1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 static cl::opt<bool, true> VerifySCEVOpt( 159 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 235 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 236 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 237 "Phi strongly connected components"), 238 cl::init(8)); 239 240 static cl::opt<bool> 241 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 242 cl::desc("Handle <= and >= in finite loops"), 243 cl::init(true)); 244 245 //===----------------------------------------------------------------------===// 246 // SCEV class definitions 247 //===----------------------------------------------------------------------===// 248 249 //===----------------------------------------------------------------------===// 250 // Implementation of the SCEV class. 251 // 252 253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 254 LLVM_DUMP_METHOD void SCEV::dump() const { 255 print(dbgs()); 256 dbgs() << '\n'; 257 } 258 #endif 259 260 void SCEV::print(raw_ostream &OS) const { 261 switch (getSCEVType()) { 262 case scConstant: 263 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 264 return; 265 case scPtrToInt: { 266 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 267 const SCEV *Op = PtrToInt->getOperand(); 268 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 269 << *PtrToInt->getType() << ")"; 270 return; 271 } 272 case scTruncate: { 273 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 274 const SCEV *Op = Trunc->getOperand(); 275 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 276 << *Trunc->getType() << ")"; 277 return; 278 } 279 case scZeroExtend: { 280 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 281 const SCEV *Op = ZExt->getOperand(); 282 OS << "(zext " << *Op->getType() << " " << *Op << " to " 283 << *ZExt->getType() << ")"; 284 return; 285 } 286 case scSignExtend: { 287 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 288 const SCEV *Op = SExt->getOperand(); 289 OS << "(sext " << *Op->getType() << " " << *Op << " to " 290 << *SExt->getType() << ")"; 291 return; 292 } 293 case scAddRecExpr: { 294 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 295 OS << "{" << *AR->getOperand(0); 296 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 297 OS << ",+," << *AR->getOperand(i); 298 OS << "}<"; 299 if (AR->hasNoUnsignedWrap()) 300 OS << "nuw><"; 301 if (AR->hasNoSignedWrap()) 302 OS << "nsw><"; 303 if (AR->hasNoSelfWrap() && 304 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 305 OS << "nw><"; 306 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 307 OS << ">"; 308 return; 309 } 310 case scAddExpr: 311 case scMulExpr: 312 case scUMaxExpr: 313 case scSMaxExpr: 314 case scUMinExpr: 315 case scSMinExpr: 316 case scSequentialUMinExpr: { 317 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 318 const char *OpStr = nullptr; 319 switch (NAry->getSCEVType()) { 320 case scAddExpr: OpStr = " + "; break; 321 case scMulExpr: OpStr = " * "; break; 322 case scUMaxExpr: OpStr = " umax "; break; 323 case scSMaxExpr: OpStr = " smax "; break; 324 case scUMinExpr: 325 OpStr = " umin "; 326 break; 327 case scSMinExpr: 328 OpStr = " smin "; 329 break; 330 case scSequentialUMinExpr: 331 OpStr = " umin_seq "; 332 break; 333 default: 334 llvm_unreachable("There are no other nary expression types."); 335 } 336 OS << "("; 337 ListSeparator LS(OpStr); 338 for (const SCEV *Op : NAry->operands()) 339 OS << LS << *Op; 340 OS << ")"; 341 switch (NAry->getSCEVType()) { 342 case scAddExpr: 343 case scMulExpr: 344 if (NAry->hasNoUnsignedWrap()) 345 OS << "<nuw>"; 346 if (NAry->hasNoSignedWrap()) 347 OS << "<nsw>"; 348 break; 349 default: 350 // Nothing to print for other nary expressions. 351 break; 352 } 353 return; 354 } 355 case scUDivExpr: { 356 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 357 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 358 return; 359 } 360 case scUnknown: { 361 const SCEVUnknown *U = cast<SCEVUnknown>(this); 362 Type *AllocTy; 363 if (U->isSizeOf(AllocTy)) { 364 OS << "sizeof(" << *AllocTy << ")"; 365 return; 366 } 367 if (U->isAlignOf(AllocTy)) { 368 OS << "alignof(" << *AllocTy << ")"; 369 return; 370 } 371 372 Type *CTy; 373 Constant *FieldNo; 374 if (U->isOffsetOf(CTy, FieldNo)) { 375 OS << "offsetof(" << *CTy << ", "; 376 FieldNo->printAsOperand(OS, false); 377 OS << ")"; 378 return; 379 } 380 381 // Otherwise just print it normally. 382 U->getValue()->printAsOperand(OS, false); 383 return; 384 } 385 case scCouldNotCompute: 386 OS << "***COULDNOTCOMPUTE***"; 387 return; 388 } 389 llvm_unreachable("Unknown SCEV kind!"); 390 } 391 392 Type *SCEV::getType() const { 393 switch (getSCEVType()) { 394 case scConstant: 395 return cast<SCEVConstant>(this)->getType(); 396 case scPtrToInt: 397 case scTruncate: 398 case scZeroExtend: 399 case scSignExtend: 400 return cast<SCEVCastExpr>(this)->getType(); 401 case scAddRecExpr: 402 return cast<SCEVAddRecExpr>(this)->getType(); 403 case scMulExpr: 404 return cast<SCEVMulExpr>(this)->getType(); 405 case scUMaxExpr: 406 case scSMaxExpr: 407 case scUMinExpr: 408 case scSMinExpr: 409 return cast<SCEVMinMaxExpr>(this)->getType(); 410 case scSequentialUMinExpr: 411 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 412 case scAddExpr: 413 return cast<SCEVAddExpr>(this)->getType(); 414 case scUDivExpr: 415 return cast<SCEVUDivExpr>(this)->getType(); 416 case scUnknown: 417 return cast<SCEVUnknown>(this)->getType(); 418 case scCouldNotCompute: 419 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 420 } 421 llvm_unreachable("Unknown SCEV kind!"); 422 } 423 424 bool SCEV::isZero() const { 425 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 426 return SC->getValue()->isZero(); 427 return false; 428 } 429 430 bool SCEV::isOne() const { 431 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 432 return SC->getValue()->isOne(); 433 return false; 434 } 435 436 bool SCEV::isAllOnesValue() const { 437 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 438 return SC->getValue()->isMinusOne(); 439 return false; 440 } 441 442 bool SCEV::isNonConstantNegative() const { 443 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 444 if (!Mul) return false; 445 446 // If there is a constant factor, it will be first. 447 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 448 if (!SC) return false; 449 450 // Return true if the value is negative, this matches things like (-42 * V). 451 return SC->getAPInt().isNegative(); 452 } 453 454 SCEVCouldNotCompute::SCEVCouldNotCompute() : 455 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 456 457 bool SCEVCouldNotCompute::classof(const SCEV *S) { 458 return S->getSCEVType() == scCouldNotCompute; 459 } 460 461 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 462 FoldingSetNodeID ID; 463 ID.AddInteger(scConstant); 464 ID.AddPointer(V); 465 void *IP = nullptr; 466 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 467 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 468 UniqueSCEVs.InsertNode(S, IP); 469 return S; 470 } 471 472 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 473 return getConstant(ConstantInt::get(getContext(), Val)); 474 } 475 476 const SCEV * 477 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 478 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 479 return getConstant(ConstantInt::get(ITy, V, isSigned)); 480 } 481 482 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 483 const SCEV *op, Type *ty) 484 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 485 Operands[0] = op; 486 } 487 488 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 489 Type *ITy) 490 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 491 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 492 "Must be a non-bit-width-changing pointer-to-integer cast!"); 493 } 494 495 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 496 SCEVTypes SCEVTy, const SCEV *op, 497 Type *ty) 498 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 499 500 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 501 Type *ty) 502 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 503 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 504 "Cannot truncate non-integer value!"); 505 } 506 507 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 508 const SCEV *op, Type *ty) 509 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 510 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 511 "Cannot zero extend non-integer value!"); 512 } 513 514 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 515 const SCEV *op, Type *ty) 516 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 517 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 518 "Cannot sign extend non-integer value!"); 519 } 520 521 void SCEVUnknown::deleted() { 522 // Clear this SCEVUnknown from various maps. 523 SE->forgetMemoizedResults(this); 524 525 // Remove this SCEVUnknown from the uniquing map. 526 SE->UniqueSCEVs.RemoveNode(this); 527 528 // Release the value. 529 setValPtr(nullptr); 530 } 531 532 void SCEVUnknown::allUsesReplacedWith(Value *New) { 533 // Clear this SCEVUnknown from various maps. 534 SE->forgetMemoizedResults(this); 535 536 // Remove this SCEVUnknown from the uniquing map. 537 SE->UniqueSCEVs.RemoveNode(this); 538 539 // Replace the value pointer in case someone is still using this SCEVUnknown. 540 setValPtr(New); 541 } 542 543 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue() && 549 CE->getNumOperands() == 2) 550 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 551 if (CI->isOne()) { 552 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 553 return true; 554 } 555 556 return false; 557 } 558 559 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 560 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 561 if (VCE->getOpcode() == Instruction::PtrToInt) 562 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 563 if (CE->getOpcode() == Instruction::GetElementPtr && 564 CE->getOperand(0)->isNullValue()) { 565 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 566 if (StructType *STy = dyn_cast<StructType>(Ty)) 567 if (!STy->isPacked() && 568 CE->getNumOperands() == 3 && 569 CE->getOperand(1)->isNullValue()) { 570 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 571 if (CI->isOne() && 572 STy->getNumElements() == 2 && 573 STy->getElementType(0)->isIntegerTy(1)) { 574 AllocTy = STy->getElementType(1); 575 return true; 576 } 577 } 578 } 579 580 return false; 581 } 582 583 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 584 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 585 if (VCE->getOpcode() == Instruction::PtrToInt) 586 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 587 if (CE->getOpcode() == Instruction::GetElementPtr && 588 CE->getNumOperands() == 3 && 589 CE->getOperand(0)->isNullValue() && 590 CE->getOperand(1)->isNullValue()) { 591 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 592 // Ignore vector types here so that ScalarEvolutionExpander doesn't 593 // emit getelementptrs that index into vectors. 594 if (Ty->isStructTy() || Ty->isArrayTy()) { 595 CTy = Ty; 596 FieldNo = CE->getOperand(2); 597 return true; 598 } 599 } 600 601 return false; 602 } 603 604 //===----------------------------------------------------------------------===// 605 // SCEV Utilities 606 //===----------------------------------------------------------------------===// 607 608 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 609 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 610 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 611 /// have been previously deemed to be "equally complex" by this routine. It is 612 /// intended to avoid exponential time complexity in cases like: 613 /// 614 /// %a = f(%x, %y) 615 /// %b = f(%a, %a) 616 /// %c = f(%b, %b) 617 /// 618 /// %d = f(%x, %y) 619 /// %e = f(%d, %d) 620 /// %f = f(%e, %e) 621 /// 622 /// CompareValueComplexity(%f, %c) 623 /// 624 /// Since we do not continue running this routine on expression trees once we 625 /// have seen unequal values, there is no need to track them in the cache. 626 static int 627 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 628 const LoopInfo *const LI, Value *LV, Value *RV, 629 unsigned Depth) { 630 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 631 return 0; 632 633 // Order pointer values after integer values. This helps SCEVExpander form 634 // GEPs. 635 bool LIsPointer = LV->getType()->isPointerTy(), 636 RIsPointer = RV->getType()->isPointerTy(); 637 if (LIsPointer != RIsPointer) 638 return (int)LIsPointer - (int)RIsPointer; 639 640 // Compare getValueID values. 641 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 642 if (LID != RID) 643 return (int)LID - (int)RID; 644 645 // Sort arguments by their position. 646 if (const auto *LA = dyn_cast<Argument>(LV)) { 647 const auto *RA = cast<Argument>(RV); 648 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 649 return (int)LArgNo - (int)RArgNo; 650 } 651 652 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 653 const auto *RGV = cast<GlobalValue>(RV); 654 655 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 656 auto LT = GV->getLinkage(); 657 return !(GlobalValue::isPrivateLinkage(LT) || 658 GlobalValue::isInternalLinkage(LT)); 659 }; 660 661 // Use the names to distinguish the two values, but only if the 662 // names are semantically important. 663 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 664 return LGV->getName().compare(RGV->getName()); 665 } 666 667 // For instructions, compare their loop depth, and their operand count. This 668 // is pretty loose. 669 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 670 const auto *RInst = cast<Instruction>(RV); 671 672 // Compare loop depths. 673 const BasicBlock *LParent = LInst->getParent(), 674 *RParent = RInst->getParent(); 675 if (LParent != RParent) { 676 unsigned LDepth = LI->getLoopDepth(LParent), 677 RDepth = LI->getLoopDepth(RParent); 678 if (LDepth != RDepth) 679 return (int)LDepth - (int)RDepth; 680 } 681 682 // Compare the number of operands. 683 unsigned LNumOps = LInst->getNumOperands(), 684 RNumOps = RInst->getNumOperands(); 685 if (LNumOps != RNumOps) 686 return (int)LNumOps - (int)RNumOps; 687 688 for (unsigned Idx : seq(0u, LNumOps)) { 689 int Result = 690 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 691 RInst->getOperand(Idx), Depth + 1); 692 if (Result != 0) 693 return Result; 694 } 695 } 696 697 EqCacheValue.unionSets(LV, RV); 698 return 0; 699 } 700 701 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 702 // than RHS, respectively. A three-way result allows recursive comparisons to be 703 // more efficient. 704 // If the max analysis depth was reached, return None, assuming we do not know 705 // if they are equivalent for sure. 706 static Optional<int> 707 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 708 EquivalenceClasses<const Value *> &EqCacheValue, 709 const LoopInfo *const LI, const SCEV *LHS, 710 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 711 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 712 if (LHS == RHS) 713 return 0; 714 715 // Primarily, sort the SCEVs by their getSCEVType(). 716 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 717 if (LType != RType) 718 return (int)LType - (int)RType; 719 720 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 721 return 0; 722 723 if (Depth > MaxSCEVCompareDepth) 724 return None; 725 726 // Aside from the getSCEVType() ordering, the particular ordering 727 // isn't very important except that it's beneficial to be consistent, 728 // so that (a + b) and (b + a) don't end up as different expressions. 729 switch (LType) { 730 case scUnknown: { 731 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 732 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 733 734 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 735 RU->getValue(), Depth + 1); 736 if (X == 0) 737 EqCacheSCEV.unionSets(LHS, RHS); 738 return X; 739 } 740 741 case scConstant: { 742 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 743 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 744 745 // Compare constant values. 746 const APInt &LA = LC->getAPInt(); 747 const APInt &RA = RC->getAPInt(); 748 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 749 if (LBitWidth != RBitWidth) 750 return (int)LBitWidth - (int)RBitWidth; 751 return LA.ult(RA) ? -1 : 1; 752 } 753 754 case scAddRecExpr: { 755 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 756 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 757 758 // There is always a dominance between two recs that are used by one SCEV, 759 // so we can safely sort recs by loop header dominance. We require such 760 // order in getAddExpr. 761 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 762 if (LLoop != RLoop) { 763 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 764 assert(LHead != RHead && "Two loops share the same header?"); 765 if (DT.dominates(LHead, RHead)) 766 return 1; 767 else 768 assert(DT.dominates(RHead, LHead) && 769 "No dominance between recurrences used by one SCEV?"); 770 return -1; 771 } 772 773 // Addrec complexity grows with operand count. 774 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 775 if (LNumOps != RNumOps) 776 return (int)LNumOps - (int)RNumOps; 777 778 // Lexicographically compare. 779 for (unsigned i = 0; i != LNumOps; ++i) { 780 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 781 LA->getOperand(i), RA->getOperand(i), DT, 782 Depth + 1); 783 if (X != 0) 784 return X; 785 } 786 EqCacheSCEV.unionSets(LHS, RHS); 787 return 0; 788 } 789 790 case scAddExpr: 791 case scMulExpr: 792 case scSMaxExpr: 793 case scUMaxExpr: 794 case scSMinExpr: 795 case scUMinExpr: 796 case scSequentialUMinExpr: { 797 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 798 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 799 800 // Lexicographically compare n-ary expressions. 801 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 802 if (LNumOps != RNumOps) 803 return (int)LNumOps - (int)RNumOps; 804 805 for (unsigned i = 0; i != LNumOps; ++i) { 806 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 807 LC->getOperand(i), RC->getOperand(i), DT, 808 Depth + 1); 809 if (X != 0) 810 return X; 811 } 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return 0; 814 } 815 816 case scUDivExpr: { 817 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 818 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 819 820 // Lexicographically compare udiv expressions. 821 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 822 RC->getLHS(), DT, Depth + 1); 823 if (X != 0) 824 return X; 825 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 826 RC->getRHS(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scPtrToInt: 833 case scTruncate: 834 case scZeroExtend: 835 case scSignExtend: { 836 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 837 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 838 839 // Compare cast expressions by operand. 840 auto X = 841 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 842 RC->getOperand(), DT, Depth + 1); 843 if (X == 0) 844 EqCacheSCEV.unionSets(LHS, RHS); 845 return X; 846 } 847 848 case scCouldNotCompute: 849 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 850 } 851 llvm_unreachable("Unknown SCEV kind!"); 852 } 853 854 /// Given a list of SCEV objects, order them by their complexity, and group 855 /// objects of the same complexity together by value. When this routine is 856 /// finished, we know that any duplicates in the vector are consecutive and that 857 /// complexity is monotonically increasing. 858 /// 859 /// Note that we go take special precautions to ensure that we get deterministic 860 /// results from this routine. In other words, we don't want the results of 861 /// this to depend on where the addresses of various SCEV objects happened to 862 /// land in memory. 863 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 864 LoopInfo *LI, DominatorTree &DT) { 865 if (Ops.size() < 2) return; // Noop 866 867 EquivalenceClasses<const SCEV *> EqCacheSCEV; 868 EquivalenceClasses<const Value *> EqCacheValue; 869 870 // Whether LHS has provably less complexity than RHS. 871 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 872 auto Complexity = 873 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 874 return Complexity && *Complexity < 0; 875 }; 876 if (Ops.size() == 2) { 877 // This is the common case, which also happens to be trivially simple. 878 // Special case it. 879 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 880 if (IsLessComplex(RHS, LHS)) 881 std::swap(LHS, RHS); 882 return; 883 } 884 885 // Do the rough sort by complexity. 886 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 887 return IsLessComplex(LHS, RHS); 888 }); 889 890 // Now that we are sorted by complexity, group elements of the same 891 // complexity. Note that this is, at worst, N^2, but the vector is likely to 892 // be extremely short in practice. Note that we take this approach because we 893 // do not want to depend on the addresses of the objects we are grouping. 894 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 895 const SCEV *S = Ops[i]; 896 unsigned Complexity = S->getSCEVType(); 897 898 // If there are any objects of the same complexity and same value as this 899 // one, group them. 900 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 901 if (Ops[j] == S) { // Found a duplicate. 902 // Move it to immediately after i'th element. 903 std::swap(Ops[i+1], Ops[j]); 904 ++i; // no need to rescan it. 905 if (i == e-2) return; // Done! 906 } 907 } 908 } 909 } 910 911 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 912 /// least HugeExprThreshold nodes). 913 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 914 return any_of(Ops, [](const SCEV *S) { 915 return S->getExpressionSize() >= HugeExprThreshold; 916 }); 917 } 918 919 //===----------------------------------------------------------------------===// 920 // Simple SCEV method implementations 921 //===----------------------------------------------------------------------===// 922 923 /// Compute BC(It, K). The result has width W. Assume, K > 0. 924 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 925 ScalarEvolution &SE, 926 Type *ResultTy) { 927 // Handle the simplest case efficiently. 928 if (K == 1) 929 return SE.getTruncateOrZeroExtend(It, ResultTy); 930 931 // We are using the following formula for BC(It, K): 932 // 933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 934 // 935 // Suppose, W is the bitwidth of the return value. We must be prepared for 936 // overflow. Hence, we must assure that the result of our computation is 937 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 938 // safe in modular arithmetic. 939 // 940 // However, this code doesn't use exactly that formula; the formula it uses 941 // is something like the following, where T is the number of factors of 2 in 942 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 943 // exponentiation: 944 // 945 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 946 // 947 // This formula is trivially equivalent to the previous formula. However, 948 // this formula can be implemented much more efficiently. The trick is that 949 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 950 // arithmetic. To do exact division in modular arithmetic, all we have 951 // to do is multiply by the inverse. Therefore, this step can be done at 952 // width W. 953 // 954 // The next issue is how to safely do the division by 2^T. The way this 955 // is done is by doing the multiplication step at a width of at least W + T 956 // bits. This way, the bottom W+T bits of the product are accurate. Then, 957 // when we perform the division by 2^T (which is equivalent to a right shift 958 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 959 // truncated out after the division by 2^T. 960 // 961 // In comparison to just directly using the first formula, this technique 962 // is much more efficient; using the first formula requires W * K bits, 963 // but this formula less than W + K bits. Also, the first formula requires 964 // a division step, whereas this formula only requires multiplies and shifts. 965 // 966 // It doesn't matter whether the subtraction step is done in the calculation 967 // width or the input iteration count's width; if the subtraction overflows, 968 // the result must be zero anyway. We prefer here to do it in the width of 969 // the induction variable because it helps a lot for certain cases; CodeGen 970 // isn't smart enough to ignore the overflow, which leads to much less 971 // efficient code if the width of the subtraction is wider than the native 972 // register width. 973 // 974 // (It's possible to not widen at all by pulling out factors of 2 before 975 // the multiplication; for example, K=2 can be calculated as 976 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 977 // extra arithmetic, so it's not an obvious win, and it gets 978 // much more complicated for K > 3.) 979 980 // Protection from insane SCEVs; this bound is conservative, 981 // but it probably doesn't matter. 982 if (K > 1000) 983 return SE.getCouldNotCompute(); 984 985 unsigned W = SE.getTypeSizeInBits(ResultTy); 986 987 // Calculate K! / 2^T and T; we divide out the factors of two before 988 // multiplying for calculating K! / 2^T to avoid overflow. 989 // Other overflow doesn't matter because we only care about the bottom 990 // W bits of the result. 991 APInt OddFactorial(W, 1); 992 unsigned T = 1; 993 for (unsigned i = 3; i <= K; ++i) { 994 APInt Mult(W, i); 995 unsigned TwoFactors = Mult.countTrailingZeros(); 996 T += TwoFactors; 997 Mult.lshrInPlace(TwoFactors); 998 OddFactorial *= Mult; 999 } 1000 1001 // We need at least W + T bits for the multiplication step 1002 unsigned CalculationBits = W + T; 1003 1004 // Calculate 2^T, at width T+W. 1005 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1006 1007 // Calculate the multiplicative inverse of K! / 2^T; 1008 // this multiplication factor will perform the exact division by 1009 // K! / 2^T. 1010 APInt Mod = APInt::getSignedMinValue(W+1); 1011 APInt MultiplyFactor = OddFactorial.zext(W+1); 1012 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1013 MultiplyFactor = MultiplyFactor.trunc(W); 1014 1015 // Calculate the product, at width T+W 1016 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1017 CalculationBits); 1018 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1019 for (unsigned i = 1; i != K; ++i) { 1020 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1021 Dividend = SE.getMulExpr(Dividend, 1022 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1023 } 1024 1025 // Divide by 2^T 1026 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1027 1028 // Truncate the result, and divide by K! / 2^T. 1029 1030 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1031 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1032 } 1033 1034 /// Return the value of this chain of recurrences at the specified iteration 1035 /// number. We can evaluate this recurrence by multiplying each element in the 1036 /// chain by the binomial coefficient corresponding to it. In other words, we 1037 /// can evaluate {A,+,B,+,C,+,D} as: 1038 /// 1039 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1040 /// 1041 /// where BC(It, k) stands for binomial coefficient. 1042 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1043 ScalarEvolution &SE) const { 1044 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1045 } 1046 1047 const SCEV * 1048 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1049 const SCEV *It, ScalarEvolution &SE) { 1050 assert(Operands.size() > 0); 1051 const SCEV *Result = Operands[0]; 1052 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1053 // The computation is correct in the face of overflow provided that the 1054 // multiplication is performed _after_ the evaluation of the binomial 1055 // coefficient. 1056 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1057 if (isa<SCEVCouldNotCompute>(Coeff)) 1058 return Coeff; 1059 1060 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1061 } 1062 return Result; 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // SCEV Expression folder implementations 1067 //===----------------------------------------------------------------------===// 1068 1069 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1070 unsigned Depth) { 1071 assert(Depth <= 1 && 1072 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1073 1074 // We could be called with an integer-typed operands during SCEV rewrites. 1075 // Since the operand is an integer already, just perform zext/trunc/self cast. 1076 if (!Op->getType()->isPointerTy()) 1077 return Op; 1078 1079 // What would be an ID for such a SCEV cast expression? 1080 FoldingSetNodeID ID; 1081 ID.AddInteger(scPtrToInt); 1082 ID.AddPointer(Op); 1083 1084 void *IP = nullptr; 1085 1086 // Is there already an expression for such a cast? 1087 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1088 return S; 1089 1090 // It isn't legal for optimizations to construct new ptrtoint expressions 1091 // for non-integral pointers. 1092 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1093 return getCouldNotCompute(); 1094 1095 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1096 1097 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1098 // is sufficiently wide to represent all possible pointer values. 1099 // We could theoretically teach SCEV to truncate wider pointers, but 1100 // that isn't implemented for now. 1101 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1102 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1103 return getCouldNotCompute(); 1104 1105 // If not, is this expression something we can't reduce any further? 1106 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1107 // Perform some basic constant folding. If the operand of the ptr2int cast 1108 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1109 // left as-is), but produce a zero constant. 1110 // NOTE: We could handle a more general case, but lack motivational cases. 1111 if (isa<ConstantPointerNull>(U->getValue())) 1112 return getZero(IntPtrTy); 1113 1114 // Create an explicit cast node. 1115 // We can reuse the existing insert position since if we get here, 1116 // we won't have made any changes which would invalidate it. 1117 SCEV *S = new (SCEVAllocator) 1118 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1119 UniqueSCEVs.InsertNode(S, IP); 1120 registerUser(S, Op); 1121 return S; 1122 } 1123 1124 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1125 "non-SCEVUnknown's."); 1126 1127 // Otherwise, we've got some expression that is more complex than just a 1128 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1129 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1130 // only, and the expressions must otherwise be integer-typed. 1131 // So sink the cast down to the SCEVUnknown's. 1132 1133 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1134 /// which computes a pointer-typed value, and rewrites the whole expression 1135 /// tree so that *all* the computations are done on integers, and the only 1136 /// pointer-typed operands in the expression are SCEVUnknown. 1137 class SCEVPtrToIntSinkingRewriter 1138 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1139 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1140 1141 public: 1142 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1143 1144 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1145 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1146 return Rewriter.visit(Scev); 1147 } 1148 1149 const SCEV *visit(const SCEV *S) { 1150 Type *STy = S->getType(); 1151 // If the expression is not pointer-typed, just keep it as-is. 1152 if (!STy->isPointerTy()) 1153 return S; 1154 // Else, recursively sink the cast down into it. 1155 return Base::visit(S); 1156 } 1157 1158 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1159 SmallVector<const SCEV *, 2> Operands; 1160 bool Changed = false; 1161 for (auto *Op : Expr->operands()) { 1162 Operands.push_back(visit(Op)); 1163 Changed |= Op != Operands.back(); 1164 } 1165 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1166 } 1167 1168 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1169 SmallVector<const SCEV *, 2> Operands; 1170 bool Changed = false; 1171 for (auto *Op : Expr->operands()) { 1172 Operands.push_back(visit(Op)); 1173 Changed |= Op != Operands.back(); 1174 } 1175 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1176 } 1177 1178 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1179 assert(Expr->getType()->isPointerTy() && 1180 "Should only reach pointer-typed SCEVUnknown's."); 1181 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1182 } 1183 }; 1184 1185 // And actually perform the cast sinking. 1186 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1187 assert(IntOp->getType()->isIntegerTy() && 1188 "We must have succeeded in sinking the cast, " 1189 "and ending up with an integer-typed expression!"); 1190 return IntOp; 1191 } 1192 1193 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1194 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1195 1196 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1197 if (isa<SCEVCouldNotCompute>(IntOp)) 1198 return IntOp; 1199 1200 return getTruncateOrZeroExtend(IntOp, Ty); 1201 } 1202 1203 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1204 unsigned Depth) { 1205 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1206 "This is not a truncating conversion!"); 1207 assert(isSCEVable(Ty) && 1208 "This is not a conversion to a SCEVable type!"); 1209 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1210 Ty = getEffectiveSCEVType(Ty); 1211 1212 FoldingSetNodeID ID; 1213 ID.AddInteger(scTruncate); 1214 ID.AddPointer(Op); 1215 ID.AddPointer(Ty); 1216 void *IP = nullptr; 1217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1218 1219 // Fold if the operand is constant. 1220 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1221 return getConstant( 1222 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1223 1224 // trunc(trunc(x)) --> trunc(x) 1225 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1226 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1227 1228 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1229 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1230 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1231 1232 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1233 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1234 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1235 1236 if (Depth > MaxCastDepth) { 1237 SCEV *S = 1238 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1239 UniqueSCEVs.InsertNode(S, IP); 1240 registerUser(S, Op); 1241 return S; 1242 } 1243 1244 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1245 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1246 // if after transforming we have at most one truncate, not counting truncates 1247 // that replace other casts. 1248 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1249 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1250 SmallVector<const SCEV *, 4> Operands; 1251 unsigned numTruncs = 0; 1252 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1253 ++i) { 1254 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1255 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1256 isa<SCEVTruncateExpr>(S)) 1257 numTruncs++; 1258 Operands.push_back(S); 1259 } 1260 if (numTruncs < 2) { 1261 if (isa<SCEVAddExpr>(Op)) 1262 return getAddExpr(Operands); 1263 else if (isa<SCEVMulExpr>(Op)) 1264 return getMulExpr(Operands); 1265 else 1266 llvm_unreachable("Unexpected SCEV type for Op."); 1267 } 1268 // Although we checked in the beginning that ID is not in the cache, it is 1269 // possible that during recursion and different modification ID was inserted 1270 // into the cache. So if we find it, just return it. 1271 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1272 return S; 1273 } 1274 1275 // If the input value is a chrec scev, truncate the chrec's operands. 1276 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1277 SmallVector<const SCEV *, 4> Operands; 1278 for (const SCEV *Op : AddRec->operands()) 1279 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1280 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1281 } 1282 1283 // Return zero if truncating to known zeros. 1284 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1285 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1286 return getZero(Ty); 1287 1288 // The cast wasn't folded; create an explicit cast node. We can reuse 1289 // the existing insert position since if we get here, we won't have 1290 // made any changes which would invalidate it. 1291 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1292 Op, Ty); 1293 UniqueSCEVs.InsertNode(S, IP); 1294 registerUser(S, Op); 1295 return S; 1296 } 1297 1298 // Get the limit of a recurrence such that incrementing by Step cannot cause 1299 // signed overflow as long as the value of the recurrence within the 1300 // loop does not exceed this limit before incrementing. 1301 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1302 ICmpInst::Predicate *Pred, 1303 ScalarEvolution *SE) { 1304 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1305 if (SE->isKnownPositive(Step)) { 1306 *Pred = ICmpInst::ICMP_SLT; 1307 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1308 SE->getSignedRangeMax(Step)); 1309 } 1310 if (SE->isKnownNegative(Step)) { 1311 *Pred = ICmpInst::ICMP_SGT; 1312 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1313 SE->getSignedRangeMin(Step)); 1314 } 1315 return nullptr; 1316 } 1317 1318 // Get the limit of a recurrence such that incrementing by Step cannot cause 1319 // unsigned overflow as long as the value of the recurrence within the loop does 1320 // not exceed this limit before incrementing. 1321 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1322 ICmpInst::Predicate *Pred, 1323 ScalarEvolution *SE) { 1324 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1325 *Pred = ICmpInst::ICMP_ULT; 1326 1327 return SE->getConstant(APInt::getMinValue(BitWidth) - 1328 SE->getUnsignedRangeMax(Step)); 1329 } 1330 1331 namespace { 1332 1333 struct ExtendOpTraitsBase { 1334 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1335 unsigned); 1336 }; 1337 1338 // Used to make code generic over signed and unsigned overflow. 1339 template <typename ExtendOp> struct ExtendOpTraits { 1340 // Members present: 1341 // 1342 // static const SCEV::NoWrapFlags WrapType; 1343 // 1344 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1345 // 1346 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1347 // ICmpInst::Predicate *Pred, 1348 // ScalarEvolution *SE); 1349 }; 1350 1351 template <> 1352 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1353 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1354 1355 static const GetExtendExprTy GetExtendExpr; 1356 1357 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1358 ICmpInst::Predicate *Pred, 1359 ScalarEvolution *SE) { 1360 return getSignedOverflowLimitForStep(Step, Pred, SE); 1361 } 1362 }; 1363 1364 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1365 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1366 1367 template <> 1368 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1369 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1370 1371 static const GetExtendExprTy GetExtendExpr; 1372 1373 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1374 ICmpInst::Predicate *Pred, 1375 ScalarEvolution *SE) { 1376 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1377 } 1378 }; 1379 1380 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1381 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1382 1383 } // end anonymous namespace 1384 1385 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1386 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1387 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1388 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1389 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1390 // expression "Step + sext/zext(PreIncAR)" is congruent with 1391 // "sext/zext(PostIncAR)" 1392 template <typename ExtendOpTy> 1393 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1394 ScalarEvolution *SE, unsigned Depth) { 1395 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1396 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1397 1398 const Loop *L = AR->getLoop(); 1399 const SCEV *Start = AR->getStart(); 1400 const SCEV *Step = AR->getStepRecurrence(*SE); 1401 1402 // Check for a simple looking step prior to loop entry. 1403 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1404 if (!SA) 1405 return nullptr; 1406 1407 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1408 // subtraction is expensive. For this purpose, perform a quick and dirty 1409 // difference, by checking for Step in the operand list. 1410 SmallVector<const SCEV *, 4> DiffOps; 1411 for (const SCEV *Op : SA->operands()) 1412 if (Op != Step) 1413 DiffOps.push_back(Op); 1414 1415 if (DiffOps.size() == SA->getNumOperands()) 1416 return nullptr; 1417 1418 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1419 // `Step`: 1420 1421 // 1. NSW/NUW flags on the step increment. 1422 auto PreStartFlags = 1423 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1424 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1425 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1426 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1427 1428 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1429 // "S+X does not sign/unsign-overflow". 1430 // 1431 1432 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1433 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1434 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1435 return PreStart; 1436 1437 // 2. Direct overflow check on the step operation's expression. 1438 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1439 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1440 const SCEV *OperandExtendedStart = 1441 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1442 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1443 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1444 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1445 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1446 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1447 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1448 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1449 } 1450 return PreStart; 1451 } 1452 1453 // 3. Loop precondition. 1454 ICmpInst::Predicate Pred; 1455 const SCEV *OverflowLimit = 1456 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1457 1458 if (OverflowLimit && 1459 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1460 return PreStart; 1461 1462 return nullptr; 1463 } 1464 1465 // Get the normalized zero or sign extended expression for this AddRec's Start. 1466 template <typename ExtendOpTy> 1467 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1468 ScalarEvolution *SE, 1469 unsigned Depth) { 1470 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1471 1472 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1473 if (!PreStart) 1474 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1475 1476 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1477 Depth), 1478 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1479 } 1480 1481 // Try to prove away overflow by looking at "nearby" add recurrences. A 1482 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1483 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1484 // 1485 // Formally: 1486 // 1487 // {S,+,X} == {S-T,+,X} + T 1488 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1489 // 1490 // If ({S-T,+,X} + T) does not overflow ... (1) 1491 // 1492 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1493 // 1494 // If {S-T,+,X} does not overflow ... (2) 1495 // 1496 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1497 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1498 // 1499 // If (S-T)+T does not overflow ... (3) 1500 // 1501 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1502 // == {Ext(S),+,Ext(X)} == LHS 1503 // 1504 // Thus, if (1), (2) and (3) are true for some T, then 1505 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1506 // 1507 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1508 // does not overflow" restricted to the 0th iteration. Therefore we only need 1509 // to check for (1) and (2). 1510 // 1511 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1512 // is `Delta` (defined below). 1513 template <typename ExtendOpTy> 1514 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1515 const SCEV *Step, 1516 const Loop *L) { 1517 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1518 1519 // We restrict `Start` to a constant to prevent SCEV from spending too much 1520 // time here. It is correct (but more expensive) to continue with a 1521 // non-constant `Start` and do a general SCEV subtraction to compute 1522 // `PreStart` below. 1523 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1524 if (!StartC) 1525 return false; 1526 1527 APInt StartAI = StartC->getAPInt(); 1528 1529 for (unsigned Delta : {-2, -1, 1, 2}) { 1530 const SCEV *PreStart = getConstant(StartAI - Delta); 1531 1532 FoldingSetNodeID ID; 1533 ID.AddInteger(scAddRecExpr); 1534 ID.AddPointer(PreStart); 1535 ID.AddPointer(Step); 1536 ID.AddPointer(L); 1537 void *IP = nullptr; 1538 const auto *PreAR = 1539 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1540 1541 // Give up if we don't already have the add recurrence we need because 1542 // actually constructing an add recurrence is relatively expensive. 1543 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1544 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1545 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1546 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1547 DeltaS, &Pred, this); 1548 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1549 return true; 1550 } 1551 } 1552 1553 return false; 1554 } 1555 1556 // Finds an integer D for an expression (C + x + y + ...) such that the top 1557 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1558 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1559 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1560 // the (C + x + y + ...) expression is \p WholeAddExpr. 1561 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1562 const SCEVConstant *ConstantTerm, 1563 const SCEVAddExpr *WholeAddExpr) { 1564 const APInt &C = ConstantTerm->getAPInt(); 1565 const unsigned BitWidth = C.getBitWidth(); 1566 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1567 uint32_t TZ = BitWidth; 1568 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1569 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1570 if (TZ) { 1571 // Set D to be as many least significant bits of C as possible while still 1572 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1573 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1574 } 1575 return APInt(BitWidth, 0); 1576 } 1577 1578 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1579 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1580 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1581 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1582 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1583 const APInt &ConstantStart, 1584 const SCEV *Step) { 1585 const unsigned BitWidth = ConstantStart.getBitWidth(); 1586 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1587 if (TZ) 1588 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1589 : ConstantStart; 1590 return APInt(BitWidth, 0); 1591 } 1592 1593 const SCEV * 1594 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1596 "This is not an extending conversion!"); 1597 assert(isSCEVable(Ty) && 1598 "This is not a conversion to a SCEVable type!"); 1599 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1600 Ty = getEffectiveSCEVType(Ty); 1601 1602 // Fold if the operand is constant. 1603 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1604 return getConstant( 1605 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1606 1607 // zext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scZeroExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 if (Depth > MaxCastDepth) { 1620 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1621 Op, Ty); 1622 UniqueSCEVs.InsertNode(S, IP); 1623 registerUser(S, Op); 1624 return S; 1625 } 1626 1627 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1628 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1629 // It's possible the bits taken off by the truncate were all zero bits. If 1630 // so, we should be able to simplify this further. 1631 const SCEV *X = ST->getOperand(); 1632 ConstantRange CR = getUnsignedRange(X); 1633 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1634 unsigned NewBits = getTypeSizeInBits(Ty); 1635 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1636 CR.zextOrTrunc(NewBits))) 1637 return getTruncateOrZeroExtend(X, Ty, Depth); 1638 } 1639 1640 // If the input value is a chrec scev, and we can prove that the value 1641 // did not overflow the old, smaller, value, we can zero extend all of the 1642 // operands (often constants). This allows analysis of something like 1643 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1644 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1645 if (AR->isAffine()) { 1646 const SCEV *Start = AR->getStart(); 1647 const SCEV *Step = AR->getStepRecurrence(*this); 1648 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1649 const Loop *L = AR->getLoop(); 1650 1651 if (!AR->hasNoUnsignedWrap()) { 1652 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1653 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1654 } 1655 1656 // If we have special knowledge that this addrec won't overflow, 1657 // we don't need to do any further analysis. 1658 if (AR->hasNoUnsignedWrap()) { 1659 Start = 1660 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1661 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1662 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1663 } 1664 1665 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1666 // Note that this serves two purposes: It filters out loops that are 1667 // simply not analyzable, and it covers the case where this code is 1668 // being called from within backedge-taken count analysis, such that 1669 // attempting to ask for the backedge-taken count would likely result 1670 // in infinite recursion. In the later case, the analysis code will 1671 // cope with a conservative value, and it will take care to purge 1672 // that value once it has finished. 1673 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1674 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1675 // Manually compute the final value for AR, checking for overflow. 1676 1677 // Check whether the backedge-taken count can be losslessly casted to 1678 // the addrec's type. The count is always unsigned. 1679 const SCEV *CastedMaxBECount = 1680 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1681 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1682 CastedMaxBECount, MaxBECount->getType(), Depth); 1683 if (MaxBECount == RecastedMaxBECount) { 1684 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1685 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1686 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1689 SCEV::FlagAnyWrap, 1690 Depth + 1), 1691 WideTy, Depth + 1); 1692 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1693 const SCEV *WideMaxBECount = 1694 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1695 const SCEV *OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getZeroExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1704 // Return the expression with the addrec on the outside. 1705 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1); 1707 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1708 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1724 Depth + 1); 1725 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1726 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1727 } 1728 } 1729 } 1730 1731 // Normally, in the cases we can prove no-overflow via a 1732 // backedge guarding condition, we can also compute a backedge 1733 // taken count for the loop. The exceptions are assumptions and 1734 // guards present in the loop -- SCEV is not great at exploiting 1735 // these to compute max backedge taken counts, but can still use 1736 // these to prove lack of overflow. Use this fact to avoid 1737 // doing extra work that may not pay off. 1738 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1739 !AC.assumptions().empty()) { 1740 1741 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1742 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1743 if (AR->hasNoUnsignedWrap()) { 1744 // Same as nuw case above - duplicated here to avoid a compile time 1745 // issue. It's not clear that the order of checks does matter, but 1746 // it's one of two issue possible causes for a change which was 1747 // reverted. Be conservative for the moment. 1748 Start = 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1750 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1751 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1752 } 1753 1754 // For a negative step, we can extend the operands iff doing so only 1755 // traverses values in the range zext([0,UINT_MAX]). 1756 if (isKnownNegative(Step)) { 1757 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1758 getSignedRangeMin(Step)); 1759 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1760 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1761 // Cache knowledge of AR NW, which is propagated to this 1762 // AddRec. Negative step causes unsigned wrap, but it 1763 // still can't self-wrap. 1764 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1765 // Return the expression with the addrec on the outside. 1766 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1767 Depth + 1); 1768 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1769 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1770 } 1771 } 1772 } 1773 1774 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1775 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1776 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1777 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1778 const APInt &C = SC->getAPInt(); 1779 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1780 if (D != 0) { 1781 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1782 const SCEV *SResidual = 1783 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1784 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1785 return getAddExpr(SZExtD, SZExtR, 1786 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1787 Depth + 1); 1788 } 1789 } 1790 1791 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1792 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1793 Start = 1794 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1795 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1796 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1797 } 1798 } 1799 1800 // zext(A % B) --> zext(A) % zext(B) 1801 { 1802 const SCEV *LHS; 1803 const SCEV *RHS; 1804 if (matchURem(Op, LHS, RHS)) 1805 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1806 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1807 } 1808 1809 // zext(A / B) --> zext(A) / zext(B). 1810 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1811 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1812 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1813 1814 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1815 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1816 if (SA->hasNoUnsignedWrap()) { 1817 // If the addition does not unsign overflow then we can, by definition, 1818 // commute the zero extension with the addition operation. 1819 SmallVector<const SCEV *, 4> Ops; 1820 for (const auto *Op : SA->operands()) 1821 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1822 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1823 } 1824 1825 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1826 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1827 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1828 // 1829 // Often address arithmetics contain expressions like 1830 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1831 // This transformation is useful while proving that such expressions are 1832 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1833 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1834 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1835 if (D != 0) { 1836 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1837 const SCEV *SResidual = 1838 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1839 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1840 return getAddExpr(SZExtD, SZExtR, 1841 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1842 Depth + 1); 1843 } 1844 } 1845 } 1846 1847 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1848 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1849 if (SM->hasNoUnsignedWrap()) { 1850 // If the multiply does not unsign overflow then we can, by definition, 1851 // commute the zero extension with the multiply operation. 1852 SmallVector<const SCEV *, 4> Ops; 1853 for (const auto *Op : SM->operands()) 1854 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1855 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1856 } 1857 1858 // zext(2^K * (trunc X to iN)) to iM -> 1859 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1860 // 1861 // Proof: 1862 // 1863 // zext(2^K * (trunc X to iN)) to iM 1864 // = zext((trunc X to iN) << K) to iM 1865 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1866 // (because shl removes the top K bits) 1867 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1868 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1869 // 1870 if (SM->getNumOperands() == 2) 1871 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1872 if (MulLHS->getAPInt().isPowerOf2()) 1873 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1874 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1875 MulLHS->getAPInt().logBase2(); 1876 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1877 return getMulExpr( 1878 getZeroExtendExpr(MulLHS, Ty), 1879 getZeroExtendExpr( 1880 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1881 SCEV::FlagNUW, Depth + 1); 1882 } 1883 } 1884 1885 // The cast wasn't folded; create an explicit cast node. 1886 // Recompute the insert position, as it may have been invalidated. 1887 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1888 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1889 Op, Ty); 1890 UniqueSCEVs.InsertNode(S, IP); 1891 registerUser(S, Op); 1892 return S; 1893 } 1894 1895 const SCEV * 1896 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1897 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1898 "This is not an extending conversion!"); 1899 assert(isSCEVable(Ty) && 1900 "This is not a conversion to a SCEVable type!"); 1901 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1902 Ty = getEffectiveSCEVType(Ty); 1903 1904 // Fold if the operand is constant. 1905 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1906 return getConstant( 1907 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1908 1909 // sext(sext(x)) --> sext(x) 1910 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1911 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1912 1913 // sext(zext(x)) --> zext(x) 1914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1915 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1916 1917 // Before doing any expensive analysis, check to see if we've already 1918 // computed a SCEV for this Op and Ty. 1919 FoldingSetNodeID ID; 1920 ID.AddInteger(scSignExtend); 1921 ID.AddPointer(Op); 1922 ID.AddPointer(Ty); 1923 void *IP = nullptr; 1924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1925 // Limit recursion depth. 1926 if (Depth > MaxCastDepth) { 1927 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1928 Op, Ty); 1929 UniqueSCEVs.InsertNode(S, IP); 1930 registerUser(S, Op); 1931 return S; 1932 } 1933 1934 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1935 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1936 // It's possible the bits taken off by the truncate were all sign bits. If 1937 // so, we should be able to simplify this further. 1938 const SCEV *X = ST->getOperand(); 1939 ConstantRange CR = getSignedRange(X); 1940 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1941 unsigned NewBits = getTypeSizeInBits(Ty); 1942 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1943 CR.sextOrTrunc(NewBits))) 1944 return getTruncateOrSignExtend(X, Ty, Depth); 1945 } 1946 1947 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1948 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1949 if (SA->hasNoSignedWrap()) { 1950 // If the addition does not sign overflow then we can, by definition, 1951 // commute the sign extension with the addition operation. 1952 SmallVector<const SCEV *, 4> Ops; 1953 for (const auto *Op : SA->operands()) 1954 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1955 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1956 } 1957 1958 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1959 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1960 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1961 // 1962 // For instance, this will bring two seemingly different expressions: 1963 // 1 + sext(5 + 20 * %x + 24 * %y) and 1964 // sext(6 + 20 * %x + 24 * %y) 1965 // to the same form: 1966 // 2 + sext(4 + 20 * %x + 24 * %y) 1967 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1968 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1969 if (D != 0) { 1970 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1971 const SCEV *SResidual = 1972 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1973 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1974 return getAddExpr(SSExtD, SSExtR, 1975 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1976 Depth + 1); 1977 } 1978 } 1979 } 1980 // If the input value is a chrec scev, and we can prove that the value 1981 // did not overflow the old, smaller, value, we can sign extend all of the 1982 // operands (often constants). This allows analysis of something like 1983 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1984 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1985 if (AR->isAffine()) { 1986 const SCEV *Start = AR->getStart(); 1987 const SCEV *Step = AR->getStepRecurrence(*this); 1988 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1989 const Loop *L = AR->getLoop(); 1990 1991 if (!AR->hasNoSignedWrap()) { 1992 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1993 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1994 } 1995 1996 // If we have special knowledge that this addrec won't overflow, 1997 // we don't need to do any further analysis. 1998 if (AR->hasNoSignedWrap()) { 1999 Start = 2000 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2001 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2002 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2003 } 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2047 Depth + 1); 2048 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2049 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2050 } 2051 // Similar to above, only this time treat the step value as unsigned. 2052 // This covers loops that count up with an unsigned step. 2053 OperandExtendedAdd = 2054 getAddExpr(WideStart, 2055 getMulExpr(WideMaxBECount, 2056 getZeroExtendExpr(Step, WideTy, Depth + 1), 2057 SCEV::FlagAnyWrap, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1); 2059 if (SAdd == OperandExtendedAdd) { 2060 // If AR wraps around then 2061 // 2062 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2063 // => SAdd != OperandExtendedAdd 2064 // 2065 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2066 // (SAdd == OperandExtendedAdd => AR is NW) 2067 2068 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2069 2070 // Return the expression with the addrec on the outside. 2071 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2072 Depth + 1); 2073 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2074 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2075 } 2076 } 2077 } 2078 2079 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2081 if (AR->hasNoSignedWrap()) { 2082 // Same as nsw case above - duplicated here to avoid a compile time 2083 // issue. It's not clear that the order of checks does matter, but 2084 // it's one of two issue possible causes for a change which was 2085 // reverted. Be conservative for the moment. 2086 Start = 2087 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2088 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2089 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2090 } 2091 2092 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2093 // if D + (C - D + Step * n) could be proven to not signed wrap 2094 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2095 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2096 const APInt &C = SC->getAPInt(); 2097 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2098 if (D != 0) { 2099 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2100 const SCEV *SResidual = 2101 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2102 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2103 return getAddExpr(SSExtD, SSExtR, 2104 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2105 Depth + 1); 2106 } 2107 } 2108 2109 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2110 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2111 Start = 2112 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2113 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2114 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2317 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2318 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3123 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1); 3125 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1); 3127 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3128 } 3129 3130 if (Ops[0]->isAllOnesValue()) { 3131 // If we have a mul by -1 of an add, try distributing the -1 among the 3132 // add operands. 3133 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3134 SmallVector<const SCEV *, 4> NewOps; 3135 bool AnyFolded = false; 3136 for (const SCEV *AddOp : Add->operands()) { 3137 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3138 Depth + 1); 3139 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3140 NewOps.push_back(Mul); 3141 } 3142 if (AnyFolded) 3143 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3144 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3145 // Negation preserves a recurrence's no self-wrap property. 3146 SmallVector<const SCEV *, 4> Operands; 3147 for (const SCEV *AddRecOp : AddRec->operands()) 3148 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3149 Depth + 1)); 3150 3151 return getAddRecExpr(Operands, AddRec->getLoop(), 3152 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3153 } 3154 } 3155 } 3156 } 3157 3158 // Skip over the add expression until we get to a multiply. 3159 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3160 ++Idx; 3161 3162 // If there are mul operands inline them all into this expression. 3163 if (Idx < Ops.size()) { 3164 bool DeletedMul = false; 3165 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3166 if (Ops.size() > MulOpsInlineThreshold) 3167 break; 3168 // If we have an mul, expand the mul operands onto the end of the 3169 // operands list. 3170 Ops.erase(Ops.begin()+Idx); 3171 Ops.append(Mul->op_begin(), Mul->op_end()); 3172 DeletedMul = true; 3173 } 3174 3175 // If we deleted at least one mul, we added operands to the end of the 3176 // list, and they are not necessarily sorted. Recurse to resort and 3177 // resimplify any operands we just acquired. 3178 if (DeletedMul) 3179 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3180 } 3181 3182 // If there are any add recurrences in the operands list, see if any other 3183 // added values are loop invariant. If so, we can fold them into the 3184 // recurrence. 3185 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3186 ++Idx; 3187 3188 // Scan over all recurrences, trying to fold loop invariants into them. 3189 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3190 // Scan all of the other operands to this mul and add them to the vector 3191 // if they are loop invariant w.r.t. the recurrence. 3192 SmallVector<const SCEV *, 8> LIOps; 3193 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3194 const Loop *AddRecLoop = AddRec->getLoop(); 3195 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3196 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3197 LIOps.push_back(Ops[i]); 3198 Ops.erase(Ops.begin()+i); 3199 --i; --e; 3200 } 3201 3202 // If we found some loop invariants, fold them into the recurrence. 3203 if (!LIOps.empty()) { 3204 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3205 SmallVector<const SCEV *, 4> NewOps; 3206 NewOps.reserve(AddRec->getNumOperands()); 3207 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3208 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3209 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3210 SCEV::FlagAnyWrap, Depth + 1)); 3211 3212 // Build the new addrec. Propagate the NUW and NSW flags if both the 3213 // outer mul and the inner addrec are guaranteed to have no overflow. 3214 // 3215 // No self-wrap cannot be guaranteed after changing the step size, but 3216 // will be inferred if either NUW or NSW is true. 3217 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3218 const SCEV *NewRec = getAddRecExpr( 3219 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3220 3221 // If all of the other operands were loop invariant, we are done. 3222 if (Ops.size() == 1) return NewRec; 3223 3224 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3225 for (unsigned i = 0;; ++i) 3226 if (Ops[i] == AddRec) { 3227 Ops[i] = NewRec; 3228 break; 3229 } 3230 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3231 } 3232 3233 // Okay, if there weren't any loop invariants to be folded, check to see 3234 // if there are multiple AddRec's with the same loop induction variable 3235 // being multiplied together. If so, we can fold them. 3236 3237 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3238 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3239 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3240 // ]]],+,...up to x=2n}. 3241 // Note that the arguments to choose() are always integers with values 3242 // known at compile time, never SCEV objects. 3243 // 3244 // The implementation avoids pointless extra computations when the two 3245 // addrec's are of different length (mathematically, it's equivalent to 3246 // an infinite stream of zeros on the right). 3247 bool OpsModified = false; 3248 for (unsigned OtherIdx = Idx+1; 3249 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3250 ++OtherIdx) { 3251 const SCEVAddRecExpr *OtherAddRec = 3252 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3253 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3254 continue; 3255 3256 // Limit max number of arguments to avoid creation of unreasonably big 3257 // SCEVAddRecs with very complex operands. 3258 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3259 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3260 continue; 3261 3262 bool Overflow = false; 3263 Type *Ty = AddRec->getType(); 3264 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3265 SmallVector<const SCEV*, 7> AddRecOps; 3266 for (int x = 0, xe = AddRec->getNumOperands() + 3267 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3268 SmallVector <const SCEV *, 7> SumOps; 3269 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3270 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3271 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3272 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3273 z < ze && !Overflow; ++z) { 3274 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3275 uint64_t Coeff; 3276 if (LargerThan64Bits) 3277 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3278 else 3279 Coeff = Coeff1*Coeff2; 3280 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3281 const SCEV *Term1 = AddRec->getOperand(y-z); 3282 const SCEV *Term2 = OtherAddRec->getOperand(z); 3283 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3284 SCEV::FlagAnyWrap, Depth + 1)); 3285 } 3286 } 3287 if (SumOps.empty()) 3288 SumOps.push_back(getZero(Ty)); 3289 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3290 } 3291 if (!Overflow) { 3292 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3293 SCEV::FlagAnyWrap); 3294 if (Ops.size() == 2) return NewAddRec; 3295 Ops[Idx] = NewAddRec; 3296 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3297 OpsModified = true; 3298 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3299 if (!AddRec) 3300 break; 3301 } 3302 } 3303 if (OpsModified) 3304 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3305 3306 // Otherwise couldn't fold anything into this recurrence. Move onto the 3307 // next one. 3308 } 3309 3310 // Okay, it looks like we really DO need an mul expr. Check to see if we 3311 // already have one, otherwise create a new one. 3312 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3313 } 3314 3315 /// Represents an unsigned remainder expression based on unsigned division. 3316 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3317 const SCEV *RHS) { 3318 assert(getEffectiveSCEVType(LHS->getType()) == 3319 getEffectiveSCEVType(RHS->getType()) && 3320 "SCEVURemExpr operand types don't match!"); 3321 3322 // Short-circuit easy cases 3323 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3324 // If constant is one, the result is trivial 3325 if (RHSC->getValue()->isOne()) 3326 return getZero(LHS->getType()); // X urem 1 --> 0 3327 3328 // If constant is a power of two, fold into a zext(trunc(LHS)). 3329 if (RHSC->getAPInt().isPowerOf2()) { 3330 Type *FullTy = LHS->getType(); 3331 Type *TruncTy = 3332 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3333 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3334 } 3335 } 3336 3337 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3338 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3339 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3340 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3341 } 3342 3343 /// Get a canonical unsigned division expression, or something simpler if 3344 /// possible. 3345 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3346 const SCEV *RHS) { 3347 assert(!LHS->getType()->isPointerTy() && 3348 "SCEVUDivExpr operand can't be pointer!"); 3349 assert(LHS->getType() == RHS->getType() && 3350 "SCEVUDivExpr operand types don't match!"); 3351 3352 FoldingSetNodeID ID; 3353 ID.AddInteger(scUDivExpr); 3354 ID.AddPointer(LHS); 3355 ID.AddPointer(RHS); 3356 void *IP = nullptr; 3357 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3358 return S; 3359 3360 // 0 udiv Y == 0 3361 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3362 if (LHSC->getValue()->isZero()) 3363 return LHS; 3364 3365 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3366 if (RHSC->getValue()->isOne()) 3367 return LHS; // X udiv 1 --> x 3368 // If the denominator is zero, the result of the udiv is undefined. Don't 3369 // try to analyze it, because the resolution chosen here may differ from 3370 // the resolution chosen in other parts of the compiler. 3371 if (!RHSC->getValue()->isZero()) { 3372 // Determine if the division can be folded into the operands of 3373 // its operands. 3374 // TODO: Generalize this to non-constants by using known-bits information. 3375 Type *Ty = LHS->getType(); 3376 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3377 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3378 // For non-power-of-two values, effectively round the value up to the 3379 // nearest power of two. 3380 if (!RHSC->getAPInt().isPowerOf2()) 3381 ++MaxShiftAmt; 3382 IntegerType *ExtTy = 3383 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3384 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3385 if (const SCEVConstant *Step = 3386 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3387 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3388 const APInt &StepInt = Step->getAPInt(); 3389 const APInt &DivInt = RHSC->getAPInt(); 3390 if (!StepInt.urem(DivInt) && 3391 getZeroExtendExpr(AR, ExtTy) == 3392 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3393 getZeroExtendExpr(Step, ExtTy), 3394 AR->getLoop(), SCEV::FlagAnyWrap)) { 3395 SmallVector<const SCEV *, 4> Operands; 3396 for (const SCEV *Op : AR->operands()) 3397 Operands.push_back(getUDivExpr(Op, RHS)); 3398 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3399 } 3400 /// Get a canonical UDivExpr for a recurrence. 3401 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3402 // We can currently only fold X%N if X is constant. 3403 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3404 if (StartC && !DivInt.urem(StepInt) && 3405 getZeroExtendExpr(AR, ExtTy) == 3406 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3407 getZeroExtendExpr(Step, ExtTy), 3408 AR->getLoop(), SCEV::FlagAnyWrap)) { 3409 const APInt &StartInt = StartC->getAPInt(); 3410 const APInt &StartRem = StartInt.urem(StepInt); 3411 if (StartRem != 0) { 3412 const SCEV *NewLHS = 3413 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3414 AR->getLoop(), SCEV::FlagNW); 3415 if (LHS != NewLHS) { 3416 LHS = NewLHS; 3417 3418 // Reset the ID to include the new LHS, and check if it is 3419 // already cached. 3420 ID.clear(); 3421 ID.AddInteger(scUDivExpr); 3422 ID.AddPointer(LHS); 3423 ID.AddPointer(RHS); 3424 IP = nullptr; 3425 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3426 return S; 3427 } 3428 } 3429 } 3430 } 3431 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3432 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3433 SmallVector<const SCEV *, 4> Operands; 3434 for (const SCEV *Op : M->operands()) 3435 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3436 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3437 // Find an operand that's safely divisible. 3438 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3439 const SCEV *Op = M->getOperand(i); 3440 const SCEV *Div = getUDivExpr(Op, RHSC); 3441 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3442 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3443 Operands[i] = Div; 3444 return getMulExpr(Operands); 3445 } 3446 } 3447 } 3448 3449 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3450 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3451 if (auto *DivisorConstant = 3452 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3453 bool Overflow = false; 3454 APInt NewRHS = 3455 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3456 if (Overflow) { 3457 return getConstant(RHSC->getType(), 0, false); 3458 } 3459 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3460 } 3461 } 3462 3463 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3464 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3465 SmallVector<const SCEV *, 4> Operands; 3466 for (const SCEV *Op : A->operands()) 3467 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3468 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3469 Operands.clear(); 3470 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3471 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3472 if (isa<SCEVUDivExpr>(Op) || 3473 getMulExpr(Op, RHS) != A->getOperand(i)) 3474 break; 3475 Operands.push_back(Op); 3476 } 3477 if (Operands.size() == A->getNumOperands()) 3478 return getAddExpr(Operands); 3479 } 3480 } 3481 3482 // Fold if both operands are constant. 3483 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3484 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); 3485 } 3486 } 3487 3488 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3489 // changes). Make sure we get a new one. 3490 IP = nullptr; 3491 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3492 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3493 LHS, RHS); 3494 UniqueSCEVs.InsertNode(S, IP); 3495 registerUser(S, {LHS, RHS}); 3496 return S; 3497 } 3498 3499 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3500 APInt A = C1->getAPInt().abs(); 3501 APInt B = C2->getAPInt().abs(); 3502 uint32_t ABW = A.getBitWidth(); 3503 uint32_t BBW = B.getBitWidth(); 3504 3505 if (ABW > BBW) 3506 B = B.zext(ABW); 3507 else if (ABW < BBW) 3508 A = A.zext(BBW); 3509 3510 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3511 } 3512 3513 /// Get a canonical unsigned division expression, or something simpler if 3514 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3515 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3516 /// it's not exact because the udiv may be clearing bits. 3517 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3518 const SCEV *RHS) { 3519 // TODO: we could try to find factors in all sorts of things, but for now we 3520 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3521 // end of this file for inspiration. 3522 3523 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3524 if (!Mul || !Mul->hasNoUnsignedWrap()) 3525 return getUDivExpr(LHS, RHS); 3526 3527 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3528 // If the mulexpr multiplies by a constant, then that constant must be the 3529 // first element of the mulexpr. 3530 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3531 if (LHSCst == RHSCst) { 3532 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3533 return getMulExpr(Operands); 3534 } 3535 3536 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3537 // that there's a factor provided by one of the other terms. We need to 3538 // check. 3539 APInt Factor = gcd(LHSCst, RHSCst); 3540 if (!Factor.isIntN(1)) { 3541 LHSCst = 3542 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3543 RHSCst = 3544 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3545 SmallVector<const SCEV *, 2> Operands; 3546 Operands.push_back(LHSCst); 3547 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3548 LHS = getMulExpr(Operands); 3549 RHS = RHSCst; 3550 Mul = dyn_cast<SCEVMulExpr>(LHS); 3551 if (!Mul) 3552 return getUDivExactExpr(LHS, RHS); 3553 } 3554 } 3555 } 3556 3557 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3558 if (Mul->getOperand(i) == RHS) { 3559 SmallVector<const SCEV *, 2> Operands; 3560 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3561 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3562 return getMulExpr(Operands); 3563 } 3564 } 3565 3566 return getUDivExpr(LHS, RHS); 3567 } 3568 3569 /// Get an add recurrence expression for the specified loop. Simplify the 3570 /// expression as much as possible. 3571 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3572 const Loop *L, 3573 SCEV::NoWrapFlags Flags) { 3574 SmallVector<const SCEV *, 4> Operands; 3575 Operands.push_back(Start); 3576 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3577 if (StepChrec->getLoop() == L) { 3578 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3579 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3580 } 3581 3582 Operands.push_back(Step); 3583 return getAddRecExpr(Operands, L, Flags); 3584 } 3585 3586 /// Get an add recurrence expression for the specified loop. Simplify the 3587 /// expression as much as possible. 3588 const SCEV * 3589 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3590 const Loop *L, SCEV::NoWrapFlags Flags) { 3591 if (Operands.size() == 1) return Operands[0]; 3592 #ifndef NDEBUG 3593 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3594 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3595 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3596 "SCEVAddRecExpr operand types don't match!"); 3597 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3598 } 3599 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3600 assert(isLoopInvariant(Operands[i], L) && 3601 "SCEVAddRecExpr operand is not loop-invariant!"); 3602 #endif 3603 3604 if (Operands.back()->isZero()) { 3605 Operands.pop_back(); 3606 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3607 } 3608 3609 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3610 // use that information to infer NUW and NSW flags. However, computing a 3611 // BE count requires calling getAddRecExpr, so we may not yet have a 3612 // meaningful BE count at this point (and if we don't, we'd be stuck 3613 // with a SCEVCouldNotCompute as the cached BE count). 3614 3615 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3616 3617 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3618 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3619 const Loop *NestedLoop = NestedAR->getLoop(); 3620 if (L->contains(NestedLoop) 3621 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3622 : (!NestedLoop->contains(L) && 3623 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3624 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3625 Operands[0] = NestedAR->getStart(); 3626 // AddRecs require their operands be loop-invariant with respect to their 3627 // loops. Don't perform this transformation if it would break this 3628 // requirement. 3629 bool AllInvariant = all_of( 3630 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3631 3632 if (AllInvariant) { 3633 // Create a recurrence for the outer loop with the same step size. 3634 // 3635 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3636 // inner recurrence has the same property. 3637 SCEV::NoWrapFlags OuterFlags = 3638 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3639 3640 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3641 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3642 return isLoopInvariant(Op, NestedLoop); 3643 }); 3644 3645 if (AllInvariant) { 3646 // Ok, both add recurrences are valid after the transformation. 3647 // 3648 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3649 // the outer recurrence has the same property. 3650 SCEV::NoWrapFlags InnerFlags = 3651 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3652 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3653 } 3654 } 3655 // Reset Operands to its original state. 3656 Operands[0] = NestedAR; 3657 } 3658 } 3659 3660 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3661 // already have one, otherwise create a new one. 3662 return getOrCreateAddRecExpr(Operands, L, Flags); 3663 } 3664 3665 const SCEV * 3666 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3667 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3668 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3669 // getSCEV(Base)->getType() has the same address space as Base->getType() 3670 // because SCEV::getType() preserves the address space. 3671 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3672 const bool AssumeInBoundsFlags = [&]() { 3673 if (!GEP->isInBounds()) 3674 return false; 3675 3676 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3677 // but to do that, we have to ensure that said flag is valid in the entire 3678 // defined scope of the SCEV. 3679 auto *GEPI = dyn_cast<Instruction>(GEP); 3680 // TODO: non-instructions have global scope. We might be able to prove 3681 // some global scope cases 3682 return GEPI && isSCEVExprNeverPoison(GEPI); 3683 }(); 3684 3685 SCEV::NoWrapFlags OffsetWrap = 3686 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3687 3688 Type *CurTy = GEP->getType(); 3689 bool FirstIter = true; 3690 SmallVector<const SCEV *, 4> Offsets; 3691 for (const SCEV *IndexExpr : IndexExprs) { 3692 // Compute the (potentially symbolic) offset in bytes for this index. 3693 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3694 // For a struct, add the member offset. 3695 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3696 unsigned FieldNo = Index->getZExtValue(); 3697 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3698 Offsets.push_back(FieldOffset); 3699 3700 // Update CurTy to the type of the field at Index. 3701 CurTy = STy->getTypeAtIndex(Index); 3702 } else { 3703 // Update CurTy to its element type. 3704 if (FirstIter) { 3705 assert(isa<PointerType>(CurTy) && 3706 "The first index of a GEP indexes a pointer"); 3707 CurTy = GEP->getSourceElementType(); 3708 FirstIter = false; 3709 } else { 3710 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3711 } 3712 // For an array, add the element offset, explicitly scaled. 3713 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3714 // Getelementptr indices are signed. 3715 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3716 3717 // Multiply the index by the element size to compute the element offset. 3718 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3719 Offsets.push_back(LocalOffset); 3720 } 3721 } 3722 3723 // Handle degenerate case of GEP without offsets. 3724 if (Offsets.empty()) 3725 return BaseExpr; 3726 3727 // Add the offsets together, assuming nsw if inbounds. 3728 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3729 // Add the base address and the offset. We cannot use the nsw flag, as the 3730 // base address is unsigned. However, if we know that the offset is 3731 // non-negative, we can use nuw. 3732 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3733 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3734 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3735 assert(BaseExpr->getType() == GEPExpr->getType() && 3736 "GEP should not change type mid-flight."); 3737 return GEPExpr; 3738 } 3739 3740 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3741 ArrayRef<const SCEV *> Ops) { 3742 FoldingSetNodeID ID; 3743 ID.AddInteger(SCEVType); 3744 for (const SCEV *Op : Ops) 3745 ID.AddPointer(Op); 3746 void *IP = nullptr; 3747 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3748 } 3749 3750 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3751 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3752 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3753 } 3754 3755 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3756 SmallVectorImpl<const SCEV *> &Ops) { 3757 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3758 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3759 if (Ops.size() == 1) return Ops[0]; 3760 #ifndef NDEBUG 3761 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3762 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3763 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3764 "Operand types don't match!"); 3765 assert(Ops[0]->getType()->isPointerTy() == 3766 Ops[i]->getType()->isPointerTy() && 3767 "min/max should be consistently pointerish"); 3768 } 3769 #endif 3770 3771 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3772 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3773 3774 // Sort by complexity, this groups all similar expression types together. 3775 GroupByComplexity(Ops, &LI, DT); 3776 3777 // Check if we have created the same expression before. 3778 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3779 return S; 3780 } 3781 3782 // If there are any constants, fold them together. 3783 unsigned Idx = 0; 3784 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3785 ++Idx; 3786 assert(Idx < Ops.size()); 3787 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3788 if (Kind == scSMaxExpr) 3789 return APIntOps::smax(LHS, RHS); 3790 else if (Kind == scSMinExpr) 3791 return APIntOps::smin(LHS, RHS); 3792 else if (Kind == scUMaxExpr) 3793 return APIntOps::umax(LHS, RHS); 3794 else if (Kind == scUMinExpr) 3795 return APIntOps::umin(LHS, RHS); 3796 llvm_unreachable("Unknown SCEV min/max opcode"); 3797 }; 3798 3799 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3800 // We found two constants, fold them together! 3801 ConstantInt *Fold = ConstantInt::get( 3802 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3803 Ops[0] = getConstant(Fold); 3804 Ops.erase(Ops.begin()+1); // Erase the folded element 3805 if (Ops.size() == 1) return Ops[0]; 3806 LHSC = cast<SCEVConstant>(Ops[0]); 3807 } 3808 3809 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3810 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3811 3812 if (IsMax ? IsMinV : IsMaxV) { 3813 // If we are left with a constant minimum(/maximum)-int, strip it off. 3814 Ops.erase(Ops.begin()); 3815 --Idx; 3816 } else if (IsMax ? IsMaxV : IsMinV) { 3817 // If we have a max(/min) with a constant maximum(/minimum)-int, 3818 // it will always be the extremum. 3819 return LHSC; 3820 } 3821 3822 if (Ops.size() == 1) return Ops[0]; 3823 } 3824 3825 // Find the first operation of the same kind 3826 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3827 ++Idx; 3828 3829 // Check to see if one of the operands is of the same kind. If so, expand its 3830 // operands onto our operand list, and recurse to simplify. 3831 if (Idx < Ops.size()) { 3832 bool DeletedAny = false; 3833 while (Ops[Idx]->getSCEVType() == Kind) { 3834 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3835 Ops.erase(Ops.begin()+Idx); 3836 Ops.append(SMME->op_begin(), SMME->op_end()); 3837 DeletedAny = true; 3838 } 3839 3840 if (DeletedAny) 3841 return getMinMaxExpr(Kind, Ops); 3842 } 3843 3844 // Okay, check to see if the same value occurs in the operand list twice. If 3845 // so, delete one. Since we sorted the list, these values are required to 3846 // be adjacent. 3847 llvm::CmpInst::Predicate GEPred = 3848 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3849 llvm::CmpInst::Predicate LEPred = 3850 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3851 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3852 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3853 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3854 if (Ops[i] == Ops[i + 1] || 3855 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3856 // X op Y op Y --> X op Y 3857 // X op Y --> X, if we know X, Y are ordered appropriately 3858 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3859 --i; 3860 --e; 3861 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3862 Ops[i + 1])) { 3863 // X op Y --> Y, if we know X, Y are ordered appropriately 3864 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3865 --i; 3866 --e; 3867 } 3868 } 3869 3870 if (Ops.size() == 1) return Ops[0]; 3871 3872 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3873 3874 // Okay, it looks like we really DO need an expr. Check to see if we 3875 // already have one, otherwise create a new one. 3876 FoldingSetNodeID ID; 3877 ID.AddInteger(Kind); 3878 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3879 ID.AddPointer(Ops[i]); 3880 void *IP = nullptr; 3881 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3882 if (ExistingSCEV) 3883 return ExistingSCEV; 3884 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3885 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3886 SCEV *S = new (SCEVAllocator) 3887 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3888 3889 UniqueSCEVs.InsertNode(S, IP); 3890 registerUser(S, Ops); 3891 return S; 3892 } 3893 3894 namespace { 3895 3896 class SCEVSequentialMinMaxDeduplicatingVisitor final 3897 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3898 Optional<const SCEV *>> { 3899 using RetVal = Optional<const SCEV *>; 3900 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3901 3902 ScalarEvolution &SE; 3903 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3904 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3905 SmallPtrSet<const SCEV *, 16> SeenOps; 3906 3907 bool canRecurseInto(SCEVTypes Kind) const { 3908 // We can only recurse into the SCEV expression of the same effective type 3909 // as the type of our root SCEV expression. 3910 return RootKind == Kind || NonSequentialRootKind == Kind; 3911 }; 3912 3913 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3914 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3915 "Only for min/max expressions."); 3916 SCEVTypes Kind = S->getSCEVType(); 3917 3918 if (!canRecurseInto(Kind)) 3919 return S; 3920 3921 auto *NAry = cast<SCEVNAryExpr>(S); 3922 SmallVector<const SCEV *> NewOps; 3923 bool Changed = 3924 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3925 3926 if (!Changed) 3927 return S; 3928 if (NewOps.empty()) 3929 return None; 3930 3931 return isa<SCEVSequentialMinMaxExpr>(S) 3932 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3933 : SE.getMinMaxExpr(Kind, NewOps); 3934 } 3935 3936 RetVal visit(const SCEV *S) { 3937 // Has the whole operand been seen already? 3938 if (!SeenOps.insert(S).second) 3939 return None; 3940 return Base::visit(S); 3941 } 3942 3943 public: 3944 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3945 SCEVTypes RootKind) 3946 : SE(SE), RootKind(RootKind), 3947 NonSequentialRootKind( 3948 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3949 RootKind)) {} 3950 3951 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3952 SmallVectorImpl<const SCEV *> &NewOps) { 3953 bool Changed = false; 3954 SmallVector<const SCEV *> Ops; 3955 Ops.reserve(OrigOps.size()); 3956 3957 for (const SCEV *Op : OrigOps) { 3958 RetVal NewOp = visit(Op); 3959 if (NewOp != Op) 3960 Changed = true; 3961 if (NewOp) 3962 Ops.emplace_back(*NewOp); 3963 } 3964 3965 if (Changed) 3966 NewOps = std::move(Ops); 3967 return Changed; 3968 } 3969 3970 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3971 3972 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3973 3974 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3975 3976 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3977 3978 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3979 3980 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3981 3982 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3983 3984 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3985 3986 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3987 3988 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3989 return visitAnyMinMaxExpr(Expr); 3990 } 3991 3992 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3993 return visitAnyMinMaxExpr(Expr); 3994 } 3995 3996 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 3997 return visitAnyMinMaxExpr(Expr); 3998 } 3999 4000 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4001 return visitAnyMinMaxExpr(Expr); 4002 } 4003 4004 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4005 return visitAnyMinMaxExpr(Expr); 4006 } 4007 4008 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4009 4010 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4011 }; 4012 4013 } // namespace 4014 4015 /// Return true if V is poison given that AssumedPoison is already poison. 4016 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4017 // The only way poison may be introduced in a SCEV expression is from a 4018 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4019 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4020 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4021 // 4022 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4023 // with the notable exception of umin_seq, where only poison from the first 4024 // operand is (unconditionally) propagated. 4025 struct SCEVPoisonCollector { 4026 bool LookThroughSeq; 4027 SmallPtrSet<const SCEV *, 4> MaybePoison; 4028 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4029 4030 bool follow(const SCEV *S) { 4031 // TODO: We can always follow the first operand, but the SCEVTraversal 4032 // API doesn't support this. 4033 if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S)) 4034 return false; 4035 4036 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4037 if (!isGuaranteedNotToBePoison(SU->getValue())) 4038 MaybePoison.insert(S); 4039 } 4040 return true; 4041 } 4042 bool isDone() const { return false; } 4043 }; 4044 4045 // First collect all SCEVs that might result in AssumedPoison to be poison. 4046 // We need to look through umin_seq here, because we want to find all SCEVs 4047 // that *might* result in poison, not only those that are *required* to. 4048 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4049 visitAll(AssumedPoison, PC1); 4050 4051 // AssumedPoison is never poison. As the assumption is false, the implication 4052 // is true. Don't bother walking the other SCEV in this case. 4053 if (PC1.MaybePoison.empty()) 4054 return true; 4055 4056 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4057 // as well. We cannot look through umin_seq here, as its argument only *may* 4058 // make the result poison. 4059 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4060 visitAll(S, PC2); 4061 4062 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4063 // it will also make S poison by being part of PC2.MaybePoison. 4064 return all_of(PC1.MaybePoison, 4065 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4066 } 4067 4068 const SCEV * 4069 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4070 SmallVectorImpl<const SCEV *> &Ops) { 4071 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4072 "Not a SCEVSequentialMinMaxExpr!"); 4073 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4074 if (Ops.size() == 1) 4075 return Ops[0]; 4076 #ifndef NDEBUG 4077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4078 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4080 "Operand types don't match!"); 4081 assert(Ops[0]->getType()->isPointerTy() == 4082 Ops[i]->getType()->isPointerTy() && 4083 "min/max should be consistently pointerish"); 4084 } 4085 #endif 4086 4087 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4088 // so we can *NOT* do any kind of sorting of the expressions! 4089 4090 // Check if we have created the same expression before. 4091 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4092 return S; 4093 4094 // FIXME: there are *some* simplifications that we can do here. 4095 4096 // Keep only the first instance of an operand. 4097 { 4098 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4099 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4100 if (Changed) 4101 return getSequentialMinMaxExpr(Kind, Ops); 4102 } 4103 4104 // Check to see if one of the operands is of the same kind. If so, expand its 4105 // operands onto our operand list, and recurse to simplify. 4106 { 4107 unsigned Idx = 0; 4108 bool DeletedAny = false; 4109 while (Idx < Ops.size()) { 4110 if (Ops[Idx]->getSCEVType() != Kind) { 4111 ++Idx; 4112 continue; 4113 } 4114 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4115 Ops.erase(Ops.begin() + Idx); 4116 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4117 DeletedAny = true; 4118 } 4119 4120 if (DeletedAny) 4121 return getSequentialMinMaxExpr(Kind, Ops); 4122 } 4123 4124 const SCEV *SaturationPoint; 4125 ICmpInst::Predicate Pred; 4126 switch (Kind) { 4127 case scSequentialUMinExpr: 4128 SaturationPoint = getZero(Ops[0]->getType()); 4129 Pred = ICmpInst::ICMP_ULE; 4130 break; 4131 default: 4132 llvm_unreachable("Not a sequential min/max type."); 4133 } 4134 4135 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4136 // We can replace %x umin_seq %y with %x umin %y if either: 4137 // * %y being poison implies %x is also poison. 4138 // * %x cannot be the saturating value (e.g. zero for umin). 4139 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4140 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4141 SaturationPoint)) { 4142 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4143 Ops[i - 1] = getMinMaxExpr( 4144 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4145 SeqOps); 4146 Ops.erase(Ops.begin() + i); 4147 return getSequentialMinMaxExpr(Kind, Ops); 4148 } 4149 // Fold %x umin_seq %y to %x if %x ule %y. 4150 // TODO: We might be able to prove the predicate for a later operand. 4151 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4152 Ops.erase(Ops.begin() + i); 4153 return getSequentialMinMaxExpr(Kind, Ops); 4154 } 4155 } 4156 4157 // Okay, it looks like we really DO need an expr. Check to see if we 4158 // already have one, otherwise create a new one. 4159 FoldingSetNodeID ID; 4160 ID.AddInteger(Kind); 4161 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4162 ID.AddPointer(Ops[i]); 4163 void *IP = nullptr; 4164 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4165 if (ExistingSCEV) 4166 return ExistingSCEV; 4167 4168 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4169 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4170 SCEV *S = new (SCEVAllocator) 4171 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4172 4173 UniqueSCEVs.InsertNode(S, IP); 4174 registerUser(S, Ops); 4175 return S; 4176 } 4177 4178 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4179 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4180 return getSMaxExpr(Ops); 4181 } 4182 4183 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4184 return getMinMaxExpr(scSMaxExpr, Ops); 4185 } 4186 4187 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4188 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4189 return getUMaxExpr(Ops); 4190 } 4191 4192 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4193 return getMinMaxExpr(scUMaxExpr, Ops); 4194 } 4195 4196 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4197 const SCEV *RHS) { 4198 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4199 return getSMinExpr(Ops); 4200 } 4201 4202 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4203 return getMinMaxExpr(scSMinExpr, Ops); 4204 } 4205 4206 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4207 bool Sequential) { 4208 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4209 return getUMinExpr(Ops, Sequential); 4210 } 4211 4212 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4213 bool Sequential) { 4214 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4215 : getMinMaxExpr(scUMinExpr, Ops); 4216 } 4217 4218 const SCEV * 4219 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4220 ScalableVectorType *ScalableTy) { 4221 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4222 Constant *One = ConstantInt::get(IntTy, 1); 4223 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4224 // Note that the expression we created is the final expression, we don't 4225 // want to simplify it any further Also, if we call a normal getSCEV(), 4226 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4227 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4228 } 4229 4230 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4231 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4232 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4233 // We can bypass creating a target-independent constant expression and then 4234 // folding it back into a ConstantInt. This is just a compile-time 4235 // optimization. 4236 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4237 } 4238 4239 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4240 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4241 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4242 // We can bypass creating a target-independent constant expression and then 4243 // folding it back into a ConstantInt. This is just a compile-time 4244 // optimization. 4245 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4246 } 4247 4248 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4249 StructType *STy, 4250 unsigned FieldNo) { 4251 // We can bypass creating a target-independent constant expression and then 4252 // folding it back into a ConstantInt. This is just a compile-time 4253 // optimization. 4254 return getConstant( 4255 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4256 } 4257 4258 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4259 // Don't attempt to do anything other than create a SCEVUnknown object 4260 // here. createSCEV only calls getUnknown after checking for all other 4261 // interesting possibilities, and any other code that calls getUnknown 4262 // is doing so in order to hide a value from SCEV canonicalization. 4263 4264 FoldingSetNodeID ID; 4265 ID.AddInteger(scUnknown); 4266 ID.AddPointer(V); 4267 void *IP = nullptr; 4268 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4269 assert(cast<SCEVUnknown>(S)->getValue() == V && 4270 "Stale SCEVUnknown in uniquing map!"); 4271 return S; 4272 } 4273 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4274 FirstUnknown); 4275 FirstUnknown = cast<SCEVUnknown>(S); 4276 UniqueSCEVs.InsertNode(S, IP); 4277 return S; 4278 } 4279 4280 //===----------------------------------------------------------------------===// 4281 // Basic SCEV Analysis and PHI Idiom Recognition Code 4282 // 4283 4284 /// Test if values of the given type are analyzable within the SCEV 4285 /// framework. This primarily includes integer types, and it can optionally 4286 /// include pointer types if the ScalarEvolution class has access to 4287 /// target-specific information. 4288 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4289 // Integers and pointers are always SCEVable. 4290 return Ty->isIntOrPtrTy(); 4291 } 4292 4293 /// Return the size in bits of the specified type, for which isSCEVable must 4294 /// return true. 4295 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4296 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4297 if (Ty->isPointerTy()) 4298 return getDataLayout().getIndexTypeSizeInBits(Ty); 4299 return getDataLayout().getTypeSizeInBits(Ty); 4300 } 4301 4302 /// Return a type with the same bitwidth as the given type and which represents 4303 /// how SCEV will treat the given type, for which isSCEVable must return 4304 /// true. For pointer types, this is the pointer index sized integer type. 4305 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4306 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4307 4308 if (Ty->isIntegerTy()) 4309 return Ty; 4310 4311 // The only other support type is pointer. 4312 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4313 return getDataLayout().getIndexType(Ty); 4314 } 4315 4316 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4317 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4318 } 4319 4320 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4321 const SCEV *B) { 4322 /// For a valid use point to exist, the defining scope of one operand 4323 /// must dominate the other. 4324 bool PreciseA, PreciseB; 4325 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4326 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4327 if (!PreciseA || !PreciseB) 4328 // Can't tell. 4329 return false; 4330 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4331 DT.dominates(ScopeB, ScopeA); 4332 } 4333 4334 4335 const SCEV *ScalarEvolution::getCouldNotCompute() { 4336 return CouldNotCompute.get(); 4337 } 4338 4339 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4340 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4341 auto *SU = dyn_cast<SCEVUnknown>(S); 4342 return SU && SU->getValue() == nullptr; 4343 }); 4344 4345 return !ContainsNulls; 4346 } 4347 4348 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4349 HasRecMapType::iterator I = HasRecMap.find(S); 4350 if (I != HasRecMap.end()) 4351 return I->second; 4352 4353 bool FoundAddRec = 4354 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4355 HasRecMap.insert({S, FoundAddRec}); 4356 return FoundAddRec; 4357 } 4358 4359 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4360 /// by the value and offset from any ValueOffsetPair in the set. 4361 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4362 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4363 if (SI == ExprValueMap.end()) 4364 return None; 4365 #ifndef NDEBUG 4366 if (VerifySCEVMap) { 4367 // Check there is no dangling Value in the set returned. 4368 for (Value *V : SI->second) 4369 assert(ValueExprMap.count(V)); 4370 } 4371 #endif 4372 return SI->second.getArrayRef(); 4373 } 4374 4375 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4376 /// cannot be used separately. eraseValueFromMap should be used to remove 4377 /// V from ValueExprMap and ExprValueMap at the same time. 4378 void ScalarEvolution::eraseValueFromMap(Value *V) { 4379 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4380 if (I != ValueExprMap.end()) { 4381 auto EVIt = ExprValueMap.find(I->second); 4382 bool Removed = EVIt->second.remove(V); 4383 (void) Removed; 4384 assert(Removed && "Value not in ExprValueMap?"); 4385 ValueExprMap.erase(I); 4386 } 4387 } 4388 4389 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4390 // A recursive query may have already computed the SCEV. It should be 4391 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4392 // inferred nowrap flags. 4393 auto It = ValueExprMap.find_as(V); 4394 if (It == ValueExprMap.end()) { 4395 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4396 ExprValueMap[S].insert(V); 4397 } 4398 } 4399 4400 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4401 /// create a new one. 4402 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4403 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4404 4405 if (const SCEV *S = getExistingSCEV(V)) 4406 return S; 4407 return createSCEVIter(V); 4408 } 4409 4410 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4411 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4412 4413 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4414 if (I != ValueExprMap.end()) { 4415 const SCEV *S = I->second; 4416 assert(checkValidity(S) && 4417 "existing SCEV has not been properly invalidated"); 4418 return S; 4419 } 4420 return nullptr; 4421 } 4422 4423 /// Return a SCEV corresponding to -V = -1*V 4424 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4425 SCEV::NoWrapFlags Flags) { 4426 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4427 return getConstant( 4428 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4429 4430 Type *Ty = V->getType(); 4431 Ty = getEffectiveSCEVType(Ty); 4432 return getMulExpr(V, getMinusOne(Ty), Flags); 4433 } 4434 4435 /// If Expr computes ~A, return A else return nullptr 4436 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4437 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4438 if (!Add || Add->getNumOperands() != 2 || 4439 !Add->getOperand(0)->isAllOnesValue()) 4440 return nullptr; 4441 4442 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4443 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4444 !AddRHS->getOperand(0)->isAllOnesValue()) 4445 return nullptr; 4446 4447 return AddRHS->getOperand(1); 4448 } 4449 4450 /// Return a SCEV corresponding to ~V = -1-V 4451 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4452 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4453 4454 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4455 return getConstant( 4456 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4457 4458 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4459 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4460 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4461 SmallVector<const SCEV *, 2> MatchedOperands; 4462 for (const SCEV *Operand : MME->operands()) { 4463 const SCEV *Matched = MatchNotExpr(Operand); 4464 if (!Matched) 4465 return (const SCEV *)nullptr; 4466 MatchedOperands.push_back(Matched); 4467 } 4468 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4469 MatchedOperands); 4470 }; 4471 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4472 return Replaced; 4473 } 4474 4475 Type *Ty = V->getType(); 4476 Ty = getEffectiveSCEVType(Ty); 4477 return getMinusSCEV(getMinusOne(Ty), V); 4478 } 4479 4480 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4481 assert(P->getType()->isPointerTy()); 4482 4483 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4484 // The base of an AddRec is the first operand. 4485 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4486 Ops[0] = removePointerBase(Ops[0]); 4487 // Don't try to transfer nowrap flags for now. We could in some cases 4488 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4489 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4490 } 4491 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4492 // The base of an Add is the pointer operand. 4493 SmallVector<const SCEV *> Ops{Add->operands()}; 4494 const SCEV **PtrOp = nullptr; 4495 for (const SCEV *&AddOp : Ops) { 4496 if (AddOp->getType()->isPointerTy()) { 4497 assert(!PtrOp && "Cannot have multiple pointer ops"); 4498 PtrOp = &AddOp; 4499 } 4500 } 4501 *PtrOp = removePointerBase(*PtrOp); 4502 // Don't try to transfer nowrap flags for now. We could in some cases 4503 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4504 return getAddExpr(Ops); 4505 } 4506 // Any other expression must be a pointer base. 4507 return getZero(P->getType()); 4508 } 4509 4510 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4511 SCEV::NoWrapFlags Flags, 4512 unsigned Depth) { 4513 // Fast path: X - X --> 0. 4514 if (LHS == RHS) 4515 return getZero(LHS->getType()); 4516 4517 // If we subtract two pointers with different pointer bases, bail. 4518 // Eventually, we're going to add an assertion to getMulExpr that we 4519 // can't multiply by a pointer. 4520 if (RHS->getType()->isPointerTy()) { 4521 if (!LHS->getType()->isPointerTy() || 4522 getPointerBase(LHS) != getPointerBase(RHS)) 4523 return getCouldNotCompute(); 4524 LHS = removePointerBase(LHS); 4525 RHS = removePointerBase(RHS); 4526 } 4527 4528 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4529 // makes it so that we cannot make much use of NUW. 4530 auto AddFlags = SCEV::FlagAnyWrap; 4531 const bool RHSIsNotMinSigned = 4532 !getSignedRangeMin(RHS).isMinSignedValue(); 4533 if (hasFlags(Flags, SCEV::FlagNSW)) { 4534 // Let M be the minimum representable signed value. Then (-1)*RHS 4535 // signed-wraps if and only if RHS is M. That can happen even for 4536 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4537 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4538 // (-1)*RHS, we need to prove that RHS != M. 4539 // 4540 // If LHS is non-negative and we know that LHS - RHS does not 4541 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4542 // either by proving that RHS > M or that LHS >= 0. 4543 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4544 AddFlags = SCEV::FlagNSW; 4545 } 4546 } 4547 4548 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4549 // RHS is NSW and LHS >= 0. 4550 // 4551 // The difficulty here is that the NSW flag may have been proven 4552 // relative to a loop that is to be found in a recurrence in LHS and 4553 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4554 // larger scope than intended. 4555 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4556 4557 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4558 } 4559 4560 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4561 unsigned Depth) { 4562 Type *SrcTy = V->getType(); 4563 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4564 "Cannot truncate or zero extend with non-integer arguments!"); 4565 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4566 return V; // No conversion 4567 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4568 return getTruncateExpr(V, Ty, Depth); 4569 return getZeroExtendExpr(V, Ty, Depth); 4570 } 4571 4572 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4573 unsigned Depth) { 4574 Type *SrcTy = V->getType(); 4575 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4576 "Cannot truncate or zero extend with non-integer arguments!"); 4577 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4578 return V; // No conversion 4579 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4580 return getTruncateExpr(V, Ty, Depth); 4581 return getSignExtendExpr(V, Ty, Depth); 4582 } 4583 4584 const SCEV * 4585 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4586 Type *SrcTy = V->getType(); 4587 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4588 "Cannot noop or zero extend with non-integer arguments!"); 4589 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4590 "getNoopOrZeroExtend cannot truncate!"); 4591 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4592 return V; // No conversion 4593 return getZeroExtendExpr(V, Ty); 4594 } 4595 4596 const SCEV * 4597 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4598 Type *SrcTy = V->getType(); 4599 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4600 "Cannot noop or sign extend with non-integer arguments!"); 4601 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4602 "getNoopOrSignExtend cannot truncate!"); 4603 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4604 return V; // No conversion 4605 return getSignExtendExpr(V, Ty); 4606 } 4607 4608 const SCEV * 4609 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4610 Type *SrcTy = V->getType(); 4611 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4612 "Cannot noop or any extend with non-integer arguments!"); 4613 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4614 "getNoopOrAnyExtend cannot truncate!"); 4615 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4616 return V; // No conversion 4617 return getAnyExtendExpr(V, Ty); 4618 } 4619 4620 const SCEV * 4621 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4622 Type *SrcTy = V->getType(); 4623 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4624 "Cannot truncate or noop with non-integer arguments!"); 4625 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4626 "getTruncateOrNoop cannot extend!"); 4627 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4628 return V; // No conversion 4629 return getTruncateExpr(V, Ty); 4630 } 4631 4632 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4633 const SCEV *RHS) { 4634 const SCEV *PromotedLHS = LHS; 4635 const SCEV *PromotedRHS = RHS; 4636 4637 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4638 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4639 else 4640 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4641 4642 return getUMaxExpr(PromotedLHS, PromotedRHS); 4643 } 4644 4645 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4646 const SCEV *RHS, 4647 bool Sequential) { 4648 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4649 return getUMinFromMismatchedTypes(Ops, Sequential); 4650 } 4651 4652 const SCEV * 4653 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4654 bool Sequential) { 4655 assert(!Ops.empty() && "At least one operand must be!"); 4656 // Trivial case. 4657 if (Ops.size() == 1) 4658 return Ops[0]; 4659 4660 // Find the max type first. 4661 Type *MaxType = nullptr; 4662 for (auto *S : Ops) 4663 if (MaxType) 4664 MaxType = getWiderType(MaxType, S->getType()); 4665 else 4666 MaxType = S->getType(); 4667 assert(MaxType && "Failed to find maximum type!"); 4668 4669 // Extend all ops to max type. 4670 SmallVector<const SCEV *, 2> PromotedOps; 4671 for (auto *S : Ops) 4672 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4673 4674 // Generate umin. 4675 return getUMinExpr(PromotedOps, Sequential); 4676 } 4677 4678 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4679 // A pointer operand may evaluate to a nonpointer expression, such as null. 4680 if (!V->getType()->isPointerTy()) 4681 return V; 4682 4683 while (true) { 4684 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4685 V = AddRec->getStart(); 4686 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4687 const SCEV *PtrOp = nullptr; 4688 for (const SCEV *AddOp : Add->operands()) { 4689 if (AddOp->getType()->isPointerTy()) { 4690 assert(!PtrOp && "Cannot have multiple pointer ops"); 4691 PtrOp = AddOp; 4692 } 4693 } 4694 assert(PtrOp && "Must have pointer op"); 4695 V = PtrOp; 4696 } else // Not something we can look further into. 4697 return V; 4698 } 4699 } 4700 4701 /// Push users of the given Instruction onto the given Worklist. 4702 static void PushDefUseChildren(Instruction *I, 4703 SmallVectorImpl<Instruction *> &Worklist, 4704 SmallPtrSetImpl<Instruction *> &Visited) { 4705 // Push the def-use children onto the Worklist stack. 4706 for (User *U : I->users()) { 4707 auto *UserInsn = cast<Instruction>(U); 4708 if (Visited.insert(UserInsn).second) 4709 Worklist.push_back(UserInsn); 4710 } 4711 } 4712 4713 namespace { 4714 4715 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4716 /// expression in case its Loop is L. If it is not L then 4717 /// if IgnoreOtherLoops is true then use AddRec itself 4718 /// otherwise rewrite cannot be done. 4719 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4720 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4721 public: 4722 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4723 bool IgnoreOtherLoops = true) { 4724 SCEVInitRewriter Rewriter(L, SE); 4725 const SCEV *Result = Rewriter.visit(S); 4726 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4727 return SE.getCouldNotCompute(); 4728 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4729 ? SE.getCouldNotCompute() 4730 : Result; 4731 } 4732 4733 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4734 if (!SE.isLoopInvariant(Expr, L)) 4735 SeenLoopVariantSCEVUnknown = true; 4736 return Expr; 4737 } 4738 4739 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4740 // Only re-write AddRecExprs for this loop. 4741 if (Expr->getLoop() == L) 4742 return Expr->getStart(); 4743 SeenOtherLoops = true; 4744 return Expr; 4745 } 4746 4747 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4748 4749 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4750 4751 private: 4752 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4753 : SCEVRewriteVisitor(SE), L(L) {} 4754 4755 const Loop *L; 4756 bool SeenLoopVariantSCEVUnknown = false; 4757 bool SeenOtherLoops = false; 4758 }; 4759 4760 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4761 /// increment expression in case its Loop is L. If it is not L then 4762 /// use AddRec itself. 4763 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4764 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4765 public: 4766 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4767 SCEVPostIncRewriter Rewriter(L, SE); 4768 const SCEV *Result = Rewriter.visit(S); 4769 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4770 ? SE.getCouldNotCompute() 4771 : Result; 4772 } 4773 4774 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4775 if (!SE.isLoopInvariant(Expr, L)) 4776 SeenLoopVariantSCEVUnknown = true; 4777 return Expr; 4778 } 4779 4780 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4781 // Only re-write AddRecExprs for this loop. 4782 if (Expr->getLoop() == L) 4783 return Expr->getPostIncExpr(SE); 4784 SeenOtherLoops = true; 4785 return Expr; 4786 } 4787 4788 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4789 4790 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4791 4792 private: 4793 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4794 : SCEVRewriteVisitor(SE), L(L) {} 4795 4796 const Loop *L; 4797 bool SeenLoopVariantSCEVUnknown = false; 4798 bool SeenOtherLoops = false; 4799 }; 4800 4801 /// This class evaluates the compare condition by matching it against the 4802 /// condition of loop latch. If there is a match we assume a true value 4803 /// for the condition while building SCEV nodes. 4804 class SCEVBackedgeConditionFolder 4805 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4806 public: 4807 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4808 ScalarEvolution &SE) { 4809 bool IsPosBECond = false; 4810 Value *BECond = nullptr; 4811 if (BasicBlock *Latch = L->getLoopLatch()) { 4812 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4813 if (BI && BI->isConditional()) { 4814 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4815 "Both outgoing branches should not target same header!"); 4816 BECond = BI->getCondition(); 4817 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4818 } else { 4819 return S; 4820 } 4821 } 4822 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4823 return Rewriter.visit(S); 4824 } 4825 4826 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4827 const SCEV *Result = Expr; 4828 bool InvariantF = SE.isLoopInvariant(Expr, L); 4829 4830 if (!InvariantF) { 4831 Instruction *I = cast<Instruction>(Expr->getValue()); 4832 switch (I->getOpcode()) { 4833 case Instruction::Select: { 4834 SelectInst *SI = cast<SelectInst>(I); 4835 Optional<const SCEV *> Res = 4836 compareWithBackedgeCondition(SI->getCondition()); 4837 if (Res) { 4838 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4839 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4840 } 4841 break; 4842 } 4843 default: { 4844 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4845 if (Res) 4846 Result = Res.getValue(); 4847 break; 4848 } 4849 } 4850 } 4851 return Result; 4852 } 4853 4854 private: 4855 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4856 bool IsPosBECond, ScalarEvolution &SE) 4857 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4858 IsPositiveBECond(IsPosBECond) {} 4859 4860 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4861 4862 const Loop *L; 4863 /// Loop back condition. 4864 Value *BackedgeCond = nullptr; 4865 /// Set to true if loop back is on positive branch condition. 4866 bool IsPositiveBECond; 4867 }; 4868 4869 Optional<const SCEV *> 4870 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4871 4872 // If value matches the backedge condition for loop latch, 4873 // then return a constant evolution node based on loopback 4874 // branch taken. 4875 if (BackedgeCond == IC) 4876 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4877 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4878 return None; 4879 } 4880 4881 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4882 public: 4883 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4884 ScalarEvolution &SE) { 4885 SCEVShiftRewriter Rewriter(L, SE); 4886 const SCEV *Result = Rewriter.visit(S); 4887 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4888 } 4889 4890 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4891 // Only allow AddRecExprs for this loop. 4892 if (!SE.isLoopInvariant(Expr, L)) 4893 Valid = false; 4894 return Expr; 4895 } 4896 4897 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4898 if (Expr->getLoop() == L && Expr->isAffine()) 4899 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4900 Valid = false; 4901 return Expr; 4902 } 4903 4904 bool isValid() { return Valid; } 4905 4906 private: 4907 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4908 : SCEVRewriteVisitor(SE), L(L) {} 4909 4910 const Loop *L; 4911 bool Valid = true; 4912 }; 4913 4914 } // end anonymous namespace 4915 4916 SCEV::NoWrapFlags 4917 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4918 if (!AR->isAffine()) 4919 return SCEV::FlagAnyWrap; 4920 4921 using OBO = OverflowingBinaryOperator; 4922 4923 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4924 4925 if (!AR->hasNoSignedWrap()) { 4926 ConstantRange AddRecRange = getSignedRange(AR); 4927 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4928 4929 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4930 Instruction::Add, IncRange, OBO::NoSignedWrap); 4931 if (NSWRegion.contains(AddRecRange)) 4932 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4933 } 4934 4935 if (!AR->hasNoUnsignedWrap()) { 4936 ConstantRange AddRecRange = getUnsignedRange(AR); 4937 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4938 4939 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4940 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4941 if (NUWRegion.contains(AddRecRange)) 4942 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4943 } 4944 4945 return Result; 4946 } 4947 4948 SCEV::NoWrapFlags 4949 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4950 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4951 4952 if (AR->hasNoSignedWrap()) 4953 return Result; 4954 4955 if (!AR->isAffine()) 4956 return Result; 4957 4958 const SCEV *Step = AR->getStepRecurrence(*this); 4959 const Loop *L = AR->getLoop(); 4960 4961 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4962 // Note that this serves two purposes: It filters out loops that are 4963 // simply not analyzable, and it covers the case where this code is 4964 // being called from within backedge-taken count analysis, such that 4965 // attempting to ask for the backedge-taken count would likely result 4966 // in infinite recursion. In the later case, the analysis code will 4967 // cope with a conservative value, and it will take care to purge 4968 // that value once it has finished. 4969 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4970 4971 // Normally, in the cases we can prove no-overflow via a 4972 // backedge guarding condition, we can also compute a backedge 4973 // taken count for the loop. The exceptions are assumptions and 4974 // guards present in the loop -- SCEV is not great at exploiting 4975 // these to compute max backedge taken counts, but can still use 4976 // these to prove lack of overflow. Use this fact to avoid 4977 // doing extra work that may not pay off. 4978 4979 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4980 AC.assumptions().empty()) 4981 return Result; 4982 4983 // If the backedge is guarded by a comparison with the pre-inc value the 4984 // addrec is safe. Also, if the entry is guarded by a comparison with the 4985 // start value and the backedge is guarded by a comparison with the post-inc 4986 // value, the addrec is safe. 4987 ICmpInst::Predicate Pred; 4988 const SCEV *OverflowLimit = 4989 getSignedOverflowLimitForStep(Step, &Pred, this); 4990 if (OverflowLimit && 4991 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4992 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4993 Result = setFlags(Result, SCEV::FlagNSW); 4994 } 4995 return Result; 4996 } 4997 SCEV::NoWrapFlags 4998 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4999 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5000 5001 if (AR->hasNoUnsignedWrap()) 5002 return Result; 5003 5004 if (!AR->isAffine()) 5005 return Result; 5006 5007 const SCEV *Step = AR->getStepRecurrence(*this); 5008 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5009 const Loop *L = AR->getLoop(); 5010 5011 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5012 // Note that this serves two purposes: It filters out loops that are 5013 // simply not analyzable, and it covers the case where this code is 5014 // being called from within backedge-taken count analysis, such that 5015 // attempting to ask for the backedge-taken count would likely result 5016 // in infinite recursion. In the later case, the analysis code will 5017 // cope with a conservative value, and it will take care to purge 5018 // that value once it has finished. 5019 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5020 5021 // Normally, in the cases we can prove no-overflow via a 5022 // backedge guarding condition, we can also compute a backedge 5023 // taken count for the loop. The exceptions are assumptions and 5024 // guards present in the loop -- SCEV is not great at exploiting 5025 // these to compute max backedge taken counts, but can still use 5026 // these to prove lack of overflow. Use this fact to avoid 5027 // doing extra work that may not pay off. 5028 5029 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5030 AC.assumptions().empty()) 5031 return Result; 5032 5033 // If the backedge is guarded by a comparison with the pre-inc value the 5034 // addrec is safe. Also, if the entry is guarded by a comparison with the 5035 // start value and the backedge is guarded by a comparison with the post-inc 5036 // value, the addrec is safe. 5037 if (isKnownPositive(Step)) { 5038 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5039 getUnsignedRangeMax(Step)); 5040 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5041 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5042 Result = setFlags(Result, SCEV::FlagNUW); 5043 } 5044 } 5045 5046 return Result; 5047 } 5048 5049 namespace { 5050 5051 /// Represents an abstract binary operation. This may exist as a 5052 /// normal instruction or constant expression, or may have been 5053 /// derived from an expression tree. 5054 struct BinaryOp { 5055 unsigned Opcode; 5056 Value *LHS; 5057 Value *RHS; 5058 bool IsNSW = false; 5059 bool IsNUW = false; 5060 5061 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5062 /// constant expression. 5063 Operator *Op = nullptr; 5064 5065 explicit BinaryOp(Operator *Op) 5066 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5067 Op(Op) { 5068 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5069 IsNSW = OBO->hasNoSignedWrap(); 5070 IsNUW = OBO->hasNoUnsignedWrap(); 5071 } 5072 } 5073 5074 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5075 bool IsNUW = false) 5076 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5077 }; 5078 5079 } // end anonymous namespace 5080 5081 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5082 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5083 auto *Op = dyn_cast<Operator>(V); 5084 if (!Op) 5085 return None; 5086 5087 // Implementation detail: all the cleverness here should happen without 5088 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5089 // SCEV expressions when possible, and we should not break that. 5090 5091 switch (Op->getOpcode()) { 5092 case Instruction::Add: 5093 case Instruction::Sub: 5094 case Instruction::Mul: 5095 case Instruction::UDiv: 5096 case Instruction::URem: 5097 case Instruction::And: 5098 case Instruction::Or: 5099 case Instruction::AShr: 5100 case Instruction::Shl: 5101 return BinaryOp(Op); 5102 5103 case Instruction::Xor: 5104 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5105 // If the RHS of the xor is a signmask, then this is just an add. 5106 // Instcombine turns add of signmask into xor as a strength reduction step. 5107 if (RHSC->getValue().isSignMask()) 5108 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5109 // Binary `xor` is a bit-wise `add`. 5110 if (V->getType()->isIntegerTy(1)) 5111 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5112 return BinaryOp(Op); 5113 5114 case Instruction::LShr: 5115 // Turn logical shift right of a constant into a unsigned divide. 5116 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5117 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5118 5119 // If the shift count is not less than the bitwidth, the result of 5120 // the shift is undefined. Don't try to analyze it, because the 5121 // resolution chosen here may differ from the resolution chosen in 5122 // other parts of the compiler. 5123 if (SA->getValue().ult(BitWidth)) { 5124 Constant *X = 5125 ConstantInt::get(SA->getContext(), 5126 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5127 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5128 } 5129 } 5130 return BinaryOp(Op); 5131 5132 case Instruction::ExtractValue: { 5133 auto *EVI = cast<ExtractValueInst>(Op); 5134 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5135 break; 5136 5137 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5138 if (!WO) 5139 break; 5140 5141 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5142 bool Signed = WO->isSigned(); 5143 // TODO: Should add nuw/nsw flags for mul as well. 5144 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5145 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5146 5147 // Now that we know that all uses of the arithmetic-result component of 5148 // CI are guarded by the overflow check, we can go ahead and pretend 5149 // that the arithmetic is non-overflowing. 5150 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5151 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5152 } 5153 5154 default: 5155 break; 5156 } 5157 5158 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5159 // semantics as a Sub, return a binary sub expression. 5160 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5161 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5162 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5163 5164 return None; 5165 } 5166 5167 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5168 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5169 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5170 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5171 /// follows one of the following patterns: 5172 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5173 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5174 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5175 /// we return the type of the truncation operation, and indicate whether the 5176 /// truncated type should be treated as signed/unsigned by setting 5177 /// \p Signed to true/false, respectively. 5178 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5179 bool &Signed, ScalarEvolution &SE) { 5180 // The case where Op == SymbolicPHI (that is, with no type conversions on 5181 // the way) is handled by the regular add recurrence creating logic and 5182 // would have already been triggered in createAddRecForPHI. Reaching it here 5183 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5184 // because one of the other operands of the SCEVAddExpr updating this PHI is 5185 // not invariant). 5186 // 5187 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5188 // this case predicates that allow us to prove that Op == SymbolicPHI will 5189 // be added. 5190 if (Op == SymbolicPHI) 5191 return nullptr; 5192 5193 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5194 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5195 if (SourceBits != NewBits) 5196 return nullptr; 5197 5198 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5199 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5200 if (!SExt && !ZExt) 5201 return nullptr; 5202 const SCEVTruncateExpr *Trunc = 5203 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5204 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5205 if (!Trunc) 5206 return nullptr; 5207 const SCEV *X = Trunc->getOperand(); 5208 if (X != SymbolicPHI) 5209 return nullptr; 5210 Signed = SExt != nullptr; 5211 return Trunc->getType(); 5212 } 5213 5214 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5215 if (!PN->getType()->isIntegerTy()) 5216 return nullptr; 5217 const Loop *L = LI.getLoopFor(PN->getParent()); 5218 if (!L || L->getHeader() != PN->getParent()) 5219 return nullptr; 5220 return L; 5221 } 5222 5223 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5224 // computation that updates the phi follows the following pattern: 5225 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5226 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5227 // If so, try to see if it can be rewritten as an AddRecExpr under some 5228 // Predicates. If successful, return them as a pair. Also cache the results 5229 // of the analysis. 5230 // 5231 // Example usage scenario: 5232 // Say the Rewriter is called for the following SCEV: 5233 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5234 // where: 5235 // %X = phi i64 (%Start, %BEValue) 5236 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5237 // and call this function with %SymbolicPHI = %X. 5238 // 5239 // The analysis will find that the value coming around the backedge has 5240 // the following SCEV: 5241 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5242 // Upon concluding that this matches the desired pattern, the function 5243 // will return the pair {NewAddRec, SmallPredsVec} where: 5244 // NewAddRec = {%Start,+,%Step} 5245 // SmallPredsVec = {P1, P2, P3} as follows: 5246 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5247 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5248 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5249 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5250 // under the predicates {P1,P2,P3}. 5251 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5252 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5253 // 5254 // TODO's: 5255 // 5256 // 1) Extend the Induction descriptor to also support inductions that involve 5257 // casts: When needed (namely, when we are called in the context of the 5258 // vectorizer induction analysis), a Set of cast instructions will be 5259 // populated by this method, and provided back to isInductionPHI. This is 5260 // needed to allow the vectorizer to properly record them to be ignored by 5261 // the cost model and to avoid vectorizing them (otherwise these casts, 5262 // which are redundant under the runtime overflow checks, will be 5263 // vectorized, which can be costly). 5264 // 5265 // 2) Support additional induction/PHISCEV patterns: We also want to support 5266 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5267 // after the induction update operation (the induction increment): 5268 // 5269 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5270 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5271 // 5272 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5273 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5274 // 5275 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5276 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5277 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5278 SmallVector<const SCEVPredicate *, 3> Predicates; 5279 5280 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5281 // return an AddRec expression under some predicate. 5282 5283 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5284 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5285 assert(L && "Expecting an integer loop header phi"); 5286 5287 // The loop may have multiple entrances or multiple exits; we can analyze 5288 // this phi as an addrec if it has a unique entry value and a unique 5289 // backedge value. 5290 Value *BEValueV = nullptr, *StartValueV = nullptr; 5291 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5292 Value *V = PN->getIncomingValue(i); 5293 if (L->contains(PN->getIncomingBlock(i))) { 5294 if (!BEValueV) { 5295 BEValueV = V; 5296 } else if (BEValueV != V) { 5297 BEValueV = nullptr; 5298 break; 5299 } 5300 } else if (!StartValueV) { 5301 StartValueV = V; 5302 } else if (StartValueV != V) { 5303 StartValueV = nullptr; 5304 break; 5305 } 5306 } 5307 if (!BEValueV || !StartValueV) 5308 return None; 5309 5310 const SCEV *BEValue = getSCEV(BEValueV); 5311 5312 // If the value coming around the backedge is an add with the symbolic 5313 // value we just inserted, possibly with casts that we can ignore under 5314 // an appropriate runtime guard, then we found a simple induction variable! 5315 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5316 if (!Add) 5317 return None; 5318 5319 // If there is a single occurrence of the symbolic value, possibly 5320 // casted, replace it with a recurrence. 5321 unsigned FoundIndex = Add->getNumOperands(); 5322 Type *TruncTy = nullptr; 5323 bool Signed; 5324 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5325 if ((TruncTy = 5326 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5327 if (FoundIndex == e) { 5328 FoundIndex = i; 5329 break; 5330 } 5331 5332 if (FoundIndex == Add->getNumOperands()) 5333 return None; 5334 5335 // Create an add with everything but the specified operand. 5336 SmallVector<const SCEV *, 8> Ops; 5337 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5338 if (i != FoundIndex) 5339 Ops.push_back(Add->getOperand(i)); 5340 const SCEV *Accum = getAddExpr(Ops); 5341 5342 // The runtime checks will not be valid if the step amount is 5343 // varying inside the loop. 5344 if (!isLoopInvariant(Accum, L)) 5345 return None; 5346 5347 // *** Part2: Create the predicates 5348 5349 // Analysis was successful: we have a phi-with-cast pattern for which we 5350 // can return an AddRec expression under the following predicates: 5351 // 5352 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5353 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5354 // P2: An Equal predicate that guarantees that 5355 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5356 // P3: An Equal predicate that guarantees that 5357 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5358 // 5359 // As we next prove, the above predicates guarantee that: 5360 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5361 // 5362 // 5363 // More formally, we want to prove that: 5364 // Expr(i+1) = Start + (i+1) * Accum 5365 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5366 // 5367 // Given that: 5368 // 1) Expr(0) = Start 5369 // 2) Expr(1) = Start + Accum 5370 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5371 // 3) Induction hypothesis (step i): 5372 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5373 // 5374 // Proof: 5375 // Expr(i+1) = 5376 // = Start + (i+1)*Accum 5377 // = (Start + i*Accum) + Accum 5378 // = Expr(i) + Accum 5379 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5380 // :: from step i 5381 // 5382 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5383 // 5384 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5385 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5386 // + Accum :: from P3 5387 // 5388 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5389 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5390 // 5391 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5392 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5393 // 5394 // By induction, the same applies to all iterations 1<=i<n: 5395 // 5396 5397 // Create a truncated addrec for which we will add a no overflow check (P1). 5398 const SCEV *StartVal = getSCEV(StartValueV); 5399 const SCEV *PHISCEV = 5400 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5401 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5402 5403 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5404 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5405 // will be constant. 5406 // 5407 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5408 // add P1. 5409 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5410 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5411 Signed ? SCEVWrapPredicate::IncrementNSSW 5412 : SCEVWrapPredicate::IncrementNUSW; 5413 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5414 Predicates.push_back(AddRecPred); 5415 } 5416 5417 // Create the Equal Predicates P2,P3: 5418 5419 // It is possible that the predicates P2 and/or P3 are computable at 5420 // compile time due to StartVal and/or Accum being constants. 5421 // If either one is, then we can check that now and escape if either P2 5422 // or P3 is false. 5423 5424 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5425 // for each of StartVal and Accum 5426 auto getExtendedExpr = [&](const SCEV *Expr, 5427 bool CreateSignExtend) -> const SCEV * { 5428 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5429 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5430 const SCEV *ExtendedExpr = 5431 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5432 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5433 return ExtendedExpr; 5434 }; 5435 5436 // Given: 5437 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5438 // = getExtendedExpr(Expr) 5439 // Determine whether the predicate P: Expr == ExtendedExpr 5440 // is known to be false at compile time 5441 auto PredIsKnownFalse = [&](const SCEV *Expr, 5442 const SCEV *ExtendedExpr) -> bool { 5443 return Expr != ExtendedExpr && 5444 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5445 }; 5446 5447 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5448 if (PredIsKnownFalse(StartVal, StartExtended)) { 5449 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5450 return None; 5451 } 5452 5453 // The Step is always Signed (because the overflow checks are either 5454 // NSSW or NUSW) 5455 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5456 if (PredIsKnownFalse(Accum, AccumExtended)) { 5457 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5458 return None; 5459 } 5460 5461 auto AppendPredicate = [&](const SCEV *Expr, 5462 const SCEV *ExtendedExpr) -> void { 5463 if (Expr != ExtendedExpr && 5464 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5465 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5466 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5467 Predicates.push_back(Pred); 5468 } 5469 }; 5470 5471 AppendPredicate(StartVal, StartExtended); 5472 AppendPredicate(Accum, AccumExtended); 5473 5474 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5475 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5476 // into NewAR if it will also add the runtime overflow checks specified in 5477 // Predicates. 5478 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5479 5480 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5481 std::make_pair(NewAR, Predicates); 5482 // Remember the result of the analysis for this SCEV at this locayyytion. 5483 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5484 return PredRewrite; 5485 } 5486 5487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5488 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5489 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5490 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5491 if (!L) 5492 return None; 5493 5494 // Check to see if we already analyzed this PHI. 5495 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5496 if (I != PredicatedSCEVRewrites.end()) { 5497 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5498 I->second; 5499 // Analysis was done before and failed to create an AddRec: 5500 if (Rewrite.first == SymbolicPHI) 5501 return None; 5502 // Analysis was done before and succeeded to create an AddRec under 5503 // a predicate: 5504 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5505 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5506 return Rewrite; 5507 } 5508 5509 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5510 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5511 5512 // Record in the cache that the analysis failed 5513 if (!Rewrite) { 5514 SmallVector<const SCEVPredicate *, 3> Predicates; 5515 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5516 return None; 5517 } 5518 5519 return Rewrite; 5520 } 5521 5522 // FIXME: This utility is currently required because the Rewriter currently 5523 // does not rewrite this expression: 5524 // {0, +, (sext ix (trunc iy to ix) to iy)} 5525 // into {0, +, %step}, 5526 // even when the following Equal predicate exists: 5527 // "%step == (sext ix (trunc iy to ix) to iy)". 5528 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5529 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5530 if (AR1 == AR2) 5531 return true; 5532 5533 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5534 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5535 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5536 return false; 5537 return true; 5538 }; 5539 5540 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5541 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5542 return false; 5543 return true; 5544 } 5545 5546 /// A helper function for createAddRecFromPHI to handle simple cases. 5547 /// 5548 /// This function tries to find an AddRec expression for the simplest (yet most 5549 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5550 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5551 /// technique for finding the AddRec expression. 5552 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5553 Value *BEValueV, 5554 Value *StartValueV) { 5555 const Loop *L = LI.getLoopFor(PN->getParent()); 5556 assert(L && L->getHeader() == PN->getParent()); 5557 assert(BEValueV && StartValueV); 5558 5559 auto BO = MatchBinaryOp(BEValueV, DT); 5560 if (!BO) 5561 return nullptr; 5562 5563 if (BO->Opcode != Instruction::Add) 5564 return nullptr; 5565 5566 const SCEV *Accum = nullptr; 5567 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5568 Accum = getSCEV(BO->RHS); 5569 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5570 Accum = getSCEV(BO->LHS); 5571 5572 if (!Accum) 5573 return nullptr; 5574 5575 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5576 if (BO->IsNUW) 5577 Flags = setFlags(Flags, SCEV::FlagNUW); 5578 if (BO->IsNSW) 5579 Flags = setFlags(Flags, SCEV::FlagNSW); 5580 5581 const SCEV *StartVal = getSCEV(StartValueV); 5582 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5583 insertValueToMap(PN, PHISCEV); 5584 5585 // We can add Flags to the post-inc expression only if we 5586 // know that it is *undefined behavior* for BEValueV to 5587 // overflow. 5588 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5589 assert(isLoopInvariant(Accum, L) && 5590 "Accum is defined outside L, but is not invariant?"); 5591 if (isAddRecNeverPoison(BEInst, L)) 5592 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5593 } 5594 5595 return PHISCEV; 5596 } 5597 5598 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5599 const Loop *L = LI.getLoopFor(PN->getParent()); 5600 if (!L || L->getHeader() != PN->getParent()) 5601 return nullptr; 5602 5603 // The loop may have multiple entrances or multiple exits; we can analyze 5604 // this phi as an addrec if it has a unique entry value and a unique 5605 // backedge value. 5606 Value *BEValueV = nullptr, *StartValueV = nullptr; 5607 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5608 Value *V = PN->getIncomingValue(i); 5609 if (L->contains(PN->getIncomingBlock(i))) { 5610 if (!BEValueV) { 5611 BEValueV = V; 5612 } else if (BEValueV != V) { 5613 BEValueV = nullptr; 5614 break; 5615 } 5616 } else if (!StartValueV) { 5617 StartValueV = V; 5618 } else if (StartValueV != V) { 5619 StartValueV = nullptr; 5620 break; 5621 } 5622 } 5623 if (!BEValueV || !StartValueV) 5624 return nullptr; 5625 5626 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5627 "PHI node already processed?"); 5628 5629 // First, try to find AddRec expression without creating a fictituos symbolic 5630 // value for PN. 5631 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5632 return S; 5633 5634 // Handle PHI node value symbolically. 5635 const SCEV *SymbolicName = getUnknown(PN); 5636 insertValueToMap(PN, SymbolicName); 5637 5638 // Using this symbolic name for the PHI, analyze the value coming around 5639 // the back-edge. 5640 const SCEV *BEValue = getSCEV(BEValueV); 5641 5642 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5643 // has a special value for the first iteration of the loop. 5644 5645 // If the value coming around the backedge is an add with the symbolic 5646 // value we just inserted, then we found a simple induction variable! 5647 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5648 // If there is a single occurrence of the symbolic value, replace it 5649 // with a recurrence. 5650 unsigned FoundIndex = Add->getNumOperands(); 5651 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5652 if (Add->getOperand(i) == SymbolicName) 5653 if (FoundIndex == e) { 5654 FoundIndex = i; 5655 break; 5656 } 5657 5658 if (FoundIndex != Add->getNumOperands()) { 5659 // Create an add with everything but the specified operand. 5660 SmallVector<const SCEV *, 8> Ops; 5661 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5662 if (i != FoundIndex) 5663 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5664 L, *this)); 5665 const SCEV *Accum = getAddExpr(Ops); 5666 5667 // This is not a valid addrec if the step amount is varying each 5668 // loop iteration, but is not itself an addrec in this loop. 5669 if (isLoopInvariant(Accum, L) || 5670 (isa<SCEVAddRecExpr>(Accum) && 5671 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5672 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5673 5674 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5675 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5676 if (BO->IsNUW) 5677 Flags = setFlags(Flags, SCEV::FlagNUW); 5678 if (BO->IsNSW) 5679 Flags = setFlags(Flags, SCEV::FlagNSW); 5680 } 5681 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5682 // If the increment is an inbounds GEP, then we know the address 5683 // space cannot be wrapped around. We cannot make any guarantee 5684 // about signed or unsigned overflow because pointers are 5685 // unsigned but we may have a negative index from the base 5686 // pointer. We can guarantee that no unsigned wrap occurs if the 5687 // indices form a positive value. 5688 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5689 Flags = setFlags(Flags, SCEV::FlagNW); 5690 5691 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5692 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5693 Flags = setFlags(Flags, SCEV::FlagNUW); 5694 } 5695 5696 // We cannot transfer nuw and nsw flags from subtraction 5697 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5698 // for instance. 5699 } 5700 5701 const SCEV *StartVal = getSCEV(StartValueV); 5702 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5703 5704 // Okay, for the entire analysis of this edge we assumed the PHI 5705 // to be symbolic. We now need to go back and purge all of the 5706 // entries for the scalars that use the symbolic expression. 5707 forgetMemoizedResults(SymbolicName); 5708 insertValueToMap(PN, PHISCEV); 5709 5710 // We can add Flags to the post-inc expression only if we 5711 // know that it is *undefined behavior* for BEValueV to 5712 // overflow. 5713 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5714 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5715 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5716 5717 return PHISCEV; 5718 } 5719 } 5720 } else { 5721 // Otherwise, this could be a loop like this: 5722 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5723 // In this case, j = {1,+,1} and BEValue is j. 5724 // Because the other in-value of i (0) fits the evolution of BEValue 5725 // i really is an addrec evolution. 5726 // 5727 // We can generalize this saying that i is the shifted value of BEValue 5728 // by one iteration: 5729 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5730 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5731 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5732 if (Shifted != getCouldNotCompute() && 5733 Start != getCouldNotCompute()) { 5734 const SCEV *StartVal = getSCEV(StartValueV); 5735 if (Start == StartVal) { 5736 // Okay, for the entire analysis of this edge we assumed the PHI 5737 // to be symbolic. We now need to go back and purge all of the 5738 // entries for the scalars that use the symbolic expression. 5739 forgetMemoizedResults(SymbolicName); 5740 insertValueToMap(PN, Shifted); 5741 return Shifted; 5742 } 5743 } 5744 } 5745 5746 // Remove the temporary PHI node SCEV that has been inserted while intending 5747 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5748 // as it will prevent later (possibly simpler) SCEV expressions to be added 5749 // to the ValueExprMap. 5750 eraseValueFromMap(PN); 5751 5752 return nullptr; 5753 } 5754 5755 // Checks if the SCEV S is available at BB. S is considered available at BB 5756 // if S can be materialized at BB without introducing a fault. 5757 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5758 BasicBlock *BB) { 5759 struct CheckAvailable { 5760 bool TraversalDone = false; 5761 bool Available = true; 5762 5763 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5764 BasicBlock *BB = nullptr; 5765 DominatorTree &DT; 5766 5767 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5768 : L(L), BB(BB), DT(DT) {} 5769 5770 bool setUnavailable() { 5771 TraversalDone = true; 5772 Available = false; 5773 return false; 5774 } 5775 5776 bool follow(const SCEV *S) { 5777 switch (S->getSCEVType()) { 5778 case scConstant: 5779 case scPtrToInt: 5780 case scTruncate: 5781 case scZeroExtend: 5782 case scSignExtend: 5783 case scAddExpr: 5784 case scMulExpr: 5785 case scUMaxExpr: 5786 case scSMaxExpr: 5787 case scUMinExpr: 5788 case scSMinExpr: 5789 case scSequentialUMinExpr: 5790 // These expressions are available if their operand(s) is/are. 5791 return true; 5792 5793 case scAddRecExpr: { 5794 // We allow add recurrences that are on the loop BB is in, or some 5795 // outer loop. This guarantees availability because the value of the 5796 // add recurrence at BB is simply the "current" value of the induction 5797 // variable. We can relax this in the future; for instance an add 5798 // recurrence on a sibling dominating loop is also available at BB. 5799 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5800 if (L && (ARLoop == L || ARLoop->contains(L))) 5801 return true; 5802 5803 return setUnavailable(); 5804 } 5805 5806 case scUnknown: { 5807 // For SCEVUnknown, we check for simple dominance. 5808 const auto *SU = cast<SCEVUnknown>(S); 5809 Value *V = SU->getValue(); 5810 5811 if (isa<Argument>(V)) 5812 return false; 5813 5814 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5815 return false; 5816 5817 return setUnavailable(); 5818 } 5819 5820 case scUDivExpr: 5821 case scCouldNotCompute: 5822 // We do not try to smart about these at all. 5823 return setUnavailable(); 5824 } 5825 llvm_unreachable("Unknown SCEV kind!"); 5826 } 5827 5828 bool isDone() { return TraversalDone; } 5829 }; 5830 5831 CheckAvailable CA(L, BB, DT); 5832 SCEVTraversal<CheckAvailable> ST(CA); 5833 5834 ST.visitAll(S); 5835 return CA.Available; 5836 } 5837 5838 // Try to match a control flow sequence that branches out at BI and merges back 5839 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5840 // match. 5841 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5842 Value *&C, Value *&LHS, Value *&RHS) { 5843 C = BI->getCondition(); 5844 5845 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5846 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5847 5848 if (!LeftEdge.isSingleEdge()) 5849 return false; 5850 5851 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5852 5853 Use &LeftUse = Merge->getOperandUse(0); 5854 Use &RightUse = Merge->getOperandUse(1); 5855 5856 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5857 LHS = LeftUse; 5858 RHS = RightUse; 5859 return true; 5860 } 5861 5862 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5863 LHS = RightUse; 5864 RHS = LeftUse; 5865 return true; 5866 } 5867 5868 return false; 5869 } 5870 5871 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5872 auto IsReachable = 5873 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5874 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5875 const Loop *L = LI.getLoopFor(PN->getParent()); 5876 5877 // We don't want to break LCSSA, even in a SCEV expression tree. 5878 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5879 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5880 return nullptr; 5881 5882 // Try to match 5883 // 5884 // br %cond, label %left, label %right 5885 // left: 5886 // br label %merge 5887 // right: 5888 // br label %merge 5889 // merge: 5890 // V = phi [ %x, %left ], [ %y, %right ] 5891 // 5892 // as "select %cond, %x, %y" 5893 5894 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5895 assert(IDom && "At least the entry block should dominate PN"); 5896 5897 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5898 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5899 5900 if (BI && BI->isConditional() && 5901 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5902 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5903 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5904 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5905 } 5906 5907 return nullptr; 5908 } 5909 5910 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5911 if (const SCEV *S = createAddRecFromPHI(PN)) 5912 return S; 5913 5914 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5915 return S; 5916 5917 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5918 return getSCEV(V); 5919 5920 // If it's not a loop phi, we can't handle it yet. 5921 return getUnknown(PN); 5922 } 5923 5924 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5925 SCEVTypes RootKind) { 5926 struct FindClosure { 5927 const SCEV *OperandToFind; 5928 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5929 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5930 5931 bool Found = false; 5932 5933 bool canRecurseInto(SCEVTypes Kind) const { 5934 // We can only recurse into the SCEV expression of the same effective type 5935 // as the type of our root SCEV expression, and into zero-extensions. 5936 return RootKind == Kind || NonSequentialRootKind == Kind || 5937 scZeroExtend == Kind; 5938 }; 5939 5940 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5941 : OperandToFind(OperandToFind), RootKind(RootKind), 5942 NonSequentialRootKind( 5943 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5944 RootKind)) {} 5945 5946 bool follow(const SCEV *S) { 5947 Found = S == OperandToFind; 5948 5949 return !isDone() && canRecurseInto(S->getSCEVType()); 5950 } 5951 5952 bool isDone() const { return Found; } 5953 }; 5954 5955 FindClosure FC(OperandToFind, RootKind); 5956 visitAll(Root, FC); 5957 return FC.Found; 5958 } 5959 5960 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5961 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5962 // Try to match some simple smax or umax patterns. 5963 auto *ICI = Cond; 5964 5965 Value *LHS = ICI->getOperand(0); 5966 Value *RHS = ICI->getOperand(1); 5967 5968 switch (ICI->getPredicate()) { 5969 case ICmpInst::ICMP_SLT: 5970 case ICmpInst::ICMP_SLE: 5971 case ICmpInst::ICMP_ULT: 5972 case ICmpInst::ICMP_ULE: 5973 std::swap(LHS, RHS); 5974 LLVM_FALLTHROUGH; 5975 case ICmpInst::ICMP_SGT: 5976 case ICmpInst::ICMP_SGE: 5977 case ICmpInst::ICMP_UGT: 5978 case ICmpInst::ICMP_UGE: 5979 // a > b ? a+x : b+x -> max(a, b)+x 5980 // a > b ? b+x : a+x -> min(a, b)+x 5981 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5982 bool Signed = ICI->isSigned(); 5983 const SCEV *LA = getSCEV(TrueVal); 5984 const SCEV *RA = getSCEV(FalseVal); 5985 const SCEV *LS = getSCEV(LHS); 5986 const SCEV *RS = getSCEV(RHS); 5987 if (LA->getType()->isPointerTy()) { 5988 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5989 // Need to make sure we can't produce weird expressions involving 5990 // negated pointers. 5991 if (LA == LS && RA == RS) 5992 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5993 if (LA == RS && RA == LS) 5994 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5995 } 5996 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5997 if (Op->getType()->isPointerTy()) { 5998 Op = getLosslessPtrToIntExpr(Op); 5999 if (isa<SCEVCouldNotCompute>(Op)) 6000 return Op; 6001 } 6002 if (Signed) 6003 Op = getNoopOrSignExtend(Op, I->getType()); 6004 else 6005 Op = getNoopOrZeroExtend(Op, I->getType()); 6006 return Op; 6007 }; 6008 LS = CoerceOperand(LS); 6009 RS = CoerceOperand(RS); 6010 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6011 break; 6012 const SCEV *LDiff = getMinusSCEV(LA, LS); 6013 const SCEV *RDiff = getMinusSCEV(RA, RS); 6014 if (LDiff == RDiff) 6015 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6016 LDiff); 6017 LDiff = getMinusSCEV(LA, RS); 6018 RDiff = getMinusSCEV(RA, LS); 6019 if (LDiff == RDiff) 6020 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6021 LDiff); 6022 } 6023 break; 6024 case ICmpInst::ICMP_NE: 6025 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6026 std::swap(TrueVal, FalseVal); 6027 LLVM_FALLTHROUGH; 6028 case ICmpInst::ICMP_EQ: 6029 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6030 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6031 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6032 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6033 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6034 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6035 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6036 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6037 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6038 return getAddExpr(getUMaxExpr(X, C), Y); 6039 } 6040 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6041 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6042 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6043 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6044 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6045 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6046 const SCEV *X = getSCEV(LHS); 6047 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6048 X = ZExt->getOperand(); 6049 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6050 const SCEV *FalseValExpr = getSCEV(FalseVal); 6051 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6052 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6053 /*Sequential=*/true); 6054 } 6055 } 6056 break; 6057 default: 6058 break; 6059 } 6060 6061 return getUnknown(I); 6062 } 6063 6064 static Optional<const SCEV *> 6065 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6066 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6067 assert(CondExpr->getType()->isIntegerTy(1) && 6068 TrueExpr->getType() == FalseExpr->getType() && 6069 TrueExpr->getType()->isIntegerTy(1) && 6070 "Unexpected operands of a select."); 6071 6072 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6073 // --> C + (umin_seq cond, x - C) 6074 // 6075 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6076 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6077 // --> C + (umin_seq ~cond, x - C) 6078 6079 // FIXME: while we can't legally model the case where both of the hands 6080 // are fully variable, we only require that the *difference* is constant. 6081 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6082 return None; 6083 6084 const SCEV *X, *C; 6085 if (isa<SCEVConstant>(TrueExpr)) { 6086 CondExpr = SE->getNotSCEV(CondExpr); 6087 X = FalseExpr; 6088 C = TrueExpr; 6089 } else { 6090 X = TrueExpr; 6091 C = FalseExpr; 6092 } 6093 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6094 /*Sequential=*/true)); 6095 } 6096 6097 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE, 6098 Value *Cond, 6099 Value *TrueVal, 6100 Value *FalseVal) { 6101 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6102 return None; 6103 6104 const auto *SECond = SE->getSCEV(Cond); 6105 const auto *SETrue = SE->getSCEV(TrueVal); 6106 const auto *SEFalse = SE->getSCEV(FalseVal); 6107 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6108 } 6109 6110 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6111 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6112 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6113 assert(TrueVal->getType() == FalseVal->getType() && 6114 V->getType() == TrueVal->getType() && 6115 "Types of select hands and of the result must match."); 6116 6117 // For now, only deal with i1-typed `select`s. 6118 if (!V->getType()->isIntegerTy(1)) 6119 return getUnknown(V); 6120 6121 if (Optional<const SCEV *> S = 6122 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6123 return *S; 6124 6125 return getUnknown(V); 6126 } 6127 6128 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6129 Value *TrueVal, 6130 Value *FalseVal) { 6131 // Handle "constant" branch or select. This can occur for instance when a 6132 // loop pass transforms an inner loop and moves on to process the outer loop. 6133 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6134 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6135 6136 if (auto *I = dyn_cast<Instruction>(V)) { 6137 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6138 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6139 I, ICI, TrueVal, FalseVal); 6140 if (!isa<SCEVUnknown>(S)) 6141 return S; 6142 } 6143 } 6144 6145 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6146 } 6147 6148 /// Expand GEP instructions into add and multiply operations. This allows them 6149 /// to be analyzed by regular SCEV code. 6150 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6151 assert(GEP->getSourceElementType()->isSized() && 6152 "GEP source element type must be sized"); 6153 6154 SmallVector<const SCEV *, 4> IndexExprs; 6155 for (Value *Index : GEP->indices()) 6156 IndexExprs.push_back(getSCEV(Index)); 6157 return getGEPExpr(GEP, IndexExprs); 6158 } 6159 6160 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6161 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6162 return C->getAPInt().countTrailingZeros(); 6163 6164 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6165 return GetMinTrailingZeros(I->getOperand()); 6166 6167 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6168 return std::min(GetMinTrailingZeros(T->getOperand()), 6169 (uint32_t)getTypeSizeInBits(T->getType())); 6170 6171 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6172 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6173 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6174 ? getTypeSizeInBits(E->getType()) 6175 : OpRes; 6176 } 6177 6178 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6179 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6180 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6181 ? getTypeSizeInBits(E->getType()) 6182 : OpRes; 6183 } 6184 6185 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6186 // The result is the min of all operands results. 6187 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6188 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6189 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6190 return MinOpRes; 6191 } 6192 6193 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6194 // The result is the sum of all operands results. 6195 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6196 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6197 for (unsigned i = 1, e = M->getNumOperands(); 6198 SumOpRes != BitWidth && i != e; ++i) 6199 SumOpRes = 6200 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6201 return SumOpRes; 6202 } 6203 6204 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6205 // The result is the min of all operands results. 6206 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6207 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6208 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6209 return MinOpRes; 6210 } 6211 6212 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6213 // The result is the min of all operands results. 6214 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6215 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6216 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6217 return MinOpRes; 6218 } 6219 6220 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6221 // The result is the min of all operands results. 6222 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6223 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6224 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6225 return MinOpRes; 6226 } 6227 6228 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6229 // For a SCEVUnknown, ask ValueTracking. 6230 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6231 return Known.countMinTrailingZeros(); 6232 } 6233 6234 // SCEVUDivExpr 6235 return 0; 6236 } 6237 6238 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6239 auto I = MinTrailingZerosCache.find(S); 6240 if (I != MinTrailingZerosCache.end()) 6241 return I->second; 6242 6243 uint32_t Result = GetMinTrailingZerosImpl(S); 6244 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6245 assert(InsertPair.second && "Should insert a new key"); 6246 return InsertPair.first->second; 6247 } 6248 6249 /// Helper method to assign a range to V from metadata present in the IR. 6250 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6251 if (Instruction *I = dyn_cast<Instruction>(V)) 6252 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6253 return getConstantRangeFromMetadata(*MD); 6254 6255 return None; 6256 } 6257 6258 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6259 SCEV::NoWrapFlags Flags) { 6260 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6261 AddRec->setNoWrapFlags(Flags); 6262 UnsignedRanges.erase(AddRec); 6263 SignedRanges.erase(AddRec); 6264 } 6265 } 6266 6267 ConstantRange ScalarEvolution:: 6268 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6269 const DataLayout &DL = getDataLayout(); 6270 6271 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6272 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6273 6274 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6275 // use information about the trip count to improve our available range. Note 6276 // that the trip count independent cases are already handled by known bits. 6277 // WARNING: The definition of recurrence used here is subtly different than 6278 // the one used by AddRec (and thus most of this file). Step is allowed to 6279 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6280 // and other addrecs in the same loop (for non-affine addrecs). The code 6281 // below intentionally handles the case where step is not loop invariant. 6282 auto *P = dyn_cast<PHINode>(U->getValue()); 6283 if (!P) 6284 return FullSet; 6285 6286 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6287 // even the values that are not available in these blocks may come from them, 6288 // and this leads to false-positive recurrence test. 6289 for (auto *Pred : predecessors(P->getParent())) 6290 if (!DT.isReachableFromEntry(Pred)) 6291 return FullSet; 6292 6293 BinaryOperator *BO; 6294 Value *Start, *Step; 6295 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6296 return FullSet; 6297 6298 // If we found a recurrence in reachable code, we must be in a loop. Note 6299 // that BO might be in some subloop of L, and that's completely okay. 6300 auto *L = LI.getLoopFor(P->getParent()); 6301 assert(L && L->getHeader() == P->getParent()); 6302 if (!L->contains(BO->getParent())) 6303 // NOTE: This bailout should be an assert instead. However, asserting 6304 // the condition here exposes a case where LoopFusion is querying SCEV 6305 // with malformed loop information during the midst of the transform. 6306 // There doesn't appear to be an obvious fix, so for the moment bailout 6307 // until the caller issue can be fixed. PR49566 tracks the bug. 6308 return FullSet; 6309 6310 // TODO: Extend to other opcodes such as mul, and div 6311 switch (BO->getOpcode()) { 6312 default: 6313 return FullSet; 6314 case Instruction::AShr: 6315 case Instruction::LShr: 6316 case Instruction::Shl: 6317 break; 6318 }; 6319 6320 if (BO->getOperand(0) != P) 6321 // TODO: Handle the power function forms some day. 6322 return FullSet; 6323 6324 unsigned TC = getSmallConstantMaxTripCount(L); 6325 if (!TC || TC >= BitWidth) 6326 return FullSet; 6327 6328 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6329 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6330 assert(KnownStart.getBitWidth() == BitWidth && 6331 KnownStep.getBitWidth() == BitWidth); 6332 6333 // Compute total shift amount, being careful of overflow and bitwidths. 6334 auto MaxShiftAmt = KnownStep.getMaxValue(); 6335 APInt TCAP(BitWidth, TC-1); 6336 bool Overflow = false; 6337 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6338 if (Overflow) 6339 return FullSet; 6340 6341 switch (BO->getOpcode()) { 6342 default: 6343 llvm_unreachable("filtered out above"); 6344 case Instruction::AShr: { 6345 // For each ashr, three cases: 6346 // shift = 0 => unchanged value 6347 // saturation => 0 or -1 6348 // other => a value closer to zero (of the same sign) 6349 // Thus, the end value is closer to zero than the start. 6350 auto KnownEnd = KnownBits::ashr(KnownStart, 6351 KnownBits::makeConstant(TotalShift)); 6352 if (KnownStart.isNonNegative()) 6353 // Analogous to lshr (simply not yet canonicalized) 6354 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6355 KnownStart.getMaxValue() + 1); 6356 if (KnownStart.isNegative()) 6357 // End >=u Start && End <=s Start 6358 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6359 KnownEnd.getMaxValue() + 1); 6360 break; 6361 } 6362 case Instruction::LShr: { 6363 // For each lshr, three cases: 6364 // shift = 0 => unchanged value 6365 // saturation => 0 6366 // other => a smaller positive number 6367 // Thus, the low end of the unsigned range is the last value produced. 6368 auto KnownEnd = KnownBits::lshr(KnownStart, 6369 KnownBits::makeConstant(TotalShift)); 6370 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6371 KnownStart.getMaxValue() + 1); 6372 } 6373 case Instruction::Shl: { 6374 // Iff no bits are shifted out, value increases on every shift. 6375 auto KnownEnd = KnownBits::shl(KnownStart, 6376 KnownBits::makeConstant(TotalShift)); 6377 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6378 return ConstantRange(KnownStart.getMinValue(), 6379 KnownEnd.getMaxValue() + 1); 6380 break; 6381 } 6382 }; 6383 return FullSet; 6384 } 6385 6386 /// Determine the range for a particular SCEV. If SignHint is 6387 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6388 /// with a "cleaner" unsigned (resp. signed) representation. 6389 const ConstantRange & 6390 ScalarEvolution::getRangeRef(const SCEV *S, 6391 ScalarEvolution::RangeSignHint SignHint) { 6392 DenseMap<const SCEV *, ConstantRange> &Cache = 6393 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6394 : SignedRanges; 6395 ConstantRange::PreferredRangeType RangeType = 6396 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6397 ? ConstantRange::Unsigned : ConstantRange::Signed; 6398 6399 // See if we've computed this range already. 6400 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6401 if (I != Cache.end()) 6402 return I->second; 6403 6404 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6405 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6406 6407 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6408 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6409 using OBO = OverflowingBinaryOperator; 6410 6411 // If the value has known zeros, the maximum value will have those known zeros 6412 // as well. 6413 uint32_t TZ = GetMinTrailingZeros(S); 6414 if (TZ != 0) { 6415 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6416 ConservativeResult = 6417 ConstantRange(APInt::getMinValue(BitWidth), 6418 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6419 else 6420 ConservativeResult = ConstantRange( 6421 APInt::getSignedMinValue(BitWidth), 6422 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6423 } 6424 6425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6426 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6427 unsigned WrapType = OBO::AnyWrap; 6428 if (Add->hasNoSignedWrap()) 6429 WrapType |= OBO::NoSignedWrap; 6430 if (Add->hasNoUnsignedWrap()) 6431 WrapType |= OBO::NoUnsignedWrap; 6432 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6433 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6434 WrapType, RangeType); 6435 return setRange(Add, SignHint, 6436 ConservativeResult.intersectWith(X, RangeType)); 6437 } 6438 6439 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6440 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6441 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6442 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6443 return setRange(Mul, SignHint, 6444 ConservativeResult.intersectWith(X, RangeType)); 6445 } 6446 6447 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6448 Intrinsic::ID ID; 6449 switch (S->getSCEVType()) { 6450 case scUMaxExpr: 6451 ID = Intrinsic::umax; 6452 break; 6453 case scSMaxExpr: 6454 ID = Intrinsic::smax; 6455 break; 6456 case scUMinExpr: 6457 case scSequentialUMinExpr: 6458 ID = Intrinsic::umin; 6459 break; 6460 case scSMinExpr: 6461 ID = Intrinsic::smin; 6462 break; 6463 default: 6464 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6465 } 6466 6467 const auto *NAry = cast<SCEVNAryExpr>(S); 6468 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6469 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6470 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6471 return setRange(S, SignHint, 6472 ConservativeResult.intersectWith(X, RangeType)); 6473 } 6474 6475 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6476 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6477 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6478 return setRange(UDiv, SignHint, 6479 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6480 } 6481 6482 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6483 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6484 return setRange(ZExt, SignHint, 6485 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6486 RangeType)); 6487 } 6488 6489 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6490 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6491 return setRange(SExt, SignHint, 6492 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6493 RangeType)); 6494 } 6495 6496 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6497 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6498 return setRange(PtrToInt, SignHint, X); 6499 } 6500 6501 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6502 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6503 return setRange(Trunc, SignHint, 6504 ConservativeResult.intersectWith(X.truncate(BitWidth), 6505 RangeType)); 6506 } 6507 6508 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6509 // If there's no unsigned wrap, the value will never be less than its 6510 // initial value. 6511 if (AddRec->hasNoUnsignedWrap()) { 6512 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6513 if (!UnsignedMinValue.isZero()) 6514 ConservativeResult = ConservativeResult.intersectWith( 6515 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6516 } 6517 6518 // If there's no signed wrap, and all the operands except initial value have 6519 // the same sign or zero, the value won't ever be: 6520 // 1: smaller than initial value if operands are non negative, 6521 // 2: bigger than initial value if operands are non positive. 6522 // For both cases, value can not cross signed min/max boundary. 6523 if (AddRec->hasNoSignedWrap()) { 6524 bool AllNonNeg = true; 6525 bool AllNonPos = true; 6526 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6527 if (!isKnownNonNegative(AddRec->getOperand(i))) 6528 AllNonNeg = false; 6529 if (!isKnownNonPositive(AddRec->getOperand(i))) 6530 AllNonPos = false; 6531 } 6532 if (AllNonNeg) 6533 ConservativeResult = ConservativeResult.intersectWith( 6534 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6535 APInt::getSignedMinValue(BitWidth)), 6536 RangeType); 6537 else if (AllNonPos) 6538 ConservativeResult = ConservativeResult.intersectWith( 6539 ConstantRange::getNonEmpty( 6540 APInt::getSignedMinValue(BitWidth), 6541 getSignedRangeMax(AddRec->getStart()) + 1), 6542 RangeType); 6543 } 6544 6545 // TODO: non-affine addrec 6546 if (AddRec->isAffine()) { 6547 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6548 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6549 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6550 auto RangeFromAffine = getRangeForAffineAR( 6551 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6552 BitWidth); 6553 ConservativeResult = 6554 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6555 6556 auto RangeFromFactoring = getRangeViaFactoring( 6557 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6558 BitWidth); 6559 ConservativeResult = 6560 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6561 } 6562 6563 // Now try symbolic BE count and more powerful methods. 6564 if (UseExpensiveRangeSharpening) { 6565 const SCEV *SymbolicMaxBECount = 6566 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6567 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6568 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6569 AddRec->hasNoSelfWrap()) { 6570 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6571 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6572 ConservativeResult = 6573 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6574 } 6575 } 6576 } 6577 6578 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6579 } 6580 6581 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6582 6583 // Check if the IR explicitly contains !range metadata. 6584 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6585 if (MDRange) 6586 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6587 RangeType); 6588 6589 // Use facts about recurrences in the underlying IR. Note that add 6590 // recurrences are AddRecExprs and thus don't hit this path. This 6591 // primarily handles shift recurrences. 6592 auto CR = getRangeForUnknownRecurrence(U); 6593 ConservativeResult = ConservativeResult.intersectWith(CR); 6594 6595 // See if ValueTracking can give us a useful range. 6596 const DataLayout &DL = getDataLayout(); 6597 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6598 if (Known.getBitWidth() != BitWidth) 6599 Known = Known.zextOrTrunc(BitWidth); 6600 6601 // ValueTracking may be able to compute a tighter result for the number of 6602 // sign bits than for the value of those sign bits. 6603 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6604 if (U->getType()->isPointerTy()) { 6605 // If the pointer size is larger than the index size type, this can cause 6606 // NS to be larger than BitWidth. So compensate for this. 6607 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6608 int ptrIdxDiff = ptrSize - BitWidth; 6609 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6610 NS -= ptrIdxDiff; 6611 } 6612 6613 if (NS > 1) { 6614 // If we know any of the sign bits, we know all of the sign bits. 6615 if (!Known.Zero.getHiBits(NS).isZero()) 6616 Known.Zero.setHighBits(NS); 6617 if (!Known.One.getHiBits(NS).isZero()) 6618 Known.One.setHighBits(NS); 6619 } 6620 6621 if (Known.getMinValue() != Known.getMaxValue() + 1) 6622 ConservativeResult = ConservativeResult.intersectWith( 6623 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6624 RangeType); 6625 if (NS > 1) 6626 ConservativeResult = ConservativeResult.intersectWith( 6627 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6628 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6629 RangeType); 6630 6631 // A range of Phi is a subset of union of all ranges of its input. 6632 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6633 // Make sure that we do not run over cycled Phis. 6634 if (PendingPhiRanges.insert(Phi).second) { 6635 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6636 for (auto &Op : Phi->operands()) { 6637 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6638 RangeFromOps = RangeFromOps.unionWith(OpRange); 6639 // No point to continue if we already have a full set. 6640 if (RangeFromOps.isFullSet()) 6641 break; 6642 } 6643 ConservativeResult = 6644 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6645 bool Erased = PendingPhiRanges.erase(Phi); 6646 assert(Erased && "Failed to erase Phi properly?"); 6647 (void) Erased; 6648 } 6649 } 6650 6651 return setRange(U, SignHint, std::move(ConservativeResult)); 6652 } 6653 6654 return setRange(S, SignHint, std::move(ConservativeResult)); 6655 } 6656 6657 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6658 // values that the expression can take. Initially, the expression has a value 6659 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6660 // argument defines if we treat Step as signed or unsigned. 6661 static ConstantRange getRangeForAffineARHelper(APInt Step, 6662 const ConstantRange &StartRange, 6663 const APInt &MaxBECount, 6664 unsigned BitWidth, bool Signed) { 6665 // If either Step or MaxBECount is 0, then the expression won't change, and we 6666 // just need to return the initial range. 6667 if (Step == 0 || MaxBECount == 0) 6668 return StartRange; 6669 6670 // If we don't know anything about the initial value (i.e. StartRange is 6671 // FullRange), then we don't know anything about the final range either. 6672 // Return FullRange. 6673 if (StartRange.isFullSet()) 6674 return ConstantRange::getFull(BitWidth); 6675 6676 // If Step is signed and negative, then we use its absolute value, but we also 6677 // note that we're moving in the opposite direction. 6678 bool Descending = Signed && Step.isNegative(); 6679 6680 if (Signed) 6681 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6682 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6683 // This equations hold true due to the well-defined wrap-around behavior of 6684 // APInt. 6685 Step = Step.abs(); 6686 6687 // Check if Offset is more than full span of BitWidth. If it is, the 6688 // expression is guaranteed to overflow. 6689 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6690 return ConstantRange::getFull(BitWidth); 6691 6692 // Offset is by how much the expression can change. Checks above guarantee no 6693 // overflow here. 6694 APInt Offset = Step * MaxBECount; 6695 6696 // Minimum value of the final range will match the minimal value of StartRange 6697 // if the expression is increasing and will be decreased by Offset otherwise. 6698 // Maximum value of the final range will match the maximal value of StartRange 6699 // if the expression is decreasing and will be increased by Offset otherwise. 6700 APInt StartLower = StartRange.getLower(); 6701 APInt StartUpper = StartRange.getUpper() - 1; 6702 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6703 : (StartUpper + std::move(Offset)); 6704 6705 // It's possible that the new minimum/maximum value will fall into the initial 6706 // range (due to wrap around). This means that the expression can take any 6707 // value in this bitwidth, and we have to return full range. 6708 if (StartRange.contains(MovedBoundary)) 6709 return ConstantRange::getFull(BitWidth); 6710 6711 APInt NewLower = 6712 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6713 APInt NewUpper = 6714 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6715 NewUpper += 1; 6716 6717 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6718 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6719 } 6720 6721 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6722 const SCEV *Step, 6723 const SCEV *MaxBECount, 6724 unsigned BitWidth) { 6725 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6726 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6727 "Precondition!"); 6728 6729 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6730 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6731 6732 // First, consider step signed. 6733 ConstantRange StartSRange = getSignedRange(Start); 6734 ConstantRange StepSRange = getSignedRange(Step); 6735 6736 // If Step can be both positive and negative, we need to find ranges for the 6737 // maximum absolute step values in both directions and union them. 6738 ConstantRange SR = 6739 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6740 MaxBECountValue, BitWidth, /* Signed = */ true); 6741 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6742 StartSRange, MaxBECountValue, 6743 BitWidth, /* Signed = */ true)); 6744 6745 // Next, consider step unsigned. 6746 ConstantRange UR = getRangeForAffineARHelper( 6747 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6748 MaxBECountValue, BitWidth, /* Signed = */ false); 6749 6750 // Finally, intersect signed and unsigned ranges. 6751 return SR.intersectWith(UR, ConstantRange::Smallest); 6752 } 6753 6754 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6755 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6756 ScalarEvolution::RangeSignHint SignHint) { 6757 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6758 assert(AddRec->hasNoSelfWrap() && 6759 "This only works for non-self-wrapping AddRecs!"); 6760 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6761 const SCEV *Step = AddRec->getStepRecurrence(*this); 6762 // Only deal with constant step to save compile time. 6763 if (!isa<SCEVConstant>(Step)) 6764 return ConstantRange::getFull(BitWidth); 6765 // Let's make sure that we can prove that we do not self-wrap during 6766 // MaxBECount iterations. We need this because MaxBECount is a maximum 6767 // iteration count estimate, and we might infer nw from some exit for which we 6768 // do not know max exit count (or any other side reasoning). 6769 // TODO: Turn into assert at some point. 6770 if (getTypeSizeInBits(MaxBECount->getType()) > 6771 getTypeSizeInBits(AddRec->getType())) 6772 return ConstantRange::getFull(BitWidth); 6773 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6774 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6775 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6776 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6777 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6778 MaxItersWithoutWrap)) 6779 return ConstantRange::getFull(BitWidth); 6780 6781 ICmpInst::Predicate LEPred = 6782 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6783 ICmpInst::Predicate GEPred = 6784 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6785 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6786 6787 // We know that there is no self-wrap. Let's take Start and End values and 6788 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6789 // the iteration. They either lie inside the range [Min(Start, End), 6790 // Max(Start, End)] or outside it: 6791 // 6792 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6793 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6794 // 6795 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6796 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6797 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6798 // Start <= End and step is positive, or Start >= End and step is negative. 6799 const SCEV *Start = AddRec->getStart(); 6800 ConstantRange StartRange = getRangeRef(Start, SignHint); 6801 ConstantRange EndRange = getRangeRef(End, SignHint); 6802 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6803 // If they already cover full iteration space, we will know nothing useful 6804 // even if we prove what we want to prove. 6805 if (RangeBetween.isFullSet()) 6806 return RangeBetween; 6807 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6808 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6809 : RangeBetween.isWrappedSet(); 6810 if (IsWrappedSet) 6811 return ConstantRange::getFull(BitWidth); 6812 6813 if (isKnownPositive(Step) && 6814 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6815 return RangeBetween; 6816 else if (isKnownNegative(Step) && 6817 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6818 return RangeBetween; 6819 return ConstantRange::getFull(BitWidth); 6820 } 6821 6822 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6823 const SCEV *Step, 6824 const SCEV *MaxBECount, 6825 unsigned BitWidth) { 6826 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6827 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6828 6829 struct SelectPattern { 6830 Value *Condition = nullptr; 6831 APInt TrueValue; 6832 APInt FalseValue; 6833 6834 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6835 const SCEV *S) { 6836 Optional<unsigned> CastOp; 6837 APInt Offset(BitWidth, 0); 6838 6839 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6840 "Should be!"); 6841 6842 // Peel off a constant offset: 6843 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6844 // In the future we could consider being smarter here and handle 6845 // {Start+Step,+,Step} too. 6846 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6847 return; 6848 6849 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6850 S = SA->getOperand(1); 6851 } 6852 6853 // Peel off a cast operation 6854 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6855 CastOp = SCast->getSCEVType(); 6856 S = SCast->getOperand(); 6857 } 6858 6859 using namespace llvm::PatternMatch; 6860 6861 auto *SU = dyn_cast<SCEVUnknown>(S); 6862 const APInt *TrueVal, *FalseVal; 6863 if (!SU || 6864 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6865 m_APInt(FalseVal)))) { 6866 Condition = nullptr; 6867 return; 6868 } 6869 6870 TrueValue = *TrueVal; 6871 FalseValue = *FalseVal; 6872 6873 // Re-apply the cast we peeled off earlier 6874 if (CastOp) 6875 switch (*CastOp) { 6876 default: 6877 llvm_unreachable("Unknown SCEV cast type!"); 6878 6879 case scTruncate: 6880 TrueValue = TrueValue.trunc(BitWidth); 6881 FalseValue = FalseValue.trunc(BitWidth); 6882 break; 6883 case scZeroExtend: 6884 TrueValue = TrueValue.zext(BitWidth); 6885 FalseValue = FalseValue.zext(BitWidth); 6886 break; 6887 case scSignExtend: 6888 TrueValue = TrueValue.sext(BitWidth); 6889 FalseValue = FalseValue.sext(BitWidth); 6890 break; 6891 } 6892 6893 // Re-apply the constant offset we peeled off earlier 6894 TrueValue += Offset; 6895 FalseValue += Offset; 6896 } 6897 6898 bool isRecognized() { return Condition != nullptr; } 6899 }; 6900 6901 SelectPattern StartPattern(*this, BitWidth, Start); 6902 if (!StartPattern.isRecognized()) 6903 return ConstantRange::getFull(BitWidth); 6904 6905 SelectPattern StepPattern(*this, BitWidth, Step); 6906 if (!StepPattern.isRecognized()) 6907 return ConstantRange::getFull(BitWidth); 6908 6909 if (StartPattern.Condition != StepPattern.Condition) { 6910 // We don't handle this case today; but we could, by considering four 6911 // possibilities below instead of two. I'm not sure if there are cases where 6912 // that will help over what getRange already does, though. 6913 return ConstantRange::getFull(BitWidth); 6914 } 6915 6916 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6917 // construct arbitrary general SCEV expressions here. This function is called 6918 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6919 // say) can end up caching a suboptimal value. 6920 6921 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6922 // C2352 and C2512 (otherwise it isn't needed). 6923 6924 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6925 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6926 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6927 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6928 6929 ConstantRange TrueRange = 6930 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6931 ConstantRange FalseRange = 6932 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6933 6934 return TrueRange.unionWith(FalseRange); 6935 } 6936 6937 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6938 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6939 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6940 6941 // Return early if there are no flags to propagate to the SCEV. 6942 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6943 if (BinOp->hasNoUnsignedWrap()) 6944 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6945 if (BinOp->hasNoSignedWrap()) 6946 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6947 if (Flags == SCEV::FlagAnyWrap) 6948 return SCEV::FlagAnyWrap; 6949 6950 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6951 } 6952 6953 const Instruction * 6954 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6955 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6956 return &*AddRec->getLoop()->getHeader()->begin(); 6957 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6958 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6959 return I; 6960 return nullptr; 6961 } 6962 6963 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6964 /// \p Ops remains unmodified. 6965 static void collectUniqueOps(const SCEV *S, 6966 SmallVectorImpl<const SCEV *> &Ops) { 6967 SmallPtrSet<const SCEV *, 4> Unique; 6968 auto InsertUnique = [&](const SCEV *S) { 6969 if (Unique.insert(S).second) 6970 Ops.push_back(S); 6971 }; 6972 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6973 for (auto *Op : S2->operands()) 6974 InsertUnique(Op); 6975 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6976 for (auto *Op : S2->operands()) 6977 InsertUnique(Op); 6978 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6979 for (auto *Op : S2->operands()) 6980 InsertUnique(Op); 6981 } 6982 6983 const Instruction * 6984 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6985 bool &Precise) { 6986 Precise = true; 6987 // Do a bounded search of the def relation of the requested SCEVs. 6988 SmallSet<const SCEV *, 16> Visited; 6989 SmallVector<const SCEV *> Worklist; 6990 auto pushOp = [&](const SCEV *S) { 6991 if (!Visited.insert(S).second) 6992 return; 6993 // Threshold of 30 here is arbitrary. 6994 if (Visited.size() > 30) { 6995 Precise = false; 6996 return; 6997 } 6998 Worklist.push_back(S); 6999 }; 7000 7001 for (auto *S : Ops) 7002 pushOp(S); 7003 7004 const Instruction *Bound = nullptr; 7005 while (!Worklist.empty()) { 7006 auto *S = Worklist.pop_back_val(); 7007 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7008 if (!Bound || DT.dominates(Bound, DefI)) 7009 Bound = DefI; 7010 } else { 7011 SmallVector<const SCEV *, 4> Ops; 7012 collectUniqueOps(S, Ops); 7013 for (auto *Op : Ops) 7014 pushOp(Op); 7015 } 7016 } 7017 return Bound ? Bound : &*F.getEntryBlock().begin(); 7018 } 7019 7020 const Instruction * 7021 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7022 bool Discard; 7023 return getDefiningScopeBound(Ops, Discard); 7024 } 7025 7026 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7027 const Instruction *B) { 7028 if (A->getParent() == B->getParent() && 7029 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7030 B->getIterator())) 7031 return true; 7032 7033 auto *BLoop = LI.getLoopFor(B->getParent()); 7034 if (BLoop && BLoop->getHeader() == B->getParent() && 7035 BLoop->getLoopPreheader() == A->getParent() && 7036 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7037 A->getParent()->end()) && 7038 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7039 B->getIterator())) 7040 return true; 7041 return false; 7042 } 7043 7044 7045 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7046 // Only proceed if we can prove that I does not yield poison. 7047 if (!programUndefinedIfPoison(I)) 7048 return false; 7049 7050 // At this point we know that if I is executed, then it does not wrap 7051 // according to at least one of NSW or NUW. If I is not executed, then we do 7052 // not know if the calculation that I represents would wrap. Multiple 7053 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7054 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7055 // derived from other instructions that map to the same SCEV. We cannot make 7056 // that guarantee for cases where I is not executed. So we need to find a 7057 // upper bound on the defining scope for the SCEV, and prove that I is 7058 // executed every time we enter that scope. When the bounding scope is a 7059 // loop (the common case), this is equivalent to proving I executes on every 7060 // iteration of that loop. 7061 SmallVector<const SCEV *> SCEVOps; 7062 for (const Use &Op : I->operands()) { 7063 // I could be an extractvalue from a call to an overflow intrinsic. 7064 // TODO: We can do better here in some cases. 7065 if (isSCEVable(Op->getType())) 7066 SCEVOps.push_back(getSCEV(Op)); 7067 } 7068 auto *DefI = getDefiningScopeBound(SCEVOps); 7069 return isGuaranteedToTransferExecutionTo(DefI, I); 7070 } 7071 7072 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7073 // If we know that \c I can never be poison period, then that's enough. 7074 if (isSCEVExprNeverPoison(I)) 7075 return true; 7076 7077 // For an add recurrence specifically, we assume that infinite loops without 7078 // side effects are undefined behavior, and then reason as follows: 7079 // 7080 // If the add recurrence is poison in any iteration, it is poison on all 7081 // future iterations (since incrementing poison yields poison). If the result 7082 // of the add recurrence is fed into the loop latch condition and the loop 7083 // does not contain any throws or exiting blocks other than the latch, we now 7084 // have the ability to "choose" whether the backedge is taken or not (by 7085 // choosing a sufficiently evil value for the poison feeding into the branch) 7086 // for every iteration including and after the one in which \p I first became 7087 // poison. There are two possibilities (let's call the iteration in which \p 7088 // I first became poison as K): 7089 // 7090 // 1. In the set of iterations including and after K, the loop body executes 7091 // no side effects. In this case executing the backege an infinte number 7092 // of times will yield undefined behavior. 7093 // 7094 // 2. In the set of iterations including and after K, the loop body executes 7095 // at least one side effect. In this case, that specific instance of side 7096 // effect is control dependent on poison, which also yields undefined 7097 // behavior. 7098 7099 auto *ExitingBB = L->getExitingBlock(); 7100 auto *LatchBB = L->getLoopLatch(); 7101 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7102 return false; 7103 7104 SmallPtrSet<const Instruction *, 16> Pushed; 7105 SmallVector<const Instruction *, 8> PoisonStack; 7106 7107 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7108 // things that are known to be poison under that assumption go on the 7109 // PoisonStack. 7110 Pushed.insert(I); 7111 PoisonStack.push_back(I); 7112 7113 bool LatchControlDependentOnPoison = false; 7114 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7115 const Instruction *Poison = PoisonStack.pop_back_val(); 7116 7117 for (auto *PoisonUser : Poison->users()) { 7118 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7119 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7120 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7121 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7122 assert(BI->isConditional() && "Only possibility!"); 7123 if (BI->getParent() == LatchBB) { 7124 LatchControlDependentOnPoison = true; 7125 break; 7126 } 7127 } 7128 } 7129 } 7130 7131 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7132 } 7133 7134 ScalarEvolution::LoopProperties 7135 ScalarEvolution::getLoopProperties(const Loop *L) { 7136 using LoopProperties = ScalarEvolution::LoopProperties; 7137 7138 auto Itr = LoopPropertiesCache.find(L); 7139 if (Itr == LoopPropertiesCache.end()) { 7140 auto HasSideEffects = [](Instruction *I) { 7141 if (auto *SI = dyn_cast<StoreInst>(I)) 7142 return !SI->isSimple(); 7143 7144 return I->mayThrow() || I->mayWriteToMemory(); 7145 }; 7146 7147 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7148 /*HasNoSideEffects*/ true}; 7149 7150 for (auto *BB : L->getBlocks()) 7151 for (auto &I : *BB) { 7152 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7153 LP.HasNoAbnormalExits = false; 7154 if (HasSideEffects(&I)) 7155 LP.HasNoSideEffects = false; 7156 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7157 break; // We're already as pessimistic as we can get. 7158 } 7159 7160 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7161 assert(InsertPair.second && "We just checked!"); 7162 Itr = InsertPair.first; 7163 } 7164 7165 return Itr->second; 7166 } 7167 7168 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7169 // A mustprogress loop without side effects must be finite. 7170 // TODO: The check used here is very conservative. It's only *specific* 7171 // side effects which are well defined in infinite loops. 7172 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7173 } 7174 7175 const SCEV *ScalarEvolution::createSCEVIter(Value *V) { 7176 // Worklist item with a Value and a bool indicating whether all operands have 7177 // been visited already. 7178 using PointerTy = PointerIntPair<Value *, 1, bool>; 7179 SmallVector<PointerTy> Stack; 7180 7181 Stack.emplace_back(V, true); 7182 Stack.emplace_back(V, false); 7183 while (!Stack.empty()) { 7184 auto E = Stack.pop_back_val(); 7185 Value *CurV = E.getPointer(); 7186 7187 if (getExistingSCEV(CurV)) 7188 continue; 7189 7190 SmallVector<Value *> Ops; 7191 const SCEV *CreatedSCEV = nullptr; 7192 // If all operands have been visited already, create the SCEV. 7193 if (E.getInt()) { 7194 CreatedSCEV = createSCEV(CurV); 7195 } else { 7196 // Otherwise get the operands we need to create SCEV's for before creating 7197 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, 7198 // just use it. 7199 CreatedSCEV = getOperandsToCreate(CurV, Ops); 7200 } 7201 7202 if (CreatedSCEV) { 7203 insertValueToMap(CurV, CreatedSCEV); 7204 } else { 7205 // Queue CurV for SCEV creation, followed by its's operands which need to 7206 // be constructed first. 7207 Stack.emplace_back(CurV, true); 7208 for (Value *Op : Ops) 7209 Stack.emplace_back(Op, false); 7210 } 7211 } 7212 7213 return getExistingSCEV(V); 7214 } 7215 7216 const SCEV * 7217 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { 7218 if (!isSCEVable(V->getType())) 7219 return getUnknown(V); 7220 7221 if (Instruction *I = dyn_cast<Instruction>(V)) { 7222 // Don't attempt to analyze instructions in blocks that aren't 7223 // reachable. Such instructions don't matter, and they aren't required 7224 // to obey basic rules for definitions dominating uses which this 7225 // analysis depends on. 7226 if (!DT.isReachableFromEntry(I->getParent())) 7227 return getUnknown(PoisonValue::get(V->getType())); 7228 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7229 return getConstant(CI); 7230 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 7231 if (!GA->isInterposable()) { 7232 Ops.push_back(GA->getAliasee()); 7233 return nullptr; 7234 } 7235 return getUnknown(V); 7236 } else if (!isa<ConstantExpr>(V)) 7237 return getUnknown(V); 7238 7239 Operator *U = cast<Operator>(V); 7240 if (auto BO = MatchBinaryOp(U, DT)) { 7241 bool IsConstArg = isa<ConstantInt>(BO->RHS); 7242 switch (U->getOpcode()) { 7243 case Instruction::Add: { 7244 // For additions and multiplications, traverse add/mul chains for which we 7245 // can potentially create a single SCEV, to reduce the number of 7246 // get{Add,Mul}Expr calls. 7247 do { 7248 if (BO->Op) { 7249 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7250 Ops.push_back(BO->Op); 7251 break; 7252 } 7253 } 7254 Ops.push_back(BO->RHS); 7255 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7256 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7257 NewBO->Opcode != Instruction::Sub)) { 7258 Ops.push_back(BO->LHS); 7259 break; 7260 } 7261 BO = NewBO; 7262 } while (true); 7263 return nullptr; 7264 } 7265 7266 case Instruction::Mul: { 7267 do { 7268 if (BO->Op) { 7269 if (BO->Op != V && getExistingSCEV(BO->Op)) { 7270 Ops.push_back(BO->Op); 7271 break; 7272 } 7273 } 7274 Ops.push_back(BO->RHS); 7275 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7276 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7277 Ops.push_back(BO->LHS); 7278 break; 7279 } 7280 BO = NewBO; 7281 } while (true); 7282 return nullptr; 7283 } 7284 7285 case Instruction::AShr: 7286 case Instruction::Shl: 7287 case Instruction::Xor: 7288 if (!IsConstArg) 7289 return nullptr; 7290 break; 7291 case Instruction::And: 7292 case Instruction::Or: 7293 if (!IsConstArg && BO->LHS->getType()->isIntegerTy(1)) 7294 return nullptr; 7295 break; 7296 default: 7297 break; 7298 } 7299 7300 Ops.push_back(BO->LHS); 7301 Ops.push_back(BO->RHS); 7302 return nullptr; 7303 } 7304 7305 switch (U->getOpcode()) { 7306 case Instruction::Trunc: 7307 case Instruction::ZExt: 7308 case Instruction::SExt: 7309 case Instruction::PtrToInt: 7310 Ops.push_back(U->getOperand(0)); 7311 return nullptr; 7312 7313 case Instruction::BitCast: 7314 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { 7315 Ops.push_back(U->getOperand(0)); 7316 return nullptr; 7317 } 7318 return getUnknown(V); 7319 7320 case Instruction::SDiv: 7321 case Instruction::SRem: 7322 Ops.push_back(U->getOperand(0)); 7323 Ops.push_back(U->getOperand(1)); 7324 return nullptr; 7325 7326 case Instruction::GetElementPtr: 7327 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && 7328 "GEP source element type must be sized"); 7329 for (Value *Index : U->operands()) 7330 Ops.push_back(Index); 7331 return nullptr; 7332 7333 case Instruction::IntToPtr: 7334 return getUnknown(V); 7335 7336 case Instruction::PHI: 7337 // Keep constructing SCEVs' for phis recursively for now. 7338 return nullptr; 7339 7340 case Instruction::Select: 7341 for (Value *Inc : U->operands()) 7342 Ops.push_back(Inc); 7343 return nullptr; 7344 break; 7345 7346 case Instruction::Call: 7347 case Instruction::Invoke: 7348 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { 7349 Ops.push_back(RV); 7350 return nullptr; 7351 } 7352 7353 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7354 switch (II->getIntrinsicID()) { 7355 case Intrinsic::abs: 7356 Ops.push_back(II->getArgOperand(0)); 7357 return nullptr; 7358 case Intrinsic::umax: 7359 case Intrinsic::umin: 7360 case Intrinsic::smax: 7361 case Intrinsic::smin: 7362 case Intrinsic::usub_sat: 7363 case Intrinsic::uadd_sat: 7364 Ops.push_back(II->getArgOperand(0)); 7365 Ops.push_back(II->getArgOperand(1)); 7366 return nullptr; 7367 case Intrinsic::start_loop_iterations: 7368 Ops.push_back(II->getArgOperand(0)); 7369 return nullptr; 7370 default: 7371 break; 7372 } 7373 } 7374 break; 7375 } 7376 7377 return nullptr; 7378 } 7379 7380 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7381 if (!isSCEVable(V->getType())) 7382 return getUnknown(V); 7383 7384 if (Instruction *I = dyn_cast<Instruction>(V)) { 7385 // Don't attempt to analyze instructions in blocks that aren't 7386 // reachable. Such instructions don't matter, and they aren't required 7387 // to obey basic rules for definitions dominating uses which this 7388 // analysis depends on. 7389 if (!DT.isReachableFromEntry(I->getParent())) 7390 return getUnknown(PoisonValue::get(V->getType())); 7391 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7392 return getConstant(CI); 7393 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7394 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7395 else if (!isa<ConstantExpr>(V)) 7396 return getUnknown(V); 7397 7398 const SCEV *LHS; 7399 const SCEV *RHS; 7400 7401 Operator *U = cast<Operator>(V); 7402 if (auto BO = MatchBinaryOp(U, DT)) { 7403 switch (BO->Opcode) { 7404 case Instruction::Add: { 7405 // The simple thing to do would be to just call getSCEV on both operands 7406 // and call getAddExpr with the result. However if we're looking at a 7407 // bunch of things all added together, this can be quite inefficient, 7408 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7409 // Instead, gather up all the operands and make a single getAddExpr call. 7410 // LLVM IR canonical form means we need only traverse the left operands. 7411 SmallVector<const SCEV *, 4> AddOps; 7412 do { 7413 if (BO->Op) { 7414 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7415 AddOps.push_back(OpSCEV); 7416 break; 7417 } 7418 7419 // If a NUW or NSW flag can be applied to the SCEV for this 7420 // addition, then compute the SCEV for this addition by itself 7421 // with a separate call to getAddExpr. We need to do that 7422 // instead of pushing the operands of the addition onto AddOps, 7423 // since the flags are only known to apply to this particular 7424 // addition - they may not apply to other additions that can be 7425 // formed with operands from AddOps. 7426 const SCEV *RHS = getSCEV(BO->RHS); 7427 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7428 if (Flags != SCEV::FlagAnyWrap) { 7429 const SCEV *LHS = getSCEV(BO->LHS); 7430 if (BO->Opcode == Instruction::Sub) 7431 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7432 else 7433 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7434 break; 7435 } 7436 } 7437 7438 if (BO->Opcode == Instruction::Sub) 7439 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7440 else 7441 AddOps.push_back(getSCEV(BO->RHS)); 7442 7443 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7444 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7445 NewBO->Opcode != Instruction::Sub)) { 7446 AddOps.push_back(getSCEV(BO->LHS)); 7447 break; 7448 } 7449 BO = NewBO; 7450 } while (true); 7451 7452 return getAddExpr(AddOps); 7453 } 7454 7455 case Instruction::Mul: { 7456 SmallVector<const SCEV *, 4> MulOps; 7457 do { 7458 if (BO->Op) { 7459 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7460 MulOps.push_back(OpSCEV); 7461 break; 7462 } 7463 7464 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7465 if (Flags != SCEV::FlagAnyWrap) { 7466 LHS = getSCEV(BO->LHS); 7467 RHS = getSCEV(BO->RHS); 7468 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7469 break; 7470 } 7471 } 7472 7473 MulOps.push_back(getSCEV(BO->RHS)); 7474 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7475 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7476 MulOps.push_back(getSCEV(BO->LHS)); 7477 break; 7478 } 7479 BO = NewBO; 7480 } while (true); 7481 7482 return getMulExpr(MulOps); 7483 } 7484 case Instruction::UDiv: 7485 LHS = getSCEV(BO->LHS); 7486 RHS = getSCEV(BO->RHS); 7487 return getUDivExpr(LHS, RHS); 7488 case Instruction::URem: 7489 LHS = getSCEV(BO->LHS); 7490 RHS = getSCEV(BO->RHS); 7491 return getURemExpr(LHS, RHS); 7492 case Instruction::Sub: { 7493 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7494 if (BO->Op) 7495 Flags = getNoWrapFlagsFromUB(BO->Op); 7496 LHS = getSCEV(BO->LHS); 7497 RHS = getSCEV(BO->RHS); 7498 return getMinusSCEV(LHS, RHS, Flags); 7499 } 7500 case Instruction::And: 7501 // For an expression like x&255 that merely masks off the high bits, 7502 // use zext(trunc(x)) as the SCEV expression. 7503 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7504 if (CI->isZero()) 7505 return getSCEV(BO->RHS); 7506 if (CI->isMinusOne()) 7507 return getSCEV(BO->LHS); 7508 const APInt &A = CI->getValue(); 7509 7510 // Instcombine's ShrinkDemandedConstant may strip bits out of 7511 // constants, obscuring what would otherwise be a low-bits mask. 7512 // Use computeKnownBits to compute what ShrinkDemandedConstant 7513 // knew about to reconstruct a low-bits mask value. 7514 unsigned LZ = A.countLeadingZeros(); 7515 unsigned TZ = A.countTrailingZeros(); 7516 unsigned BitWidth = A.getBitWidth(); 7517 KnownBits Known(BitWidth); 7518 computeKnownBits(BO->LHS, Known, getDataLayout(), 7519 0, &AC, nullptr, &DT); 7520 7521 APInt EffectiveMask = 7522 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7523 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7524 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7525 const SCEV *LHS = getSCEV(BO->LHS); 7526 const SCEV *ShiftedLHS = nullptr; 7527 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7528 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7529 // For an expression like (x * 8) & 8, simplify the multiply. 7530 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7531 unsigned GCD = std::min(MulZeros, TZ); 7532 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7533 SmallVector<const SCEV*, 4> MulOps; 7534 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7535 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7536 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7537 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7538 } 7539 } 7540 if (!ShiftedLHS) 7541 ShiftedLHS = getUDivExpr(LHS, MulCount); 7542 return getMulExpr( 7543 getZeroExtendExpr( 7544 getTruncateExpr(ShiftedLHS, 7545 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7546 BO->LHS->getType()), 7547 MulCount); 7548 } 7549 } 7550 // Binary `and` is a bit-wise `umin`. 7551 if (BO->LHS->getType()->isIntegerTy(1)) { 7552 LHS = getSCEV(BO->LHS); 7553 RHS = getSCEV(BO->RHS); 7554 return getUMinExpr(LHS, RHS); 7555 } 7556 break; 7557 7558 case Instruction::Or: 7559 // If the RHS of the Or is a constant, we may have something like: 7560 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7561 // optimizations will transparently handle this case. 7562 // 7563 // In order for this transformation to be safe, the LHS must be of the 7564 // form X*(2^n) and the Or constant must be less than 2^n. 7565 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7566 const SCEV *LHS = getSCEV(BO->LHS); 7567 const APInt &CIVal = CI->getValue(); 7568 if (GetMinTrailingZeros(LHS) >= 7569 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7570 // Build a plain add SCEV. 7571 return getAddExpr(LHS, getSCEV(CI), 7572 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7573 } 7574 } 7575 // Binary `or` is a bit-wise `umax`. 7576 if (BO->LHS->getType()->isIntegerTy(1)) { 7577 LHS = getSCEV(BO->LHS); 7578 RHS = getSCEV(BO->RHS); 7579 return getUMaxExpr(LHS, RHS); 7580 } 7581 break; 7582 7583 case Instruction::Xor: 7584 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7585 // If the RHS of xor is -1, then this is a not operation. 7586 if (CI->isMinusOne()) 7587 return getNotSCEV(getSCEV(BO->LHS)); 7588 7589 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7590 // This is a variant of the check for xor with -1, and it handles 7591 // the case where instcombine has trimmed non-demanded bits out 7592 // of an xor with -1. 7593 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7594 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7595 if (LBO->getOpcode() == Instruction::And && 7596 LCI->getValue() == CI->getValue()) 7597 if (const SCEVZeroExtendExpr *Z = 7598 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7599 Type *UTy = BO->LHS->getType(); 7600 const SCEV *Z0 = Z->getOperand(); 7601 Type *Z0Ty = Z0->getType(); 7602 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7603 7604 // If C is a low-bits mask, the zero extend is serving to 7605 // mask off the high bits. Complement the operand and 7606 // re-apply the zext. 7607 if (CI->getValue().isMask(Z0TySize)) 7608 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7609 7610 // If C is a single bit, it may be in the sign-bit position 7611 // before the zero-extend. In this case, represent the xor 7612 // using an add, which is equivalent, and re-apply the zext. 7613 APInt Trunc = CI->getValue().trunc(Z0TySize); 7614 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7615 Trunc.isSignMask()) 7616 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7617 UTy); 7618 } 7619 } 7620 break; 7621 7622 case Instruction::Shl: 7623 // Turn shift left of a constant amount into a multiply. 7624 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7625 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7626 7627 // If the shift count is not less than the bitwidth, the result of 7628 // the shift is undefined. Don't try to analyze it, because the 7629 // resolution chosen here may differ from the resolution chosen in 7630 // other parts of the compiler. 7631 if (SA->getValue().uge(BitWidth)) 7632 break; 7633 7634 // We can safely preserve the nuw flag in all cases. It's also safe to 7635 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7636 // requires special handling. It can be preserved as long as we're not 7637 // left shifting by bitwidth - 1. 7638 auto Flags = SCEV::FlagAnyWrap; 7639 if (BO->Op) { 7640 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7641 if ((MulFlags & SCEV::FlagNSW) && 7642 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7643 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7644 if (MulFlags & SCEV::FlagNUW) 7645 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7646 } 7647 7648 ConstantInt *X = ConstantInt::get( 7649 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7650 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7651 } 7652 break; 7653 7654 case Instruction::AShr: { 7655 // AShr X, C, where C is a constant. 7656 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7657 if (!CI) 7658 break; 7659 7660 Type *OuterTy = BO->LHS->getType(); 7661 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7662 // If the shift count is not less than the bitwidth, the result of 7663 // the shift is undefined. Don't try to analyze it, because the 7664 // resolution chosen here may differ from the resolution chosen in 7665 // other parts of the compiler. 7666 if (CI->getValue().uge(BitWidth)) 7667 break; 7668 7669 if (CI->isZero()) 7670 return getSCEV(BO->LHS); // shift by zero --> noop 7671 7672 uint64_t AShrAmt = CI->getZExtValue(); 7673 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7674 7675 Operator *L = dyn_cast<Operator>(BO->LHS); 7676 if (L && L->getOpcode() == Instruction::Shl) { 7677 // X = Shl A, n 7678 // Y = AShr X, m 7679 // Both n and m are constant. 7680 7681 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7682 if (L->getOperand(1) == BO->RHS) 7683 // For a two-shift sext-inreg, i.e. n = m, 7684 // use sext(trunc(x)) as the SCEV expression. 7685 return getSignExtendExpr( 7686 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7687 7688 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7689 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7690 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7691 if (ShlAmt > AShrAmt) { 7692 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7693 // expression. We already checked that ShlAmt < BitWidth, so 7694 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7695 // ShlAmt - AShrAmt < Amt. 7696 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7697 ShlAmt - AShrAmt); 7698 return getSignExtendExpr( 7699 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7700 getConstant(Mul)), OuterTy); 7701 } 7702 } 7703 } 7704 break; 7705 } 7706 } 7707 } 7708 7709 switch (U->getOpcode()) { 7710 case Instruction::Trunc: 7711 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7712 7713 case Instruction::ZExt: 7714 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7715 7716 case Instruction::SExt: 7717 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7718 // The NSW flag of a subtract does not always survive the conversion to 7719 // A + (-1)*B. By pushing sign extension onto its operands we are much 7720 // more likely to preserve NSW and allow later AddRec optimisations. 7721 // 7722 // NOTE: This is effectively duplicating this logic from getSignExtend: 7723 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7724 // but by that point the NSW information has potentially been lost. 7725 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7726 Type *Ty = U->getType(); 7727 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7728 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7729 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7730 } 7731 } 7732 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7733 7734 case Instruction::BitCast: 7735 // BitCasts are no-op casts so we just eliminate the cast. 7736 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7737 return getSCEV(U->getOperand(0)); 7738 break; 7739 7740 case Instruction::PtrToInt: { 7741 // Pointer to integer cast is straight-forward, so do model it. 7742 const SCEV *Op = getSCEV(U->getOperand(0)); 7743 Type *DstIntTy = U->getType(); 7744 // But only if effective SCEV (integer) type is wide enough to represent 7745 // all possible pointer values. 7746 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7747 if (isa<SCEVCouldNotCompute>(IntOp)) 7748 return getUnknown(V); 7749 return IntOp; 7750 } 7751 case Instruction::IntToPtr: 7752 // Just don't deal with inttoptr casts. 7753 return getUnknown(V); 7754 7755 case Instruction::SDiv: 7756 // If both operands are non-negative, this is just an udiv. 7757 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7758 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7759 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7760 break; 7761 7762 case Instruction::SRem: 7763 // If both operands are non-negative, this is just an urem. 7764 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7765 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7766 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7767 break; 7768 7769 case Instruction::GetElementPtr: 7770 return createNodeForGEP(cast<GEPOperator>(U)); 7771 7772 case Instruction::PHI: 7773 return createNodeForPHI(cast<PHINode>(U)); 7774 7775 case Instruction::Select: 7776 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7777 U->getOperand(2)); 7778 7779 case Instruction::Call: 7780 case Instruction::Invoke: 7781 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7782 return getSCEV(RV); 7783 7784 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7785 switch (II->getIntrinsicID()) { 7786 case Intrinsic::abs: 7787 return getAbsExpr( 7788 getSCEV(II->getArgOperand(0)), 7789 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7790 case Intrinsic::umax: 7791 LHS = getSCEV(II->getArgOperand(0)); 7792 RHS = getSCEV(II->getArgOperand(1)); 7793 return getUMaxExpr(LHS, RHS); 7794 case Intrinsic::umin: 7795 LHS = getSCEV(II->getArgOperand(0)); 7796 RHS = getSCEV(II->getArgOperand(1)); 7797 return getUMinExpr(LHS, RHS); 7798 case Intrinsic::smax: 7799 LHS = getSCEV(II->getArgOperand(0)); 7800 RHS = getSCEV(II->getArgOperand(1)); 7801 return getSMaxExpr(LHS, RHS); 7802 case Intrinsic::smin: 7803 LHS = getSCEV(II->getArgOperand(0)); 7804 RHS = getSCEV(II->getArgOperand(1)); 7805 return getSMinExpr(LHS, RHS); 7806 case Intrinsic::usub_sat: { 7807 const SCEV *X = getSCEV(II->getArgOperand(0)); 7808 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7809 const SCEV *ClampedY = getUMinExpr(X, Y); 7810 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7811 } 7812 case Intrinsic::uadd_sat: { 7813 const SCEV *X = getSCEV(II->getArgOperand(0)); 7814 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7815 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7816 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7817 } 7818 case Intrinsic::start_loop_iterations: 7819 // A start_loop_iterations is just equivalent to the first operand for 7820 // SCEV purposes. 7821 return getSCEV(II->getArgOperand(0)); 7822 default: 7823 break; 7824 } 7825 } 7826 break; 7827 } 7828 7829 return getUnknown(V); 7830 } 7831 7832 //===----------------------------------------------------------------------===// 7833 // Iteration Count Computation Code 7834 // 7835 7836 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7837 bool Extend) { 7838 if (isa<SCEVCouldNotCompute>(ExitCount)) 7839 return getCouldNotCompute(); 7840 7841 auto *ExitCountType = ExitCount->getType(); 7842 assert(ExitCountType->isIntegerTy()); 7843 7844 if (!Extend) 7845 return getAddExpr(ExitCount, getOne(ExitCountType)); 7846 7847 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7848 1 + ExitCountType->getScalarSizeInBits()); 7849 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7850 getOne(WiderType)); 7851 } 7852 7853 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7854 if (!ExitCount) 7855 return 0; 7856 7857 ConstantInt *ExitConst = ExitCount->getValue(); 7858 7859 // Guard against huge trip counts. 7860 if (ExitConst->getValue().getActiveBits() > 32) 7861 return 0; 7862 7863 // In case of integer overflow, this returns 0, which is correct. 7864 return ((unsigned)ExitConst->getZExtValue()) + 1; 7865 } 7866 7867 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7868 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7869 return getConstantTripCount(ExitCount); 7870 } 7871 7872 unsigned 7873 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7874 const BasicBlock *ExitingBlock) { 7875 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7876 assert(L->isLoopExiting(ExitingBlock) && 7877 "Exiting block must actually branch out of the loop!"); 7878 const SCEVConstant *ExitCount = 7879 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7880 return getConstantTripCount(ExitCount); 7881 } 7882 7883 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7884 const auto *MaxExitCount = 7885 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7886 return getConstantTripCount(MaxExitCount); 7887 } 7888 7889 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7890 // We can't infer from Array in Irregular Loop. 7891 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7892 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7893 return getCouldNotCompute(); 7894 7895 // FIXME: To make the scene more typical, we only analysis loops that have 7896 // one exiting block and that block must be the latch. To make it easier to 7897 // capture loops that have memory access and memory access will be executed 7898 // in each iteration. 7899 const BasicBlock *LoopLatch = L->getLoopLatch(); 7900 assert(LoopLatch && "See defination of simplify form loop."); 7901 if (L->getExitingBlock() != LoopLatch) 7902 return getCouldNotCompute(); 7903 7904 const DataLayout &DL = getDataLayout(); 7905 SmallVector<const SCEV *> InferCountColl; 7906 for (auto *BB : L->getBlocks()) { 7907 // Go here, we can know that Loop is a single exiting and simplified form 7908 // loop. Make sure that infer from Memory Operation in those BBs must be 7909 // executed in loop. First step, we can make sure that max execution time 7910 // of MemAccessBB in loop represents latch max excution time. 7911 // If MemAccessBB does not dom Latch, skip. 7912 // Entry 7913 // │ 7914 // ┌─────▼─────┐ 7915 // │Loop Header◄─────┐ 7916 // └──┬──────┬─┘ │ 7917 // │ │ │ 7918 // ┌────────▼──┐ ┌─▼─────┐ │ 7919 // │MemAccessBB│ │OtherBB│ │ 7920 // └────────┬──┘ └─┬─────┘ │ 7921 // │ │ │ 7922 // ┌─▼──────▼─┐ │ 7923 // │Loop Latch├─────┘ 7924 // └────┬─────┘ 7925 // ▼ 7926 // Exit 7927 if (!DT.dominates(BB, LoopLatch)) 7928 continue; 7929 7930 for (Instruction &Inst : *BB) { 7931 // Find Memory Operation Instruction. 7932 auto *GEP = getLoadStorePointerOperand(&Inst); 7933 if (!GEP) 7934 continue; 7935 7936 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7937 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7938 if (!ElemSize) 7939 continue; 7940 7941 // Use a existing polynomial recurrence on the trip count. 7942 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7943 if (!AddRec) 7944 continue; 7945 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7946 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7947 if (!ArrBase || !Step) 7948 continue; 7949 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7950 7951 // Only handle { %array + step }, 7952 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7953 if (AddRec->getStart() != ArrBase) 7954 continue; 7955 7956 // Memory operation pattern which have gaps. 7957 // Or repeat memory opreation. 7958 // And index of GEP wraps arround. 7959 if (Step->getAPInt().getActiveBits() > 32 || 7960 Step->getAPInt().getZExtValue() != 7961 ElemSize->getAPInt().getZExtValue() || 7962 Step->isZero() || Step->getAPInt().isNegative()) 7963 continue; 7964 7965 // Only infer from stack array which has certain size. 7966 // Make sure alloca instruction is not excuted in loop. 7967 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7968 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7969 continue; 7970 7971 // Make sure only handle normal array. 7972 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7973 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7974 if (!Ty || !ArrSize || !ArrSize->isOne()) 7975 continue; 7976 7977 // FIXME: Since gep indices are silently zext to the indexing type, 7978 // we will have a narrow gep index which wraps around rather than 7979 // increasing strictly, we shoule ensure that step is increasing 7980 // strictly by the loop iteration. 7981 // Now we can infer a max execution time by MemLength/StepLength. 7982 const SCEV *MemSize = 7983 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7984 auto *MaxExeCount = 7985 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7986 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7987 continue; 7988 7989 // If the loop reaches the maximum number of executions, we can not 7990 // access bytes starting outside the statically allocated size without 7991 // being immediate UB. But it is allowed to enter loop header one more 7992 // time. 7993 auto *InferCount = dyn_cast<SCEVConstant>( 7994 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7995 // Discard the maximum number of execution times under 32bits. 7996 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7997 continue; 7998 7999 InferCountColl.push_back(InferCount); 8000 } 8001 } 8002 8003 if (InferCountColl.size() == 0) 8004 return getCouldNotCompute(); 8005 8006 return getUMinFromMismatchedTypes(InferCountColl); 8007 } 8008 8009 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 8010 SmallVector<BasicBlock *, 8> ExitingBlocks; 8011 L->getExitingBlocks(ExitingBlocks); 8012 8013 Optional<unsigned> Res = None; 8014 for (auto *ExitingBB : ExitingBlocks) { 8015 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 8016 if (!Res) 8017 Res = Multiple; 8018 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 8019 } 8020 return Res.value_or(1); 8021 } 8022 8023 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8024 const SCEV *ExitCount) { 8025 if (ExitCount == getCouldNotCompute()) 8026 return 1; 8027 8028 // Get the trip count 8029 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 8030 8031 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 8032 if (!TC) 8033 // Attempt to factor more general cases. Returns the greatest power of 8034 // two divisor. If overflow happens, the trip count expression is still 8035 // divisible by the greatest power of 2 divisor returned. 8036 return 1U << std::min((uint32_t)31, 8037 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 8038 8039 ConstantInt *Result = TC->getValue(); 8040 8041 // Guard against huge trip counts (this requires checking 8042 // for zero to handle the case where the trip count == -1 and the 8043 // addition wraps). 8044 if (!Result || Result->getValue().getActiveBits() > 32 || 8045 Result->getValue().getActiveBits() == 0) 8046 return 1; 8047 8048 return (unsigned)Result->getZExtValue(); 8049 } 8050 8051 /// Returns the largest constant divisor of the trip count of this loop as a 8052 /// normal unsigned value, if possible. This means that the actual trip count is 8053 /// always a multiple of the returned value (don't forget the trip count could 8054 /// very well be zero as well!). 8055 /// 8056 /// Returns 1 if the trip count is unknown or not guaranteed to be the 8057 /// multiple of a constant (which is also the case if the trip count is simply 8058 /// constant, use getSmallConstantTripCount for that case), Will also return 1 8059 /// if the trip count is very large (>= 2^32). 8060 /// 8061 /// As explained in the comments for getSmallConstantTripCount, this assumes 8062 /// that control exits the loop via ExitingBlock. 8063 unsigned 8064 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 8065 const BasicBlock *ExitingBlock) { 8066 assert(ExitingBlock && "Must pass a non-null exiting block!"); 8067 assert(L->isLoopExiting(ExitingBlock) && 8068 "Exiting block must actually branch out of the loop!"); 8069 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 8070 return getSmallConstantTripMultiple(L, ExitCount); 8071 } 8072 8073 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 8074 const BasicBlock *ExitingBlock, 8075 ExitCountKind Kind) { 8076 switch (Kind) { 8077 case Exact: 8078 case SymbolicMaximum: 8079 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 8080 case ConstantMaximum: 8081 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 8082 }; 8083 llvm_unreachable("Invalid ExitCountKind!"); 8084 } 8085 8086 const SCEV * 8087 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 8088 SmallVector<const SCEVPredicate *, 4> &Preds) { 8089 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 8090 } 8091 8092 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 8093 ExitCountKind Kind) { 8094 switch (Kind) { 8095 case Exact: 8096 return getBackedgeTakenInfo(L).getExact(L, this); 8097 case ConstantMaximum: 8098 return getBackedgeTakenInfo(L).getConstantMax(this); 8099 case SymbolicMaximum: 8100 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 8101 }; 8102 llvm_unreachable("Invalid ExitCountKind!"); 8103 } 8104 8105 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 8106 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 8107 } 8108 8109 /// Push PHI nodes in the header of the given loop onto the given Worklist. 8110 static void PushLoopPHIs(const Loop *L, 8111 SmallVectorImpl<Instruction *> &Worklist, 8112 SmallPtrSetImpl<Instruction *> &Visited) { 8113 BasicBlock *Header = L->getHeader(); 8114 8115 // Push all Loop-header PHIs onto the Worklist stack. 8116 for (PHINode &PN : Header->phis()) 8117 if (Visited.insert(&PN).second) 8118 Worklist.push_back(&PN); 8119 } 8120 8121 const ScalarEvolution::BackedgeTakenInfo & 8122 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 8123 auto &BTI = getBackedgeTakenInfo(L); 8124 if (BTI.hasFullInfo()) 8125 return BTI; 8126 8127 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8128 8129 if (!Pair.second) 8130 return Pair.first->second; 8131 8132 BackedgeTakenInfo Result = 8133 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 8134 8135 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 8136 } 8137 8138 ScalarEvolution::BackedgeTakenInfo & 8139 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 8140 // Initially insert an invalid entry for this loop. If the insertion 8141 // succeeds, proceed to actually compute a backedge-taken count and 8142 // update the value. The temporary CouldNotCompute value tells SCEV 8143 // code elsewhere that it shouldn't attempt to request a new 8144 // backedge-taken count, which could result in infinite recursion. 8145 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 8146 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 8147 if (!Pair.second) 8148 return Pair.first->second; 8149 8150 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 8151 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 8152 // must be cleared in this scope. 8153 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 8154 8155 // In product build, there are no usage of statistic. 8156 (void)NumTripCountsComputed; 8157 (void)NumTripCountsNotComputed; 8158 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 8159 const SCEV *BEExact = Result.getExact(L, this); 8160 if (BEExact != getCouldNotCompute()) { 8161 assert(isLoopInvariant(BEExact, L) && 8162 isLoopInvariant(Result.getConstantMax(this), L) && 8163 "Computed backedge-taken count isn't loop invariant for loop!"); 8164 ++NumTripCountsComputed; 8165 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 8166 isa<PHINode>(L->getHeader()->begin())) { 8167 // Only count loops that have phi nodes as not being computable. 8168 ++NumTripCountsNotComputed; 8169 } 8170 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 8171 8172 // Now that we know more about the trip count for this loop, forget any 8173 // existing SCEV values for PHI nodes in this loop since they are only 8174 // conservative estimates made without the benefit of trip count 8175 // information. This invalidation is not necessary for correctness, and is 8176 // only done to produce more precise results. 8177 if (Result.hasAnyInfo()) { 8178 // Invalidate any expression using an addrec in this loop. 8179 SmallVector<const SCEV *, 8> ToForget; 8180 auto LoopUsersIt = LoopUsers.find(L); 8181 if (LoopUsersIt != LoopUsers.end()) 8182 append_range(ToForget, LoopUsersIt->second); 8183 forgetMemoizedResults(ToForget); 8184 8185 // Invalidate constant-evolved loop header phis. 8186 for (PHINode &PN : L->getHeader()->phis()) 8187 ConstantEvolutionLoopExitValue.erase(&PN); 8188 } 8189 8190 // Re-lookup the insert position, since the call to 8191 // computeBackedgeTakenCount above could result in a 8192 // recusive call to getBackedgeTakenInfo (on a different 8193 // loop), which would invalidate the iterator computed 8194 // earlier. 8195 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8196 } 8197 8198 void ScalarEvolution::forgetAllLoops() { 8199 // This method is intended to forget all info about loops. It should 8200 // invalidate caches as if the following happened: 8201 // - The trip counts of all loops have changed arbitrarily 8202 // - Every llvm::Value has been updated in place to produce a different 8203 // result. 8204 BackedgeTakenCounts.clear(); 8205 PredicatedBackedgeTakenCounts.clear(); 8206 BECountUsers.clear(); 8207 LoopPropertiesCache.clear(); 8208 ConstantEvolutionLoopExitValue.clear(); 8209 ValueExprMap.clear(); 8210 ValuesAtScopes.clear(); 8211 ValuesAtScopesUsers.clear(); 8212 LoopDispositions.clear(); 8213 BlockDispositions.clear(); 8214 UnsignedRanges.clear(); 8215 SignedRanges.clear(); 8216 ExprValueMap.clear(); 8217 HasRecMap.clear(); 8218 MinTrailingZerosCache.clear(); 8219 PredicatedSCEVRewrites.clear(); 8220 } 8221 8222 void ScalarEvolution::forgetLoop(const Loop *L) { 8223 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8224 SmallVector<Instruction *, 32> Worklist; 8225 SmallPtrSet<Instruction *, 16> Visited; 8226 SmallVector<const SCEV *, 16> ToForget; 8227 8228 // Iterate over all the loops and sub-loops to drop SCEV information. 8229 while (!LoopWorklist.empty()) { 8230 auto *CurrL = LoopWorklist.pop_back_val(); 8231 8232 // Drop any stored trip count value. 8233 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8234 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8235 8236 // Drop information about predicated SCEV rewrites for this loop. 8237 for (auto I = PredicatedSCEVRewrites.begin(); 8238 I != PredicatedSCEVRewrites.end();) { 8239 std::pair<const SCEV *, const Loop *> Entry = I->first; 8240 if (Entry.second == CurrL) 8241 PredicatedSCEVRewrites.erase(I++); 8242 else 8243 ++I; 8244 } 8245 8246 auto LoopUsersItr = LoopUsers.find(CurrL); 8247 if (LoopUsersItr != LoopUsers.end()) { 8248 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8249 LoopUsersItr->second.end()); 8250 } 8251 8252 // Drop information about expressions based on loop-header PHIs. 8253 PushLoopPHIs(CurrL, Worklist, Visited); 8254 8255 while (!Worklist.empty()) { 8256 Instruction *I = Worklist.pop_back_val(); 8257 8258 ValueExprMapType::iterator It = 8259 ValueExprMap.find_as(static_cast<Value *>(I)); 8260 if (It != ValueExprMap.end()) { 8261 eraseValueFromMap(It->first); 8262 ToForget.push_back(It->second); 8263 if (PHINode *PN = dyn_cast<PHINode>(I)) 8264 ConstantEvolutionLoopExitValue.erase(PN); 8265 } 8266 8267 PushDefUseChildren(I, Worklist, Visited); 8268 } 8269 8270 LoopPropertiesCache.erase(CurrL); 8271 // Forget all contained loops too, to avoid dangling entries in the 8272 // ValuesAtScopes map. 8273 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8274 } 8275 forgetMemoizedResults(ToForget); 8276 } 8277 8278 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8279 forgetLoop(L->getOutermostLoop()); 8280 } 8281 8282 void ScalarEvolution::forgetValue(Value *V) { 8283 Instruction *I = dyn_cast<Instruction>(V); 8284 if (!I) return; 8285 8286 // Drop information about expressions based on loop-header PHIs. 8287 SmallVector<Instruction *, 16> Worklist; 8288 SmallPtrSet<Instruction *, 8> Visited; 8289 SmallVector<const SCEV *, 8> ToForget; 8290 Worklist.push_back(I); 8291 Visited.insert(I); 8292 8293 while (!Worklist.empty()) { 8294 I = Worklist.pop_back_val(); 8295 ValueExprMapType::iterator It = 8296 ValueExprMap.find_as(static_cast<Value *>(I)); 8297 if (It != ValueExprMap.end()) { 8298 eraseValueFromMap(It->first); 8299 ToForget.push_back(It->second); 8300 if (PHINode *PN = dyn_cast<PHINode>(I)) 8301 ConstantEvolutionLoopExitValue.erase(PN); 8302 } 8303 8304 PushDefUseChildren(I, Worklist, Visited); 8305 } 8306 forgetMemoizedResults(ToForget); 8307 } 8308 8309 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8310 LoopDispositions.clear(); 8311 } 8312 8313 /// Get the exact loop backedge taken count considering all loop exits. A 8314 /// computable result can only be returned for loops with all exiting blocks 8315 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8316 /// is never skipped. This is a valid assumption as long as the loop exits via 8317 /// that test. For precise results, it is the caller's responsibility to specify 8318 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8319 const SCEV * 8320 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8321 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8322 // If any exits were not computable, the loop is not computable. 8323 if (!isComplete() || ExitNotTaken.empty()) 8324 return SE->getCouldNotCompute(); 8325 8326 const BasicBlock *Latch = L->getLoopLatch(); 8327 // All exiting blocks we have collected must dominate the only backedge. 8328 if (!Latch) 8329 return SE->getCouldNotCompute(); 8330 8331 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8332 // count is simply a minimum out of all these calculated exit counts. 8333 SmallVector<const SCEV *, 2> Ops; 8334 for (auto &ENT : ExitNotTaken) { 8335 const SCEV *BECount = ENT.ExactNotTaken; 8336 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8337 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8338 "We should only have known counts for exiting blocks that dominate " 8339 "latch!"); 8340 8341 Ops.push_back(BECount); 8342 8343 if (Preds) 8344 for (auto *P : ENT.Predicates) 8345 Preds->push_back(P); 8346 8347 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8348 "Predicate should be always true!"); 8349 } 8350 8351 // If an earlier exit exits on the first iteration (exit count zero), then 8352 // a later poison exit count should not propagate into the result. This are 8353 // exactly the semantics provided by umin_seq. 8354 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8355 } 8356 8357 /// Get the exact not taken count for this loop exit. 8358 const SCEV * 8359 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8360 ScalarEvolution *SE) const { 8361 for (auto &ENT : ExitNotTaken) 8362 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8363 return ENT.ExactNotTaken; 8364 8365 return SE->getCouldNotCompute(); 8366 } 8367 8368 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8369 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8370 for (auto &ENT : ExitNotTaken) 8371 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8372 return ENT.MaxNotTaken; 8373 8374 return SE->getCouldNotCompute(); 8375 } 8376 8377 /// getConstantMax - Get the constant max backedge taken count for the loop. 8378 const SCEV * 8379 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8380 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8381 return !ENT.hasAlwaysTruePredicate(); 8382 }; 8383 8384 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8385 return SE->getCouldNotCompute(); 8386 8387 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8388 isa<SCEVConstant>(getConstantMax())) && 8389 "No point in having a non-constant max backedge taken count!"); 8390 return getConstantMax(); 8391 } 8392 8393 const SCEV * 8394 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8395 ScalarEvolution *SE) { 8396 if (!SymbolicMax) 8397 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8398 return SymbolicMax; 8399 } 8400 8401 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8402 ScalarEvolution *SE) const { 8403 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8404 return !ENT.hasAlwaysTruePredicate(); 8405 }; 8406 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8407 } 8408 8409 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8410 : ExitLimit(E, E, false, None) { 8411 } 8412 8413 ScalarEvolution::ExitLimit::ExitLimit( 8414 const SCEV *E, const SCEV *M, bool MaxOrZero, 8415 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8416 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8417 // If we prove the max count is zero, so is the symbolic bound. This happens 8418 // in practice due to differences in a) how context sensitive we've chosen 8419 // to be and b) how we reason about bounds impied by UB. 8420 if (MaxNotTaken->isZero()) 8421 ExactNotTaken = MaxNotTaken; 8422 8423 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8424 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8425 "Exact is not allowed to be less precise than Max"); 8426 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8427 isa<SCEVConstant>(MaxNotTaken)) && 8428 "No point in having a non-constant max backedge taken count!"); 8429 for (auto *PredSet : PredSetList) 8430 for (auto *P : *PredSet) 8431 addPredicate(P); 8432 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8433 "Backedge count should be int"); 8434 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8435 "Max backedge count should be int"); 8436 } 8437 8438 ScalarEvolution::ExitLimit::ExitLimit( 8439 const SCEV *E, const SCEV *M, bool MaxOrZero, 8440 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8441 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8442 } 8443 8444 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8445 bool MaxOrZero) 8446 : ExitLimit(E, M, MaxOrZero, None) { 8447 } 8448 8449 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8450 /// computable exit into a persistent ExitNotTakenInfo array. 8451 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8452 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8453 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8454 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8455 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8456 8457 ExitNotTaken.reserve(ExitCounts.size()); 8458 std::transform( 8459 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8460 [&](const EdgeExitInfo &EEI) { 8461 BasicBlock *ExitBB = EEI.first; 8462 const ExitLimit &EL = EEI.second; 8463 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8464 EL.Predicates); 8465 }); 8466 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8467 isa<SCEVConstant>(ConstantMax)) && 8468 "No point in having a non-constant max backedge taken count!"); 8469 } 8470 8471 /// Compute the number of times the backedge of the specified loop will execute. 8472 ScalarEvolution::BackedgeTakenInfo 8473 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8474 bool AllowPredicates) { 8475 SmallVector<BasicBlock *, 8> ExitingBlocks; 8476 L->getExitingBlocks(ExitingBlocks); 8477 8478 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8479 8480 SmallVector<EdgeExitInfo, 4> ExitCounts; 8481 bool CouldComputeBECount = true; 8482 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8483 const SCEV *MustExitMaxBECount = nullptr; 8484 const SCEV *MayExitMaxBECount = nullptr; 8485 bool MustExitMaxOrZero = false; 8486 8487 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8488 // and compute maxBECount. 8489 // Do a union of all the predicates here. 8490 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8491 BasicBlock *ExitBB = ExitingBlocks[i]; 8492 8493 // We canonicalize untaken exits to br (constant), ignore them so that 8494 // proving an exit untaken doesn't negatively impact our ability to reason 8495 // about the loop as whole. 8496 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8497 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8498 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8499 if (ExitIfTrue == CI->isZero()) 8500 continue; 8501 } 8502 8503 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8504 8505 assert((AllowPredicates || EL.Predicates.empty()) && 8506 "Predicated exit limit when predicates are not allowed!"); 8507 8508 // 1. For each exit that can be computed, add an entry to ExitCounts. 8509 // CouldComputeBECount is true only if all exits can be computed. 8510 if (EL.ExactNotTaken == getCouldNotCompute()) 8511 // We couldn't compute an exact value for this exit, so 8512 // we won't be able to compute an exact value for the loop. 8513 CouldComputeBECount = false; 8514 else 8515 ExitCounts.emplace_back(ExitBB, EL); 8516 8517 // 2. Derive the loop's MaxBECount from each exit's max number of 8518 // non-exiting iterations. Partition the loop exits into two kinds: 8519 // LoopMustExits and LoopMayExits. 8520 // 8521 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8522 // is a LoopMayExit. If any computable LoopMustExit is found, then 8523 // MaxBECount is the minimum EL.MaxNotTaken of computable 8524 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8525 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8526 // computable EL.MaxNotTaken. 8527 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8528 DT.dominates(ExitBB, Latch)) { 8529 if (!MustExitMaxBECount) { 8530 MustExitMaxBECount = EL.MaxNotTaken; 8531 MustExitMaxOrZero = EL.MaxOrZero; 8532 } else { 8533 MustExitMaxBECount = 8534 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8535 } 8536 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8537 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8538 MayExitMaxBECount = EL.MaxNotTaken; 8539 else { 8540 MayExitMaxBECount = 8541 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8542 } 8543 } 8544 } 8545 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8546 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8547 // The loop backedge will be taken the maximum or zero times if there's 8548 // a single exit that must be taken the maximum or zero times. 8549 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8550 8551 // Remember which SCEVs are used in exit limits for invalidation purposes. 8552 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8553 // and MaxBECount, which must be SCEVConstant. 8554 for (const auto &Pair : ExitCounts) 8555 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8556 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8557 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8558 MaxBECount, MaxOrZero); 8559 } 8560 8561 ScalarEvolution::ExitLimit 8562 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8563 bool AllowPredicates) { 8564 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8565 // If our exiting block does not dominate the latch, then its connection with 8566 // loop's exit limit may be far from trivial. 8567 const BasicBlock *Latch = L->getLoopLatch(); 8568 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8569 return getCouldNotCompute(); 8570 8571 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8572 Instruction *Term = ExitingBlock->getTerminator(); 8573 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8574 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8575 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8576 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8577 "It should have one successor in loop and one exit block!"); 8578 // Proceed to the next level to examine the exit condition expression. 8579 return computeExitLimitFromCond( 8580 L, BI->getCondition(), ExitIfTrue, 8581 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8582 } 8583 8584 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8585 // For switch, make sure that there is a single exit from the loop. 8586 BasicBlock *Exit = nullptr; 8587 for (auto *SBB : successors(ExitingBlock)) 8588 if (!L->contains(SBB)) { 8589 if (Exit) // Multiple exit successors. 8590 return getCouldNotCompute(); 8591 Exit = SBB; 8592 } 8593 assert(Exit && "Exiting block must have at least one exit"); 8594 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8595 /*ControlsExit=*/IsOnlyExit); 8596 } 8597 8598 return getCouldNotCompute(); 8599 } 8600 8601 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8602 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8603 bool ControlsExit, bool AllowPredicates) { 8604 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8605 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8606 ControlsExit, AllowPredicates); 8607 } 8608 8609 Optional<ScalarEvolution::ExitLimit> 8610 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8611 bool ExitIfTrue, bool ControlsExit, 8612 bool AllowPredicates) { 8613 (void)this->L; 8614 (void)this->ExitIfTrue; 8615 (void)this->AllowPredicates; 8616 8617 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8618 this->AllowPredicates == AllowPredicates && 8619 "Variance in assumed invariant key components!"); 8620 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8621 if (Itr == TripCountMap.end()) 8622 return None; 8623 return Itr->second; 8624 } 8625 8626 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8627 bool ExitIfTrue, 8628 bool ControlsExit, 8629 bool AllowPredicates, 8630 const ExitLimit &EL) { 8631 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8632 this->AllowPredicates == AllowPredicates && 8633 "Variance in assumed invariant key components!"); 8634 8635 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8636 assert(InsertResult.second && "Expected successful insertion!"); 8637 (void)InsertResult; 8638 (void)ExitIfTrue; 8639 } 8640 8641 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8642 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8643 bool ControlsExit, bool AllowPredicates) { 8644 8645 if (auto MaybeEL = 8646 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8647 return *MaybeEL; 8648 8649 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8650 ControlsExit, AllowPredicates); 8651 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8652 return EL; 8653 } 8654 8655 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8656 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8657 bool ControlsExit, bool AllowPredicates) { 8658 // Handle BinOp conditions (And, Or). 8659 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8660 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8661 return *LimitFromBinOp; 8662 8663 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8664 // Proceed to the next level to examine the icmp. 8665 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8666 ExitLimit EL = 8667 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8668 if (EL.hasFullInfo() || !AllowPredicates) 8669 return EL; 8670 8671 // Try again, but use SCEV predicates this time. 8672 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8673 /*AllowPredicates=*/true); 8674 } 8675 8676 // Check for a constant condition. These are normally stripped out by 8677 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8678 // preserve the CFG and is temporarily leaving constant conditions 8679 // in place. 8680 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8681 if (ExitIfTrue == !CI->getZExtValue()) 8682 // The backedge is always taken. 8683 return getCouldNotCompute(); 8684 else 8685 // The backedge is never taken. 8686 return getZero(CI->getType()); 8687 } 8688 8689 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8690 // with a constant step, we can form an equivalent icmp predicate and figure 8691 // out how many iterations will be taken before we exit. 8692 const WithOverflowInst *WO; 8693 const APInt *C; 8694 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8695 match(WO->getRHS(), m_APInt(C))) { 8696 ConstantRange NWR = 8697 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8698 WO->getNoWrapKind()); 8699 CmpInst::Predicate Pred; 8700 APInt NewRHSC, Offset; 8701 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8702 if (!ExitIfTrue) 8703 Pred = ICmpInst::getInversePredicate(Pred); 8704 auto *LHS = getSCEV(WO->getLHS()); 8705 if (Offset != 0) 8706 LHS = getAddExpr(LHS, getConstant(Offset)); 8707 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8708 ControlsExit, AllowPredicates); 8709 if (EL.hasAnyInfo()) return EL; 8710 } 8711 8712 // If it's not an integer or pointer comparison then compute it the hard way. 8713 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8714 } 8715 8716 Optional<ScalarEvolution::ExitLimit> 8717 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8718 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8719 bool ControlsExit, bool AllowPredicates) { 8720 // Check if the controlling expression for this loop is an And or Or. 8721 Value *Op0, *Op1; 8722 bool IsAnd = false; 8723 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8724 IsAnd = true; 8725 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8726 IsAnd = false; 8727 else 8728 return None; 8729 8730 // EitherMayExit is true in these two cases: 8731 // br (and Op0 Op1), loop, exit 8732 // br (or Op0 Op1), exit, loop 8733 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8734 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8735 ControlsExit && !EitherMayExit, 8736 AllowPredicates); 8737 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8738 ControlsExit && !EitherMayExit, 8739 AllowPredicates); 8740 8741 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8742 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8743 if (isa<ConstantInt>(Op1)) 8744 return Op1 == NeutralElement ? EL0 : EL1; 8745 if (isa<ConstantInt>(Op0)) 8746 return Op0 == NeutralElement ? EL1 : EL0; 8747 8748 const SCEV *BECount = getCouldNotCompute(); 8749 const SCEV *MaxBECount = getCouldNotCompute(); 8750 if (EitherMayExit) { 8751 // Both conditions must be same for the loop to continue executing. 8752 // Choose the less conservative count. 8753 if (EL0.ExactNotTaken != getCouldNotCompute() && 8754 EL1.ExactNotTaken != getCouldNotCompute()) { 8755 BECount = getUMinFromMismatchedTypes( 8756 EL0.ExactNotTaken, EL1.ExactNotTaken, 8757 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8758 } 8759 if (EL0.MaxNotTaken == getCouldNotCompute()) 8760 MaxBECount = EL1.MaxNotTaken; 8761 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8762 MaxBECount = EL0.MaxNotTaken; 8763 else 8764 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8765 } else { 8766 // Both conditions must be same at the same time for the loop to exit. 8767 // For now, be conservative. 8768 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8769 BECount = EL0.ExactNotTaken; 8770 } 8771 8772 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8773 // to be more aggressive when computing BECount than when computing 8774 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8775 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8776 // to not. 8777 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8778 !isa<SCEVCouldNotCompute>(BECount)) 8779 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8780 8781 return ExitLimit(BECount, MaxBECount, false, 8782 { &EL0.Predicates, &EL1.Predicates }); 8783 } 8784 8785 ScalarEvolution::ExitLimit 8786 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8787 ICmpInst *ExitCond, 8788 bool ExitIfTrue, 8789 bool ControlsExit, 8790 bool AllowPredicates) { 8791 // If the condition was exit on true, convert the condition to exit on false 8792 ICmpInst::Predicate Pred; 8793 if (!ExitIfTrue) 8794 Pred = ExitCond->getPredicate(); 8795 else 8796 Pred = ExitCond->getInversePredicate(); 8797 const ICmpInst::Predicate OriginalPred = Pred; 8798 8799 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8800 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8801 8802 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8803 AllowPredicates); 8804 if (EL.hasAnyInfo()) return EL; 8805 8806 auto *ExhaustiveCount = 8807 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8808 8809 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8810 return ExhaustiveCount; 8811 8812 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8813 ExitCond->getOperand(1), L, OriginalPred); 8814 } 8815 ScalarEvolution::ExitLimit 8816 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8817 ICmpInst::Predicate Pred, 8818 const SCEV *LHS, const SCEV *RHS, 8819 bool ControlsExit, 8820 bool AllowPredicates) { 8821 8822 // Try to evaluate any dependencies out of the loop. 8823 LHS = getSCEVAtScope(LHS, L); 8824 RHS = getSCEVAtScope(RHS, L); 8825 8826 // At this point, we would like to compute how many iterations of the 8827 // loop the predicate will return true for these inputs. 8828 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8829 // If there is a loop-invariant, force it into the RHS. 8830 std::swap(LHS, RHS); 8831 Pred = ICmpInst::getSwappedPredicate(Pred); 8832 } 8833 8834 bool ControllingFiniteLoop = 8835 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8836 // Simplify the operands before analyzing them. 8837 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8838 (EnableFiniteLoopControl ? ControllingFiniteLoop 8839 : false)); 8840 8841 // If we have a comparison of a chrec against a constant, try to use value 8842 // ranges to answer this query. 8843 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8844 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8845 if (AddRec->getLoop() == L) { 8846 // Form the constant range. 8847 ConstantRange CompRange = 8848 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8849 8850 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8851 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8852 } 8853 8854 // If this loop must exit based on this condition (or execute undefined 8855 // behaviour), and we can prove the test sequence produced must repeat 8856 // the same values on self-wrap of the IV, then we can infer that IV 8857 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8858 // loop. 8859 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8860 // TODO: We can peel off any functions which are invertible *in L*. Loop 8861 // invariant terms are effectively constants for our purposes here. 8862 auto *InnerLHS = LHS; 8863 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8864 InnerLHS = ZExt->getOperand(); 8865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8866 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8867 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8868 StrideC && StrideC->getAPInt().isPowerOf2()) { 8869 auto Flags = AR->getNoWrapFlags(); 8870 Flags = setFlags(Flags, SCEV::FlagNW); 8871 SmallVector<const SCEV*> Operands{AR->operands()}; 8872 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8873 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8874 } 8875 } 8876 } 8877 8878 switch (Pred) { 8879 case ICmpInst::ICMP_NE: { // while (X != Y) 8880 // Convert to: while (X-Y != 0) 8881 if (LHS->getType()->isPointerTy()) { 8882 LHS = getLosslessPtrToIntExpr(LHS); 8883 if (isa<SCEVCouldNotCompute>(LHS)) 8884 return LHS; 8885 } 8886 if (RHS->getType()->isPointerTy()) { 8887 RHS = getLosslessPtrToIntExpr(RHS); 8888 if (isa<SCEVCouldNotCompute>(RHS)) 8889 return RHS; 8890 } 8891 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8892 AllowPredicates); 8893 if (EL.hasAnyInfo()) return EL; 8894 break; 8895 } 8896 case ICmpInst::ICMP_EQ: { // while (X == Y) 8897 // Convert to: while (X-Y == 0) 8898 if (LHS->getType()->isPointerTy()) { 8899 LHS = getLosslessPtrToIntExpr(LHS); 8900 if (isa<SCEVCouldNotCompute>(LHS)) 8901 return LHS; 8902 } 8903 if (RHS->getType()->isPointerTy()) { 8904 RHS = getLosslessPtrToIntExpr(RHS); 8905 if (isa<SCEVCouldNotCompute>(RHS)) 8906 return RHS; 8907 } 8908 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8909 if (EL.hasAnyInfo()) return EL; 8910 break; 8911 } 8912 case ICmpInst::ICMP_SLT: 8913 case ICmpInst::ICMP_ULT: { // while (X < Y) 8914 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8915 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8916 AllowPredicates); 8917 if (EL.hasAnyInfo()) return EL; 8918 break; 8919 } 8920 case ICmpInst::ICMP_SGT: 8921 case ICmpInst::ICMP_UGT: { // while (X > Y) 8922 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8923 ExitLimit EL = 8924 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8925 AllowPredicates); 8926 if (EL.hasAnyInfo()) return EL; 8927 break; 8928 } 8929 default: 8930 break; 8931 } 8932 8933 return getCouldNotCompute(); 8934 } 8935 8936 ScalarEvolution::ExitLimit 8937 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8938 SwitchInst *Switch, 8939 BasicBlock *ExitingBlock, 8940 bool ControlsExit) { 8941 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8942 8943 // Give up if the exit is the default dest of a switch. 8944 if (Switch->getDefaultDest() == ExitingBlock) 8945 return getCouldNotCompute(); 8946 8947 assert(L->contains(Switch->getDefaultDest()) && 8948 "Default case must not exit the loop!"); 8949 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8950 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8951 8952 // while (X != Y) --> while (X-Y != 0) 8953 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8954 if (EL.hasAnyInfo()) 8955 return EL; 8956 8957 return getCouldNotCompute(); 8958 } 8959 8960 static ConstantInt * 8961 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8962 ScalarEvolution &SE) { 8963 const SCEV *InVal = SE.getConstant(C); 8964 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8965 assert(isa<SCEVConstant>(Val) && 8966 "Evaluation of SCEV at constant didn't fold correctly?"); 8967 return cast<SCEVConstant>(Val)->getValue(); 8968 } 8969 8970 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8971 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8972 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8973 if (!RHS) 8974 return getCouldNotCompute(); 8975 8976 const BasicBlock *Latch = L->getLoopLatch(); 8977 if (!Latch) 8978 return getCouldNotCompute(); 8979 8980 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8981 if (!Predecessor) 8982 return getCouldNotCompute(); 8983 8984 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8985 // Return LHS in OutLHS and shift_opt in OutOpCode. 8986 auto MatchPositiveShift = 8987 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8988 8989 using namespace PatternMatch; 8990 8991 ConstantInt *ShiftAmt; 8992 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8993 OutOpCode = Instruction::LShr; 8994 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8995 OutOpCode = Instruction::AShr; 8996 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8997 OutOpCode = Instruction::Shl; 8998 else 8999 return false; 9000 9001 return ShiftAmt->getValue().isStrictlyPositive(); 9002 }; 9003 9004 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 9005 // 9006 // loop: 9007 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 9008 // %iv.shifted = lshr i32 %iv, <positive constant> 9009 // 9010 // Return true on a successful match. Return the corresponding PHI node (%iv 9011 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 9012 auto MatchShiftRecurrence = 9013 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 9014 Optional<Instruction::BinaryOps> PostShiftOpCode; 9015 9016 { 9017 Instruction::BinaryOps OpC; 9018 Value *V; 9019 9020 // If we encounter a shift instruction, "peel off" the shift operation, 9021 // and remember that we did so. Later when we inspect %iv's backedge 9022 // value, we will make sure that the backedge value uses the same 9023 // operation. 9024 // 9025 // Note: the peeled shift operation does not have to be the same 9026 // instruction as the one feeding into the PHI's backedge value. We only 9027 // really care about it being the same *kind* of shift instruction -- 9028 // that's all that is required for our later inferences to hold. 9029 if (MatchPositiveShift(LHS, V, OpC)) { 9030 PostShiftOpCode = OpC; 9031 LHS = V; 9032 } 9033 } 9034 9035 PNOut = dyn_cast<PHINode>(LHS); 9036 if (!PNOut || PNOut->getParent() != L->getHeader()) 9037 return false; 9038 9039 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 9040 Value *OpLHS; 9041 9042 return 9043 // The backedge value for the PHI node must be a shift by a positive 9044 // amount 9045 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 9046 9047 // of the PHI node itself 9048 OpLHS == PNOut && 9049 9050 // and the kind of shift should be match the kind of shift we peeled 9051 // off, if any. 9052 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 9053 }; 9054 9055 PHINode *PN; 9056 Instruction::BinaryOps OpCode; 9057 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 9058 return getCouldNotCompute(); 9059 9060 const DataLayout &DL = getDataLayout(); 9061 9062 // The key rationale for this optimization is that for some kinds of shift 9063 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 9064 // within a finite number of iterations. If the condition guarding the 9065 // backedge (in the sense that the backedge is taken if the condition is true) 9066 // is false for the value the shift recurrence stabilizes to, then we know 9067 // that the backedge is taken only a finite number of times. 9068 9069 ConstantInt *StableValue = nullptr; 9070 switch (OpCode) { 9071 default: 9072 llvm_unreachable("Impossible case!"); 9073 9074 case Instruction::AShr: { 9075 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 9076 // bitwidth(K) iterations. 9077 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 9078 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 9079 Predecessor->getTerminator(), &DT); 9080 auto *Ty = cast<IntegerType>(RHS->getType()); 9081 if (Known.isNonNegative()) 9082 StableValue = ConstantInt::get(Ty, 0); 9083 else if (Known.isNegative()) 9084 StableValue = ConstantInt::get(Ty, -1, true); 9085 else 9086 return getCouldNotCompute(); 9087 9088 break; 9089 } 9090 case Instruction::LShr: 9091 case Instruction::Shl: 9092 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 9093 // stabilize to 0 in at most bitwidth(K) iterations. 9094 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 9095 break; 9096 } 9097 9098 auto *Result = 9099 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 9100 assert(Result->getType()->isIntegerTy(1) && 9101 "Otherwise cannot be an operand to a branch instruction"); 9102 9103 if (Result->isZeroValue()) { 9104 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9105 const SCEV *UpperBound = 9106 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 9107 return ExitLimit(getCouldNotCompute(), UpperBound, false); 9108 } 9109 9110 return getCouldNotCompute(); 9111 } 9112 9113 /// Return true if we can constant fold an instruction of the specified type, 9114 /// assuming that all operands were constants. 9115 static bool CanConstantFold(const Instruction *I) { 9116 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 9117 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9118 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 9119 return true; 9120 9121 if (const CallInst *CI = dyn_cast<CallInst>(I)) 9122 if (const Function *F = CI->getCalledFunction()) 9123 return canConstantFoldCallTo(CI, F); 9124 return false; 9125 } 9126 9127 /// Determine whether this instruction can constant evolve within this loop 9128 /// assuming its operands can all constant evolve. 9129 static bool canConstantEvolve(Instruction *I, const Loop *L) { 9130 // An instruction outside of the loop can't be derived from a loop PHI. 9131 if (!L->contains(I)) return false; 9132 9133 if (isa<PHINode>(I)) { 9134 // We don't currently keep track of the control flow needed to evaluate 9135 // PHIs, so we cannot handle PHIs inside of loops. 9136 return L->getHeader() == I->getParent(); 9137 } 9138 9139 // If we won't be able to constant fold this expression even if the operands 9140 // are constants, bail early. 9141 return CanConstantFold(I); 9142 } 9143 9144 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 9145 /// recursing through each instruction operand until reaching a loop header phi. 9146 static PHINode * 9147 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 9148 DenseMap<Instruction *, PHINode *> &PHIMap, 9149 unsigned Depth) { 9150 if (Depth > MaxConstantEvolvingDepth) 9151 return nullptr; 9152 9153 // Otherwise, we can evaluate this instruction if all of its operands are 9154 // constant or derived from a PHI node themselves. 9155 PHINode *PHI = nullptr; 9156 for (Value *Op : UseInst->operands()) { 9157 if (isa<Constant>(Op)) continue; 9158 9159 Instruction *OpInst = dyn_cast<Instruction>(Op); 9160 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 9161 9162 PHINode *P = dyn_cast<PHINode>(OpInst); 9163 if (!P) 9164 // If this operand is already visited, reuse the prior result. 9165 // We may have P != PHI if this is the deepest point at which the 9166 // inconsistent paths meet. 9167 P = PHIMap.lookup(OpInst); 9168 if (!P) { 9169 // Recurse and memoize the results, whether a phi is found or not. 9170 // This recursive call invalidates pointers into PHIMap. 9171 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9172 PHIMap[OpInst] = P; 9173 } 9174 if (!P) 9175 return nullptr; // Not evolving from PHI 9176 if (PHI && PHI != P) 9177 return nullptr; // Evolving from multiple different PHIs. 9178 PHI = P; 9179 } 9180 // This is a expression evolving from a constant PHI! 9181 return PHI; 9182 } 9183 9184 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9185 /// in the loop that V is derived from. We allow arbitrary operations along the 9186 /// way, but the operands of an operation must either be constants or a value 9187 /// derived from a constant PHI. If this expression does not fit with these 9188 /// constraints, return null. 9189 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9190 Instruction *I = dyn_cast<Instruction>(V); 9191 if (!I || !canConstantEvolve(I, L)) return nullptr; 9192 9193 if (PHINode *PN = dyn_cast<PHINode>(I)) 9194 return PN; 9195 9196 // Record non-constant instructions contained by the loop. 9197 DenseMap<Instruction *, PHINode *> PHIMap; 9198 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9199 } 9200 9201 /// EvaluateExpression - Given an expression that passes the 9202 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9203 /// in the loop has the value PHIVal. If we can't fold this expression for some 9204 /// reason, return null. 9205 static Constant *EvaluateExpression(Value *V, const Loop *L, 9206 DenseMap<Instruction *, Constant *> &Vals, 9207 const DataLayout &DL, 9208 const TargetLibraryInfo *TLI) { 9209 // Convenient constant check, but redundant for recursive calls. 9210 if (Constant *C = dyn_cast<Constant>(V)) return C; 9211 Instruction *I = dyn_cast<Instruction>(V); 9212 if (!I) return nullptr; 9213 9214 if (Constant *C = Vals.lookup(I)) return C; 9215 9216 // An instruction inside the loop depends on a value outside the loop that we 9217 // weren't given a mapping for, or a value such as a call inside the loop. 9218 if (!canConstantEvolve(I, L)) return nullptr; 9219 9220 // An unmapped PHI can be due to a branch or another loop inside this loop, 9221 // or due to this not being the initial iteration through a loop where we 9222 // couldn't compute the evolution of this particular PHI last time. 9223 if (isa<PHINode>(I)) return nullptr; 9224 9225 std::vector<Constant*> Operands(I->getNumOperands()); 9226 9227 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9228 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9229 if (!Operand) { 9230 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9231 if (!Operands[i]) return nullptr; 9232 continue; 9233 } 9234 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9235 Vals[Operand] = C; 9236 if (!C) return nullptr; 9237 Operands[i] = C; 9238 } 9239 9240 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9241 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9242 Operands[1], DL, TLI); 9243 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9244 if (!LI->isVolatile()) 9245 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9246 } 9247 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9248 } 9249 9250 9251 // If every incoming value to PN except the one for BB is a specific Constant, 9252 // return that, else return nullptr. 9253 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9254 Constant *IncomingVal = nullptr; 9255 9256 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9257 if (PN->getIncomingBlock(i) == BB) 9258 continue; 9259 9260 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9261 if (!CurrentVal) 9262 return nullptr; 9263 9264 if (IncomingVal != CurrentVal) { 9265 if (IncomingVal) 9266 return nullptr; 9267 IncomingVal = CurrentVal; 9268 } 9269 } 9270 9271 return IncomingVal; 9272 } 9273 9274 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9275 /// in the header of its containing loop, we know the loop executes a 9276 /// constant number of times, and the PHI node is just a recurrence 9277 /// involving constants, fold it. 9278 Constant * 9279 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9280 const APInt &BEs, 9281 const Loop *L) { 9282 auto I = ConstantEvolutionLoopExitValue.find(PN); 9283 if (I != ConstantEvolutionLoopExitValue.end()) 9284 return I->second; 9285 9286 if (BEs.ugt(MaxBruteForceIterations)) 9287 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9288 9289 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9290 9291 DenseMap<Instruction *, Constant *> CurrentIterVals; 9292 BasicBlock *Header = L->getHeader(); 9293 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9294 9295 BasicBlock *Latch = L->getLoopLatch(); 9296 if (!Latch) 9297 return nullptr; 9298 9299 for (PHINode &PHI : Header->phis()) { 9300 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9301 CurrentIterVals[&PHI] = StartCST; 9302 } 9303 if (!CurrentIterVals.count(PN)) 9304 return RetVal = nullptr; 9305 9306 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9307 9308 // Execute the loop symbolically to determine the exit value. 9309 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9310 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9311 9312 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9313 unsigned IterationNum = 0; 9314 const DataLayout &DL = getDataLayout(); 9315 for (; ; ++IterationNum) { 9316 if (IterationNum == NumIterations) 9317 return RetVal = CurrentIterVals[PN]; // Got exit value! 9318 9319 // Compute the value of the PHIs for the next iteration. 9320 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9321 DenseMap<Instruction *, Constant *> NextIterVals; 9322 Constant *NextPHI = 9323 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9324 if (!NextPHI) 9325 return nullptr; // Couldn't evaluate! 9326 NextIterVals[PN] = NextPHI; 9327 9328 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9329 9330 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9331 // cease to be able to evaluate one of them or if they stop evolving, 9332 // because that doesn't necessarily prevent us from computing PN. 9333 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9334 for (const auto &I : CurrentIterVals) { 9335 PHINode *PHI = dyn_cast<PHINode>(I.first); 9336 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9337 PHIsToCompute.emplace_back(PHI, I.second); 9338 } 9339 // We use two distinct loops because EvaluateExpression may invalidate any 9340 // iterators into CurrentIterVals. 9341 for (const auto &I : PHIsToCompute) { 9342 PHINode *PHI = I.first; 9343 Constant *&NextPHI = NextIterVals[PHI]; 9344 if (!NextPHI) { // Not already computed. 9345 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9346 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9347 } 9348 if (NextPHI != I.second) 9349 StoppedEvolving = false; 9350 } 9351 9352 // If all entries in CurrentIterVals == NextIterVals then we can stop 9353 // iterating, the loop can't continue to change. 9354 if (StoppedEvolving) 9355 return RetVal = CurrentIterVals[PN]; 9356 9357 CurrentIterVals.swap(NextIterVals); 9358 } 9359 } 9360 9361 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9362 Value *Cond, 9363 bool ExitWhen) { 9364 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9365 if (!PN) return getCouldNotCompute(); 9366 9367 // If the loop is canonicalized, the PHI will have exactly two entries. 9368 // That's the only form we support here. 9369 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9370 9371 DenseMap<Instruction *, Constant *> CurrentIterVals; 9372 BasicBlock *Header = L->getHeader(); 9373 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9374 9375 BasicBlock *Latch = L->getLoopLatch(); 9376 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9377 9378 for (PHINode &PHI : Header->phis()) { 9379 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9380 CurrentIterVals[&PHI] = StartCST; 9381 } 9382 if (!CurrentIterVals.count(PN)) 9383 return getCouldNotCompute(); 9384 9385 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9386 // the loop symbolically to determine when the condition gets a value of 9387 // "ExitWhen". 9388 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9389 const DataLayout &DL = getDataLayout(); 9390 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9391 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9392 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9393 9394 // Couldn't symbolically evaluate. 9395 if (!CondVal) return getCouldNotCompute(); 9396 9397 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9398 ++NumBruteForceTripCountsComputed; 9399 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9400 } 9401 9402 // Update all the PHI nodes for the next iteration. 9403 DenseMap<Instruction *, Constant *> NextIterVals; 9404 9405 // Create a list of which PHIs we need to compute. We want to do this before 9406 // calling EvaluateExpression on them because that may invalidate iterators 9407 // into CurrentIterVals. 9408 SmallVector<PHINode *, 8> PHIsToCompute; 9409 for (const auto &I : CurrentIterVals) { 9410 PHINode *PHI = dyn_cast<PHINode>(I.first); 9411 if (!PHI || PHI->getParent() != Header) continue; 9412 PHIsToCompute.push_back(PHI); 9413 } 9414 for (PHINode *PHI : PHIsToCompute) { 9415 Constant *&NextPHI = NextIterVals[PHI]; 9416 if (NextPHI) continue; // Already computed! 9417 9418 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9419 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9420 } 9421 CurrentIterVals.swap(NextIterVals); 9422 } 9423 9424 // Too many iterations were needed to evaluate. 9425 return getCouldNotCompute(); 9426 } 9427 9428 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9429 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9430 ValuesAtScopes[V]; 9431 // Check to see if we've folded this expression at this loop before. 9432 for (auto &LS : Values) 9433 if (LS.first == L) 9434 return LS.second ? LS.second : V; 9435 9436 Values.emplace_back(L, nullptr); 9437 9438 // Otherwise compute it. 9439 const SCEV *C = computeSCEVAtScope(V, L); 9440 for (auto &LS : reverse(ValuesAtScopes[V])) 9441 if (LS.first == L) { 9442 LS.second = C; 9443 if (!isa<SCEVConstant>(C)) 9444 ValuesAtScopesUsers[C].push_back({L, V}); 9445 break; 9446 } 9447 return C; 9448 } 9449 9450 /// This builds up a Constant using the ConstantExpr interface. That way, we 9451 /// will return Constants for objects which aren't represented by a 9452 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9453 /// Returns NULL if the SCEV isn't representable as a Constant. 9454 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9455 switch (V->getSCEVType()) { 9456 case scCouldNotCompute: 9457 case scAddRecExpr: 9458 return nullptr; 9459 case scConstant: 9460 return cast<SCEVConstant>(V)->getValue(); 9461 case scUnknown: 9462 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9463 case scSignExtend: { 9464 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9465 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9466 return ConstantExpr::getSExt(CastOp, SS->getType()); 9467 return nullptr; 9468 } 9469 case scZeroExtend: { 9470 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9471 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9472 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9473 return nullptr; 9474 } 9475 case scPtrToInt: { 9476 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9477 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9478 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9479 9480 return nullptr; 9481 } 9482 case scTruncate: { 9483 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9484 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9485 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9486 return nullptr; 9487 } 9488 case scAddExpr: { 9489 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9490 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9491 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9492 unsigned AS = PTy->getAddressSpace(); 9493 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9494 C = ConstantExpr::getBitCast(C, DestPtrTy); 9495 } 9496 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9497 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9498 if (!C2) 9499 return nullptr; 9500 9501 // First pointer! 9502 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9503 unsigned AS = C2->getType()->getPointerAddressSpace(); 9504 std::swap(C, C2); 9505 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9506 // The offsets have been converted to bytes. We can add bytes to an 9507 // i8* by GEP with the byte count in the first index. 9508 C = ConstantExpr::getBitCast(C, DestPtrTy); 9509 } 9510 9511 // Don't bother trying to sum two pointers. We probably can't 9512 // statically compute a load that results from it anyway. 9513 if (C2->getType()->isPointerTy()) 9514 return nullptr; 9515 9516 if (C->getType()->isPointerTy()) { 9517 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9518 C, C2); 9519 } else { 9520 C = ConstantExpr::getAdd(C, C2); 9521 } 9522 } 9523 return C; 9524 } 9525 return nullptr; 9526 } 9527 case scMulExpr: { 9528 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9529 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9530 // Don't bother with pointers at all. 9531 if (C->getType()->isPointerTy()) 9532 return nullptr; 9533 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9534 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9535 if (!C2 || C2->getType()->isPointerTy()) 9536 return nullptr; 9537 C = ConstantExpr::getMul(C, C2); 9538 } 9539 return C; 9540 } 9541 return nullptr; 9542 } 9543 case scUDivExpr: { 9544 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9545 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9546 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9547 if (LHS->getType() == RHS->getType()) 9548 return ConstantExpr::getUDiv(LHS, RHS); 9549 return nullptr; 9550 } 9551 case scSMaxExpr: 9552 case scUMaxExpr: 9553 case scSMinExpr: 9554 case scUMinExpr: 9555 case scSequentialUMinExpr: 9556 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9557 } 9558 llvm_unreachable("Unknown SCEV kind!"); 9559 } 9560 9561 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9562 if (isa<SCEVConstant>(V)) return V; 9563 9564 // If this instruction is evolved from a constant-evolving PHI, compute the 9565 // exit value from the loop without using SCEVs. 9566 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9567 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9568 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9569 const Loop *CurrLoop = this->LI[I->getParent()]; 9570 // Looking for loop exit value. 9571 if (CurrLoop && CurrLoop->getParentLoop() == L && 9572 PN->getParent() == CurrLoop->getHeader()) { 9573 // Okay, there is no closed form solution for the PHI node. Check 9574 // to see if the loop that contains it has a known backedge-taken 9575 // count. If so, we may be able to force computation of the exit 9576 // value. 9577 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9578 // This trivial case can show up in some degenerate cases where 9579 // the incoming IR has not yet been fully simplified. 9580 if (BackedgeTakenCount->isZero()) { 9581 Value *InitValue = nullptr; 9582 bool MultipleInitValues = false; 9583 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9584 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9585 if (!InitValue) 9586 InitValue = PN->getIncomingValue(i); 9587 else if (InitValue != PN->getIncomingValue(i)) { 9588 MultipleInitValues = true; 9589 break; 9590 } 9591 } 9592 } 9593 if (!MultipleInitValues && InitValue) 9594 return getSCEV(InitValue); 9595 } 9596 // Do we have a loop invariant value flowing around the backedge 9597 // for a loop which must execute the backedge? 9598 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9599 isKnownPositive(BackedgeTakenCount) && 9600 PN->getNumIncomingValues() == 2) { 9601 9602 unsigned InLoopPred = 9603 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9604 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9605 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9606 return getSCEV(BackedgeVal); 9607 } 9608 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9609 // Okay, we know how many times the containing loop executes. If 9610 // this is a constant evolving PHI node, get the final value at 9611 // the specified iteration number. 9612 Constant *RV = getConstantEvolutionLoopExitValue( 9613 PN, BTCC->getAPInt(), CurrLoop); 9614 if (RV) return getSCEV(RV); 9615 } 9616 } 9617 9618 // If there is a single-input Phi, evaluate it at our scope. If we can 9619 // prove that this replacement does not break LCSSA form, use new value. 9620 if (PN->getNumOperands() == 1) { 9621 const SCEV *Input = getSCEV(PN->getOperand(0)); 9622 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9623 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9624 // for the simplest case just support constants. 9625 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9626 } 9627 } 9628 9629 // Okay, this is an expression that we cannot symbolically evaluate 9630 // into a SCEV. Check to see if it's possible to symbolically evaluate 9631 // the arguments into constants, and if so, try to constant propagate the 9632 // result. This is particularly useful for computing loop exit values. 9633 if (CanConstantFold(I)) { 9634 SmallVector<Constant *, 4> Operands; 9635 bool MadeImprovement = false; 9636 for (Value *Op : I->operands()) { 9637 if (Constant *C = dyn_cast<Constant>(Op)) { 9638 Operands.push_back(C); 9639 continue; 9640 } 9641 9642 // If any of the operands is non-constant and if they are 9643 // non-integer and non-pointer, don't even try to analyze them 9644 // with scev techniques. 9645 if (!isSCEVable(Op->getType())) 9646 return V; 9647 9648 const SCEV *OrigV = getSCEV(Op); 9649 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9650 MadeImprovement |= OrigV != OpV; 9651 9652 Constant *C = BuildConstantFromSCEV(OpV); 9653 if (!C) return V; 9654 if (C->getType() != Op->getType()) 9655 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9656 Op->getType(), 9657 false), 9658 C, Op->getType()); 9659 Operands.push_back(C); 9660 } 9661 9662 // Check to see if getSCEVAtScope actually made an improvement. 9663 if (MadeImprovement) { 9664 Constant *C = nullptr; 9665 const DataLayout &DL = getDataLayout(); 9666 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9667 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9668 Operands[1], DL, &TLI); 9669 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9670 if (!Load->isVolatile()) 9671 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9672 DL); 9673 } else 9674 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9675 if (!C) return V; 9676 return getSCEV(C); 9677 } 9678 } 9679 } 9680 9681 // This is some other type of SCEVUnknown, just return it. 9682 return V; 9683 } 9684 9685 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9686 const auto *Comm = cast<SCEVNAryExpr>(V); 9687 // Avoid performing the look-up in the common case where the specified 9688 // expression has no loop-variant portions. 9689 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9690 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9691 if (OpAtScope != Comm->getOperand(i)) { 9692 // Okay, at least one of these operands is loop variant but might be 9693 // foldable. Build a new instance of the folded commutative expression. 9694 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9695 Comm->op_begin()+i); 9696 NewOps.push_back(OpAtScope); 9697 9698 for (++i; i != e; ++i) { 9699 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9700 NewOps.push_back(OpAtScope); 9701 } 9702 if (isa<SCEVAddExpr>(Comm)) 9703 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9704 if (isa<SCEVMulExpr>(Comm)) 9705 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9706 if (isa<SCEVMinMaxExpr>(Comm)) 9707 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9708 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9709 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9710 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9711 } 9712 } 9713 // If we got here, all operands are loop invariant. 9714 return Comm; 9715 } 9716 9717 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9718 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9719 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9720 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9721 return Div; // must be loop invariant 9722 return getUDivExpr(LHS, RHS); 9723 } 9724 9725 // If this is a loop recurrence for a loop that does not contain L, then we 9726 // are dealing with the final value computed by the loop. 9727 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9728 // First, attempt to evaluate each operand. 9729 // Avoid performing the look-up in the common case where the specified 9730 // expression has no loop-variant portions. 9731 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9732 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9733 if (OpAtScope == AddRec->getOperand(i)) 9734 continue; 9735 9736 // Okay, at least one of these operands is loop variant but might be 9737 // foldable. Build a new instance of the folded commutative expression. 9738 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9739 AddRec->op_begin()+i); 9740 NewOps.push_back(OpAtScope); 9741 for (++i; i != e; ++i) 9742 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9743 9744 const SCEV *FoldedRec = 9745 getAddRecExpr(NewOps, AddRec->getLoop(), 9746 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9747 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9748 // The addrec may be folded to a nonrecurrence, for example, if the 9749 // induction variable is multiplied by zero after constant folding. Go 9750 // ahead and return the folded value. 9751 if (!AddRec) 9752 return FoldedRec; 9753 break; 9754 } 9755 9756 // If the scope is outside the addrec's loop, evaluate it by using the 9757 // loop exit value of the addrec. 9758 if (!AddRec->getLoop()->contains(L)) { 9759 // To evaluate this recurrence, we need to know how many times the AddRec 9760 // loop iterates. Compute this now. 9761 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9762 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9763 9764 // Then, evaluate the AddRec. 9765 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9766 } 9767 9768 return AddRec; 9769 } 9770 9771 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9772 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9773 if (Op == Cast->getOperand()) 9774 return Cast; // must be loop invariant 9775 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9776 } 9777 9778 llvm_unreachable("Unknown SCEV type!"); 9779 } 9780 9781 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9782 return getSCEVAtScope(getSCEV(V), L); 9783 } 9784 9785 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9786 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9787 return stripInjectiveFunctions(ZExt->getOperand()); 9788 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9789 return stripInjectiveFunctions(SExt->getOperand()); 9790 return S; 9791 } 9792 9793 /// Finds the minimum unsigned root of the following equation: 9794 /// 9795 /// A * X = B (mod N) 9796 /// 9797 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9798 /// A and B isn't important. 9799 /// 9800 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9801 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9802 ScalarEvolution &SE) { 9803 uint32_t BW = A.getBitWidth(); 9804 assert(BW == SE.getTypeSizeInBits(B->getType())); 9805 assert(A != 0 && "A must be non-zero."); 9806 9807 // 1. D = gcd(A, N) 9808 // 9809 // The gcd of A and N may have only one prime factor: 2. The number of 9810 // trailing zeros in A is its multiplicity 9811 uint32_t Mult2 = A.countTrailingZeros(); 9812 // D = 2^Mult2 9813 9814 // 2. Check if B is divisible by D. 9815 // 9816 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9817 // is not less than multiplicity of this prime factor for D. 9818 if (SE.GetMinTrailingZeros(B) < Mult2) 9819 return SE.getCouldNotCompute(); 9820 9821 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9822 // modulo (N / D). 9823 // 9824 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9825 // (N / D) in general. The inverse itself always fits into BW bits, though, 9826 // so we immediately truncate it. 9827 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9828 APInt Mod(BW + 1, 0); 9829 Mod.setBit(BW - Mult2); // Mod = N / D 9830 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9831 9832 // 4. Compute the minimum unsigned root of the equation: 9833 // I * (B / D) mod (N / D) 9834 // To simplify the computation, we factor out the divide by D: 9835 // (I * B mod N) / D 9836 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9837 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9838 } 9839 9840 /// For a given quadratic addrec, generate coefficients of the corresponding 9841 /// quadratic equation, multiplied by a common value to ensure that they are 9842 /// integers. 9843 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9844 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9845 /// were multiplied by, and BitWidth is the bit width of the original addrec 9846 /// coefficients. 9847 /// This function returns None if the addrec coefficients are not compile- 9848 /// time constants. 9849 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9850 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9851 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9852 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9853 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9854 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9855 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9856 << *AddRec << '\n'); 9857 9858 // We currently can only solve this if the coefficients are constants. 9859 if (!LC || !MC || !NC) { 9860 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9861 return None; 9862 } 9863 9864 APInt L = LC->getAPInt(); 9865 APInt M = MC->getAPInt(); 9866 APInt N = NC->getAPInt(); 9867 assert(!N.isZero() && "This is not a quadratic addrec"); 9868 9869 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9870 unsigned NewWidth = BitWidth + 1; 9871 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9872 << BitWidth << '\n'); 9873 // The sign-extension (as opposed to a zero-extension) here matches the 9874 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9875 N = N.sext(NewWidth); 9876 M = M.sext(NewWidth); 9877 L = L.sext(NewWidth); 9878 9879 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9880 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9881 // L+M, L+2M+N, L+3M+3N, ... 9882 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9883 // 9884 // The equation Acc = 0 is then 9885 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9886 // In a quadratic form it becomes: 9887 // N n^2 + (2M-N) n + 2L = 0. 9888 9889 APInt A = N; 9890 APInt B = 2 * M - A; 9891 APInt C = 2 * L; 9892 APInt T = APInt(NewWidth, 2); 9893 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9894 << "x + " << C << ", coeff bw: " << NewWidth 9895 << ", multiplied by " << T << '\n'); 9896 return std::make_tuple(A, B, C, T, BitWidth); 9897 } 9898 9899 /// Helper function to compare optional APInts: 9900 /// (a) if X and Y both exist, return min(X, Y), 9901 /// (b) if neither X nor Y exist, return None, 9902 /// (c) if exactly one of X and Y exists, return that value. 9903 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9904 if (X && Y) { 9905 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9906 APInt XW = X->sext(W); 9907 APInt YW = Y->sext(W); 9908 return XW.slt(YW) ? *X : *Y; 9909 } 9910 if (!X && !Y) 9911 return None; 9912 return X ? *X : *Y; 9913 } 9914 9915 /// Helper function to truncate an optional APInt to a given BitWidth. 9916 /// When solving addrec-related equations, it is preferable to return a value 9917 /// that has the same bit width as the original addrec's coefficients. If the 9918 /// solution fits in the original bit width, truncate it (except for i1). 9919 /// Returning a value of a different bit width may inhibit some optimizations. 9920 /// 9921 /// In general, a solution to a quadratic equation generated from an addrec 9922 /// may require BW+1 bits, where BW is the bit width of the addrec's 9923 /// coefficients. The reason is that the coefficients of the quadratic 9924 /// equation are BW+1 bits wide (to avoid truncation when converting from 9925 /// the addrec to the equation). 9926 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9927 if (!X) 9928 return None; 9929 unsigned W = X->getBitWidth(); 9930 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9931 return X->trunc(BitWidth); 9932 return X; 9933 } 9934 9935 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9936 /// iterations. The values L, M, N are assumed to be signed, and they 9937 /// should all have the same bit widths. 9938 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9939 /// where BW is the bit width of the addrec's coefficients. 9940 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9941 /// returned as such, otherwise the bit width of the returned value may 9942 /// be greater than BW. 9943 /// 9944 /// This function returns None if 9945 /// (a) the addrec coefficients are not constant, or 9946 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9947 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9948 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9949 static Optional<APInt> 9950 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9951 APInt A, B, C, M; 9952 unsigned BitWidth; 9953 auto T = GetQuadraticEquation(AddRec); 9954 if (!T) 9955 return None; 9956 9957 std::tie(A, B, C, M, BitWidth) = *T; 9958 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9959 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9960 if (!X) 9961 return None; 9962 9963 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9964 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9965 if (!V->isZero()) 9966 return None; 9967 9968 return TruncIfPossible(X, BitWidth); 9969 } 9970 9971 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9972 /// iterations. The values M, N are assumed to be signed, and they 9973 /// should all have the same bit widths. 9974 /// Find the least n such that c(n) does not belong to the given range, 9975 /// while c(n-1) does. 9976 /// 9977 /// This function returns None if 9978 /// (a) the addrec coefficients are not constant, or 9979 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9980 /// bounds of the range. 9981 static Optional<APInt> 9982 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9983 const ConstantRange &Range, ScalarEvolution &SE) { 9984 assert(AddRec->getOperand(0)->isZero() && 9985 "Starting value of addrec should be 0"); 9986 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9987 << Range << ", addrec " << *AddRec << '\n'); 9988 // This case is handled in getNumIterationsInRange. Here we can assume that 9989 // we start in the range. 9990 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9991 "Addrec's initial value should be in range"); 9992 9993 APInt A, B, C, M; 9994 unsigned BitWidth; 9995 auto T = GetQuadraticEquation(AddRec); 9996 if (!T) 9997 return None; 9998 9999 // Be careful about the return value: there can be two reasons for not 10000 // returning an actual number. First, if no solutions to the equations 10001 // were found, and second, if the solutions don't leave the given range. 10002 // The first case means that the actual solution is "unknown", the second 10003 // means that it's known, but not valid. If the solution is unknown, we 10004 // cannot make any conclusions. 10005 // Return a pair: the optional solution and a flag indicating if the 10006 // solution was found. 10007 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 10008 // Solve for signed overflow and unsigned overflow, pick the lower 10009 // solution. 10010 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 10011 << Bound << " (before multiplying by " << M << ")\n"); 10012 Bound *= M; // The quadratic equation multiplier. 10013 10014 Optional<APInt> SO = None; 10015 if (BitWidth > 1) { 10016 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10017 "signed overflow\n"); 10018 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 10019 } 10020 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 10021 "unsigned overflow\n"); 10022 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 10023 BitWidth+1); 10024 10025 auto LeavesRange = [&] (const APInt &X) { 10026 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 10027 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 10028 if (Range.contains(V0->getValue())) 10029 return false; 10030 // X should be at least 1, so X-1 is non-negative. 10031 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 10032 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 10033 if (Range.contains(V1->getValue())) 10034 return true; 10035 return false; 10036 }; 10037 10038 // If SolveQuadraticEquationWrap returns None, it means that there can 10039 // be a solution, but the function failed to find it. We cannot treat it 10040 // as "no solution". 10041 if (!SO || !UO) 10042 return { None, false }; 10043 10044 // Check the smaller value first to see if it leaves the range. 10045 // At this point, both SO and UO must have values. 10046 Optional<APInt> Min = MinOptional(SO, UO); 10047 if (LeavesRange(*Min)) 10048 return { Min, true }; 10049 Optional<APInt> Max = Min == SO ? UO : SO; 10050 if (LeavesRange(*Max)) 10051 return { Max, true }; 10052 10053 // Solutions were found, but were eliminated, hence the "true". 10054 return { None, true }; 10055 }; 10056 10057 std::tie(A, B, C, M, BitWidth) = *T; 10058 // Lower bound is inclusive, subtract 1 to represent the exiting value. 10059 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 10060 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 10061 auto SL = SolveForBoundary(Lower); 10062 auto SU = SolveForBoundary(Upper); 10063 // If any of the solutions was unknown, no meaninigful conclusions can 10064 // be made. 10065 if (!SL.second || !SU.second) 10066 return None; 10067 10068 // Claim: The correct solution is not some value between Min and Max. 10069 // 10070 // Justification: Assuming that Min and Max are different values, one of 10071 // them is when the first signed overflow happens, the other is when the 10072 // first unsigned overflow happens. Crossing the range boundary is only 10073 // possible via an overflow (treating 0 as a special case of it, modeling 10074 // an overflow as crossing k*2^W for some k). 10075 // 10076 // The interesting case here is when Min was eliminated as an invalid 10077 // solution, but Max was not. The argument is that if there was another 10078 // overflow between Min and Max, it would also have been eliminated if 10079 // it was considered. 10080 // 10081 // For a given boundary, it is possible to have two overflows of the same 10082 // type (signed/unsigned) without having the other type in between: this 10083 // can happen when the vertex of the parabola is between the iterations 10084 // corresponding to the overflows. This is only possible when the two 10085 // overflows cross k*2^W for the same k. In such case, if the second one 10086 // left the range (and was the first one to do so), the first overflow 10087 // would have to enter the range, which would mean that either we had left 10088 // the range before or that we started outside of it. Both of these cases 10089 // are contradictions. 10090 // 10091 // Claim: In the case where SolveForBoundary returns None, the correct 10092 // solution is not some value between the Max for this boundary and the 10093 // Min of the other boundary. 10094 // 10095 // Justification: Assume that we had such Max_A and Min_B corresponding 10096 // to range boundaries A and B and such that Max_A < Min_B. If there was 10097 // a solution between Max_A and Min_B, it would have to be caused by an 10098 // overflow corresponding to either A or B. It cannot correspond to B, 10099 // since Min_B is the first occurrence of such an overflow. If it 10100 // corresponded to A, it would have to be either a signed or an unsigned 10101 // overflow that is larger than both eliminated overflows for A. But 10102 // between the eliminated overflows and this overflow, the values would 10103 // cover the entire value space, thus crossing the other boundary, which 10104 // is a contradiction. 10105 10106 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 10107 } 10108 10109 ScalarEvolution::ExitLimit 10110 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 10111 bool AllowPredicates) { 10112 10113 // This is only used for loops with a "x != y" exit test. The exit condition 10114 // is now expressed as a single expression, V = x-y. So the exit test is 10115 // effectively V != 0. We know and take advantage of the fact that this 10116 // expression only being used in a comparison by zero context. 10117 10118 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10119 // If the value is a constant 10120 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10121 // If the value is already zero, the branch will execute zero times. 10122 if (C->getValue()->isZero()) return C; 10123 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10124 } 10125 10126 const SCEVAddRecExpr *AddRec = 10127 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 10128 10129 if (!AddRec && AllowPredicates) 10130 // Try to make this an AddRec using runtime tests, in the first X 10131 // iterations of this loop, where X is the SCEV expression found by the 10132 // algorithm below. 10133 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 10134 10135 if (!AddRec || AddRec->getLoop() != L) 10136 return getCouldNotCompute(); 10137 10138 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 10139 // the quadratic equation to solve it. 10140 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 10141 // We can only use this value if the chrec ends up with an exact zero 10142 // value at this index. When solving for "X*X != 5", for example, we 10143 // should not accept a root of 2. 10144 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 10145 const auto *R = cast<SCEVConstant>(getConstant(*S)); 10146 return ExitLimit(R, R, false, Predicates); 10147 } 10148 return getCouldNotCompute(); 10149 } 10150 10151 // Otherwise we can only handle this if it is affine. 10152 if (!AddRec->isAffine()) 10153 return getCouldNotCompute(); 10154 10155 // If this is an affine expression, the execution count of this branch is 10156 // the minimum unsigned root of the following equation: 10157 // 10158 // Start + Step*N = 0 (mod 2^BW) 10159 // 10160 // equivalent to: 10161 // 10162 // Step*N = -Start (mod 2^BW) 10163 // 10164 // where BW is the common bit width of Start and Step. 10165 10166 // Get the initial value for the loop. 10167 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 10168 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 10169 10170 // For now we handle only constant steps. 10171 // 10172 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10173 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10174 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10175 // We have not yet seen any such cases. 10176 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10177 if (!StepC || StepC->getValue()->isZero()) 10178 return getCouldNotCompute(); 10179 10180 // For positive steps (counting up until unsigned overflow): 10181 // N = -Start/Step (as unsigned) 10182 // For negative steps (counting down to zero): 10183 // N = Start/-Step 10184 // First compute the unsigned distance from zero in the direction of Step. 10185 bool CountDown = StepC->getAPInt().isNegative(); 10186 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10187 10188 // Handle unitary steps, which cannot wraparound. 10189 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10190 // N = Distance (as unsigned) 10191 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10192 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10193 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10194 10195 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10196 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10197 // case, and see if we can improve the bound. 10198 // 10199 // Explicitly handling this here is necessary because getUnsignedRange 10200 // isn't context-sensitive; it doesn't know that we only care about the 10201 // range inside the loop. 10202 const SCEV *Zero = getZero(Distance->getType()); 10203 const SCEV *One = getOne(Distance->getType()); 10204 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10205 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10206 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10207 // as "unsigned_max(Distance + 1) - 1". 10208 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10209 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10210 } 10211 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 10212 } 10213 10214 // If the condition controls loop exit (the loop exits only if the expression 10215 // is true) and the addition is no-wrap we can use unsigned divide to 10216 // compute the backedge count. In this case, the step may not divide the 10217 // distance, but we don't care because if the condition is "missed" the loop 10218 // will have undefined behavior due to wrapping. 10219 if (ControlsExit && AddRec->hasNoSelfWrap() && 10220 loopHasNoAbnormalExits(AddRec->getLoop())) { 10221 const SCEV *Exact = 10222 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10223 const SCEV *Max = getCouldNotCompute(); 10224 if (Exact != getCouldNotCompute()) { 10225 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10226 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10227 } 10228 return ExitLimit(Exact, Max, false, Predicates); 10229 } 10230 10231 // Solve the general equation. 10232 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10233 getNegativeSCEV(Start), *this); 10234 10235 const SCEV *M = E; 10236 if (E != getCouldNotCompute()) { 10237 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10238 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10239 } 10240 return ExitLimit(E, M, false, Predicates); 10241 } 10242 10243 ScalarEvolution::ExitLimit 10244 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10245 // Loops that look like: while (X == 0) are very strange indeed. We don't 10246 // handle them yet except for the trivial case. This could be expanded in the 10247 // future as needed. 10248 10249 // If the value is a constant, check to see if it is known to be non-zero 10250 // already. If so, the backedge will execute zero times. 10251 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10252 if (!C->getValue()->isZero()) 10253 return getZero(C->getType()); 10254 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10255 } 10256 10257 // We could implement others, but I really doubt anyone writes loops like 10258 // this, and if they did, they would already be constant folded. 10259 return getCouldNotCompute(); 10260 } 10261 10262 std::pair<const BasicBlock *, const BasicBlock *> 10263 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10264 const { 10265 // If the block has a unique predecessor, then there is no path from the 10266 // predecessor to the block that does not go through the direct edge 10267 // from the predecessor to the block. 10268 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10269 return {Pred, BB}; 10270 10271 // A loop's header is defined to be a block that dominates the loop. 10272 // If the header has a unique predecessor outside the loop, it must be 10273 // a block that has exactly one successor that can reach the loop. 10274 if (const Loop *L = LI.getLoopFor(BB)) 10275 return {L->getLoopPredecessor(), L->getHeader()}; 10276 10277 return {nullptr, nullptr}; 10278 } 10279 10280 /// SCEV structural equivalence is usually sufficient for testing whether two 10281 /// expressions are equal, however for the purposes of looking for a condition 10282 /// guarding a loop, it can be useful to be a little more general, since a 10283 /// front-end may have replicated the controlling expression. 10284 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10285 // Quick check to see if they are the same SCEV. 10286 if (A == B) return true; 10287 10288 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10289 // Not all instructions that are "identical" compute the same value. For 10290 // instance, two distinct alloca instructions allocating the same type are 10291 // identical and do not read memory; but compute distinct values. 10292 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10293 }; 10294 10295 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10296 // two different instructions with the same value. Check for this case. 10297 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10298 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10299 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10300 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10301 if (ComputesEqualValues(AI, BI)) 10302 return true; 10303 10304 // Otherwise assume they may have a different value. 10305 return false; 10306 } 10307 10308 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10309 const SCEV *&LHS, const SCEV *&RHS, 10310 unsigned Depth, 10311 bool ControllingFiniteLoop) { 10312 bool Changed = false; 10313 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10314 // '0 != 0'. 10315 auto TrivialCase = [&](bool TriviallyTrue) { 10316 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10317 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10318 return true; 10319 }; 10320 // If we hit the max recursion limit bail out. 10321 if (Depth >= 3) 10322 return false; 10323 10324 // Canonicalize a constant to the right side. 10325 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10326 // Check for both operands constant. 10327 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10328 if (ConstantExpr::getICmp(Pred, 10329 LHSC->getValue(), 10330 RHSC->getValue())->isNullValue()) 10331 return TrivialCase(false); 10332 else 10333 return TrivialCase(true); 10334 } 10335 // Otherwise swap the operands to put the constant on the right. 10336 std::swap(LHS, RHS); 10337 Pred = ICmpInst::getSwappedPredicate(Pred); 10338 Changed = true; 10339 } 10340 10341 // If we're comparing an addrec with a value which is loop-invariant in the 10342 // addrec's loop, put the addrec on the left. Also make a dominance check, 10343 // as both operands could be addrecs loop-invariant in each other's loop. 10344 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10345 const Loop *L = AR->getLoop(); 10346 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10347 std::swap(LHS, RHS); 10348 Pred = ICmpInst::getSwappedPredicate(Pred); 10349 Changed = true; 10350 } 10351 } 10352 10353 // If there's a constant operand, canonicalize comparisons with boundary 10354 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10355 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10356 const APInt &RA = RC->getAPInt(); 10357 10358 bool SimplifiedByConstantRange = false; 10359 10360 if (!ICmpInst::isEquality(Pred)) { 10361 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10362 if (ExactCR.isFullSet()) 10363 return TrivialCase(true); 10364 else if (ExactCR.isEmptySet()) 10365 return TrivialCase(false); 10366 10367 APInt NewRHS; 10368 CmpInst::Predicate NewPred; 10369 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10370 ICmpInst::isEquality(NewPred)) { 10371 // We were able to convert an inequality to an equality. 10372 Pred = NewPred; 10373 RHS = getConstant(NewRHS); 10374 Changed = SimplifiedByConstantRange = true; 10375 } 10376 } 10377 10378 if (!SimplifiedByConstantRange) { 10379 switch (Pred) { 10380 default: 10381 break; 10382 case ICmpInst::ICMP_EQ: 10383 case ICmpInst::ICMP_NE: 10384 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10385 if (!RA) 10386 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10387 if (const SCEVMulExpr *ME = 10388 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10389 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10390 ME->getOperand(0)->isAllOnesValue()) { 10391 RHS = AE->getOperand(1); 10392 LHS = ME->getOperand(1); 10393 Changed = true; 10394 } 10395 break; 10396 10397 10398 // The "Should have been caught earlier!" messages refer to the fact 10399 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10400 // should have fired on the corresponding cases, and canonicalized the 10401 // check to trivial case. 10402 10403 case ICmpInst::ICMP_UGE: 10404 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10405 Pred = ICmpInst::ICMP_UGT; 10406 RHS = getConstant(RA - 1); 10407 Changed = true; 10408 break; 10409 case ICmpInst::ICMP_ULE: 10410 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10411 Pred = ICmpInst::ICMP_ULT; 10412 RHS = getConstant(RA + 1); 10413 Changed = true; 10414 break; 10415 case ICmpInst::ICMP_SGE: 10416 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10417 Pred = ICmpInst::ICMP_SGT; 10418 RHS = getConstant(RA - 1); 10419 Changed = true; 10420 break; 10421 case ICmpInst::ICMP_SLE: 10422 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10423 Pred = ICmpInst::ICMP_SLT; 10424 RHS = getConstant(RA + 1); 10425 Changed = true; 10426 break; 10427 } 10428 } 10429 } 10430 10431 // Check for obvious equality. 10432 if (HasSameValue(LHS, RHS)) { 10433 if (ICmpInst::isTrueWhenEqual(Pred)) 10434 return TrivialCase(true); 10435 if (ICmpInst::isFalseWhenEqual(Pred)) 10436 return TrivialCase(false); 10437 } 10438 10439 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10440 // adding or subtracting 1 from one of the operands. This can be done for 10441 // one of two reasons: 10442 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10443 // 2) The loop is finite, with this comparison controlling the exit. Since the 10444 // loop is finite, the bound cannot include the corresponding boundary 10445 // (otherwise it would loop forever). 10446 switch (Pred) { 10447 case ICmpInst::ICMP_SLE: 10448 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10449 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10450 SCEV::FlagNSW); 10451 Pred = ICmpInst::ICMP_SLT; 10452 Changed = true; 10453 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10454 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10455 SCEV::FlagNSW); 10456 Pred = ICmpInst::ICMP_SLT; 10457 Changed = true; 10458 } 10459 break; 10460 case ICmpInst::ICMP_SGE: 10461 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10462 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10463 SCEV::FlagNSW); 10464 Pred = ICmpInst::ICMP_SGT; 10465 Changed = true; 10466 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10467 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10468 SCEV::FlagNSW); 10469 Pred = ICmpInst::ICMP_SGT; 10470 Changed = true; 10471 } 10472 break; 10473 case ICmpInst::ICMP_ULE: 10474 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10475 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10476 SCEV::FlagNUW); 10477 Pred = ICmpInst::ICMP_ULT; 10478 Changed = true; 10479 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10480 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10481 Pred = ICmpInst::ICMP_ULT; 10482 Changed = true; 10483 } 10484 break; 10485 case ICmpInst::ICMP_UGE: 10486 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10487 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10488 Pred = ICmpInst::ICMP_UGT; 10489 Changed = true; 10490 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10491 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10492 SCEV::FlagNUW); 10493 Pred = ICmpInst::ICMP_UGT; 10494 Changed = true; 10495 } 10496 break; 10497 default: 10498 break; 10499 } 10500 10501 // TODO: More simplifications are possible here. 10502 10503 // Recursively simplify until we either hit a recursion limit or nothing 10504 // changes. 10505 if (Changed) 10506 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10507 ControllingFiniteLoop); 10508 10509 return Changed; 10510 } 10511 10512 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10513 return getSignedRangeMax(S).isNegative(); 10514 } 10515 10516 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10517 return getSignedRangeMin(S).isStrictlyPositive(); 10518 } 10519 10520 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10521 return !getSignedRangeMin(S).isNegative(); 10522 } 10523 10524 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10525 return !getSignedRangeMax(S).isStrictlyPositive(); 10526 } 10527 10528 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10529 return getUnsignedRangeMin(S) != 0; 10530 } 10531 10532 std::pair<const SCEV *, const SCEV *> 10533 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10534 // Compute SCEV on entry of loop L. 10535 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10536 if (Start == getCouldNotCompute()) 10537 return { Start, Start }; 10538 // Compute post increment SCEV for loop L. 10539 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10540 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10541 return { Start, PostInc }; 10542 } 10543 10544 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10545 const SCEV *LHS, const SCEV *RHS) { 10546 // First collect all loops. 10547 SmallPtrSet<const Loop *, 8> LoopsUsed; 10548 getUsedLoops(LHS, LoopsUsed); 10549 getUsedLoops(RHS, LoopsUsed); 10550 10551 if (LoopsUsed.empty()) 10552 return false; 10553 10554 // Domination relationship must be a linear order on collected loops. 10555 #ifndef NDEBUG 10556 for (auto *L1 : LoopsUsed) 10557 for (auto *L2 : LoopsUsed) 10558 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10559 DT.dominates(L2->getHeader(), L1->getHeader())) && 10560 "Domination relationship is not a linear order"); 10561 #endif 10562 10563 const Loop *MDL = 10564 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10565 [&](const Loop *L1, const Loop *L2) { 10566 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10567 }); 10568 10569 // Get init and post increment value for LHS. 10570 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10571 // if LHS contains unknown non-invariant SCEV then bail out. 10572 if (SplitLHS.first == getCouldNotCompute()) 10573 return false; 10574 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10575 // Get init and post increment value for RHS. 10576 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10577 // if RHS contains unknown non-invariant SCEV then bail out. 10578 if (SplitRHS.first == getCouldNotCompute()) 10579 return false; 10580 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10581 // It is possible that init SCEV contains an invariant load but it does 10582 // not dominate MDL and is not available at MDL loop entry, so we should 10583 // check it here. 10584 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10585 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10586 return false; 10587 10588 // It seems backedge guard check is faster than entry one so in some cases 10589 // it can speed up whole estimation by short circuit 10590 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10591 SplitRHS.second) && 10592 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10593 } 10594 10595 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10596 const SCEV *LHS, const SCEV *RHS) { 10597 // Canonicalize the inputs first. 10598 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10599 10600 if (isKnownViaInduction(Pred, LHS, RHS)) 10601 return true; 10602 10603 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10604 return true; 10605 10606 // Otherwise see what can be done with some simple reasoning. 10607 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10608 } 10609 10610 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10611 const SCEV *LHS, 10612 const SCEV *RHS) { 10613 if (isKnownPredicate(Pred, LHS, RHS)) 10614 return true; 10615 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10616 return false; 10617 return None; 10618 } 10619 10620 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10621 const SCEV *LHS, const SCEV *RHS, 10622 const Instruction *CtxI) { 10623 // TODO: Analyze guards and assumes from Context's block. 10624 return isKnownPredicate(Pred, LHS, RHS) || 10625 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10626 } 10627 10628 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10629 const SCEV *LHS, 10630 const SCEV *RHS, 10631 const Instruction *CtxI) { 10632 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10633 if (KnownWithoutContext) 10634 return KnownWithoutContext; 10635 10636 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10637 return true; 10638 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10639 ICmpInst::getInversePredicate(Pred), 10640 LHS, RHS)) 10641 return false; 10642 return None; 10643 } 10644 10645 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10646 const SCEVAddRecExpr *LHS, 10647 const SCEV *RHS) { 10648 const Loop *L = LHS->getLoop(); 10649 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10650 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10651 } 10652 10653 Optional<ScalarEvolution::MonotonicPredicateType> 10654 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10655 ICmpInst::Predicate Pred) { 10656 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10657 10658 #ifndef NDEBUG 10659 // Verify an invariant: inverting the predicate should turn a monotonically 10660 // increasing change to a monotonically decreasing one, and vice versa. 10661 if (Result) { 10662 auto ResultSwapped = 10663 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10664 10665 assert(ResultSwapped && "should be able to analyze both!"); 10666 assert(ResultSwapped.getValue() != Result.getValue() && 10667 "monotonicity should flip as we flip the predicate"); 10668 } 10669 #endif 10670 10671 return Result; 10672 } 10673 10674 Optional<ScalarEvolution::MonotonicPredicateType> 10675 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10676 ICmpInst::Predicate Pred) { 10677 // A zero step value for LHS means the induction variable is essentially a 10678 // loop invariant value. We don't really depend on the predicate actually 10679 // flipping from false to true (for increasing predicates, and the other way 10680 // around for decreasing predicates), all we care about is that *if* the 10681 // predicate changes then it only changes from false to true. 10682 // 10683 // A zero step value in itself is not very useful, but there may be places 10684 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10685 // as general as possible. 10686 10687 // Only handle LE/LT/GE/GT predicates. 10688 if (!ICmpInst::isRelational(Pred)) 10689 return None; 10690 10691 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10692 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10693 "Should be greater or less!"); 10694 10695 // Check that AR does not wrap. 10696 if (ICmpInst::isUnsigned(Pred)) { 10697 if (!LHS->hasNoUnsignedWrap()) 10698 return None; 10699 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10700 } else { 10701 assert(ICmpInst::isSigned(Pred) && 10702 "Relational predicate is either signed or unsigned!"); 10703 if (!LHS->hasNoSignedWrap()) 10704 return None; 10705 10706 const SCEV *Step = LHS->getStepRecurrence(*this); 10707 10708 if (isKnownNonNegative(Step)) 10709 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10710 10711 if (isKnownNonPositive(Step)) 10712 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10713 10714 return None; 10715 } 10716 } 10717 10718 Optional<ScalarEvolution::LoopInvariantPredicate> 10719 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10720 const SCEV *LHS, const SCEV *RHS, 10721 const Loop *L) { 10722 10723 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10724 if (!isLoopInvariant(RHS, L)) { 10725 if (!isLoopInvariant(LHS, L)) 10726 return None; 10727 10728 std::swap(LHS, RHS); 10729 Pred = ICmpInst::getSwappedPredicate(Pred); 10730 } 10731 10732 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10733 if (!ArLHS || ArLHS->getLoop() != L) 10734 return None; 10735 10736 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10737 if (!MonotonicType) 10738 return None; 10739 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10740 // true as the loop iterates, and the backedge is control dependent on 10741 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10742 // 10743 // * if the predicate was false in the first iteration then the predicate 10744 // is never evaluated again, since the loop exits without taking the 10745 // backedge. 10746 // * if the predicate was true in the first iteration then it will 10747 // continue to be true for all future iterations since it is 10748 // monotonically increasing. 10749 // 10750 // For both the above possibilities, we can replace the loop varying 10751 // predicate with its value on the first iteration of the loop (which is 10752 // loop invariant). 10753 // 10754 // A similar reasoning applies for a monotonically decreasing predicate, by 10755 // replacing true with false and false with true in the above two bullets. 10756 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10757 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10758 10759 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10760 return None; 10761 10762 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10763 } 10764 10765 Optional<ScalarEvolution::LoopInvariantPredicate> 10766 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10767 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10768 const Instruction *CtxI, const SCEV *MaxIter) { 10769 // Try to prove the following set of facts: 10770 // - The predicate is monotonic in the iteration space. 10771 // - If the check does not fail on the 1st iteration: 10772 // - No overflow will happen during first MaxIter iterations; 10773 // - It will not fail on the MaxIter'th iteration. 10774 // If the check does fail on the 1st iteration, we leave the loop and no 10775 // other checks matter. 10776 10777 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10778 if (!isLoopInvariant(RHS, L)) { 10779 if (!isLoopInvariant(LHS, L)) 10780 return None; 10781 10782 std::swap(LHS, RHS); 10783 Pred = ICmpInst::getSwappedPredicate(Pred); 10784 } 10785 10786 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10787 if (!AR || AR->getLoop() != L) 10788 return None; 10789 10790 // The predicate must be relational (i.e. <, <=, >=, >). 10791 if (!ICmpInst::isRelational(Pred)) 10792 return None; 10793 10794 // TODO: Support steps other than +/- 1. 10795 const SCEV *Step = AR->getStepRecurrence(*this); 10796 auto *One = getOne(Step->getType()); 10797 auto *MinusOne = getNegativeSCEV(One); 10798 if (Step != One && Step != MinusOne) 10799 return None; 10800 10801 // Type mismatch here means that MaxIter is potentially larger than max 10802 // unsigned value in start type, which mean we cannot prove no wrap for the 10803 // indvar. 10804 if (AR->getType() != MaxIter->getType()) 10805 return None; 10806 10807 // Value of IV on suggested last iteration. 10808 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10809 // Does it still meet the requirement? 10810 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10811 return None; 10812 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10813 // not exceed max unsigned value of this type), this effectively proves 10814 // that there is no wrap during the iteration. To prove that there is no 10815 // signed/unsigned wrap, we need to check that 10816 // Start <= Last for step = 1 or Start >= Last for step = -1. 10817 ICmpInst::Predicate NoOverflowPred = 10818 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10819 if (Step == MinusOne) 10820 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10821 const SCEV *Start = AR->getStart(); 10822 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10823 return None; 10824 10825 // Everything is fine. 10826 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10827 } 10828 10829 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10830 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10831 if (HasSameValue(LHS, RHS)) 10832 return ICmpInst::isTrueWhenEqual(Pred); 10833 10834 // This code is split out from isKnownPredicate because it is called from 10835 // within isLoopEntryGuardedByCond. 10836 10837 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10838 const ConstantRange &RangeRHS) { 10839 return RangeLHS.icmp(Pred, RangeRHS); 10840 }; 10841 10842 // The check at the top of the function catches the case where the values are 10843 // known to be equal. 10844 if (Pred == CmpInst::ICMP_EQ) 10845 return false; 10846 10847 if (Pred == CmpInst::ICMP_NE) { 10848 auto SL = getSignedRange(LHS); 10849 auto SR = getSignedRange(RHS); 10850 if (CheckRanges(SL, SR)) 10851 return true; 10852 auto UL = getUnsignedRange(LHS); 10853 auto UR = getUnsignedRange(RHS); 10854 if (CheckRanges(UL, UR)) 10855 return true; 10856 auto *Diff = getMinusSCEV(LHS, RHS); 10857 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10858 } 10859 10860 if (CmpInst::isSigned(Pred)) { 10861 auto SL = getSignedRange(LHS); 10862 auto SR = getSignedRange(RHS); 10863 return CheckRanges(SL, SR); 10864 } 10865 10866 auto UL = getUnsignedRange(LHS); 10867 auto UR = getUnsignedRange(RHS); 10868 return CheckRanges(UL, UR); 10869 } 10870 10871 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10872 const SCEV *LHS, 10873 const SCEV *RHS) { 10874 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10875 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10876 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10877 // OutC1 and OutC2. 10878 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10879 APInt &OutC1, APInt &OutC2, 10880 SCEV::NoWrapFlags ExpectedFlags) { 10881 const SCEV *XNonConstOp, *XConstOp; 10882 const SCEV *YNonConstOp, *YConstOp; 10883 SCEV::NoWrapFlags XFlagsPresent; 10884 SCEV::NoWrapFlags YFlagsPresent; 10885 10886 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10887 XConstOp = getZero(X->getType()); 10888 XNonConstOp = X; 10889 XFlagsPresent = ExpectedFlags; 10890 } 10891 if (!isa<SCEVConstant>(XConstOp) || 10892 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10893 return false; 10894 10895 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10896 YConstOp = getZero(Y->getType()); 10897 YNonConstOp = Y; 10898 YFlagsPresent = ExpectedFlags; 10899 } 10900 10901 if (!isa<SCEVConstant>(YConstOp) || 10902 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10903 return false; 10904 10905 if (YNonConstOp != XNonConstOp) 10906 return false; 10907 10908 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10909 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10910 10911 return true; 10912 }; 10913 10914 APInt C1; 10915 APInt C2; 10916 10917 switch (Pred) { 10918 default: 10919 break; 10920 10921 case ICmpInst::ICMP_SGE: 10922 std::swap(LHS, RHS); 10923 LLVM_FALLTHROUGH; 10924 case ICmpInst::ICMP_SLE: 10925 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10926 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10927 return true; 10928 10929 break; 10930 10931 case ICmpInst::ICMP_SGT: 10932 std::swap(LHS, RHS); 10933 LLVM_FALLTHROUGH; 10934 case ICmpInst::ICMP_SLT: 10935 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10936 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10937 return true; 10938 10939 break; 10940 10941 case ICmpInst::ICMP_UGE: 10942 std::swap(LHS, RHS); 10943 LLVM_FALLTHROUGH; 10944 case ICmpInst::ICMP_ULE: 10945 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10946 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10947 return true; 10948 10949 break; 10950 10951 case ICmpInst::ICMP_UGT: 10952 std::swap(LHS, RHS); 10953 LLVM_FALLTHROUGH; 10954 case ICmpInst::ICMP_ULT: 10955 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10956 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10957 return true; 10958 break; 10959 } 10960 10961 return false; 10962 } 10963 10964 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10965 const SCEV *LHS, 10966 const SCEV *RHS) { 10967 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10968 return false; 10969 10970 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10971 // the stack can result in exponential time complexity. 10972 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10973 10974 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10975 // 10976 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10977 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10978 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10979 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10980 // use isKnownPredicate later if needed. 10981 return isKnownNonNegative(RHS) && 10982 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10983 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10984 } 10985 10986 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10987 ICmpInst::Predicate Pred, 10988 const SCEV *LHS, const SCEV *RHS) { 10989 // No need to even try if we know the module has no guards. 10990 if (!HasGuards) 10991 return false; 10992 10993 return any_of(*BB, [&](const Instruction &I) { 10994 using namespace llvm::PatternMatch; 10995 10996 Value *Condition; 10997 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10998 m_Value(Condition))) && 10999 isImpliedCond(Pred, LHS, RHS, Condition, false); 11000 }); 11001 } 11002 11003 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 11004 /// protected by a conditional between LHS and RHS. This is used to 11005 /// to eliminate casts. 11006 bool 11007 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 11008 ICmpInst::Predicate Pred, 11009 const SCEV *LHS, const SCEV *RHS) { 11010 // Interpret a null as meaning no loop, where there is obviously no guard 11011 // (interprocedural conditions notwithstanding). 11012 if (!L) return true; 11013 11014 if (VerifyIR) 11015 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 11016 "This cannot be done on broken IR!"); 11017 11018 11019 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11020 return true; 11021 11022 BasicBlock *Latch = L->getLoopLatch(); 11023 if (!Latch) 11024 return false; 11025 11026 BranchInst *LoopContinuePredicate = 11027 dyn_cast<BranchInst>(Latch->getTerminator()); 11028 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 11029 isImpliedCond(Pred, LHS, RHS, 11030 LoopContinuePredicate->getCondition(), 11031 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 11032 return true; 11033 11034 // We don't want more than one activation of the following loops on the stack 11035 // -- that can lead to O(n!) time complexity. 11036 if (WalkingBEDominatingConds) 11037 return false; 11038 11039 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 11040 11041 // See if we can exploit a trip count to prove the predicate. 11042 const auto &BETakenInfo = getBackedgeTakenInfo(L); 11043 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 11044 if (LatchBECount != getCouldNotCompute()) { 11045 // We know that Latch branches back to the loop header exactly 11046 // LatchBECount times. This means the backdege condition at Latch is 11047 // equivalent to "{0,+,1} u< LatchBECount". 11048 Type *Ty = LatchBECount->getType(); 11049 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 11050 const SCEV *LoopCounter = 11051 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 11052 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 11053 LatchBECount)) 11054 return true; 11055 } 11056 11057 // Check conditions due to any @llvm.assume intrinsics. 11058 for (auto &AssumeVH : AC.assumptions()) { 11059 if (!AssumeVH) 11060 continue; 11061 auto *CI = cast<CallInst>(AssumeVH); 11062 if (!DT.dominates(CI, Latch->getTerminator())) 11063 continue; 11064 11065 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 11066 return true; 11067 } 11068 11069 // If the loop is not reachable from the entry block, we risk running into an 11070 // infinite loop as we walk up into the dom tree. These loops do not matter 11071 // anyway, so we just return a conservative answer when we see them. 11072 if (!DT.isReachableFromEntry(L->getHeader())) 11073 return false; 11074 11075 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 11076 return true; 11077 11078 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 11079 DTN != HeaderDTN; DTN = DTN->getIDom()) { 11080 assert(DTN && "should reach the loop header before reaching the root!"); 11081 11082 BasicBlock *BB = DTN->getBlock(); 11083 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 11084 return true; 11085 11086 BasicBlock *PBB = BB->getSinglePredecessor(); 11087 if (!PBB) 11088 continue; 11089 11090 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 11091 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 11092 continue; 11093 11094 Value *Condition = ContinuePredicate->getCondition(); 11095 11096 // If we have an edge `E` within the loop body that dominates the only 11097 // latch, the condition guarding `E` also guards the backedge. This 11098 // reasoning works only for loops with a single latch. 11099 11100 BasicBlockEdge DominatingEdge(PBB, BB); 11101 if (DominatingEdge.isSingleEdge()) { 11102 // We're constructively (and conservatively) enumerating edges within the 11103 // loop body that dominate the latch. The dominator tree better agree 11104 // with us on this: 11105 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 11106 11107 if (isImpliedCond(Pred, LHS, RHS, Condition, 11108 BB != ContinuePredicate->getSuccessor(0))) 11109 return true; 11110 } 11111 } 11112 11113 return false; 11114 } 11115 11116 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 11117 ICmpInst::Predicate Pred, 11118 const SCEV *LHS, 11119 const SCEV *RHS) { 11120 if (VerifyIR) 11121 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 11122 "This cannot be done on broken IR!"); 11123 11124 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 11125 // the facts (a >= b && a != b) separately. A typical situation is when the 11126 // non-strict comparison is known from ranges and non-equality is known from 11127 // dominating predicates. If we are proving strict comparison, we always try 11128 // to prove non-equality and non-strict comparison separately. 11129 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 11130 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 11131 bool ProvedNonStrictComparison = false; 11132 bool ProvedNonEquality = false; 11133 11134 auto SplitAndProve = 11135 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 11136 if (!ProvedNonStrictComparison) 11137 ProvedNonStrictComparison = Fn(NonStrictPredicate); 11138 if (!ProvedNonEquality) 11139 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 11140 if (ProvedNonStrictComparison && ProvedNonEquality) 11141 return true; 11142 return false; 11143 }; 11144 11145 if (ProvingStrictComparison) { 11146 auto ProofFn = [&](ICmpInst::Predicate P) { 11147 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 11148 }; 11149 if (SplitAndProve(ProofFn)) 11150 return true; 11151 } 11152 11153 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 11154 auto ProveViaGuard = [&](const BasicBlock *Block) { 11155 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 11156 return true; 11157 if (ProvingStrictComparison) { 11158 auto ProofFn = [&](ICmpInst::Predicate P) { 11159 return isImpliedViaGuard(Block, P, LHS, RHS); 11160 }; 11161 if (SplitAndProve(ProofFn)) 11162 return true; 11163 } 11164 return false; 11165 }; 11166 11167 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 11168 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 11169 const Instruction *CtxI = &BB->front(); 11170 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 11171 return true; 11172 if (ProvingStrictComparison) { 11173 auto ProofFn = [&](ICmpInst::Predicate P) { 11174 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 11175 }; 11176 if (SplitAndProve(ProofFn)) 11177 return true; 11178 } 11179 return false; 11180 }; 11181 11182 // Starting at the block's predecessor, climb up the predecessor chain, as long 11183 // as there are predecessors that can be found that have unique successors 11184 // leading to the original block. 11185 const Loop *ContainingLoop = LI.getLoopFor(BB); 11186 const BasicBlock *PredBB; 11187 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11188 PredBB = ContainingLoop->getLoopPredecessor(); 11189 else 11190 PredBB = BB->getSinglePredecessor(); 11191 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11192 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11193 if (ProveViaGuard(Pair.first)) 11194 return true; 11195 11196 const BranchInst *LoopEntryPredicate = 11197 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11198 if (!LoopEntryPredicate || 11199 LoopEntryPredicate->isUnconditional()) 11200 continue; 11201 11202 if (ProveViaCond(LoopEntryPredicate->getCondition(), 11203 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 11204 return true; 11205 } 11206 11207 // Check conditions due to any @llvm.assume intrinsics. 11208 for (auto &AssumeVH : AC.assumptions()) { 11209 if (!AssumeVH) 11210 continue; 11211 auto *CI = cast<CallInst>(AssumeVH); 11212 if (!DT.dominates(CI, BB)) 11213 continue; 11214 11215 if (ProveViaCond(CI->getArgOperand(0), false)) 11216 return true; 11217 } 11218 11219 return false; 11220 } 11221 11222 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11223 ICmpInst::Predicate Pred, 11224 const SCEV *LHS, 11225 const SCEV *RHS) { 11226 // Interpret a null as meaning no loop, where there is obviously no guard 11227 // (interprocedural conditions notwithstanding). 11228 if (!L) 11229 return false; 11230 11231 // Both LHS and RHS must be available at loop entry. 11232 assert(isAvailableAtLoopEntry(LHS, L) && 11233 "LHS is not available at Loop Entry"); 11234 assert(isAvailableAtLoopEntry(RHS, L) && 11235 "RHS is not available at Loop Entry"); 11236 11237 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11238 return true; 11239 11240 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11241 } 11242 11243 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11244 const SCEV *RHS, 11245 const Value *FoundCondValue, bool Inverse, 11246 const Instruction *CtxI) { 11247 // False conditions implies anything. Do not bother analyzing it further. 11248 if (FoundCondValue == 11249 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11250 return true; 11251 11252 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11253 return false; 11254 11255 auto ClearOnExit = 11256 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11257 11258 // Recursively handle And and Or conditions. 11259 const Value *Op0, *Op1; 11260 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11261 if (!Inverse) 11262 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11263 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11264 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11265 if (Inverse) 11266 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11267 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11268 } 11269 11270 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11271 if (!ICI) return false; 11272 11273 // Now that we found a conditional branch that dominates the loop or controls 11274 // the loop latch. Check to see if it is the comparison we are looking for. 11275 ICmpInst::Predicate FoundPred; 11276 if (Inverse) 11277 FoundPred = ICI->getInversePredicate(); 11278 else 11279 FoundPred = ICI->getPredicate(); 11280 11281 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11282 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11283 11284 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11285 } 11286 11287 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11288 const SCEV *RHS, 11289 ICmpInst::Predicate FoundPred, 11290 const SCEV *FoundLHS, const SCEV *FoundRHS, 11291 const Instruction *CtxI) { 11292 // Balance the types. 11293 if (getTypeSizeInBits(LHS->getType()) < 11294 getTypeSizeInBits(FoundLHS->getType())) { 11295 // For unsigned and equality predicates, try to prove that both found 11296 // operands fit into narrow unsigned range. If so, try to prove facts in 11297 // narrow types. 11298 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11299 !FoundRHS->getType()->isPointerTy()) { 11300 auto *NarrowType = LHS->getType(); 11301 auto *WideType = FoundLHS->getType(); 11302 auto BitWidth = getTypeSizeInBits(NarrowType); 11303 const SCEV *MaxValue = getZeroExtendExpr( 11304 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11305 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11306 MaxValue) && 11307 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11308 MaxValue)) { 11309 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11310 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11311 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11312 TruncFoundRHS, CtxI)) 11313 return true; 11314 } 11315 } 11316 11317 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11318 return false; 11319 if (CmpInst::isSigned(Pred)) { 11320 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11321 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11322 } else { 11323 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11324 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11325 } 11326 } else if (getTypeSizeInBits(LHS->getType()) > 11327 getTypeSizeInBits(FoundLHS->getType())) { 11328 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11329 return false; 11330 if (CmpInst::isSigned(FoundPred)) { 11331 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11332 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11333 } else { 11334 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11335 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11336 } 11337 } 11338 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11339 FoundRHS, CtxI); 11340 } 11341 11342 bool ScalarEvolution::isImpliedCondBalancedTypes( 11343 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11344 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11345 const Instruction *CtxI) { 11346 assert(getTypeSizeInBits(LHS->getType()) == 11347 getTypeSizeInBits(FoundLHS->getType()) && 11348 "Types should be balanced!"); 11349 // Canonicalize the query to match the way instcombine will have 11350 // canonicalized the comparison. 11351 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11352 if (LHS == RHS) 11353 return CmpInst::isTrueWhenEqual(Pred); 11354 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11355 if (FoundLHS == FoundRHS) 11356 return CmpInst::isFalseWhenEqual(FoundPred); 11357 11358 // Check to see if we can make the LHS or RHS match. 11359 if (LHS == FoundRHS || RHS == FoundLHS) { 11360 if (isa<SCEVConstant>(RHS)) { 11361 std::swap(FoundLHS, FoundRHS); 11362 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11363 } else { 11364 std::swap(LHS, RHS); 11365 Pred = ICmpInst::getSwappedPredicate(Pred); 11366 } 11367 } 11368 11369 // Check whether the found predicate is the same as the desired predicate. 11370 if (FoundPred == Pred) 11371 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11372 11373 // Check whether swapping the found predicate makes it the same as the 11374 // desired predicate. 11375 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11376 // We can write the implication 11377 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11378 // using one of the following ways: 11379 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11380 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11381 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11382 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11383 // Forms 1. and 2. require swapping the operands of one condition. Don't 11384 // do this if it would break canonical constant/addrec ordering. 11385 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11386 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11387 CtxI); 11388 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11389 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11390 11391 // There's no clear preference between forms 3. and 4., try both. Avoid 11392 // forming getNotSCEV of pointer values as the resulting subtract is 11393 // not legal. 11394 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11395 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11396 FoundLHS, FoundRHS, CtxI)) 11397 return true; 11398 11399 if (!FoundLHS->getType()->isPointerTy() && 11400 !FoundRHS->getType()->isPointerTy() && 11401 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11402 getNotSCEV(FoundRHS), CtxI)) 11403 return true; 11404 11405 return false; 11406 } 11407 11408 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11409 CmpInst::Predicate P2) { 11410 assert(P1 != P2 && "Handled earlier!"); 11411 return CmpInst::isRelational(P2) && 11412 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11413 }; 11414 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11415 // Unsigned comparison is the same as signed comparison when both the 11416 // operands are non-negative or negative. 11417 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11418 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11419 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11420 // Create local copies that we can freely swap and canonicalize our 11421 // conditions to "le/lt". 11422 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11423 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11424 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11425 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11426 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11427 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11428 std::swap(CanonicalLHS, CanonicalRHS); 11429 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11430 } 11431 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11432 "Must be!"); 11433 assert((ICmpInst::isLT(CanonicalFoundPred) || 11434 ICmpInst::isLE(CanonicalFoundPred)) && 11435 "Must be!"); 11436 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11437 // Use implication: 11438 // x <u y && y >=s 0 --> x <s y. 11439 // If we can prove the left part, the right part is also proven. 11440 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11441 CanonicalRHS, CanonicalFoundLHS, 11442 CanonicalFoundRHS); 11443 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11444 // Use implication: 11445 // x <s y && y <s 0 --> x <u y. 11446 // If we can prove the left part, the right part is also proven. 11447 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11448 CanonicalRHS, CanonicalFoundLHS, 11449 CanonicalFoundRHS); 11450 } 11451 11452 // Check if we can make progress by sharpening ranges. 11453 if (FoundPred == ICmpInst::ICMP_NE && 11454 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11455 11456 const SCEVConstant *C = nullptr; 11457 const SCEV *V = nullptr; 11458 11459 if (isa<SCEVConstant>(FoundLHS)) { 11460 C = cast<SCEVConstant>(FoundLHS); 11461 V = FoundRHS; 11462 } else { 11463 C = cast<SCEVConstant>(FoundRHS); 11464 V = FoundLHS; 11465 } 11466 11467 // The guarding predicate tells us that C != V. If the known range 11468 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11469 // range we consider has to correspond to same signedness as the 11470 // predicate we're interested in folding. 11471 11472 APInt Min = ICmpInst::isSigned(Pred) ? 11473 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11474 11475 if (Min == C->getAPInt()) { 11476 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11477 // This is true even if (Min + 1) wraps around -- in case of 11478 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11479 11480 APInt SharperMin = Min + 1; 11481 11482 switch (Pred) { 11483 case ICmpInst::ICMP_SGE: 11484 case ICmpInst::ICMP_UGE: 11485 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11486 // RHS, we're done. 11487 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11488 CtxI)) 11489 return true; 11490 LLVM_FALLTHROUGH; 11491 11492 case ICmpInst::ICMP_SGT: 11493 case ICmpInst::ICMP_UGT: 11494 // We know from the range information that (V `Pred` Min || 11495 // V == Min). We know from the guarding condition that !(V 11496 // == Min). This gives us 11497 // 11498 // V `Pred` Min || V == Min && !(V == Min) 11499 // => V `Pred` Min 11500 // 11501 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11502 11503 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11504 return true; 11505 break; 11506 11507 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11508 case ICmpInst::ICMP_SLE: 11509 case ICmpInst::ICMP_ULE: 11510 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11511 LHS, V, getConstant(SharperMin), CtxI)) 11512 return true; 11513 LLVM_FALLTHROUGH; 11514 11515 case ICmpInst::ICMP_SLT: 11516 case ICmpInst::ICMP_ULT: 11517 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11518 LHS, V, getConstant(Min), CtxI)) 11519 return true; 11520 break; 11521 11522 default: 11523 // No change 11524 break; 11525 } 11526 } 11527 } 11528 11529 // Check whether the actual condition is beyond sufficient. 11530 if (FoundPred == ICmpInst::ICMP_EQ) 11531 if (ICmpInst::isTrueWhenEqual(Pred)) 11532 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11533 return true; 11534 if (Pred == ICmpInst::ICMP_NE) 11535 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11536 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11537 return true; 11538 11539 // Otherwise assume the worst. 11540 return false; 11541 } 11542 11543 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11544 const SCEV *&L, const SCEV *&R, 11545 SCEV::NoWrapFlags &Flags) { 11546 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11547 if (!AE || AE->getNumOperands() != 2) 11548 return false; 11549 11550 L = AE->getOperand(0); 11551 R = AE->getOperand(1); 11552 Flags = AE->getNoWrapFlags(); 11553 return true; 11554 } 11555 11556 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11557 const SCEV *Less) { 11558 // We avoid subtracting expressions here because this function is usually 11559 // fairly deep in the call stack (i.e. is called many times). 11560 11561 // X - X = 0. 11562 if (More == Less) 11563 return APInt(getTypeSizeInBits(More->getType()), 0); 11564 11565 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11566 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11567 const auto *MAR = cast<SCEVAddRecExpr>(More); 11568 11569 if (LAR->getLoop() != MAR->getLoop()) 11570 return None; 11571 11572 // We look at affine expressions only; not for correctness but to keep 11573 // getStepRecurrence cheap. 11574 if (!LAR->isAffine() || !MAR->isAffine()) 11575 return None; 11576 11577 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11578 return None; 11579 11580 Less = LAR->getStart(); 11581 More = MAR->getStart(); 11582 11583 // fall through 11584 } 11585 11586 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11587 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11588 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11589 return M - L; 11590 } 11591 11592 SCEV::NoWrapFlags Flags; 11593 const SCEV *LLess = nullptr, *RLess = nullptr; 11594 const SCEV *LMore = nullptr, *RMore = nullptr; 11595 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11596 // Compare (X + C1) vs X. 11597 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11598 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11599 if (RLess == More) 11600 return -(C1->getAPInt()); 11601 11602 // Compare X vs (X + C2). 11603 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11604 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11605 if (RMore == Less) 11606 return C2->getAPInt(); 11607 11608 // Compare (X + C1) vs (X + C2). 11609 if (C1 && C2 && RLess == RMore) 11610 return C2->getAPInt() - C1->getAPInt(); 11611 11612 return None; 11613 } 11614 11615 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11616 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11617 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11618 // Try to recognize the following pattern: 11619 // 11620 // FoundRHS = ... 11621 // ... 11622 // loop: 11623 // FoundLHS = {Start,+,W} 11624 // context_bb: // Basic block from the same loop 11625 // known(Pred, FoundLHS, FoundRHS) 11626 // 11627 // If some predicate is known in the context of a loop, it is also known on 11628 // each iteration of this loop, including the first iteration. Therefore, in 11629 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11630 // prove the original pred using this fact. 11631 if (!CtxI) 11632 return false; 11633 const BasicBlock *ContextBB = CtxI->getParent(); 11634 // Make sure AR varies in the context block. 11635 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11636 const Loop *L = AR->getLoop(); 11637 // Make sure that context belongs to the loop and executes on 1st iteration 11638 // (if it ever executes at all). 11639 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11640 return false; 11641 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11642 return false; 11643 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11644 } 11645 11646 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11647 const Loop *L = AR->getLoop(); 11648 // Make sure that context belongs to the loop and executes on 1st iteration 11649 // (if it ever executes at all). 11650 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11651 return false; 11652 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11653 return false; 11654 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11655 } 11656 11657 return false; 11658 } 11659 11660 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11661 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11662 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11663 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11664 return false; 11665 11666 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11667 if (!AddRecLHS) 11668 return false; 11669 11670 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11671 if (!AddRecFoundLHS) 11672 return false; 11673 11674 // We'd like to let SCEV reason about control dependencies, so we constrain 11675 // both the inequalities to be about add recurrences on the same loop. This 11676 // way we can use isLoopEntryGuardedByCond later. 11677 11678 const Loop *L = AddRecFoundLHS->getLoop(); 11679 if (L != AddRecLHS->getLoop()) 11680 return false; 11681 11682 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11683 // 11684 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11685 // ... (2) 11686 // 11687 // Informal proof for (2), assuming (1) [*]: 11688 // 11689 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11690 // 11691 // Then 11692 // 11693 // FoundLHS s< FoundRHS s< INT_MIN - C 11694 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11695 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11696 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11697 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11698 // <=> FoundLHS + C s< FoundRHS + C 11699 // 11700 // [*]: (1) can be proved by ruling out overflow. 11701 // 11702 // [**]: This can be proved by analyzing all the four possibilities: 11703 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11704 // (A s>= 0, B s>= 0). 11705 // 11706 // Note: 11707 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11708 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11709 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11710 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11711 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11712 // C)". 11713 11714 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11715 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11716 if (!LDiff || !RDiff || *LDiff != *RDiff) 11717 return false; 11718 11719 if (LDiff->isMinValue()) 11720 return true; 11721 11722 APInt FoundRHSLimit; 11723 11724 if (Pred == CmpInst::ICMP_ULT) { 11725 FoundRHSLimit = -(*RDiff); 11726 } else { 11727 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11728 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11729 } 11730 11731 // Try to prove (1) or (2), as needed. 11732 return isAvailableAtLoopEntry(FoundRHS, L) && 11733 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11734 getConstant(FoundRHSLimit)); 11735 } 11736 11737 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11738 const SCEV *LHS, const SCEV *RHS, 11739 const SCEV *FoundLHS, 11740 const SCEV *FoundRHS, unsigned Depth) { 11741 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11742 11743 auto ClearOnExit = make_scope_exit([&]() { 11744 if (LPhi) { 11745 bool Erased = PendingMerges.erase(LPhi); 11746 assert(Erased && "Failed to erase LPhi!"); 11747 (void)Erased; 11748 } 11749 if (RPhi) { 11750 bool Erased = PendingMerges.erase(RPhi); 11751 assert(Erased && "Failed to erase RPhi!"); 11752 (void)Erased; 11753 } 11754 }); 11755 11756 // Find respective Phis and check that they are not being pending. 11757 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11758 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11759 if (!PendingMerges.insert(Phi).second) 11760 return false; 11761 LPhi = Phi; 11762 } 11763 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11764 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11765 // If we detect a loop of Phi nodes being processed by this method, for 11766 // example: 11767 // 11768 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11769 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11770 // 11771 // we don't want to deal with a case that complex, so return conservative 11772 // answer false. 11773 if (!PendingMerges.insert(Phi).second) 11774 return false; 11775 RPhi = Phi; 11776 } 11777 11778 // If none of LHS, RHS is a Phi, nothing to do here. 11779 if (!LPhi && !RPhi) 11780 return false; 11781 11782 // If there is a SCEVUnknown Phi we are interested in, make it left. 11783 if (!LPhi) { 11784 std::swap(LHS, RHS); 11785 std::swap(FoundLHS, FoundRHS); 11786 std::swap(LPhi, RPhi); 11787 Pred = ICmpInst::getSwappedPredicate(Pred); 11788 } 11789 11790 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11791 const BasicBlock *LBB = LPhi->getParent(); 11792 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11793 11794 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11795 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11796 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11797 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11798 }; 11799 11800 if (RPhi && RPhi->getParent() == LBB) { 11801 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11802 // If we compare two Phis from the same block, and for each entry block 11803 // the predicate is true for incoming values from this block, then the 11804 // predicate is also true for the Phis. 11805 for (const BasicBlock *IncBB : predecessors(LBB)) { 11806 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11807 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11808 if (!ProvedEasily(L, R)) 11809 return false; 11810 } 11811 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11812 // Case two: RHS is also a Phi from the same basic block, and it is an 11813 // AddRec. It means that there is a loop which has both AddRec and Unknown 11814 // PHIs, for it we can compare incoming values of AddRec from above the loop 11815 // and latch with their respective incoming values of LPhi. 11816 // TODO: Generalize to handle loops with many inputs in a header. 11817 if (LPhi->getNumIncomingValues() != 2) return false; 11818 11819 auto *RLoop = RAR->getLoop(); 11820 auto *Predecessor = RLoop->getLoopPredecessor(); 11821 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11822 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11823 if (!ProvedEasily(L1, RAR->getStart())) 11824 return false; 11825 auto *Latch = RLoop->getLoopLatch(); 11826 assert(Latch && "Loop with AddRec with no latch?"); 11827 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11828 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11829 return false; 11830 } else { 11831 // In all other cases go over inputs of LHS and compare each of them to RHS, 11832 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11833 // At this point RHS is either a non-Phi, or it is a Phi from some block 11834 // different from LBB. 11835 for (const BasicBlock *IncBB : predecessors(LBB)) { 11836 // Check that RHS is available in this block. 11837 if (!dominates(RHS, IncBB)) 11838 return false; 11839 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11840 // Make sure L does not refer to a value from a potentially previous 11841 // iteration of a loop. 11842 if (!properlyDominates(L, IncBB)) 11843 return false; 11844 if (!ProvedEasily(L, RHS)) 11845 return false; 11846 } 11847 } 11848 return true; 11849 } 11850 11851 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11852 const SCEV *LHS, 11853 const SCEV *RHS, 11854 const SCEV *FoundLHS, 11855 const SCEV *FoundRHS) { 11856 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11857 // sure that we are dealing with same LHS. 11858 if (RHS == FoundRHS) { 11859 std::swap(LHS, RHS); 11860 std::swap(FoundLHS, FoundRHS); 11861 Pred = ICmpInst::getSwappedPredicate(Pred); 11862 } 11863 if (LHS != FoundLHS) 11864 return false; 11865 11866 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11867 if (!SUFoundRHS) 11868 return false; 11869 11870 Value *Shiftee, *ShiftValue; 11871 11872 using namespace PatternMatch; 11873 if (match(SUFoundRHS->getValue(), 11874 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11875 auto *ShifteeS = getSCEV(Shiftee); 11876 // Prove one of the following: 11877 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11878 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11879 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11880 // ---> LHS <s RHS 11881 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11882 // ---> LHS <=s RHS 11883 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11884 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11885 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11886 if (isKnownNonNegative(ShifteeS)) 11887 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11888 } 11889 11890 return false; 11891 } 11892 11893 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11894 const SCEV *LHS, const SCEV *RHS, 11895 const SCEV *FoundLHS, 11896 const SCEV *FoundRHS, 11897 const Instruction *CtxI) { 11898 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11899 return true; 11900 11901 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11902 return true; 11903 11904 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11905 return true; 11906 11907 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11908 CtxI)) 11909 return true; 11910 11911 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11912 FoundLHS, FoundRHS); 11913 } 11914 11915 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11916 template <typename MinMaxExprType> 11917 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11918 const SCEV *Candidate) { 11919 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11920 if (!MinMaxExpr) 11921 return false; 11922 11923 return is_contained(MinMaxExpr->operands(), Candidate); 11924 } 11925 11926 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11927 ICmpInst::Predicate Pred, 11928 const SCEV *LHS, const SCEV *RHS) { 11929 // If both sides are affine addrecs for the same loop, with equal 11930 // steps, and we know the recurrences don't wrap, then we only 11931 // need to check the predicate on the starting values. 11932 11933 if (!ICmpInst::isRelational(Pred)) 11934 return false; 11935 11936 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11937 if (!LAR) 11938 return false; 11939 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11940 if (!RAR) 11941 return false; 11942 if (LAR->getLoop() != RAR->getLoop()) 11943 return false; 11944 if (!LAR->isAffine() || !RAR->isAffine()) 11945 return false; 11946 11947 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11948 return false; 11949 11950 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11951 SCEV::FlagNSW : SCEV::FlagNUW; 11952 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11953 return false; 11954 11955 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11956 } 11957 11958 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11959 /// expression? 11960 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11961 ICmpInst::Predicate Pred, 11962 const SCEV *LHS, const SCEV *RHS) { 11963 switch (Pred) { 11964 default: 11965 return false; 11966 11967 case ICmpInst::ICMP_SGE: 11968 std::swap(LHS, RHS); 11969 LLVM_FALLTHROUGH; 11970 case ICmpInst::ICMP_SLE: 11971 return 11972 // min(A, ...) <= A 11973 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11974 // A <= max(A, ...) 11975 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11976 11977 case ICmpInst::ICMP_UGE: 11978 std::swap(LHS, RHS); 11979 LLVM_FALLTHROUGH; 11980 case ICmpInst::ICMP_ULE: 11981 return 11982 // min(A, ...) <= A 11983 // FIXME: what about umin_seq? 11984 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11985 // A <= max(A, ...) 11986 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11987 } 11988 11989 llvm_unreachable("covered switch fell through?!"); 11990 } 11991 11992 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11993 const SCEV *LHS, const SCEV *RHS, 11994 const SCEV *FoundLHS, 11995 const SCEV *FoundRHS, 11996 unsigned Depth) { 11997 assert(getTypeSizeInBits(LHS->getType()) == 11998 getTypeSizeInBits(RHS->getType()) && 11999 "LHS and RHS have different sizes?"); 12000 assert(getTypeSizeInBits(FoundLHS->getType()) == 12001 getTypeSizeInBits(FoundRHS->getType()) && 12002 "FoundLHS and FoundRHS have different sizes?"); 12003 // We want to avoid hurting the compile time with analysis of too big trees. 12004 if (Depth > MaxSCEVOperationsImplicationDepth) 12005 return false; 12006 12007 // We only want to work with GT comparison so far. 12008 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 12009 Pred = CmpInst::getSwappedPredicate(Pred); 12010 std::swap(LHS, RHS); 12011 std::swap(FoundLHS, FoundRHS); 12012 } 12013 12014 // For unsigned, try to reduce it to corresponding signed comparison. 12015 if (Pred == ICmpInst::ICMP_UGT) 12016 // We can replace unsigned predicate with its signed counterpart if all 12017 // involved values are non-negative. 12018 // TODO: We could have better support for unsigned. 12019 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 12020 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 12021 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 12022 // use this fact to prove that LHS and RHS are non-negative. 12023 const SCEV *MinusOne = getMinusOne(LHS->getType()); 12024 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 12025 FoundRHS) && 12026 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 12027 FoundRHS)) 12028 Pred = ICmpInst::ICMP_SGT; 12029 } 12030 12031 if (Pred != ICmpInst::ICMP_SGT) 12032 return false; 12033 12034 auto GetOpFromSExt = [&](const SCEV *S) { 12035 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 12036 return Ext->getOperand(); 12037 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 12038 // the constant in some cases. 12039 return S; 12040 }; 12041 12042 // Acquire values from extensions. 12043 auto *OrigLHS = LHS; 12044 auto *OrigFoundLHS = FoundLHS; 12045 LHS = GetOpFromSExt(LHS); 12046 FoundLHS = GetOpFromSExt(FoundLHS); 12047 12048 // Is the SGT predicate can be proved trivially or using the found context. 12049 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 12050 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 12051 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 12052 FoundRHS, Depth + 1); 12053 }; 12054 12055 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 12056 // We want to avoid creation of any new non-constant SCEV. Since we are 12057 // going to compare the operands to RHS, we should be certain that we don't 12058 // need any size extensions for this. So let's decline all cases when the 12059 // sizes of types of LHS and RHS do not match. 12060 // TODO: Maybe try to get RHS from sext to catch more cases? 12061 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 12062 return false; 12063 12064 // Should not overflow. 12065 if (!LHSAddExpr->hasNoSignedWrap()) 12066 return false; 12067 12068 auto *LL = LHSAddExpr->getOperand(0); 12069 auto *LR = LHSAddExpr->getOperand(1); 12070 auto *MinusOne = getMinusOne(RHS->getType()); 12071 12072 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 12073 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 12074 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 12075 }; 12076 // Try to prove the following rule: 12077 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 12078 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 12079 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 12080 return true; 12081 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 12082 Value *LL, *LR; 12083 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 12084 12085 using namespace llvm::PatternMatch; 12086 12087 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 12088 // Rules for division. 12089 // We are going to perform some comparisons with Denominator and its 12090 // derivative expressions. In general case, creating a SCEV for it may 12091 // lead to a complex analysis of the entire graph, and in particular it 12092 // can request trip count recalculation for the same loop. This would 12093 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 12094 // this, we only want to create SCEVs that are constants in this section. 12095 // So we bail if Denominator is not a constant. 12096 if (!isa<ConstantInt>(LR)) 12097 return false; 12098 12099 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 12100 12101 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 12102 // then a SCEV for the numerator already exists and matches with FoundLHS. 12103 auto *Numerator = getExistingSCEV(LL); 12104 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 12105 return false; 12106 12107 // Make sure that the numerator matches with FoundLHS and the denominator 12108 // is positive. 12109 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 12110 return false; 12111 12112 auto *DTy = Denominator->getType(); 12113 auto *FRHSTy = FoundRHS->getType(); 12114 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 12115 // One of types is a pointer and another one is not. We cannot extend 12116 // them properly to a wider type, so let us just reject this case. 12117 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 12118 // to avoid this check. 12119 return false; 12120 12121 // Given that: 12122 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 12123 auto *WTy = getWiderType(DTy, FRHSTy); 12124 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 12125 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 12126 12127 // Try to prove the following rule: 12128 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 12129 // For example, given that FoundLHS > 2. It means that FoundLHS is at 12130 // least 3. If we divide it by Denominator < 4, we will have at least 1. 12131 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 12132 if (isKnownNonPositive(RHS) && 12133 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 12134 return true; 12135 12136 // Try to prove the following rule: 12137 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 12138 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 12139 // If we divide it by Denominator > 2, then: 12140 // 1. If FoundLHS is negative, then the result is 0. 12141 // 2. If FoundLHS is non-negative, then the result is non-negative. 12142 // Anyways, the result is non-negative. 12143 auto *MinusOne = getMinusOne(WTy); 12144 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 12145 if (isKnownNegative(RHS) && 12146 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 12147 return true; 12148 } 12149 } 12150 12151 // If our expression contained SCEVUnknown Phis, and we split it down and now 12152 // need to prove something for them, try to prove the predicate for every 12153 // possible incoming values of those Phis. 12154 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 12155 return true; 12156 12157 return false; 12158 } 12159 12160 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 12161 const SCEV *LHS, const SCEV *RHS) { 12162 // zext x u<= sext x, sext x s<= zext x 12163 switch (Pred) { 12164 case ICmpInst::ICMP_SGE: 12165 std::swap(LHS, RHS); 12166 LLVM_FALLTHROUGH; 12167 case ICmpInst::ICMP_SLE: { 12168 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 12169 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 12170 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 12171 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12172 return true; 12173 break; 12174 } 12175 case ICmpInst::ICMP_UGE: 12176 std::swap(LHS, RHS); 12177 LLVM_FALLTHROUGH; 12178 case ICmpInst::ICMP_ULE: { 12179 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12180 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12181 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12182 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12183 return true; 12184 break; 12185 } 12186 default: 12187 break; 12188 }; 12189 return false; 12190 } 12191 12192 bool 12193 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12194 const SCEV *LHS, const SCEV *RHS) { 12195 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12196 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12197 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12198 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12199 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12200 } 12201 12202 bool 12203 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12204 const SCEV *LHS, const SCEV *RHS, 12205 const SCEV *FoundLHS, 12206 const SCEV *FoundRHS) { 12207 switch (Pred) { 12208 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12209 case ICmpInst::ICMP_EQ: 12210 case ICmpInst::ICMP_NE: 12211 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12212 return true; 12213 break; 12214 case ICmpInst::ICMP_SLT: 12215 case ICmpInst::ICMP_SLE: 12216 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12217 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12218 return true; 12219 break; 12220 case ICmpInst::ICMP_SGT: 12221 case ICmpInst::ICMP_SGE: 12222 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12223 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12224 return true; 12225 break; 12226 case ICmpInst::ICMP_ULT: 12227 case ICmpInst::ICMP_ULE: 12228 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12229 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12230 return true; 12231 break; 12232 case ICmpInst::ICMP_UGT: 12233 case ICmpInst::ICMP_UGE: 12234 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12235 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12236 return true; 12237 break; 12238 } 12239 12240 // Maybe it can be proved via operations? 12241 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12242 return true; 12243 12244 return false; 12245 } 12246 12247 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12248 const SCEV *LHS, 12249 const SCEV *RHS, 12250 const SCEV *FoundLHS, 12251 const SCEV *FoundRHS) { 12252 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12253 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12254 // reduce the compile time impact of this optimization. 12255 return false; 12256 12257 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12258 if (!Addend) 12259 return false; 12260 12261 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12262 12263 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12264 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12265 ConstantRange FoundLHSRange = 12266 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12267 12268 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12269 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12270 12271 // We can also compute the range of values for `LHS` that satisfy the 12272 // consequent, "`LHS` `Pred` `RHS`": 12273 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12274 // The antecedent implies the consequent if every value of `LHS` that 12275 // satisfies the antecedent also satisfies the consequent. 12276 return LHSRange.icmp(Pred, ConstRHS); 12277 } 12278 12279 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12280 bool IsSigned) { 12281 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12282 12283 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12284 const SCEV *One = getOne(Stride->getType()); 12285 12286 if (IsSigned) { 12287 APInt MaxRHS = getSignedRangeMax(RHS); 12288 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12289 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12290 12291 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12292 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12293 } 12294 12295 APInt MaxRHS = getUnsignedRangeMax(RHS); 12296 APInt MaxValue = APInt::getMaxValue(BitWidth); 12297 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12298 12299 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12300 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12301 } 12302 12303 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12304 bool IsSigned) { 12305 12306 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12307 const SCEV *One = getOne(Stride->getType()); 12308 12309 if (IsSigned) { 12310 APInt MinRHS = getSignedRangeMin(RHS); 12311 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12312 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12313 12314 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12315 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12316 } 12317 12318 APInt MinRHS = getUnsignedRangeMin(RHS); 12319 APInt MinValue = APInt::getMinValue(BitWidth); 12320 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12321 12322 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12323 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12324 } 12325 12326 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12327 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12328 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12329 // expression fixes the case of N=0. 12330 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12331 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12332 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12333 } 12334 12335 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12336 const SCEV *Stride, 12337 const SCEV *End, 12338 unsigned BitWidth, 12339 bool IsSigned) { 12340 // The logic in this function assumes we can represent a positive stride. 12341 // If we can't, the backedge-taken count must be zero. 12342 if (IsSigned && BitWidth == 1) 12343 return getZero(Stride->getType()); 12344 12345 // This code has only been closely audited for negative strides in the 12346 // unsigned comparison case, it may be correct for signed comparison, but 12347 // that needs to be established. 12348 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12349 "Stride is expected strictly positive for signed case!"); 12350 12351 // Calculate the maximum backedge count based on the range of values 12352 // permitted by Start, End, and Stride. 12353 APInt MinStart = 12354 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12355 12356 APInt MinStride = 12357 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12358 12359 // We assume either the stride is positive, or the backedge-taken count 12360 // is zero. So force StrideForMaxBECount to be at least one. 12361 APInt One(BitWidth, 1); 12362 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12363 : APIntOps::umax(One, MinStride); 12364 12365 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12366 : APInt::getMaxValue(BitWidth); 12367 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12368 12369 // Although End can be a MAX expression we estimate MaxEnd considering only 12370 // the case End = RHS of the loop termination condition. This is safe because 12371 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12372 // taken count. 12373 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12374 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12375 12376 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12377 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12378 : APIntOps::umax(MaxEnd, MinStart); 12379 12380 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12381 getConstant(StrideForMaxBECount) /* Step */); 12382 } 12383 12384 ScalarEvolution::ExitLimit 12385 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12386 const Loop *L, bool IsSigned, 12387 bool ControlsExit, bool AllowPredicates) { 12388 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12389 12390 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12391 bool PredicatedIV = false; 12392 12393 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12394 // Can we prove this loop *must* be UB if overflow of IV occurs? 12395 // Reasoning goes as follows: 12396 // * Suppose the IV did self wrap. 12397 // * If Stride evenly divides the iteration space, then once wrap 12398 // occurs, the loop must revisit the same values. 12399 // * We know that RHS is invariant, and that none of those values 12400 // caused this exit to be taken previously. Thus, this exit is 12401 // dynamically dead. 12402 // * If this is the sole exit, then a dead exit implies the loop 12403 // must be infinite if there are no abnormal exits. 12404 // * If the loop were infinite, then it must either not be mustprogress 12405 // or have side effects. Otherwise, it must be UB. 12406 // * It can't (by assumption), be UB so we have contradicted our 12407 // premise and can conclude the IV did not in fact self-wrap. 12408 if (!isLoopInvariant(RHS, L)) 12409 return false; 12410 12411 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12412 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12413 return false; 12414 12415 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12416 return false; 12417 12418 return loopIsFiniteByAssumption(L); 12419 }; 12420 12421 if (!IV) { 12422 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12423 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12424 if (AR && AR->getLoop() == L && AR->isAffine()) { 12425 auto canProveNUW = [&]() { 12426 if (!isLoopInvariant(RHS, L)) 12427 return false; 12428 12429 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12430 // We need the sequence defined by AR to strictly increase in the 12431 // unsigned integer domain for the logic below to hold. 12432 return false; 12433 12434 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12435 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12436 // If RHS <=u Limit, then there must exist a value V in the sequence 12437 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12438 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12439 // overflow occurs. This limit also implies that a signed comparison 12440 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12441 // the high bits on both sides must be zero. 12442 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12443 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12444 Limit = Limit.zext(OuterBitWidth); 12445 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12446 }; 12447 auto Flags = AR->getNoWrapFlags(); 12448 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12449 Flags = setFlags(Flags, SCEV::FlagNUW); 12450 12451 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12452 if (AR->hasNoUnsignedWrap()) { 12453 // Emulate what getZeroExtendExpr would have done during construction 12454 // if we'd been able to infer the fact just above at that time. 12455 const SCEV *Step = AR->getStepRecurrence(*this); 12456 Type *Ty = ZExt->getType(); 12457 auto *S = getAddRecExpr( 12458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12459 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12460 IV = dyn_cast<SCEVAddRecExpr>(S); 12461 } 12462 } 12463 } 12464 } 12465 12466 12467 if (!IV && AllowPredicates) { 12468 // Try to make this an AddRec using runtime tests, in the first X 12469 // iterations of this loop, where X is the SCEV expression found by the 12470 // algorithm below. 12471 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12472 PredicatedIV = true; 12473 } 12474 12475 // Avoid weird loops 12476 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12477 return getCouldNotCompute(); 12478 12479 // A precondition of this method is that the condition being analyzed 12480 // reaches an exiting branch which dominates the latch. Given that, we can 12481 // assume that an increment which violates the nowrap specification and 12482 // produces poison must cause undefined behavior when the resulting poison 12483 // value is branched upon and thus we can conclude that the backedge is 12484 // taken no more often than would be required to produce that poison value. 12485 // Note that a well defined loop can exit on the iteration which violates 12486 // the nowrap specification if there is another exit (either explicit or 12487 // implicit/exceptional) which causes the loop to execute before the 12488 // exiting instruction we're analyzing would trigger UB. 12489 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12490 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12491 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12492 12493 const SCEV *Stride = IV->getStepRecurrence(*this); 12494 12495 bool PositiveStride = isKnownPositive(Stride); 12496 12497 // Avoid negative or zero stride values. 12498 if (!PositiveStride) { 12499 // We can compute the correct backedge taken count for loops with unknown 12500 // strides if we can prove that the loop is not an infinite loop with side 12501 // effects. Here's the loop structure we are trying to handle - 12502 // 12503 // i = start 12504 // do { 12505 // A[i] = i; 12506 // i += s; 12507 // } while (i < end); 12508 // 12509 // The backedge taken count for such loops is evaluated as - 12510 // (max(end, start + stride) - start - 1) /u stride 12511 // 12512 // The additional preconditions that we need to check to prove correctness 12513 // of the above formula is as follows - 12514 // 12515 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12516 // NoWrap flag). 12517 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12518 // no side effects within the loop) 12519 // c) loop has a single static exit (with no abnormal exits) 12520 // 12521 // Precondition a) implies that if the stride is negative, this is a single 12522 // trip loop. The backedge taken count formula reduces to zero in this case. 12523 // 12524 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12525 // then a zero stride means the backedge can't be taken without executing 12526 // undefined behavior. 12527 // 12528 // The positive stride case is the same as isKnownPositive(Stride) returning 12529 // true (original behavior of the function). 12530 // 12531 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12532 !loopHasNoAbnormalExits(L)) 12533 return getCouldNotCompute(); 12534 12535 // This bailout is protecting the logic in computeMaxBECountForLT which 12536 // has not yet been sufficiently auditted or tested with negative strides. 12537 // We used to filter out all known-non-positive cases here, we're in the 12538 // process of being less restrictive bit by bit. 12539 if (IsSigned && isKnownNonPositive(Stride)) 12540 return getCouldNotCompute(); 12541 12542 if (!isKnownNonZero(Stride)) { 12543 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12544 // if it might eventually be greater than start and if so, on which 12545 // iteration. We can't even produce a useful upper bound. 12546 if (!isLoopInvariant(RHS, L)) 12547 return getCouldNotCompute(); 12548 12549 // We allow a potentially zero stride, but we need to divide by stride 12550 // below. Since the loop can't be infinite and this check must control 12551 // the sole exit, we can infer the exit must be taken on the first 12552 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12553 // we know the numerator in the divides below must be zero, so we can 12554 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12555 // and produce the right result. 12556 // FIXME: Handle the case where Stride is poison? 12557 auto wouldZeroStrideBeUB = [&]() { 12558 // Proof by contradiction. Suppose the stride were zero. If we can 12559 // prove that the backedge *is* taken on the first iteration, then since 12560 // we know this condition controls the sole exit, we must have an 12561 // infinite loop. We can't have a (well defined) infinite loop per 12562 // check just above. 12563 // Note: The (Start - Stride) term is used to get the start' term from 12564 // (start' + stride,+,stride). Remember that we only care about the 12565 // result of this expression when stride == 0 at runtime. 12566 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12567 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12568 }; 12569 if (!wouldZeroStrideBeUB()) { 12570 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12571 } 12572 } 12573 } else if (!Stride->isOne() && !NoWrap) { 12574 auto isUBOnWrap = [&]() { 12575 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12576 // follows trivially from the fact that every (un)signed-wrapped, but 12577 // not self-wrapped value must be LT than the last value before 12578 // (un)signed wrap. Since we know that last value didn't exit, nor 12579 // will any smaller one. 12580 return canAssumeNoSelfWrap(IV); 12581 }; 12582 12583 // Avoid proven overflow cases: this will ensure that the backedge taken 12584 // count will not generate any unsigned overflow. Relaxed no-overflow 12585 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12586 // undefined behaviors like the case of C language. 12587 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12588 return getCouldNotCompute(); 12589 } 12590 12591 // On all paths just preceeding, we established the following invariant: 12592 // IV can be assumed not to overflow up to and including the exiting 12593 // iteration. We proved this in one of two ways: 12594 // 1) We can show overflow doesn't occur before the exiting iteration 12595 // 1a) canIVOverflowOnLT, and b) step of one 12596 // 2) We can show that if overflow occurs, the loop must execute UB 12597 // before any possible exit. 12598 // Note that we have not yet proved RHS invariant (in general). 12599 12600 const SCEV *Start = IV->getStart(); 12601 12602 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12603 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12604 // Use integer-typed versions for actual computation; we can't subtract 12605 // pointers in general. 12606 const SCEV *OrigStart = Start; 12607 const SCEV *OrigRHS = RHS; 12608 if (Start->getType()->isPointerTy()) { 12609 Start = getLosslessPtrToIntExpr(Start); 12610 if (isa<SCEVCouldNotCompute>(Start)) 12611 return Start; 12612 } 12613 if (RHS->getType()->isPointerTy()) { 12614 RHS = getLosslessPtrToIntExpr(RHS); 12615 if (isa<SCEVCouldNotCompute>(RHS)) 12616 return RHS; 12617 } 12618 12619 // When the RHS is not invariant, we do not know the end bound of the loop and 12620 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12621 // calculate the MaxBECount, given the start, stride and max value for the end 12622 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12623 // checked above). 12624 if (!isLoopInvariant(RHS, L)) { 12625 const SCEV *MaxBECount = computeMaxBECountForLT( 12626 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12627 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12628 false /*MaxOrZero*/, Predicates); 12629 } 12630 12631 // We use the expression (max(End,Start)-Start)/Stride to describe the 12632 // backedge count, as if the backedge is taken at least once max(End,Start) 12633 // is End and so the result is as above, and if not max(End,Start) is Start 12634 // so we get a backedge count of zero. 12635 const SCEV *BECount = nullptr; 12636 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12637 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12638 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12639 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12640 // Can we prove (max(RHS,Start) > Start - Stride? 12641 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12642 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12643 // In this case, we can use a refined formula for computing backedge taken 12644 // count. The general formula remains: 12645 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12646 // We want to use the alternate formula: 12647 // "((End - 1) - (Start - Stride)) /u Stride" 12648 // Let's do a quick case analysis to show these are equivalent under 12649 // our precondition that max(RHS,Start) > Start - Stride. 12650 // * For RHS <= Start, the backedge-taken count must be zero. 12651 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12652 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12653 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12654 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12655 // this to the stride of 1 case. 12656 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12657 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12658 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12659 // "((RHS - (Start - Stride) - 1) /u Stride". 12660 // Our preconditions trivially imply no overflow in that form. 12661 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12662 const SCEV *Numerator = 12663 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12664 BECount = getUDivExpr(Numerator, Stride); 12665 } 12666 12667 const SCEV *BECountIfBackedgeTaken = nullptr; 12668 if (!BECount) { 12669 auto canProveRHSGreaterThanEqualStart = [&]() { 12670 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12671 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12672 return true; 12673 12674 // (RHS > Start - 1) implies RHS >= Start. 12675 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12676 // "Start - 1" doesn't overflow. 12677 // * For signed comparison, if Start - 1 does overflow, it's equal 12678 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12679 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12680 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12681 // 12682 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12683 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12684 auto *StartMinusOne = getAddExpr(OrigStart, 12685 getMinusOne(OrigStart->getType())); 12686 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12687 }; 12688 12689 // If we know that RHS >= Start in the context of loop, then we know that 12690 // max(RHS, Start) = RHS at this point. 12691 const SCEV *End; 12692 if (canProveRHSGreaterThanEqualStart()) { 12693 End = RHS; 12694 } else { 12695 // If RHS < Start, the backedge will be taken zero times. So in 12696 // general, we can write the backedge-taken count as: 12697 // 12698 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12699 // 12700 // We convert it to the following to make it more convenient for SCEV: 12701 // 12702 // ceil(max(RHS, Start) - Start) / Stride 12703 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12704 12705 // See what would happen if we assume the backedge is taken. This is 12706 // used to compute MaxBECount. 12707 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12708 } 12709 12710 // At this point, we know: 12711 // 12712 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12713 // 2. The index variable doesn't overflow. 12714 // 12715 // Therefore, we know N exists such that 12716 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12717 // doesn't overflow. 12718 // 12719 // Using this information, try to prove whether the addition in 12720 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12721 const SCEV *One = getOne(Stride->getType()); 12722 bool MayAddOverflow = [&] { 12723 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12724 if (StrideC->getAPInt().isPowerOf2()) { 12725 // Suppose Stride is a power of two, and Start/End are unsigned 12726 // integers. Let UMAX be the largest representable unsigned 12727 // integer. 12728 // 12729 // By the preconditions of this function, we know 12730 // "(Start + Stride * N) >= End", and this doesn't overflow. 12731 // As a formula: 12732 // 12733 // End <= (Start + Stride * N) <= UMAX 12734 // 12735 // Subtracting Start from all the terms: 12736 // 12737 // End - Start <= Stride * N <= UMAX - Start 12738 // 12739 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12740 // 12741 // End - Start <= Stride * N <= UMAX 12742 // 12743 // Stride * N is a multiple of Stride. Therefore, 12744 // 12745 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12746 // 12747 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12748 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12749 // 12750 // End - Start <= Stride * N <= UMAX - Stride - 1 12751 // 12752 // Dropping the middle term: 12753 // 12754 // End - Start <= UMAX - Stride - 1 12755 // 12756 // Adding Stride - 1 to both sides: 12757 // 12758 // (End - Start) + (Stride - 1) <= UMAX 12759 // 12760 // In other words, the addition doesn't have unsigned overflow. 12761 // 12762 // A similar proof works if we treat Start/End as signed values. 12763 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12764 // use signed max instead of unsigned max. Note that we're trying 12765 // to prove a lack of unsigned overflow in either case. 12766 return false; 12767 } 12768 } 12769 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12770 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12771 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12772 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12773 // 12774 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12775 return false; 12776 } 12777 return true; 12778 }(); 12779 12780 const SCEV *Delta = getMinusSCEV(End, Start); 12781 if (!MayAddOverflow) { 12782 // floor((D + (S - 1)) / S) 12783 // We prefer this formulation if it's legal because it's fewer operations. 12784 BECount = 12785 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12786 } else { 12787 BECount = getUDivCeilSCEV(Delta, Stride); 12788 } 12789 } 12790 12791 const SCEV *MaxBECount; 12792 bool MaxOrZero = false; 12793 if (isa<SCEVConstant>(BECount)) { 12794 MaxBECount = BECount; 12795 } else if (BECountIfBackedgeTaken && 12796 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12797 // If we know exactly how many times the backedge will be taken if it's 12798 // taken at least once, then the backedge count will either be that or 12799 // zero. 12800 MaxBECount = BECountIfBackedgeTaken; 12801 MaxOrZero = true; 12802 } else { 12803 MaxBECount = computeMaxBECountForLT( 12804 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12805 } 12806 12807 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12808 !isa<SCEVCouldNotCompute>(BECount)) 12809 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12810 12811 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12812 } 12813 12814 ScalarEvolution::ExitLimit 12815 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12816 const Loop *L, bool IsSigned, 12817 bool ControlsExit, bool AllowPredicates) { 12818 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12819 // We handle only IV > Invariant 12820 if (!isLoopInvariant(RHS, L)) 12821 return getCouldNotCompute(); 12822 12823 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12824 if (!IV && AllowPredicates) 12825 // Try to make this an AddRec using runtime tests, in the first X 12826 // iterations of this loop, where X is the SCEV expression found by the 12827 // algorithm below. 12828 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12829 12830 // Avoid weird loops 12831 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12832 return getCouldNotCompute(); 12833 12834 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12835 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12836 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12837 12838 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12839 12840 // Avoid negative or zero stride values 12841 if (!isKnownPositive(Stride)) 12842 return getCouldNotCompute(); 12843 12844 // Avoid proven overflow cases: this will ensure that the backedge taken count 12845 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12846 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12847 // behaviors like the case of C language. 12848 if (!Stride->isOne() && !NoWrap) 12849 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12850 return getCouldNotCompute(); 12851 12852 const SCEV *Start = IV->getStart(); 12853 const SCEV *End = RHS; 12854 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12855 // If we know that Start >= RHS in the context of loop, then we know that 12856 // min(RHS, Start) = RHS at this point. 12857 if (isLoopEntryGuardedByCond( 12858 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12859 End = RHS; 12860 else 12861 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12862 } 12863 12864 if (Start->getType()->isPointerTy()) { 12865 Start = getLosslessPtrToIntExpr(Start); 12866 if (isa<SCEVCouldNotCompute>(Start)) 12867 return Start; 12868 } 12869 if (End->getType()->isPointerTy()) { 12870 End = getLosslessPtrToIntExpr(End); 12871 if (isa<SCEVCouldNotCompute>(End)) 12872 return End; 12873 } 12874 12875 // Compute ((Start - End) + (Stride - 1)) / Stride. 12876 // FIXME: This can overflow. Holding off on fixing this for now; 12877 // howManyGreaterThans will hopefully be gone soon. 12878 const SCEV *One = getOne(Stride->getType()); 12879 const SCEV *BECount = getUDivExpr( 12880 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12881 12882 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12883 : getUnsignedRangeMax(Start); 12884 12885 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12886 : getUnsignedRangeMin(Stride); 12887 12888 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12889 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12890 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12891 12892 // Although End can be a MIN expression we estimate MinEnd considering only 12893 // the case End = RHS. This is safe because in the other case (Start - End) 12894 // is zero, leading to a zero maximum backedge taken count. 12895 APInt MinEnd = 12896 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12897 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12898 12899 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12900 ? BECount 12901 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12902 getConstant(MinStride)); 12903 12904 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12905 MaxBECount = BECount; 12906 12907 return ExitLimit(BECount, MaxBECount, false, Predicates); 12908 } 12909 12910 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12911 ScalarEvolution &SE) const { 12912 if (Range.isFullSet()) // Infinite loop. 12913 return SE.getCouldNotCompute(); 12914 12915 // If the start is a non-zero constant, shift the range to simplify things. 12916 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12917 if (!SC->getValue()->isZero()) { 12918 SmallVector<const SCEV *, 4> Operands(operands()); 12919 Operands[0] = SE.getZero(SC->getType()); 12920 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12921 getNoWrapFlags(FlagNW)); 12922 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12923 return ShiftedAddRec->getNumIterationsInRange( 12924 Range.subtract(SC->getAPInt()), SE); 12925 // This is strange and shouldn't happen. 12926 return SE.getCouldNotCompute(); 12927 } 12928 12929 // The only time we can solve this is when we have all constant indices. 12930 // Otherwise, we cannot determine the overflow conditions. 12931 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12932 return SE.getCouldNotCompute(); 12933 12934 // Okay at this point we know that all elements of the chrec are constants and 12935 // that the start element is zero. 12936 12937 // First check to see if the range contains zero. If not, the first 12938 // iteration exits. 12939 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12940 if (!Range.contains(APInt(BitWidth, 0))) 12941 return SE.getZero(getType()); 12942 12943 if (isAffine()) { 12944 // If this is an affine expression then we have this situation: 12945 // Solve {0,+,A} in Range === Ax in Range 12946 12947 // We know that zero is in the range. If A is positive then we know that 12948 // the upper value of the range must be the first possible exit value. 12949 // If A is negative then the lower of the range is the last possible loop 12950 // value. Also note that we already checked for a full range. 12951 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12952 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12953 12954 // The exit value should be (End+A)/A. 12955 APInt ExitVal = (End + A).udiv(A); 12956 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12957 12958 // Evaluate at the exit value. If we really did fall out of the valid 12959 // range, then we computed our trip count, otherwise wrap around or other 12960 // things must have happened. 12961 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12962 if (Range.contains(Val->getValue())) 12963 return SE.getCouldNotCompute(); // Something strange happened 12964 12965 // Ensure that the previous value is in the range. 12966 assert(Range.contains( 12967 EvaluateConstantChrecAtConstant(this, 12968 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12969 "Linear scev computation is off in a bad way!"); 12970 return SE.getConstant(ExitValue); 12971 } 12972 12973 if (isQuadratic()) { 12974 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12975 return SE.getConstant(*S); 12976 } 12977 12978 return SE.getCouldNotCompute(); 12979 } 12980 12981 const SCEVAddRecExpr * 12982 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12983 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12984 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12985 // but in this case we cannot guarantee that the value returned will be an 12986 // AddRec because SCEV does not have a fixed point where it stops 12987 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12988 // may happen if we reach arithmetic depth limit while simplifying. So we 12989 // construct the returned value explicitly. 12990 SmallVector<const SCEV *, 3> Ops; 12991 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12992 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12993 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12994 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12995 // We know that the last operand is not a constant zero (otherwise it would 12996 // have been popped out earlier). This guarantees us that if the result has 12997 // the same last operand, then it will also not be popped out, meaning that 12998 // the returned value will be an AddRec. 12999 const SCEV *Last = getOperand(getNumOperands() - 1); 13000 assert(!Last->isZero() && "Recurrency with zero step?"); 13001 Ops.push_back(Last); 13002 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 13003 SCEV::FlagAnyWrap)); 13004 } 13005 13006 // Return true when S contains at least an undef value. 13007 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 13008 return SCEVExprContains(S, [](const SCEV *S) { 13009 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13010 return isa<UndefValue>(SU->getValue()); 13011 return false; 13012 }); 13013 } 13014 13015 // Return true when S contains a value that is a nullptr. 13016 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 13017 return SCEVExprContains(S, [](const SCEV *S) { 13018 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 13019 return SU->getValue() == nullptr; 13020 return false; 13021 }); 13022 } 13023 13024 /// Return the size of an element read or written by Inst. 13025 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 13026 Type *Ty; 13027 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 13028 Ty = Store->getValueOperand()->getType(); 13029 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 13030 Ty = Load->getType(); 13031 else 13032 return nullptr; 13033 13034 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 13035 return getSizeOfExpr(ETy, Ty); 13036 } 13037 13038 //===----------------------------------------------------------------------===// 13039 // SCEVCallbackVH Class Implementation 13040 //===----------------------------------------------------------------------===// 13041 13042 void ScalarEvolution::SCEVCallbackVH::deleted() { 13043 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13044 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 13045 SE->ConstantEvolutionLoopExitValue.erase(PN); 13046 SE->eraseValueFromMap(getValPtr()); 13047 // this now dangles! 13048 } 13049 13050 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 13051 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 13052 13053 // Forget all the expressions associated with users of the old value, 13054 // so that future queries will recompute the expressions using the new 13055 // value. 13056 Value *Old = getValPtr(); 13057 SmallVector<User *, 16> Worklist(Old->users()); 13058 SmallPtrSet<User *, 8> Visited; 13059 while (!Worklist.empty()) { 13060 User *U = Worklist.pop_back_val(); 13061 // Deleting the Old value will cause this to dangle. Postpone 13062 // that until everything else is done. 13063 if (U == Old) 13064 continue; 13065 if (!Visited.insert(U).second) 13066 continue; 13067 if (PHINode *PN = dyn_cast<PHINode>(U)) 13068 SE->ConstantEvolutionLoopExitValue.erase(PN); 13069 SE->eraseValueFromMap(U); 13070 llvm::append_range(Worklist, U->users()); 13071 } 13072 // Delete the Old value. 13073 if (PHINode *PN = dyn_cast<PHINode>(Old)) 13074 SE->ConstantEvolutionLoopExitValue.erase(PN); 13075 SE->eraseValueFromMap(Old); 13076 // this now dangles! 13077 } 13078 13079 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 13080 : CallbackVH(V), SE(se) {} 13081 13082 //===----------------------------------------------------------------------===// 13083 // ScalarEvolution Class Implementation 13084 //===----------------------------------------------------------------------===// 13085 13086 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 13087 AssumptionCache &AC, DominatorTree &DT, 13088 LoopInfo &LI) 13089 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 13090 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 13091 LoopDispositions(64), BlockDispositions(64) { 13092 // To use guards for proving predicates, we need to scan every instruction in 13093 // relevant basic blocks, and not just terminators. Doing this is a waste of 13094 // time if the IR does not actually contain any calls to 13095 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 13096 // 13097 // This pessimizes the case where a pass that preserves ScalarEvolution wants 13098 // to _add_ guards to the module when there weren't any before, and wants 13099 // ScalarEvolution to optimize based on those guards. For now we prefer to be 13100 // efficient in lieu of being smart in that rather obscure case. 13101 13102 auto *GuardDecl = F.getParent()->getFunction( 13103 Intrinsic::getName(Intrinsic::experimental_guard)); 13104 HasGuards = GuardDecl && !GuardDecl->use_empty(); 13105 } 13106 13107 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 13108 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 13109 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 13110 ValueExprMap(std::move(Arg.ValueExprMap)), 13111 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 13112 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 13113 PendingMerges(std::move(Arg.PendingMerges)), 13114 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 13115 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 13116 PredicatedBackedgeTakenCounts( 13117 std::move(Arg.PredicatedBackedgeTakenCounts)), 13118 BECountUsers(std::move(Arg.BECountUsers)), 13119 ConstantEvolutionLoopExitValue( 13120 std::move(Arg.ConstantEvolutionLoopExitValue)), 13121 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 13122 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 13123 LoopDispositions(std::move(Arg.LoopDispositions)), 13124 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 13125 BlockDispositions(std::move(Arg.BlockDispositions)), 13126 SCEVUsers(std::move(Arg.SCEVUsers)), 13127 UnsignedRanges(std::move(Arg.UnsignedRanges)), 13128 SignedRanges(std::move(Arg.SignedRanges)), 13129 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 13130 UniquePreds(std::move(Arg.UniquePreds)), 13131 SCEVAllocator(std::move(Arg.SCEVAllocator)), 13132 LoopUsers(std::move(Arg.LoopUsers)), 13133 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 13134 FirstUnknown(Arg.FirstUnknown) { 13135 Arg.FirstUnknown = nullptr; 13136 } 13137 13138 ScalarEvolution::~ScalarEvolution() { 13139 // Iterate through all the SCEVUnknown instances and call their 13140 // destructors, so that they release their references to their values. 13141 for (SCEVUnknown *U = FirstUnknown; U;) { 13142 SCEVUnknown *Tmp = U; 13143 U = U->Next; 13144 Tmp->~SCEVUnknown(); 13145 } 13146 FirstUnknown = nullptr; 13147 13148 ExprValueMap.clear(); 13149 ValueExprMap.clear(); 13150 HasRecMap.clear(); 13151 BackedgeTakenCounts.clear(); 13152 PredicatedBackedgeTakenCounts.clear(); 13153 13154 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 13155 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 13156 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 13157 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 13158 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 13159 } 13160 13161 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 13162 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 13163 } 13164 13165 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 13166 const Loop *L) { 13167 // Print all inner loops first 13168 for (Loop *I : *L) 13169 PrintLoopInfo(OS, SE, I); 13170 13171 OS << "Loop "; 13172 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13173 OS << ": "; 13174 13175 SmallVector<BasicBlock *, 8> ExitingBlocks; 13176 L->getExitingBlocks(ExitingBlocks); 13177 if (ExitingBlocks.size() != 1) 13178 OS << "<multiple exits> "; 13179 13180 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 13181 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 13182 else 13183 OS << "Unpredictable backedge-taken count.\n"; 13184 13185 if (ExitingBlocks.size() > 1) 13186 for (BasicBlock *ExitingBlock : ExitingBlocks) { 13187 OS << " exit count for " << ExitingBlock->getName() << ": " 13188 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13189 } 13190 13191 OS << "Loop "; 13192 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13193 OS << ": "; 13194 13195 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 13196 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 13197 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13198 OS << ", actual taken count either this or zero."; 13199 } else { 13200 OS << "Unpredictable max backedge-taken count. "; 13201 } 13202 13203 OS << "\n" 13204 "Loop "; 13205 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13206 OS << ": "; 13207 13208 SmallVector<const SCEVPredicate *, 4> Preds; 13209 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13210 if (!isa<SCEVCouldNotCompute>(PBT)) { 13211 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13212 OS << " Predicates:\n"; 13213 for (auto *P : Preds) 13214 P->print(OS, 4); 13215 } else { 13216 OS << "Unpredictable predicated backedge-taken count. "; 13217 } 13218 OS << "\n"; 13219 13220 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13221 OS << "Loop "; 13222 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13223 OS << ": "; 13224 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13225 } 13226 } 13227 13228 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13229 switch (LD) { 13230 case ScalarEvolution::LoopVariant: 13231 return "Variant"; 13232 case ScalarEvolution::LoopInvariant: 13233 return "Invariant"; 13234 case ScalarEvolution::LoopComputable: 13235 return "Computable"; 13236 } 13237 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13238 } 13239 13240 void ScalarEvolution::print(raw_ostream &OS) const { 13241 // ScalarEvolution's implementation of the print method is to print 13242 // out SCEV values of all instructions that are interesting. Doing 13243 // this potentially causes it to create new SCEV objects though, 13244 // which technically conflicts with the const qualifier. This isn't 13245 // observable from outside the class though, so casting away the 13246 // const isn't dangerous. 13247 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13248 13249 if (ClassifyExpressions) { 13250 OS << "Classifying expressions for: "; 13251 F.printAsOperand(OS, /*PrintType=*/false); 13252 OS << "\n"; 13253 for (Instruction &I : instructions(F)) 13254 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13255 OS << I << '\n'; 13256 OS << " --> "; 13257 const SCEV *SV = SE.getSCEV(&I); 13258 SV->print(OS); 13259 if (!isa<SCEVCouldNotCompute>(SV)) { 13260 OS << " U: "; 13261 SE.getUnsignedRange(SV).print(OS); 13262 OS << " S: "; 13263 SE.getSignedRange(SV).print(OS); 13264 } 13265 13266 const Loop *L = LI.getLoopFor(I.getParent()); 13267 13268 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13269 if (AtUse != SV) { 13270 OS << " --> "; 13271 AtUse->print(OS); 13272 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13273 OS << " U: "; 13274 SE.getUnsignedRange(AtUse).print(OS); 13275 OS << " S: "; 13276 SE.getSignedRange(AtUse).print(OS); 13277 } 13278 } 13279 13280 if (L) { 13281 OS << "\t\t" "Exits: "; 13282 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13283 if (!SE.isLoopInvariant(ExitValue, L)) { 13284 OS << "<<Unknown>>"; 13285 } else { 13286 OS << *ExitValue; 13287 } 13288 13289 bool First = true; 13290 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13291 if (First) { 13292 OS << "\t\t" "LoopDispositions: { "; 13293 First = false; 13294 } else { 13295 OS << ", "; 13296 } 13297 13298 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13299 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13300 } 13301 13302 for (auto *InnerL : depth_first(L)) { 13303 if (InnerL == L) 13304 continue; 13305 if (First) { 13306 OS << "\t\t" "LoopDispositions: { "; 13307 First = false; 13308 } else { 13309 OS << ", "; 13310 } 13311 13312 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13313 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13314 } 13315 13316 OS << " }"; 13317 } 13318 13319 OS << "\n"; 13320 } 13321 } 13322 13323 OS << "Determining loop execution counts for: "; 13324 F.printAsOperand(OS, /*PrintType=*/false); 13325 OS << "\n"; 13326 for (Loop *I : LI) 13327 PrintLoopInfo(OS, &SE, I); 13328 } 13329 13330 ScalarEvolution::LoopDisposition 13331 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13332 auto &Values = LoopDispositions[S]; 13333 for (auto &V : Values) { 13334 if (V.getPointer() == L) 13335 return V.getInt(); 13336 } 13337 Values.emplace_back(L, LoopVariant); 13338 LoopDisposition D = computeLoopDisposition(S, L); 13339 auto &Values2 = LoopDispositions[S]; 13340 for (auto &V : llvm::reverse(Values2)) { 13341 if (V.getPointer() == L) { 13342 V.setInt(D); 13343 break; 13344 } 13345 } 13346 return D; 13347 } 13348 13349 ScalarEvolution::LoopDisposition 13350 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13351 switch (S->getSCEVType()) { 13352 case scConstant: 13353 return LoopInvariant; 13354 case scPtrToInt: 13355 case scTruncate: 13356 case scZeroExtend: 13357 case scSignExtend: 13358 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13359 case scAddRecExpr: { 13360 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13361 13362 // If L is the addrec's loop, it's computable. 13363 if (AR->getLoop() == L) 13364 return LoopComputable; 13365 13366 // Add recurrences are never invariant in the function-body (null loop). 13367 if (!L) 13368 return LoopVariant; 13369 13370 // Everything that is not defined at loop entry is variant. 13371 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13372 return LoopVariant; 13373 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13374 " dominate the contained loop's header?"); 13375 13376 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13377 if (AR->getLoop()->contains(L)) 13378 return LoopInvariant; 13379 13380 // This recurrence is variant w.r.t. L if any of its operands 13381 // are variant. 13382 for (auto *Op : AR->operands()) 13383 if (!isLoopInvariant(Op, L)) 13384 return LoopVariant; 13385 13386 // Otherwise it's loop-invariant. 13387 return LoopInvariant; 13388 } 13389 case scAddExpr: 13390 case scMulExpr: 13391 case scUMaxExpr: 13392 case scSMaxExpr: 13393 case scUMinExpr: 13394 case scSMinExpr: 13395 case scSequentialUMinExpr: { 13396 bool HasVarying = false; 13397 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13398 LoopDisposition D = getLoopDisposition(Op, L); 13399 if (D == LoopVariant) 13400 return LoopVariant; 13401 if (D == LoopComputable) 13402 HasVarying = true; 13403 } 13404 return HasVarying ? LoopComputable : LoopInvariant; 13405 } 13406 case scUDivExpr: { 13407 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13408 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13409 if (LD == LoopVariant) 13410 return LoopVariant; 13411 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13412 if (RD == LoopVariant) 13413 return LoopVariant; 13414 return (LD == LoopInvariant && RD == LoopInvariant) ? 13415 LoopInvariant : LoopComputable; 13416 } 13417 case scUnknown: 13418 // All non-instruction values are loop invariant. All instructions are loop 13419 // invariant if they are not contained in the specified loop. 13420 // Instructions are never considered invariant in the function body 13421 // (null loop) because they are defined within the "loop". 13422 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13423 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13424 return LoopInvariant; 13425 case scCouldNotCompute: 13426 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13427 } 13428 llvm_unreachable("Unknown SCEV kind!"); 13429 } 13430 13431 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13432 return getLoopDisposition(S, L) == LoopInvariant; 13433 } 13434 13435 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13436 return getLoopDisposition(S, L) == LoopComputable; 13437 } 13438 13439 ScalarEvolution::BlockDisposition 13440 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13441 auto &Values = BlockDispositions[S]; 13442 for (auto &V : Values) { 13443 if (V.getPointer() == BB) 13444 return V.getInt(); 13445 } 13446 Values.emplace_back(BB, DoesNotDominateBlock); 13447 BlockDisposition D = computeBlockDisposition(S, BB); 13448 auto &Values2 = BlockDispositions[S]; 13449 for (auto &V : llvm::reverse(Values2)) { 13450 if (V.getPointer() == BB) { 13451 V.setInt(D); 13452 break; 13453 } 13454 } 13455 return D; 13456 } 13457 13458 ScalarEvolution::BlockDisposition 13459 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13460 switch (S->getSCEVType()) { 13461 case scConstant: 13462 return ProperlyDominatesBlock; 13463 case scPtrToInt: 13464 case scTruncate: 13465 case scZeroExtend: 13466 case scSignExtend: 13467 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13468 case scAddRecExpr: { 13469 // This uses a "dominates" query instead of "properly dominates" query 13470 // to test for proper dominance too, because the instruction which 13471 // produces the addrec's value is a PHI, and a PHI effectively properly 13472 // dominates its entire containing block. 13473 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13474 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13475 return DoesNotDominateBlock; 13476 13477 // Fall through into SCEVNAryExpr handling. 13478 LLVM_FALLTHROUGH; 13479 } 13480 case scAddExpr: 13481 case scMulExpr: 13482 case scUMaxExpr: 13483 case scSMaxExpr: 13484 case scUMinExpr: 13485 case scSMinExpr: 13486 case scSequentialUMinExpr: { 13487 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13488 bool Proper = true; 13489 for (const SCEV *NAryOp : NAry->operands()) { 13490 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13491 if (D == DoesNotDominateBlock) 13492 return DoesNotDominateBlock; 13493 if (D == DominatesBlock) 13494 Proper = false; 13495 } 13496 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13497 } 13498 case scUDivExpr: { 13499 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13500 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13501 BlockDisposition LD = getBlockDisposition(LHS, BB); 13502 if (LD == DoesNotDominateBlock) 13503 return DoesNotDominateBlock; 13504 BlockDisposition RD = getBlockDisposition(RHS, BB); 13505 if (RD == DoesNotDominateBlock) 13506 return DoesNotDominateBlock; 13507 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13508 ProperlyDominatesBlock : DominatesBlock; 13509 } 13510 case scUnknown: 13511 if (Instruction *I = 13512 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13513 if (I->getParent() == BB) 13514 return DominatesBlock; 13515 if (DT.properlyDominates(I->getParent(), BB)) 13516 return ProperlyDominatesBlock; 13517 return DoesNotDominateBlock; 13518 } 13519 return ProperlyDominatesBlock; 13520 case scCouldNotCompute: 13521 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13522 } 13523 llvm_unreachable("Unknown SCEV kind!"); 13524 } 13525 13526 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13527 return getBlockDisposition(S, BB) >= DominatesBlock; 13528 } 13529 13530 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13531 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13532 } 13533 13534 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13535 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13536 } 13537 13538 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13539 bool Predicated) { 13540 auto &BECounts = 13541 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13542 auto It = BECounts.find(L); 13543 if (It != BECounts.end()) { 13544 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13545 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13546 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13547 assert(UserIt != BECountUsers.end()); 13548 UserIt->second.erase({L, Predicated}); 13549 } 13550 } 13551 BECounts.erase(It); 13552 } 13553 } 13554 13555 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13556 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13557 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13558 13559 while (!Worklist.empty()) { 13560 const SCEV *Curr = Worklist.pop_back_val(); 13561 auto Users = SCEVUsers.find(Curr); 13562 if (Users != SCEVUsers.end()) 13563 for (auto *User : Users->second) 13564 if (ToForget.insert(User).second) 13565 Worklist.push_back(User); 13566 } 13567 13568 for (auto *S : ToForget) 13569 forgetMemoizedResultsImpl(S); 13570 13571 for (auto I = PredicatedSCEVRewrites.begin(); 13572 I != PredicatedSCEVRewrites.end();) { 13573 std::pair<const SCEV *, const Loop *> Entry = I->first; 13574 if (ToForget.count(Entry.first)) 13575 PredicatedSCEVRewrites.erase(I++); 13576 else 13577 ++I; 13578 } 13579 } 13580 13581 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13582 LoopDispositions.erase(S); 13583 BlockDispositions.erase(S); 13584 UnsignedRanges.erase(S); 13585 SignedRanges.erase(S); 13586 HasRecMap.erase(S); 13587 MinTrailingZerosCache.erase(S); 13588 13589 auto ExprIt = ExprValueMap.find(S); 13590 if (ExprIt != ExprValueMap.end()) { 13591 for (Value *V : ExprIt->second) { 13592 auto ValueIt = ValueExprMap.find_as(V); 13593 if (ValueIt != ValueExprMap.end()) 13594 ValueExprMap.erase(ValueIt); 13595 } 13596 ExprValueMap.erase(ExprIt); 13597 } 13598 13599 auto ScopeIt = ValuesAtScopes.find(S); 13600 if (ScopeIt != ValuesAtScopes.end()) { 13601 for (const auto &Pair : ScopeIt->second) 13602 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13603 erase_value(ValuesAtScopesUsers[Pair.second], 13604 std::make_pair(Pair.first, S)); 13605 ValuesAtScopes.erase(ScopeIt); 13606 } 13607 13608 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13609 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13610 for (const auto &Pair : ScopeUserIt->second) 13611 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13612 ValuesAtScopesUsers.erase(ScopeUserIt); 13613 } 13614 13615 auto BEUsersIt = BECountUsers.find(S); 13616 if (BEUsersIt != BECountUsers.end()) { 13617 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13618 auto Copy = BEUsersIt->second; 13619 for (const auto &Pair : Copy) 13620 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13621 BECountUsers.erase(BEUsersIt); 13622 } 13623 } 13624 13625 void 13626 ScalarEvolution::getUsedLoops(const SCEV *S, 13627 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13628 struct FindUsedLoops { 13629 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13630 : LoopsUsed(LoopsUsed) {} 13631 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13632 bool follow(const SCEV *S) { 13633 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13634 LoopsUsed.insert(AR->getLoop()); 13635 return true; 13636 } 13637 13638 bool isDone() const { return false; } 13639 }; 13640 13641 FindUsedLoops F(LoopsUsed); 13642 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13643 } 13644 13645 void ScalarEvolution::getReachableBlocks( 13646 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13647 SmallVector<BasicBlock *> Worklist; 13648 Worklist.push_back(&F.getEntryBlock()); 13649 while (!Worklist.empty()) { 13650 BasicBlock *BB = Worklist.pop_back_val(); 13651 if (!Reachable.insert(BB).second) 13652 continue; 13653 13654 Value *Cond; 13655 BasicBlock *TrueBB, *FalseBB; 13656 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13657 m_BasicBlock(FalseBB)))) { 13658 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13659 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13660 continue; 13661 } 13662 13663 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13664 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13665 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13666 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13667 Worklist.push_back(TrueBB); 13668 continue; 13669 } 13670 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13671 R)) { 13672 Worklist.push_back(FalseBB); 13673 continue; 13674 } 13675 } 13676 } 13677 13678 append_range(Worklist, successors(BB)); 13679 } 13680 } 13681 13682 void ScalarEvolution::verify() const { 13683 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13684 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13685 13686 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13687 13688 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13689 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13690 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13691 13692 const SCEV *visitConstant(const SCEVConstant *Constant) { 13693 return SE.getConstant(Constant->getAPInt()); 13694 } 13695 13696 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13697 return SE.getUnknown(Expr->getValue()); 13698 } 13699 13700 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13701 return SE.getCouldNotCompute(); 13702 } 13703 }; 13704 13705 SCEVMapper SCM(SE2); 13706 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13707 SE2.getReachableBlocks(ReachableBlocks, F); 13708 13709 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13710 if (containsUndefs(Old) || containsUndefs(New)) { 13711 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13712 // not propagate undef aggressively). This means we can (and do) fail 13713 // verification in cases where a transform makes a value go from "undef" 13714 // to "undef+1" (say). The transform is fine, since in both cases the 13715 // result is "undef", but SCEV thinks the value increased by 1. 13716 return nullptr; 13717 } 13718 13719 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13720 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13721 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13722 return nullptr; 13723 13724 return Delta; 13725 }; 13726 13727 while (!LoopStack.empty()) { 13728 auto *L = LoopStack.pop_back_val(); 13729 llvm::append_range(LoopStack, *L); 13730 13731 // Only verify BECounts in reachable loops. For an unreachable loop, 13732 // any BECount is legal. 13733 if (!ReachableBlocks.contains(L->getHeader())) 13734 continue; 13735 13736 // Only verify cached BECounts. Computing new BECounts may change the 13737 // results of subsequent SCEV uses. 13738 auto It = BackedgeTakenCounts.find(L); 13739 if (It == BackedgeTakenCounts.end()) 13740 continue; 13741 13742 auto *CurBECount = 13743 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13744 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13745 13746 if (CurBECount == SE2.getCouldNotCompute() || 13747 NewBECount == SE2.getCouldNotCompute()) { 13748 // NB! This situation is legal, but is very suspicious -- whatever pass 13749 // change the loop to make a trip count go from could not compute to 13750 // computable or vice-versa *should have* invalidated SCEV. However, we 13751 // choose not to assert here (for now) since we don't want false 13752 // positives. 13753 continue; 13754 } 13755 13756 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13757 SE.getTypeSizeInBits(NewBECount->getType())) 13758 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13759 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13760 SE.getTypeSizeInBits(NewBECount->getType())) 13761 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13762 13763 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13764 if (Delta && !Delta->isZero()) { 13765 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13766 dbgs() << "Old: " << *CurBECount << "\n"; 13767 dbgs() << "New: " << *NewBECount << "\n"; 13768 dbgs() << "Delta: " << *Delta << "\n"; 13769 std::abort(); 13770 } 13771 } 13772 13773 // Collect all valid loops currently in LoopInfo. 13774 SmallPtrSet<Loop *, 32> ValidLoops; 13775 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13776 while (!Worklist.empty()) { 13777 Loop *L = Worklist.pop_back_val(); 13778 if (ValidLoops.insert(L).second) 13779 Worklist.append(L->begin(), L->end()); 13780 } 13781 for (auto &KV : ValueExprMap) { 13782 #ifndef NDEBUG 13783 // Check for SCEV expressions referencing invalid/deleted loops. 13784 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13785 assert(ValidLoops.contains(AR->getLoop()) && 13786 "AddRec references invalid loop"); 13787 } 13788 #endif 13789 13790 // Check that the value is also part of the reverse map. 13791 auto It = ExprValueMap.find(KV.second); 13792 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13793 dbgs() << "Value " << *KV.first 13794 << " is in ValueExprMap but not in ExprValueMap\n"; 13795 std::abort(); 13796 } 13797 13798 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13799 if (!ReachableBlocks.contains(I->getParent())) 13800 continue; 13801 const SCEV *OldSCEV = SCM.visit(KV.second); 13802 const SCEV *NewSCEV = SE2.getSCEV(I); 13803 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13804 if (Delta && !Delta->isZero()) { 13805 dbgs() << "SCEV for value " << *I << " changed!\n" 13806 << "Old: " << *OldSCEV << "\n" 13807 << "New: " << *NewSCEV << "\n" 13808 << "Delta: " << *Delta << "\n"; 13809 std::abort(); 13810 } 13811 } 13812 } 13813 13814 for (const auto &KV : ExprValueMap) { 13815 for (Value *V : KV.second) { 13816 auto It = ValueExprMap.find_as(V); 13817 if (It == ValueExprMap.end()) { 13818 dbgs() << "Value " << *V 13819 << " is in ExprValueMap but not in ValueExprMap\n"; 13820 std::abort(); 13821 } 13822 if (It->second != KV.first) { 13823 dbgs() << "Value " << *V << " mapped to " << *It->second 13824 << " rather than " << *KV.first << "\n"; 13825 std::abort(); 13826 } 13827 } 13828 } 13829 13830 // Verify integrity of SCEV users. 13831 for (const auto &S : UniqueSCEVs) { 13832 SmallVector<const SCEV *, 4> Ops; 13833 collectUniqueOps(&S, Ops); 13834 for (const auto *Op : Ops) { 13835 // We do not store dependencies of constants. 13836 if (isa<SCEVConstant>(Op)) 13837 continue; 13838 auto It = SCEVUsers.find(Op); 13839 if (It != SCEVUsers.end() && It->second.count(&S)) 13840 continue; 13841 dbgs() << "Use of operand " << *Op << " by user " << S 13842 << " is not being tracked!\n"; 13843 std::abort(); 13844 } 13845 } 13846 13847 // Verify integrity of ValuesAtScopes users. 13848 for (const auto &ValueAndVec : ValuesAtScopes) { 13849 const SCEV *Value = ValueAndVec.first; 13850 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13851 const Loop *L = LoopAndValueAtScope.first; 13852 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13853 if (!isa<SCEVConstant>(ValueAtScope)) { 13854 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13855 if (It != ValuesAtScopesUsers.end() && 13856 is_contained(It->second, std::make_pair(L, Value))) 13857 continue; 13858 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13859 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13860 std::abort(); 13861 } 13862 } 13863 } 13864 13865 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13866 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13867 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13868 const Loop *L = LoopAndValue.first; 13869 const SCEV *Value = LoopAndValue.second; 13870 assert(!isa<SCEVConstant>(Value)); 13871 auto It = ValuesAtScopes.find(Value); 13872 if (It != ValuesAtScopes.end() && 13873 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13874 continue; 13875 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13876 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13877 std::abort(); 13878 } 13879 } 13880 13881 // Verify integrity of BECountUsers. 13882 auto VerifyBECountUsers = [&](bool Predicated) { 13883 auto &BECounts = 13884 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13885 for (const auto &LoopAndBEInfo : BECounts) { 13886 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13887 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13888 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13889 if (UserIt != BECountUsers.end() && 13890 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13891 continue; 13892 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13893 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13894 std::abort(); 13895 } 13896 } 13897 } 13898 }; 13899 VerifyBECountUsers(/* Predicated */ false); 13900 VerifyBECountUsers(/* Predicated */ true); 13901 } 13902 13903 bool ScalarEvolution::invalidate( 13904 Function &F, const PreservedAnalyses &PA, 13905 FunctionAnalysisManager::Invalidator &Inv) { 13906 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13907 // of its dependencies is invalidated. 13908 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13909 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13910 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13911 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13912 Inv.invalidate<LoopAnalysis>(F, PA); 13913 } 13914 13915 AnalysisKey ScalarEvolutionAnalysis::Key; 13916 13917 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13918 FunctionAnalysisManager &AM) { 13919 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13920 AM.getResult<AssumptionAnalysis>(F), 13921 AM.getResult<DominatorTreeAnalysis>(F), 13922 AM.getResult<LoopAnalysis>(F)); 13923 } 13924 13925 PreservedAnalyses 13926 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13927 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13928 return PreservedAnalyses::all(); 13929 } 13930 13931 PreservedAnalyses 13932 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13933 // For compatibility with opt's -analyze feature under legacy pass manager 13934 // which was not ported to NPM. This keeps tests using 13935 // update_analyze_test_checks.py working. 13936 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13937 << F.getName() << "':\n"; 13938 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13939 return PreservedAnalyses::all(); 13940 } 13941 13942 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13943 "Scalar Evolution Analysis", false, true) 13944 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13945 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13946 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13947 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13948 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13949 "Scalar Evolution Analysis", false, true) 13950 13951 char ScalarEvolutionWrapperPass::ID = 0; 13952 13953 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13954 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13955 } 13956 13957 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13958 SE.reset(new ScalarEvolution( 13959 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13960 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13961 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13962 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13963 return false; 13964 } 13965 13966 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13967 13968 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13969 SE->print(OS); 13970 } 13971 13972 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13973 if (!VerifySCEV) 13974 return; 13975 13976 SE->verify(); 13977 } 13978 13979 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13980 AU.setPreservesAll(); 13981 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13982 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13983 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13984 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13985 } 13986 13987 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13988 const SCEV *RHS) { 13989 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13990 } 13991 13992 const SCEVPredicate * 13993 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13994 const SCEV *LHS, const SCEV *RHS) { 13995 FoldingSetNodeID ID; 13996 assert(LHS->getType() == RHS->getType() && 13997 "Type mismatch between LHS and RHS"); 13998 // Unique this node based on the arguments 13999 ID.AddInteger(SCEVPredicate::P_Compare); 14000 ID.AddInteger(Pred); 14001 ID.AddPointer(LHS); 14002 ID.AddPointer(RHS); 14003 void *IP = nullptr; 14004 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14005 return S; 14006 SCEVComparePredicate *Eq = new (SCEVAllocator) 14007 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 14008 UniquePreds.InsertNode(Eq, IP); 14009 return Eq; 14010 } 14011 14012 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 14013 const SCEVAddRecExpr *AR, 14014 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14015 FoldingSetNodeID ID; 14016 // Unique this node based on the arguments 14017 ID.AddInteger(SCEVPredicate::P_Wrap); 14018 ID.AddPointer(AR); 14019 ID.AddInteger(AddedFlags); 14020 void *IP = nullptr; 14021 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 14022 return S; 14023 auto *OF = new (SCEVAllocator) 14024 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 14025 UniquePreds.InsertNode(OF, IP); 14026 return OF; 14027 } 14028 14029 namespace { 14030 14031 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 14032 public: 14033 14034 /// Rewrites \p S in the context of a loop L and the SCEV predication 14035 /// infrastructure. 14036 /// 14037 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 14038 /// equivalences present in \p Pred. 14039 /// 14040 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 14041 /// \p NewPreds such that the result will be an AddRecExpr. 14042 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 14043 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14044 const SCEVPredicate *Pred) { 14045 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 14046 return Rewriter.visit(S); 14047 } 14048 14049 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14050 if (Pred) { 14051 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 14052 for (auto *Pred : U->getPredicates()) 14053 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 14054 if (IPred->getLHS() == Expr && 14055 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14056 return IPred->getRHS(); 14057 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 14058 if (IPred->getLHS() == Expr && 14059 IPred->getPredicate() == ICmpInst::ICMP_EQ) 14060 return IPred->getRHS(); 14061 } 14062 } 14063 return convertToAddRecWithPreds(Expr); 14064 } 14065 14066 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14067 const SCEV *Operand = visit(Expr->getOperand()); 14068 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14069 if (AR && AR->getLoop() == L && AR->isAffine()) { 14070 // This couldn't be folded because the operand didn't have the nuw 14071 // flag. Add the nusw flag as an assumption that we could make. 14072 const SCEV *Step = AR->getStepRecurrence(SE); 14073 Type *Ty = Expr->getType(); 14074 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 14075 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 14076 SE.getSignExtendExpr(Step, Ty), L, 14077 AR->getNoWrapFlags()); 14078 } 14079 return SE.getZeroExtendExpr(Operand, Expr->getType()); 14080 } 14081 14082 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 14083 const SCEV *Operand = visit(Expr->getOperand()); 14084 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 14085 if (AR && AR->getLoop() == L && AR->isAffine()) { 14086 // This couldn't be folded because the operand didn't have the nsw 14087 // flag. Add the nssw flag as an assumption that we could make. 14088 const SCEV *Step = AR->getStepRecurrence(SE); 14089 Type *Ty = Expr->getType(); 14090 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 14091 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 14092 SE.getSignExtendExpr(Step, Ty), L, 14093 AR->getNoWrapFlags()); 14094 } 14095 return SE.getSignExtendExpr(Operand, Expr->getType()); 14096 } 14097 14098 private: 14099 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 14100 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 14101 const SCEVPredicate *Pred) 14102 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 14103 14104 bool addOverflowAssumption(const SCEVPredicate *P) { 14105 if (!NewPreds) { 14106 // Check if we've already made this assumption. 14107 return Pred && Pred->implies(P); 14108 } 14109 NewPreds->insert(P); 14110 return true; 14111 } 14112 14113 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 14114 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 14115 auto *A = SE.getWrapPredicate(AR, AddedFlags); 14116 return addOverflowAssumption(A); 14117 } 14118 14119 // If \p Expr represents a PHINode, we try to see if it can be represented 14120 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 14121 // to add this predicate as a runtime overflow check, we return the AddRec. 14122 // If \p Expr does not meet these conditions (is not a PHI node, or we 14123 // couldn't create an AddRec for it, or couldn't add the predicate), we just 14124 // return \p Expr. 14125 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 14126 if (!isa<PHINode>(Expr->getValue())) 14127 return Expr; 14128 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 14129 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 14130 if (!PredicatedRewrite) 14131 return Expr; 14132 for (auto *P : PredicatedRewrite->second){ 14133 // Wrap predicates from outer loops are not supported. 14134 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 14135 if (L != WP->getExpr()->getLoop()) 14136 return Expr; 14137 } 14138 if (!addOverflowAssumption(P)) 14139 return Expr; 14140 } 14141 return PredicatedRewrite->first; 14142 } 14143 14144 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 14145 const SCEVPredicate *Pred; 14146 const Loop *L; 14147 }; 14148 14149 } // end anonymous namespace 14150 14151 const SCEV * 14152 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 14153 const SCEVPredicate &Preds) { 14154 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 14155 } 14156 14157 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 14158 const SCEV *S, const Loop *L, 14159 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 14160 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 14161 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 14162 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 14163 14164 if (!AddRec) 14165 return nullptr; 14166 14167 // Since the transformation was successful, we can now transfer the SCEV 14168 // predicates. 14169 for (auto *P : TransformPreds) 14170 Preds.insert(P); 14171 14172 return AddRec; 14173 } 14174 14175 /// SCEV predicates 14176 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 14177 SCEVPredicateKind Kind) 14178 : FastID(ID), Kind(Kind) {} 14179 14180 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 14181 const ICmpInst::Predicate Pred, 14182 const SCEV *LHS, const SCEV *RHS) 14183 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 14184 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 14185 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 14186 } 14187 14188 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 14189 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 14190 14191 if (!Op) 14192 return false; 14193 14194 if (Pred != ICmpInst::ICMP_EQ) 14195 return false; 14196 14197 return Op->LHS == LHS && Op->RHS == RHS; 14198 } 14199 14200 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14201 14202 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14203 if (Pred == ICmpInst::ICMP_EQ) 14204 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14205 else 14206 OS.indent(Depth) << "Compare predicate: " << *LHS 14207 << " " << CmpInst::getPredicateName(Pred) << ") " 14208 << *RHS << "\n"; 14209 14210 } 14211 14212 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14213 const SCEVAddRecExpr *AR, 14214 IncrementWrapFlags Flags) 14215 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14216 14217 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14218 14219 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14220 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14221 14222 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14223 } 14224 14225 bool SCEVWrapPredicate::isAlwaysTrue() const { 14226 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14227 IncrementWrapFlags IFlags = Flags; 14228 14229 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14230 IFlags = clearFlags(IFlags, IncrementNSSW); 14231 14232 return IFlags == IncrementAnyWrap; 14233 } 14234 14235 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14236 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14237 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14238 OS << "<nusw>"; 14239 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14240 OS << "<nssw>"; 14241 OS << "\n"; 14242 } 14243 14244 SCEVWrapPredicate::IncrementWrapFlags 14245 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14246 ScalarEvolution &SE) { 14247 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14248 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14249 14250 // We can safely transfer the NSW flag as NSSW. 14251 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14252 ImpliedFlags = IncrementNSSW; 14253 14254 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14255 // If the increment is positive, the SCEV NUW flag will also imply the 14256 // WrapPredicate NUSW flag. 14257 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14258 if (Step->getValue()->getValue().isNonNegative()) 14259 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14260 } 14261 14262 return ImpliedFlags; 14263 } 14264 14265 /// Union predicates don't get cached so create a dummy set ID for it. 14266 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14267 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14268 for (auto *P : Preds) 14269 add(P); 14270 } 14271 14272 bool SCEVUnionPredicate::isAlwaysTrue() const { 14273 return all_of(Preds, 14274 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14275 } 14276 14277 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14278 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14279 return all_of(Set->Preds, 14280 [this](const SCEVPredicate *I) { return this->implies(I); }); 14281 14282 return any_of(Preds, 14283 [N](const SCEVPredicate *I) { return I->implies(N); }); 14284 } 14285 14286 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14287 for (auto Pred : Preds) 14288 Pred->print(OS, Depth); 14289 } 14290 14291 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14292 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14293 for (auto Pred : Set->Preds) 14294 add(Pred); 14295 return; 14296 } 14297 14298 Preds.push_back(N); 14299 } 14300 14301 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14302 Loop &L) 14303 : SE(SE), L(L) { 14304 SmallVector<const SCEVPredicate*, 4> Empty; 14305 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14306 } 14307 14308 void ScalarEvolution::registerUser(const SCEV *User, 14309 ArrayRef<const SCEV *> Ops) { 14310 for (auto *Op : Ops) 14311 // We do not expect that forgetting cached data for SCEVConstants will ever 14312 // open any prospects for sharpening or introduce any correctness issues, 14313 // so we don't bother storing their dependencies. 14314 if (!isa<SCEVConstant>(Op)) 14315 SCEVUsers[Op].insert(User); 14316 } 14317 14318 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14319 const SCEV *Expr = SE.getSCEV(V); 14320 RewriteEntry &Entry = RewriteMap[Expr]; 14321 14322 // If we already have an entry and the version matches, return it. 14323 if (Entry.second && Generation == Entry.first) 14324 return Entry.second; 14325 14326 // We found an entry but it's stale. Rewrite the stale entry 14327 // according to the current predicate. 14328 if (Entry.second) 14329 Expr = Entry.second; 14330 14331 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14332 Entry = {Generation, NewSCEV}; 14333 14334 return NewSCEV; 14335 } 14336 14337 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14338 if (!BackedgeCount) { 14339 SmallVector<const SCEVPredicate *, 4> Preds; 14340 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14341 for (auto *P : Preds) 14342 addPredicate(*P); 14343 } 14344 return BackedgeCount; 14345 } 14346 14347 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14348 if (Preds->implies(&Pred)) 14349 return; 14350 14351 auto &OldPreds = Preds->getPredicates(); 14352 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14353 NewPreds.push_back(&Pred); 14354 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14355 updateGeneration(); 14356 } 14357 14358 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14359 return *Preds; 14360 } 14361 14362 void PredicatedScalarEvolution::updateGeneration() { 14363 // If the generation number wrapped recompute everything. 14364 if (++Generation == 0) { 14365 for (auto &II : RewriteMap) { 14366 const SCEV *Rewritten = II.second.second; 14367 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14368 } 14369 } 14370 } 14371 14372 void PredicatedScalarEvolution::setNoOverflow( 14373 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14374 const SCEV *Expr = getSCEV(V); 14375 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14376 14377 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14378 14379 // Clear the statically implied flags. 14380 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14381 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14382 14383 auto II = FlagsMap.insert({V, Flags}); 14384 if (!II.second) 14385 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14386 } 14387 14388 bool PredicatedScalarEvolution::hasNoOverflow( 14389 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14390 const SCEV *Expr = getSCEV(V); 14391 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14392 14393 Flags = SCEVWrapPredicate::clearFlags( 14394 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14395 14396 auto II = FlagsMap.find(V); 14397 14398 if (II != FlagsMap.end()) 14399 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14400 14401 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14402 } 14403 14404 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14405 const SCEV *Expr = this->getSCEV(V); 14406 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14407 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14408 14409 if (!New) 14410 return nullptr; 14411 14412 for (auto *P : NewPreds) 14413 addPredicate(*P); 14414 14415 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14416 return New; 14417 } 14418 14419 PredicatedScalarEvolution::PredicatedScalarEvolution( 14420 const PredicatedScalarEvolution &Init) 14421 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14422 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14423 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14424 for (auto I : Init.FlagsMap) 14425 FlagsMap.insert(I); 14426 } 14427 14428 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14429 // For each block. 14430 for (auto *BB : L.getBlocks()) 14431 for (auto &I : *BB) { 14432 if (!SE.isSCEVable(I.getType())) 14433 continue; 14434 14435 auto *Expr = SE.getSCEV(&I); 14436 auto II = RewriteMap.find(Expr); 14437 14438 if (II == RewriteMap.end()) 14439 continue; 14440 14441 // Don't print things that are not interesting. 14442 if (II->second.second == Expr) 14443 continue; 14444 14445 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14446 OS.indent(Depth + 2) << *Expr << "\n"; 14447 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14448 } 14449 } 14450 14451 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14452 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14453 // for URem with constant power-of-2 second operands. 14454 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14455 // 4, A / B becomes X / 8). 14456 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14457 const SCEV *&RHS) { 14458 // Try to match 'zext (trunc A to iB) to iY', which is used 14459 // for URem with constant power-of-2 second operands. Make sure the size of 14460 // the operand A matches the size of the whole expressions. 14461 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14462 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14463 LHS = Trunc->getOperand(); 14464 // Bail out if the type of the LHS is larger than the type of the 14465 // expression for now. 14466 if (getTypeSizeInBits(LHS->getType()) > 14467 getTypeSizeInBits(Expr->getType())) 14468 return false; 14469 if (LHS->getType() != Expr->getType()) 14470 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14471 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14472 << getTypeSizeInBits(Trunc->getType())); 14473 return true; 14474 } 14475 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14476 if (Add == nullptr || Add->getNumOperands() != 2) 14477 return false; 14478 14479 const SCEV *A = Add->getOperand(1); 14480 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14481 14482 if (Mul == nullptr) 14483 return false; 14484 14485 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14486 // (SomeExpr + (-(SomeExpr / B) * B)). 14487 if (Expr == getURemExpr(A, B)) { 14488 LHS = A; 14489 RHS = B; 14490 return true; 14491 } 14492 return false; 14493 }; 14494 14495 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14496 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14497 return MatchURemWithDivisor(Mul->getOperand(1)) || 14498 MatchURemWithDivisor(Mul->getOperand(2)); 14499 14500 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14501 if (Mul->getNumOperands() == 2) 14502 return MatchURemWithDivisor(Mul->getOperand(1)) || 14503 MatchURemWithDivisor(Mul->getOperand(0)) || 14504 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14505 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14506 return false; 14507 } 14508 14509 const SCEV * 14510 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14511 SmallVector<BasicBlock*, 16> ExitingBlocks; 14512 L->getExitingBlocks(ExitingBlocks); 14513 14514 // Form an expression for the maximum exit count possible for this loop. We 14515 // merge the max and exact information to approximate a version of 14516 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14517 SmallVector<const SCEV*, 4> ExitCounts; 14518 for (BasicBlock *ExitingBB : ExitingBlocks) { 14519 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14520 if (isa<SCEVCouldNotCompute>(ExitCount)) 14521 ExitCount = getExitCount(L, ExitingBB, 14522 ScalarEvolution::ConstantMaximum); 14523 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14524 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14525 "We should only have known counts for exiting blocks that " 14526 "dominate latch!"); 14527 ExitCounts.push_back(ExitCount); 14528 } 14529 } 14530 if (ExitCounts.empty()) 14531 return getCouldNotCompute(); 14532 return getUMinFromMismatchedTypes(ExitCounts); 14533 } 14534 14535 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14536 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14537 /// replacement is loop invariant in the loop of the AddRec. 14538 /// 14539 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14540 /// supported. 14541 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14542 const DenseMap<const SCEV *, const SCEV *> ⤅ 14543 14544 public: 14545 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14546 DenseMap<const SCEV *, const SCEV *> &M) 14547 : SCEVRewriteVisitor(SE), Map(M) {} 14548 14549 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14550 14551 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14552 auto I = Map.find(Expr); 14553 if (I == Map.end()) 14554 return Expr; 14555 return I->second; 14556 } 14557 14558 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14559 auto I = Map.find(Expr); 14560 if (I == Map.end()) 14561 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14562 Expr); 14563 return I->second; 14564 } 14565 }; 14566 14567 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14568 SmallVector<const SCEV *> ExprsToRewrite; 14569 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14570 const SCEV *RHS, 14571 DenseMap<const SCEV *, const SCEV *> 14572 &RewriteMap) { 14573 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14574 // replacement SCEV which isn't directly implied by the structure of that 14575 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14576 // legal. See the scoping rules for flags in the header to understand why. 14577 14578 // If LHS is a constant, apply information to the other expression. 14579 if (isa<SCEVConstant>(LHS)) { 14580 std::swap(LHS, RHS); 14581 Predicate = CmpInst::getSwappedPredicate(Predicate); 14582 } 14583 14584 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14585 // create this form when combining two checks of the form (X u< C2 + C1) and 14586 // (X >=u C1). 14587 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14588 &ExprsToRewrite]() { 14589 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14590 if (!AddExpr || AddExpr->getNumOperands() != 2) 14591 return false; 14592 14593 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14594 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14595 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14596 if (!C1 || !C2 || !LHSUnknown) 14597 return false; 14598 14599 auto ExactRegion = 14600 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14601 .sub(C1->getAPInt()); 14602 14603 // Bail out, unless we have a non-wrapping, monotonic range. 14604 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14605 return false; 14606 auto I = RewriteMap.find(LHSUnknown); 14607 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14608 RewriteMap[LHSUnknown] = getUMaxExpr( 14609 getConstant(ExactRegion.getUnsignedMin()), 14610 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14611 ExprsToRewrite.push_back(LHSUnknown); 14612 return true; 14613 }; 14614 if (MatchRangeCheckIdiom()) 14615 return; 14616 14617 // If we have LHS == 0, check if LHS is computing a property of some unknown 14618 // SCEV %v which we can rewrite %v to express explicitly. 14619 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14620 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14621 RHSC->getValue()->isNullValue()) { 14622 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14623 // explicitly express that. 14624 const SCEV *URemLHS = nullptr; 14625 const SCEV *URemRHS = nullptr; 14626 if (matchURem(LHS, URemLHS, URemRHS)) { 14627 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14628 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14629 RewriteMap[LHSUnknown] = Multiple; 14630 ExprsToRewrite.push_back(LHSUnknown); 14631 return; 14632 } 14633 } 14634 } 14635 14636 // Do not apply information for constants or if RHS contains an AddRec. 14637 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14638 return; 14639 14640 // If RHS is SCEVUnknown, make sure the information is applied to it. 14641 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14642 std::swap(LHS, RHS); 14643 Predicate = CmpInst::getSwappedPredicate(Predicate); 14644 } 14645 14646 // Limit to expressions that can be rewritten. 14647 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14648 return; 14649 14650 // Check whether LHS has already been rewritten. In that case we want to 14651 // chain further rewrites onto the already rewritten value. 14652 auto I = RewriteMap.find(LHS); 14653 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14654 14655 const SCEV *RewrittenRHS = nullptr; 14656 switch (Predicate) { 14657 case CmpInst::ICMP_ULT: 14658 RewrittenRHS = 14659 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14660 break; 14661 case CmpInst::ICMP_SLT: 14662 RewrittenRHS = 14663 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14664 break; 14665 case CmpInst::ICMP_ULE: 14666 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14667 break; 14668 case CmpInst::ICMP_SLE: 14669 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14670 break; 14671 case CmpInst::ICMP_UGT: 14672 RewrittenRHS = 14673 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14674 break; 14675 case CmpInst::ICMP_SGT: 14676 RewrittenRHS = 14677 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14678 break; 14679 case CmpInst::ICMP_UGE: 14680 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14681 break; 14682 case CmpInst::ICMP_SGE: 14683 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14684 break; 14685 case CmpInst::ICMP_EQ: 14686 if (isa<SCEVConstant>(RHS)) 14687 RewrittenRHS = RHS; 14688 break; 14689 case CmpInst::ICMP_NE: 14690 if (isa<SCEVConstant>(RHS) && 14691 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14692 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14693 break; 14694 default: 14695 break; 14696 } 14697 14698 if (RewrittenRHS) { 14699 RewriteMap[LHS] = RewrittenRHS; 14700 if (LHS == RewrittenLHS) 14701 ExprsToRewrite.push_back(LHS); 14702 } 14703 }; 14704 14705 SmallVector<std::pair<Value *, bool>> Terms; 14706 // First, collect information from assumptions dominating the loop. 14707 for (auto &AssumeVH : AC.assumptions()) { 14708 if (!AssumeVH) 14709 continue; 14710 auto *AssumeI = cast<CallInst>(AssumeVH); 14711 if (!DT.dominates(AssumeI, L->getHeader())) 14712 continue; 14713 Terms.emplace_back(AssumeI->getOperand(0), true); 14714 } 14715 14716 // Second, collect conditions from dominating branches. Starting at the loop 14717 // predecessor, climb up the predecessor chain, as long as there are 14718 // predecessors that can be found that have unique successors leading to the 14719 // original header. 14720 // TODO: share this logic with isLoopEntryGuardedByCond. 14721 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14722 L->getLoopPredecessor(), L->getHeader()); 14723 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14724 14725 const BranchInst *LoopEntryPredicate = 14726 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14727 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14728 continue; 14729 14730 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14731 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14732 } 14733 14734 // Now apply the information from the collected conditions to RewriteMap. 14735 // Conditions are processed in reverse order, so the earliest conditions is 14736 // processed first. This ensures the SCEVs with the shortest dependency chains 14737 // are constructed first. 14738 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14739 for (auto &E : reverse(Terms)) { 14740 bool EnterIfTrue = E.second; 14741 SmallVector<Value *, 8> Worklist; 14742 SmallPtrSet<Value *, 8> Visited; 14743 Worklist.push_back(E.first); 14744 while (!Worklist.empty()) { 14745 Value *Cond = Worklist.pop_back_val(); 14746 if (!Visited.insert(Cond).second) 14747 continue; 14748 14749 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14750 auto Predicate = 14751 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14752 const auto *LHS = getSCEV(Cmp->getOperand(0)); 14753 const auto *RHS = getSCEV(Cmp->getOperand(1)); 14754 CollectCondition(Predicate, LHS, RHS, RewriteMap); 14755 continue; 14756 } 14757 14758 Value *L, *R; 14759 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14760 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14761 Worklist.push_back(L); 14762 Worklist.push_back(R); 14763 } 14764 } 14765 } 14766 14767 if (RewriteMap.empty()) 14768 return Expr; 14769 14770 // Now that all rewrite information is collect, rewrite the collected 14771 // expressions with the information in the map. This applies information to 14772 // sub-expressions. 14773 if (ExprsToRewrite.size() > 1) { 14774 for (const SCEV *Expr : ExprsToRewrite) { 14775 const SCEV *RewriteTo = RewriteMap[Expr]; 14776 RewriteMap.erase(Expr); 14777 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14778 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14779 } 14780 } 14781 14782 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14783 return Rewriter.visit(Expr); 14784 } 14785