;
11260 
11261   return Op->LHS == LHS && Op->RHS == RHS;
11262 }
11263 
11264 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
11265 
11266 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
11267 
11268 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
11269   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
11270 }
11271 
11272 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
11273                                      const SCEVAddRecExpr *AR,
11274                                      IncrementWrapFlags Flags)
11275     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
11276 
11277 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
11278 
11279 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
11280   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
11281 
11282   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
11283 }
11284 
11285 bool SCEVWrapPredicate::isAlwaysTrue() const {
11286   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
11287   IncrementWrapFlags IFlags = Flags;
11288 
11289   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
11290     IFlags = clearFlags(IFlags, IncrementNSSW);
11291 
11292   return IFlags == IncrementAnyWrap;
11293 }
11294 
11295 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
11296   OS.indent(Depth) << *getExpr() << " Added Flags: ";
11297   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
11298     OS << "<nusw>";
11299   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
11300     OS << "<nssw>";
11301   OS << "\n";
11302 }
11303 
11304 SCEVWrapPredicate::IncrementWrapFlags
11305 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
11306                                    ScalarEvolution &SE) {
11307   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
11308   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
11309 
11310   // We can safely transfer the NSW flag as NSSW.
11311   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
11312     ImpliedFlags = IncrementNSSW;
11313 
11314   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
11315     // If the increment is positive, the SCEV NUW flag will also imply the
11316     // WrapPredicate NUSW flag.
11317     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
11318       if (Step->getValue()->getValue().isNonNegative())
11319         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
11320   }
11321 
11322   return ImpliedFlags;
11323 }
11324 
11325 /// Union predicates don't get cached so create a dummy set ID for it.
11326 SCEVUnionPredicate::SCEVUnionPredicate()
11327     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
11328 
11329 bool SCEVUnionPredicate::isAlwaysTrue() const {
11330   return all_of(Preds,
11331                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
11332 }
11333 
11334 ArrayRef<const SCEVPredicate *>
11335 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
11336   auto I = SCEVToPreds.find(Expr);
11337   if (I == SCEVToPreds.end())
11338     return ArrayRef<const SCEVPredicate *>();
11339   return I->second;
11340 }
11341 
11342 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
11343   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
11344     return all_of(Set->Preds,
11345                   [this](const SCEVPredicate *I) { return this->implies(I); });
11346 
11347   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
11348   if (ScevPredsIt == SCEVToPreds.end())
11349     return false;
11350   auto &SCEVPreds = ScevPredsIt->second;
11351 
11352   return any_of(SCEVPreds,
11353                 [N](const SCEVPredicate *I) { return I->implies(N); });
11354 }
11355 
11356 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
11357 
11358 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
11359   for (auto Pred : Preds)
11360     Pred->print(OS, Depth);
11361 }
11362 
11363 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
11364   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
11365     for (auto Pred : Set->Preds)
11366       add(Pred);
11367     return;
11368   }
11369 
11370   if (implies(N))
11371     return;
11372 
11373   const SCEV *Key = N->getExpr();
11374   assert(Key && "Only SCEVUnionPredicate doesn't have an "
11375                 " associated expression!");
11376 
11377   SCEVToPreds[Key].push_back(N);
11378   Preds.push_back(N);
11379 }
11380 
11381 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
11382                                                      Loop &L)
11383     : SE(SE), L(L) {}
11384 
11385 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
11386   const SCEV *Expr = SE.getSCEV(V);
11387   RewriteEntry &Entry = RewriteMap[Expr];
11388 
11389   // If we already have an entry and the version matches, return it.
11390   if (Entry.second && Generation == Entry.first)
11391     return Entry.second;
11392 
11393   // We found an entry but it's stale. Rewrite the stale entry
11394   // according to the current predicate.
11395   if (Entry.second)
11396     Expr = Entry.second;
11397 
11398   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
11399   Entry = {Generation, NewSCEV};
11400 
11401   return NewSCEV;
11402 }
11403 
11404 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
11405   if (!BackedgeCount) {
11406     SCEVUnionPredicate BackedgePred;
11407     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
11408     addPredicate(BackedgePred);
11409   }
11410   return BackedgeCount;
11411 }
11412 
11413 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
11414   if (Preds.implies(&Pred))
11415     return;
11416   Preds.add(&Pred);
11417   updateGeneration();
11418 }
11419 
11420 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
11421   return Preds;
11422 }
11423 
11424 void PredicatedScalarEvolution::updateGeneration() {
11425   // If the generation number wrapped recompute everything.
11426   if (++Generation == 0) {
11427     for (auto &II : RewriteMap) {
11428       const SCEV *Rewritten = II.second.second;
11429       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
11430     }
11431   }
11432 }
11433 
11434 void PredicatedScalarEvolution::setNoOverflow(
11435     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11436   const SCEV *Expr = getSCEV(V);
11437   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11438 
11439   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
11440 
11441   // Clear the statically implied flags.
11442   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
11443   addPredicate(*SE.getWrapPredicate(AR, Flags));
11444 
11445   auto II = FlagsMap.insert({V, Flags});
11446   if (!II.second)
11447     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
11448 }
11449 
11450 bool PredicatedScalarEvolution::hasNoOverflow(
11451     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11452   const SCEV *Expr = getSCEV(V);
11453   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11454 
11455   Flags = SCEVWrapPredicate::clearFlags(
11456       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
11457 
11458   auto II = FlagsMap.find(V);
11459 
11460   if (II != FlagsMap.end())
11461     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
11462 
11463   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
11464 }
11465 
11466 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
11467   const SCEV *Expr = this->getSCEV(V);
11468   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
11469   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
11470 
11471   if (!New)
11472     return nullptr;
11473 
11474   for (auto *P : NewPreds)
11475     Preds.add(P);
11476 
11477   updateGeneration();
11478   RewriteMap[SE.getSCEV(V)] = {Generation, New};
11479   return New;
11480 }
11481 
11482 PredicatedScalarEvolution::PredicatedScalarEvolution(
11483     const PredicatedScalarEvolution &Init)
11484     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
11485       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
11486   for (const auto &I : Init.FlagsMap)
11487     FlagsMap.insert(I);
11488 }
11489 
11490 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
11491   // For each block.
11492   for (auto *BB : L.getBlocks())
11493     for (auto &I : *BB) {
11494       if (!SE.isSCEVable(I.getType()))
11495         continue;
11496 
11497       auto *Expr = SE.getSCEV(&I);
11498       auto II = RewriteMap.find(Expr);
11499 
11500       if (II == RewriteMap.end())
11501         continue;
11502 
11503       // Don't print things that are not interesting.
11504       if (II->second.second == Expr)
11505         continue;
11506 
11507       OS.indent(Depth) << "[PSE]" << I << ":\n";
11508       OS.indent(Depth + 2) << *Expr << "\n";
11509       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
11510     }
11511 }
11512