1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 static cl::opt<bool, true> VerifySCEVOpt( 160 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 236 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 237 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 238 "Phi strongly connected components"), 239 cl::init(8)); 240 241 static cl::opt<bool> 242 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 243 cl::desc("Handle <= and >= in finite loops"), 244 cl::init(true)); 245 246 //===----------------------------------------------------------------------===// 247 // SCEV class definitions 248 //===----------------------------------------------------------------------===// 249 250 //===----------------------------------------------------------------------===// 251 // Implementation of the SCEV class. 252 // 253 254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 255 LLVM_DUMP_METHOD void SCEV::dump() const { 256 print(dbgs()); 257 dbgs() << '\n'; 258 } 259 #endif 260 261 void SCEV::print(raw_ostream &OS) const { 262 switch (getSCEVType()) { 263 case scConstant: 264 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 265 return; 266 case scPtrToInt: { 267 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 268 const SCEV *Op = PtrToInt->getOperand(); 269 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 270 << *PtrToInt->getType() << ")"; 271 return; 272 } 273 case scTruncate: { 274 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 275 const SCEV *Op = Trunc->getOperand(); 276 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 277 << *Trunc->getType() << ")"; 278 return; 279 } 280 case scZeroExtend: { 281 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 282 const SCEV *Op = ZExt->getOperand(); 283 OS << "(zext " << *Op->getType() << " " << *Op << " to " 284 << *ZExt->getType() << ")"; 285 return; 286 } 287 case scSignExtend: { 288 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 289 const SCEV *Op = SExt->getOperand(); 290 OS << "(sext " << *Op->getType() << " " << *Op << " to " 291 << *SExt->getType() << ")"; 292 return; 293 } 294 case scAddRecExpr: { 295 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 296 OS << "{" << *AR->getOperand(0); 297 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 298 OS << ",+," << *AR->getOperand(i); 299 OS << "}<"; 300 if (AR->hasNoUnsignedWrap()) 301 OS << "nuw><"; 302 if (AR->hasNoSignedWrap()) 303 OS << "nsw><"; 304 if (AR->hasNoSelfWrap() && 305 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 306 OS << "nw><"; 307 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 308 OS << ">"; 309 return; 310 } 311 case scAddExpr: 312 case scMulExpr: 313 case scUMaxExpr: 314 case scSMaxExpr: 315 case scUMinExpr: 316 case scSMinExpr: 317 case scSequentialUMinExpr: { 318 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 319 const char *OpStr = nullptr; 320 switch (NAry->getSCEVType()) { 321 case scAddExpr: OpStr = " + "; break; 322 case scMulExpr: OpStr = " * "; break; 323 case scUMaxExpr: OpStr = " umax "; break; 324 case scSMaxExpr: OpStr = " smax "; break; 325 case scUMinExpr: 326 OpStr = " umin "; 327 break; 328 case scSMinExpr: 329 OpStr = " smin "; 330 break; 331 case scSequentialUMinExpr: 332 OpStr = " umin_seq "; 333 break; 334 default: 335 llvm_unreachable("There are no other nary expression types."); 336 } 337 OS << "("; 338 ListSeparator LS(OpStr); 339 for (const SCEV *Op : NAry->operands()) 340 OS << LS << *Op; 341 OS << ")"; 342 switch (NAry->getSCEVType()) { 343 case scAddExpr: 344 case scMulExpr: 345 if (NAry->hasNoUnsignedWrap()) 346 OS << "<nuw>"; 347 if (NAry->hasNoSignedWrap()) 348 OS << "<nsw>"; 349 break; 350 default: 351 // Nothing to print for other nary expressions. 352 break; 353 } 354 return; 355 } 356 case scUDivExpr: { 357 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 358 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 359 return; 360 } 361 case scUnknown: { 362 const SCEVUnknown *U = cast<SCEVUnknown>(this); 363 Type *AllocTy; 364 if (U->isSizeOf(AllocTy)) { 365 OS << "sizeof(" << *AllocTy << ")"; 366 return; 367 } 368 if (U->isAlignOf(AllocTy)) { 369 OS << "alignof(" << *AllocTy << ")"; 370 return; 371 } 372 373 Type *CTy; 374 Constant *FieldNo; 375 if (U->isOffsetOf(CTy, FieldNo)) { 376 OS << "offsetof(" << *CTy << ", "; 377 FieldNo->printAsOperand(OS, false); 378 OS << ")"; 379 return; 380 } 381 382 // Otherwise just print it normally. 383 U->getValue()->printAsOperand(OS, false); 384 return; 385 } 386 case scCouldNotCompute: 387 OS << "***COULDNOTCOMPUTE***"; 388 return; 389 } 390 llvm_unreachable("Unknown SCEV kind!"); 391 } 392 393 Type *SCEV::getType() const { 394 switch (getSCEVType()) { 395 case scConstant: 396 return cast<SCEVConstant>(this)->getType(); 397 case scPtrToInt: 398 case scTruncate: 399 case scZeroExtend: 400 case scSignExtend: 401 return cast<SCEVCastExpr>(this)->getType(); 402 case scAddRecExpr: 403 return cast<SCEVAddRecExpr>(this)->getType(); 404 case scMulExpr: 405 return cast<SCEVMulExpr>(this)->getType(); 406 case scUMaxExpr: 407 case scSMaxExpr: 408 case scUMinExpr: 409 case scSMinExpr: 410 return cast<SCEVMinMaxExpr>(this)->getType(); 411 case scSequentialUMinExpr: 412 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 413 case scAddExpr: 414 return cast<SCEVAddExpr>(this)->getType(); 415 case scUDivExpr: 416 return cast<SCEVUDivExpr>(this)->getType(); 417 case scUnknown: 418 return cast<SCEVUnknown>(this)->getType(); 419 case scCouldNotCompute: 420 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 421 } 422 llvm_unreachable("Unknown SCEV kind!"); 423 } 424 425 bool SCEV::isZero() const { 426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 427 return SC->getValue()->isZero(); 428 return false; 429 } 430 431 bool SCEV::isOne() const { 432 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 433 return SC->getValue()->isOne(); 434 return false; 435 } 436 437 bool SCEV::isAllOnesValue() const { 438 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 439 return SC->getValue()->isMinusOne(); 440 return false; 441 } 442 443 bool SCEV::isNonConstantNegative() const { 444 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 445 if (!Mul) return false; 446 447 // If there is a constant factor, it will be first. 448 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 449 if (!SC) return false; 450 451 // Return true if the value is negative, this matches things like (-42 * V). 452 return SC->getAPInt().isNegative(); 453 } 454 455 SCEVCouldNotCompute::SCEVCouldNotCompute() : 456 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 457 458 bool SCEVCouldNotCompute::classof(const SCEV *S) { 459 return S->getSCEVType() == scCouldNotCompute; 460 } 461 462 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 463 FoldingSetNodeID ID; 464 ID.AddInteger(scConstant); 465 ID.AddPointer(V); 466 void *IP = nullptr; 467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 468 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 469 UniqueSCEVs.InsertNode(S, IP); 470 return S; 471 } 472 473 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 474 return getConstant(ConstantInt::get(getContext(), Val)); 475 } 476 477 const SCEV * 478 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 479 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 480 return getConstant(ConstantInt::get(ITy, V, isSigned)); 481 } 482 483 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 484 const SCEV *op, Type *ty) 485 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 486 Operands[0] = op; 487 } 488 489 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 490 Type *ITy) 491 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 492 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 493 "Must be a non-bit-width-changing pointer-to-integer cast!"); 494 } 495 496 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 497 SCEVTypes SCEVTy, const SCEV *op, 498 Type *ty) 499 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 500 501 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 502 Type *ty) 503 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 504 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 505 "Cannot truncate non-integer value!"); 506 } 507 508 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 509 const SCEV *op, Type *ty) 510 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 511 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 512 "Cannot zero extend non-integer value!"); 513 } 514 515 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 516 const SCEV *op, Type *ty) 517 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 518 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 519 "Cannot sign extend non-integer value!"); 520 } 521 522 void SCEVUnknown::deleted() { 523 // Clear this SCEVUnknown from various maps. 524 SE->forgetMemoizedResults(this); 525 526 // Remove this SCEVUnknown from the uniquing map. 527 SE->UniqueSCEVs.RemoveNode(this); 528 529 // Release the value. 530 setValPtr(nullptr); 531 } 532 533 void SCEVUnknown::allUsesReplacedWith(Value *New) { 534 // Clear this SCEVUnknown from various maps. 535 SE->forgetMemoizedResults(this); 536 537 // Remove this SCEVUnknown from the uniquing map. 538 SE->UniqueSCEVs.RemoveNode(this); 539 540 // Replace the value pointer in case someone is still using this SCEVUnknown. 541 setValPtr(New); 542 } 543 544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue() && 550 CE->getNumOperands() == 2) 551 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 552 if (CI->isOne()) { 553 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 554 return true; 555 } 556 557 return false; 558 } 559 560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 561 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 562 if (VCE->getOpcode() == Instruction::PtrToInt) 563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 564 if (CE->getOpcode() == Instruction::GetElementPtr && 565 CE->getOperand(0)->isNullValue()) { 566 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 567 if (StructType *STy = dyn_cast<StructType>(Ty)) 568 if (!STy->isPacked() && 569 CE->getNumOperands() == 3 && 570 CE->getOperand(1)->isNullValue()) { 571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 572 if (CI->isOne() && 573 STy->getNumElements() == 2 && 574 STy->getElementType(0)->isIntegerTy(1)) { 575 AllocTy = STy->getElementType(1); 576 return true; 577 } 578 } 579 } 580 581 return false; 582 } 583 584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 585 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 586 if (VCE->getOpcode() == Instruction::PtrToInt) 587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 588 if (CE->getOpcode() == Instruction::GetElementPtr && 589 CE->getNumOperands() == 3 && 590 CE->getOperand(0)->isNullValue() && 591 CE->getOperand(1)->isNullValue()) { 592 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 593 // Ignore vector types here so that ScalarEvolutionExpander doesn't 594 // emit getelementptrs that index into vectors. 595 if (Ty->isStructTy() || Ty->isArrayTy()) { 596 CTy = Ty; 597 FieldNo = CE->getOperand(2); 598 return true; 599 } 600 } 601 602 return false; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // SCEV Utilities 607 //===----------------------------------------------------------------------===// 608 609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 611 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 612 /// have been previously deemed to be "equally complex" by this routine. It is 613 /// intended to avoid exponential time complexity in cases like: 614 /// 615 /// %a = f(%x, %y) 616 /// %b = f(%a, %a) 617 /// %c = f(%b, %b) 618 /// 619 /// %d = f(%x, %y) 620 /// %e = f(%d, %d) 621 /// %f = f(%e, %e) 622 /// 623 /// CompareValueComplexity(%f, %c) 624 /// 625 /// Since we do not continue running this routine on expression trees once we 626 /// have seen unequal values, there is no need to track them in the cache. 627 static int 628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 629 const LoopInfo *const LI, Value *LV, Value *RV, 630 unsigned Depth) { 631 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 632 return 0; 633 634 // Order pointer values after integer values. This helps SCEVExpander form 635 // GEPs. 636 bool LIsPointer = LV->getType()->isPointerTy(), 637 RIsPointer = RV->getType()->isPointerTy(); 638 if (LIsPointer != RIsPointer) 639 return (int)LIsPointer - (int)RIsPointer; 640 641 // Compare getValueID values. 642 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 643 if (LID != RID) 644 return (int)LID - (int)RID; 645 646 // Sort arguments by their position. 647 if (const auto *LA = dyn_cast<Argument>(LV)) { 648 const auto *RA = cast<Argument>(RV); 649 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 650 return (int)LArgNo - (int)RArgNo; 651 } 652 653 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 654 const auto *RGV = cast<GlobalValue>(RV); 655 656 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 657 auto LT = GV->getLinkage(); 658 return !(GlobalValue::isPrivateLinkage(LT) || 659 GlobalValue::isInternalLinkage(LT)); 660 }; 661 662 // Use the names to distinguish the two values, but only if the 663 // names are semantically important. 664 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 665 return LGV->getName().compare(RGV->getName()); 666 } 667 668 // For instructions, compare their loop depth, and their operand count. This 669 // is pretty loose. 670 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 671 const auto *RInst = cast<Instruction>(RV); 672 673 // Compare loop depths. 674 const BasicBlock *LParent = LInst->getParent(), 675 *RParent = RInst->getParent(); 676 if (LParent != RParent) { 677 unsigned LDepth = LI->getLoopDepth(LParent), 678 RDepth = LI->getLoopDepth(RParent); 679 if (LDepth != RDepth) 680 return (int)LDepth - (int)RDepth; 681 } 682 683 // Compare the number of operands. 684 unsigned LNumOps = LInst->getNumOperands(), 685 RNumOps = RInst->getNumOperands(); 686 if (LNumOps != RNumOps) 687 return (int)LNumOps - (int)RNumOps; 688 689 for (unsigned Idx : seq(0u, LNumOps)) { 690 int Result = 691 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 692 RInst->getOperand(Idx), Depth + 1); 693 if (Result != 0) 694 return Result; 695 } 696 } 697 698 EqCacheValue.unionSets(LV, RV); 699 return 0; 700 } 701 702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 703 // than RHS, respectively. A three-way result allows recursive comparisons to be 704 // more efficient. 705 // If the max analysis depth was reached, return None, assuming we do not know 706 // if they are equivalent for sure. 707 static Optional<int> 708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 709 EquivalenceClasses<const Value *> &EqCacheValue, 710 const LoopInfo *const LI, const SCEV *LHS, 711 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 712 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 713 if (LHS == RHS) 714 return 0; 715 716 // Primarily, sort the SCEVs by their getSCEVType(). 717 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 718 if (LType != RType) 719 return (int)LType - (int)RType; 720 721 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 722 return 0; 723 724 if (Depth > MaxSCEVCompareDepth) 725 return None; 726 727 // Aside from the getSCEVType() ordering, the particular ordering 728 // isn't very important except that it's beneficial to be consistent, 729 // so that (a + b) and (b + a) don't end up as different expressions. 730 switch (LType) { 731 case scUnknown: { 732 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 733 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 734 735 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 736 RU->getValue(), Depth + 1); 737 if (X == 0) 738 EqCacheSCEV.unionSets(LHS, RHS); 739 return X; 740 } 741 742 case scConstant: { 743 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 744 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 745 746 // Compare constant values. 747 const APInt &LA = LC->getAPInt(); 748 const APInt &RA = RC->getAPInt(); 749 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 750 if (LBitWidth != RBitWidth) 751 return (int)LBitWidth - (int)RBitWidth; 752 return LA.ult(RA) ? -1 : 1; 753 } 754 755 case scAddRecExpr: { 756 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 757 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 758 759 // There is always a dominance between two recs that are used by one SCEV, 760 // so we can safely sort recs by loop header dominance. We require such 761 // order in getAddExpr. 762 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 763 if (LLoop != RLoop) { 764 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 765 assert(LHead != RHead && "Two loops share the same header?"); 766 if (DT.dominates(LHead, RHead)) 767 return 1; 768 else 769 assert(DT.dominates(RHead, LHead) && 770 "No dominance between recurrences used by one SCEV?"); 771 return -1; 772 } 773 774 // Addrec complexity grows with operand count. 775 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 776 if (LNumOps != RNumOps) 777 return (int)LNumOps - (int)RNumOps; 778 779 // Lexicographically compare. 780 for (unsigned i = 0; i != LNumOps; ++i) { 781 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 782 LA->getOperand(i), RA->getOperand(i), DT, 783 Depth + 1); 784 if (X != 0) 785 return X; 786 } 787 EqCacheSCEV.unionSets(LHS, RHS); 788 return 0; 789 } 790 791 case scAddExpr: 792 case scMulExpr: 793 case scSMaxExpr: 794 case scUMaxExpr: 795 case scSMinExpr: 796 case scUMinExpr: 797 case scSequentialUMinExpr: { 798 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 799 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 800 801 // Lexicographically compare n-ary expressions. 802 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 803 if (LNumOps != RNumOps) 804 return (int)LNumOps - (int)RNumOps; 805 806 for (unsigned i = 0; i != LNumOps; ++i) { 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 808 LC->getOperand(i), RC->getOperand(i), DT, 809 Depth + 1); 810 if (X != 0) 811 return X; 812 } 813 EqCacheSCEV.unionSets(LHS, RHS); 814 return 0; 815 } 816 817 case scUDivExpr: { 818 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 819 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 820 821 // Lexicographically compare udiv expressions. 822 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 823 RC->getLHS(), DT, Depth + 1); 824 if (X != 0) 825 return X; 826 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 827 RC->getRHS(), DT, Depth + 1); 828 if (X == 0) 829 EqCacheSCEV.unionSets(LHS, RHS); 830 return X; 831 } 832 833 case scPtrToInt: 834 case scTruncate: 835 case scZeroExtend: 836 case scSignExtend: { 837 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 838 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 839 840 // Compare cast expressions by operand. 841 auto X = 842 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 843 RC->getOperand(), DT, Depth + 1); 844 if (X == 0) 845 EqCacheSCEV.unionSets(LHS, RHS); 846 return X; 847 } 848 849 case scCouldNotCompute: 850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 851 } 852 llvm_unreachable("Unknown SCEV kind!"); 853 } 854 855 /// Given a list of SCEV objects, order them by their complexity, and group 856 /// objects of the same complexity together by value. When this routine is 857 /// finished, we know that any duplicates in the vector are consecutive and that 858 /// complexity is monotonically increasing. 859 /// 860 /// Note that we go take special precautions to ensure that we get deterministic 861 /// results from this routine. In other words, we don't want the results of 862 /// this to depend on where the addresses of various SCEV objects happened to 863 /// land in memory. 864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 865 LoopInfo *LI, DominatorTree &DT) { 866 if (Ops.size() < 2) return; // Noop 867 868 EquivalenceClasses<const SCEV *> EqCacheSCEV; 869 EquivalenceClasses<const Value *> EqCacheValue; 870 871 // Whether LHS has provably less complexity than RHS. 872 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 873 auto Complexity = 874 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 875 return Complexity && *Complexity < 0; 876 }; 877 if (Ops.size() == 2) { 878 // This is the common case, which also happens to be trivially simple. 879 // Special case it. 880 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 881 if (IsLessComplex(RHS, LHS)) 882 std::swap(LHS, RHS); 883 return; 884 } 885 886 // Do the rough sort by complexity. 887 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 888 return IsLessComplex(LHS, RHS); 889 }); 890 891 // Now that we are sorted by complexity, group elements of the same 892 // complexity. Note that this is, at worst, N^2, but the vector is likely to 893 // be extremely short in practice. Note that we take this approach because we 894 // do not want to depend on the addresses of the objects we are grouping. 895 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 896 const SCEV *S = Ops[i]; 897 unsigned Complexity = S->getSCEVType(); 898 899 // If there are any objects of the same complexity and same value as this 900 // one, group them. 901 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 902 if (Ops[j] == S) { // Found a duplicate. 903 // Move it to immediately after i'th element. 904 std::swap(Ops[i+1], Ops[j]); 905 ++i; // no need to rescan it. 906 if (i == e-2) return; // Done! 907 } 908 } 909 } 910 } 911 912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 913 /// least HugeExprThreshold nodes). 914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 915 return any_of(Ops, [](const SCEV *S) { 916 return S->getExpressionSize() >= HugeExprThreshold; 917 }); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // Simple SCEV method implementations 922 //===----------------------------------------------------------------------===// 923 924 /// Compute BC(It, K). The result has width W. Assume, K > 0. 925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 926 ScalarEvolution &SE, 927 Type *ResultTy) { 928 // Handle the simplest case efficiently. 929 if (K == 1) 930 return SE.getTruncateOrZeroExtend(It, ResultTy); 931 932 // We are using the following formula for BC(It, K): 933 // 934 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 935 // 936 // Suppose, W is the bitwidth of the return value. We must be prepared for 937 // overflow. Hence, we must assure that the result of our computation is 938 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 939 // safe in modular arithmetic. 940 // 941 // However, this code doesn't use exactly that formula; the formula it uses 942 // is something like the following, where T is the number of factors of 2 in 943 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 944 // exponentiation: 945 // 946 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 947 // 948 // This formula is trivially equivalent to the previous formula. However, 949 // this formula can be implemented much more efficiently. The trick is that 950 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 951 // arithmetic. To do exact division in modular arithmetic, all we have 952 // to do is multiply by the inverse. Therefore, this step can be done at 953 // width W. 954 // 955 // The next issue is how to safely do the division by 2^T. The way this 956 // is done is by doing the multiplication step at a width of at least W + T 957 // bits. This way, the bottom W+T bits of the product are accurate. Then, 958 // when we perform the division by 2^T (which is equivalent to a right shift 959 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 960 // truncated out after the division by 2^T. 961 // 962 // In comparison to just directly using the first formula, this technique 963 // is much more efficient; using the first formula requires W * K bits, 964 // but this formula less than W + K bits. Also, the first formula requires 965 // a division step, whereas this formula only requires multiplies and shifts. 966 // 967 // It doesn't matter whether the subtraction step is done in the calculation 968 // width or the input iteration count's width; if the subtraction overflows, 969 // the result must be zero anyway. We prefer here to do it in the width of 970 // the induction variable because it helps a lot for certain cases; CodeGen 971 // isn't smart enough to ignore the overflow, which leads to much less 972 // efficient code if the width of the subtraction is wider than the native 973 // register width. 974 // 975 // (It's possible to not widen at all by pulling out factors of 2 before 976 // the multiplication; for example, K=2 can be calculated as 977 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 978 // extra arithmetic, so it's not an obvious win, and it gets 979 // much more complicated for K > 3.) 980 981 // Protection from insane SCEVs; this bound is conservative, 982 // but it probably doesn't matter. 983 if (K > 1000) 984 return SE.getCouldNotCompute(); 985 986 unsigned W = SE.getTypeSizeInBits(ResultTy); 987 988 // Calculate K! / 2^T and T; we divide out the factors of two before 989 // multiplying for calculating K! / 2^T to avoid overflow. 990 // Other overflow doesn't matter because we only care about the bottom 991 // W bits of the result. 992 APInt OddFactorial(W, 1); 993 unsigned T = 1; 994 for (unsigned i = 3; i <= K; ++i) { 995 APInt Mult(W, i); 996 unsigned TwoFactors = Mult.countTrailingZeros(); 997 T += TwoFactors; 998 Mult.lshrInPlace(TwoFactors); 999 OddFactorial *= Mult; 1000 } 1001 1002 // We need at least W + T bits for the multiplication step 1003 unsigned CalculationBits = W + T; 1004 1005 // Calculate 2^T, at width T+W. 1006 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1007 1008 // Calculate the multiplicative inverse of K! / 2^T; 1009 // this multiplication factor will perform the exact division by 1010 // K! / 2^T. 1011 APInt Mod = APInt::getSignedMinValue(W+1); 1012 APInt MultiplyFactor = OddFactorial.zext(W+1); 1013 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1014 MultiplyFactor = MultiplyFactor.trunc(W); 1015 1016 // Calculate the product, at width T+W 1017 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1018 CalculationBits); 1019 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1020 for (unsigned i = 1; i != K; ++i) { 1021 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1022 Dividend = SE.getMulExpr(Dividend, 1023 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1024 } 1025 1026 // Divide by 2^T 1027 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1028 1029 // Truncate the result, and divide by K! / 2^T. 1030 1031 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1032 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1033 } 1034 1035 /// Return the value of this chain of recurrences at the specified iteration 1036 /// number. We can evaluate this recurrence by multiplying each element in the 1037 /// chain by the binomial coefficient corresponding to it. In other words, we 1038 /// can evaluate {A,+,B,+,C,+,D} as: 1039 /// 1040 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1041 /// 1042 /// where BC(It, k) stands for binomial coefficient. 1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1044 ScalarEvolution &SE) const { 1045 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1046 } 1047 1048 const SCEV * 1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1050 const SCEV *It, ScalarEvolution &SE) { 1051 assert(Operands.size() > 0); 1052 const SCEV *Result = Operands[0]; 1053 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1071 unsigned Depth) { 1072 assert(Depth <= 1 && 1073 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1074 1075 // We could be called with an integer-typed operands during SCEV rewrites. 1076 // Since the operand is an integer already, just perform zext/trunc/self cast. 1077 if (!Op->getType()->isPointerTy()) 1078 return Op; 1079 1080 // What would be an ID for such a SCEV cast expression? 1081 FoldingSetNodeID ID; 1082 ID.AddInteger(scPtrToInt); 1083 ID.AddPointer(Op); 1084 1085 void *IP = nullptr; 1086 1087 // Is there already an expression for such a cast? 1088 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1089 return S; 1090 1091 // It isn't legal for optimizations to construct new ptrtoint expressions 1092 // for non-integral pointers. 1093 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1094 return getCouldNotCompute(); 1095 1096 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1097 1098 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1099 // is sufficiently wide to represent all possible pointer values. 1100 // We could theoretically teach SCEV to truncate wider pointers, but 1101 // that isn't implemented for now. 1102 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1103 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1104 return getCouldNotCompute(); 1105 1106 // If not, is this expression something we can't reduce any further? 1107 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1108 // Perform some basic constant folding. If the operand of the ptr2int cast 1109 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1110 // left as-is), but produce a zero constant. 1111 // NOTE: We could handle a more general case, but lack motivational cases. 1112 if (isa<ConstantPointerNull>(U->getValue())) 1113 return getZero(IntPtrTy); 1114 1115 // Create an explicit cast node. 1116 // We can reuse the existing insert position since if we get here, 1117 // we won't have made any changes which would invalidate it. 1118 SCEV *S = new (SCEVAllocator) 1119 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1120 UniqueSCEVs.InsertNode(S, IP); 1121 registerUser(S, Op); 1122 return S; 1123 } 1124 1125 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1126 "non-SCEVUnknown's."); 1127 1128 // Otherwise, we've got some expression that is more complex than just a 1129 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1130 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1131 // only, and the expressions must otherwise be integer-typed. 1132 // So sink the cast down to the SCEVUnknown's. 1133 1134 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1135 /// which computes a pointer-typed value, and rewrites the whole expression 1136 /// tree so that *all* the computations are done on integers, and the only 1137 /// pointer-typed operands in the expression are SCEVUnknown. 1138 class SCEVPtrToIntSinkingRewriter 1139 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1140 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1141 1142 public: 1143 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1144 1145 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1146 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1147 return Rewriter.visit(Scev); 1148 } 1149 1150 const SCEV *visit(const SCEV *S) { 1151 Type *STy = S->getType(); 1152 // If the expression is not pointer-typed, just keep it as-is. 1153 if (!STy->isPointerTy()) 1154 return S; 1155 // Else, recursively sink the cast down into it. 1156 return Base::visit(S); 1157 } 1158 1159 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1160 SmallVector<const SCEV *, 2> Operands; 1161 bool Changed = false; 1162 for (auto *Op : Expr->operands()) { 1163 Operands.push_back(visit(Op)); 1164 Changed |= Op != Operands.back(); 1165 } 1166 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1167 } 1168 1169 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1170 SmallVector<const SCEV *, 2> Operands; 1171 bool Changed = false; 1172 for (auto *Op : Expr->operands()) { 1173 Operands.push_back(visit(Op)); 1174 Changed |= Op != Operands.back(); 1175 } 1176 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1177 } 1178 1179 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1180 assert(Expr->getType()->isPointerTy() && 1181 "Should only reach pointer-typed SCEVUnknown's."); 1182 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1183 } 1184 }; 1185 1186 // And actually perform the cast sinking. 1187 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1188 assert(IntOp->getType()->isIntegerTy() && 1189 "We must have succeeded in sinking the cast, " 1190 "and ending up with an integer-typed expression!"); 1191 return IntOp; 1192 } 1193 1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1195 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1196 1197 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1198 if (isa<SCEVCouldNotCompute>(IntOp)) 1199 return IntOp; 1200 1201 return getTruncateOrZeroExtend(IntOp, Ty); 1202 } 1203 1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1205 unsigned Depth) { 1206 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1207 "This is not a truncating conversion!"); 1208 assert(isSCEVable(Ty) && 1209 "This is not a conversion to a SCEVable type!"); 1210 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1211 Ty = getEffectiveSCEVType(Ty); 1212 1213 FoldingSetNodeID ID; 1214 ID.AddInteger(scTruncate); 1215 ID.AddPointer(Op); 1216 ID.AddPointer(Ty); 1217 void *IP = nullptr; 1218 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1219 1220 // Fold if the operand is constant. 1221 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1222 return getConstant( 1223 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1224 1225 // trunc(trunc(x)) --> trunc(x) 1226 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1227 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1231 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1232 1233 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1234 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1235 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1236 1237 if (Depth > MaxCastDepth) { 1238 SCEV *S = 1239 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1240 UniqueSCEVs.InsertNode(S, IP); 1241 registerUser(S, Op); 1242 return S; 1243 } 1244 1245 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1246 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1247 // if after transforming we have at most one truncate, not counting truncates 1248 // that replace other casts. 1249 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1250 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1251 SmallVector<const SCEV *, 4> Operands; 1252 unsigned numTruncs = 0; 1253 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1254 ++i) { 1255 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1256 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1257 isa<SCEVTruncateExpr>(S)) 1258 numTruncs++; 1259 Operands.push_back(S); 1260 } 1261 if (numTruncs < 2) { 1262 if (isa<SCEVAddExpr>(Op)) 1263 return getAddExpr(Operands); 1264 else if (isa<SCEVMulExpr>(Op)) 1265 return getMulExpr(Operands); 1266 else 1267 llvm_unreachable("Unexpected SCEV type for Op."); 1268 } 1269 // Although we checked in the beginning that ID is not in the cache, it is 1270 // possible that during recursion and different modification ID was inserted 1271 // into the cache. So if we find it, just return it. 1272 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1273 return S; 1274 } 1275 1276 // If the input value is a chrec scev, truncate the chrec's operands. 1277 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1278 SmallVector<const SCEV *, 4> Operands; 1279 for (const SCEV *Op : AddRec->operands()) 1280 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1281 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1282 } 1283 1284 // Return zero if truncating to known zeros. 1285 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1286 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1287 return getZero(Ty); 1288 1289 // The cast wasn't folded; create an explicit cast node. We can reuse 1290 // the existing insert position since if we get here, we won't have 1291 // made any changes which would invalidate it. 1292 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1293 Op, Ty); 1294 UniqueSCEVs.InsertNode(S, IP); 1295 registerUser(S, Op); 1296 return S; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // signed overflow as long as the value of the recurrence within the 1301 // loop does not exceed this limit before incrementing. 1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 if (SE->isKnownPositive(Step)) { 1307 *Pred = ICmpInst::ICMP_SLT; 1308 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1309 SE->getSignedRangeMax(Step)); 1310 } 1311 if (SE->isKnownNegative(Step)) { 1312 *Pred = ICmpInst::ICMP_SGT; 1313 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1314 SE->getSignedRangeMin(Step)); 1315 } 1316 return nullptr; 1317 } 1318 1319 // Get the limit of a recurrence such that incrementing by Step cannot cause 1320 // unsigned overflow as long as the value of the recurrence within the loop does 1321 // not exceed this limit before incrementing. 1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1323 ICmpInst::Predicate *Pred, 1324 ScalarEvolution *SE) { 1325 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1326 *Pred = ICmpInst::ICMP_ULT; 1327 1328 return SE->getConstant(APInt::getMinValue(BitWidth) - 1329 SE->getUnsignedRangeMax(Step)); 1330 } 1331 1332 namespace { 1333 1334 struct ExtendOpTraitsBase { 1335 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1336 unsigned); 1337 }; 1338 1339 // Used to make code generic over signed and unsigned overflow. 1340 template <typename ExtendOp> struct ExtendOpTraits { 1341 // Members present: 1342 // 1343 // static const SCEV::NoWrapFlags WrapType; 1344 // 1345 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1346 // 1347 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1348 // ICmpInst::Predicate *Pred, 1349 // ScalarEvolution *SE); 1350 }; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getSignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1367 1368 template <> 1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1370 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1371 1372 static const GetExtendExprTy GetExtendExpr; 1373 1374 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1375 ICmpInst::Predicate *Pred, 1376 ScalarEvolution *SE) { 1377 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1378 } 1379 }; 1380 1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1382 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1383 1384 } // end anonymous namespace 1385 1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1391 // expression "Step + sext/zext(PreIncAR)" is congruent with 1392 // "sext/zext(PostIncAR)" 1393 template <typename ExtendOpTy> 1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1395 ScalarEvolution *SE, unsigned Depth) { 1396 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const Loop *L = AR->getLoop(); 1400 const SCEV *Start = AR->getStart(); 1401 const SCEV *Step = AR->getStepRecurrence(*SE); 1402 1403 // Check for a simple looking step prior to loop entry. 1404 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1405 if (!SA) 1406 return nullptr; 1407 1408 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1409 // subtraction is expensive. For this purpose, perform a quick and dirty 1410 // difference, by checking for Step in the operand list. 1411 SmallVector<const SCEV *, 4> DiffOps; 1412 for (const SCEV *Op : SA->operands()) 1413 if (Op != Step) 1414 DiffOps.push_back(Op); 1415 1416 if (DiffOps.size() == SA->getNumOperands()) 1417 return nullptr; 1418 1419 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1420 // `Step`: 1421 1422 // 1. NSW/NUW flags on the step increment. 1423 auto PreStartFlags = 1424 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1425 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1426 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1427 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1428 1429 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1430 // "S+X does not sign/unsign-overflow". 1431 // 1432 1433 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1434 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1435 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1436 return PreStart; 1437 1438 // 2. Direct overflow check on the step operation's expression. 1439 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1440 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1441 const SCEV *OperandExtendedStart = 1442 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1443 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1444 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1445 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1446 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1447 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1448 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1449 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1450 } 1451 return PreStart; 1452 } 1453 1454 // 3. Loop precondition. 1455 ICmpInst::Predicate Pred; 1456 const SCEV *OverflowLimit = 1457 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1458 1459 if (OverflowLimit && 1460 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1461 return PreStart; 1462 1463 return nullptr; 1464 } 1465 1466 // Get the normalized zero or sign extended expression for this AddRec's Start. 1467 template <typename ExtendOpTy> 1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1469 ScalarEvolution *SE, 1470 unsigned Depth) { 1471 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1472 1473 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1474 if (!PreStart) 1475 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1476 1477 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1478 Depth), 1479 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1480 } 1481 1482 // Try to prove away overflow by looking at "nearby" add recurrences. A 1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1485 // 1486 // Formally: 1487 // 1488 // {S,+,X} == {S-T,+,X} + T 1489 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1490 // 1491 // If ({S-T,+,X} + T) does not overflow ... (1) 1492 // 1493 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1494 // 1495 // If {S-T,+,X} does not overflow ... (2) 1496 // 1497 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1498 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1499 // 1500 // If (S-T)+T does not overflow ... (3) 1501 // 1502 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1503 // == {Ext(S),+,Ext(X)} == LHS 1504 // 1505 // Thus, if (1), (2) and (3) are true for some T, then 1506 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1507 // 1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1509 // does not overflow" restricted to the 0th iteration. Therefore we only need 1510 // to check for (1) and (2). 1511 // 1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1513 // is `Delta` (defined below). 1514 template <typename ExtendOpTy> 1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1516 const SCEV *Step, 1517 const Loop *L) { 1518 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1519 1520 // We restrict `Start` to a constant to prevent SCEV from spending too much 1521 // time here. It is correct (but more expensive) to continue with a 1522 // non-constant `Start` and do a general SCEV subtraction to compute 1523 // `PreStart` below. 1524 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1525 if (!StartC) 1526 return false; 1527 1528 APInt StartAI = StartC->getAPInt(); 1529 1530 for (unsigned Delta : {-2, -1, 1, 2}) { 1531 const SCEV *PreStart = getConstant(StartAI - Delta); 1532 1533 FoldingSetNodeID ID; 1534 ID.AddInteger(scAddRecExpr); 1535 ID.AddPointer(PreStart); 1536 ID.AddPointer(Step); 1537 ID.AddPointer(L); 1538 void *IP = nullptr; 1539 const auto *PreAR = 1540 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1541 1542 // Give up if we don't already have the add recurrence we need because 1543 // actually constructing an add recurrence is relatively expensive. 1544 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1545 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1546 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1547 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1548 DeltaS, &Pred, this); 1549 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1550 return true; 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 // Finds an integer D for an expression (C + x + y + ...) such that the top 1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1561 // the (C + x + y + ...) expression is \p WholeAddExpr. 1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1563 const SCEVConstant *ConstantTerm, 1564 const SCEVAddExpr *WholeAddExpr) { 1565 const APInt &C = ConstantTerm->getAPInt(); 1566 const unsigned BitWidth = C.getBitWidth(); 1567 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1568 uint32_t TZ = BitWidth; 1569 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1570 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1571 if (TZ) { 1572 // Set D to be as many least significant bits of C as possible while still 1573 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1574 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1575 } 1576 return APInt(BitWidth, 0); 1577 } 1578 1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1584 const APInt &ConstantStart, 1585 const SCEV *Step) { 1586 const unsigned BitWidth = ConstantStart.getBitWidth(); 1587 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1588 if (TZ) 1589 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1590 : ConstantStart; 1591 return APInt(BitWidth, 0); 1592 } 1593 1594 const SCEV * 1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1596 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1597 "This is not an extending conversion!"); 1598 assert(isSCEVable(Ty) && 1599 "This is not a conversion to a SCEVable type!"); 1600 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1601 Ty = getEffectiveSCEVType(Ty); 1602 1603 // Fold if the operand is constant. 1604 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1605 return getConstant( 1606 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1607 1608 // zext(zext(x)) --> zext(x) 1609 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1610 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1611 1612 // Before doing any expensive analysis, check to see if we've already 1613 // computed a SCEV for this Op and Ty. 1614 FoldingSetNodeID ID; 1615 ID.AddInteger(scZeroExtend); 1616 ID.AddPointer(Op); 1617 ID.AddPointer(Ty); 1618 void *IP = nullptr; 1619 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1620 if (Depth > MaxCastDepth) { 1621 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1622 Op, Ty); 1623 UniqueSCEVs.InsertNode(S, IP); 1624 registerUser(S, Op); 1625 return S; 1626 } 1627 1628 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all zero bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getUnsignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1637 CR.zextOrTrunc(NewBits))) 1638 return getTruncateOrZeroExtend(X, Ty, Depth); 1639 } 1640 1641 // If the input value is a chrec scev, and we can prove that the value 1642 // did not overflow the old, smaller, value, we can zero extend all of the 1643 // operands (often constants). This allows analysis of something like 1644 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1646 if (AR->isAffine()) { 1647 const SCEV *Start = AR->getStart(); 1648 const SCEV *Step = AR->getStepRecurrence(*this); 1649 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1650 const Loop *L = AR->getLoop(); 1651 1652 if (!AR->hasNoUnsignedWrap()) { 1653 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1654 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1655 } 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->hasNoUnsignedWrap()) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1662 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1680 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1681 CastedMaxBECount, MaxBECount->getType(), Depth); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1685 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1688 SCEV::FlagAnyWrap, 1689 Depth + 1), 1690 WideTy, Depth + 1); 1691 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1692 const SCEV *WideMaxBECount = 1693 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1694 const SCEV *OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1702 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr( 1705 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1), 1707 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1708 AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 return getAddRecExpr( 1724 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1725 Depth + 1), 1726 getSignExtendExpr(Step, Ty, Depth + 1), L, 1727 AR->getNoWrapFlags()); 1728 } 1729 } 1730 } 1731 1732 // Normally, in the cases we can prove no-overflow via a 1733 // backedge guarding condition, we can also compute a backedge 1734 // taken count for the loop. The exceptions are assumptions and 1735 // guards present in the loop -- SCEV is not great at exploiting 1736 // these to compute max backedge taken counts, but can still use 1737 // these to prove lack of overflow. Use this fact to avoid 1738 // doing extra work that may not pay off. 1739 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1740 !AC.assumptions().empty()) { 1741 1742 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1743 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1744 if (AR->hasNoUnsignedWrap()) { 1745 // Same as nuw case above - duplicated here to avoid a compile time 1746 // issue. It's not clear that the order of checks does matter, but 1747 // it's one of two issue possible causes for a change which was 1748 // reverted. Be conservative for the moment. 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1751 Depth + 1), 1752 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1753 AR->getNoWrapFlags()); 1754 } 1755 1756 // For a negative step, we can extend the operands iff doing so only 1757 // traverses values in the range zext([0,UINT_MAX]). 1758 if (isKnownNegative(Step)) { 1759 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1760 getSignedRangeMin(Step)); 1761 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1762 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1763 // Cache knowledge of AR NW, which is propagated to this 1764 // AddRec. Negative step causes unsigned wrap, but it 1765 // still can't self-wrap. 1766 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1767 // Return the expression with the addrec on the outside. 1768 return getAddRecExpr( 1769 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1770 Depth + 1), 1771 getSignExtendExpr(Step, Ty, Depth + 1), L, 1772 AR->getNoWrapFlags()); 1773 } 1774 } 1775 } 1776 1777 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1778 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1779 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1780 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1781 const APInt &C = SC->getAPInt(); 1782 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1783 if (D != 0) { 1784 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1785 const SCEV *SResidual = 1786 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1787 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1788 return getAddExpr(SZExtD, SZExtR, 1789 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1790 Depth + 1); 1791 } 1792 } 1793 1794 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1795 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1798 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1799 } 1800 } 1801 1802 // zext(A % B) --> zext(A) % zext(B) 1803 { 1804 const SCEV *LHS; 1805 const SCEV *RHS; 1806 if (matchURem(Op, LHS, RHS)) 1807 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1808 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1809 } 1810 1811 // zext(A / B) --> zext(A) / zext(B). 1812 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1813 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1814 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1815 1816 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1817 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1818 if (SA->hasNoUnsignedWrap()) { 1819 // If the addition does not unsign overflow then we can, by definition, 1820 // commute the zero extension with the addition operation. 1821 SmallVector<const SCEV *, 4> Ops; 1822 for (const auto *Op : SA->operands()) 1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1824 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1825 } 1826 1827 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1828 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1829 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1830 // 1831 // Often address arithmetics contain expressions like 1832 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1833 // This transformation is useful while proving that such expressions are 1834 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1835 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1836 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1837 if (D != 0) { 1838 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1839 const SCEV *SResidual = 1840 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1841 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1842 return getAddExpr(SZExtD, SZExtR, 1843 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1844 Depth + 1); 1845 } 1846 } 1847 } 1848 1849 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1850 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1851 if (SM->hasNoUnsignedWrap()) { 1852 // If the multiply does not unsign overflow then we can, by definition, 1853 // commute the zero extension with the multiply operation. 1854 SmallVector<const SCEV *, 4> Ops; 1855 for (const auto *Op : SM->operands()) 1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1857 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1858 } 1859 1860 // zext(2^K * (trunc X to iN)) to iM -> 1861 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1862 // 1863 // Proof: 1864 // 1865 // zext(2^K * (trunc X to iN)) to iM 1866 // = zext((trunc X to iN) << K) to iM 1867 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1868 // (because shl removes the top K bits) 1869 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1870 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1871 // 1872 if (SM->getNumOperands() == 2) 1873 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1874 if (MulLHS->getAPInt().isPowerOf2()) 1875 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1876 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1877 MulLHS->getAPInt().logBase2(); 1878 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1879 return getMulExpr( 1880 getZeroExtendExpr(MulLHS, Ty), 1881 getZeroExtendExpr( 1882 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1883 SCEV::FlagNUW, Depth + 1); 1884 } 1885 } 1886 1887 // The cast wasn't folded; create an explicit cast node. 1888 // Recompute the insert position, as it may have been invalidated. 1889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1890 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1891 Op, Ty); 1892 UniqueSCEVs.InsertNode(S, IP); 1893 registerUser(S, Op); 1894 return S; 1895 } 1896 1897 const SCEV * 1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1900 "This is not an extending conversion!"); 1901 assert(isSCEVable(Ty) && 1902 "This is not a conversion to a SCEVable type!"); 1903 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1904 Ty = getEffectiveSCEVType(Ty); 1905 1906 // Fold if the operand is constant. 1907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1908 return getConstant( 1909 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1910 1911 // sext(sext(x)) --> sext(x) 1912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1913 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1914 1915 // sext(zext(x)) --> zext(x) 1916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1917 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1918 1919 // Before doing any expensive analysis, check to see if we've already 1920 // computed a SCEV for this Op and Ty. 1921 FoldingSetNodeID ID; 1922 ID.AddInteger(scSignExtend); 1923 ID.AddPointer(Op); 1924 ID.AddPointer(Ty); 1925 void *IP = nullptr; 1926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1927 // Limit recursion depth. 1928 if (Depth > MaxCastDepth) { 1929 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1930 Op, Ty); 1931 UniqueSCEVs.InsertNode(S, IP); 1932 registerUser(S, Op); 1933 return S; 1934 } 1935 1936 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1937 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1938 // It's possible the bits taken off by the truncate were all sign bits. If 1939 // so, we should be able to simplify this further. 1940 const SCEV *X = ST->getOperand(); 1941 ConstantRange CR = getSignedRange(X); 1942 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1943 unsigned NewBits = getTypeSizeInBits(Ty); 1944 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1945 CR.sextOrTrunc(NewBits))) 1946 return getTruncateOrSignExtend(X, Ty, Depth); 1947 } 1948 1949 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1950 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1951 if (SA->hasNoSignedWrap()) { 1952 // If the addition does not sign overflow then we can, by definition, 1953 // commute the sign extension with the addition operation. 1954 SmallVector<const SCEV *, 4> Ops; 1955 for (const auto *Op : SA->operands()) 1956 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1957 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1958 } 1959 1960 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1961 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1962 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1963 // 1964 // For instance, this will bring two seemingly different expressions: 1965 // 1 + sext(5 + 20 * %x + 24 * %y) and 1966 // sext(6 + 20 * %x + 24 * %y) 1967 // to the same form: 1968 // 2 + sext(4 + 20 * %x + 24 * %y) 1969 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1970 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1971 if (D != 0) { 1972 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1973 const SCEV *SResidual = 1974 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1975 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1976 return getAddExpr(SSExtD, SSExtR, 1977 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1978 Depth + 1); 1979 } 1980 } 1981 } 1982 // If the input value is a chrec scev, and we can prove that the value 1983 // did not overflow the old, smaller, value, we can sign extend all of the 1984 // operands (often constants). This allows analysis of something like 1985 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1986 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1987 if (AR->isAffine()) { 1988 const SCEV *Start = AR->getStart(); 1989 const SCEV *Step = AR->getStepRecurrence(*this); 1990 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1991 const Loop *L = AR->getLoop(); 1992 1993 if (!AR->hasNoSignedWrap()) { 1994 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1995 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1996 } 1997 1998 // If we have special knowledge that this addrec won't overflow, 1999 // we don't need to do any further analysis. 2000 if (AR->hasNoSignedWrap()) 2001 return getAddRecExpr( 2002 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2003 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 return getAddRecExpr( 2047 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2048 Depth + 1), 2049 getSignExtendExpr(Step, Ty, Depth + 1), L, 2050 AR->getNoWrapFlags()); 2051 } 2052 // Similar to above, only this time treat the step value as unsigned. 2053 // This covers loops that count up with an unsigned step. 2054 OperandExtendedAdd = 2055 getAddExpr(WideStart, 2056 getMulExpr(WideMaxBECount, 2057 getZeroExtendExpr(Step, WideTy, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1), 2059 SCEV::FlagAnyWrap, Depth + 1); 2060 if (SAdd == OperandExtendedAdd) { 2061 // If AR wraps around then 2062 // 2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2064 // => SAdd != OperandExtendedAdd 2065 // 2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2067 // (SAdd == OperandExtendedAdd => AR is NW) 2068 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2070 2071 // Return the expression with the addrec on the outside. 2072 return getAddRecExpr( 2073 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2074 Depth + 1), 2075 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2076 AR->getNoWrapFlags()); 2077 } 2078 } 2079 } 2080 2081 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2082 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2083 if (AR->hasNoSignedWrap()) { 2084 // Same as nsw case above - duplicated here to avoid a compile time 2085 // issue. It's not clear that the order of checks does matter, but 2086 // it's one of two issue possible causes for a change which was 2087 // reverted. Be conservative for the moment. 2088 return getAddRecExpr( 2089 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2090 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2091 } 2092 2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2094 // if D + (C - D + Step * n) could be proven to not signed wrap 2095 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2097 const APInt &C = SC->getAPInt(); 2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2099 if (D != 0) { 2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2101 const SCEV *SResidual = 2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2104 return getAddExpr(SSExtD, SSExtR, 2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2106 Depth + 1); 2107 } 2108 } 2109 2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2112 return getAddRecExpr( 2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2114 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2317 (this->*Extension)(RHS, WideTy, 0), 2318 SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3123 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1), 3125 getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1), 3127 SCEV::FlagAnyWrap, Depth + 1); 3128 3129 if (Ops[0]->isAllOnesValue()) { 3130 // If we have a mul by -1 of an add, try distributing the -1 among the 3131 // add operands. 3132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3133 SmallVector<const SCEV *, 4> NewOps; 3134 bool AnyFolded = false; 3135 for (const SCEV *AddOp : Add->operands()) { 3136 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3137 Depth + 1); 3138 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3139 NewOps.push_back(Mul); 3140 } 3141 if (AnyFolded) 3142 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3143 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3144 // Negation preserves a recurrence's no self-wrap property. 3145 SmallVector<const SCEV *, 4> Operands; 3146 for (const SCEV *AddRecOp : AddRec->operands()) 3147 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3148 Depth + 1)); 3149 3150 return getAddRecExpr(Operands, AddRec->getLoop(), 3151 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3152 } 3153 } 3154 } 3155 } 3156 3157 // Skip over the add expression until we get to a multiply. 3158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3159 ++Idx; 3160 3161 // If there are mul operands inline them all into this expression. 3162 if (Idx < Ops.size()) { 3163 bool DeletedMul = false; 3164 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3165 if (Ops.size() > MulOpsInlineThreshold) 3166 break; 3167 // If we have an mul, expand the mul operands onto the end of the 3168 // operands list. 3169 Ops.erase(Ops.begin()+Idx); 3170 Ops.append(Mul->op_begin(), Mul->op_end()); 3171 DeletedMul = true; 3172 } 3173 3174 // If we deleted at least one mul, we added operands to the end of the 3175 // list, and they are not necessarily sorted. Recurse to resort and 3176 // resimplify any operands we just acquired. 3177 if (DeletedMul) 3178 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3179 } 3180 3181 // If there are any add recurrences in the operands list, see if any other 3182 // added values are loop invariant. If so, we can fold them into the 3183 // recurrence. 3184 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3185 ++Idx; 3186 3187 // Scan over all recurrences, trying to fold loop invariants into them. 3188 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3189 // Scan all of the other operands to this mul and add them to the vector 3190 // if they are loop invariant w.r.t. the recurrence. 3191 SmallVector<const SCEV *, 8> LIOps; 3192 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3193 const Loop *AddRecLoop = AddRec->getLoop(); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3196 LIOps.push_back(Ops[i]); 3197 Ops.erase(Ops.begin()+i); 3198 --i; --e; 3199 } 3200 3201 // If we found some loop invariants, fold them into the recurrence. 3202 if (!LIOps.empty()) { 3203 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3204 SmallVector<const SCEV *, 4> NewOps; 3205 NewOps.reserve(AddRec->getNumOperands()); 3206 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3207 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3208 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 3211 // Build the new addrec. Propagate the NUW and NSW flags if both the 3212 // outer mul and the inner addrec are guaranteed to have no overflow. 3213 // 3214 // No self-wrap cannot be guaranteed after changing the step size, but 3215 // will be inferred if either NUW or NSW is true. 3216 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3217 const SCEV *NewRec = getAddRecExpr( 3218 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3219 3220 // If all of the other operands were loop invariant, we are done. 3221 if (Ops.size() == 1) return NewRec; 3222 3223 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3224 for (unsigned i = 0;; ++i) 3225 if (Ops[i] == AddRec) { 3226 Ops[i] = NewRec; 3227 break; 3228 } 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 } 3231 3232 // Okay, if there weren't any loop invariants to be folded, check to see 3233 // if there are multiple AddRec's with the same loop induction variable 3234 // being multiplied together. If so, we can fold them. 3235 3236 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3237 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3238 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3239 // ]]],+,...up to x=2n}. 3240 // Note that the arguments to choose() are always integers with values 3241 // known at compile time, never SCEV objects. 3242 // 3243 // The implementation avoids pointless extra computations when the two 3244 // addrec's are of different length (mathematically, it's equivalent to 3245 // an infinite stream of zeros on the right). 3246 bool OpsModified = false; 3247 for (unsigned OtherIdx = Idx+1; 3248 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3249 ++OtherIdx) { 3250 const SCEVAddRecExpr *OtherAddRec = 3251 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3252 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3253 continue; 3254 3255 // Limit max number of arguments to avoid creation of unreasonably big 3256 // SCEVAddRecs with very complex operands. 3257 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3258 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3259 continue; 3260 3261 bool Overflow = false; 3262 Type *Ty = AddRec->getType(); 3263 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3264 SmallVector<const SCEV*, 7> AddRecOps; 3265 for (int x = 0, xe = AddRec->getNumOperands() + 3266 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3267 SmallVector <const SCEV *, 7> SumOps; 3268 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3269 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3270 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3271 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3272 z < ze && !Overflow; ++z) { 3273 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3274 uint64_t Coeff; 3275 if (LargerThan64Bits) 3276 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3277 else 3278 Coeff = Coeff1*Coeff2; 3279 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3280 const SCEV *Term1 = AddRec->getOperand(y-z); 3281 const SCEV *Term2 = OtherAddRec->getOperand(z); 3282 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3283 SCEV::FlagAnyWrap, Depth + 1)); 3284 } 3285 } 3286 if (SumOps.empty()) 3287 SumOps.push_back(getZero(Ty)); 3288 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3289 } 3290 if (!Overflow) { 3291 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3292 SCEV::FlagAnyWrap); 3293 if (Ops.size() == 2) return NewAddRec; 3294 Ops[Idx] = NewAddRec; 3295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3296 OpsModified = true; 3297 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3298 if (!AddRec) 3299 break; 3300 } 3301 } 3302 if (OpsModified) 3303 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3304 3305 // Otherwise couldn't fold anything into this recurrence. Move onto the 3306 // next one. 3307 } 3308 3309 // Okay, it looks like we really DO need an mul expr. Check to see if we 3310 // already have one, otherwise create a new one. 3311 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3312 } 3313 3314 /// Represents an unsigned remainder expression based on unsigned division. 3315 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3316 const SCEV *RHS) { 3317 assert(getEffectiveSCEVType(LHS->getType()) == 3318 getEffectiveSCEVType(RHS->getType()) && 3319 "SCEVURemExpr operand types don't match!"); 3320 3321 // Short-circuit easy cases 3322 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3323 // If constant is one, the result is trivial 3324 if (RHSC->getValue()->isOne()) 3325 return getZero(LHS->getType()); // X urem 1 --> 0 3326 3327 // If constant is a power of two, fold into a zext(trunc(LHS)). 3328 if (RHSC->getAPInt().isPowerOf2()) { 3329 Type *FullTy = LHS->getType(); 3330 Type *TruncTy = 3331 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3332 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3333 } 3334 } 3335 3336 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3337 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3338 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3339 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3340 } 3341 3342 /// Get a canonical unsigned division expression, or something simpler if 3343 /// possible. 3344 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3345 const SCEV *RHS) { 3346 assert(!LHS->getType()->isPointerTy() && 3347 "SCEVUDivExpr operand can't be pointer!"); 3348 assert(LHS->getType() == RHS->getType() && 3349 "SCEVUDivExpr operand types don't match!"); 3350 3351 FoldingSetNodeID ID; 3352 ID.AddInteger(scUDivExpr); 3353 ID.AddPointer(LHS); 3354 ID.AddPointer(RHS); 3355 void *IP = nullptr; 3356 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3357 return S; 3358 3359 // 0 udiv Y == 0 3360 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3361 if (LHSC->getValue()->isZero()) 3362 return LHS; 3363 3364 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3365 if (RHSC->getValue()->isOne()) 3366 return LHS; // X udiv 1 --> x 3367 // If the denominator is zero, the result of the udiv is undefined. Don't 3368 // try to analyze it, because the resolution chosen here may differ from 3369 // the resolution chosen in other parts of the compiler. 3370 if (!RHSC->getValue()->isZero()) { 3371 // Determine if the division can be folded into the operands of 3372 // its operands. 3373 // TODO: Generalize this to non-constants by using known-bits information. 3374 Type *Ty = LHS->getType(); 3375 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3376 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3377 // For non-power-of-two values, effectively round the value up to the 3378 // nearest power of two. 3379 if (!RHSC->getAPInt().isPowerOf2()) 3380 ++MaxShiftAmt; 3381 IntegerType *ExtTy = 3382 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3383 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3384 if (const SCEVConstant *Step = 3385 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3386 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3387 const APInt &StepInt = Step->getAPInt(); 3388 const APInt &DivInt = RHSC->getAPInt(); 3389 if (!StepInt.urem(DivInt) && 3390 getZeroExtendExpr(AR, ExtTy) == 3391 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3392 getZeroExtendExpr(Step, ExtTy), 3393 AR->getLoop(), SCEV::FlagAnyWrap)) { 3394 SmallVector<const SCEV *, 4> Operands; 3395 for (const SCEV *Op : AR->operands()) 3396 Operands.push_back(getUDivExpr(Op, RHS)); 3397 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3398 } 3399 /// Get a canonical UDivExpr for a recurrence. 3400 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3401 // We can currently only fold X%N if X is constant. 3402 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3403 if (StartC && !DivInt.urem(StepInt) && 3404 getZeroExtendExpr(AR, ExtTy) == 3405 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3406 getZeroExtendExpr(Step, ExtTy), 3407 AR->getLoop(), SCEV::FlagAnyWrap)) { 3408 const APInt &StartInt = StartC->getAPInt(); 3409 const APInt &StartRem = StartInt.urem(StepInt); 3410 if (StartRem != 0) { 3411 const SCEV *NewLHS = 3412 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3413 AR->getLoop(), SCEV::FlagNW); 3414 if (LHS != NewLHS) { 3415 LHS = NewLHS; 3416 3417 // Reset the ID to include the new LHS, and check if it is 3418 // already cached. 3419 ID.clear(); 3420 ID.AddInteger(scUDivExpr); 3421 ID.AddPointer(LHS); 3422 ID.AddPointer(RHS); 3423 IP = nullptr; 3424 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3425 return S; 3426 } 3427 } 3428 } 3429 } 3430 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3432 SmallVector<const SCEV *, 4> Operands; 3433 for (const SCEV *Op : M->operands()) 3434 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3435 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3436 // Find an operand that's safely divisible. 3437 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3438 const SCEV *Op = M->getOperand(i); 3439 const SCEV *Div = getUDivExpr(Op, RHSC); 3440 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3441 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3442 Operands[i] = Div; 3443 return getMulExpr(Operands); 3444 } 3445 } 3446 } 3447 3448 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3449 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3450 if (auto *DivisorConstant = 3451 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3452 bool Overflow = false; 3453 APInt NewRHS = 3454 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3455 if (Overflow) { 3456 return getConstant(RHSC->getType(), 0, false); 3457 } 3458 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3459 } 3460 } 3461 3462 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3463 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3464 SmallVector<const SCEV *, 4> Operands; 3465 for (const SCEV *Op : A->operands()) 3466 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3467 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3468 Operands.clear(); 3469 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3470 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3471 if (isa<SCEVUDivExpr>(Op) || 3472 getMulExpr(Op, RHS) != A->getOperand(i)) 3473 break; 3474 Operands.push_back(Op); 3475 } 3476 if (Operands.size() == A->getNumOperands()) 3477 return getAddExpr(Operands); 3478 } 3479 } 3480 3481 // Fold if both operands are constant. 3482 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3483 Constant *LHSCV = LHSC->getValue(); 3484 Constant *RHSCV = RHSC->getValue(); 3485 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3486 RHSCV))); 3487 } 3488 } 3489 } 3490 3491 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3492 // changes). Make sure we get a new one. 3493 IP = nullptr; 3494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3495 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3496 LHS, RHS); 3497 UniqueSCEVs.InsertNode(S, IP); 3498 registerUser(S, {LHS, RHS}); 3499 return S; 3500 } 3501 3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3503 APInt A = C1->getAPInt().abs(); 3504 APInt B = C2->getAPInt().abs(); 3505 uint32_t ABW = A.getBitWidth(); 3506 uint32_t BBW = B.getBitWidth(); 3507 3508 if (ABW > BBW) 3509 B = B.zext(ABW); 3510 else if (ABW < BBW) 3511 A = A.zext(BBW); 3512 3513 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3514 } 3515 3516 /// Get a canonical unsigned division expression, or something simpler if 3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3518 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3519 /// it's not exact because the udiv may be clearing bits. 3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3521 const SCEV *RHS) { 3522 // TODO: we could try to find factors in all sorts of things, but for now we 3523 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3524 // end of this file for inspiration. 3525 3526 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3527 if (!Mul || !Mul->hasNoUnsignedWrap()) 3528 return getUDivExpr(LHS, RHS); 3529 3530 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3531 // If the mulexpr multiplies by a constant, then that constant must be the 3532 // first element of the mulexpr. 3533 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 if (LHSCst == RHSCst) { 3535 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3536 return getMulExpr(Operands); 3537 } 3538 3539 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3540 // that there's a factor provided by one of the other terms. We need to 3541 // check. 3542 APInt Factor = gcd(LHSCst, RHSCst); 3543 if (!Factor.isIntN(1)) { 3544 LHSCst = 3545 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3546 RHSCst = 3547 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3548 SmallVector<const SCEV *, 2> Operands; 3549 Operands.push_back(LHSCst); 3550 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3551 LHS = getMulExpr(Operands); 3552 RHS = RHSCst; 3553 Mul = dyn_cast<SCEVMulExpr>(LHS); 3554 if (!Mul) 3555 return getUDivExactExpr(LHS, RHS); 3556 } 3557 } 3558 } 3559 3560 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3561 if (Mul->getOperand(i) == RHS) { 3562 SmallVector<const SCEV *, 2> Operands; 3563 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3564 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3565 return getMulExpr(Operands); 3566 } 3567 } 3568 3569 return getUDivExpr(LHS, RHS); 3570 } 3571 3572 /// Get an add recurrence expression for the specified loop. Simplify the 3573 /// expression as much as possible. 3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3575 const Loop *L, 3576 SCEV::NoWrapFlags Flags) { 3577 SmallVector<const SCEV *, 4> Operands; 3578 Operands.push_back(Start); 3579 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3580 if (StepChrec->getLoop() == L) { 3581 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3582 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3583 } 3584 3585 Operands.push_back(Step); 3586 return getAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 /// Get an add recurrence expression for the specified loop. Simplify the 3590 /// expression as much as possible. 3591 const SCEV * 3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3593 const Loop *L, SCEV::NoWrapFlags Flags) { 3594 if (Operands.size() == 1) return Operands[0]; 3595 #ifndef NDEBUG 3596 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3597 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3598 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3599 "SCEVAddRecExpr operand types don't match!"); 3600 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3601 } 3602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3603 assert(isLoopInvariant(Operands[i], L) && 3604 "SCEVAddRecExpr operand is not loop-invariant!"); 3605 #endif 3606 3607 if (Operands.back()->isZero()) { 3608 Operands.pop_back(); 3609 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3610 } 3611 3612 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3613 // use that information to infer NUW and NSW flags. However, computing a 3614 // BE count requires calling getAddRecExpr, so we may not yet have a 3615 // meaningful BE count at this point (and if we don't, we'd be stuck 3616 // with a SCEVCouldNotCompute as the cached BE count). 3617 3618 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3619 3620 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3621 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3622 const Loop *NestedLoop = NestedAR->getLoop(); 3623 if (L->contains(NestedLoop) 3624 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3625 : (!NestedLoop->contains(L) && 3626 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3627 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3628 Operands[0] = NestedAR->getStart(); 3629 // AddRecs require their operands be loop-invariant with respect to their 3630 // loops. Don't perform this transformation if it would break this 3631 // requirement. 3632 bool AllInvariant = all_of( 3633 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3634 3635 if (AllInvariant) { 3636 // Create a recurrence for the outer loop with the same step size. 3637 // 3638 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3639 // inner recurrence has the same property. 3640 SCEV::NoWrapFlags OuterFlags = 3641 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3642 3643 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3644 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3645 return isLoopInvariant(Op, NestedLoop); 3646 }); 3647 3648 if (AllInvariant) { 3649 // Ok, both add recurrences are valid after the transformation. 3650 // 3651 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3652 // the outer recurrence has the same property. 3653 SCEV::NoWrapFlags InnerFlags = 3654 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3655 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3656 } 3657 } 3658 // Reset Operands to its original state. 3659 Operands[0] = NestedAR; 3660 } 3661 } 3662 3663 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3664 // already have one, otherwise create a new one. 3665 return getOrCreateAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3670 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3671 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3672 // getSCEV(Base)->getType() has the same address space as Base->getType() 3673 // because SCEV::getType() preserves the address space. 3674 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3675 const bool AssumeInBoundsFlags = [&]() { 3676 if (!GEP->isInBounds()) 3677 return false; 3678 3679 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3680 // but to do that, we have to ensure that said flag is valid in the entire 3681 // defined scope of the SCEV. 3682 auto *GEPI = dyn_cast<Instruction>(GEP); 3683 // TODO: non-instructions have global scope. We might be able to prove 3684 // some global scope cases 3685 return GEPI && isSCEVExprNeverPoison(GEPI); 3686 }(); 3687 3688 SCEV::NoWrapFlags OffsetWrap = 3689 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3690 3691 Type *CurTy = GEP->getType(); 3692 bool FirstIter = true; 3693 SmallVector<const SCEV *, 4> Offsets; 3694 for (const SCEV *IndexExpr : IndexExprs) { 3695 // Compute the (potentially symbolic) offset in bytes for this index. 3696 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3697 // For a struct, add the member offset. 3698 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3699 unsigned FieldNo = Index->getZExtValue(); 3700 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3701 Offsets.push_back(FieldOffset); 3702 3703 // Update CurTy to the type of the field at Index. 3704 CurTy = STy->getTypeAtIndex(Index); 3705 } else { 3706 // Update CurTy to its element type. 3707 if (FirstIter) { 3708 assert(isa<PointerType>(CurTy) && 3709 "The first index of a GEP indexes a pointer"); 3710 CurTy = GEP->getSourceElementType(); 3711 FirstIter = false; 3712 } else { 3713 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3714 } 3715 // For an array, add the element offset, explicitly scaled. 3716 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3717 // Getelementptr indices are signed. 3718 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3719 3720 // Multiply the index by the element size to compute the element offset. 3721 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3722 Offsets.push_back(LocalOffset); 3723 } 3724 } 3725 3726 // Handle degenerate case of GEP without offsets. 3727 if (Offsets.empty()) 3728 return BaseExpr; 3729 3730 // Add the offsets together, assuming nsw if inbounds. 3731 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3732 // Add the base address and the offset. We cannot use the nsw flag, as the 3733 // base address is unsigned. However, if we know that the offset is 3734 // non-negative, we can use nuw. 3735 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3736 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3737 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3738 assert(BaseExpr->getType() == GEPExpr->getType() && 3739 "GEP should not change type mid-flight."); 3740 return GEPExpr; 3741 } 3742 3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3744 ArrayRef<const SCEV *> Ops) { 3745 FoldingSetNodeID ID; 3746 ID.AddInteger(SCEVType); 3747 for (const SCEV *Op : Ops) 3748 ID.AddPointer(Op); 3749 void *IP = nullptr; 3750 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3751 } 3752 3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3754 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3755 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3756 } 3757 3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3759 SmallVectorImpl<const SCEV *> &Ops) { 3760 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3761 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3762 if (Ops.size() == 1) return Ops[0]; 3763 #ifndef NDEBUG 3764 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3765 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3766 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3767 "Operand types don't match!"); 3768 assert(Ops[0]->getType()->isPointerTy() == 3769 Ops[i]->getType()->isPointerTy() && 3770 "min/max should be consistently pointerish"); 3771 } 3772 #endif 3773 3774 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3775 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3776 3777 // Sort by complexity, this groups all similar expression types together. 3778 GroupByComplexity(Ops, &LI, DT); 3779 3780 // Check if we have created the same expression before. 3781 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3782 return S; 3783 } 3784 3785 // If there are any constants, fold them together. 3786 unsigned Idx = 0; 3787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3788 ++Idx; 3789 assert(Idx < Ops.size()); 3790 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3791 if (Kind == scSMaxExpr) 3792 return APIntOps::smax(LHS, RHS); 3793 else if (Kind == scSMinExpr) 3794 return APIntOps::smin(LHS, RHS); 3795 else if (Kind == scUMaxExpr) 3796 return APIntOps::umax(LHS, RHS); 3797 else if (Kind == scUMinExpr) 3798 return APIntOps::umin(LHS, RHS); 3799 llvm_unreachable("Unknown SCEV min/max opcode"); 3800 }; 3801 3802 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3803 // We found two constants, fold them together! 3804 ConstantInt *Fold = ConstantInt::get( 3805 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3806 Ops[0] = getConstant(Fold); 3807 Ops.erase(Ops.begin()+1); // Erase the folded element 3808 if (Ops.size() == 1) return Ops[0]; 3809 LHSC = cast<SCEVConstant>(Ops[0]); 3810 } 3811 3812 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3813 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3814 3815 if (IsMax ? IsMinV : IsMaxV) { 3816 // If we are left with a constant minimum(/maximum)-int, strip it off. 3817 Ops.erase(Ops.begin()); 3818 --Idx; 3819 } else if (IsMax ? IsMaxV : IsMinV) { 3820 // If we have a max(/min) with a constant maximum(/minimum)-int, 3821 // it will always be the extremum. 3822 return LHSC; 3823 } 3824 3825 if (Ops.size() == 1) return Ops[0]; 3826 } 3827 3828 // Find the first operation of the same kind 3829 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3830 ++Idx; 3831 3832 // Check to see if one of the operands is of the same kind. If so, expand its 3833 // operands onto our operand list, and recurse to simplify. 3834 if (Idx < Ops.size()) { 3835 bool DeletedAny = false; 3836 while (Ops[Idx]->getSCEVType() == Kind) { 3837 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3838 Ops.erase(Ops.begin()+Idx); 3839 Ops.append(SMME->op_begin(), SMME->op_end()); 3840 DeletedAny = true; 3841 } 3842 3843 if (DeletedAny) 3844 return getMinMaxExpr(Kind, Ops); 3845 } 3846 3847 // Okay, check to see if the same value occurs in the operand list twice. If 3848 // so, delete one. Since we sorted the list, these values are required to 3849 // be adjacent. 3850 llvm::CmpInst::Predicate GEPred = 3851 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3852 llvm::CmpInst::Predicate LEPred = 3853 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3854 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3855 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3856 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3857 if (Ops[i] == Ops[i + 1] || 3858 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3859 // X op Y op Y --> X op Y 3860 // X op Y --> X, if we know X, Y are ordered appropriately 3861 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3862 --i; 3863 --e; 3864 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3865 Ops[i + 1])) { 3866 // X op Y --> Y, if we know X, Y are ordered appropriately 3867 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3868 --i; 3869 --e; 3870 } 3871 } 3872 3873 if (Ops.size() == 1) return Ops[0]; 3874 3875 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3876 3877 // Okay, it looks like we really DO need an expr. Check to see if we 3878 // already have one, otherwise create a new one. 3879 FoldingSetNodeID ID; 3880 ID.AddInteger(Kind); 3881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3882 ID.AddPointer(Ops[i]); 3883 void *IP = nullptr; 3884 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3885 if (ExistingSCEV) 3886 return ExistingSCEV; 3887 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3888 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3889 SCEV *S = new (SCEVAllocator) 3890 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3891 3892 UniqueSCEVs.InsertNode(S, IP); 3893 registerUser(S, Ops); 3894 return S; 3895 } 3896 3897 namespace { 3898 3899 class SCEVSequentialMinMaxDeduplicatingVisitor final 3900 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3901 Optional<const SCEV *>> { 3902 using RetVal = Optional<const SCEV *>; 3903 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3904 3905 ScalarEvolution &SE; 3906 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3907 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3908 SmallPtrSet<const SCEV *, 16> SeenOps; 3909 3910 bool canRecurseInto(SCEVTypes Kind) const { 3911 // We can only recurse into the SCEV expression of the same effective type 3912 // as the type of our root SCEV expression. 3913 return RootKind == Kind || NonSequentialRootKind == Kind; 3914 }; 3915 3916 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3917 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3918 "Only for min/max expressions."); 3919 SCEVTypes Kind = S->getSCEVType(); 3920 3921 if (!canRecurseInto(Kind)) 3922 return S; 3923 3924 auto *NAry = cast<SCEVNAryExpr>(S); 3925 SmallVector<const SCEV *> NewOps; 3926 bool Changed = 3927 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3928 3929 if (!Changed) 3930 return S; 3931 if (NewOps.empty()) 3932 return None; 3933 3934 return isa<SCEVSequentialMinMaxExpr>(S) 3935 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3936 : SE.getMinMaxExpr(Kind, NewOps); 3937 } 3938 3939 RetVal visit(const SCEV *S) { 3940 // Has the whole operand been seen already? 3941 if (!SeenOps.insert(S).second) 3942 return None; 3943 return Base::visit(S); 3944 } 3945 3946 public: 3947 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3948 SCEVTypes RootKind) 3949 : SE(SE), RootKind(RootKind), 3950 NonSequentialRootKind( 3951 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3952 RootKind)) {} 3953 3954 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3955 SmallVectorImpl<const SCEV *> &NewOps) { 3956 bool Changed = false; 3957 SmallVector<const SCEV *> Ops; 3958 Ops.reserve(OrigOps.size()); 3959 3960 for (const SCEV *Op : OrigOps) { 3961 RetVal NewOp = visit(Op); 3962 if (NewOp != Op) 3963 Changed = true; 3964 if (NewOp) 3965 Ops.emplace_back(*NewOp); 3966 } 3967 3968 if (Changed) 3969 NewOps = std::move(Ops); 3970 return Changed; 3971 } 3972 3973 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3974 3975 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3976 3977 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3978 3979 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3980 3981 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3982 3983 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3984 3985 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3986 3987 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3988 3989 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3990 3991 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4008 return visitAnyMinMaxExpr(Expr); 4009 } 4010 4011 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4012 4013 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4014 }; 4015 4016 } // namespace 4017 4018 const SCEV * 4019 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4020 SmallVectorImpl<const SCEV *> &Ops) { 4021 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4022 "Not a SCEVSequentialMinMaxExpr!"); 4023 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4024 if (Ops.size() == 1) 4025 return Ops[0]; 4026 if (Ops.size() == 2 && 4027 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4028 return getMinMaxExpr( 4029 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4030 Ops); 4031 #ifndef NDEBUG 4032 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4033 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4034 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4035 "Operand types don't match!"); 4036 assert(Ops[0]->getType()->isPointerTy() == 4037 Ops[i]->getType()->isPointerTy() && 4038 "min/max should be consistently pointerish"); 4039 } 4040 #endif 4041 4042 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4043 // so we can *NOT* do any kind of sorting of the expressions! 4044 4045 // Check if we have created the same expression before. 4046 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4047 return S; 4048 4049 // FIXME: there are *some* simplifications that we can do here. 4050 4051 // Keep only the first instance of an operand. 4052 { 4053 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4054 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4055 if (Changed) 4056 return getSequentialMinMaxExpr(Kind, Ops); 4057 } 4058 4059 // Check to see if one of the operands is of the same kind. If so, expand its 4060 // operands onto our operand list, and recurse to simplify. 4061 { 4062 unsigned Idx = 0; 4063 bool DeletedAny = false; 4064 while (Idx < Ops.size()) { 4065 if (Ops[Idx]->getSCEVType() != Kind) { 4066 ++Idx; 4067 continue; 4068 } 4069 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4070 Ops.erase(Ops.begin() + Idx); 4071 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4072 DeletedAny = true; 4073 } 4074 4075 if (DeletedAny) 4076 return getSequentialMinMaxExpr(Kind, Ops); 4077 } 4078 4079 // Okay, it looks like we really DO need an expr. Check to see if we 4080 // already have one, otherwise create a new one. 4081 FoldingSetNodeID ID; 4082 ID.AddInteger(Kind); 4083 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4084 ID.AddPointer(Ops[i]); 4085 void *IP = nullptr; 4086 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4087 if (ExistingSCEV) 4088 return ExistingSCEV; 4089 4090 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4091 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4092 SCEV *S = new (SCEVAllocator) 4093 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4094 4095 UniqueSCEVs.InsertNode(S, IP); 4096 registerUser(S, Ops); 4097 return S; 4098 } 4099 4100 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4101 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4102 return getSMaxExpr(Ops); 4103 } 4104 4105 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4106 return getMinMaxExpr(scSMaxExpr, Ops); 4107 } 4108 4109 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4110 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4111 return getUMaxExpr(Ops); 4112 } 4113 4114 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4115 return getMinMaxExpr(scUMaxExpr, Ops); 4116 } 4117 4118 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4119 const SCEV *RHS) { 4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4121 return getSMinExpr(Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4125 return getMinMaxExpr(scSMinExpr, Ops); 4126 } 4127 4128 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4129 bool Sequential) { 4130 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4131 return getUMinExpr(Ops, Sequential); 4132 } 4133 4134 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4135 bool Sequential) { 4136 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4137 : getMinMaxExpr(scUMinExpr, Ops); 4138 } 4139 4140 const SCEV * 4141 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4142 ScalableVectorType *ScalableTy) { 4143 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4144 Constant *One = ConstantInt::get(IntTy, 1); 4145 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4146 // Note that the expression we created is the final expression, we don't 4147 // want to simplify it any further Also, if we call a normal getSCEV(), 4148 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4149 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4150 } 4151 4152 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4153 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4154 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4155 // We can bypass creating a target-independent constant expression and then 4156 // folding it back into a ConstantInt. This is just a compile-time 4157 // optimization. 4158 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4159 } 4160 4161 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4162 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4163 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4164 // We can bypass creating a target-independent constant expression and then 4165 // folding it back into a ConstantInt. This is just a compile-time 4166 // optimization. 4167 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4168 } 4169 4170 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4171 StructType *STy, 4172 unsigned FieldNo) { 4173 // We can bypass creating a target-independent constant expression and then 4174 // folding it back into a ConstantInt. This is just a compile-time 4175 // optimization. 4176 return getConstant( 4177 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4178 } 4179 4180 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4181 // Don't attempt to do anything other than create a SCEVUnknown object 4182 // here. createSCEV only calls getUnknown after checking for all other 4183 // interesting possibilities, and any other code that calls getUnknown 4184 // is doing so in order to hide a value from SCEV canonicalization. 4185 4186 FoldingSetNodeID ID; 4187 ID.AddInteger(scUnknown); 4188 ID.AddPointer(V); 4189 void *IP = nullptr; 4190 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4191 assert(cast<SCEVUnknown>(S)->getValue() == V && 4192 "Stale SCEVUnknown in uniquing map!"); 4193 return S; 4194 } 4195 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4196 FirstUnknown); 4197 FirstUnknown = cast<SCEVUnknown>(S); 4198 UniqueSCEVs.InsertNode(S, IP); 4199 return S; 4200 } 4201 4202 //===----------------------------------------------------------------------===// 4203 // Basic SCEV Analysis and PHI Idiom Recognition Code 4204 // 4205 4206 /// Test if values of the given type are analyzable within the SCEV 4207 /// framework. This primarily includes integer types, and it can optionally 4208 /// include pointer types if the ScalarEvolution class has access to 4209 /// target-specific information. 4210 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4211 // Integers and pointers are always SCEVable. 4212 return Ty->isIntOrPtrTy(); 4213 } 4214 4215 /// Return the size in bits of the specified type, for which isSCEVable must 4216 /// return true. 4217 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4218 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4219 if (Ty->isPointerTy()) 4220 return getDataLayout().getIndexTypeSizeInBits(Ty); 4221 return getDataLayout().getTypeSizeInBits(Ty); 4222 } 4223 4224 /// Return a type with the same bitwidth as the given type and which represents 4225 /// how SCEV will treat the given type, for which isSCEVable must return 4226 /// true. For pointer types, this is the pointer index sized integer type. 4227 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4228 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4229 4230 if (Ty->isIntegerTy()) 4231 return Ty; 4232 4233 // The only other support type is pointer. 4234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4235 return getDataLayout().getIndexType(Ty); 4236 } 4237 4238 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4239 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4240 } 4241 4242 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4243 const SCEV *B) { 4244 /// For a valid use point to exist, the defining scope of one operand 4245 /// must dominate the other. 4246 bool PreciseA, PreciseB; 4247 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4248 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4249 if (!PreciseA || !PreciseB) 4250 // Can't tell. 4251 return false; 4252 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4253 DT.dominates(ScopeB, ScopeA); 4254 } 4255 4256 4257 const SCEV *ScalarEvolution::getCouldNotCompute() { 4258 return CouldNotCompute.get(); 4259 } 4260 4261 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4262 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4263 auto *SU = dyn_cast<SCEVUnknown>(S); 4264 return SU && SU->getValue() == nullptr; 4265 }); 4266 4267 return !ContainsNulls; 4268 } 4269 4270 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4271 HasRecMapType::iterator I = HasRecMap.find(S); 4272 if (I != HasRecMap.end()) 4273 return I->second; 4274 4275 bool FoundAddRec = 4276 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4277 HasRecMap.insert({S, FoundAddRec}); 4278 return FoundAddRec; 4279 } 4280 4281 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4282 /// by the value and offset from any ValueOffsetPair in the set. 4283 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4284 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4285 if (SI == ExprValueMap.end()) 4286 return None; 4287 #ifndef NDEBUG 4288 if (VerifySCEVMap) { 4289 // Check there is no dangling Value in the set returned. 4290 for (Value *V : SI->second) 4291 assert(ValueExprMap.count(V)); 4292 } 4293 #endif 4294 return SI->second.getArrayRef(); 4295 } 4296 4297 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4298 /// cannot be used separately. eraseValueFromMap should be used to remove 4299 /// V from ValueExprMap and ExprValueMap at the same time. 4300 void ScalarEvolution::eraseValueFromMap(Value *V) { 4301 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4302 if (I != ValueExprMap.end()) { 4303 auto EVIt = ExprValueMap.find(I->second); 4304 bool Removed = EVIt->second.remove(V); 4305 (void) Removed; 4306 assert(Removed && "Value not in ExprValueMap?"); 4307 ValueExprMap.erase(I); 4308 } 4309 } 4310 4311 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4312 // A recursive query may have already computed the SCEV. It should be 4313 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4314 // inferred nowrap flags. 4315 auto It = ValueExprMap.find_as(V); 4316 if (It == ValueExprMap.end()) { 4317 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4318 ExprValueMap[S].insert(V); 4319 } 4320 } 4321 4322 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4323 /// create a new one. 4324 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4325 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4326 4327 const SCEV *S = getExistingSCEV(V); 4328 if (S == nullptr) { 4329 S = createSCEV(V); 4330 // During PHI resolution, it is possible to create two SCEVs for the same 4331 // V, so it is needed to double check whether V->S is inserted into 4332 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4333 std::pair<ValueExprMapType::iterator, bool> Pair = 4334 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4335 if (Pair.second) 4336 ExprValueMap[S].insert(V); 4337 } 4338 return S; 4339 } 4340 4341 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4342 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4343 4344 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4345 if (I != ValueExprMap.end()) { 4346 const SCEV *S = I->second; 4347 assert(checkValidity(S) && 4348 "existing SCEV has not been properly invalidated"); 4349 return S; 4350 } 4351 return nullptr; 4352 } 4353 4354 /// Return a SCEV corresponding to -V = -1*V 4355 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4356 SCEV::NoWrapFlags Flags) { 4357 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4358 return getConstant( 4359 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4360 4361 Type *Ty = V->getType(); 4362 Ty = getEffectiveSCEVType(Ty); 4363 return getMulExpr(V, getMinusOne(Ty), Flags); 4364 } 4365 4366 /// If Expr computes ~A, return A else return nullptr 4367 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4368 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4369 if (!Add || Add->getNumOperands() != 2 || 4370 !Add->getOperand(0)->isAllOnesValue()) 4371 return nullptr; 4372 4373 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4374 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4375 !AddRHS->getOperand(0)->isAllOnesValue()) 4376 return nullptr; 4377 4378 return AddRHS->getOperand(1); 4379 } 4380 4381 /// Return a SCEV corresponding to ~V = -1-V 4382 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4383 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4384 4385 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4386 return getConstant( 4387 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4388 4389 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4390 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4391 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4392 SmallVector<const SCEV *, 2> MatchedOperands; 4393 for (const SCEV *Operand : MME->operands()) { 4394 const SCEV *Matched = MatchNotExpr(Operand); 4395 if (!Matched) 4396 return (const SCEV *)nullptr; 4397 MatchedOperands.push_back(Matched); 4398 } 4399 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4400 MatchedOperands); 4401 }; 4402 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4403 return Replaced; 4404 } 4405 4406 Type *Ty = V->getType(); 4407 Ty = getEffectiveSCEVType(Ty); 4408 return getMinusSCEV(getMinusOne(Ty), V); 4409 } 4410 4411 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4412 assert(P->getType()->isPointerTy()); 4413 4414 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4415 // The base of an AddRec is the first operand. 4416 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4417 Ops[0] = removePointerBase(Ops[0]); 4418 // Don't try to transfer nowrap flags for now. We could in some cases 4419 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4420 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4421 } 4422 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4423 // The base of an Add is the pointer operand. 4424 SmallVector<const SCEV *> Ops{Add->operands()}; 4425 const SCEV **PtrOp = nullptr; 4426 for (const SCEV *&AddOp : Ops) { 4427 if (AddOp->getType()->isPointerTy()) { 4428 assert(!PtrOp && "Cannot have multiple pointer ops"); 4429 PtrOp = &AddOp; 4430 } 4431 } 4432 *PtrOp = removePointerBase(*PtrOp); 4433 // Don't try to transfer nowrap flags for now. We could in some cases 4434 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4435 return getAddExpr(Ops); 4436 } 4437 // Any other expression must be a pointer base. 4438 return getZero(P->getType()); 4439 } 4440 4441 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4442 SCEV::NoWrapFlags Flags, 4443 unsigned Depth) { 4444 // Fast path: X - X --> 0. 4445 if (LHS == RHS) 4446 return getZero(LHS->getType()); 4447 4448 // If we subtract two pointers with different pointer bases, bail. 4449 // Eventually, we're going to add an assertion to getMulExpr that we 4450 // can't multiply by a pointer. 4451 if (RHS->getType()->isPointerTy()) { 4452 if (!LHS->getType()->isPointerTy() || 4453 getPointerBase(LHS) != getPointerBase(RHS)) 4454 return getCouldNotCompute(); 4455 LHS = removePointerBase(LHS); 4456 RHS = removePointerBase(RHS); 4457 } 4458 4459 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4460 // makes it so that we cannot make much use of NUW. 4461 auto AddFlags = SCEV::FlagAnyWrap; 4462 const bool RHSIsNotMinSigned = 4463 !getSignedRangeMin(RHS).isMinSignedValue(); 4464 if (hasFlags(Flags, SCEV::FlagNSW)) { 4465 // Let M be the minimum representable signed value. Then (-1)*RHS 4466 // signed-wraps if and only if RHS is M. That can happen even for 4467 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4468 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4469 // (-1)*RHS, we need to prove that RHS != M. 4470 // 4471 // If LHS is non-negative and we know that LHS - RHS does not 4472 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4473 // either by proving that RHS > M or that LHS >= 0. 4474 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4475 AddFlags = SCEV::FlagNSW; 4476 } 4477 } 4478 4479 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4480 // RHS is NSW and LHS >= 0. 4481 // 4482 // The difficulty here is that the NSW flag may have been proven 4483 // relative to a loop that is to be found in a recurrence in LHS and 4484 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4485 // larger scope than intended. 4486 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4487 4488 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4489 } 4490 4491 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4492 unsigned Depth) { 4493 Type *SrcTy = V->getType(); 4494 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4495 "Cannot truncate or zero extend with non-integer arguments!"); 4496 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4497 return V; // No conversion 4498 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4499 return getTruncateExpr(V, Ty, Depth); 4500 return getZeroExtendExpr(V, Ty, Depth); 4501 } 4502 4503 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4504 unsigned Depth) { 4505 Type *SrcTy = V->getType(); 4506 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4507 "Cannot truncate or zero extend with non-integer arguments!"); 4508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4509 return V; // No conversion 4510 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4511 return getTruncateExpr(V, Ty, Depth); 4512 return getSignExtendExpr(V, Ty, Depth); 4513 } 4514 4515 const SCEV * 4516 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4517 Type *SrcTy = V->getType(); 4518 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4519 "Cannot noop or zero extend with non-integer arguments!"); 4520 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4521 "getNoopOrZeroExtend cannot truncate!"); 4522 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4523 return V; // No conversion 4524 return getZeroExtendExpr(V, Ty); 4525 } 4526 4527 const SCEV * 4528 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4529 Type *SrcTy = V->getType(); 4530 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4531 "Cannot noop or sign extend with non-integer arguments!"); 4532 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4533 "getNoopOrSignExtend cannot truncate!"); 4534 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4535 return V; // No conversion 4536 return getSignExtendExpr(V, Ty); 4537 } 4538 4539 const SCEV * 4540 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4541 Type *SrcTy = V->getType(); 4542 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4543 "Cannot noop or any extend with non-integer arguments!"); 4544 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4545 "getNoopOrAnyExtend cannot truncate!"); 4546 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4547 return V; // No conversion 4548 return getAnyExtendExpr(V, Ty); 4549 } 4550 4551 const SCEV * 4552 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4553 Type *SrcTy = V->getType(); 4554 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4555 "Cannot truncate or noop with non-integer arguments!"); 4556 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4557 "getTruncateOrNoop cannot extend!"); 4558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4559 return V; // No conversion 4560 return getTruncateExpr(V, Ty); 4561 } 4562 4563 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4564 const SCEV *RHS) { 4565 const SCEV *PromotedLHS = LHS; 4566 const SCEV *PromotedRHS = RHS; 4567 4568 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4569 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4570 else 4571 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4572 4573 return getUMaxExpr(PromotedLHS, PromotedRHS); 4574 } 4575 4576 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4577 const SCEV *RHS, 4578 bool Sequential) { 4579 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4580 return getUMinFromMismatchedTypes(Ops, Sequential); 4581 } 4582 4583 const SCEV * 4584 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4585 bool Sequential) { 4586 assert(!Ops.empty() && "At least one operand must be!"); 4587 // Trivial case. 4588 if (Ops.size() == 1) 4589 return Ops[0]; 4590 4591 // Find the max type first. 4592 Type *MaxType = nullptr; 4593 for (auto *S : Ops) 4594 if (MaxType) 4595 MaxType = getWiderType(MaxType, S->getType()); 4596 else 4597 MaxType = S->getType(); 4598 assert(MaxType && "Failed to find maximum type!"); 4599 4600 // Extend all ops to max type. 4601 SmallVector<const SCEV *, 2> PromotedOps; 4602 for (auto *S : Ops) 4603 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4604 4605 // Generate umin. 4606 return getUMinExpr(PromotedOps, Sequential); 4607 } 4608 4609 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4610 // A pointer operand may evaluate to a nonpointer expression, such as null. 4611 if (!V->getType()->isPointerTy()) 4612 return V; 4613 4614 while (true) { 4615 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4616 V = AddRec->getStart(); 4617 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4618 const SCEV *PtrOp = nullptr; 4619 for (const SCEV *AddOp : Add->operands()) { 4620 if (AddOp->getType()->isPointerTy()) { 4621 assert(!PtrOp && "Cannot have multiple pointer ops"); 4622 PtrOp = AddOp; 4623 } 4624 } 4625 assert(PtrOp && "Must have pointer op"); 4626 V = PtrOp; 4627 } else // Not something we can look further into. 4628 return V; 4629 } 4630 } 4631 4632 /// Push users of the given Instruction onto the given Worklist. 4633 static void PushDefUseChildren(Instruction *I, 4634 SmallVectorImpl<Instruction *> &Worklist, 4635 SmallPtrSetImpl<Instruction *> &Visited) { 4636 // Push the def-use children onto the Worklist stack. 4637 for (User *U : I->users()) { 4638 auto *UserInsn = cast<Instruction>(U); 4639 if (Visited.insert(UserInsn).second) 4640 Worklist.push_back(UserInsn); 4641 } 4642 } 4643 4644 namespace { 4645 4646 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4647 /// expression in case its Loop is L. If it is not L then 4648 /// if IgnoreOtherLoops is true then use AddRec itself 4649 /// otherwise rewrite cannot be done. 4650 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4651 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4652 public: 4653 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4654 bool IgnoreOtherLoops = true) { 4655 SCEVInitRewriter Rewriter(L, SE); 4656 const SCEV *Result = Rewriter.visit(S); 4657 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4658 return SE.getCouldNotCompute(); 4659 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4660 ? SE.getCouldNotCompute() 4661 : Result; 4662 } 4663 4664 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4665 if (!SE.isLoopInvariant(Expr, L)) 4666 SeenLoopVariantSCEVUnknown = true; 4667 return Expr; 4668 } 4669 4670 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4671 // Only re-write AddRecExprs for this loop. 4672 if (Expr->getLoop() == L) 4673 return Expr->getStart(); 4674 SeenOtherLoops = true; 4675 return Expr; 4676 } 4677 4678 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4679 4680 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4681 4682 private: 4683 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4684 : SCEVRewriteVisitor(SE), L(L) {} 4685 4686 const Loop *L; 4687 bool SeenLoopVariantSCEVUnknown = false; 4688 bool SeenOtherLoops = false; 4689 }; 4690 4691 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4692 /// increment expression in case its Loop is L. If it is not L then 4693 /// use AddRec itself. 4694 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4695 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4696 public: 4697 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4698 SCEVPostIncRewriter Rewriter(L, SE); 4699 const SCEV *Result = Rewriter.visit(S); 4700 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4701 ? SE.getCouldNotCompute() 4702 : Result; 4703 } 4704 4705 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4706 if (!SE.isLoopInvariant(Expr, L)) 4707 SeenLoopVariantSCEVUnknown = true; 4708 return Expr; 4709 } 4710 4711 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4712 // Only re-write AddRecExprs for this loop. 4713 if (Expr->getLoop() == L) 4714 return Expr->getPostIncExpr(SE); 4715 SeenOtherLoops = true; 4716 return Expr; 4717 } 4718 4719 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4720 4721 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4722 4723 private: 4724 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4725 : SCEVRewriteVisitor(SE), L(L) {} 4726 4727 const Loop *L; 4728 bool SeenLoopVariantSCEVUnknown = false; 4729 bool SeenOtherLoops = false; 4730 }; 4731 4732 /// This class evaluates the compare condition by matching it against the 4733 /// condition of loop latch. If there is a match we assume a true value 4734 /// for the condition while building SCEV nodes. 4735 class SCEVBackedgeConditionFolder 4736 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4737 public: 4738 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4739 ScalarEvolution &SE) { 4740 bool IsPosBECond = false; 4741 Value *BECond = nullptr; 4742 if (BasicBlock *Latch = L->getLoopLatch()) { 4743 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4744 if (BI && BI->isConditional()) { 4745 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4746 "Both outgoing branches should not target same header!"); 4747 BECond = BI->getCondition(); 4748 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4749 } else { 4750 return S; 4751 } 4752 } 4753 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4754 return Rewriter.visit(S); 4755 } 4756 4757 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4758 const SCEV *Result = Expr; 4759 bool InvariantF = SE.isLoopInvariant(Expr, L); 4760 4761 if (!InvariantF) { 4762 Instruction *I = cast<Instruction>(Expr->getValue()); 4763 switch (I->getOpcode()) { 4764 case Instruction::Select: { 4765 SelectInst *SI = cast<SelectInst>(I); 4766 Optional<const SCEV *> Res = 4767 compareWithBackedgeCondition(SI->getCondition()); 4768 if (Res.hasValue()) { 4769 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4770 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4771 } 4772 break; 4773 } 4774 default: { 4775 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4776 if (Res.hasValue()) 4777 Result = Res.getValue(); 4778 break; 4779 } 4780 } 4781 } 4782 return Result; 4783 } 4784 4785 private: 4786 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4787 bool IsPosBECond, ScalarEvolution &SE) 4788 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4789 IsPositiveBECond(IsPosBECond) {} 4790 4791 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4792 4793 const Loop *L; 4794 /// Loop back condition. 4795 Value *BackedgeCond = nullptr; 4796 /// Set to true if loop back is on positive branch condition. 4797 bool IsPositiveBECond; 4798 }; 4799 4800 Optional<const SCEV *> 4801 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4802 4803 // If value matches the backedge condition for loop latch, 4804 // then return a constant evolution node based on loopback 4805 // branch taken. 4806 if (BackedgeCond == IC) 4807 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4808 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4809 return None; 4810 } 4811 4812 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4813 public: 4814 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4815 ScalarEvolution &SE) { 4816 SCEVShiftRewriter Rewriter(L, SE); 4817 const SCEV *Result = Rewriter.visit(S); 4818 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4819 } 4820 4821 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4822 // Only allow AddRecExprs for this loop. 4823 if (!SE.isLoopInvariant(Expr, L)) 4824 Valid = false; 4825 return Expr; 4826 } 4827 4828 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4829 if (Expr->getLoop() == L && Expr->isAffine()) 4830 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4831 Valid = false; 4832 return Expr; 4833 } 4834 4835 bool isValid() { return Valid; } 4836 4837 private: 4838 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4839 : SCEVRewriteVisitor(SE), L(L) {} 4840 4841 const Loop *L; 4842 bool Valid = true; 4843 }; 4844 4845 } // end anonymous namespace 4846 4847 SCEV::NoWrapFlags 4848 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4849 if (!AR->isAffine()) 4850 return SCEV::FlagAnyWrap; 4851 4852 using OBO = OverflowingBinaryOperator; 4853 4854 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4855 4856 if (!AR->hasNoSignedWrap()) { 4857 ConstantRange AddRecRange = getSignedRange(AR); 4858 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4859 4860 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4861 Instruction::Add, IncRange, OBO::NoSignedWrap); 4862 if (NSWRegion.contains(AddRecRange)) 4863 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4864 } 4865 4866 if (!AR->hasNoUnsignedWrap()) { 4867 ConstantRange AddRecRange = getUnsignedRange(AR); 4868 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4869 4870 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4871 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4872 if (NUWRegion.contains(AddRecRange)) 4873 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4874 } 4875 4876 return Result; 4877 } 4878 4879 SCEV::NoWrapFlags 4880 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4881 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4882 4883 if (AR->hasNoSignedWrap()) 4884 return Result; 4885 4886 if (!AR->isAffine()) 4887 return Result; 4888 4889 const SCEV *Step = AR->getStepRecurrence(*this); 4890 const Loop *L = AR->getLoop(); 4891 4892 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4893 // Note that this serves two purposes: It filters out loops that are 4894 // simply not analyzable, and it covers the case where this code is 4895 // being called from within backedge-taken count analysis, such that 4896 // attempting to ask for the backedge-taken count would likely result 4897 // in infinite recursion. In the later case, the analysis code will 4898 // cope with a conservative value, and it will take care to purge 4899 // that value once it has finished. 4900 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4901 4902 // Normally, in the cases we can prove no-overflow via a 4903 // backedge guarding condition, we can also compute a backedge 4904 // taken count for the loop. The exceptions are assumptions and 4905 // guards present in the loop -- SCEV is not great at exploiting 4906 // these to compute max backedge taken counts, but can still use 4907 // these to prove lack of overflow. Use this fact to avoid 4908 // doing extra work that may not pay off. 4909 4910 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4911 AC.assumptions().empty()) 4912 return Result; 4913 4914 // If the backedge is guarded by a comparison with the pre-inc value the 4915 // addrec is safe. Also, if the entry is guarded by a comparison with the 4916 // start value and the backedge is guarded by a comparison with the post-inc 4917 // value, the addrec is safe. 4918 ICmpInst::Predicate Pred; 4919 const SCEV *OverflowLimit = 4920 getSignedOverflowLimitForStep(Step, &Pred, this); 4921 if (OverflowLimit && 4922 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4923 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4924 Result = setFlags(Result, SCEV::FlagNSW); 4925 } 4926 return Result; 4927 } 4928 SCEV::NoWrapFlags 4929 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4930 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4931 4932 if (AR->hasNoUnsignedWrap()) 4933 return Result; 4934 4935 if (!AR->isAffine()) 4936 return Result; 4937 4938 const SCEV *Step = AR->getStepRecurrence(*this); 4939 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4940 const Loop *L = AR->getLoop(); 4941 4942 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4943 // Note that this serves two purposes: It filters out loops that are 4944 // simply not analyzable, and it covers the case where this code is 4945 // being called from within backedge-taken count analysis, such that 4946 // attempting to ask for the backedge-taken count would likely result 4947 // in infinite recursion. In the later case, the analysis code will 4948 // cope with a conservative value, and it will take care to purge 4949 // that value once it has finished. 4950 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4951 4952 // Normally, in the cases we can prove no-overflow via a 4953 // backedge guarding condition, we can also compute a backedge 4954 // taken count for the loop. The exceptions are assumptions and 4955 // guards present in the loop -- SCEV is not great at exploiting 4956 // these to compute max backedge taken counts, but can still use 4957 // these to prove lack of overflow. Use this fact to avoid 4958 // doing extra work that may not pay off. 4959 4960 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4961 AC.assumptions().empty()) 4962 return Result; 4963 4964 // If the backedge is guarded by a comparison with the pre-inc value the 4965 // addrec is safe. Also, if the entry is guarded by a comparison with the 4966 // start value and the backedge is guarded by a comparison with the post-inc 4967 // value, the addrec is safe. 4968 if (isKnownPositive(Step)) { 4969 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4970 getUnsignedRangeMax(Step)); 4971 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4972 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4973 Result = setFlags(Result, SCEV::FlagNUW); 4974 } 4975 } 4976 4977 return Result; 4978 } 4979 4980 namespace { 4981 4982 /// Represents an abstract binary operation. This may exist as a 4983 /// normal instruction or constant expression, or may have been 4984 /// derived from an expression tree. 4985 struct BinaryOp { 4986 unsigned Opcode; 4987 Value *LHS; 4988 Value *RHS; 4989 bool IsNSW = false; 4990 bool IsNUW = false; 4991 4992 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4993 /// constant expression. 4994 Operator *Op = nullptr; 4995 4996 explicit BinaryOp(Operator *Op) 4997 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4998 Op(Op) { 4999 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5000 IsNSW = OBO->hasNoSignedWrap(); 5001 IsNUW = OBO->hasNoUnsignedWrap(); 5002 } 5003 } 5004 5005 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5006 bool IsNUW = false) 5007 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5008 }; 5009 5010 } // end anonymous namespace 5011 5012 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5013 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5014 auto *Op = dyn_cast<Operator>(V); 5015 if (!Op) 5016 return None; 5017 5018 // Implementation detail: all the cleverness here should happen without 5019 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5020 // SCEV expressions when possible, and we should not break that. 5021 5022 switch (Op->getOpcode()) { 5023 case Instruction::Add: 5024 case Instruction::Sub: 5025 case Instruction::Mul: 5026 case Instruction::UDiv: 5027 case Instruction::URem: 5028 case Instruction::And: 5029 case Instruction::Or: 5030 case Instruction::AShr: 5031 case Instruction::Shl: 5032 return BinaryOp(Op); 5033 5034 case Instruction::Xor: 5035 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5036 // If the RHS of the xor is a signmask, then this is just an add. 5037 // Instcombine turns add of signmask into xor as a strength reduction step. 5038 if (RHSC->getValue().isSignMask()) 5039 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5040 // Binary `xor` is a bit-wise `add`. 5041 if (V->getType()->isIntegerTy(1)) 5042 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5043 return BinaryOp(Op); 5044 5045 case Instruction::LShr: 5046 // Turn logical shift right of a constant into a unsigned divide. 5047 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5048 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5049 5050 // If the shift count is not less than the bitwidth, the result of 5051 // the shift is undefined. Don't try to analyze it, because the 5052 // resolution chosen here may differ from the resolution chosen in 5053 // other parts of the compiler. 5054 if (SA->getValue().ult(BitWidth)) { 5055 Constant *X = 5056 ConstantInt::get(SA->getContext(), 5057 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5058 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5059 } 5060 } 5061 return BinaryOp(Op); 5062 5063 case Instruction::ExtractValue: { 5064 auto *EVI = cast<ExtractValueInst>(Op); 5065 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5066 break; 5067 5068 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5069 if (!WO) 5070 break; 5071 5072 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5073 bool Signed = WO->isSigned(); 5074 // TODO: Should add nuw/nsw flags for mul as well. 5075 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5076 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5077 5078 // Now that we know that all uses of the arithmetic-result component of 5079 // CI are guarded by the overflow check, we can go ahead and pretend 5080 // that the arithmetic is non-overflowing. 5081 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5082 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5083 } 5084 5085 default: 5086 break; 5087 } 5088 5089 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5090 // semantics as a Sub, return a binary sub expression. 5091 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5092 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5093 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5094 5095 return None; 5096 } 5097 5098 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5099 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5100 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5101 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5102 /// follows one of the following patterns: 5103 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5104 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5105 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5106 /// we return the type of the truncation operation, and indicate whether the 5107 /// truncated type should be treated as signed/unsigned by setting 5108 /// \p Signed to true/false, respectively. 5109 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5110 bool &Signed, ScalarEvolution &SE) { 5111 // The case where Op == SymbolicPHI (that is, with no type conversions on 5112 // the way) is handled by the regular add recurrence creating logic and 5113 // would have already been triggered in createAddRecForPHI. Reaching it here 5114 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5115 // because one of the other operands of the SCEVAddExpr updating this PHI is 5116 // not invariant). 5117 // 5118 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5119 // this case predicates that allow us to prove that Op == SymbolicPHI will 5120 // be added. 5121 if (Op == SymbolicPHI) 5122 return nullptr; 5123 5124 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5125 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5126 if (SourceBits != NewBits) 5127 return nullptr; 5128 5129 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5130 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5131 if (!SExt && !ZExt) 5132 return nullptr; 5133 const SCEVTruncateExpr *Trunc = 5134 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5135 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5136 if (!Trunc) 5137 return nullptr; 5138 const SCEV *X = Trunc->getOperand(); 5139 if (X != SymbolicPHI) 5140 return nullptr; 5141 Signed = SExt != nullptr; 5142 return Trunc->getType(); 5143 } 5144 5145 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5146 if (!PN->getType()->isIntegerTy()) 5147 return nullptr; 5148 const Loop *L = LI.getLoopFor(PN->getParent()); 5149 if (!L || L->getHeader() != PN->getParent()) 5150 return nullptr; 5151 return L; 5152 } 5153 5154 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5155 // computation that updates the phi follows the following pattern: 5156 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5157 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5158 // If so, try to see if it can be rewritten as an AddRecExpr under some 5159 // Predicates. If successful, return them as a pair. Also cache the results 5160 // of the analysis. 5161 // 5162 // Example usage scenario: 5163 // Say the Rewriter is called for the following SCEV: 5164 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5165 // where: 5166 // %X = phi i64 (%Start, %BEValue) 5167 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5168 // and call this function with %SymbolicPHI = %X. 5169 // 5170 // The analysis will find that the value coming around the backedge has 5171 // the following SCEV: 5172 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5173 // Upon concluding that this matches the desired pattern, the function 5174 // will return the pair {NewAddRec, SmallPredsVec} where: 5175 // NewAddRec = {%Start,+,%Step} 5176 // SmallPredsVec = {P1, P2, P3} as follows: 5177 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5178 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5179 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5180 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5181 // under the predicates {P1,P2,P3}. 5182 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5183 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5184 // 5185 // TODO's: 5186 // 5187 // 1) Extend the Induction descriptor to also support inductions that involve 5188 // casts: When needed (namely, when we are called in the context of the 5189 // vectorizer induction analysis), a Set of cast instructions will be 5190 // populated by this method, and provided back to isInductionPHI. This is 5191 // needed to allow the vectorizer to properly record them to be ignored by 5192 // the cost model and to avoid vectorizing them (otherwise these casts, 5193 // which are redundant under the runtime overflow checks, will be 5194 // vectorized, which can be costly). 5195 // 5196 // 2) Support additional induction/PHISCEV patterns: We also want to support 5197 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5198 // after the induction update operation (the induction increment): 5199 // 5200 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5201 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5202 // 5203 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5204 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5205 // 5206 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5208 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5209 SmallVector<const SCEVPredicate *, 3> Predicates; 5210 5211 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5212 // return an AddRec expression under some predicate. 5213 5214 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5215 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5216 assert(L && "Expecting an integer loop header phi"); 5217 5218 // The loop may have multiple entrances or multiple exits; we can analyze 5219 // this phi as an addrec if it has a unique entry value and a unique 5220 // backedge value. 5221 Value *BEValueV = nullptr, *StartValueV = nullptr; 5222 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5223 Value *V = PN->getIncomingValue(i); 5224 if (L->contains(PN->getIncomingBlock(i))) { 5225 if (!BEValueV) { 5226 BEValueV = V; 5227 } else if (BEValueV != V) { 5228 BEValueV = nullptr; 5229 break; 5230 } 5231 } else if (!StartValueV) { 5232 StartValueV = V; 5233 } else if (StartValueV != V) { 5234 StartValueV = nullptr; 5235 break; 5236 } 5237 } 5238 if (!BEValueV || !StartValueV) 5239 return None; 5240 5241 const SCEV *BEValue = getSCEV(BEValueV); 5242 5243 // If the value coming around the backedge is an add with the symbolic 5244 // value we just inserted, possibly with casts that we can ignore under 5245 // an appropriate runtime guard, then we found a simple induction variable! 5246 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5247 if (!Add) 5248 return None; 5249 5250 // If there is a single occurrence of the symbolic value, possibly 5251 // casted, replace it with a recurrence. 5252 unsigned FoundIndex = Add->getNumOperands(); 5253 Type *TruncTy = nullptr; 5254 bool Signed; 5255 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5256 if ((TruncTy = 5257 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5258 if (FoundIndex == e) { 5259 FoundIndex = i; 5260 break; 5261 } 5262 5263 if (FoundIndex == Add->getNumOperands()) 5264 return None; 5265 5266 // Create an add with everything but the specified operand. 5267 SmallVector<const SCEV *, 8> Ops; 5268 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5269 if (i != FoundIndex) 5270 Ops.push_back(Add->getOperand(i)); 5271 const SCEV *Accum = getAddExpr(Ops); 5272 5273 // The runtime checks will not be valid if the step amount is 5274 // varying inside the loop. 5275 if (!isLoopInvariant(Accum, L)) 5276 return None; 5277 5278 // *** Part2: Create the predicates 5279 5280 // Analysis was successful: we have a phi-with-cast pattern for which we 5281 // can return an AddRec expression under the following predicates: 5282 // 5283 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5284 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5285 // P2: An Equal predicate that guarantees that 5286 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5287 // P3: An Equal predicate that guarantees that 5288 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5289 // 5290 // As we next prove, the above predicates guarantee that: 5291 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5292 // 5293 // 5294 // More formally, we want to prove that: 5295 // Expr(i+1) = Start + (i+1) * Accum 5296 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5297 // 5298 // Given that: 5299 // 1) Expr(0) = Start 5300 // 2) Expr(1) = Start + Accum 5301 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5302 // 3) Induction hypothesis (step i): 5303 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5304 // 5305 // Proof: 5306 // Expr(i+1) = 5307 // = Start + (i+1)*Accum 5308 // = (Start + i*Accum) + Accum 5309 // = Expr(i) + Accum 5310 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5311 // :: from step i 5312 // 5313 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5314 // 5315 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5316 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5317 // + Accum :: from P3 5318 // 5319 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5320 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5321 // 5322 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5323 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5324 // 5325 // By induction, the same applies to all iterations 1<=i<n: 5326 // 5327 5328 // Create a truncated addrec for which we will add a no overflow check (P1). 5329 const SCEV *StartVal = getSCEV(StartValueV); 5330 const SCEV *PHISCEV = 5331 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5332 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5333 5334 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5335 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5336 // will be constant. 5337 // 5338 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5339 // add P1. 5340 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5341 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5342 Signed ? SCEVWrapPredicate::IncrementNSSW 5343 : SCEVWrapPredicate::IncrementNUSW; 5344 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5345 Predicates.push_back(AddRecPred); 5346 } 5347 5348 // Create the Equal Predicates P2,P3: 5349 5350 // It is possible that the predicates P2 and/or P3 are computable at 5351 // compile time due to StartVal and/or Accum being constants. 5352 // If either one is, then we can check that now and escape if either P2 5353 // or P3 is false. 5354 5355 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5356 // for each of StartVal and Accum 5357 auto getExtendedExpr = [&](const SCEV *Expr, 5358 bool CreateSignExtend) -> const SCEV * { 5359 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5360 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5361 const SCEV *ExtendedExpr = 5362 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5363 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5364 return ExtendedExpr; 5365 }; 5366 5367 // Given: 5368 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5369 // = getExtendedExpr(Expr) 5370 // Determine whether the predicate P: Expr == ExtendedExpr 5371 // is known to be false at compile time 5372 auto PredIsKnownFalse = [&](const SCEV *Expr, 5373 const SCEV *ExtendedExpr) -> bool { 5374 return Expr != ExtendedExpr && 5375 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5376 }; 5377 5378 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5379 if (PredIsKnownFalse(StartVal, StartExtended)) { 5380 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5381 return None; 5382 } 5383 5384 // The Step is always Signed (because the overflow checks are either 5385 // NSSW or NUSW) 5386 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5387 if (PredIsKnownFalse(Accum, AccumExtended)) { 5388 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5389 return None; 5390 } 5391 5392 auto AppendPredicate = [&](const SCEV *Expr, 5393 const SCEV *ExtendedExpr) -> void { 5394 if (Expr != ExtendedExpr && 5395 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5396 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5397 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5398 Predicates.push_back(Pred); 5399 } 5400 }; 5401 5402 AppendPredicate(StartVal, StartExtended); 5403 AppendPredicate(Accum, AccumExtended); 5404 5405 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5406 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5407 // into NewAR if it will also add the runtime overflow checks specified in 5408 // Predicates. 5409 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5410 5411 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5412 std::make_pair(NewAR, Predicates); 5413 // Remember the result of the analysis for this SCEV at this locayyytion. 5414 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5415 return PredRewrite; 5416 } 5417 5418 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5419 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5420 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5421 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5422 if (!L) 5423 return None; 5424 5425 // Check to see if we already analyzed this PHI. 5426 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5427 if (I != PredicatedSCEVRewrites.end()) { 5428 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5429 I->second; 5430 // Analysis was done before and failed to create an AddRec: 5431 if (Rewrite.first == SymbolicPHI) 5432 return None; 5433 // Analysis was done before and succeeded to create an AddRec under 5434 // a predicate: 5435 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5436 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5437 return Rewrite; 5438 } 5439 5440 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5441 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5442 5443 // Record in the cache that the analysis failed 5444 if (!Rewrite) { 5445 SmallVector<const SCEVPredicate *, 3> Predicates; 5446 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5447 return None; 5448 } 5449 5450 return Rewrite; 5451 } 5452 5453 // FIXME: This utility is currently required because the Rewriter currently 5454 // does not rewrite this expression: 5455 // {0, +, (sext ix (trunc iy to ix) to iy)} 5456 // into {0, +, %step}, 5457 // even when the following Equal predicate exists: 5458 // "%step == (sext ix (trunc iy to ix) to iy)". 5459 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5460 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5461 if (AR1 == AR2) 5462 return true; 5463 5464 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5465 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5466 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5467 return false; 5468 return true; 5469 }; 5470 5471 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5472 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5473 return false; 5474 return true; 5475 } 5476 5477 /// A helper function for createAddRecFromPHI to handle simple cases. 5478 /// 5479 /// This function tries to find an AddRec expression for the simplest (yet most 5480 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5481 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5482 /// technique for finding the AddRec expression. 5483 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5484 Value *BEValueV, 5485 Value *StartValueV) { 5486 const Loop *L = LI.getLoopFor(PN->getParent()); 5487 assert(L && L->getHeader() == PN->getParent()); 5488 assert(BEValueV && StartValueV); 5489 5490 auto BO = MatchBinaryOp(BEValueV, DT); 5491 if (!BO) 5492 return nullptr; 5493 5494 if (BO->Opcode != Instruction::Add) 5495 return nullptr; 5496 5497 const SCEV *Accum = nullptr; 5498 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5499 Accum = getSCEV(BO->RHS); 5500 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5501 Accum = getSCEV(BO->LHS); 5502 5503 if (!Accum) 5504 return nullptr; 5505 5506 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5507 if (BO->IsNUW) 5508 Flags = setFlags(Flags, SCEV::FlagNUW); 5509 if (BO->IsNSW) 5510 Flags = setFlags(Flags, SCEV::FlagNSW); 5511 5512 const SCEV *StartVal = getSCEV(StartValueV); 5513 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5514 insertValueToMap(PN, PHISCEV); 5515 5516 // We can add Flags to the post-inc expression only if we 5517 // know that it is *undefined behavior* for BEValueV to 5518 // overflow. 5519 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5520 assert(isLoopInvariant(Accum, L) && 5521 "Accum is defined outside L, but is not invariant?"); 5522 if (isAddRecNeverPoison(BEInst, L)) 5523 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5524 } 5525 5526 return PHISCEV; 5527 } 5528 5529 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5530 const Loop *L = LI.getLoopFor(PN->getParent()); 5531 if (!L || L->getHeader() != PN->getParent()) 5532 return nullptr; 5533 5534 // The loop may have multiple entrances or multiple exits; we can analyze 5535 // this phi as an addrec if it has a unique entry value and a unique 5536 // backedge value. 5537 Value *BEValueV = nullptr, *StartValueV = nullptr; 5538 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5539 Value *V = PN->getIncomingValue(i); 5540 if (L->contains(PN->getIncomingBlock(i))) { 5541 if (!BEValueV) { 5542 BEValueV = V; 5543 } else if (BEValueV != V) { 5544 BEValueV = nullptr; 5545 break; 5546 } 5547 } else if (!StartValueV) { 5548 StartValueV = V; 5549 } else if (StartValueV != V) { 5550 StartValueV = nullptr; 5551 break; 5552 } 5553 } 5554 if (!BEValueV || !StartValueV) 5555 return nullptr; 5556 5557 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5558 "PHI node already processed?"); 5559 5560 // First, try to find AddRec expression without creating a fictituos symbolic 5561 // value for PN. 5562 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5563 return S; 5564 5565 // Handle PHI node value symbolically. 5566 const SCEV *SymbolicName = getUnknown(PN); 5567 insertValueToMap(PN, SymbolicName); 5568 5569 // Using this symbolic name for the PHI, analyze the value coming around 5570 // the back-edge. 5571 const SCEV *BEValue = getSCEV(BEValueV); 5572 5573 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5574 // has a special value for the first iteration of the loop. 5575 5576 // If the value coming around the backedge is an add with the symbolic 5577 // value we just inserted, then we found a simple induction variable! 5578 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5579 // If there is a single occurrence of the symbolic value, replace it 5580 // with a recurrence. 5581 unsigned FoundIndex = Add->getNumOperands(); 5582 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5583 if (Add->getOperand(i) == SymbolicName) 5584 if (FoundIndex == e) { 5585 FoundIndex = i; 5586 break; 5587 } 5588 5589 if (FoundIndex != Add->getNumOperands()) { 5590 // Create an add with everything but the specified operand. 5591 SmallVector<const SCEV *, 8> Ops; 5592 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5593 if (i != FoundIndex) 5594 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5595 L, *this)); 5596 const SCEV *Accum = getAddExpr(Ops); 5597 5598 // This is not a valid addrec if the step amount is varying each 5599 // loop iteration, but is not itself an addrec in this loop. 5600 if (isLoopInvariant(Accum, L) || 5601 (isa<SCEVAddRecExpr>(Accum) && 5602 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5603 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5604 5605 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5606 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5607 if (BO->IsNUW) 5608 Flags = setFlags(Flags, SCEV::FlagNUW); 5609 if (BO->IsNSW) 5610 Flags = setFlags(Flags, SCEV::FlagNSW); 5611 } 5612 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5613 // If the increment is an inbounds GEP, then we know the address 5614 // space cannot be wrapped around. We cannot make any guarantee 5615 // about signed or unsigned overflow because pointers are 5616 // unsigned but we may have a negative index from the base 5617 // pointer. We can guarantee that no unsigned wrap occurs if the 5618 // indices form a positive value. 5619 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5620 Flags = setFlags(Flags, SCEV::FlagNW); 5621 5622 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5623 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5624 Flags = setFlags(Flags, SCEV::FlagNUW); 5625 } 5626 5627 // We cannot transfer nuw and nsw flags from subtraction 5628 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5629 // for instance. 5630 } 5631 5632 const SCEV *StartVal = getSCEV(StartValueV); 5633 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5634 5635 // Okay, for the entire analysis of this edge we assumed the PHI 5636 // to be symbolic. We now need to go back and purge all of the 5637 // entries for the scalars that use the symbolic expression. 5638 forgetMemoizedResults(SymbolicName); 5639 insertValueToMap(PN, PHISCEV); 5640 5641 // We can add Flags to the post-inc expression only if we 5642 // know that it is *undefined behavior* for BEValueV to 5643 // overflow. 5644 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5645 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5646 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5647 5648 return PHISCEV; 5649 } 5650 } 5651 } else { 5652 // Otherwise, this could be a loop like this: 5653 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5654 // In this case, j = {1,+,1} and BEValue is j. 5655 // Because the other in-value of i (0) fits the evolution of BEValue 5656 // i really is an addrec evolution. 5657 // 5658 // We can generalize this saying that i is the shifted value of BEValue 5659 // by one iteration: 5660 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5661 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5662 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5663 if (Shifted != getCouldNotCompute() && 5664 Start != getCouldNotCompute()) { 5665 const SCEV *StartVal = getSCEV(StartValueV); 5666 if (Start == StartVal) { 5667 // Okay, for the entire analysis of this edge we assumed the PHI 5668 // to be symbolic. We now need to go back and purge all of the 5669 // entries for the scalars that use the symbolic expression. 5670 forgetMemoizedResults(SymbolicName); 5671 insertValueToMap(PN, Shifted); 5672 return Shifted; 5673 } 5674 } 5675 } 5676 5677 // Remove the temporary PHI node SCEV that has been inserted while intending 5678 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5679 // as it will prevent later (possibly simpler) SCEV expressions to be added 5680 // to the ValueExprMap. 5681 eraseValueFromMap(PN); 5682 5683 return nullptr; 5684 } 5685 5686 // Checks if the SCEV S is available at BB. S is considered available at BB 5687 // if S can be materialized at BB without introducing a fault. 5688 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5689 BasicBlock *BB) { 5690 struct CheckAvailable { 5691 bool TraversalDone = false; 5692 bool Available = true; 5693 5694 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5695 BasicBlock *BB = nullptr; 5696 DominatorTree &DT; 5697 5698 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5699 : L(L), BB(BB), DT(DT) {} 5700 5701 bool setUnavailable() { 5702 TraversalDone = true; 5703 Available = false; 5704 return false; 5705 } 5706 5707 bool follow(const SCEV *S) { 5708 switch (S->getSCEVType()) { 5709 case scConstant: 5710 case scPtrToInt: 5711 case scTruncate: 5712 case scZeroExtend: 5713 case scSignExtend: 5714 case scAddExpr: 5715 case scMulExpr: 5716 case scUMaxExpr: 5717 case scSMaxExpr: 5718 case scUMinExpr: 5719 case scSMinExpr: 5720 case scSequentialUMinExpr: 5721 // These expressions are available if their operand(s) is/are. 5722 return true; 5723 5724 case scAddRecExpr: { 5725 // We allow add recurrences that are on the loop BB is in, or some 5726 // outer loop. This guarantees availability because the value of the 5727 // add recurrence at BB is simply the "current" value of the induction 5728 // variable. We can relax this in the future; for instance an add 5729 // recurrence on a sibling dominating loop is also available at BB. 5730 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5731 if (L && (ARLoop == L || ARLoop->contains(L))) 5732 return true; 5733 5734 return setUnavailable(); 5735 } 5736 5737 case scUnknown: { 5738 // For SCEVUnknown, we check for simple dominance. 5739 const auto *SU = cast<SCEVUnknown>(S); 5740 Value *V = SU->getValue(); 5741 5742 if (isa<Argument>(V)) 5743 return false; 5744 5745 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5746 return false; 5747 5748 return setUnavailable(); 5749 } 5750 5751 case scUDivExpr: 5752 case scCouldNotCompute: 5753 // We do not try to smart about these at all. 5754 return setUnavailable(); 5755 } 5756 llvm_unreachable("Unknown SCEV kind!"); 5757 } 5758 5759 bool isDone() { return TraversalDone; } 5760 }; 5761 5762 CheckAvailable CA(L, BB, DT); 5763 SCEVTraversal<CheckAvailable> ST(CA); 5764 5765 ST.visitAll(S); 5766 return CA.Available; 5767 } 5768 5769 // Try to match a control flow sequence that branches out at BI and merges back 5770 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5771 // match. 5772 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5773 Value *&C, Value *&LHS, Value *&RHS) { 5774 C = BI->getCondition(); 5775 5776 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5777 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5778 5779 if (!LeftEdge.isSingleEdge()) 5780 return false; 5781 5782 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5783 5784 Use &LeftUse = Merge->getOperandUse(0); 5785 Use &RightUse = Merge->getOperandUse(1); 5786 5787 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5788 LHS = LeftUse; 5789 RHS = RightUse; 5790 return true; 5791 } 5792 5793 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5794 LHS = RightUse; 5795 RHS = LeftUse; 5796 return true; 5797 } 5798 5799 return false; 5800 } 5801 5802 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5803 auto IsReachable = 5804 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5805 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5806 const Loop *L = LI.getLoopFor(PN->getParent()); 5807 5808 // We don't want to break LCSSA, even in a SCEV expression tree. 5809 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5810 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5811 return nullptr; 5812 5813 // Try to match 5814 // 5815 // br %cond, label %left, label %right 5816 // left: 5817 // br label %merge 5818 // right: 5819 // br label %merge 5820 // merge: 5821 // V = phi [ %x, %left ], [ %y, %right ] 5822 // 5823 // as "select %cond, %x, %y" 5824 5825 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5826 assert(IDom && "At least the entry block should dominate PN"); 5827 5828 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5829 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5830 5831 if (BI && BI->isConditional() && 5832 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5833 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5834 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5835 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5836 } 5837 5838 return nullptr; 5839 } 5840 5841 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5842 if (const SCEV *S = createAddRecFromPHI(PN)) 5843 return S; 5844 5845 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5846 return S; 5847 5848 // If the PHI has a single incoming value, follow that value, unless the 5849 // PHI's incoming blocks are in a different loop, in which case doing so 5850 // risks breaking LCSSA form. Instcombine would normally zap these, but 5851 // it doesn't have DominatorTree information, so it may miss cases. 5852 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5853 if (LI.replacementPreservesLCSSAForm(PN, V)) 5854 return getSCEV(V); 5855 5856 // If it's not a loop phi, we can't handle it yet. 5857 return getUnknown(PN); 5858 } 5859 5860 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5861 SCEVTypes RootKind) { 5862 struct FindClosure { 5863 const SCEV *OperandToFind; 5864 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5865 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5866 5867 bool Found = false; 5868 5869 bool canRecurseInto(SCEVTypes Kind) const { 5870 // We can only recurse into the SCEV expression of the same effective type 5871 // as the type of our root SCEV expression, and into zero-extensions. 5872 return RootKind == Kind || NonSequentialRootKind == Kind || 5873 scZeroExtend == Kind; 5874 }; 5875 5876 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5877 : OperandToFind(OperandToFind), RootKind(RootKind), 5878 NonSequentialRootKind( 5879 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5880 RootKind)) {} 5881 5882 bool follow(const SCEV *S) { 5883 Found = S == OperandToFind; 5884 5885 return !isDone() && canRecurseInto(S->getSCEVType()); 5886 } 5887 5888 bool isDone() const { return Found; } 5889 }; 5890 5891 FindClosure FC(OperandToFind, RootKind); 5892 visitAll(Root, FC); 5893 return FC.Found; 5894 } 5895 5896 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5897 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5898 // Try to match some simple smax or umax patterns. 5899 auto *ICI = Cond; 5900 5901 Value *LHS = ICI->getOperand(0); 5902 Value *RHS = ICI->getOperand(1); 5903 5904 switch (ICI->getPredicate()) { 5905 case ICmpInst::ICMP_SLT: 5906 case ICmpInst::ICMP_SLE: 5907 case ICmpInst::ICMP_ULT: 5908 case ICmpInst::ICMP_ULE: 5909 std::swap(LHS, RHS); 5910 LLVM_FALLTHROUGH; 5911 case ICmpInst::ICMP_SGT: 5912 case ICmpInst::ICMP_SGE: 5913 case ICmpInst::ICMP_UGT: 5914 case ICmpInst::ICMP_UGE: 5915 // a > b ? a+x : b+x -> max(a, b)+x 5916 // a > b ? b+x : a+x -> min(a, b)+x 5917 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5918 bool Signed = ICI->isSigned(); 5919 const SCEV *LA = getSCEV(TrueVal); 5920 const SCEV *RA = getSCEV(FalseVal); 5921 const SCEV *LS = getSCEV(LHS); 5922 const SCEV *RS = getSCEV(RHS); 5923 if (LA->getType()->isPointerTy()) { 5924 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5925 // Need to make sure we can't produce weird expressions involving 5926 // negated pointers. 5927 if (LA == LS && RA == RS) 5928 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5929 if (LA == RS && RA == LS) 5930 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5931 } 5932 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5933 if (Op->getType()->isPointerTy()) { 5934 Op = getLosslessPtrToIntExpr(Op); 5935 if (isa<SCEVCouldNotCompute>(Op)) 5936 return Op; 5937 } 5938 if (Signed) 5939 Op = getNoopOrSignExtend(Op, I->getType()); 5940 else 5941 Op = getNoopOrZeroExtend(Op, I->getType()); 5942 return Op; 5943 }; 5944 LS = CoerceOperand(LS); 5945 RS = CoerceOperand(RS); 5946 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5947 break; 5948 const SCEV *LDiff = getMinusSCEV(LA, LS); 5949 const SCEV *RDiff = getMinusSCEV(RA, RS); 5950 if (LDiff == RDiff) 5951 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5952 LDiff); 5953 LDiff = getMinusSCEV(LA, RS); 5954 RDiff = getMinusSCEV(RA, LS); 5955 if (LDiff == RDiff) 5956 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5957 LDiff); 5958 } 5959 break; 5960 case ICmpInst::ICMP_NE: 5961 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 5962 std::swap(TrueVal, FalseVal); 5963 LLVM_FALLTHROUGH; 5964 case ICmpInst::ICMP_EQ: 5965 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 5966 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5967 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5968 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5969 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 5970 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 5971 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 5972 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 5973 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 5974 return getAddExpr(getUMaxExpr(X, C), Y); 5975 } 5976 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 5977 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 5978 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 5979 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 5980 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 5981 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 5982 const SCEV *X = getSCEV(LHS); 5983 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 5984 X = ZExt->getOperand(); 5985 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 5986 const SCEV *FalseValExpr = getSCEV(FalseVal); 5987 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 5988 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 5989 /*Sequential=*/true); 5990 } 5991 } 5992 break; 5993 default: 5994 break; 5995 } 5996 5997 return getUnknown(I); 5998 } 5999 6000 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6001 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6002 // For now, only deal with i1-typed `select`s. 6003 if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) || 6004 !TrueVal->getType()->isIntegerTy(1) || 6005 !FalseVal->getType()->isIntegerTy(1)) 6006 return getUnknown(V); 6007 6008 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6009 // --> C + (umin_seq cond, x - C) 6010 // 6011 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6012 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6013 // --> C + (umin_seq ~cond, x - C) 6014 if (isa<ConstantInt>(TrueVal) || isa<ConstantInt>(FalseVal)) { 6015 const SCEV *CondExpr = getSCEV(Cond); 6016 const SCEV *TrueExpr = getSCEV(TrueVal); 6017 const SCEV *FalseExpr = getSCEV(FalseVal); 6018 const SCEV *X, *C; 6019 if (isa<ConstantInt>(TrueVal)) { 6020 CondExpr = getNotSCEV(CondExpr); 6021 X = FalseExpr; 6022 C = TrueExpr; 6023 } else { 6024 X = TrueExpr; 6025 C = FalseExpr; 6026 } 6027 return getAddExpr( 6028 C, getUMinExpr(CondExpr, getMinusSCEV(X, C), /*Sequential=*/true)); 6029 } 6030 6031 return getUnknown(V); 6032 } 6033 6034 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6035 Value *TrueVal, 6036 Value *FalseVal) { 6037 // Handle "constant" branch or select. This can occur for instance when a 6038 // loop pass transforms an inner loop and moves on to process the outer loop. 6039 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6040 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6041 6042 if (auto *I = dyn_cast<Instruction>(V)) { 6043 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6044 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6045 I, ICI, TrueVal, FalseVal); 6046 if (!isa<SCEVUnknown>(S)) 6047 return S; 6048 } 6049 } 6050 6051 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6052 } 6053 6054 /// Expand GEP instructions into add and multiply operations. This allows them 6055 /// to be analyzed by regular SCEV code. 6056 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6057 // Don't attempt to analyze GEPs over unsized objects. 6058 if (!GEP->getSourceElementType()->isSized()) 6059 return getUnknown(GEP); 6060 6061 SmallVector<const SCEV *, 4> IndexExprs; 6062 for (Value *Index : GEP->indices()) 6063 IndexExprs.push_back(getSCEV(Index)); 6064 return getGEPExpr(GEP, IndexExprs); 6065 } 6066 6067 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6068 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6069 return C->getAPInt().countTrailingZeros(); 6070 6071 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6072 return GetMinTrailingZeros(I->getOperand()); 6073 6074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6075 return std::min(GetMinTrailingZeros(T->getOperand()), 6076 (uint32_t)getTypeSizeInBits(T->getType())); 6077 6078 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6079 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6080 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6081 ? getTypeSizeInBits(E->getType()) 6082 : OpRes; 6083 } 6084 6085 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6086 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6087 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6088 ? getTypeSizeInBits(E->getType()) 6089 : OpRes; 6090 } 6091 6092 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6093 // The result is the min of all operands results. 6094 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6095 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6096 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6097 return MinOpRes; 6098 } 6099 6100 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6101 // The result is the sum of all operands results. 6102 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6103 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6104 for (unsigned i = 1, e = M->getNumOperands(); 6105 SumOpRes != BitWidth && i != e; ++i) 6106 SumOpRes = 6107 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6108 return SumOpRes; 6109 } 6110 6111 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6112 // The result is the min of all operands results. 6113 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6114 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6115 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6116 return MinOpRes; 6117 } 6118 6119 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6120 // The result is the min of all operands results. 6121 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6122 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6123 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6124 return MinOpRes; 6125 } 6126 6127 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6128 // The result is the min of all operands results. 6129 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6130 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6131 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6132 return MinOpRes; 6133 } 6134 6135 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6136 // For a SCEVUnknown, ask ValueTracking. 6137 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6138 return Known.countMinTrailingZeros(); 6139 } 6140 6141 // SCEVUDivExpr 6142 return 0; 6143 } 6144 6145 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6146 auto I = MinTrailingZerosCache.find(S); 6147 if (I != MinTrailingZerosCache.end()) 6148 return I->second; 6149 6150 uint32_t Result = GetMinTrailingZerosImpl(S); 6151 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6152 assert(InsertPair.second && "Should insert a new key"); 6153 return InsertPair.first->second; 6154 } 6155 6156 /// Helper method to assign a range to V from metadata present in the IR. 6157 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6158 if (Instruction *I = dyn_cast<Instruction>(V)) 6159 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6160 return getConstantRangeFromMetadata(*MD); 6161 6162 return None; 6163 } 6164 6165 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6166 SCEV::NoWrapFlags Flags) { 6167 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6168 AddRec->setNoWrapFlags(Flags); 6169 UnsignedRanges.erase(AddRec); 6170 SignedRanges.erase(AddRec); 6171 } 6172 } 6173 6174 ConstantRange ScalarEvolution:: 6175 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6176 const DataLayout &DL = getDataLayout(); 6177 6178 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6179 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6180 6181 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6182 // use information about the trip count to improve our available range. Note 6183 // that the trip count independent cases are already handled by known bits. 6184 // WARNING: The definition of recurrence used here is subtly different than 6185 // the one used by AddRec (and thus most of this file). Step is allowed to 6186 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6187 // and other addrecs in the same loop (for non-affine addrecs). The code 6188 // below intentionally handles the case where step is not loop invariant. 6189 auto *P = dyn_cast<PHINode>(U->getValue()); 6190 if (!P) 6191 return FullSet; 6192 6193 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6194 // even the values that are not available in these blocks may come from them, 6195 // and this leads to false-positive recurrence test. 6196 for (auto *Pred : predecessors(P->getParent())) 6197 if (!DT.isReachableFromEntry(Pred)) 6198 return FullSet; 6199 6200 BinaryOperator *BO; 6201 Value *Start, *Step; 6202 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6203 return FullSet; 6204 6205 // If we found a recurrence in reachable code, we must be in a loop. Note 6206 // that BO might be in some subloop of L, and that's completely okay. 6207 auto *L = LI.getLoopFor(P->getParent()); 6208 assert(L && L->getHeader() == P->getParent()); 6209 if (!L->contains(BO->getParent())) 6210 // NOTE: This bailout should be an assert instead. However, asserting 6211 // the condition here exposes a case where LoopFusion is querying SCEV 6212 // with malformed loop information during the midst of the transform. 6213 // There doesn't appear to be an obvious fix, so for the moment bailout 6214 // until the caller issue can be fixed. PR49566 tracks the bug. 6215 return FullSet; 6216 6217 // TODO: Extend to other opcodes such as mul, and div 6218 switch (BO->getOpcode()) { 6219 default: 6220 return FullSet; 6221 case Instruction::AShr: 6222 case Instruction::LShr: 6223 case Instruction::Shl: 6224 break; 6225 }; 6226 6227 if (BO->getOperand(0) != P) 6228 // TODO: Handle the power function forms some day. 6229 return FullSet; 6230 6231 unsigned TC = getSmallConstantMaxTripCount(L); 6232 if (!TC || TC >= BitWidth) 6233 return FullSet; 6234 6235 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6236 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6237 assert(KnownStart.getBitWidth() == BitWidth && 6238 KnownStep.getBitWidth() == BitWidth); 6239 6240 // Compute total shift amount, being careful of overflow and bitwidths. 6241 auto MaxShiftAmt = KnownStep.getMaxValue(); 6242 APInt TCAP(BitWidth, TC-1); 6243 bool Overflow = false; 6244 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6245 if (Overflow) 6246 return FullSet; 6247 6248 switch (BO->getOpcode()) { 6249 default: 6250 llvm_unreachable("filtered out above"); 6251 case Instruction::AShr: { 6252 // For each ashr, three cases: 6253 // shift = 0 => unchanged value 6254 // saturation => 0 or -1 6255 // other => a value closer to zero (of the same sign) 6256 // Thus, the end value is closer to zero than the start. 6257 auto KnownEnd = KnownBits::ashr(KnownStart, 6258 KnownBits::makeConstant(TotalShift)); 6259 if (KnownStart.isNonNegative()) 6260 // Analogous to lshr (simply not yet canonicalized) 6261 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6262 KnownStart.getMaxValue() + 1); 6263 if (KnownStart.isNegative()) 6264 // End >=u Start && End <=s Start 6265 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6266 KnownEnd.getMaxValue() + 1); 6267 break; 6268 } 6269 case Instruction::LShr: { 6270 // For each lshr, three cases: 6271 // shift = 0 => unchanged value 6272 // saturation => 0 6273 // other => a smaller positive number 6274 // Thus, the low end of the unsigned range is the last value produced. 6275 auto KnownEnd = KnownBits::lshr(KnownStart, 6276 KnownBits::makeConstant(TotalShift)); 6277 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6278 KnownStart.getMaxValue() + 1); 6279 } 6280 case Instruction::Shl: { 6281 // Iff no bits are shifted out, value increases on every shift. 6282 auto KnownEnd = KnownBits::shl(KnownStart, 6283 KnownBits::makeConstant(TotalShift)); 6284 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6285 return ConstantRange(KnownStart.getMinValue(), 6286 KnownEnd.getMaxValue() + 1); 6287 break; 6288 } 6289 }; 6290 return FullSet; 6291 } 6292 6293 /// Determine the range for a particular SCEV. If SignHint is 6294 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6295 /// with a "cleaner" unsigned (resp. signed) representation. 6296 const ConstantRange & 6297 ScalarEvolution::getRangeRef(const SCEV *S, 6298 ScalarEvolution::RangeSignHint SignHint) { 6299 DenseMap<const SCEV *, ConstantRange> &Cache = 6300 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6301 : SignedRanges; 6302 ConstantRange::PreferredRangeType RangeType = 6303 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6304 ? ConstantRange::Unsigned : ConstantRange::Signed; 6305 6306 // See if we've computed this range already. 6307 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6308 if (I != Cache.end()) 6309 return I->second; 6310 6311 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6312 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6313 6314 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6315 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6316 using OBO = OverflowingBinaryOperator; 6317 6318 // If the value has known zeros, the maximum value will have those known zeros 6319 // as well. 6320 uint32_t TZ = GetMinTrailingZeros(S); 6321 if (TZ != 0) { 6322 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6323 ConservativeResult = 6324 ConstantRange(APInt::getMinValue(BitWidth), 6325 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6326 else 6327 ConservativeResult = ConstantRange( 6328 APInt::getSignedMinValue(BitWidth), 6329 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6330 } 6331 6332 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6333 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6334 unsigned WrapType = OBO::AnyWrap; 6335 if (Add->hasNoSignedWrap()) 6336 WrapType |= OBO::NoSignedWrap; 6337 if (Add->hasNoUnsignedWrap()) 6338 WrapType |= OBO::NoUnsignedWrap; 6339 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6340 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6341 WrapType, RangeType); 6342 return setRange(Add, SignHint, 6343 ConservativeResult.intersectWith(X, RangeType)); 6344 } 6345 6346 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6347 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6348 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6349 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6350 return setRange(Mul, SignHint, 6351 ConservativeResult.intersectWith(X, RangeType)); 6352 } 6353 6354 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6355 Intrinsic::ID ID; 6356 switch (S->getSCEVType()) { 6357 case scUMaxExpr: 6358 ID = Intrinsic::umax; 6359 break; 6360 case scSMaxExpr: 6361 ID = Intrinsic::smax; 6362 break; 6363 case scUMinExpr: 6364 case scSequentialUMinExpr: 6365 ID = Intrinsic::umin; 6366 break; 6367 case scSMinExpr: 6368 ID = Intrinsic::smin; 6369 break; 6370 default: 6371 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6372 } 6373 6374 const auto *NAry = cast<SCEVNAryExpr>(S); 6375 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6376 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6377 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6378 return setRange(S, SignHint, 6379 ConservativeResult.intersectWith(X, RangeType)); 6380 } 6381 6382 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6383 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6384 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6385 return setRange(UDiv, SignHint, 6386 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6387 } 6388 6389 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6390 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6391 return setRange(ZExt, SignHint, 6392 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6393 RangeType)); 6394 } 6395 6396 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6397 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6398 return setRange(SExt, SignHint, 6399 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6400 RangeType)); 6401 } 6402 6403 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6404 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6405 return setRange(PtrToInt, SignHint, X); 6406 } 6407 6408 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6409 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6410 return setRange(Trunc, SignHint, 6411 ConservativeResult.intersectWith(X.truncate(BitWidth), 6412 RangeType)); 6413 } 6414 6415 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6416 // If there's no unsigned wrap, the value will never be less than its 6417 // initial value. 6418 if (AddRec->hasNoUnsignedWrap()) { 6419 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6420 if (!UnsignedMinValue.isZero()) 6421 ConservativeResult = ConservativeResult.intersectWith( 6422 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6423 } 6424 6425 // If there's no signed wrap, and all the operands except initial value have 6426 // the same sign or zero, the value won't ever be: 6427 // 1: smaller than initial value if operands are non negative, 6428 // 2: bigger than initial value if operands are non positive. 6429 // For both cases, value can not cross signed min/max boundary. 6430 if (AddRec->hasNoSignedWrap()) { 6431 bool AllNonNeg = true; 6432 bool AllNonPos = true; 6433 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6434 if (!isKnownNonNegative(AddRec->getOperand(i))) 6435 AllNonNeg = false; 6436 if (!isKnownNonPositive(AddRec->getOperand(i))) 6437 AllNonPos = false; 6438 } 6439 if (AllNonNeg) 6440 ConservativeResult = ConservativeResult.intersectWith( 6441 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6442 APInt::getSignedMinValue(BitWidth)), 6443 RangeType); 6444 else if (AllNonPos) 6445 ConservativeResult = ConservativeResult.intersectWith( 6446 ConstantRange::getNonEmpty( 6447 APInt::getSignedMinValue(BitWidth), 6448 getSignedRangeMax(AddRec->getStart()) + 1), 6449 RangeType); 6450 } 6451 6452 // TODO: non-affine addrec 6453 if (AddRec->isAffine()) { 6454 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6455 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6456 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6457 auto RangeFromAffine = getRangeForAffineAR( 6458 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6459 BitWidth); 6460 ConservativeResult = 6461 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6462 6463 auto RangeFromFactoring = getRangeViaFactoring( 6464 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6465 BitWidth); 6466 ConservativeResult = 6467 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6468 } 6469 6470 // Now try symbolic BE count and more powerful methods. 6471 if (UseExpensiveRangeSharpening) { 6472 const SCEV *SymbolicMaxBECount = 6473 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6474 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6475 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6476 AddRec->hasNoSelfWrap()) { 6477 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6478 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6479 ConservativeResult = 6480 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6481 } 6482 } 6483 } 6484 6485 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6486 } 6487 6488 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6489 6490 // Check if the IR explicitly contains !range metadata. 6491 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6492 if (MDRange.hasValue()) 6493 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6494 RangeType); 6495 6496 // Use facts about recurrences in the underlying IR. Note that add 6497 // recurrences are AddRecExprs and thus don't hit this path. This 6498 // primarily handles shift recurrences. 6499 auto CR = getRangeForUnknownRecurrence(U); 6500 ConservativeResult = ConservativeResult.intersectWith(CR); 6501 6502 // See if ValueTracking can give us a useful range. 6503 const DataLayout &DL = getDataLayout(); 6504 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6505 if (Known.getBitWidth() != BitWidth) 6506 Known = Known.zextOrTrunc(BitWidth); 6507 6508 // ValueTracking may be able to compute a tighter result for the number of 6509 // sign bits than for the value of those sign bits. 6510 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6511 if (U->getType()->isPointerTy()) { 6512 // If the pointer size is larger than the index size type, this can cause 6513 // NS to be larger than BitWidth. So compensate for this. 6514 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6515 int ptrIdxDiff = ptrSize - BitWidth; 6516 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6517 NS -= ptrIdxDiff; 6518 } 6519 6520 if (NS > 1) { 6521 // If we know any of the sign bits, we know all of the sign bits. 6522 if (!Known.Zero.getHiBits(NS).isZero()) 6523 Known.Zero.setHighBits(NS); 6524 if (!Known.One.getHiBits(NS).isZero()) 6525 Known.One.setHighBits(NS); 6526 } 6527 6528 if (Known.getMinValue() != Known.getMaxValue() + 1) 6529 ConservativeResult = ConservativeResult.intersectWith( 6530 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6531 RangeType); 6532 if (NS > 1) 6533 ConservativeResult = ConservativeResult.intersectWith( 6534 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6535 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6536 RangeType); 6537 6538 // A range of Phi is a subset of union of all ranges of its input. 6539 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6540 // Make sure that we do not run over cycled Phis. 6541 if (PendingPhiRanges.insert(Phi).second) { 6542 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6543 for (auto &Op : Phi->operands()) { 6544 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6545 RangeFromOps = RangeFromOps.unionWith(OpRange); 6546 // No point to continue if we already have a full set. 6547 if (RangeFromOps.isFullSet()) 6548 break; 6549 } 6550 ConservativeResult = 6551 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6552 bool Erased = PendingPhiRanges.erase(Phi); 6553 assert(Erased && "Failed to erase Phi properly?"); 6554 (void) Erased; 6555 } 6556 } 6557 6558 return setRange(U, SignHint, std::move(ConservativeResult)); 6559 } 6560 6561 return setRange(S, SignHint, std::move(ConservativeResult)); 6562 } 6563 6564 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6565 // values that the expression can take. Initially, the expression has a value 6566 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6567 // argument defines if we treat Step as signed or unsigned. 6568 static ConstantRange getRangeForAffineARHelper(APInt Step, 6569 const ConstantRange &StartRange, 6570 const APInt &MaxBECount, 6571 unsigned BitWidth, bool Signed) { 6572 // If either Step or MaxBECount is 0, then the expression won't change, and we 6573 // just need to return the initial range. 6574 if (Step == 0 || MaxBECount == 0) 6575 return StartRange; 6576 6577 // If we don't know anything about the initial value (i.e. StartRange is 6578 // FullRange), then we don't know anything about the final range either. 6579 // Return FullRange. 6580 if (StartRange.isFullSet()) 6581 return ConstantRange::getFull(BitWidth); 6582 6583 // If Step is signed and negative, then we use its absolute value, but we also 6584 // note that we're moving in the opposite direction. 6585 bool Descending = Signed && Step.isNegative(); 6586 6587 if (Signed) 6588 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6589 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6590 // This equations hold true due to the well-defined wrap-around behavior of 6591 // APInt. 6592 Step = Step.abs(); 6593 6594 // Check if Offset is more than full span of BitWidth. If it is, the 6595 // expression is guaranteed to overflow. 6596 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6597 return ConstantRange::getFull(BitWidth); 6598 6599 // Offset is by how much the expression can change. Checks above guarantee no 6600 // overflow here. 6601 APInt Offset = Step * MaxBECount; 6602 6603 // Minimum value of the final range will match the minimal value of StartRange 6604 // if the expression is increasing and will be decreased by Offset otherwise. 6605 // Maximum value of the final range will match the maximal value of StartRange 6606 // if the expression is decreasing and will be increased by Offset otherwise. 6607 APInt StartLower = StartRange.getLower(); 6608 APInt StartUpper = StartRange.getUpper() - 1; 6609 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6610 : (StartUpper + std::move(Offset)); 6611 6612 // It's possible that the new minimum/maximum value will fall into the initial 6613 // range (due to wrap around). This means that the expression can take any 6614 // value in this bitwidth, and we have to return full range. 6615 if (StartRange.contains(MovedBoundary)) 6616 return ConstantRange::getFull(BitWidth); 6617 6618 APInt NewLower = 6619 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6620 APInt NewUpper = 6621 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6622 NewUpper += 1; 6623 6624 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6625 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6626 } 6627 6628 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6629 const SCEV *Step, 6630 const SCEV *MaxBECount, 6631 unsigned BitWidth) { 6632 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6633 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6634 "Precondition!"); 6635 6636 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6637 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6638 6639 // First, consider step signed. 6640 ConstantRange StartSRange = getSignedRange(Start); 6641 ConstantRange StepSRange = getSignedRange(Step); 6642 6643 // If Step can be both positive and negative, we need to find ranges for the 6644 // maximum absolute step values in both directions and union them. 6645 ConstantRange SR = 6646 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6647 MaxBECountValue, BitWidth, /* Signed = */ true); 6648 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6649 StartSRange, MaxBECountValue, 6650 BitWidth, /* Signed = */ true)); 6651 6652 // Next, consider step unsigned. 6653 ConstantRange UR = getRangeForAffineARHelper( 6654 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6655 MaxBECountValue, BitWidth, /* Signed = */ false); 6656 6657 // Finally, intersect signed and unsigned ranges. 6658 return SR.intersectWith(UR, ConstantRange::Smallest); 6659 } 6660 6661 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6662 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6663 ScalarEvolution::RangeSignHint SignHint) { 6664 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6665 assert(AddRec->hasNoSelfWrap() && 6666 "This only works for non-self-wrapping AddRecs!"); 6667 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6668 const SCEV *Step = AddRec->getStepRecurrence(*this); 6669 // Only deal with constant step to save compile time. 6670 if (!isa<SCEVConstant>(Step)) 6671 return ConstantRange::getFull(BitWidth); 6672 // Let's make sure that we can prove that we do not self-wrap during 6673 // MaxBECount iterations. We need this because MaxBECount is a maximum 6674 // iteration count estimate, and we might infer nw from some exit for which we 6675 // do not know max exit count (or any other side reasoning). 6676 // TODO: Turn into assert at some point. 6677 if (getTypeSizeInBits(MaxBECount->getType()) > 6678 getTypeSizeInBits(AddRec->getType())) 6679 return ConstantRange::getFull(BitWidth); 6680 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6681 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6682 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6683 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6684 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6685 MaxItersWithoutWrap)) 6686 return ConstantRange::getFull(BitWidth); 6687 6688 ICmpInst::Predicate LEPred = 6689 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6690 ICmpInst::Predicate GEPred = 6691 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6692 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6693 6694 // We know that there is no self-wrap. Let's take Start and End values and 6695 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6696 // the iteration. They either lie inside the range [Min(Start, End), 6697 // Max(Start, End)] or outside it: 6698 // 6699 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6700 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6701 // 6702 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6703 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6704 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6705 // Start <= End and step is positive, or Start >= End and step is negative. 6706 const SCEV *Start = AddRec->getStart(); 6707 ConstantRange StartRange = getRangeRef(Start, SignHint); 6708 ConstantRange EndRange = getRangeRef(End, SignHint); 6709 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6710 // If they already cover full iteration space, we will know nothing useful 6711 // even if we prove what we want to prove. 6712 if (RangeBetween.isFullSet()) 6713 return RangeBetween; 6714 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6715 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6716 : RangeBetween.isWrappedSet(); 6717 if (IsWrappedSet) 6718 return ConstantRange::getFull(BitWidth); 6719 6720 if (isKnownPositive(Step) && 6721 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6722 return RangeBetween; 6723 else if (isKnownNegative(Step) && 6724 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6725 return RangeBetween; 6726 return ConstantRange::getFull(BitWidth); 6727 } 6728 6729 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6730 const SCEV *Step, 6731 const SCEV *MaxBECount, 6732 unsigned BitWidth) { 6733 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6734 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6735 6736 struct SelectPattern { 6737 Value *Condition = nullptr; 6738 APInt TrueValue; 6739 APInt FalseValue; 6740 6741 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6742 const SCEV *S) { 6743 Optional<unsigned> CastOp; 6744 APInt Offset(BitWidth, 0); 6745 6746 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6747 "Should be!"); 6748 6749 // Peel off a constant offset: 6750 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6751 // In the future we could consider being smarter here and handle 6752 // {Start+Step,+,Step} too. 6753 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6754 return; 6755 6756 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6757 S = SA->getOperand(1); 6758 } 6759 6760 // Peel off a cast operation 6761 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6762 CastOp = SCast->getSCEVType(); 6763 S = SCast->getOperand(); 6764 } 6765 6766 using namespace llvm::PatternMatch; 6767 6768 auto *SU = dyn_cast<SCEVUnknown>(S); 6769 const APInt *TrueVal, *FalseVal; 6770 if (!SU || 6771 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6772 m_APInt(FalseVal)))) { 6773 Condition = nullptr; 6774 return; 6775 } 6776 6777 TrueValue = *TrueVal; 6778 FalseValue = *FalseVal; 6779 6780 // Re-apply the cast we peeled off earlier 6781 if (CastOp.hasValue()) 6782 switch (*CastOp) { 6783 default: 6784 llvm_unreachable("Unknown SCEV cast type!"); 6785 6786 case scTruncate: 6787 TrueValue = TrueValue.trunc(BitWidth); 6788 FalseValue = FalseValue.trunc(BitWidth); 6789 break; 6790 case scZeroExtend: 6791 TrueValue = TrueValue.zext(BitWidth); 6792 FalseValue = FalseValue.zext(BitWidth); 6793 break; 6794 case scSignExtend: 6795 TrueValue = TrueValue.sext(BitWidth); 6796 FalseValue = FalseValue.sext(BitWidth); 6797 break; 6798 } 6799 6800 // Re-apply the constant offset we peeled off earlier 6801 TrueValue += Offset; 6802 FalseValue += Offset; 6803 } 6804 6805 bool isRecognized() { return Condition != nullptr; } 6806 }; 6807 6808 SelectPattern StartPattern(*this, BitWidth, Start); 6809 if (!StartPattern.isRecognized()) 6810 return ConstantRange::getFull(BitWidth); 6811 6812 SelectPattern StepPattern(*this, BitWidth, Step); 6813 if (!StepPattern.isRecognized()) 6814 return ConstantRange::getFull(BitWidth); 6815 6816 if (StartPattern.Condition != StepPattern.Condition) { 6817 // We don't handle this case today; but we could, by considering four 6818 // possibilities below instead of two. I'm not sure if there are cases where 6819 // that will help over what getRange already does, though. 6820 return ConstantRange::getFull(BitWidth); 6821 } 6822 6823 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6824 // construct arbitrary general SCEV expressions here. This function is called 6825 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6826 // say) can end up caching a suboptimal value. 6827 6828 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6829 // C2352 and C2512 (otherwise it isn't needed). 6830 6831 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6832 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6833 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6834 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6835 6836 ConstantRange TrueRange = 6837 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6838 ConstantRange FalseRange = 6839 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6840 6841 return TrueRange.unionWith(FalseRange); 6842 } 6843 6844 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6845 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6846 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6847 6848 // Return early if there are no flags to propagate to the SCEV. 6849 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6850 if (BinOp->hasNoUnsignedWrap()) 6851 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6852 if (BinOp->hasNoSignedWrap()) 6853 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6854 if (Flags == SCEV::FlagAnyWrap) 6855 return SCEV::FlagAnyWrap; 6856 6857 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6858 } 6859 6860 const Instruction * 6861 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6862 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6863 return &*AddRec->getLoop()->getHeader()->begin(); 6864 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6865 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6866 return I; 6867 return nullptr; 6868 } 6869 6870 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6871 /// \p Ops remains unmodified. 6872 static void collectUniqueOps(const SCEV *S, 6873 SmallVectorImpl<const SCEV *> &Ops) { 6874 SmallPtrSet<const SCEV *, 4> Unique; 6875 auto InsertUnique = [&](const SCEV *S) { 6876 if (Unique.insert(S).second) 6877 Ops.push_back(S); 6878 }; 6879 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6880 for (auto *Op : S2->operands()) 6881 InsertUnique(Op); 6882 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6883 for (auto *Op : S2->operands()) 6884 InsertUnique(Op); 6885 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6886 for (auto *Op : S2->operands()) 6887 InsertUnique(Op); 6888 } 6889 6890 const Instruction * 6891 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6892 bool &Precise) { 6893 Precise = true; 6894 // Do a bounded search of the def relation of the requested SCEVs. 6895 SmallSet<const SCEV *, 16> Visited; 6896 SmallVector<const SCEV *> Worklist; 6897 auto pushOp = [&](const SCEV *S) { 6898 if (!Visited.insert(S).second) 6899 return; 6900 // Threshold of 30 here is arbitrary. 6901 if (Visited.size() > 30) { 6902 Precise = false; 6903 return; 6904 } 6905 Worklist.push_back(S); 6906 }; 6907 6908 for (auto *S : Ops) 6909 pushOp(S); 6910 6911 const Instruction *Bound = nullptr; 6912 while (!Worklist.empty()) { 6913 auto *S = Worklist.pop_back_val(); 6914 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6915 if (!Bound || DT.dominates(Bound, DefI)) 6916 Bound = DefI; 6917 } else { 6918 SmallVector<const SCEV *, 4> Ops; 6919 collectUniqueOps(S, Ops); 6920 for (auto *Op : Ops) 6921 pushOp(Op); 6922 } 6923 } 6924 return Bound ? Bound : &*F.getEntryBlock().begin(); 6925 } 6926 6927 const Instruction * 6928 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6929 bool Discard; 6930 return getDefiningScopeBound(Ops, Discard); 6931 } 6932 6933 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6934 const Instruction *B) { 6935 if (A->getParent() == B->getParent() && 6936 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6937 B->getIterator())) 6938 return true; 6939 6940 auto *BLoop = LI.getLoopFor(B->getParent()); 6941 if (BLoop && BLoop->getHeader() == B->getParent() && 6942 BLoop->getLoopPreheader() == A->getParent() && 6943 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6944 A->getParent()->end()) && 6945 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6946 B->getIterator())) 6947 return true; 6948 return false; 6949 } 6950 6951 6952 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6953 // Only proceed if we can prove that I does not yield poison. 6954 if (!programUndefinedIfPoison(I)) 6955 return false; 6956 6957 // At this point we know that if I is executed, then it does not wrap 6958 // according to at least one of NSW or NUW. If I is not executed, then we do 6959 // not know if the calculation that I represents would wrap. Multiple 6960 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6961 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6962 // derived from other instructions that map to the same SCEV. We cannot make 6963 // that guarantee for cases where I is not executed. So we need to find a 6964 // upper bound on the defining scope for the SCEV, and prove that I is 6965 // executed every time we enter that scope. When the bounding scope is a 6966 // loop (the common case), this is equivalent to proving I executes on every 6967 // iteration of that loop. 6968 SmallVector<const SCEV *> SCEVOps; 6969 for (const Use &Op : I->operands()) { 6970 // I could be an extractvalue from a call to an overflow intrinsic. 6971 // TODO: We can do better here in some cases. 6972 if (isSCEVable(Op->getType())) 6973 SCEVOps.push_back(getSCEV(Op)); 6974 } 6975 auto *DefI = getDefiningScopeBound(SCEVOps); 6976 return isGuaranteedToTransferExecutionTo(DefI, I); 6977 } 6978 6979 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6980 // If we know that \c I can never be poison period, then that's enough. 6981 if (isSCEVExprNeverPoison(I)) 6982 return true; 6983 6984 // For an add recurrence specifically, we assume that infinite loops without 6985 // side effects are undefined behavior, and then reason as follows: 6986 // 6987 // If the add recurrence is poison in any iteration, it is poison on all 6988 // future iterations (since incrementing poison yields poison). If the result 6989 // of the add recurrence is fed into the loop latch condition and the loop 6990 // does not contain any throws or exiting blocks other than the latch, we now 6991 // have the ability to "choose" whether the backedge is taken or not (by 6992 // choosing a sufficiently evil value for the poison feeding into the branch) 6993 // for every iteration including and after the one in which \p I first became 6994 // poison. There are two possibilities (let's call the iteration in which \p 6995 // I first became poison as K): 6996 // 6997 // 1. In the set of iterations including and after K, the loop body executes 6998 // no side effects. In this case executing the backege an infinte number 6999 // of times will yield undefined behavior. 7000 // 7001 // 2. In the set of iterations including and after K, the loop body executes 7002 // at least one side effect. In this case, that specific instance of side 7003 // effect is control dependent on poison, which also yields undefined 7004 // behavior. 7005 7006 auto *ExitingBB = L->getExitingBlock(); 7007 auto *LatchBB = L->getLoopLatch(); 7008 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7009 return false; 7010 7011 SmallPtrSet<const Instruction *, 16> Pushed; 7012 SmallVector<const Instruction *, 8> PoisonStack; 7013 7014 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7015 // things that are known to be poison under that assumption go on the 7016 // PoisonStack. 7017 Pushed.insert(I); 7018 PoisonStack.push_back(I); 7019 7020 bool LatchControlDependentOnPoison = false; 7021 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7022 const Instruction *Poison = PoisonStack.pop_back_val(); 7023 7024 for (auto *PoisonUser : Poison->users()) { 7025 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7026 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7027 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7028 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7029 assert(BI->isConditional() && "Only possibility!"); 7030 if (BI->getParent() == LatchBB) { 7031 LatchControlDependentOnPoison = true; 7032 break; 7033 } 7034 } 7035 } 7036 } 7037 7038 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7039 } 7040 7041 ScalarEvolution::LoopProperties 7042 ScalarEvolution::getLoopProperties(const Loop *L) { 7043 using LoopProperties = ScalarEvolution::LoopProperties; 7044 7045 auto Itr = LoopPropertiesCache.find(L); 7046 if (Itr == LoopPropertiesCache.end()) { 7047 auto HasSideEffects = [](Instruction *I) { 7048 if (auto *SI = dyn_cast<StoreInst>(I)) 7049 return !SI->isSimple(); 7050 7051 return I->mayThrow() || I->mayWriteToMemory(); 7052 }; 7053 7054 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7055 /*HasNoSideEffects*/ true}; 7056 7057 for (auto *BB : L->getBlocks()) 7058 for (auto &I : *BB) { 7059 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7060 LP.HasNoAbnormalExits = false; 7061 if (HasSideEffects(&I)) 7062 LP.HasNoSideEffects = false; 7063 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7064 break; // We're already as pessimistic as we can get. 7065 } 7066 7067 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7068 assert(InsertPair.second && "We just checked!"); 7069 Itr = InsertPair.first; 7070 } 7071 7072 return Itr->second; 7073 } 7074 7075 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7076 // A mustprogress loop without side effects must be finite. 7077 // TODO: The check used here is very conservative. It's only *specific* 7078 // side effects which are well defined in infinite loops. 7079 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7080 } 7081 7082 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7083 if (!isSCEVable(V->getType())) 7084 return getUnknown(V); 7085 7086 if (Instruction *I = dyn_cast<Instruction>(V)) { 7087 // Don't attempt to analyze instructions in blocks that aren't 7088 // reachable. Such instructions don't matter, and they aren't required 7089 // to obey basic rules for definitions dominating uses which this 7090 // analysis depends on. 7091 if (!DT.isReachableFromEntry(I->getParent())) 7092 return getUnknown(UndefValue::get(V->getType())); 7093 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7094 return getConstant(CI); 7095 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7096 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7097 else if (!isa<ConstantExpr>(V)) 7098 return getUnknown(V); 7099 7100 Operator *U = cast<Operator>(V); 7101 if (auto BO = MatchBinaryOp(U, DT)) { 7102 switch (BO->Opcode) { 7103 case Instruction::Add: { 7104 // The simple thing to do would be to just call getSCEV on both operands 7105 // and call getAddExpr with the result. However if we're looking at a 7106 // bunch of things all added together, this can be quite inefficient, 7107 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7108 // Instead, gather up all the operands and make a single getAddExpr call. 7109 // LLVM IR canonical form means we need only traverse the left operands. 7110 SmallVector<const SCEV *, 4> AddOps; 7111 do { 7112 if (BO->Op) { 7113 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7114 AddOps.push_back(OpSCEV); 7115 break; 7116 } 7117 7118 // If a NUW or NSW flag can be applied to the SCEV for this 7119 // addition, then compute the SCEV for this addition by itself 7120 // with a separate call to getAddExpr. We need to do that 7121 // instead of pushing the operands of the addition onto AddOps, 7122 // since the flags are only known to apply to this particular 7123 // addition - they may not apply to other additions that can be 7124 // formed with operands from AddOps. 7125 const SCEV *RHS = getSCEV(BO->RHS); 7126 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7127 if (Flags != SCEV::FlagAnyWrap) { 7128 const SCEV *LHS = getSCEV(BO->LHS); 7129 if (BO->Opcode == Instruction::Sub) 7130 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7131 else 7132 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7133 break; 7134 } 7135 } 7136 7137 if (BO->Opcode == Instruction::Sub) 7138 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7139 else 7140 AddOps.push_back(getSCEV(BO->RHS)); 7141 7142 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7143 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7144 NewBO->Opcode != Instruction::Sub)) { 7145 AddOps.push_back(getSCEV(BO->LHS)); 7146 break; 7147 } 7148 BO = NewBO; 7149 } while (true); 7150 7151 return getAddExpr(AddOps); 7152 } 7153 7154 case Instruction::Mul: { 7155 SmallVector<const SCEV *, 4> MulOps; 7156 do { 7157 if (BO->Op) { 7158 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7159 MulOps.push_back(OpSCEV); 7160 break; 7161 } 7162 7163 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7164 if (Flags != SCEV::FlagAnyWrap) { 7165 MulOps.push_back( 7166 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7167 break; 7168 } 7169 } 7170 7171 MulOps.push_back(getSCEV(BO->RHS)); 7172 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7173 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7174 MulOps.push_back(getSCEV(BO->LHS)); 7175 break; 7176 } 7177 BO = NewBO; 7178 } while (true); 7179 7180 return getMulExpr(MulOps); 7181 } 7182 case Instruction::UDiv: 7183 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7184 case Instruction::URem: 7185 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7186 case Instruction::Sub: { 7187 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7188 if (BO->Op) 7189 Flags = getNoWrapFlagsFromUB(BO->Op); 7190 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7191 } 7192 case Instruction::And: 7193 // For an expression like x&255 that merely masks off the high bits, 7194 // use zext(trunc(x)) as the SCEV expression. 7195 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7196 if (CI->isZero()) 7197 return getSCEV(BO->RHS); 7198 if (CI->isMinusOne()) 7199 return getSCEV(BO->LHS); 7200 const APInt &A = CI->getValue(); 7201 7202 // Instcombine's ShrinkDemandedConstant may strip bits out of 7203 // constants, obscuring what would otherwise be a low-bits mask. 7204 // Use computeKnownBits to compute what ShrinkDemandedConstant 7205 // knew about to reconstruct a low-bits mask value. 7206 unsigned LZ = A.countLeadingZeros(); 7207 unsigned TZ = A.countTrailingZeros(); 7208 unsigned BitWidth = A.getBitWidth(); 7209 KnownBits Known(BitWidth); 7210 computeKnownBits(BO->LHS, Known, getDataLayout(), 7211 0, &AC, nullptr, &DT); 7212 7213 APInt EffectiveMask = 7214 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7215 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7216 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7217 const SCEV *LHS = getSCEV(BO->LHS); 7218 const SCEV *ShiftedLHS = nullptr; 7219 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7220 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7221 // For an expression like (x * 8) & 8, simplify the multiply. 7222 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7223 unsigned GCD = std::min(MulZeros, TZ); 7224 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7225 SmallVector<const SCEV*, 4> MulOps; 7226 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7227 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7228 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7229 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7230 } 7231 } 7232 if (!ShiftedLHS) 7233 ShiftedLHS = getUDivExpr(LHS, MulCount); 7234 return getMulExpr( 7235 getZeroExtendExpr( 7236 getTruncateExpr(ShiftedLHS, 7237 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7238 BO->LHS->getType()), 7239 MulCount); 7240 } 7241 } 7242 // Binary `and` is a bit-wise `umin`. 7243 if (BO->LHS->getType()->isIntegerTy(1)) 7244 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7245 break; 7246 7247 case Instruction::Or: 7248 // If the RHS of the Or is a constant, we may have something like: 7249 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7250 // optimizations will transparently handle this case. 7251 // 7252 // In order for this transformation to be safe, the LHS must be of the 7253 // form X*(2^n) and the Or constant must be less than 2^n. 7254 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7255 const SCEV *LHS = getSCEV(BO->LHS); 7256 const APInt &CIVal = CI->getValue(); 7257 if (GetMinTrailingZeros(LHS) >= 7258 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7259 // Build a plain add SCEV. 7260 return getAddExpr(LHS, getSCEV(CI), 7261 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7262 } 7263 } 7264 // Binary `or` is a bit-wise `umax`. 7265 if (BO->LHS->getType()->isIntegerTy(1)) 7266 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7267 break; 7268 7269 case Instruction::Xor: 7270 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7271 // If the RHS of xor is -1, then this is a not operation. 7272 if (CI->isMinusOne()) 7273 return getNotSCEV(getSCEV(BO->LHS)); 7274 7275 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7276 // This is a variant of the check for xor with -1, and it handles 7277 // the case where instcombine has trimmed non-demanded bits out 7278 // of an xor with -1. 7279 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7280 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7281 if (LBO->getOpcode() == Instruction::And && 7282 LCI->getValue() == CI->getValue()) 7283 if (const SCEVZeroExtendExpr *Z = 7284 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7285 Type *UTy = BO->LHS->getType(); 7286 const SCEV *Z0 = Z->getOperand(); 7287 Type *Z0Ty = Z0->getType(); 7288 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7289 7290 // If C is a low-bits mask, the zero extend is serving to 7291 // mask off the high bits. Complement the operand and 7292 // re-apply the zext. 7293 if (CI->getValue().isMask(Z0TySize)) 7294 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7295 7296 // If C is a single bit, it may be in the sign-bit position 7297 // before the zero-extend. In this case, represent the xor 7298 // using an add, which is equivalent, and re-apply the zext. 7299 APInt Trunc = CI->getValue().trunc(Z0TySize); 7300 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7301 Trunc.isSignMask()) 7302 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7303 UTy); 7304 } 7305 } 7306 break; 7307 7308 case Instruction::Shl: 7309 // Turn shift left of a constant amount into a multiply. 7310 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7311 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7312 7313 // If the shift count is not less than the bitwidth, the result of 7314 // the shift is undefined. Don't try to analyze it, because the 7315 // resolution chosen here may differ from the resolution chosen in 7316 // other parts of the compiler. 7317 if (SA->getValue().uge(BitWidth)) 7318 break; 7319 7320 // We can safely preserve the nuw flag in all cases. It's also safe to 7321 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7322 // requires special handling. It can be preserved as long as we're not 7323 // left shifting by bitwidth - 1. 7324 auto Flags = SCEV::FlagAnyWrap; 7325 if (BO->Op) { 7326 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7327 if ((MulFlags & SCEV::FlagNSW) && 7328 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7329 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7330 if (MulFlags & SCEV::FlagNUW) 7331 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7332 } 7333 7334 Constant *X = ConstantInt::get( 7335 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7336 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7337 } 7338 break; 7339 7340 case Instruction::AShr: { 7341 // AShr X, C, where C is a constant. 7342 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7343 if (!CI) 7344 break; 7345 7346 Type *OuterTy = BO->LHS->getType(); 7347 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7348 // If the shift count is not less than the bitwidth, the result of 7349 // the shift is undefined. Don't try to analyze it, because the 7350 // resolution chosen here may differ from the resolution chosen in 7351 // other parts of the compiler. 7352 if (CI->getValue().uge(BitWidth)) 7353 break; 7354 7355 if (CI->isZero()) 7356 return getSCEV(BO->LHS); // shift by zero --> noop 7357 7358 uint64_t AShrAmt = CI->getZExtValue(); 7359 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7360 7361 Operator *L = dyn_cast<Operator>(BO->LHS); 7362 if (L && L->getOpcode() == Instruction::Shl) { 7363 // X = Shl A, n 7364 // Y = AShr X, m 7365 // Both n and m are constant. 7366 7367 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7368 if (L->getOperand(1) == BO->RHS) 7369 // For a two-shift sext-inreg, i.e. n = m, 7370 // use sext(trunc(x)) as the SCEV expression. 7371 return getSignExtendExpr( 7372 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7373 7374 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7375 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7376 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7377 if (ShlAmt > AShrAmt) { 7378 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7379 // expression. We already checked that ShlAmt < BitWidth, so 7380 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7381 // ShlAmt - AShrAmt < Amt. 7382 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7383 ShlAmt - AShrAmt); 7384 return getSignExtendExpr( 7385 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7386 getConstant(Mul)), OuterTy); 7387 } 7388 } 7389 } 7390 break; 7391 } 7392 } 7393 } 7394 7395 switch (U->getOpcode()) { 7396 case Instruction::Trunc: 7397 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7398 7399 case Instruction::ZExt: 7400 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7401 7402 case Instruction::SExt: 7403 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7404 // The NSW flag of a subtract does not always survive the conversion to 7405 // A + (-1)*B. By pushing sign extension onto its operands we are much 7406 // more likely to preserve NSW and allow later AddRec optimisations. 7407 // 7408 // NOTE: This is effectively duplicating this logic from getSignExtend: 7409 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7410 // but by that point the NSW information has potentially been lost. 7411 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7412 Type *Ty = U->getType(); 7413 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7414 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7415 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7416 } 7417 } 7418 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7419 7420 case Instruction::BitCast: 7421 // BitCasts are no-op casts so we just eliminate the cast. 7422 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7423 return getSCEV(U->getOperand(0)); 7424 break; 7425 7426 case Instruction::PtrToInt: { 7427 // Pointer to integer cast is straight-forward, so do model it. 7428 const SCEV *Op = getSCEV(U->getOperand(0)); 7429 Type *DstIntTy = U->getType(); 7430 // But only if effective SCEV (integer) type is wide enough to represent 7431 // all possible pointer values. 7432 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7433 if (isa<SCEVCouldNotCompute>(IntOp)) 7434 return getUnknown(V); 7435 return IntOp; 7436 } 7437 case Instruction::IntToPtr: 7438 // Just don't deal with inttoptr casts. 7439 return getUnknown(V); 7440 7441 case Instruction::SDiv: 7442 // If both operands are non-negative, this is just an udiv. 7443 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7444 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7445 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7446 break; 7447 7448 case Instruction::SRem: 7449 // If both operands are non-negative, this is just an urem. 7450 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7451 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7452 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7453 break; 7454 7455 case Instruction::GetElementPtr: 7456 return createNodeForGEP(cast<GEPOperator>(U)); 7457 7458 case Instruction::PHI: 7459 return createNodeForPHI(cast<PHINode>(U)); 7460 7461 case Instruction::Select: 7462 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7463 U->getOperand(2)); 7464 7465 case Instruction::Call: 7466 case Instruction::Invoke: 7467 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7468 return getSCEV(RV); 7469 7470 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7471 switch (II->getIntrinsicID()) { 7472 case Intrinsic::abs: 7473 return getAbsExpr( 7474 getSCEV(II->getArgOperand(0)), 7475 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7476 case Intrinsic::umax: 7477 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7478 getSCEV(II->getArgOperand(1))); 7479 case Intrinsic::umin: 7480 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7481 getSCEV(II->getArgOperand(1))); 7482 case Intrinsic::smax: 7483 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7484 getSCEV(II->getArgOperand(1))); 7485 case Intrinsic::smin: 7486 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7487 getSCEV(II->getArgOperand(1))); 7488 case Intrinsic::usub_sat: { 7489 const SCEV *X = getSCEV(II->getArgOperand(0)); 7490 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7491 const SCEV *ClampedY = getUMinExpr(X, Y); 7492 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7493 } 7494 case Intrinsic::uadd_sat: { 7495 const SCEV *X = getSCEV(II->getArgOperand(0)); 7496 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7497 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7498 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7499 } 7500 case Intrinsic::start_loop_iterations: 7501 // A start_loop_iterations is just equivalent to the first operand for 7502 // SCEV purposes. 7503 return getSCEV(II->getArgOperand(0)); 7504 default: 7505 break; 7506 } 7507 } 7508 break; 7509 } 7510 7511 return getUnknown(V); 7512 } 7513 7514 //===----------------------------------------------------------------------===// 7515 // Iteration Count Computation Code 7516 // 7517 7518 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7519 bool Extend) { 7520 if (isa<SCEVCouldNotCompute>(ExitCount)) 7521 return getCouldNotCompute(); 7522 7523 auto *ExitCountType = ExitCount->getType(); 7524 assert(ExitCountType->isIntegerTy()); 7525 7526 if (!Extend) 7527 return getAddExpr(ExitCount, getOne(ExitCountType)); 7528 7529 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7530 1 + ExitCountType->getScalarSizeInBits()); 7531 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7532 getOne(WiderType)); 7533 } 7534 7535 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7536 if (!ExitCount) 7537 return 0; 7538 7539 ConstantInt *ExitConst = ExitCount->getValue(); 7540 7541 // Guard against huge trip counts. 7542 if (ExitConst->getValue().getActiveBits() > 32) 7543 return 0; 7544 7545 // In case of integer overflow, this returns 0, which is correct. 7546 return ((unsigned)ExitConst->getZExtValue()) + 1; 7547 } 7548 7549 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7550 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7551 return getConstantTripCount(ExitCount); 7552 } 7553 7554 unsigned 7555 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7556 const BasicBlock *ExitingBlock) { 7557 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7558 assert(L->isLoopExiting(ExitingBlock) && 7559 "Exiting block must actually branch out of the loop!"); 7560 const SCEVConstant *ExitCount = 7561 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7562 return getConstantTripCount(ExitCount); 7563 } 7564 7565 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7566 const auto *MaxExitCount = 7567 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7568 return getConstantTripCount(MaxExitCount); 7569 } 7570 7571 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7572 // We can't infer from Array in Irregular Loop. 7573 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7574 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7575 return getCouldNotCompute(); 7576 7577 // FIXME: To make the scene more typical, we only analysis loops that have 7578 // one exiting block and that block must be the latch. To make it easier to 7579 // capture loops that have memory access and memory access will be executed 7580 // in each iteration. 7581 const BasicBlock *LoopLatch = L->getLoopLatch(); 7582 assert(LoopLatch && "See defination of simplify form loop."); 7583 if (L->getExitingBlock() != LoopLatch) 7584 return getCouldNotCompute(); 7585 7586 const DataLayout &DL = getDataLayout(); 7587 SmallVector<const SCEV *> InferCountColl; 7588 for (auto *BB : L->getBlocks()) { 7589 // Go here, we can know that Loop is a single exiting and simplified form 7590 // loop. Make sure that infer from Memory Operation in those BBs must be 7591 // executed in loop. First step, we can make sure that max execution time 7592 // of MemAccessBB in loop represents latch max excution time. 7593 // If MemAccessBB does not dom Latch, skip. 7594 // Entry 7595 // │ 7596 // ┌─────▼─────┐ 7597 // │Loop Header◄─────┐ 7598 // └──┬──────┬─┘ │ 7599 // │ │ │ 7600 // ┌────────▼──┐ ┌─▼─────┐ │ 7601 // │MemAccessBB│ │OtherBB│ │ 7602 // └────────┬──┘ └─┬─────┘ │ 7603 // │ │ │ 7604 // ┌─▼──────▼─┐ │ 7605 // │Loop Latch├─────┘ 7606 // └────┬─────┘ 7607 // ▼ 7608 // Exit 7609 if (!DT.dominates(BB, LoopLatch)) 7610 continue; 7611 7612 for (Instruction &Inst : *BB) { 7613 // Find Memory Operation Instruction. 7614 auto *GEP = getLoadStorePointerOperand(&Inst); 7615 if (!GEP) 7616 continue; 7617 7618 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7619 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7620 if (!ElemSize) 7621 continue; 7622 7623 // Use a existing polynomial recurrence on the trip count. 7624 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7625 if (!AddRec) 7626 continue; 7627 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7628 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7629 if (!ArrBase || !Step) 7630 continue; 7631 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7632 7633 // Only handle { %array + step }, 7634 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7635 if (AddRec->getStart() != ArrBase) 7636 continue; 7637 7638 // Memory operation pattern which have gaps. 7639 // Or repeat memory opreation. 7640 // And index of GEP wraps arround. 7641 if (Step->getAPInt().getActiveBits() > 32 || 7642 Step->getAPInt().getZExtValue() != 7643 ElemSize->getAPInt().getZExtValue() || 7644 Step->isZero() || Step->getAPInt().isNegative()) 7645 continue; 7646 7647 // Only infer from stack array which has certain size. 7648 // Make sure alloca instruction is not excuted in loop. 7649 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7650 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7651 continue; 7652 7653 // Make sure only handle normal array. 7654 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7655 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7656 if (!Ty || !ArrSize || !ArrSize->isOne()) 7657 continue; 7658 7659 // FIXME: Since gep indices are silently zext to the indexing type, 7660 // we will have a narrow gep index which wraps around rather than 7661 // increasing strictly, we shoule ensure that step is increasing 7662 // strictly by the loop iteration. 7663 // Now we can infer a max execution time by MemLength/StepLength. 7664 const SCEV *MemSize = 7665 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7666 auto *MaxExeCount = 7667 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7668 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7669 continue; 7670 7671 // If the loop reaches the maximum number of executions, we can not 7672 // access bytes starting outside the statically allocated size without 7673 // being immediate UB. But it is allowed to enter loop header one more 7674 // time. 7675 auto *InferCount = dyn_cast<SCEVConstant>( 7676 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7677 // Discard the maximum number of execution times under 32bits. 7678 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7679 continue; 7680 7681 InferCountColl.push_back(InferCount); 7682 } 7683 } 7684 7685 if (InferCountColl.size() == 0) 7686 return getCouldNotCompute(); 7687 7688 return getUMinFromMismatchedTypes(InferCountColl); 7689 } 7690 7691 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7692 SmallVector<BasicBlock *, 8> ExitingBlocks; 7693 L->getExitingBlocks(ExitingBlocks); 7694 7695 Optional<unsigned> Res = None; 7696 for (auto *ExitingBB : ExitingBlocks) { 7697 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7698 if (!Res) 7699 Res = Multiple; 7700 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7701 } 7702 return Res.getValueOr(1); 7703 } 7704 7705 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7706 const SCEV *ExitCount) { 7707 if (ExitCount == getCouldNotCompute()) 7708 return 1; 7709 7710 // Get the trip count 7711 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7712 7713 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7714 if (!TC) 7715 // Attempt to factor more general cases. Returns the greatest power of 7716 // two divisor. If overflow happens, the trip count expression is still 7717 // divisible by the greatest power of 2 divisor returned. 7718 return 1U << std::min((uint32_t)31, 7719 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7720 7721 ConstantInt *Result = TC->getValue(); 7722 7723 // Guard against huge trip counts (this requires checking 7724 // for zero to handle the case where the trip count == -1 and the 7725 // addition wraps). 7726 if (!Result || Result->getValue().getActiveBits() > 32 || 7727 Result->getValue().getActiveBits() == 0) 7728 return 1; 7729 7730 return (unsigned)Result->getZExtValue(); 7731 } 7732 7733 /// Returns the largest constant divisor of the trip count of this loop as a 7734 /// normal unsigned value, if possible. This means that the actual trip count is 7735 /// always a multiple of the returned value (don't forget the trip count could 7736 /// very well be zero as well!). 7737 /// 7738 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7739 /// multiple of a constant (which is also the case if the trip count is simply 7740 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7741 /// if the trip count is very large (>= 2^32). 7742 /// 7743 /// As explained in the comments for getSmallConstantTripCount, this assumes 7744 /// that control exits the loop via ExitingBlock. 7745 unsigned 7746 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7747 const BasicBlock *ExitingBlock) { 7748 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7749 assert(L->isLoopExiting(ExitingBlock) && 7750 "Exiting block must actually branch out of the loop!"); 7751 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7752 return getSmallConstantTripMultiple(L, ExitCount); 7753 } 7754 7755 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7756 const BasicBlock *ExitingBlock, 7757 ExitCountKind Kind) { 7758 switch (Kind) { 7759 case Exact: 7760 case SymbolicMaximum: 7761 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7762 case ConstantMaximum: 7763 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7764 }; 7765 llvm_unreachable("Invalid ExitCountKind!"); 7766 } 7767 7768 const SCEV * 7769 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7770 SmallVector<const SCEVPredicate *, 4> &Preds) { 7771 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7772 } 7773 7774 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7775 ExitCountKind Kind) { 7776 switch (Kind) { 7777 case Exact: 7778 return getBackedgeTakenInfo(L).getExact(L, this); 7779 case ConstantMaximum: 7780 return getBackedgeTakenInfo(L).getConstantMax(this); 7781 case SymbolicMaximum: 7782 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7783 }; 7784 llvm_unreachable("Invalid ExitCountKind!"); 7785 } 7786 7787 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7788 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7789 } 7790 7791 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7792 static void PushLoopPHIs(const Loop *L, 7793 SmallVectorImpl<Instruction *> &Worklist, 7794 SmallPtrSetImpl<Instruction *> &Visited) { 7795 BasicBlock *Header = L->getHeader(); 7796 7797 // Push all Loop-header PHIs onto the Worklist stack. 7798 for (PHINode &PN : Header->phis()) 7799 if (Visited.insert(&PN).second) 7800 Worklist.push_back(&PN); 7801 } 7802 7803 const ScalarEvolution::BackedgeTakenInfo & 7804 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7805 auto &BTI = getBackedgeTakenInfo(L); 7806 if (BTI.hasFullInfo()) 7807 return BTI; 7808 7809 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7810 7811 if (!Pair.second) 7812 return Pair.first->second; 7813 7814 BackedgeTakenInfo Result = 7815 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7816 7817 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7818 } 7819 7820 ScalarEvolution::BackedgeTakenInfo & 7821 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7822 // Initially insert an invalid entry for this loop. If the insertion 7823 // succeeds, proceed to actually compute a backedge-taken count and 7824 // update the value. The temporary CouldNotCompute value tells SCEV 7825 // code elsewhere that it shouldn't attempt to request a new 7826 // backedge-taken count, which could result in infinite recursion. 7827 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7828 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7829 if (!Pair.second) 7830 return Pair.first->second; 7831 7832 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7833 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7834 // must be cleared in this scope. 7835 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7836 7837 // In product build, there are no usage of statistic. 7838 (void)NumTripCountsComputed; 7839 (void)NumTripCountsNotComputed; 7840 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7841 const SCEV *BEExact = Result.getExact(L, this); 7842 if (BEExact != getCouldNotCompute()) { 7843 assert(isLoopInvariant(BEExact, L) && 7844 isLoopInvariant(Result.getConstantMax(this), L) && 7845 "Computed backedge-taken count isn't loop invariant for loop!"); 7846 ++NumTripCountsComputed; 7847 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7848 isa<PHINode>(L->getHeader()->begin())) { 7849 // Only count loops that have phi nodes as not being computable. 7850 ++NumTripCountsNotComputed; 7851 } 7852 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7853 7854 // Now that we know more about the trip count for this loop, forget any 7855 // existing SCEV values for PHI nodes in this loop since they are only 7856 // conservative estimates made without the benefit of trip count 7857 // information. This invalidation is not necessary for correctness, and is 7858 // only done to produce more precise results. 7859 if (Result.hasAnyInfo()) { 7860 // Invalidate any expression using an addrec in this loop. 7861 SmallVector<const SCEV *, 8> ToForget; 7862 auto LoopUsersIt = LoopUsers.find(L); 7863 if (LoopUsersIt != LoopUsers.end()) 7864 append_range(ToForget, LoopUsersIt->second); 7865 forgetMemoizedResults(ToForget); 7866 7867 // Invalidate constant-evolved loop header phis. 7868 for (PHINode &PN : L->getHeader()->phis()) 7869 ConstantEvolutionLoopExitValue.erase(&PN); 7870 } 7871 7872 // Re-lookup the insert position, since the call to 7873 // computeBackedgeTakenCount above could result in a 7874 // recusive call to getBackedgeTakenInfo (on a different 7875 // loop), which would invalidate the iterator computed 7876 // earlier. 7877 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7878 } 7879 7880 void ScalarEvolution::forgetAllLoops() { 7881 // This method is intended to forget all info about loops. It should 7882 // invalidate caches as if the following happened: 7883 // - The trip counts of all loops have changed arbitrarily 7884 // - Every llvm::Value has been updated in place to produce a different 7885 // result. 7886 BackedgeTakenCounts.clear(); 7887 PredicatedBackedgeTakenCounts.clear(); 7888 BECountUsers.clear(); 7889 LoopPropertiesCache.clear(); 7890 ConstantEvolutionLoopExitValue.clear(); 7891 ValueExprMap.clear(); 7892 ValuesAtScopes.clear(); 7893 ValuesAtScopesUsers.clear(); 7894 LoopDispositions.clear(); 7895 BlockDispositions.clear(); 7896 UnsignedRanges.clear(); 7897 SignedRanges.clear(); 7898 ExprValueMap.clear(); 7899 HasRecMap.clear(); 7900 MinTrailingZerosCache.clear(); 7901 PredicatedSCEVRewrites.clear(); 7902 } 7903 7904 void ScalarEvolution::forgetLoop(const Loop *L) { 7905 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7906 SmallVector<Instruction *, 32> Worklist; 7907 SmallPtrSet<Instruction *, 16> Visited; 7908 SmallVector<const SCEV *, 16> ToForget; 7909 7910 // Iterate over all the loops and sub-loops to drop SCEV information. 7911 while (!LoopWorklist.empty()) { 7912 auto *CurrL = LoopWorklist.pop_back_val(); 7913 7914 // Drop any stored trip count value. 7915 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 7916 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 7917 7918 // Drop information about predicated SCEV rewrites for this loop. 7919 for (auto I = PredicatedSCEVRewrites.begin(); 7920 I != PredicatedSCEVRewrites.end();) { 7921 std::pair<const SCEV *, const Loop *> Entry = I->first; 7922 if (Entry.second == CurrL) 7923 PredicatedSCEVRewrites.erase(I++); 7924 else 7925 ++I; 7926 } 7927 7928 auto LoopUsersItr = LoopUsers.find(CurrL); 7929 if (LoopUsersItr != LoopUsers.end()) { 7930 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7931 LoopUsersItr->second.end()); 7932 } 7933 7934 // Drop information about expressions based on loop-header PHIs. 7935 PushLoopPHIs(CurrL, Worklist, Visited); 7936 7937 while (!Worklist.empty()) { 7938 Instruction *I = Worklist.pop_back_val(); 7939 7940 ValueExprMapType::iterator It = 7941 ValueExprMap.find_as(static_cast<Value *>(I)); 7942 if (It != ValueExprMap.end()) { 7943 eraseValueFromMap(It->first); 7944 ToForget.push_back(It->second); 7945 if (PHINode *PN = dyn_cast<PHINode>(I)) 7946 ConstantEvolutionLoopExitValue.erase(PN); 7947 } 7948 7949 PushDefUseChildren(I, Worklist, Visited); 7950 } 7951 7952 LoopPropertiesCache.erase(CurrL); 7953 // Forget all contained loops too, to avoid dangling entries in the 7954 // ValuesAtScopes map. 7955 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7956 } 7957 forgetMemoizedResults(ToForget); 7958 } 7959 7960 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7961 while (Loop *Parent = L->getParentLoop()) 7962 L = Parent; 7963 forgetLoop(L); 7964 } 7965 7966 void ScalarEvolution::forgetValue(Value *V) { 7967 Instruction *I = dyn_cast<Instruction>(V); 7968 if (!I) return; 7969 7970 // Drop information about expressions based on loop-header PHIs. 7971 SmallVector<Instruction *, 16> Worklist; 7972 SmallPtrSet<Instruction *, 8> Visited; 7973 SmallVector<const SCEV *, 8> ToForget; 7974 Worklist.push_back(I); 7975 Visited.insert(I); 7976 7977 while (!Worklist.empty()) { 7978 I = Worklist.pop_back_val(); 7979 ValueExprMapType::iterator It = 7980 ValueExprMap.find_as(static_cast<Value *>(I)); 7981 if (It != ValueExprMap.end()) { 7982 eraseValueFromMap(It->first); 7983 ToForget.push_back(It->second); 7984 if (PHINode *PN = dyn_cast<PHINode>(I)) 7985 ConstantEvolutionLoopExitValue.erase(PN); 7986 } 7987 7988 PushDefUseChildren(I, Worklist, Visited); 7989 } 7990 forgetMemoizedResults(ToForget); 7991 } 7992 7993 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7994 LoopDispositions.clear(); 7995 } 7996 7997 /// Get the exact loop backedge taken count considering all loop exits. A 7998 /// computable result can only be returned for loops with all exiting blocks 7999 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8000 /// is never skipped. This is a valid assumption as long as the loop exits via 8001 /// that test. For precise results, it is the caller's responsibility to specify 8002 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8003 const SCEV * 8004 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8005 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8006 // If any exits were not computable, the loop is not computable. 8007 if (!isComplete() || ExitNotTaken.empty()) 8008 return SE->getCouldNotCompute(); 8009 8010 const BasicBlock *Latch = L->getLoopLatch(); 8011 // All exiting blocks we have collected must dominate the only backedge. 8012 if (!Latch) 8013 return SE->getCouldNotCompute(); 8014 8015 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8016 // count is simply a minimum out of all these calculated exit counts. 8017 SmallVector<const SCEV *, 2> Ops; 8018 for (auto &ENT : ExitNotTaken) { 8019 const SCEV *BECount = ENT.ExactNotTaken; 8020 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8021 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8022 "We should only have known counts for exiting blocks that dominate " 8023 "latch!"); 8024 8025 Ops.push_back(BECount); 8026 8027 if (Preds) 8028 for (auto *P : ENT.Predicates) 8029 Preds->push_back(P); 8030 8031 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8032 "Predicate should be always true!"); 8033 } 8034 8035 return SE->getUMinFromMismatchedTypes(Ops); 8036 } 8037 8038 /// Get the exact not taken count for this loop exit. 8039 const SCEV * 8040 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8041 ScalarEvolution *SE) const { 8042 for (auto &ENT : ExitNotTaken) 8043 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8044 return ENT.ExactNotTaken; 8045 8046 return SE->getCouldNotCompute(); 8047 } 8048 8049 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8050 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8051 for (auto &ENT : ExitNotTaken) 8052 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8053 return ENT.MaxNotTaken; 8054 8055 return SE->getCouldNotCompute(); 8056 } 8057 8058 /// getConstantMax - Get the constant max backedge taken count for the loop. 8059 const SCEV * 8060 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8061 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8062 return !ENT.hasAlwaysTruePredicate(); 8063 }; 8064 8065 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8066 return SE->getCouldNotCompute(); 8067 8068 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8069 isa<SCEVConstant>(getConstantMax())) && 8070 "No point in having a non-constant max backedge taken count!"); 8071 return getConstantMax(); 8072 } 8073 8074 const SCEV * 8075 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8076 ScalarEvolution *SE) { 8077 if (!SymbolicMax) 8078 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8079 return SymbolicMax; 8080 } 8081 8082 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8083 ScalarEvolution *SE) const { 8084 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8085 return !ENT.hasAlwaysTruePredicate(); 8086 }; 8087 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8088 } 8089 8090 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8091 : ExitLimit(E, E, false, None) { 8092 } 8093 8094 ScalarEvolution::ExitLimit::ExitLimit( 8095 const SCEV *E, const SCEV *M, bool MaxOrZero, 8096 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8097 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8098 // If we prove the max count is zero, so is the symbolic bound. This happens 8099 // in practice due to differences in a) how context sensitive we've chosen 8100 // to be and b) how we reason about bounds impied by UB. 8101 if (MaxNotTaken->isZero()) 8102 ExactNotTaken = MaxNotTaken; 8103 8104 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8105 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8106 "Exact is not allowed to be less precise than Max"); 8107 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8108 isa<SCEVConstant>(MaxNotTaken)) && 8109 "No point in having a non-constant max backedge taken count!"); 8110 for (auto *PredSet : PredSetList) 8111 for (auto *P : *PredSet) 8112 addPredicate(P); 8113 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8114 "Backedge count should be int"); 8115 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8116 "Max backedge count should be int"); 8117 } 8118 8119 ScalarEvolution::ExitLimit::ExitLimit( 8120 const SCEV *E, const SCEV *M, bool MaxOrZero, 8121 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8122 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8123 } 8124 8125 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8126 bool MaxOrZero) 8127 : ExitLimit(E, M, MaxOrZero, None) { 8128 } 8129 8130 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8131 /// computable exit into a persistent ExitNotTakenInfo array. 8132 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8133 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8134 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8135 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8136 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8137 8138 ExitNotTaken.reserve(ExitCounts.size()); 8139 std::transform( 8140 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8141 [&](const EdgeExitInfo &EEI) { 8142 BasicBlock *ExitBB = EEI.first; 8143 const ExitLimit &EL = EEI.second; 8144 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8145 EL.Predicates); 8146 }); 8147 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8148 isa<SCEVConstant>(ConstantMax)) && 8149 "No point in having a non-constant max backedge taken count!"); 8150 } 8151 8152 /// Compute the number of times the backedge of the specified loop will execute. 8153 ScalarEvolution::BackedgeTakenInfo 8154 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8155 bool AllowPredicates) { 8156 SmallVector<BasicBlock *, 8> ExitingBlocks; 8157 L->getExitingBlocks(ExitingBlocks); 8158 8159 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8160 8161 SmallVector<EdgeExitInfo, 4> ExitCounts; 8162 bool CouldComputeBECount = true; 8163 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8164 const SCEV *MustExitMaxBECount = nullptr; 8165 const SCEV *MayExitMaxBECount = nullptr; 8166 bool MustExitMaxOrZero = false; 8167 8168 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8169 // and compute maxBECount. 8170 // Do a union of all the predicates here. 8171 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8172 BasicBlock *ExitBB = ExitingBlocks[i]; 8173 8174 // We canonicalize untaken exits to br (constant), ignore them so that 8175 // proving an exit untaken doesn't negatively impact our ability to reason 8176 // about the loop as whole. 8177 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8178 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8179 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8180 if (ExitIfTrue == CI->isZero()) 8181 continue; 8182 } 8183 8184 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8185 8186 assert((AllowPredicates || EL.Predicates.empty()) && 8187 "Predicated exit limit when predicates are not allowed!"); 8188 8189 // 1. For each exit that can be computed, add an entry to ExitCounts. 8190 // CouldComputeBECount is true only if all exits can be computed. 8191 if (EL.ExactNotTaken == getCouldNotCompute()) 8192 // We couldn't compute an exact value for this exit, so 8193 // we won't be able to compute an exact value for the loop. 8194 CouldComputeBECount = false; 8195 else 8196 ExitCounts.emplace_back(ExitBB, EL); 8197 8198 // 2. Derive the loop's MaxBECount from each exit's max number of 8199 // non-exiting iterations. Partition the loop exits into two kinds: 8200 // LoopMustExits and LoopMayExits. 8201 // 8202 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8203 // is a LoopMayExit. If any computable LoopMustExit is found, then 8204 // MaxBECount is the minimum EL.MaxNotTaken of computable 8205 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8206 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8207 // computable EL.MaxNotTaken. 8208 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8209 DT.dominates(ExitBB, Latch)) { 8210 if (!MustExitMaxBECount) { 8211 MustExitMaxBECount = EL.MaxNotTaken; 8212 MustExitMaxOrZero = EL.MaxOrZero; 8213 } else { 8214 MustExitMaxBECount = 8215 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8216 } 8217 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8218 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8219 MayExitMaxBECount = EL.MaxNotTaken; 8220 else { 8221 MayExitMaxBECount = 8222 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8223 } 8224 } 8225 } 8226 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8227 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8228 // The loop backedge will be taken the maximum or zero times if there's 8229 // a single exit that must be taken the maximum or zero times. 8230 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8231 8232 // Remember which SCEVs are used in exit limits for invalidation purposes. 8233 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8234 // and MaxBECount, which must be SCEVConstant. 8235 for (const auto &Pair : ExitCounts) 8236 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8237 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8238 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8239 MaxBECount, MaxOrZero); 8240 } 8241 8242 ScalarEvolution::ExitLimit 8243 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8244 bool AllowPredicates) { 8245 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8246 // If our exiting block does not dominate the latch, then its connection with 8247 // loop's exit limit may be far from trivial. 8248 const BasicBlock *Latch = L->getLoopLatch(); 8249 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8250 return getCouldNotCompute(); 8251 8252 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8253 Instruction *Term = ExitingBlock->getTerminator(); 8254 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8255 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8256 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8257 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8258 "It should have one successor in loop and one exit block!"); 8259 // Proceed to the next level to examine the exit condition expression. 8260 return computeExitLimitFromCond( 8261 L, BI->getCondition(), ExitIfTrue, 8262 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8263 } 8264 8265 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8266 // For switch, make sure that there is a single exit from the loop. 8267 BasicBlock *Exit = nullptr; 8268 for (auto *SBB : successors(ExitingBlock)) 8269 if (!L->contains(SBB)) { 8270 if (Exit) // Multiple exit successors. 8271 return getCouldNotCompute(); 8272 Exit = SBB; 8273 } 8274 assert(Exit && "Exiting block must have at least one exit"); 8275 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8276 /*ControlsExit=*/IsOnlyExit); 8277 } 8278 8279 return getCouldNotCompute(); 8280 } 8281 8282 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8283 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8284 bool ControlsExit, bool AllowPredicates) { 8285 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8286 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8287 ControlsExit, AllowPredicates); 8288 } 8289 8290 Optional<ScalarEvolution::ExitLimit> 8291 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8292 bool ExitIfTrue, bool ControlsExit, 8293 bool AllowPredicates) { 8294 (void)this->L; 8295 (void)this->ExitIfTrue; 8296 (void)this->AllowPredicates; 8297 8298 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8299 this->AllowPredicates == AllowPredicates && 8300 "Variance in assumed invariant key components!"); 8301 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8302 if (Itr == TripCountMap.end()) 8303 return None; 8304 return Itr->second; 8305 } 8306 8307 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8308 bool ExitIfTrue, 8309 bool ControlsExit, 8310 bool AllowPredicates, 8311 const ExitLimit &EL) { 8312 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8313 this->AllowPredicates == AllowPredicates && 8314 "Variance in assumed invariant key components!"); 8315 8316 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8317 assert(InsertResult.second && "Expected successful insertion!"); 8318 (void)InsertResult; 8319 (void)ExitIfTrue; 8320 } 8321 8322 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8323 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8324 bool ControlsExit, bool AllowPredicates) { 8325 8326 if (auto MaybeEL = 8327 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8328 return *MaybeEL; 8329 8330 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8331 ControlsExit, AllowPredicates); 8332 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8333 return EL; 8334 } 8335 8336 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8337 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8338 bool ControlsExit, bool AllowPredicates) { 8339 // Handle BinOp conditions (And, Or). 8340 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8341 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8342 return *LimitFromBinOp; 8343 8344 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8345 // Proceed to the next level to examine the icmp. 8346 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8347 ExitLimit EL = 8348 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8349 if (EL.hasFullInfo() || !AllowPredicates) 8350 return EL; 8351 8352 // Try again, but use SCEV predicates this time. 8353 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8354 /*AllowPredicates=*/true); 8355 } 8356 8357 // Check for a constant condition. These are normally stripped out by 8358 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8359 // preserve the CFG and is temporarily leaving constant conditions 8360 // in place. 8361 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8362 if (ExitIfTrue == !CI->getZExtValue()) 8363 // The backedge is always taken. 8364 return getCouldNotCompute(); 8365 else 8366 // The backedge is never taken. 8367 return getZero(CI->getType()); 8368 } 8369 8370 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8371 // with a constant step, we can form an equivalent icmp predicate and figure 8372 // out how many iterations will be taken before we exit. 8373 const WithOverflowInst *WO; 8374 const APInt *C; 8375 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8376 match(WO->getRHS(), m_APInt(C))) { 8377 ConstantRange NWR = 8378 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8379 WO->getNoWrapKind()); 8380 CmpInst::Predicate Pred; 8381 APInt NewRHSC, Offset; 8382 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8383 if (!ExitIfTrue) 8384 Pred = ICmpInst::getInversePredicate(Pred); 8385 auto *LHS = getSCEV(WO->getLHS()); 8386 if (Offset != 0) 8387 LHS = getAddExpr(LHS, getConstant(Offset)); 8388 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8389 ControlsExit, AllowPredicates); 8390 if (EL.hasAnyInfo()) return EL; 8391 } 8392 8393 // If it's not an integer or pointer comparison then compute it the hard way. 8394 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8395 } 8396 8397 Optional<ScalarEvolution::ExitLimit> 8398 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8399 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8400 bool ControlsExit, bool AllowPredicates) { 8401 // Check if the controlling expression for this loop is an And or Or. 8402 Value *Op0, *Op1; 8403 bool IsAnd = false; 8404 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8405 IsAnd = true; 8406 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8407 IsAnd = false; 8408 else 8409 return None; 8410 8411 // EitherMayExit is true in these two cases: 8412 // br (and Op0 Op1), loop, exit 8413 // br (or Op0 Op1), exit, loop 8414 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8415 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8416 ControlsExit && !EitherMayExit, 8417 AllowPredicates); 8418 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8419 ControlsExit && !EitherMayExit, 8420 AllowPredicates); 8421 8422 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8423 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8424 if (isa<ConstantInt>(Op1)) 8425 return Op1 == NeutralElement ? EL0 : EL1; 8426 if (isa<ConstantInt>(Op0)) 8427 return Op0 == NeutralElement ? EL1 : EL0; 8428 8429 const SCEV *BECount = getCouldNotCompute(); 8430 const SCEV *MaxBECount = getCouldNotCompute(); 8431 if (EitherMayExit) { 8432 // Both conditions must be same for the loop to continue executing. 8433 // Choose the less conservative count. 8434 if (EL0.ExactNotTaken != getCouldNotCompute() && 8435 EL1.ExactNotTaken != getCouldNotCompute()) { 8436 BECount = getUMinFromMismatchedTypes( 8437 EL0.ExactNotTaken, EL1.ExactNotTaken, 8438 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8439 8440 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8441 // it should have been simplified to zero (see the condition (3) above) 8442 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8443 BECount->isZero()); 8444 } 8445 if (EL0.MaxNotTaken == getCouldNotCompute()) 8446 MaxBECount = EL1.MaxNotTaken; 8447 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8448 MaxBECount = EL0.MaxNotTaken; 8449 else 8450 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8451 } else { 8452 // Both conditions must be same at the same time for the loop to exit. 8453 // For now, be conservative. 8454 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8455 BECount = EL0.ExactNotTaken; 8456 } 8457 8458 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8459 // to be more aggressive when computing BECount than when computing 8460 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8461 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8462 // to not. 8463 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8464 !isa<SCEVCouldNotCompute>(BECount)) 8465 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8466 8467 return ExitLimit(BECount, MaxBECount, false, 8468 { &EL0.Predicates, &EL1.Predicates }); 8469 } 8470 8471 ScalarEvolution::ExitLimit 8472 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8473 ICmpInst *ExitCond, 8474 bool ExitIfTrue, 8475 bool ControlsExit, 8476 bool AllowPredicates) { 8477 // If the condition was exit on true, convert the condition to exit on false 8478 ICmpInst::Predicate Pred; 8479 if (!ExitIfTrue) 8480 Pred = ExitCond->getPredicate(); 8481 else 8482 Pred = ExitCond->getInversePredicate(); 8483 const ICmpInst::Predicate OriginalPred = Pred; 8484 8485 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8486 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8487 8488 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8489 AllowPredicates); 8490 if (EL.hasAnyInfo()) return EL; 8491 8492 auto *ExhaustiveCount = 8493 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8494 8495 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8496 return ExhaustiveCount; 8497 8498 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8499 ExitCond->getOperand(1), L, OriginalPred); 8500 } 8501 ScalarEvolution::ExitLimit 8502 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8503 ICmpInst::Predicate Pred, 8504 const SCEV *LHS, const SCEV *RHS, 8505 bool ControlsExit, 8506 bool AllowPredicates) { 8507 8508 // Try to evaluate any dependencies out of the loop. 8509 LHS = getSCEVAtScope(LHS, L); 8510 RHS = getSCEVAtScope(RHS, L); 8511 8512 // At this point, we would like to compute how many iterations of the 8513 // loop the predicate will return true for these inputs. 8514 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8515 // If there is a loop-invariant, force it into the RHS. 8516 std::swap(LHS, RHS); 8517 Pred = ICmpInst::getSwappedPredicate(Pred); 8518 } 8519 8520 bool ControllingFiniteLoop = 8521 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8522 // Simplify the operands before analyzing them. 8523 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8524 (EnableFiniteLoopControl ? ControllingFiniteLoop 8525 : false)); 8526 8527 // If we have a comparison of a chrec against a constant, try to use value 8528 // ranges to answer this query. 8529 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8530 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8531 if (AddRec->getLoop() == L) { 8532 // Form the constant range. 8533 ConstantRange CompRange = 8534 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8535 8536 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8537 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8538 } 8539 8540 // If this loop must exit based on this condition (or execute undefined 8541 // behaviour), and we can prove the test sequence produced must repeat 8542 // the same values on self-wrap of the IV, then we can infer that IV 8543 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8544 // loop. 8545 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8546 // TODO: We can peel off any functions which are invertible *in L*. Loop 8547 // invariant terms are effectively constants for our purposes here. 8548 auto *InnerLHS = LHS; 8549 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8550 InnerLHS = ZExt->getOperand(); 8551 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8552 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8553 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8554 StrideC && StrideC->getAPInt().isPowerOf2()) { 8555 auto Flags = AR->getNoWrapFlags(); 8556 Flags = setFlags(Flags, SCEV::FlagNW); 8557 SmallVector<const SCEV*> Operands{AR->operands()}; 8558 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8559 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8560 } 8561 } 8562 } 8563 8564 switch (Pred) { 8565 case ICmpInst::ICMP_NE: { // while (X != Y) 8566 // Convert to: while (X-Y != 0) 8567 if (LHS->getType()->isPointerTy()) { 8568 LHS = getLosslessPtrToIntExpr(LHS); 8569 if (isa<SCEVCouldNotCompute>(LHS)) 8570 return LHS; 8571 } 8572 if (RHS->getType()->isPointerTy()) { 8573 RHS = getLosslessPtrToIntExpr(RHS); 8574 if (isa<SCEVCouldNotCompute>(RHS)) 8575 return RHS; 8576 } 8577 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8578 AllowPredicates); 8579 if (EL.hasAnyInfo()) return EL; 8580 break; 8581 } 8582 case ICmpInst::ICMP_EQ: { // while (X == Y) 8583 // Convert to: while (X-Y == 0) 8584 if (LHS->getType()->isPointerTy()) { 8585 LHS = getLosslessPtrToIntExpr(LHS); 8586 if (isa<SCEVCouldNotCompute>(LHS)) 8587 return LHS; 8588 } 8589 if (RHS->getType()->isPointerTy()) { 8590 RHS = getLosslessPtrToIntExpr(RHS); 8591 if (isa<SCEVCouldNotCompute>(RHS)) 8592 return RHS; 8593 } 8594 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8595 if (EL.hasAnyInfo()) return EL; 8596 break; 8597 } 8598 case ICmpInst::ICMP_SLT: 8599 case ICmpInst::ICMP_ULT: { // while (X < Y) 8600 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8601 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8602 AllowPredicates); 8603 if (EL.hasAnyInfo()) return EL; 8604 break; 8605 } 8606 case ICmpInst::ICMP_SGT: 8607 case ICmpInst::ICMP_UGT: { // while (X > Y) 8608 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8609 ExitLimit EL = 8610 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8611 AllowPredicates); 8612 if (EL.hasAnyInfo()) return EL; 8613 break; 8614 } 8615 default: 8616 break; 8617 } 8618 8619 return getCouldNotCompute(); 8620 } 8621 8622 ScalarEvolution::ExitLimit 8623 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8624 SwitchInst *Switch, 8625 BasicBlock *ExitingBlock, 8626 bool ControlsExit) { 8627 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8628 8629 // Give up if the exit is the default dest of a switch. 8630 if (Switch->getDefaultDest() == ExitingBlock) 8631 return getCouldNotCompute(); 8632 8633 assert(L->contains(Switch->getDefaultDest()) && 8634 "Default case must not exit the loop!"); 8635 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8636 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8637 8638 // while (X != Y) --> while (X-Y != 0) 8639 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8640 if (EL.hasAnyInfo()) 8641 return EL; 8642 8643 return getCouldNotCompute(); 8644 } 8645 8646 static ConstantInt * 8647 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8648 ScalarEvolution &SE) { 8649 const SCEV *InVal = SE.getConstant(C); 8650 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8651 assert(isa<SCEVConstant>(Val) && 8652 "Evaluation of SCEV at constant didn't fold correctly?"); 8653 return cast<SCEVConstant>(Val)->getValue(); 8654 } 8655 8656 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8657 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8658 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8659 if (!RHS) 8660 return getCouldNotCompute(); 8661 8662 const BasicBlock *Latch = L->getLoopLatch(); 8663 if (!Latch) 8664 return getCouldNotCompute(); 8665 8666 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8667 if (!Predecessor) 8668 return getCouldNotCompute(); 8669 8670 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8671 // Return LHS in OutLHS and shift_opt in OutOpCode. 8672 auto MatchPositiveShift = 8673 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8674 8675 using namespace PatternMatch; 8676 8677 ConstantInt *ShiftAmt; 8678 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8679 OutOpCode = Instruction::LShr; 8680 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8681 OutOpCode = Instruction::AShr; 8682 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8683 OutOpCode = Instruction::Shl; 8684 else 8685 return false; 8686 8687 return ShiftAmt->getValue().isStrictlyPositive(); 8688 }; 8689 8690 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8691 // 8692 // loop: 8693 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8694 // %iv.shifted = lshr i32 %iv, <positive constant> 8695 // 8696 // Return true on a successful match. Return the corresponding PHI node (%iv 8697 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8698 auto MatchShiftRecurrence = 8699 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8700 Optional<Instruction::BinaryOps> PostShiftOpCode; 8701 8702 { 8703 Instruction::BinaryOps OpC; 8704 Value *V; 8705 8706 // If we encounter a shift instruction, "peel off" the shift operation, 8707 // and remember that we did so. Later when we inspect %iv's backedge 8708 // value, we will make sure that the backedge value uses the same 8709 // operation. 8710 // 8711 // Note: the peeled shift operation does not have to be the same 8712 // instruction as the one feeding into the PHI's backedge value. We only 8713 // really care about it being the same *kind* of shift instruction -- 8714 // that's all that is required for our later inferences to hold. 8715 if (MatchPositiveShift(LHS, V, OpC)) { 8716 PostShiftOpCode = OpC; 8717 LHS = V; 8718 } 8719 } 8720 8721 PNOut = dyn_cast<PHINode>(LHS); 8722 if (!PNOut || PNOut->getParent() != L->getHeader()) 8723 return false; 8724 8725 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8726 Value *OpLHS; 8727 8728 return 8729 // The backedge value for the PHI node must be a shift by a positive 8730 // amount 8731 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8732 8733 // of the PHI node itself 8734 OpLHS == PNOut && 8735 8736 // and the kind of shift should be match the kind of shift we peeled 8737 // off, if any. 8738 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8739 }; 8740 8741 PHINode *PN; 8742 Instruction::BinaryOps OpCode; 8743 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8744 return getCouldNotCompute(); 8745 8746 const DataLayout &DL = getDataLayout(); 8747 8748 // The key rationale for this optimization is that for some kinds of shift 8749 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8750 // within a finite number of iterations. If the condition guarding the 8751 // backedge (in the sense that the backedge is taken if the condition is true) 8752 // is false for the value the shift recurrence stabilizes to, then we know 8753 // that the backedge is taken only a finite number of times. 8754 8755 ConstantInt *StableValue = nullptr; 8756 switch (OpCode) { 8757 default: 8758 llvm_unreachable("Impossible case!"); 8759 8760 case Instruction::AShr: { 8761 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8762 // bitwidth(K) iterations. 8763 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8764 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8765 Predecessor->getTerminator(), &DT); 8766 auto *Ty = cast<IntegerType>(RHS->getType()); 8767 if (Known.isNonNegative()) 8768 StableValue = ConstantInt::get(Ty, 0); 8769 else if (Known.isNegative()) 8770 StableValue = ConstantInt::get(Ty, -1, true); 8771 else 8772 return getCouldNotCompute(); 8773 8774 break; 8775 } 8776 case Instruction::LShr: 8777 case Instruction::Shl: 8778 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8779 // stabilize to 0 in at most bitwidth(K) iterations. 8780 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8781 break; 8782 } 8783 8784 auto *Result = 8785 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8786 assert(Result->getType()->isIntegerTy(1) && 8787 "Otherwise cannot be an operand to a branch instruction"); 8788 8789 if (Result->isZeroValue()) { 8790 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8791 const SCEV *UpperBound = 8792 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8793 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8794 } 8795 8796 return getCouldNotCompute(); 8797 } 8798 8799 /// Return true if we can constant fold an instruction of the specified type, 8800 /// assuming that all operands were constants. 8801 static bool CanConstantFold(const Instruction *I) { 8802 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8803 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8804 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8805 return true; 8806 8807 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8808 if (const Function *F = CI->getCalledFunction()) 8809 return canConstantFoldCallTo(CI, F); 8810 return false; 8811 } 8812 8813 /// Determine whether this instruction can constant evolve within this loop 8814 /// assuming its operands can all constant evolve. 8815 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8816 // An instruction outside of the loop can't be derived from a loop PHI. 8817 if (!L->contains(I)) return false; 8818 8819 if (isa<PHINode>(I)) { 8820 // We don't currently keep track of the control flow needed to evaluate 8821 // PHIs, so we cannot handle PHIs inside of loops. 8822 return L->getHeader() == I->getParent(); 8823 } 8824 8825 // If we won't be able to constant fold this expression even if the operands 8826 // are constants, bail early. 8827 return CanConstantFold(I); 8828 } 8829 8830 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8831 /// recursing through each instruction operand until reaching a loop header phi. 8832 static PHINode * 8833 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8834 DenseMap<Instruction *, PHINode *> &PHIMap, 8835 unsigned Depth) { 8836 if (Depth > MaxConstantEvolvingDepth) 8837 return nullptr; 8838 8839 // Otherwise, we can evaluate this instruction if all of its operands are 8840 // constant or derived from a PHI node themselves. 8841 PHINode *PHI = nullptr; 8842 for (Value *Op : UseInst->operands()) { 8843 if (isa<Constant>(Op)) continue; 8844 8845 Instruction *OpInst = dyn_cast<Instruction>(Op); 8846 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8847 8848 PHINode *P = dyn_cast<PHINode>(OpInst); 8849 if (!P) 8850 // If this operand is already visited, reuse the prior result. 8851 // We may have P != PHI if this is the deepest point at which the 8852 // inconsistent paths meet. 8853 P = PHIMap.lookup(OpInst); 8854 if (!P) { 8855 // Recurse and memoize the results, whether a phi is found or not. 8856 // This recursive call invalidates pointers into PHIMap. 8857 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8858 PHIMap[OpInst] = P; 8859 } 8860 if (!P) 8861 return nullptr; // Not evolving from PHI 8862 if (PHI && PHI != P) 8863 return nullptr; // Evolving from multiple different PHIs. 8864 PHI = P; 8865 } 8866 // This is a expression evolving from a constant PHI! 8867 return PHI; 8868 } 8869 8870 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8871 /// in the loop that V is derived from. We allow arbitrary operations along the 8872 /// way, but the operands of an operation must either be constants or a value 8873 /// derived from a constant PHI. If this expression does not fit with these 8874 /// constraints, return null. 8875 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8876 Instruction *I = dyn_cast<Instruction>(V); 8877 if (!I || !canConstantEvolve(I, L)) return nullptr; 8878 8879 if (PHINode *PN = dyn_cast<PHINode>(I)) 8880 return PN; 8881 8882 // Record non-constant instructions contained by the loop. 8883 DenseMap<Instruction *, PHINode *> PHIMap; 8884 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8885 } 8886 8887 /// EvaluateExpression - Given an expression that passes the 8888 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8889 /// in the loop has the value PHIVal. If we can't fold this expression for some 8890 /// reason, return null. 8891 static Constant *EvaluateExpression(Value *V, const Loop *L, 8892 DenseMap<Instruction *, Constant *> &Vals, 8893 const DataLayout &DL, 8894 const TargetLibraryInfo *TLI) { 8895 // Convenient constant check, but redundant for recursive calls. 8896 if (Constant *C = dyn_cast<Constant>(V)) return C; 8897 Instruction *I = dyn_cast<Instruction>(V); 8898 if (!I) return nullptr; 8899 8900 if (Constant *C = Vals.lookup(I)) return C; 8901 8902 // An instruction inside the loop depends on a value outside the loop that we 8903 // weren't given a mapping for, or a value such as a call inside the loop. 8904 if (!canConstantEvolve(I, L)) return nullptr; 8905 8906 // An unmapped PHI can be due to a branch or another loop inside this loop, 8907 // or due to this not being the initial iteration through a loop where we 8908 // couldn't compute the evolution of this particular PHI last time. 8909 if (isa<PHINode>(I)) return nullptr; 8910 8911 std::vector<Constant*> Operands(I->getNumOperands()); 8912 8913 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8914 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8915 if (!Operand) { 8916 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8917 if (!Operands[i]) return nullptr; 8918 continue; 8919 } 8920 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8921 Vals[Operand] = C; 8922 if (!C) return nullptr; 8923 Operands[i] = C; 8924 } 8925 8926 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8927 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8928 Operands[1], DL, TLI); 8929 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8930 if (!LI->isVolatile()) 8931 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8932 } 8933 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8934 } 8935 8936 8937 // If every incoming value to PN except the one for BB is a specific Constant, 8938 // return that, else return nullptr. 8939 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8940 Constant *IncomingVal = nullptr; 8941 8942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8943 if (PN->getIncomingBlock(i) == BB) 8944 continue; 8945 8946 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8947 if (!CurrentVal) 8948 return nullptr; 8949 8950 if (IncomingVal != CurrentVal) { 8951 if (IncomingVal) 8952 return nullptr; 8953 IncomingVal = CurrentVal; 8954 } 8955 } 8956 8957 return IncomingVal; 8958 } 8959 8960 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8961 /// in the header of its containing loop, we know the loop executes a 8962 /// constant number of times, and the PHI node is just a recurrence 8963 /// involving constants, fold it. 8964 Constant * 8965 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8966 const APInt &BEs, 8967 const Loop *L) { 8968 auto I = ConstantEvolutionLoopExitValue.find(PN); 8969 if (I != ConstantEvolutionLoopExitValue.end()) 8970 return I->second; 8971 8972 if (BEs.ugt(MaxBruteForceIterations)) 8973 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8974 8975 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8976 8977 DenseMap<Instruction *, Constant *> CurrentIterVals; 8978 BasicBlock *Header = L->getHeader(); 8979 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8980 8981 BasicBlock *Latch = L->getLoopLatch(); 8982 if (!Latch) 8983 return nullptr; 8984 8985 for (PHINode &PHI : Header->phis()) { 8986 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8987 CurrentIterVals[&PHI] = StartCST; 8988 } 8989 if (!CurrentIterVals.count(PN)) 8990 return RetVal = nullptr; 8991 8992 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8993 8994 // Execute the loop symbolically to determine the exit value. 8995 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8996 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8997 8998 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8999 unsigned IterationNum = 0; 9000 const DataLayout &DL = getDataLayout(); 9001 for (; ; ++IterationNum) { 9002 if (IterationNum == NumIterations) 9003 return RetVal = CurrentIterVals[PN]; // Got exit value! 9004 9005 // Compute the value of the PHIs for the next iteration. 9006 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9007 DenseMap<Instruction *, Constant *> NextIterVals; 9008 Constant *NextPHI = 9009 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9010 if (!NextPHI) 9011 return nullptr; // Couldn't evaluate! 9012 NextIterVals[PN] = NextPHI; 9013 9014 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9015 9016 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9017 // cease to be able to evaluate one of them or if they stop evolving, 9018 // because that doesn't necessarily prevent us from computing PN. 9019 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9020 for (const auto &I : CurrentIterVals) { 9021 PHINode *PHI = dyn_cast<PHINode>(I.first); 9022 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9023 PHIsToCompute.emplace_back(PHI, I.second); 9024 } 9025 // We use two distinct loops because EvaluateExpression may invalidate any 9026 // iterators into CurrentIterVals. 9027 for (const auto &I : PHIsToCompute) { 9028 PHINode *PHI = I.first; 9029 Constant *&NextPHI = NextIterVals[PHI]; 9030 if (!NextPHI) { // Not already computed. 9031 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9032 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9033 } 9034 if (NextPHI != I.second) 9035 StoppedEvolving = false; 9036 } 9037 9038 // If all entries in CurrentIterVals == NextIterVals then we can stop 9039 // iterating, the loop can't continue to change. 9040 if (StoppedEvolving) 9041 return RetVal = CurrentIterVals[PN]; 9042 9043 CurrentIterVals.swap(NextIterVals); 9044 } 9045 } 9046 9047 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9048 Value *Cond, 9049 bool ExitWhen) { 9050 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9051 if (!PN) return getCouldNotCompute(); 9052 9053 // If the loop is canonicalized, the PHI will have exactly two entries. 9054 // That's the only form we support here. 9055 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9056 9057 DenseMap<Instruction *, Constant *> CurrentIterVals; 9058 BasicBlock *Header = L->getHeader(); 9059 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9060 9061 BasicBlock *Latch = L->getLoopLatch(); 9062 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9063 9064 for (PHINode &PHI : Header->phis()) { 9065 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9066 CurrentIterVals[&PHI] = StartCST; 9067 } 9068 if (!CurrentIterVals.count(PN)) 9069 return getCouldNotCompute(); 9070 9071 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9072 // the loop symbolically to determine when the condition gets a value of 9073 // "ExitWhen". 9074 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9075 const DataLayout &DL = getDataLayout(); 9076 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9077 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9078 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9079 9080 // Couldn't symbolically evaluate. 9081 if (!CondVal) return getCouldNotCompute(); 9082 9083 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9084 ++NumBruteForceTripCountsComputed; 9085 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9086 } 9087 9088 // Update all the PHI nodes for the next iteration. 9089 DenseMap<Instruction *, Constant *> NextIterVals; 9090 9091 // Create a list of which PHIs we need to compute. We want to do this before 9092 // calling EvaluateExpression on them because that may invalidate iterators 9093 // into CurrentIterVals. 9094 SmallVector<PHINode *, 8> PHIsToCompute; 9095 for (const auto &I : CurrentIterVals) { 9096 PHINode *PHI = dyn_cast<PHINode>(I.first); 9097 if (!PHI || PHI->getParent() != Header) continue; 9098 PHIsToCompute.push_back(PHI); 9099 } 9100 for (PHINode *PHI : PHIsToCompute) { 9101 Constant *&NextPHI = NextIterVals[PHI]; 9102 if (NextPHI) continue; // Already computed! 9103 9104 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9105 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9106 } 9107 CurrentIterVals.swap(NextIterVals); 9108 } 9109 9110 // Too many iterations were needed to evaluate. 9111 return getCouldNotCompute(); 9112 } 9113 9114 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9115 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9116 ValuesAtScopes[V]; 9117 // Check to see if we've folded this expression at this loop before. 9118 for (auto &LS : Values) 9119 if (LS.first == L) 9120 return LS.second ? LS.second : V; 9121 9122 Values.emplace_back(L, nullptr); 9123 9124 // Otherwise compute it. 9125 const SCEV *C = computeSCEVAtScope(V, L); 9126 for (auto &LS : reverse(ValuesAtScopes[V])) 9127 if (LS.first == L) { 9128 LS.second = C; 9129 if (!isa<SCEVConstant>(C)) 9130 ValuesAtScopesUsers[C].push_back({L, V}); 9131 break; 9132 } 9133 return C; 9134 } 9135 9136 /// This builds up a Constant using the ConstantExpr interface. That way, we 9137 /// will return Constants for objects which aren't represented by a 9138 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9139 /// Returns NULL if the SCEV isn't representable as a Constant. 9140 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9141 switch (V->getSCEVType()) { 9142 case scCouldNotCompute: 9143 case scAddRecExpr: 9144 return nullptr; 9145 case scConstant: 9146 return cast<SCEVConstant>(V)->getValue(); 9147 case scUnknown: 9148 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9149 case scSignExtend: { 9150 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9151 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9152 return ConstantExpr::getSExt(CastOp, SS->getType()); 9153 return nullptr; 9154 } 9155 case scZeroExtend: { 9156 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9157 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9158 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9159 return nullptr; 9160 } 9161 case scPtrToInt: { 9162 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9163 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9164 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9165 9166 return nullptr; 9167 } 9168 case scTruncate: { 9169 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9170 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9171 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9172 return nullptr; 9173 } 9174 case scAddExpr: { 9175 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9176 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9177 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9178 unsigned AS = PTy->getAddressSpace(); 9179 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9180 C = ConstantExpr::getBitCast(C, DestPtrTy); 9181 } 9182 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9183 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9184 if (!C2) 9185 return nullptr; 9186 9187 // First pointer! 9188 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9189 unsigned AS = C2->getType()->getPointerAddressSpace(); 9190 std::swap(C, C2); 9191 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9192 // The offsets have been converted to bytes. We can add bytes to an 9193 // i8* by GEP with the byte count in the first index. 9194 C = ConstantExpr::getBitCast(C, DestPtrTy); 9195 } 9196 9197 // Don't bother trying to sum two pointers. We probably can't 9198 // statically compute a load that results from it anyway. 9199 if (C2->getType()->isPointerTy()) 9200 return nullptr; 9201 9202 if (C->getType()->isPointerTy()) { 9203 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9204 C, C2); 9205 } else { 9206 C = ConstantExpr::getAdd(C, C2); 9207 } 9208 } 9209 return C; 9210 } 9211 return nullptr; 9212 } 9213 case scMulExpr: { 9214 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9215 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9216 // Don't bother with pointers at all. 9217 if (C->getType()->isPointerTy()) 9218 return nullptr; 9219 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9220 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9221 if (!C2 || C2->getType()->isPointerTy()) 9222 return nullptr; 9223 C = ConstantExpr::getMul(C, C2); 9224 } 9225 return C; 9226 } 9227 return nullptr; 9228 } 9229 case scUDivExpr: { 9230 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9231 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9232 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9233 if (LHS->getType() == RHS->getType()) 9234 return ConstantExpr::getUDiv(LHS, RHS); 9235 return nullptr; 9236 } 9237 case scSMaxExpr: 9238 case scUMaxExpr: 9239 case scSMinExpr: 9240 case scUMinExpr: 9241 case scSequentialUMinExpr: 9242 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9243 } 9244 llvm_unreachable("Unknown SCEV kind!"); 9245 } 9246 9247 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9248 if (isa<SCEVConstant>(V)) return V; 9249 9250 // If this instruction is evolved from a constant-evolving PHI, compute the 9251 // exit value from the loop without using SCEVs. 9252 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9253 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9254 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9255 const Loop *CurrLoop = this->LI[I->getParent()]; 9256 // Looking for loop exit value. 9257 if (CurrLoop && CurrLoop->getParentLoop() == L && 9258 PN->getParent() == CurrLoop->getHeader()) { 9259 // Okay, there is no closed form solution for the PHI node. Check 9260 // to see if the loop that contains it has a known backedge-taken 9261 // count. If so, we may be able to force computation of the exit 9262 // value. 9263 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9264 // This trivial case can show up in some degenerate cases where 9265 // the incoming IR has not yet been fully simplified. 9266 if (BackedgeTakenCount->isZero()) { 9267 Value *InitValue = nullptr; 9268 bool MultipleInitValues = false; 9269 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9270 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9271 if (!InitValue) 9272 InitValue = PN->getIncomingValue(i); 9273 else if (InitValue != PN->getIncomingValue(i)) { 9274 MultipleInitValues = true; 9275 break; 9276 } 9277 } 9278 } 9279 if (!MultipleInitValues && InitValue) 9280 return getSCEV(InitValue); 9281 } 9282 // Do we have a loop invariant value flowing around the backedge 9283 // for a loop which must execute the backedge? 9284 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9285 isKnownPositive(BackedgeTakenCount) && 9286 PN->getNumIncomingValues() == 2) { 9287 9288 unsigned InLoopPred = 9289 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9290 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9291 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9292 return getSCEV(BackedgeVal); 9293 } 9294 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9295 // Okay, we know how many times the containing loop executes. If 9296 // this is a constant evolving PHI node, get the final value at 9297 // the specified iteration number. 9298 Constant *RV = getConstantEvolutionLoopExitValue( 9299 PN, BTCC->getAPInt(), CurrLoop); 9300 if (RV) return getSCEV(RV); 9301 } 9302 } 9303 9304 // If there is a single-input Phi, evaluate it at our scope. If we can 9305 // prove that this replacement does not break LCSSA form, use new value. 9306 if (PN->getNumOperands() == 1) { 9307 const SCEV *Input = getSCEV(PN->getOperand(0)); 9308 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9309 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9310 // for the simplest case just support constants. 9311 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9312 } 9313 } 9314 9315 // Okay, this is an expression that we cannot symbolically evaluate 9316 // into a SCEV. Check to see if it's possible to symbolically evaluate 9317 // the arguments into constants, and if so, try to constant propagate the 9318 // result. This is particularly useful for computing loop exit values. 9319 if (CanConstantFold(I)) { 9320 SmallVector<Constant *, 4> Operands; 9321 bool MadeImprovement = false; 9322 for (Value *Op : I->operands()) { 9323 if (Constant *C = dyn_cast<Constant>(Op)) { 9324 Operands.push_back(C); 9325 continue; 9326 } 9327 9328 // If any of the operands is non-constant and if they are 9329 // non-integer and non-pointer, don't even try to analyze them 9330 // with scev techniques. 9331 if (!isSCEVable(Op->getType())) 9332 return V; 9333 9334 const SCEV *OrigV = getSCEV(Op); 9335 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9336 MadeImprovement |= OrigV != OpV; 9337 9338 Constant *C = BuildConstantFromSCEV(OpV); 9339 if (!C) return V; 9340 if (C->getType() != Op->getType()) 9341 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9342 Op->getType(), 9343 false), 9344 C, Op->getType()); 9345 Operands.push_back(C); 9346 } 9347 9348 // Check to see if getSCEVAtScope actually made an improvement. 9349 if (MadeImprovement) { 9350 Constant *C = nullptr; 9351 const DataLayout &DL = getDataLayout(); 9352 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9353 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9354 Operands[1], DL, &TLI); 9355 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9356 if (!Load->isVolatile()) 9357 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9358 DL); 9359 } else 9360 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9361 if (!C) return V; 9362 return getSCEV(C); 9363 } 9364 } 9365 } 9366 9367 // This is some other type of SCEVUnknown, just return it. 9368 return V; 9369 } 9370 9371 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9372 const auto *Comm = cast<SCEVNAryExpr>(V); 9373 // Avoid performing the look-up in the common case where the specified 9374 // expression has no loop-variant portions. 9375 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9376 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9377 if (OpAtScope != Comm->getOperand(i)) { 9378 // Okay, at least one of these operands is loop variant but might be 9379 // foldable. Build a new instance of the folded commutative expression. 9380 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9381 Comm->op_begin()+i); 9382 NewOps.push_back(OpAtScope); 9383 9384 for (++i; i != e; ++i) { 9385 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9386 NewOps.push_back(OpAtScope); 9387 } 9388 if (isa<SCEVAddExpr>(Comm)) 9389 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9390 if (isa<SCEVMulExpr>(Comm)) 9391 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9392 if (isa<SCEVMinMaxExpr>(Comm)) 9393 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9394 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9395 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9396 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9397 } 9398 } 9399 // If we got here, all operands are loop invariant. 9400 return Comm; 9401 } 9402 9403 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9404 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9405 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9406 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9407 return Div; // must be loop invariant 9408 return getUDivExpr(LHS, RHS); 9409 } 9410 9411 // If this is a loop recurrence for a loop that does not contain L, then we 9412 // are dealing with the final value computed by the loop. 9413 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9414 // First, attempt to evaluate each operand. 9415 // Avoid performing the look-up in the common case where the specified 9416 // expression has no loop-variant portions. 9417 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9418 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9419 if (OpAtScope == AddRec->getOperand(i)) 9420 continue; 9421 9422 // Okay, at least one of these operands is loop variant but might be 9423 // foldable. Build a new instance of the folded commutative expression. 9424 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9425 AddRec->op_begin()+i); 9426 NewOps.push_back(OpAtScope); 9427 for (++i; i != e; ++i) 9428 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9429 9430 const SCEV *FoldedRec = 9431 getAddRecExpr(NewOps, AddRec->getLoop(), 9432 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9433 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9434 // The addrec may be folded to a nonrecurrence, for example, if the 9435 // induction variable is multiplied by zero after constant folding. Go 9436 // ahead and return the folded value. 9437 if (!AddRec) 9438 return FoldedRec; 9439 break; 9440 } 9441 9442 // If the scope is outside the addrec's loop, evaluate it by using the 9443 // loop exit value of the addrec. 9444 if (!AddRec->getLoop()->contains(L)) { 9445 // To evaluate this recurrence, we need to know how many times the AddRec 9446 // loop iterates. Compute this now. 9447 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9448 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9449 9450 // Then, evaluate the AddRec. 9451 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9452 } 9453 9454 return AddRec; 9455 } 9456 9457 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9458 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9459 if (Op == Cast->getOperand()) 9460 return Cast; // must be loop invariant 9461 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9462 } 9463 9464 llvm_unreachable("Unknown SCEV type!"); 9465 } 9466 9467 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9468 return getSCEVAtScope(getSCEV(V), L); 9469 } 9470 9471 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9472 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9473 return stripInjectiveFunctions(ZExt->getOperand()); 9474 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9475 return stripInjectiveFunctions(SExt->getOperand()); 9476 return S; 9477 } 9478 9479 /// Finds the minimum unsigned root of the following equation: 9480 /// 9481 /// A * X = B (mod N) 9482 /// 9483 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9484 /// A and B isn't important. 9485 /// 9486 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9487 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9488 ScalarEvolution &SE) { 9489 uint32_t BW = A.getBitWidth(); 9490 assert(BW == SE.getTypeSizeInBits(B->getType())); 9491 assert(A != 0 && "A must be non-zero."); 9492 9493 // 1. D = gcd(A, N) 9494 // 9495 // The gcd of A and N may have only one prime factor: 2. The number of 9496 // trailing zeros in A is its multiplicity 9497 uint32_t Mult2 = A.countTrailingZeros(); 9498 // D = 2^Mult2 9499 9500 // 2. Check if B is divisible by D. 9501 // 9502 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9503 // is not less than multiplicity of this prime factor for D. 9504 if (SE.GetMinTrailingZeros(B) < Mult2) 9505 return SE.getCouldNotCompute(); 9506 9507 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9508 // modulo (N / D). 9509 // 9510 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9511 // (N / D) in general. The inverse itself always fits into BW bits, though, 9512 // so we immediately truncate it. 9513 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9514 APInt Mod(BW + 1, 0); 9515 Mod.setBit(BW - Mult2); // Mod = N / D 9516 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9517 9518 // 4. Compute the minimum unsigned root of the equation: 9519 // I * (B / D) mod (N / D) 9520 // To simplify the computation, we factor out the divide by D: 9521 // (I * B mod N) / D 9522 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9523 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9524 } 9525 9526 /// For a given quadratic addrec, generate coefficients of the corresponding 9527 /// quadratic equation, multiplied by a common value to ensure that they are 9528 /// integers. 9529 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9530 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9531 /// were multiplied by, and BitWidth is the bit width of the original addrec 9532 /// coefficients. 9533 /// This function returns None if the addrec coefficients are not compile- 9534 /// time constants. 9535 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9536 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9537 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9538 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9539 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9540 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9541 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9542 << *AddRec << '\n'); 9543 9544 // We currently can only solve this if the coefficients are constants. 9545 if (!LC || !MC || !NC) { 9546 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9547 return None; 9548 } 9549 9550 APInt L = LC->getAPInt(); 9551 APInt M = MC->getAPInt(); 9552 APInt N = NC->getAPInt(); 9553 assert(!N.isZero() && "This is not a quadratic addrec"); 9554 9555 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9556 unsigned NewWidth = BitWidth + 1; 9557 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9558 << BitWidth << '\n'); 9559 // The sign-extension (as opposed to a zero-extension) here matches the 9560 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9561 N = N.sext(NewWidth); 9562 M = M.sext(NewWidth); 9563 L = L.sext(NewWidth); 9564 9565 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9566 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9567 // L+M, L+2M+N, L+3M+3N, ... 9568 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9569 // 9570 // The equation Acc = 0 is then 9571 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9572 // In a quadratic form it becomes: 9573 // N n^2 + (2M-N) n + 2L = 0. 9574 9575 APInt A = N; 9576 APInt B = 2 * M - A; 9577 APInt C = 2 * L; 9578 APInt T = APInt(NewWidth, 2); 9579 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9580 << "x + " << C << ", coeff bw: " << NewWidth 9581 << ", multiplied by " << T << '\n'); 9582 return std::make_tuple(A, B, C, T, BitWidth); 9583 } 9584 9585 /// Helper function to compare optional APInts: 9586 /// (a) if X and Y both exist, return min(X, Y), 9587 /// (b) if neither X nor Y exist, return None, 9588 /// (c) if exactly one of X and Y exists, return that value. 9589 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9590 if (X.hasValue() && Y.hasValue()) { 9591 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9592 APInt XW = X->sextOrSelf(W); 9593 APInt YW = Y->sextOrSelf(W); 9594 return XW.slt(YW) ? *X : *Y; 9595 } 9596 if (!X.hasValue() && !Y.hasValue()) 9597 return None; 9598 return X.hasValue() ? *X : *Y; 9599 } 9600 9601 /// Helper function to truncate an optional APInt to a given BitWidth. 9602 /// When solving addrec-related equations, it is preferable to return a value 9603 /// that has the same bit width as the original addrec's coefficients. If the 9604 /// solution fits in the original bit width, truncate it (except for i1). 9605 /// Returning a value of a different bit width may inhibit some optimizations. 9606 /// 9607 /// In general, a solution to a quadratic equation generated from an addrec 9608 /// may require BW+1 bits, where BW is the bit width of the addrec's 9609 /// coefficients. The reason is that the coefficients of the quadratic 9610 /// equation are BW+1 bits wide (to avoid truncation when converting from 9611 /// the addrec to the equation). 9612 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9613 if (!X.hasValue()) 9614 return None; 9615 unsigned W = X->getBitWidth(); 9616 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9617 return X->trunc(BitWidth); 9618 return X; 9619 } 9620 9621 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9622 /// iterations. The values L, M, N are assumed to be signed, and they 9623 /// should all have the same bit widths. 9624 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9625 /// where BW is the bit width of the addrec's coefficients. 9626 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9627 /// returned as such, otherwise the bit width of the returned value may 9628 /// be greater than BW. 9629 /// 9630 /// This function returns None if 9631 /// (a) the addrec coefficients are not constant, or 9632 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9633 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9634 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9635 static Optional<APInt> 9636 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9637 APInt A, B, C, M; 9638 unsigned BitWidth; 9639 auto T = GetQuadraticEquation(AddRec); 9640 if (!T.hasValue()) 9641 return None; 9642 9643 std::tie(A, B, C, M, BitWidth) = *T; 9644 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9645 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9646 if (!X.hasValue()) 9647 return None; 9648 9649 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9650 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9651 if (!V->isZero()) 9652 return None; 9653 9654 return TruncIfPossible(X, BitWidth); 9655 } 9656 9657 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9658 /// iterations. The values M, N are assumed to be signed, and they 9659 /// should all have the same bit widths. 9660 /// Find the least n such that c(n) does not belong to the given range, 9661 /// while c(n-1) does. 9662 /// 9663 /// This function returns None if 9664 /// (a) the addrec coefficients are not constant, or 9665 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9666 /// bounds of the range. 9667 static Optional<APInt> 9668 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9669 const ConstantRange &Range, ScalarEvolution &SE) { 9670 assert(AddRec->getOperand(0)->isZero() && 9671 "Starting value of addrec should be 0"); 9672 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9673 << Range << ", addrec " << *AddRec << '\n'); 9674 // This case is handled in getNumIterationsInRange. Here we can assume that 9675 // we start in the range. 9676 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9677 "Addrec's initial value should be in range"); 9678 9679 APInt A, B, C, M; 9680 unsigned BitWidth; 9681 auto T = GetQuadraticEquation(AddRec); 9682 if (!T.hasValue()) 9683 return None; 9684 9685 // Be careful about the return value: there can be two reasons for not 9686 // returning an actual number. First, if no solutions to the equations 9687 // were found, and second, if the solutions don't leave the given range. 9688 // The first case means that the actual solution is "unknown", the second 9689 // means that it's known, but not valid. If the solution is unknown, we 9690 // cannot make any conclusions. 9691 // Return a pair: the optional solution and a flag indicating if the 9692 // solution was found. 9693 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9694 // Solve for signed overflow and unsigned overflow, pick the lower 9695 // solution. 9696 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9697 << Bound << " (before multiplying by " << M << ")\n"); 9698 Bound *= M; // The quadratic equation multiplier. 9699 9700 Optional<APInt> SO = None; 9701 if (BitWidth > 1) { 9702 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9703 "signed overflow\n"); 9704 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9705 } 9706 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9707 "unsigned overflow\n"); 9708 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9709 BitWidth+1); 9710 9711 auto LeavesRange = [&] (const APInt &X) { 9712 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9713 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9714 if (Range.contains(V0->getValue())) 9715 return false; 9716 // X should be at least 1, so X-1 is non-negative. 9717 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9718 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9719 if (Range.contains(V1->getValue())) 9720 return true; 9721 return false; 9722 }; 9723 9724 // If SolveQuadraticEquationWrap returns None, it means that there can 9725 // be a solution, but the function failed to find it. We cannot treat it 9726 // as "no solution". 9727 if (!SO.hasValue() || !UO.hasValue()) 9728 return { None, false }; 9729 9730 // Check the smaller value first to see if it leaves the range. 9731 // At this point, both SO and UO must have values. 9732 Optional<APInt> Min = MinOptional(SO, UO); 9733 if (LeavesRange(*Min)) 9734 return { Min, true }; 9735 Optional<APInt> Max = Min == SO ? UO : SO; 9736 if (LeavesRange(*Max)) 9737 return { Max, true }; 9738 9739 // Solutions were found, but were eliminated, hence the "true". 9740 return { None, true }; 9741 }; 9742 9743 std::tie(A, B, C, M, BitWidth) = *T; 9744 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9745 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9746 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9747 auto SL = SolveForBoundary(Lower); 9748 auto SU = SolveForBoundary(Upper); 9749 // If any of the solutions was unknown, no meaninigful conclusions can 9750 // be made. 9751 if (!SL.second || !SU.second) 9752 return None; 9753 9754 // Claim: The correct solution is not some value between Min and Max. 9755 // 9756 // Justification: Assuming that Min and Max are different values, one of 9757 // them is when the first signed overflow happens, the other is when the 9758 // first unsigned overflow happens. Crossing the range boundary is only 9759 // possible via an overflow (treating 0 as a special case of it, modeling 9760 // an overflow as crossing k*2^W for some k). 9761 // 9762 // The interesting case here is when Min was eliminated as an invalid 9763 // solution, but Max was not. The argument is that if there was another 9764 // overflow between Min and Max, it would also have been eliminated if 9765 // it was considered. 9766 // 9767 // For a given boundary, it is possible to have two overflows of the same 9768 // type (signed/unsigned) without having the other type in between: this 9769 // can happen when the vertex of the parabola is between the iterations 9770 // corresponding to the overflows. This is only possible when the two 9771 // overflows cross k*2^W for the same k. In such case, if the second one 9772 // left the range (and was the first one to do so), the first overflow 9773 // would have to enter the range, which would mean that either we had left 9774 // the range before or that we started outside of it. Both of these cases 9775 // are contradictions. 9776 // 9777 // Claim: In the case where SolveForBoundary returns None, the correct 9778 // solution is not some value between the Max for this boundary and the 9779 // Min of the other boundary. 9780 // 9781 // Justification: Assume that we had such Max_A and Min_B corresponding 9782 // to range boundaries A and B and such that Max_A < Min_B. If there was 9783 // a solution between Max_A and Min_B, it would have to be caused by an 9784 // overflow corresponding to either A or B. It cannot correspond to B, 9785 // since Min_B is the first occurrence of such an overflow. If it 9786 // corresponded to A, it would have to be either a signed or an unsigned 9787 // overflow that is larger than both eliminated overflows for A. But 9788 // between the eliminated overflows and this overflow, the values would 9789 // cover the entire value space, thus crossing the other boundary, which 9790 // is a contradiction. 9791 9792 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9793 } 9794 9795 ScalarEvolution::ExitLimit 9796 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9797 bool AllowPredicates) { 9798 9799 // This is only used for loops with a "x != y" exit test. The exit condition 9800 // is now expressed as a single expression, V = x-y. So the exit test is 9801 // effectively V != 0. We know and take advantage of the fact that this 9802 // expression only being used in a comparison by zero context. 9803 9804 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9805 // If the value is a constant 9806 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9807 // If the value is already zero, the branch will execute zero times. 9808 if (C->getValue()->isZero()) return C; 9809 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9810 } 9811 9812 const SCEVAddRecExpr *AddRec = 9813 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9814 9815 if (!AddRec && AllowPredicates) 9816 // Try to make this an AddRec using runtime tests, in the first X 9817 // iterations of this loop, where X is the SCEV expression found by the 9818 // algorithm below. 9819 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9820 9821 if (!AddRec || AddRec->getLoop() != L) 9822 return getCouldNotCompute(); 9823 9824 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9825 // the quadratic equation to solve it. 9826 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9827 // We can only use this value if the chrec ends up with an exact zero 9828 // value at this index. When solving for "X*X != 5", for example, we 9829 // should not accept a root of 2. 9830 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9831 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9832 return ExitLimit(R, R, false, Predicates); 9833 } 9834 return getCouldNotCompute(); 9835 } 9836 9837 // Otherwise we can only handle this if it is affine. 9838 if (!AddRec->isAffine()) 9839 return getCouldNotCompute(); 9840 9841 // If this is an affine expression, the execution count of this branch is 9842 // the minimum unsigned root of the following equation: 9843 // 9844 // Start + Step*N = 0 (mod 2^BW) 9845 // 9846 // equivalent to: 9847 // 9848 // Step*N = -Start (mod 2^BW) 9849 // 9850 // where BW is the common bit width of Start and Step. 9851 9852 // Get the initial value for the loop. 9853 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9854 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9855 9856 // For now we handle only constant steps. 9857 // 9858 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9859 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9860 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9861 // We have not yet seen any such cases. 9862 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9863 if (!StepC || StepC->getValue()->isZero()) 9864 return getCouldNotCompute(); 9865 9866 // For positive steps (counting up until unsigned overflow): 9867 // N = -Start/Step (as unsigned) 9868 // For negative steps (counting down to zero): 9869 // N = Start/-Step 9870 // First compute the unsigned distance from zero in the direction of Step. 9871 bool CountDown = StepC->getAPInt().isNegative(); 9872 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9873 9874 // Handle unitary steps, which cannot wraparound. 9875 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9876 // N = Distance (as unsigned) 9877 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9878 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9879 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9880 9881 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9882 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9883 // case, and see if we can improve the bound. 9884 // 9885 // Explicitly handling this here is necessary because getUnsignedRange 9886 // isn't context-sensitive; it doesn't know that we only care about the 9887 // range inside the loop. 9888 const SCEV *Zero = getZero(Distance->getType()); 9889 const SCEV *One = getOne(Distance->getType()); 9890 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9891 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9892 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9893 // as "unsigned_max(Distance + 1) - 1". 9894 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9895 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9896 } 9897 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9898 } 9899 9900 // If the condition controls loop exit (the loop exits only if the expression 9901 // is true) and the addition is no-wrap we can use unsigned divide to 9902 // compute the backedge count. In this case, the step may not divide the 9903 // distance, but we don't care because if the condition is "missed" the loop 9904 // will have undefined behavior due to wrapping. 9905 if (ControlsExit && AddRec->hasNoSelfWrap() && 9906 loopHasNoAbnormalExits(AddRec->getLoop())) { 9907 const SCEV *Exact = 9908 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9909 const SCEV *Max = getCouldNotCompute(); 9910 if (Exact != getCouldNotCompute()) { 9911 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9912 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9913 } 9914 return ExitLimit(Exact, Max, false, Predicates); 9915 } 9916 9917 // Solve the general equation. 9918 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9919 getNegativeSCEV(Start), *this); 9920 9921 const SCEV *M = E; 9922 if (E != getCouldNotCompute()) { 9923 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 9924 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 9925 } 9926 return ExitLimit(E, M, false, Predicates); 9927 } 9928 9929 ScalarEvolution::ExitLimit 9930 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9931 // Loops that look like: while (X == 0) are very strange indeed. We don't 9932 // handle them yet except for the trivial case. This could be expanded in the 9933 // future as needed. 9934 9935 // If the value is a constant, check to see if it is known to be non-zero 9936 // already. If so, the backedge will execute zero times. 9937 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9938 if (!C->getValue()->isZero()) 9939 return getZero(C->getType()); 9940 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9941 } 9942 9943 // We could implement others, but I really doubt anyone writes loops like 9944 // this, and if they did, they would already be constant folded. 9945 return getCouldNotCompute(); 9946 } 9947 9948 std::pair<const BasicBlock *, const BasicBlock *> 9949 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9950 const { 9951 // If the block has a unique predecessor, then there is no path from the 9952 // predecessor to the block that does not go through the direct edge 9953 // from the predecessor to the block. 9954 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9955 return {Pred, BB}; 9956 9957 // A loop's header is defined to be a block that dominates the loop. 9958 // If the header has a unique predecessor outside the loop, it must be 9959 // a block that has exactly one successor that can reach the loop. 9960 if (const Loop *L = LI.getLoopFor(BB)) 9961 return {L->getLoopPredecessor(), L->getHeader()}; 9962 9963 return {nullptr, nullptr}; 9964 } 9965 9966 /// SCEV structural equivalence is usually sufficient for testing whether two 9967 /// expressions are equal, however for the purposes of looking for a condition 9968 /// guarding a loop, it can be useful to be a little more general, since a 9969 /// front-end may have replicated the controlling expression. 9970 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9971 // Quick check to see if they are the same SCEV. 9972 if (A == B) return true; 9973 9974 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9975 // Not all instructions that are "identical" compute the same value. For 9976 // instance, two distinct alloca instructions allocating the same type are 9977 // identical and do not read memory; but compute distinct values. 9978 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9979 }; 9980 9981 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9982 // two different instructions with the same value. Check for this case. 9983 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9984 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9985 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9986 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9987 if (ComputesEqualValues(AI, BI)) 9988 return true; 9989 9990 // Otherwise assume they may have a different value. 9991 return false; 9992 } 9993 9994 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9995 const SCEV *&LHS, const SCEV *&RHS, 9996 unsigned Depth, 9997 bool ControllingFiniteLoop) { 9998 bool Changed = false; 9999 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10000 // '0 != 0'. 10001 auto TrivialCase = [&](bool TriviallyTrue) { 10002 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10003 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10004 return true; 10005 }; 10006 // If we hit the max recursion limit bail out. 10007 if (Depth >= 3) 10008 return false; 10009 10010 // Canonicalize a constant to the right side. 10011 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10012 // Check for both operands constant. 10013 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10014 if (ConstantExpr::getICmp(Pred, 10015 LHSC->getValue(), 10016 RHSC->getValue())->isNullValue()) 10017 return TrivialCase(false); 10018 else 10019 return TrivialCase(true); 10020 } 10021 // Otherwise swap the operands to put the constant on the right. 10022 std::swap(LHS, RHS); 10023 Pred = ICmpInst::getSwappedPredicate(Pred); 10024 Changed = true; 10025 } 10026 10027 // If we're comparing an addrec with a value which is loop-invariant in the 10028 // addrec's loop, put the addrec on the left. Also make a dominance check, 10029 // as both operands could be addrecs loop-invariant in each other's loop. 10030 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10031 const Loop *L = AR->getLoop(); 10032 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10033 std::swap(LHS, RHS); 10034 Pred = ICmpInst::getSwappedPredicate(Pred); 10035 Changed = true; 10036 } 10037 } 10038 10039 // If there's a constant operand, canonicalize comparisons with boundary 10040 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10041 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10042 const APInt &RA = RC->getAPInt(); 10043 10044 bool SimplifiedByConstantRange = false; 10045 10046 if (!ICmpInst::isEquality(Pred)) { 10047 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10048 if (ExactCR.isFullSet()) 10049 return TrivialCase(true); 10050 else if (ExactCR.isEmptySet()) 10051 return TrivialCase(false); 10052 10053 APInt NewRHS; 10054 CmpInst::Predicate NewPred; 10055 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10056 ICmpInst::isEquality(NewPred)) { 10057 // We were able to convert an inequality to an equality. 10058 Pred = NewPred; 10059 RHS = getConstant(NewRHS); 10060 Changed = SimplifiedByConstantRange = true; 10061 } 10062 } 10063 10064 if (!SimplifiedByConstantRange) { 10065 switch (Pred) { 10066 default: 10067 break; 10068 case ICmpInst::ICMP_EQ: 10069 case ICmpInst::ICMP_NE: 10070 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10071 if (!RA) 10072 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10073 if (const SCEVMulExpr *ME = 10074 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10075 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10076 ME->getOperand(0)->isAllOnesValue()) { 10077 RHS = AE->getOperand(1); 10078 LHS = ME->getOperand(1); 10079 Changed = true; 10080 } 10081 break; 10082 10083 10084 // The "Should have been caught earlier!" messages refer to the fact 10085 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10086 // should have fired on the corresponding cases, and canonicalized the 10087 // check to trivial case. 10088 10089 case ICmpInst::ICMP_UGE: 10090 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10091 Pred = ICmpInst::ICMP_UGT; 10092 RHS = getConstant(RA - 1); 10093 Changed = true; 10094 break; 10095 case ICmpInst::ICMP_ULE: 10096 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10097 Pred = ICmpInst::ICMP_ULT; 10098 RHS = getConstant(RA + 1); 10099 Changed = true; 10100 break; 10101 case ICmpInst::ICMP_SGE: 10102 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10103 Pred = ICmpInst::ICMP_SGT; 10104 RHS = getConstant(RA - 1); 10105 Changed = true; 10106 break; 10107 case ICmpInst::ICMP_SLE: 10108 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10109 Pred = ICmpInst::ICMP_SLT; 10110 RHS = getConstant(RA + 1); 10111 Changed = true; 10112 break; 10113 } 10114 } 10115 } 10116 10117 // Check for obvious equality. 10118 if (HasSameValue(LHS, RHS)) { 10119 if (ICmpInst::isTrueWhenEqual(Pred)) 10120 return TrivialCase(true); 10121 if (ICmpInst::isFalseWhenEqual(Pred)) 10122 return TrivialCase(false); 10123 } 10124 10125 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10126 // adding or subtracting 1 from one of the operands. This can be done for 10127 // one of two reasons: 10128 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10129 // 2) The loop is finite, with this comparison controlling the exit. Since the 10130 // loop is finite, the bound cannot include the corresponding boundary 10131 // (otherwise it would loop forever). 10132 switch (Pred) { 10133 case ICmpInst::ICMP_SLE: 10134 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10135 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10136 SCEV::FlagNSW); 10137 Pred = ICmpInst::ICMP_SLT; 10138 Changed = true; 10139 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10140 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10141 SCEV::FlagNSW); 10142 Pred = ICmpInst::ICMP_SLT; 10143 Changed = true; 10144 } 10145 break; 10146 case ICmpInst::ICMP_SGE: 10147 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10148 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10149 SCEV::FlagNSW); 10150 Pred = ICmpInst::ICMP_SGT; 10151 Changed = true; 10152 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10153 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10154 SCEV::FlagNSW); 10155 Pred = ICmpInst::ICMP_SGT; 10156 Changed = true; 10157 } 10158 break; 10159 case ICmpInst::ICMP_ULE: 10160 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10161 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10162 SCEV::FlagNUW); 10163 Pred = ICmpInst::ICMP_ULT; 10164 Changed = true; 10165 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10166 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10167 Pred = ICmpInst::ICMP_ULT; 10168 Changed = true; 10169 } 10170 break; 10171 case ICmpInst::ICMP_UGE: 10172 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10173 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10174 Pred = ICmpInst::ICMP_UGT; 10175 Changed = true; 10176 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10177 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10178 SCEV::FlagNUW); 10179 Pred = ICmpInst::ICMP_UGT; 10180 Changed = true; 10181 } 10182 break; 10183 default: 10184 break; 10185 } 10186 10187 // TODO: More simplifications are possible here. 10188 10189 // Recursively simplify until we either hit a recursion limit or nothing 10190 // changes. 10191 if (Changed) 10192 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10193 ControllingFiniteLoop); 10194 10195 return Changed; 10196 } 10197 10198 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10199 return getSignedRangeMax(S).isNegative(); 10200 } 10201 10202 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10203 return getSignedRangeMin(S).isStrictlyPositive(); 10204 } 10205 10206 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10207 return !getSignedRangeMin(S).isNegative(); 10208 } 10209 10210 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10211 return !getSignedRangeMax(S).isStrictlyPositive(); 10212 } 10213 10214 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10215 return getUnsignedRangeMin(S) != 0; 10216 } 10217 10218 std::pair<const SCEV *, const SCEV *> 10219 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10220 // Compute SCEV on entry of loop L. 10221 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10222 if (Start == getCouldNotCompute()) 10223 return { Start, Start }; 10224 // Compute post increment SCEV for loop L. 10225 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10226 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10227 return { Start, PostInc }; 10228 } 10229 10230 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10231 const SCEV *LHS, const SCEV *RHS) { 10232 // First collect all loops. 10233 SmallPtrSet<const Loop *, 8> LoopsUsed; 10234 getUsedLoops(LHS, LoopsUsed); 10235 getUsedLoops(RHS, LoopsUsed); 10236 10237 if (LoopsUsed.empty()) 10238 return false; 10239 10240 // Domination relationship must be a linear order on collected loops. 10241 #ifndef NDEBUG 10242 for (auto *L1 : LoopsUsed) 10243 for (auto *L2 : LoopsUsed) 10244 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10245 DT.dominates(L2->getHeader(), L1->getHeader())) && 10246 "Domination relationship is not a linear order"); 10247 #endif 10248 10249 const Loop *MDL = 10250 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10251 [&](const Loop *L1, const Loop *L2) { 10252 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10253 }); 10254 10255 // Get init and post increment value for LHS. 10256 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10257 // if LHS contains unknown non-invariant SCEV then bail out. 10258 if (SplitLHS.first == getCouldNotCompute()) 10259 return false; 10260 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10261 // Get init and post increment value for RHS. 10262 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10263 // if RHS contains unknown non-invariant SCEV then bail out. 10264 if (SplitRHS.first == getCouldNotCompute()) 10265 return false; 10266 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10267 // It is possible that init SCEV contains an invariant load but it does 10268 // not dominate MDL and is not available at MDL loop entry, so we should 10269 // check it here. 10270 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10271 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10272 return false; 10273 10274 // It seems backedge guard check is faster than entry one so in some cases 10275 // it can speed up whole estimation by short circuit 10276 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10277 SplitRHS.second) && 10278 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10279 } 10280 10281 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10282 const SCEV *LHS, const SCEV *RHS) { 10283 // Canonicalize the inputs first. 10284 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10285 10286 if (isKnownViaInduction(Pred, LHS, RHS)) 10287 return true; 10288 10289 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10290 return true; 10291 10292 // Otherwise see what can be done with some simple reasoning. 10293 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10294 } 10295 10296 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10297 const SCEV *LHS, 10298 const SCEV *RHS) { 10299 if (isKnownPredicate(Pred, LHS, RHS)) 10300 return true; 10301 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10302 return false; 10303 return None; 10304 } 10305 10306 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10307 const SCEV *LHS, const SCEV *RHS, 10308 const Instruction *CtxI) { 10309 // TODO: Analyze guards and assumes from Context's block. 10310 return isKnownPredicate(Pred, LHS, RHS) || 10311 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10312 } 10313 10314 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10315 const SCEV *LHS, 10316 const SCEV *RHS, 10317 const Instruction *CtxI) { 10318 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10319 if (KnownWithoutContext) 10320 return KnownWithoutContext; 10321 10322 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10323 return true; 10324 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10325 ICmpInst::getInversePredicate(Pred), 10326 LHS, RHS)) 10327 return false; 10328 return None; 10329 } 10330 10331 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10332 const SCEVAddRecExpr *LHS, 10333 const SCEV *RHS) { 10334 const Loop *L = LHS->getLoop(); 10335 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10336 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10337 } 10338 10339 Optional<ScalarEvolution::MonotonicPredicateType> 10340 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10341 ICmpInst::Predicate Pred) { 10342 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10343 10344 #ifndef NDEBUG 10345 // Verify an invariant: inverting the predicate should turn a monotonically 10346 // increasing change to a monotonically decreasing one, and vice versa. 10347 if (Result) { 10348 auto ResultSwapped = 10349 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10350 10351 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10352 assert(ResultSwapped.getValue() != Result.getValue() && 10353 "monotonicity should flip as we flip the predicate"); 10354 } 10355 #endif 10356 10357 return Result; 10358 } 10359 10360 Optional<ScalarEvolution::MonotonicPredicateType> 10361 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10362 ICmpInst::Predicate Pred) { 10363 // A zero step value for LHS means the induction variable is essentially a 10364 // loop invariant value. We don't really depend on the predicate actually 10365 // flipping from false to true (for increasing predicates, and the other way 10366 // around for decreasing predicates), all we care about is that *if* the 10367 // predicate changes then it only changes from false to true. 10368 // 10369 // A zero step value in itself is not very useful, but there may be places 10370 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10371 // as general as possible. 10372 10373 // Only handle LE/LT/GE/GT predicates. 10374 if (!ICmpInst::isRelational(Pred)) 10375 return None; 10376 10377 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10378 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10379 "Should be greater or less!"); 10380 10381 // Check that AR does not wrap. 10382 if (ICmpInst::isUnsigned(Pred)) { 10383 if (!LHS->hasNoUnsignedWrap()) 10384 return None; 10385 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10386 } else { 10387 assert(ICmpInst::isSigned(Pred) && 10388 "Relational predicate is either signed or unsigned!"); 10389 if (!LHS->hasNoSignedWrap()) 10390 return None; 10391 10392 const SCEV *Step = LHS->getStepRecurrence(*this); 10393 10394 if (isKnownNonNegative(Step)) 10395 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10396 10397 if (isKnownNonPositive(Step)) 10398 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10399 10400 return None; 10401 } 10402 } 10403 10404 Optional<ScalarEvolution::LoopInvariantPredicate> 10405 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10406 const SCEV *LHS, const SCEV *RHS, 10407 const Loop *L) { 10408 10409 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10410 if (!isLoopInvariant(RHS, L)) { 10411 if (!isLoopInvariant(LHS, L)) 10412 return None; 10413 10414 std::swap(LHS, RHS); 10415 Pred = ICmpInst::getSwappedPredicate(Pred); 10416 } 10417 10418 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10419 if (!ArLHS || ArLHS->getLoop() != L) 10420 return None; 10421 10422 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10423 if (!MonotonicType) 10424 return None; 10425 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10426 // true as the loop iterates, and the backedge is control dependent on 10427 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10428 // 10429 // * if the predicate was false in the first iteration then the predicate 10430 // is never evaluated again, since the loop exits without taking the 10431 // backedge. 10432 // * if the predicate was true in the first iteration then it will 10433 // continue to be true for all future iterations since it is 10434 // monotonically increasing. 10435 // 10436 // For both the above possibilities, we can replace the loop varying 10437 // predicate with its value on the first iteration of the loop (which is 10438 // loop invariant). 10439 // 10440 // A similar reasoning applies for a monotonically decreasing predicate, by 10441 // replacing true with false and false with true in the above two bullets. 10442 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10443 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10444 10445 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10446 return None; 10447 10448 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10449 } 10450 10451 Optional<ScalarEvolution::LoopInvariantPredicate> 10452 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10453 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10454 const Instruction *CtxI, const SCEV *MaxIter) { 10455 // Try to prove the following set of facts: 10456 // - The predicate is monotonic in the iteration space. 10457 // - If the check does not fail on the 1st iteration: 10458 // - No overflow will happen during first MaxIter iterations; 10459 // - It will not fail on the MaxIter'th iteration. 10460 // If the check does fail on the 1st iteration, we leave the loop and no 10461 // other checks matter. 10462 10463 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10464 if (!isLoopInvariant(RHS, L)) { 10465 if (!isLoopInvariant(LHS, L)) 10466 return None; 10467 10468 std::swap(LHS, RHS); 10469 Pred = ICmpInst::getSwappedPredicate(Pred); 10470 } 10471 10472 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10473 if (!AR || AR->getLoop() != L) 10474 return None; 10475 10476 // The predicate must be relational (i.e. <, <=, >=, >). 10477 if (!ICmpInst::isRelational(Pred)) 10478 return None; 10479 10480 // TODO: Support steps other than +/- 1. 10481 const SCEV *Step = AR->getStepRecurrence(*this); 10482 auto *One = getOne(Step->getType()); 10483 auto *MinusOne = getNegativeSCEV(One); 10484 if (Step != One && Step != MinusOne) 10485 return None; 10486 10487 // Type mismatch here means that MaxIter is potentially larger than max 10488 // unsigned value in start type, which mean we cannot prove no wrap for the 10489 // indvar. 10490 if (AR->getType() != MaxIter->getType()) 10491 return None; 10492 10493 // Value of IV on suggested last iteration. 10494 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10495 // Does it still meet the requirement? 10496 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10497 return None; 10498 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10499 // not exceed max unsigned value of this type), this effectively proves 10500 // that there is no wrap during the iteration. To prove that there is no 10501 // signed/unsigned wrap, we need to check that 10502 // Start <= Last for step = 1 or Start >= Last for step = -1. 10503 ICmpInst::Predicate NoOverflowPred = 10504 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10505 if (Step == MinusOne) 10506 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10507 const SCEV *Start = AR->getStart(); 10508 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10509 return None; 10510 10511 // Everything is fine. 10512 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10513 } 10514 10515 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10516 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10517 if (HasSameValue(LHS, RHS)) 10518 return ICmpInst::isTrueWhenEqual(Pred); 10519 10520 // This code is split out from isKnownPredicate because it is called from 10521 // within isLoopEntryGuardedByCond. 10522 10523 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10524 const ConstantRange &RangeRHS) { 10525 return RangeLHS.icmp(Pred, RangeRHS); 10526 }; 10527 10528 // The check at the top of the function catches the case where the values are 10529 // known to be equal. 10530 if (Pred == CmpInst::ICMP_EQ) 10531 return false; 10532 10533 if (Pred == CmpInst::ICMP_NE) { 10534 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10535 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10536 return true; 10537 auto *Diff = getMinusSCEV(LHS, RHS); 10538 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10539 } 10540 10541 if (CmpInst::isSigned(Pred)) 10542 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10543 10544 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10545 } 10546 10547 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10548 const SCEV *LHS, 10549 const SCEV *RHS) { 10550 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10551 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10552 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10553 // OutC1 and OutC2. 10554 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10555 APInt &OutC1, APInt &OutC2, 10556 SCEV::NoWrapFlags ExpectedFlags) { 10557 const SCEV *XNonConstOp, *XConstOp; 10558 const SCEV *YNonConstOp, *YConstOp; 10559 SCEV::NoWrapFlags XFlagsPresent; 10560 SCEV::NoWrapFlags YFlagsPresent; 10561 10562 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10563 XConstOp = getZero(X->getType()); 10564 XNonConstOp = X; 10565 XFlagsPresent = ExpectedFlags; 10566 } 10567 if (!isa<SCEVConstant>(XConstOp) || 10568 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10569 return false; 10570 10571 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10572 YConstOp = getZero(Y->getType()); 10573 YNonConstOp = Y; 10574 YFlagsPresent = ExpectedFlags; 10575 } 10576 10577 if (!isa<SCEVConstant>(YConstOp) || 10578 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10579 return false; 10580 10581 if (YNonConstOp != XNonConstOp) 10582 return false; 10583 10584 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10585 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10586 10587 return true; 10588 }; 10589 10590 APInt C1; 10591 APInt C2; 10592 10593 switch (Pred) { 10594 default: 10595 break; 10596 10597 case ICmpInst::ICMP_SGE: 10598 std::swap(LHS, RHS); 10599 LLVM_FALLTHROUGH; 10600 case ICmpInst::ICMP_SLE: 10601 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10602 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10603 return true; 10604 10605 break; 10606 10607 case ICmpInst::ICMP_SGT: 10608 std::swap(LHS, RHS); 10609 LLVM_FALLTHROUGH; 10610 case ICmpInst::ICMP_SLT: 10611 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10612 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10613 return true; 10614 10615 break; 10616 10617 case ICmpInst::ICMP_UGE: 10618 std::swap(LHS, RHS); 10619 LLVM_FALLTHROUGH; 10620 case ICmpInst::ICMP_ULE: 10621 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10622 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10623 return true; 10624 10625 break; 10626 10627 case ICmpInst::ICMP_UGT: 10628 std::swap(LHS, RHS); 10629 LLVM_FALLTHROUGH; 10630 case ICmpInst::ICMP_ULT: 10631 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10632 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10633 return true; 10634 break; 10635 } 10636 10637 return false; 10638 } 10639 10640 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10641 const SCEV *LHS, 10642 const SCEV *RHS) { 10643 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10644 return false; 10645 10646 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10647 // the stack can result in exponential time complexity. 10648 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10649 10650 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10651 // 10652 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10653 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10654 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10655 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10656 // use isKnownPredicate later if needed. 10657 return isKnownNonNegative(RHS) && 10658 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10659 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10660 } 10661 10662 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10663 ICmpInst::Predicate Pred, 10664 const SCEV *LHS, const SCEV *RHS) { 10665 // No need to even try if we know the module has no guards. 10666 if (!HasGuards) 10667 return false; 10668 10669 return any_of(*BB, [&](const Instruction &I) { 10670 using namespace llvm::PatternMatch; 10671 10672 Value *Condition; 10673 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10674 m_Value(Condition))) && 10675 isImpliedCond(Pred, LHS, RHS, Condition, false); 10676 }); 10677 } 10678 10679 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10680 /// protected by a conditional between LHS and RHS. This is used to 10681 /// to eliminate casts. 10682 bool 10683 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10684 ICmpInst::Predicate Pred, 10685 const SCEV *LHS, const SCEV *RHS) { 10686 // Interpret a null as meaning no loop, where there is obviously no guard 10687 // (interprocedural conditions notwithstanding). 10688 if (!L) return true; 10689 10690 if (VerifyIR) 10691 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10692 "This cannot be done on broken IR!"); 10693 10694 10695 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10696 return true; 10697 10698 BasicBlock *Latch = L->getLoopLatch(); 10699 if (!Latch) 10700 return false; 10701 10702 BranchInst *LoopContinuePredicate = 10703 dyn_cast<BranchInst>(Latch->getTerminator()); 10704 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10705 isImpliedCond(Pred, LHS, RHS, 10706 LoopContinuePredicate->getCondition(), 10707 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10708 return true; 10709 10710 // We don't want more than one activation of the following loops on the stack 10711 // -- that can lead to O(n!) time complexity. 10712 if (WalkingBEDominatingConds) 10713 return false; 10714 10715 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10716 10717 // See if we can exploit a trip count to prove the predicate. 10718 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10719 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10720 if (LatchBECount != getCouldNotCompute()) { 10721 // We know that Latch branches back to the loop header exactly 10722 // LatchBECount times. This means the backdege condition at Latch is 10723 // equivalent to "{0,+,1} u< LatchBECount". 10724 Type *Ty = LatchBECount->getType(); 10725 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10726 const SCEV *LoopCounter = 10727 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10728 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10729 LatchBECount)) 10730 return true; 10731 } 10732 10733 // Check conditions due to any @llvm.assume intrinsics. 10734 for (auto &AssumeVH : AC.assumptions()) { 10735 if (!AssumeVH) 10736 continue; 10737 auto *CI = cast<CallInst>(AssumeVH); 10738 if (!DT.dominates(CI, Latch->getTerminator())) 10739 continue; 10740 10741 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10742 return true; 10743 } 10744 10745 // If the loop is not reachable from the entry block, we risk running into an 10746 // infinite loop as we walk up into the dom tree. These loops do not matter 10747 // anyway, so we just return a conservative answer when we see them. 10748 if (!DT.isReachableFromEntry(L->getHeader())) 10749 return false; 10750 10751 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10752 return true; 10753 10754 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10755 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10756 assert(DTN && "should reach the loop header before reaching the root!"); 10757 10758 BasicBlock *BB = DTN->getBlock(); 10759 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10760 return true; 10761 10762 BasicBlock *PBB = BB->getSinglePredecessor(); 10763 if (!PBB) 10764 continue; 10765 10766 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10767 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10768 continue; 10769 10770 Value *Condition = ContinuePredicate->getCondition(); 10771 10772 // If we have an edge `E` within the loop body that dominates the only 10773 // latch, the condition guarding `E` also guards the backedge. This 10774 // reasoning works only for loops with a single latch. 10775 10776 BasicBlockEdge DominatingEdge(PBB, BB); 10777 if (DominatingEdge.isSingleEdge()) { 10778 // We're constructively (and conservatively) enumerating edges within the 10779 // loop body that dominate the latch. The dominator tree better agree 10780 // with us on this: 10781 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10782 10783 if (isImpliedCond(Pred, LHS, RHS, Condition, 10784 BB != ContinuePredicate->getSuccessor(0))) 10785 return true; 10786 } 10787 } 10788 10789 return false; 10790 } 10791 10792 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10793 ICmpInst::Predicate Pred, 10794 const SCEV *LHS, 10795 const SCEV *RHS) { 10796 if (VerifyIR) 10797 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10798 "This cannot be done on broken IR!"); 10799 10800 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10801 // the facts (a >= b && a != b) separately. A typical situation is when the 10802 // non-strict comparison is known from ranges and non-equality is known from 10803 // dominating predicates. If we are proving strict comparison, we always try 10804 // to prove non-equality and non-strict comparison separately. 10805 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10806 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10807 bool ProvedNonStrictComparison = false; 10808 bool ProvedNonEquality = false; 10809 10810 auto SplitAndProve = 10811 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10812 if (!ProvedNonStrictComparison) 10813 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10814 if (!ProvedNonEquality) 10815 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10816 if (ProvedNonStrictComparison && ProvedNonEquality) 10817 return true; 10818 return false; 10819 }; 10820 10821 if (ProvingStrictComparison) { 10822 auto ProofFn = [&](ICmpInst::Predicate P) { 10823 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10824 }; 10825 if (SplitAndProve(ProofFn)) 10826 return true; 10827 } 10828 10829 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10830 auto ProveViaGuard = [&](const BasicBlock *Block) { 10831 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10832 return true; 10833 if (ProvingStrictComparison) { 10834 auto ProofFn = [&](ICmpInst::Predicate P) { 10835 return isImpliedViaGuard(Block, P, LHS, RHS); 10836 }; 10837 if (SplitAndProve(ProofFn)) 10838 return true; 10839 } 10840 return false; 10841 }; 10842 10843 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10844 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10845 const Instruction *CtxI = &BB->front(); 10846 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10847 return true; 10848 if (ProvingStrictComparison) { 10849 auto ProofFn = [&](ICmpInst::Predicate P) { 10850 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10851 }; 10852 if (SplitAndProve(ProofFn)) 10853 return true; 10854 } 10855 return false; 10856 }; 10857 10858 // Starting at the block's predecessor, climb up the predecessor chain, as long 10859 // as there are predecessors that can be found that have unique successors 10860 // leading to the original block. 10861 const Loop *ContainingLoop = LI.getLoopFor(BB); 10862 const BasicBlock *PredBB; 10863 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10864 PredBB = ContainingLoop->getLoopPredecessor(); 10865 else 10866 PredBB = BB->getSinglePredecessor(); 10867 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10868 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10869 if (ProveViaGuard(Pair.first)) 10870 return true; 10871 10872 const BranchInst *LoopEntryPredicate = 10873 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10874 if (!LoopEntryPredicate || 10875 LoopEntryPredicate->isUnconditional()) 10876 continue; 10877 10878 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10879 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10880 return true; 10881 } 10882 10883 // Check conditions due to any @llvm.assume intrinsics. 10884 for (auto &AssumeVH : AC.assumptions()) { 10885 if (!AssumeVH) 10886 continue; 10887 auto *CI = cast<CallInst>(AssumeVH); 10888 if (!DT.dominates(CI, BB)) 10889 continue; 10890 10891 if (ProveViaCond(CI->getArgOperand(0), false)) 10892 return true; 10893 } 10894 10895 return false; 10896 } 10897 10898 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10899 ICmpInst::Predicate Pred, 10900 const SCEV *LHS, 10901 const SCEV *RHS) { 10902 // Interpret a null as meaning no loop, where there is obviously no guard 10903 // (interprocedural conditions notwithstanding). 10904 if (!L) 10905 return false; 10906 10907 // Both LHS and RHS must be available at loop entry. 10908 assert(isAvailableAtLoopEntry(LHS, L) && 10909 "LHS is not available at Loop Entry"); 10910 assert(isAvailableAtLoopEntry(RHS, L) && 10911 "RHS is not available at Loop Entry"); 10912 10913 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10914 return true; 10915 10916 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10917 } 10918 10919 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10920 const SCEV *RHS, 10921 const Value *FoundCondValue, bool Inverse, 10922 const Instruction *CtxI) { 10923 // False conditions implies anything. Do not bother analyzing it further. 10924 if (FoundCondValue == 10925 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10926 return true; 10927 10928 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10929 return false; 10930 10931 auto ClearOnExit = 10932 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10933 10934 // Recursively handle And and Or conditions. 10935 const Value *Op0, *Op1; 10936 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10937 if (!Inverse) 10938 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10939 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10940 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10941 if (Inverse) 10942 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10943 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10944 } 10945 10946 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10947 if (!ICI) return false; 10948 10949 // Now that we found a conditional branch that dominates the loop or controls 10950 // the loop latch. Check to see if it is the comparison we are looking for. 10951 ICmpInst::Predicate FoundPred; 10952 if (Inverse) 10953 FoundPred = ICI->getInversePredicate(); 10954 else 10955 FoundPred = ICI->getPredicate(); 10956 10957 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10958 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10959 10960 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10961 } 10962 10963 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10964 const SCEV *RHS, 10965 ICmpInst::Predicate FoundPred, 10966 const SCEV *FoundLHS, const SCEV *FoundRHS, 10967 const Instruction *CtxI) { 10968 // Balance the types. 10969 if (getTypeSizeInBits(LHS->getType()) < 10970 getTypeSizeInBits(FoundLHS->getType())) { 10971 // For unsigned and equality predicates, try to prove that both found 10972 // operands fit into narrow unsigned range. If so, try to prove facts in 10973 // narrow types. 10974 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 10975 !FoundRHS->getType()->isPointerTy()) { 10976 auto *NarrowType = LHS->getType(); 10977 auto *WideType = FoundLHS->getType(); 10978 auto BitWidth = getTypeSizeInBits(NarrowType); 10979 const SCEV *MaxValue = getZeroExtendExpr( 10980 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10981 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10982 MaxValue) && 10983 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10984 MaxValue)) { 10985 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10986 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10987 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10988 TruncFoundRHS, CtxI)) 10989 return true; 10990 } 10991 } 10992 10993 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 10994 return false; 10995 if (CmpInst::isSigned(Pred)) { 10996 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10997 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10998 } else { 10999 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11000 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11001 } 11002 } else if (getTypeSizeInBits(LHS->getType()) > 11003 getTypeSizeInBits(FoundLHS->getType())) { 11004 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11005 return false; 11006 if (CmpInst::isSigned(FoundPred)) { 11007 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11008 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11009 } else { 11010 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11011 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11012 } 11013 } 11014 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11015 FoundRHS, CtxI); 11016 } 11017 11018 bool ScalarEvolution::isImpliedCondBalancedTypes( 11019 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11020 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11021 const Instruction *CtxI) { 11022 assert(getTypeSizeInBits(LHS->getType()) == 11023 getTypeSizeInBits(FoundLHS->getType()) && 11024 "Types should be balanced!"); 11025 // Canonicalize the query to match the way instcombine will have 11026 // canonicalized the comparison. 11027 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11028 if (LHS == RHS) 11029 return CmpInst::isTrueWhenEqual(Pred); 11030 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11031 if (FoundLHS == FoundRHS) 11032 return CmpInst::isFalseWhenEqual(FoundPred); 11033 11034 // Check to see if we can make the LHS or RHS match. 11035 if (LHS == FoundRHS || RHS == FoundLHS) { 11036 if (isa<SCEVConstant>(RHS)) { 11037 std::swap(FoundLHS, FoundRHS); 11038 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11039 } else { 11040 std::swap(LHS, RHS); 11041 Pred = ICmpInst::getSwappedPredicate(Pred); 11042 } 11043 } 11044 11045 // Check whether the found predicate is the same as the desired predicate. 11046 if (FoundPred == Pred) 11047 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11048 11049 // Check whether swapping the found predicate makes it the same as the 11050 // desired predicate. 11051 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11052 // We can write the implication 11053 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11054 // using one of the following ways: 11055 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11056 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11057 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11058 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11059 // Forms 1. and 2. require swapping the operands of one condition. Don't 11060 // do this if it would break canonical constant/addrec ordering. 11061 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11062 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11063 CtxI); 11064 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11065 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11066 11067 // There's no clear preference between forms 3. and 4., try both. Avoid 11068 // forming getNotSCEV of pointer values as the resulting subtract is 11069 // not legal. 11070 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11071 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11072 FoundLHS, FoundRHS, CtxI)) 11073 return true; 11074 11075 if (!FoundLHS->getType()->isPointerTy() && 11076 !FoundRHS->getType()->isPointerTy() && 11077 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11078 getNotSCEV(FoundRHS), CtxI)) 11079 return true; 11080 11081 return false; 11082 } 11083 11084 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11085 CmpInst::Predicate P2) { 11086 assert(P1 != P2 && "Handled earlier!"); 11087 return CmpInst::isRelational(P2) && 11088 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11089 }; 11090 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11091 // Unsigned comparison is the same as signed comparison when both the 11092 // operands are non-negative or negative. 11093 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11094 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11095 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11096 // Create local copies that we can freely swap and canonicalize our 11097 // conditions to "le/lt". 11098 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11099 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11100 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11101 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11102 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11103 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11104 std::swap(CanonicalLHS, CanonicalRHS); 11105 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11106 } 11107 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11108 "Must be!"); 11109 assert((ICmpInst::isLT(CanonicalFoundPred) || 11110 ICmpInst::isLE(CanonicalFoundPred)) && 11111 "Must be!"); 11112 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11113 // Use implication: 11114 // x <u y && y >=s 0 --> x <s y. 11115 // If we can prove the left part, the right part is also proven. 11116 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11117 CanonicalRHS, CanonicalFoundLHS, 11118 CanonicalFoundRHS); 11119 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11120 // Use implication: 11121 // x <s y && y <s 0 --> x <u y. 11122 // If we can prove the left part, the right part is also proven. 11123 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11124 CanonicalRHS, CanonicalFoundLHS, 11125 CanonicalFoundRHS); 11126 } 11127 11128 // Check if we can make progress by sharpening ranges. 11129 if (FoundPred == ICmpInst::ICMP_NE && 11130 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11131 11132 const SCEVConstant *C = nullptr; 11133 const SCEV *V = nullptr; 11134 11135 if (isa<SCEVConstant>(FoundLHS)) { 11136 C = cast<SCEVConstant>(FoundLHS); 11137 V = FoundRHS; 11138 } else { 11139 C = cast<SCEVConstant>(FoundRHS); 11140 V = FoundLHS; 11141 } 11142 11143 // The guarding predicate tells us that C != V. If the known range 11144 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11145 // range we consider has to correspond to same signedness as the 11146 // predicate we're interested in folding. 11147 11148 APInt Min = ICmpInst::isSigned(Pred) ? 11149 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11150 11151 if (Min == C->getAPInt()) { 11152 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11153 // This is true even if (Min + 1) wraps around -- in case of 11154 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11155 11156 APInt SharperMin = Min + 1; 11157 11158 switch (Pred) { 11159 case ICmpInst::ICMP_SGE: 11160 case ICmpInst::ICMP_UGE: 11161 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11162 // RHS, we're done. 11163 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11164 CtxI)) 11165 return true; 11166 LLVM_FALLTHROUGH; 11167 11168 case ICmpInst::ICMP_SGT: 11169 case ICmpInst::ICMP_UGT: 11170 // We know from the range information that (V `Pred` Min || 11171 // V == Min). We know from the guarding condition that !(V 11172 // == Min). This gives us 11173 // 11174 // V `Pred` Min || V == Min && !(V == Min) 11175 // => V `Pred` Min 11176 // 11177 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11178 11179 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11180 return true; 11181 break; 11182 11183 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11184 case ICmpInst::ICMP_SLE: 11185 case ICmpInst::ICMP_ULE: 11186 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11187 LHS, V, getConstant(SharperMin), CtxI)) 11188 return true; 11189 LLVM_FALLTHROUGH; 11190 11191 case ICmpInst::ICMP_SLT: 11192 case ICmpInst::ICMP_ULT: 11193 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11194 LHS, V, getConstant(Min), CtxI)) 11195 return true; 11196 break; 11197 11198 default: 11199 // No change 11200 break; 11201 } 11202 } 11203 } 11204 11205 // Check whether the actual condition is beyond sufficient. 11206 if (FoundPred == ICmpInst::ICMP_EQ) 11207 if (ICmpInst::isTrueWhenEqual(Pred)) 11208 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11209 return true; 11210 if (Pred == ICmpInst::ICMP_NE) 11211 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11212 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11213 return true; 11214 11215 // Otherwise assume the worst. 11216 return false; 11217 } 11218 11219 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11220 const SCEV *&L, const SCEV *&R, 11221 SCEV::NoWrapFlags &Flags) { 11222 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11223 if (!AE || AE->getNumOperands() != 2) 11224 return false; 11225 11226 L = AE->getOperand(0); 11227 R = AE->getOperand(1); 11228 Flags = AE->getNoWrapFlags(); 11229 return true; 11230 } 11231 11232 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11233 const SCEV *Less) { 11234 // We avoid subtracting expressions here because this function is usually 11235 // fairly deep in the call stack (i.e. is called many times). 11236 11237 // X - X = 0. 11238 if (More == Less) 11239 return APInt(getTypeSizeInBits(More->getType()), 0); 11240 11241 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11242 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11243 const auto *MAR = cast<SCEVAddRecExpr>(More); 11244 11245 if (LAR->getLoop() != MAR->getLoop()) 11246 return None; 11247 11248 // We look at affine expressions only; not for correctness but to keep 11249 // getStepRecurrence cheap. 11250 if (!LAR->isAffine() || !MAR->isAffine()) 11251 return None; 11252 11253 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11254 return None; 11255 11256 Less = LAR->getStart(); 11257 More = MAR->getStart(); 11258 11259 // fall through 11260 } 11261 11262 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11263 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11264 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11265 return M - L; 11266 } 11267 11268 SCEV::NoWrapFlags Flags; 11269 const SCEV *LLess = nullptr, *RLess = nullptr; 11270 const SCEV *LMore = nullptr, *RMore = nullptr; 11271 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11272 // Compare (X + C1) vs X. 11273 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11274 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11275 if (RLess == More) 11276 return -(C1->getAPInt()); 11277 11278 // Compare X vs (X + C2). 11279 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11280 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11281 if (RMore == Less) 11282 return C2->getAPInt(); 11283 11284 // Compare (X + C1) vs (X + C2). 11285 if (C1 && C2 && RLess == RMore) 11286 return C2->getAPInt() - C1->getAPInt(); 11287 11288 return None; 11289 } 11290 11291 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11292 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11293 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11294 // Try to recognize the following pattern: 11295 // 11296 // FoundRHS = ... 11297 // ... 11298 // loop: 11299 // FoundLHS = {Start,+,W} 11300 // context_bb: // Basic block from the same loop 11301 // known(Pred, FoundLHS, FoundRHS) 11302 // 11303 // If some predicate is known in the context of a loop, it is also known on 11304 // each iteration of this loop, including the first iteration. Therefore, in 11305 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11306 // prove the original pred using this fact. 11307 if (!CtxI) 11308 return false; 11309 const BasicBlock *ContextBB = CtxI->getParent(); 11310 // Make sure AR varies in the context block. 11311 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11312 const Loop *L = AR->getLoop(); 11313 // Make sure that context belongs to the loop and executes on 1st iteration 11314 // (if it ever executes at all). 11315 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11316 return false; 11317 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11318 return false; 11319 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11320 } 11321 11322 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11323 const Loop *L = AR->getLoop(); 11324 // Make sure that context belongs to the loop and executes on 1st iteration 11325 // (if it ever executes at all). 11326 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11327 return false; 11328 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11329 return false; 11330 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11331 } 11332 11333 return false; 11334 } 11335 11336 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11337 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11338 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11339 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11340 return false; 11341 11342 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11343 if (!AddRecLHS) 11344 return false; 11345 11346 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11347 if (!AddRecFoundLHS) 11348 return false; 11349 11350 // We'd like to let SCEV reason about control dependencies, so we constrain 11351 // both the inequalities to be about add recurrences on the same loop. This 11352 // way we can use isLoopEntryGuardedByCond later. 11353 11354 const Loop *L = AddRecFoundLHS->getLoop(); 11355 if (L != AddRecLHS->getLoop()) 11356 return false; 11357 11358 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11359 // 11360 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11361 // ... (2) 11362 // 11363 // Informal proof for (2), assuming (1) [*]: 11364 // 11365 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11366 // 11367 // Then 11368 // 11369 // FoundLHS s< FoundRHS s< INT_MIN - C 11370 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11371 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11372 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11373 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11374 // <=> FoundLHS + C s< FoundRHS + C 11375 // 11376 // [*]: (1) can be proved by ruling out overflow. 11377 // 11378 // [**]: This can be proved by analyzing all the four possibilities: 11379 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11380 // (A s>= 0, B s>= 0). 11381 // 11382 // Note: 11383 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11384 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11385 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11386 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11387 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11388 // C)". 11389 11390 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11391 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11392 if (!LDiff || !RDiff || *LDiff != *RDiff) 11393 return false; 11394 11395 if (LDiff->isMinValue()) 11396 return true; 11397 11398 APInt FoundRHSLimit; 11399 11400 if (Pred == CmpInst::ICMP_ULT) { 11401 FoundRHSLimit = -(*RDiff); 11402 } else { 11403 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11404 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11405 } 11406 11407 // Try to prove (1) or (2), as needed. 11408 return isAvailableAtLoopEntry(FoundRHS, L) && 11409 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11410 getConstant(FoundRHSLimit)); 11411 } 11412 11413 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11414 const SCEV *LHS, const SCEV *RHS, 11415 const SCEV *FoundLHS, 11416 const SCEV *FoundRHS, unsigned Depth) { 11417 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11418 11419 auto ClearOnExit = make_scope_exit([&]() { 11420 if (LPhi) { 11421 bool Erased = PendingMerges.erase(LPhi); 11422 assert(Erased && "Failed to erase LPhi!"); 11423 (void)Erased; 11424 } 11425 if (RPhi) { 11426 bool Erased = PendingMerges.erase(RPhi); 11427 assert(Erased && "Failed to erase RPhi!"); 11428 (void)Erased; 11429 } 11430 }); 11431 11432 // Find respective Phis and check that they are not being pending. 11433 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11434 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11435 if (!PendingMerges.insert(Phi).second) 11436 return false; 11437 LPhi = Phi; 11438 } 11439 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11440 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11441 // If we detect a loop of Phi nodes being processed by this method, for 11442 // example: 11443 // 11444 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11445 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11446 // 11447 // we don't want to deal with a case that complex, so return conservative 11448 // answer false. 11449 if (!PendingMerges.insert(Phi).second) 11450 return false; 11451 RPhi = Phi; 11452 } 11453 11454 // If none of LHS, RHS is a Phi, nothing to do here. 11455 if (!LPhi && !RPhi) 11456 return false; 11457 11458 // If there is a SCEVUnknown Phi we are interested in, make it left. 11459 if (!LPhi) { 11460 std::swap(LHS, RHS); 11461 std::swap(FoundLHS, FoundRHS); 11462 std::swap(LPhi, RPhi); 11463 Pred = ICmpInst::getSwappedPredicate(Pred); 11464 } 11465 11466 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11467 const BasicBlock *LBB = LPhi->getParent(); 11468 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11469 11470 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11471 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11472 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11473 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11474 }; 11475 11476 if (RPhi && RPhi->getParent() == LBB) { 11477 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11478 // If we compare two Phis from the same block, and for each entry block 11479 // the predicate is true for incoming values from this block, then the 11480 // predicate is also true for the Phis. 11481 for (const BasicBlock *IncBB : predecessors(LBB)) { 11482 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11483 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11484 if (!ProvedEasily(L, R)) 11485 return false; 11486 } 11487 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11488 // Case two: RHS is also a Phi from the same basic block, and it is an 11489 // AddRec. It means that there is a loop which has both AddRec and Unknown 11490 // PHIs, for it we can compare incoming values of AddRec from above the loop 11491 // and latch with their respective incoming values of LPhi. 11492 // TODO: Generalize to handle loops with many inputs in a header. 11493 if (LPhi->getNumIncomingValues() != 2) return false; 11494 11495 auto *RLoop = RAR->getLoop(); 11496 auto *Predecessor = RLoop->getLoopPredecessor(); 11497 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11498 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11499 if (!ProvedEasily(L1, RAR->getStart())) 11500 return false; 11501 auto *Latch = RLoop->getLoopLatch(); 11502 assert(Latch && "Loop with AddRec with no latch?"); 11503 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11504 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11505 return false; 11506 } else { 11507 // In all other cases go over inputs of LHS and compare each of them to RHS, 11508 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11509 // At this point RHS is either a non-Phi, or it is a Phi from some block 11510 // different from LBB. 11511 for (const BasicBlock *IncBB : predecessors(LBB)) { 11512 // Check that RHS is available in this block. 11513 if (!dominates(RHS, IncBB)) 11514 return false; 11515 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11516 // Make sure L does not refer to a value from a potentially previous 11517 // iteration of a loop. 11518 if (!properlyDominates(L, IncBB)) 11519 return false; 11520 if (!ProvedEasily(L, RHS)) 11521 return false; 11522 } 11523 } 11524 return true; 11525 } 11526 11527 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11528 const SCEV *LHS, 11529 const SCEV *RHS, 11530 const SCEV *FoundLHS, 11531 const SCEV *FoundRHS) { 11532 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11533 // sure that we are dealing with same LHS. 11534 if (RHS == FoundRHS) { 11535 std::swap(LHS, RHS); 11536 std::swap(FoundLHS, FoundRHS); 11537 Pred = ICmpInst::getSwappedPredicate(Pred); 11538 } 11539 if (LHS != FoundLHS) 11540 return false; 11541 11542 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11543 if (!SUFoundRHS) 11544 return false; 11545 11546 Value *Shiftee, *ShiftValue; 11547 11548 using namespace PatternMatch; 11549 if (match(SUFoundRHS->getValue(), 11550 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11551 auto *ShifteeS = getSCEV(Shiftee); 11552 // Prove one of the following: 11553 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11554 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11555 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11556 // ---> LHS <s RHS 11557 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11558 // ---> LHS <=s RHS 11559 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11560 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11561 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11562 if (isKnownNonNegative(ShifteeS)) 11563 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11564 } 11565 11566 return false; 11567 } 11568 11569 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11570 const SCEV *LHS, const SCEV *RHS, 11571 const SCEV *FoundLHS, 11572 const SCEV *FoundRHS, 11573 const Instruction *CtxI) { 11574 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11575 return true; 11576 11577 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11578 return true; 11579 11580 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11581 return true; 11582 11583 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11584 CtxI)) 11585 return true; 11586 11587 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11588 FoundLHS, FoundRHS); 11589 } 11590 11591 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11592 template <typename MinMaxExprType> 11593 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11594 const SCEV *Candidate) { 11595 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11596 if (!MinMaxExpr) 11597 return false; 11598 11599 return is_contained(MinMaxExpr->operands(), Candidate); 11600 } 11601 11602 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11603 ICmpInst::Predicate Pred, 11604 const SCEV *LHS, const SCEV *RHS) { 11605 // If both sides are affine addrecs for the same loop, with equal 11606 // steps, and we know the recurrences don't wrap, then we only 11607 // need to check the predicate on the starting values. 11608 11609 if (!ICmpInst::isRelational(Pred)) 11610 return false; 11611 11612 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11613 if (!LAR) 11614 return false; 11615 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11616 if (!RAR) 11617 return false; 11618 if (LAR->getLoop() != RAR->getLoop()) 11619 return false; 11620 if (!LAR->isAffine() || !RAR->isAffine()) 11621 return false; 11622 11623 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11624 return false; 11625 11626 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11627 SCEV::FlagNSW : SCEV::FlagNUW; 11628 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11629 return false; 11630 11631 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11632 } 11633 11634 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11635 /// expression? 11636 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11637 ICmpInst::Predicate Pred, 11638 const SCEV *LHS, const SCEV *RHS) { 11639 switch (Pred) { 11640 default: 11641 return false; 11642 11643 case ICmpInst::ICMP_SGE: 11644 std::swap(LHS, RHS); 11645 LLVM_FALLTHROUGH; 11646 case ICmpInst::ICMP_SLE: 11647 return 11648 // min(A, ...) <= A 11649 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11650 // A <= max(A, ...) 11651 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11652 11653 case ICmpInst::ICMP_UGE: 11654 std::swap(LHS, RHS); 11655 LLVM_FALLTHROUGH; 11656 case ICmpInst::ICMP_ULE: 11657 return 11658 // min(A, ...) <= A 11659 // FIXME: what about umin_seq? 11660 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11661 // A <= max(A, ...) 11662 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11663 } 11664 11665 llvm_unreachable("covered switch fell through?!"); 11666 } 11667 11668 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11669 const SCEV *LHS, const SCEV *RHS, 11670 const SCEV *FoundLHS, 11671 const SCEV *FoundRHS, 11672 unsigned Depth) { 11673 assert(getTypeSizeInBits(LHS->getType()) == 11674 getTypeSizeInBits(RHS->getType()) && 11675 "LHS and RHS have different sizes?"); 11676 assert(getTypeSizeInBits(FoundLHS->getType()) == 11677 getTypeSizeInBits(FoundRHS->getType()) && 11678 "FoundLHS and FoundRHS have different sizes?"); 11679 // We want to avoid hurting the compile time with analysis of too big trees. 11680 if (Depth > MaxSCEVOperationsImplicationDepth) 11681 return false; 11682 11683 // We only want to work with GT comparison so far. 11684 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11685 Pred = CmpInst::getSwappedPredicate(Pred); 11686 std::swap(LHS, RHS); 11687 std::swap(FoundLHS, FoundRHS); 11688 } 11689 11690 // For unsigned, try to reduce it to corresponding signed comparison. 11691 if (Pred == ICmpInst::ICMP_UGT) 11692 // We can replace unsigned predicate with its signed counterpart if all 11693 // involved values are non-negative. 11694 // TODO: We could have better support for unsigned. 11695 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11696 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11697 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11698 // use this fact to prove that LHS and RHS are non-negative. 11699 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11700 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11701 FoundRHS) && 11702 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11703 FoundRHS)) 11704 Pred = ICmpInst::ICMP_SGT; 11705 } 11706 11707 if (Pred != ICmpInst::ICMP_SGT) 11708 return false; 11709 11710 auto GetOpFromSExt = [&](const SCEV *S) { 11711 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11712 return Ext->getOperand(); 11713 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11714 // the constant in some cases. 11715 return S; 11716 }; 11717 11718 // Acquire values from extensions. 11719 auto *OrigLHS = LHS; 11720 auto *OrigFoundLHS = FoundLHS; 11721 LHS = GetOpFromSExt(LHS); 11722 FoundLHS = GetOpFromSExt(FoundLHS); 11723 11724 // Is the SGT predicate can be proved trivially or using the found context. 11725 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11726 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11727 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11728 FoundRHS, Depth + 1); 11729 }; 11730 11731 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11732 // We want to avoid creation of any new non-constant SCEV. Since we are 11733 // going to compare the operands to RHS, we should be certain that we don't 11734 // need any size extensions for this. So let's decline all cases when the 11735 // sizes of types of LHS and RHS do not match. 11736 // TODO: Maybe try to get RHS from sext to catch more cases? 11737 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11738 return false; 11739 11740 // Should not overflow. 11741 if (!LHSAddExpr->hasNoSignedWrap()) 11742 return false; 11743 11744 auto *LL = LHSAddExpr->getOperand(0); 11745 auto *LR = LHSAddExpr->getOperand(1); 11746 auto *MinusOne = getMinusOne(RHS->getType()); 11747 11748 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11749 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11750 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11751 }; 11752 // Try to prove the following rule: 11753 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11754 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11755 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11756 return true; 11757 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11758 Value *LL, *LR; 11759 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11760 11761 using namespace llvm::PatternMatch; 11762 11763 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11764 // Rules for division. 11765 // We are going to perform some comparisons with Denominator and its 11766 // derivative expressions. In general case, creating a SCEV for it may 11767 // lead to a complex analysis of the entire graph, and in particular it 11768 // can request trip count recalculation for the same loop. This would 11769 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11770 // this, we only want to create SCEVs that are constants in this section. 11771 // So we bail if Denominator is not a constant. 11772 if (!isa<ConstantInt>(LR)) 11773 return false; 11774 11775 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11776 11777 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11778 // then a SCEV for the numerator already exists and matches with FoundLHS. 11779 auto *Numerator = getExistingSCEV(LL); 11780 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11781 return false; 11782 11783 // Make sure that the numerator matches with FoundLHS and the denominator 11784 // is positive. 11785 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11786 return false; 11787 11788 auto *DTy = Denominator->getType(); 11789 auto *FRHSTy = FoundRHS->getType(); 11790 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11791 // One of types is a pointer and another one is not. We cannot extend 11792 // them properly to a wider type, so let us just reject this case. 11793 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11794 // to avoid this check. 11795 return false; 11796 11797 // Given that: 11798 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11799 auto *WTy = getWiderType(DTy, FRHSTy); 11800 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11801 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11802 11803 // Try to prove the following rule: 11804 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11805 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11806 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11807 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11808 if (isKnownNonPositive(RHS) && 11809 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11810 return true; 11811 11812 // Try to prove the following rule: 11813 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11814 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11815 // If we divide it by Denominator > 2, then: 11816 // 1. If FoundLHS is negative, then the result is 0. 11817 // 2. If FoundLHS is non-negative, then the result is non-negative. 11818 // Anyways, the result is non-negative. 11819 auto *MinusOne = getMinusOne(WTy); 11820 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11821 if (isKnownNegative(RHS) && 11822 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11823 return true; 11824 } 11825 } 11826 11827 // If our expression contained SCEVUnknown Phis, and we split it down and now 11828 // need to prove something for them, try to prove the predicate for every 11829 // possible incoming values of those Phis. 11830 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11831 return true; 11832 11833 return false; 11834 } 11835 11836 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11837 const SCEV *LHS, const SCEV *RHS) { 11838 // zext x u<= sext x, sext x s<= zext x 11839 switch (Pred) { 11840 case ICmpInst::ICMP_SGE: 11841 std::swap(LHS, RHS); 11842 LLVM_FALLTHROUGH; 11843 case ICmpInst::ICMP_SLE: { 11844 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11845 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11846 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11847 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11848 return true; 11849 break; 11850 } 11851 case ICmpInst::ICMP_UGE: 11852 std::swap(LHS, RHS); 11853 LLVM_FALLTHROUGH; 11854 case ICmpInst::ICMP_ULE: { 11855 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11856 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11857 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11858 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11859 return true; 11860 break; 11861 } 11862 default: 11863 break; 11864 }; 11865 return false; 11866 } 11867 11868 bool 11869 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11870 const SCEV *LHS, const SCEV *RHS) { 11871 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11872 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11873 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11874 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11875 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11876 } 11877 11878 bool 11879 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11880 const SCEV *LHS, const SCEV *RHS, 11881 const SCEV *FoundLHS, 11882 const SCEV *FoundRHS) { 11883 switch (Pred) { 11884 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11885 case ICmpInst::ICMP_EQ: 11886 case ICmpInst::ICMP_NE: 11887 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11888 return true; 11889 break; 11890 case ICmpInst::ICMP_SLT: 11891 case ICmpInst::ICMP_SLE: 11892 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11893 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11894 return true; 11895 break; 11896 case ICmpInst::ICMP_SGT: 11897 case ICmpInst::ICMP_SGE: 11898 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11899 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11900 return true; 11901 break; 11902 case ICmpInst::ICMP_ULT: 11903 case ICmpInst::ICMP_ULE: 11904 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11905 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11906 return true; 11907 break; 11908 case ICmpInst::ICMP_UGT: 11909 case ICmpInst::ICMP_UGE: 11910 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11911 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11912 return true; 11913 break; 11914 } 11915 11916 // Maybe it can be proved via operations? 11917 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11918 return true; 11919 11920 return false; 11921 } 11922 11923 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11924 const SCEV *LHS, 11925 const SCEV *RHS, 11926 const SCEV *FoundLHS, 11927 const SCEV *FoundRHS) { 11928 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11929 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11930 // reduce the compile time impact of this optimization. 11931 return false; 11932 11933 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11934 if (!Addend) 11935 return false; 11936 11937 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11938 11939 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11940 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11941 ConstantRange FoundLHSRange = 11942 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11943 11944 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11945 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11946 11947 // We can also compute the range of values for `LHS` that satisfy the 11948 // consequent, "`LHS` `Pred` `RHS`": 11949 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11950 // The antecedent implies the consequent if every value of `LHS` that 11951 // satisfies the antecedent also satisfies the consequent. 11952 return LHSRange.icmp(Pred, ConstRHS); 11953 } 11954 11955 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11956 bool IsSigned) { 11957 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11958 11959 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11960 const SCEV *One = getOne(Stride->getType()); 11961 11962 if (IsSigned) { 11963 APInt MaxRHS = getSignedRangeMax(RHS); 11964 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11965 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11966 11967 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11968 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11969 } 11970 11971 APInt MaxRHS = getUnsignedRangeMax(RHS); 11972 APInt MaxValue = APInt::getMaxValue(BitWidth); 11973 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11974 11975 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11976 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11977 } 11978 11979 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11980 bool IsSigned) { 11981 11982 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11983 const SCEV *One = getOne(Stride->getType()); 11984 11985 if (IsSigned) { 11986 APInt MinRHS = getSignedRangeMin(RHS); 11987 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11988 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11989 11990 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11991 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11992 } 11993 11994 APInt MinRHS = getUnsignedRangeMin(RHS); 11995 APInt MinValue = APInt::getMinValue(BitWidth); 11996 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11997 11998 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11999 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12000 } 12001 12002 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12003 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12004 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12005 // expression fixes the case of N=0. 12006 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12007 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12008 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12009 } 12010 12011 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12012 const SCEV *Stride, 12013 const SCEV *End, 12014 unsigned BitWidth, 12015 bool IsSigned) { 12016 // The logic in this function assumes we can represent a positive stride. 12017 // If we can't, the backedge-taken count must be zero. 12018 if (IsSigned && BitWidth == 1) 12019 return getZero(Stride->getType()); 12020 12021 // This code has only been closely audited for negative strides in the 12022 // unsigned comparison case, it may be correct for signed comparison, but 12023 // that needs to be established. 12024 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12025 "Stride is expected strictly positive for signed case!"); 12026 12027 // Calculate the maximum backedge count based on the range of values 12028 // permitted by Start, End, and Stride. 12029 APInt MinStart = 12030 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12031 12032 APInt MinStride = 12033 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12034 12035 // We assume either the stride is positive, or the backedge-taken count 12036 // is zero. So force StrideForMaxBECount to be at least one. 12037 APInt One(BitWidth, 1); 12038 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12039 : APIntOps::umax(One, MinStride); 12040 12041 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12042 : APInt::getMaxValue(BitWidth); 12043 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12044 12045 // Although End can be a MAX expression we estimate MaxEnd considering only 12046 // the case End = RHS of the loop termination condition. This is safe because 12047 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12048 // taken count. 12049 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12050 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12051 12052 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12053 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12054 : APIntOps::umax(MaxEnd, MinStart); 12055 12056 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12057 getConstant(StrideForMaxBECount) /* Step */); 12058 } 12059 12060 ScalarEvolution::ExitLimit 12061 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12062 const Loop *L, bool IsSigned, 12063 bool ControlsExit, bool AllowPredicates) { 12064 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12065 12066 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12067 bool PredicatedIV = false; 12068 12069 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12070 // Can we prove this loop *must* be UB if overflow of IV occurs? 12071 // Reasoning goes as follows: 12072 // * Suppose the IV did self wrap. 12073 // * If Stride evenly divides the iteration space, then once wrap 12074 // occurs, the loop must revisit the same values. 12075 // * We know that RHS is invariant, and that none of those values 12076 // caused this exit to be taken previously. Thus, this exit is 12077 // dynamically dead. 12078 // * If this is the sole exit, then a dead exit implies the loop 12079 // must be infinite if there are no abnormal exits. 12080 // * If the loop were infinite, then it must either not be mustprogress 12081 // or have side effects. Otherwise, it must be UB. 12082 // * It can't (by assumption), be UB so we have contradicted our 12083 // premise and can conclude the IV did not in fact self-wrap. 12084 if (!isLoopInvariant(RHS, L)) 12085 return false; 12086 12087 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12088 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12089 return false; 12090 12091 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12092 return false; 12093 12094 return loopIsFiniteByAssumption(L); 12095 }; 12096 12097 if (!IV) { 12098 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12099 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12100 if (AR && AR->getLoop() == L && AR->isAffine()) { 12101 auto canProveNUW = [&]() { 12102 if (!isLoopInvariant(RHS, L)) 12103 return false; 12104 12105 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12106 // We need the sequence defined by AR to strictly increase in the 12107 // unsigned integer domain for the logic below to hold. 12108 return false; 12109 12110 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12111 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12112 // If RHS <=u Limit, then there must exist a value V in the sequence 12113 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12114 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12115 // overflow occurs. This limit also implies that a signed comparison 12116 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12117 // the high bits on both sides must be zero. 12118 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12119 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12120 Limit = Limit.zext(OuterBitWidth); 12121 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12122 }; 12123 auto Flags = AR->getNoWrapFlags(); 12124 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12125 Flags = setFlags(Flags, SCEV::FlagNUW); 12126 12127 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12128 if (AR->hasNoUnsignedWrap()) { 12129 // Emulate what getZeroExtendExpr would have done during construction 12130 // if we'd been able to infer the fact just above at that time. 12131 const SCEV *Step = AR->getStepRecurrence(*this); 12132 Type *Ty = ZExt->getType(); 12133 auto *S = getAddRecExpr( 12134 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12135 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12136 IV = dyn_cast<SCEVAddRecExpr>(S); 12137 } 12138 } 12139 } 12140 } 12141 12142 12143 if (!IV && AllowPredicates) { 12144 // Try to make this an AddRec using runtime tests, in the first X 12145 // iterations of this loop, where X is the SCEV expression found by the 12146 // algorithm below. 12147 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12148 PredicatedIV = true; 12149 } 12150 12151 // Avoid weird loops 12152 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12153 return getCouldNotCompute(); 12154 12155 // A precondition of this method is that the condition being analyzed 12156 // reaches an exiting branch which dominates the latch. Given that, we can 12157 // assume that an increment which violates the nowrap specification and 12158 // produces poison must cause undefined behavior when the resulting poison 12159 // value is branched upon and thus we can conclude that the backedge is 12160 // taken no more often than would be required to produce that poison value. 12161 // Note that a well defined loop can exit on the iteration which violates 12162 // the nowrap specification if there is another exit (either explicit or 12163 // implicit/exceptional) which causes the loop to execute before the 12164 // exiting instruction we're analyzing would trigger UB. 12165 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12166 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12167 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12168 12169 const SCEV *Stride = IV->getStepRecurrence(*this); 12170 12171 bool PositiveStride = isKnownPositive(Stride); 12172 12173 // Avoid negative or zero stride values. 12174 if (!PositiveStride) { 12175 // We can compute the correct backedge taken count for loops with unknown 12176 // strides if we can prove that the loop is not an infinite loop with side 12177 // effects. Here's the loop structure we are trying to handle - 12178 // 12179 // i = start 12180 // do { 12181 // A[i] = i; 12182 // i += s; 12183 // } while (i < end); 12184 // 12185 // The backedge taken count for such loops is evaluated as - 12186 // (max(end, start + stride) - start - 1) /u stride 12187 // 12188 // The additional preconditions that we need to check to prove correctness 12189 // of the above formula is as follows - 12190 // 12191 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12192 // NoWrap flag). 12193 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12194 // no side effects within the loop) 12195 // c) loop has a single static exit (with no abnormal exits) 12196 // 12197 // Precondition a) implies that if the stride is negative, this is a single 12198 // trip loop. The backedge taken count formula reduces to zero in this case. 12199 // 12200 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12201 // then a zero stride means the backedge can't be taken without executing 12202 // undefined behavior. 12203 // 12204 // The positive stride case is the same as isKnownPositive(Stride) returning 12205 // true (original behavior of the function). 12206 // 12207 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12208 !loopHasNoAbnormalExits(L)) 12209 return getCouldNotCompute(); 12210 12211 // This bailout is protecting the logic in computeMaxBECountForLT which 12212 // has not yet been sufficiently auditted or tested with negative strides. 12213 // We used to filter out all known-non-positive cases here, we're in the 12214 // process of being less restrictive bit by bit. 12215 if (IsSigned && isKnownNonPositive(Stride)) 12216 return getCouldNotCompute(); 12217 12218 if (!isKnownNonZero(Stride)) { 12219 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12220 // if it might eventually be greater than start and if so, on which 12221 // iteration. We can't even produce a useful upper bound. 12222 if (!isLoopInvariant(RHS, L)) 12223 return getCouldNotCompute(); 12224 12225 // We allow a potentially zero stride, but we need to divide by stride 12226 // below. Since the loop can't be infinite and this check must control 12227 // the sole exit, we can infer the exit must be taken on the first 12228 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12229 // we know the numerator in the divides below must be zero, so we can 12230 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12231 // and produce the right result. 12232 // FIXME: Handle the case where Stride is poison? 12233 auto wouldZeroStrideBeUB = [&]() { 12234 // Proof by contradiction. Suppose the stride were zero. If we can 12235 // prove that the backedge *is* taken on the first iteration, then since 12236 // we know this condition controls the sole exit, we must have an 12237 // infinite loop. We can't have a (well defined) infinite loop per 12238 // check just above. 12239 // Note: The (Start - Stride) term is used to get the start' term from 12240 // (start' + stride,+,stride). Remember that we only care about the 12241 // result of this expression when stride == 0 at runtime. 12242 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12243 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12244 }; 12245 if (!wouldZeroStrideBeUB()) { 12246 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12247 } 12248 } 12249 } else if (!Stride->isOne() && !NoWrap) { 12250 auto isUBOnWrap = [&]() { 12251 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12252 // follows trivially from the fact that every (un)signed-wrapped, but 12253 // not self-wrapped value must be LT than the last value before 12254 // (un)signed wrap. Since we know that last value didn't exit, nor 12255 // will any smaller one. 12256 return canAssumeNoSelfWrap(IV); 12257 }; 12258 12259 // Avoid proven overflow cases: this will ensure that the backedge taken 12260 // count will not generate any unsigned overflow. Relaxed no-overflow 12261 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12262 // undefined behaviors like the case of C language. 12263 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12264 return getCouldNotCompute(); 12265 } 12266 12267 // On all paths just preceeding, we established the following invariant: 12268 // IV can be assumed not to overflow up to and including the exiting 12269 // iteration. We proved this in one of two ways: 12270 // 1) We can show overflow doesn't occur before the exiting iteration 12271 // 1a) canIVOverflowOnLT, and b) step of one 12272 // 2) We can show that if overflow occurs, the loop must execute UB 12273 // before any possible exit. 12274 // Note that we have not yet proved RHS invariant (in general). 12275 12276 const SCEV *Start = IV->getStart(); 12277 12278 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12279 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12280 // Use integer-typed versions for actual computation; we can't subtract 12281 // pointers in general. 12282 const SCEV *OrigStart = Start; 12283 const SCEV *OrigRHS = RHS; 12284 if (Start->getType()->isPointerTy()) { 12285 Start = getLosslessPtrToIntExpr(Start); 12286 if (isa<SCEVCouldNotCompute>(Start)) 12287 return Start; 12288 } 12289 if (RHS->getType()->isPointerTy()) { 12290 RHS = getLosslessPtrToIntExpr(RHS); 12291 if (isa<SCEVCouldNotCompute>(RHS)) 12292 return RHS; 12293 } 12294 12295 // When the RHS is not invariant, we do not know the end bound of the loop and 12296 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12297 // calculate the MaxBECount, given the start, stride and max value for the end 12298 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12299 // checked above). 12300 if (!isLoopInvariant(RHS, L)) { 12301 const SCEV *MaxBECount = computeMaxBECountForLT( 12302 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12303 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12304 false /*MaxOrZero*/, Predicates); 12305 } 12306 12307 // We use the expression (max(End,Start)-Start)/Stride to describe the 12308 // backedge count, as if the backedge is taken at least once max(End,Start) 12309 // is End and so the result is as above, and if not max(End,Start) is Start 12310 // so we get a backedge count of zero. 12311 const SCEV *BECount = nullptr; 12312 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12313 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12314 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12315 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12316 // Can we prove (max(RHS,Start) > Start - Stride? 12317 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12318 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12319 // In this case, we can use a refined formula for computing backedge taken 12320 // count. The general formula remains: 12321 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12322 // We want to use the alternate formula: 12323 // "((End - 1) - (Start - Stride)) /u Stride" 12324 // Let's do a quick case analysis to show these are equivalent under 12325 // our precondition that max(RHS,Start) > Start - Stride. 12326 // * For RHS <= Start, the backedge-taken count must be zero. 12327 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12328 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12329 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12330 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12331 // this to the stride of 1 case. 12332 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12333 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12334 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12335 // "((RHS - (Start - Stride) - 1) /u Stride". 12336 // Our preconditions trivially imply no overflow in that form. 12337 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12338 const SCEV *Numerator = 12339 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12340 BECount = getUDivExpr(Numerator, Stride); 12341 } 12342 12343 const SCEV *BECountIfBackedgeTaken = nullptr; 12344 if (!BECount) { 12345 auto canProveRHSGreaterThanEqualStart = [&]() { 12346 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12347 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12348 return true; 12349 12350 // (RHS > Start - 1) implies RHS >= Start. 12351 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12352 // "Start - 1" doesn't overflow. 12353 // * For signed comparison, if Start - 1 does overflow, it's equal 12354 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12355 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12356 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12357 // 12358 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12359 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12360 auto *StartMinusOne = getAddExpr(OrigStart, 12361 getMinusOne(OrigStart->getType())); 12362 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12363 }; 12364 12365 // If we know that RHS >= Start in the context of loop, then we know that 12366 // max(RHS, Start) = RHS at this point. 12367 const SCEV *End; 12368 if (canProveRHSGreaterThanEqualStart()) { 12369 End = RHS; 12370 } else { 12371 // If RHS < Start, the backedge will be taken zero times. So in 12372 // general, we can write the backedge-taken count as: 12373 // 12374 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12375 // 12376 // We convert it to the following to make it more convenient for SCEV: 12377 // 12378 // ceil(max(RHS, Start) - Start) / Stride 12379 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12380 12381 // See what would happen if we assume the backedge is taken. This is 12382 // used to compute MaxBECount. 12383 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12384 } 12385 12386 // At this point, we know: 12387 // 12388 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12389 // 2. The index variable doesn't overflow. 12390 // 12391 // Therefore, we know N exists such that 12392 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12393 // doesn't overflow. 12394 // 12395 // Using this information, try to prove whether the addition in 12396 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12397 const SCEV *One = getOne(Stride->getType()); 12398 bool MayAddOverflow = [&] { 12399 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12400 if (StrideC->getAPInt().isPowerOf2()) { 12401 // Suppose Stride is a power of two, and Start/End are unsigned 12402 // integers. Let UMAX be the largest representable unsigned 12403 // integer. 12404 // 12405 // By the preconditions of this function, we know 12406 // "(Start + Stride * N) >= End", and this doesn't overflow. 12407 // As a formula: 12408 // 12409 // End <= (Start + Stride * N) <= UMAX 12410 // 12411 // Subtracting Start from all the terms: 12412 // 12413 // End - Start <= Stride * N <= UMAX - Start 12414 // 12415 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12416 // 12417 // End - Start <= Stride * N <= UMAX 12418 // 12419 // Stride * N is a multiple of Stride. Therefore, 12420 // 12421 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12422 // 12423 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12424 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12425 // 12426 // End - Start <= Stride * N <= UMAX - Stride - 1 12427 // 12428 // Dropping the middle term: 12429 // 12430 // End - Start <= UMAX - Stride - 1 12431 // 12432 // Adding Stride - 1 to both sides: 12433 // 12434 // (End - Start) + (Stride - 1) <= UMAX 12435 // 12436 // In other words, the addition doesn't have unsigned overflow. 12437 // 12438 // A similar proof works if we treat Start/End as signed values. 12439 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12440 // use signed max instead of unsigned max. Note that we're trying 12441 // to prove a lack of unsigned overflow in either case. 12442 return false; 12443 } 12444 } 12445 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12446 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12447 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12448 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12449 // 12450 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12451 return false; 12452 } 12453 return true; 12454 }(); 12455 12456 const SCEV *Delta = getMinusSCEV(End, Start); 12457 if (!MayAddOverflow) { 12458 // floor((D + (S - 1)) / S) 12459 // We prefer this formulation if it's legal because it's fewer operations. 12460 BECount = 12461 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12462 } else { 12463 BECount = getUDivCeilSCEV(Delta, Stride); 12464 } 12465 } 12466 12467 const SCEV *MaxBECount; 12468 bool MaxOrZero = false; 12469 if (isa<SCEVConstant>(BECount)) { 12470 MaxBECount = BECount; 12471 } else if (BECountIfBackedgeTaken && 12472 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12473 // If we know exactly how many times the backedge will be taken if it's 12474 // taken at least once, then the backedge count will either be that or 12475 // zero. 12476 MaxBECount = BECountIfBackedgeTaken; 12477 MaxOrZero = true; 12478 } else { 12479 MaxBECount = computeMaxBECountForLT( 12480 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12481 } 12482 12483 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12484 !isa<SCEVCouldNotCompute>(BECount)) 12485 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12486 12487 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12488 } 12489 12490 ScalarEvolution::ExitLimit 12491 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12492 const Loop *L, bool IsSigned, 12493 bool ControlsExit, bool AllowPredicates) { 12494 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12495 // We handle only IV > Invariant 12496 if (!isLoopInvariant(RHS, L)) 12497 return getCouldNotCompute(); 12498 12499 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12500 if (!IV && AllowPredicates) 12501 // Try to make this an AddRec using runtime tests, in the first X 12502 // iterations of this loop, where X is the SCEV expression found by the 12503 // algorithm below. 12504 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12505 12506 // Avoid weird loops 12507 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12508 return getCouldNotCompute(); 12509 12510 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12511 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12512 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12513 12514 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12515 12516 // Avoid negative or zero stride values 12517 if (!isKnownPositive(Stride)) 12518 return getCouldNotCompute(); 12519 12520 // Avoid proven overflow cases: this will ensure that the backedge taken count 12521 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12522 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12523 // behaviors like the case of C language. 12524 if (!Stride->isOne() && !NoWrap) 12525 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12526 return getCouldNotCompute(); 12527 12528 const SCEV *Start = IV->getStart(); 12529 const SCEV *End = RHS; 12530 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12531 // If we know that Start >= RHS in the context of loop, then we know that 12532 // min(RHS, Start) = RHS at this point. 12533 if (isLoopEntryGuardedByCond( 12534 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12535 End = RHS; 12536 else 12537 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12538 } 12539 12540 if (Start->getType()->isPointerTy()) { 12541 Start = getLosslessPtrToIntExpr(Start); 12542 if (isa<SCEVCouldNotCompute>(Start)) 12543 return Start; 12544 } 12545 if (End->getType()->isPointerTy()) { 12546 End = getLosslessPtrToIntExpr(End); 12547 if (isa<SCEVCouldNotCompute>(End)) 12548 return End; 12549 } 12550 12551 // Compute ((Start - End) + (Stride - 1)) / Stride. 12552 // FIXME: This can overflow. Holding off on fixing this for now; 12553 // howManyGreaterThans will hopefully be gone soon. 12554 const SCEV *One = getOne(Stride->getType()); 12555 const SCEV *BECount = getUDivExpr( 12556 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12557 12558 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12559 : getUnsignedRangeMax(Start); 12560 12561 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12562 : getUnsignedRangeMin(Stride); 12563 12564 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12565 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12566 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12567 12568 // Although End can be a MIN expression we estimate MinEnd considering only 12569 // the case End = RHS. This is safe because in the other case (Start - End) 12570 // is zero, leading to a zero maximum backedge taken count. 12571 APInt MinEnd = 12572 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12573 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12574 12575 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12576 ? BECount 12577 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12578 getConstant(MinStride)); 12579 12580 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12581 MaxBECount = BECount; 12582 12583 return ExitLimit(BECount, MaxBECount, false, Predicates); 12584 } 12585 12586 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12587 ScalarEvolution &SE) const { 12588 if (Range.isFullSet()) // Infinite loop. 12589 return SE.getCouldNotCompute(); 12590 12591 // If the start is a non-zero constant, shift the range to simplify things. 12592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12593 if (!SC->getValue()->isZero()) { 12594 SmallVector<const SCEV *, 4> Operands(operands()); 12595 Operands[0] = SE.getZero(SC->getType()); 12596 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12597 getNoWrapFlags(FlagNW)); 12598 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12599 return ShiftedAddRec->getNumIterationsInRange( 12600 Range.subtract(SC->getAPInt()), SE); 12601 // This is strange and shouldn't happen. 12602 return SE.getCouldNotCompute(); 12603 } 12604 12605 // The only time we can solve this is when we have all constant indices. 12606 // Otherwise, we cannot determine the overflow conditions. 12607 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12608 return SE.getCouldNotCompute(); 12609 12610 // Okay at this point we know that all elements of the chrec are constants and 12611 // that the start element is zero. 12612 12613 // First check to see if the range contains zero. If not, the first 12614 // iteration exits. 12615 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12616 if (!Range.contains(APInt(BitWidth, 0))) 12617 return SE.getZero(getType()); 12618 12619 if (isAffine()) { 12620 // If this is an affine expression then we have this situation: 12621 // Solve {0,+,A} in Range === Ax in Range 12622 12623 // We know that zero is in the range. If A is positive then we know that 12624 // the upper value of the range must be the first possible exit value. 12625 // If A is negative then the lower of the range is the last possible loop 12626 // value. Also note that we already checked for a full range. 12627 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12628 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12629 12630 // The exit value should be (End+A)/A. 12631 APInt ExitVal = (End + A).udiv(A); 12632 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12633 12634 // Evaluate at the exit value. If we really did fall out of the valid 12635 // range, then we computed our trip count, otherwise wrap around or other 12636 // things must have happened. 12637 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12638 if (Range.contains(Val->getValue())) 12639 return SE.getCouldNotCompute(); // Something strange happened 12640 12641 // Ensure that the previous value is in the range. 12642 assert(Range.contains( 12643 EvaluateConstantChrecAtConstant(this, 12644 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12645 "Linear scev computation is off in a bad way!"); 12646 return SE.getConstant(ExitValue); 12647 } 12648 12649 if (isQuadratic()) { 12650 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12651 return SE.getConstant(S.getValue()); 12652 } 12653 12654 return SE.getCouldNotCompute(); 12655 } 12656 12657 const SCEVAddRecExpr * 12658 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12659 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12660 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12661 // but in this case we cannot guarantee that the value returned will be an 12662 // AddRec because SCEV does not have a fixed point where it stops 12663 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12664 // may happen if we reach arithmetic depth limit while simplifying. So we 12665 // construct the returned value explicitly. 12666 SmallVector<const SCEV *, 3> Ops; 12667 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12668 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12669 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12670 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12671 // We know that the last operand is not a constant zero (otherwise it would 12672 // have been popped out earlier). This guarantees us that if the result has 12673 // the same last operand, then it will also not be popped out, meaning that 12674 // the returned value will be an AddRec. 12675 const SCEV *Last = getOperand(getNumOperands() - 1); 12676 assert(!Last->isZero() && "Recurrency with zero step?"); 12677 Ops.push_back(Last); 12678 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12679 SCEV::FlagAnyWrap)); 12680 } 12681 12682 // Return true when S contains at least an undef value. 12683 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12684 return SCEVExprContains(S, [](const SCEV *S) { 12685 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12686 return isa<UndefValue>(SU->getValue()); 12687 return false; 12688 }); 12689 } 12690 12691 /// Return the size of an element read or written by Inst. 12692 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12693 Type *Ty; 12694 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12695 Ty = Store->getValueOperand()->getType(); 12696 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12697 Ty = Load->getType(); 12698 else 12699 return nullptr; 12700 12701 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12702 return getSizeOfExpr(ETy, Ty); 12703 } 12704 12705 //===----------------------------------------------------------------------===// 12706 // SCEVCallbackVH Class Implementation 12707 //===----------------------------------------------------------------------===// 12708 12709 void ScalarEvolution::SCEVCallbackVH::deleted() { 12710 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12711 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12712 SE->ConstantEvolutionLoopExitValue.erase(PN); 12713 SE->eraseValueFromMap(getValPtr()); 12714 // this now dangles! 12715 } 12716 12717 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12718 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12719 12720 // Forget all the expressions associated with users of the old value, 12721 // so that future queries will recompute the expressions using the new 12722 // value. 12723 Value *Old = getValPtr(); 12724 SmallVector<User *, 16> Worklist(Old->users()); 12725 SmallPtrSet<User *, 8> Visited; 12726 while (!Worklist.empty()) { 12727 User *U = Worklist.pop_back_val(); 12728 // Deleting the Old value will cause this to dangle. Postpone 12729 // that until everything else is done. 12730 if (U == Old) 12731 continue; 12732 if (!Visited.insert(U).second) 12733 continue; 12734 if (PHINode *PN = dyn_cast<PHINode>(U)) 12735 SE->ConstantEvolutionLoopExitValue.erase(PN); 12736 SE->eraseValueFromMap(U); 12737 llvm::append_range(Worklist, U->users()); 12738 } 12739 // Delete the Old value. 12740 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12741 SE->ConstantEvolutionLoopExitValue.erase(PN); 12742 SE->eraseValueFromMap(Old); 12743 // this now dangles! 12744 } 12745 12746 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12747 : CallbackVH(V), SE(se) {} 12748 12749 //===----------------------------------------------------------------------===// 12750 // ScalarEvolution Class Implementation 12751 //===----------------------------------------------------------------------===// 12752 12753 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12754 AssumptionCache &AC, DominatorTree &DT, 12755 LoopInfo &LI) 12756 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12757 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12758 LoopDispositions(64), BlockDispositions(64) { 12759 // To use guards for proving predicates, we need to scan every instruction in 12760 // relevant basic blocks, and not just terminators. Doing this is a waste of 12761 // time if the IR does not actually contain any calls to 12762 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12763 // 12764 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12765 // to _add_ guards to the module when there weren't any before, and wants 12766 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12767 // efficient in lieu of being smart in that rather obscure case. 12768 12769 auto *GuardDecl = F.getParent()->getFunction( 12770 Intrinsic::getName(Intrinsic::experimental_guard)); 12771 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12772 } 12773 12774 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12775 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12776 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12777 ValueExprMap(std::move(Arg.ValueExprMap)), 12778 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12779 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12780 PendingMerges(std::move(Arg.PendingMerges)), 12781 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12782 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12783 PredicatedBackedgeTakenCounts( 12784 std::move(Arg.PredicatedBackedgeTakenCounts)), 12785 BECountUsers(std::move(Arg.BECountUsers)), 12786 ConstantEvolutionLoopExitValue( 12787 std::move(Arg.ConstantEvolutionLoopExitValue)), 12788 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12789 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12790 LoopDispositions(std::move(Arg.LoopDispositions)), 12791 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12792 BlockDispositions(std::move(Arg.BlockDispositions)), 12793 SCEVUsers(std::move(Arg.SCEVUsers)), 12794 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12795 SignedRanges(std::move(Arg.SignedRanges)), 12796 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12797 UniquePreds(std::move(Arg.UniquePreds)), 12798 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12799 LoopUsers(std::move(Arg.LoopUsers)), 12800 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12801 FirstUnknown(Arg.FirstUnknown) { 12802 Arg.FirstUnknown = nullptr; 12803 } 12804 12805 ScalarEvolution::~ScalarEvolution() { 12806 // Iterate through all the SCEVUnknown instances and call their 12807 // destructors, so that they release their references to their values. 12808 for (SCEVUnknown *U = FirstUnknown; U;) { 12809 SCEVUnknown *Tmp = U; 12810 U = U->Next; 12811 Tmp->~SCEVUnknown(); 12812 } 12813 FirstUnknown = nullptr; 12814 12815 ExprValueMap.clear(); 12816 ValueExprMap.clear(); 12817 HasRecMap.clear(); 12818 BackedgeTakenCounts.clear(); 12819 PredicatedBackedgeTakenCounts.clear(); 12820 12821 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12822 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12823 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12824 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12825 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12826 } 12827 12828 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12829 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12830 } 12831 12832 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12833 const Loop *L) { 12834 // Print all inner loops first 12835 for (Loop *I : *L) 12836 PrintLoopInfo(OS, SE, I); 12837 12838 OS << "Loop "; 12839 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12840 OS << ": "; 12841 12842 SmallVector<BasicBlock *, 8> ExitingBlocks; 12843 L->getExitingBlocks(ExitingBlocks); 12844 if (ExitingBlocks.size() != 1) 12845 OS << "<multiple exits> "; 12846 12847 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12848 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12849 else 12850 OS << "Unpredictable backedge-taken count.\n"; 12851 12852 if (ExitingBlocks.size() > 1) 12853 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12854 OS << " exit count for " << ExitingBlock->getName() << ": " 12855 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12856 } 12857 12858 OS << "Loop "; 12859 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12860 OS << ": "; 12861 12862 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12863 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12864 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12865 OS << ", actual taken count either this or zero."; 12866 } else { 12867 OS << "Unpredictable max backedge-taken count. "; 12868 } 12869 12870 OS << "\n" 12871 "Loop "; 12872 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12873 OS << ": "; 12874 12875 SmallVector<const SCEVPredicate *, 4> Preds; 12876 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12877 if (!isa<SCEVCouldNotCompute>(PBT)) { 12878 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12879 OS << " Predicates:\n"; 12880 for (auto *P : Preds) 12881 P->print(OS, 4); 12882 } else { 12883 OS << "Unpredictable predicated backedge-taken count. "; 12884 } 12885 OS << "\n"; 12886 12887 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12888 OS << "Loop "; 12889 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12890 OS << ": "; 12891 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12892 } 12893 } 12894 12895 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12896 switch (LD) { 12897 case ScalarEvolution::LoopVariant: 12898 return "Variant"; 12899 case ScalarEvolution::LoopInvariant: 12900 return "Invariant"; 12901 case ScalarEvolution::LoopComputable: 12902 return "Computable"; 12903 } 12904 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12905 } 12906 12907 void ScalarEvolution::print(raw_ostream &OS) const { 12908 // ScalarEvolution's implementation of the print method is to print 12909 // out SCEV values of all instructions that are interesting. Doing 12910 // this potentially causes it to create new SCEV objects though, 12911 // which technically conflicts with the const qualifier. This isn't 12912 // observable from outside the class though, so casting away the 12913 // const isn't dangerous. 12914 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12915 12916 if (ClassifyExpressions) { 12917 OS << "Classifying expressions for: "; 12918 F.printAsOperand(OS, /*PrintType=*/false); 12919 OS << "\n"; 12920 for (Instruction &I : instructions(F)) 12921 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12922 OS << I << '\n'; 12923 OS << " --> "; 12924 const SCEV *SV = SE.getSCEV(&I); 12925 SV->print(OS); 12926 if (!isa<SCEVCouldNotCompute>(SV)) { 12927 OS << " U: "; 12928 SE.getUnsignedRange(SV).print(OS); 12929 OS << " S: "; 12930 SE.getSignedRange(SV).print(OS); 12931 } 12932 12933 const Loop *L = LI.getLoopFor(I.getParent()); 12934 12935 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12936 if (AtUse != SV) { 12937 OS << " --> "; 12938 AtUse->print(OS); 12939 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12940 OS << " U: "; 12941 SE.getUnsignedRange(AtUse).print(OS); 12942 OS << " S: "; 12943 SE.getSignedRange(AtUse).print(OS); 12944 } 12945 } 12946 12947 if (L) { 12948 OS << "\t\t" "Exits: "; 12949 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12950 if (!SE.isLoopInvariant(ExitValue, L)) { 12951 OS << "<<Unknown>>"; 12952 } else { 12953 OS << *ExitValue; 12954 } 12955 12956 bool First = true; 12957 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12958 if (First) { 12959 OS << "\t\t" "LoopDispositions: { "; 12960 First = false; 12961 } else { 12962 OS << ", "; 12963 } 12964 12965 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12966 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12967 } 12968 12969 for (auto *InnerL : depth_first(L)) { 12970 if (InnerL == L) 12971 continue; 12972 if (First) { 12973 OS << "\t\t" "LoopDispositions: { "; 12974 First = false; 12975 } else { 12976 OS << ", "; 12977 } 12978 12979 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12980 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12981 } 12982 12983 OS << " }"; 12984 } 12985 12986 OS << "\n"; 12987 } 12988 } 12989 12990 OS << "Determining loop execution counts for: "; 12991 F.printAsOperand(OS, /*PrintType=*/false); 12992 OS << "\n"; 12993 for (Loop *I : LI) 12994 PrintLoopInfo(OS, &SE, I); 12995 } 12996 12997 ScalarEvolution::LoopDisposition 12998 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12999 auto &Values = LoopDispositions[S]; 13000 for (auto &V : Values) { 13001 if (V.getPointer() == L) 13002 return V.getInt(); 13003 } 13004 Values.emplace_back(L, LoopVariant); 13005 LoopDisposition D = computeLoopDisposition(S, L); 13006 auto &Values2 = LoopDispositions[S]; 13007 for (auto &V : llvm::reverse(Values2)) { 13008 if (V.getPointer() == L) { 13009 V.setInt(D); 13010 break; 13011 } 13012 } 13013 return D; 13014 } 13015 13016 ScalarEvolution::LoopDisposition 13017 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13018 switch (S->getSCEVType()) { 13019 case scConstant: 13020 return LoopInvariant; 13021 case scPtrToInt: 13022 case scTruncate: 13023 case scZeroExtend: 13024 case scSignExtend: 13025 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13026 case scAddRecExpr: { 13027 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13028 13029 // If L is the addrec's loop, it's computable. 13030 if (AR->getLoop() == L) 13031 return LoopComputable; 13032 13033 // Add recurrences are never invariant in the function-body (null loop). 13034 if (!L) 13035 return LoopVariant; 13036 13037 // Everything that is not defined at loop entry is variant. 13038 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13039 return LoopVariant; 13040 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13041 " dominate the contained loop's header?"); 13042 13043 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13044 if (AR->getLoop()->contains(L)) 13045 return LoopInvariant; 13046 13047 // This recurrence is variant w.r.t. L if any of its operands 13048 // are variant. 13049 for (auto *Op : AR->operands()) 13050 if (!isLoopInvariant(Op, L)) 13051 return LoopVariant; 13052 13053 // Otherwise it's loop-invariant. 13054 return LoopInvariant; 13055 } 13056 case scAddExpr: 13057 case scMulExpr: 13058 case scUMaxExpr: 13059 case scSMaxExpr: 13060 case scUMinExpr: 13061 case scSMinExpr: 13062 case scSequentialUMinExpr: { 13063 bool HasVarying = false; 13064 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13065 LoopDisposition D = getLoopDisposition(Op, L); 13066 if (D == LoopVariant) 13067 return LoopVariant; 13068 if (D == LoopComputable) 13069 HasVarying = true; 13070 } 13071 return HasVarying ? LoopComputable : LoopInvariant; 13072 } 13073 case scUDivExpr: { 13074 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13075 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13076 if (LD == LoopVariant) 13077 return LoopVariant; 13078 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13079 if (RD == LoopVariant) 13080 return LoopVariant; 13081 return (LD == LoopInvariant && RD == LoopInvariant) ? 13082 LoopInvariant : LoopComputable; 13083 } 13084 case scUnknown: 13085 // All non-instruction values are loop invariant. All instructions are loop 13086 // invariant if they are not contained in the specified loop. 13087 // Instructions are never considered invariant in the function body 13088 // (null loop) because they are defined within the "loop". 13089 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13090 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13091 return LoopInvariant; 13092 case scCouldNotCompute: 13093 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13094 } 13095 llvm_unreachable("Unknown SCEV kind!"); 13096 } 13097 13098 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13099 return getLoopDisposition(S, L) == LoopInvariant; 13100 } 13101 13102 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13103 return getLoopDisposition(S, L) == LoopComputable; 13104 } 13105 13106 ScalarEvolution::BlockDisposition 13107 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13108 auto &Values = BlockDispositions[S]; 13109 for (auto &V : Values) { 13110 if (V.getPointer() == BB) 13111 return V.getInt(); 13112 } 13113 Values.emplace_back(BB, DoesNotDominateBlock); 13114 BlockDisposition D = computeBlockDisposition(S, BB); 13115 auto &Values2 = BlockDispositions[S]; 13116 for (auto &V : llvm::reverse(Values2)) { 13117 if (V.getPointer() == BB) { 13118 V.setInt(D); 13119 break; 13120 } 13121 } 13122 return D; 13123 } 13124 13125 ScalarEvolution::BlockDisposition 13126 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13127 switch (S->getSCEVType()) { 13128 case scConstant: 13129 return ProperlyDominatesBlock; 13130 case scPtrToInt: 13131 case scTruncate: 13132 case scZeroExtend: 13133 case scSignExtend: 13134 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13135 case scAddRecExpr: { 13136 // This uses a "dominates" query instead of "properly dominates" query 13137 // to test for proper dominance too, because the instruction which 13138 // produces the addrec's value is a PHI, and a PHI effectively properly 13139 // dominates its entire containing block. 13140 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13141 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13142 return DoesNotDominateBlock; 13143 13144 // Fall through into SCEVNAryExpr handling. 13145 LLVM_FALLTHROUGH; 13146 } 13147 case scAddExpr: 13148 case scMulExpr: 13149 case scUMaxExpr: 13150 case scSMaxExpr: 13151 case scUMinExpr: 13152 case scSMinExpr: 13153 case scSequentialUMinExpr: { 13154 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13155 bool Proper = true; 13156 for (const SCEV *NAryOp : NAry->operands()) { 13157 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13158 if (D == DoesNotDominateBlock) 13159 return DoesNotDominateBlock; 13160 if (D == DominatesBlock) 13161 Proper = false; 13162 } 13163 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13164 } 13165 case scUDivExpr: { 13166 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13167 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13168 BlockDisposition LD = getBlockDisposition(LHS, BB); 13169 if (LD == DoesNotDominateBlock) 13170 return DoesNotDominateBlock; 13171 BlockDisposition RD = getBlockDisposition(RHS, BB); 13172 if (RD == DoesNotDominateBlock) 13173 return DoesNotDominateBlock; 13174 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13175 ProperlyDominatesBlock : DominatesBlock; 13176 } 13177 case scUnknown: 13178 if (Instruction *I = 13179 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13180 if (I->getParent() == BB) 13181 return DominatesBlock; 13182 if (DT.properlyDominates(I->getParent(), BB)) 13183 return ProperlyDominatesBlock; 13184 return DoesNotDominateBlock; 13185 } 13186 return ProperlyDominatesBlock; 13187 case scCouldNotCompute: 13188 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13189 } 13190 llvm_unreachable("Unknown SCEV kind!"); 13191 } 13192 13193 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13194 return getBlockDisposition(S, BB) >= DominatesBlock; 13195 } 13196 13197 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13198 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13199 } 13200 13201 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13202 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13203 } 13204 13205 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13206 bool Predicated) { 13207 auto &BECounts = 13208 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13209 auto It = BECounts.find(L); 13210 if (It != BECounts.end()) { 13211 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13212 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13213 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13214 assert(UserIt != BECountUsers.end()); 13215 UserIt->second.erase({L, Predicated}); 13216 } 13217 } 13218 BECounts.erase(It); 13219 } 13220 } 13221 13222 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13223 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13224 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13225 13226 while (!Worklist.empty()) { 13227 const SCEV *Curr = Worklist.pop_back_val(); 13228 auto Users = SCEVUsers.find(Curr); 13229 if (Users != SCEVUsers.end()) 13230 for (auto *User : Users->second) 13231 if (ToForget.insert(User).second) 13232 Worklist.push_back(User); 13233 } 13234 13235 for (auto *S : ToForget) 13236 forgetMemoizedResultsImpl(S); 13237 13238 for (auto I = PredicatedSCEVRewrites.begin(); 13239 I != PredicatedSCEVRewrites.end();) { 13240 std::pair<const SCEV *, const Loop *> Entry = I->first; 13241 if (ToForget.count(Entry.first)) 13242 PredicatedSCEVRewrites.erase(I++); 13243 else 13244 ++I; 13245 } 13246 } 13247 13248 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13249 LoopDispositions.erase(S); 13250 BlockDispositions.erase(S); 13251 UnsignedRanges.erase(S); 13252 SignedRanges.erase(S); 13253 HasRecMap.erase(S); 13254 MinTrailingZerosCache.erase(S); 13255 13256 auto ExprIt = ExprValueMap.find(S); 13257 if (ExprIt != ExprValueMap.end()) { 13258 for (Value *V : ExprIt->second) { 13259 auto ValueIt = ValueExprMap.find_as(V); 13260 if (ValueIt != ValueExprMap.end()) 13261 ValueExprMap.erase(ValueIt); 13262 } 13263 ExprValueMap.erase(ExprIt); 13264 } 13265 13266 auto ScopeIt = ValuesAtScopes.find(S); 13267 if (ScopeIt != ValuesAtScopes.end()) { 13268 for (const auto &Pair : ScopeIt->second) 13269 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13270 erase_value(ValuesAtScopesUsers[Pair.second], 13271 std::make_pair(Pair.first, S)); 13272 ValuesAtScopes.erase(ScopeIt); 13273 } 13274 13275 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13276 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13277 for (const auto &Pair : ScopeUserIt->second) 13278 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13279 ValuesAtScopesUsers.erase(ScopeUserIt); 13280 } 13281 13282 auto BEUsersIt = BECountUsers.find(S); 13283 if (BEUsersIt != BECountUsers.end()) { 13284 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13285 auto Copy = BEUsersIt->second; 13286 for (const auto &Pair : Copy) 13287 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13288 BECountUsers.erase(BEUsersIt); 13289 } 13290 } 13291 13292 void 13293 ScalarEvolution::getUsedLoops(const SCEV *S, 13294 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13295 struct FindUsedLoops { 13296 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13297 : LoopsUsed(LoopsUsed) {} 13298 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13299 bool follow(const SCEV *S) { 13300 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13301 LoopsUsed.insert(AR->getLoop()); 13302 return true; 13303 } 13304 13305 bool isDone() const { return false; } 13306 }; 13307 13308 FindUsedLoops F(LoopsUsed); 13309 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13310 } 13311 13312 void ScalarEvolution::getReachableBlocks( 13313 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13314 SmallVector<BasicBlock *> Worklist; 13315 Worklist.push_back(&F.getEntryBlock()); 13316 while (!Worklist.empty()) { 13317 BasicBlock *BB = Worklist.pop_back_val(); 13318 if (!Reachable.insert(BB).second) 13319 continue; 13320 13321 Value *Cond; 13322 BasicBlock *TrueBB, *FalseBB; 13323 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13324 m_BasicBlock(FalseBB)))) { 13325 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13326 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13327 continue; 13328 } 13329 13330 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13331 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13332 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13333 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13334 Worklist.push_back(TrueBB); 13335 continue; 13336 } 13337 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13338 R)) { 13339 Worklist.push_back(FalseBB); 13340 continue; 13341 } 13342 } 13343 } 13344 13345 append_range(Worklist, successors(BB)); 13346 } 13347 } 13348 13349 void ScalarEvolution::verify() const { 13350 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13351 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13352 13353 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13354 13355 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13356 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13357 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13358 13359 const SCEV *visitConstant(const SCEVConstant *Constant) { 13360 return SE.getConstant(Constant->getAPInt()); 13361 } 13362 13363 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13364 return SE.getUnknown(Expr->getValue()); 13365 } 13366 13367 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13368 return SE.getCouldNotCompute(); 13369 } 13370 }; 13371 13372 SCEVMapper SCM(SE2); 13373 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13374 SE2.getReachableBlocks(ReachableBlocks, F); 13375 13376 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13377 if (containsUndefs(Old) || containsUndefs(New)) { 13378 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13379 // not propagate undef aggressively). This means we can (and do) fail 13380 // verification in cases where a transform makes a value go from "undef" 13381 // to "undef+1" (say). The transform is fine, since in both cases the 13382 // result is "undef", but SCEV thinks the value increased by 1. 13383 return nullptr; 13384 } 13385 13386 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13387 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13388 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13389 return nullptr; 13390 13391 return Delta; 13392 }; 13393 13394 while (!LoopStack.empty()) { 13395 auto *L = LoopStack.pop_back_val(); 13396 llvm::append_range(LoopStack, *L); 13397 13398 // Only verify BECounts in reachable loops. For an unreachable loop, 13399 // any BECount is legal. 13400 if (!ReachableBlocks.contains(L->getHeader())) 13401 continue; 13402 13403 // Only verify cached BECounts. Computing new BECounts may change the 13404 // results of subsequent SCEV uses. 13405 auto It = BackedgeTakenCounts.find(L); 13406 if (It == BackedgeTakenCounts.end()) 13407 continue; 13408 13409 auto *CurBECount = 13410 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13411 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13412 13413 if (CurBECount == SE2.getCouldNotCompute() || 13414 NewBECount == SE2.getCouldNotCompute()) { 13415 // NB! This situation is legal, but is very suspicious -- whatever pass 13416 // change the loop to make a trip count go from could not compute to 13417 // computable or vice-versa *should have* invalidated SCEV. However, we 13418 // choose not to assert here (for now) since we don't want false 13419 // positives. 13420 continue; 13421 } 13422 13423 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13424 SE.getTypeSizeInBits(NewBECount->getType())) 13425 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13426 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13427 SE.getTypeSizeInBits(NewBECount->getType())) 13428 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13429 13430 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13431 if (Delta && !Delta->isZero()) { 13432 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13433 dbgs() << "Old: " << *CurBECount << "\n"; 13434 dbgs() << "New: " << *NewBECount << "\n"; 13435 dbgs() << "Delta: " << *Delta << "\n"; 13436 std::abort(); 13437 } 13438 } 13439 13440 // Collect all valid loops currently in LoopInfo. 13441 SmallPtrSet<Loop *, 32> ValidLoops; 13442 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13443 while (!Worklist.empty()) { 13444 Loop *L = Worklist.pop_back_val(); 13445 if (ValidLoops.insert(L).second) 13446 Worklist.append(L->begin(), L->end()); 13447 } 13448 for (auto &KV : ValueExprMap) { 13449 #ifndef NDEBUG 13450 // Check for SCEV expressions referencing invalid/deleted loops. 13451 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13452 assert(ValidLoops.contains(AR->getLoop()) && 13453 "AddRec references invalid loop"); 13454 } 13455 #endif 13456 13457 // Check that the value is also part of the reverse map. 13458 auto It = ExprValueMap.find(KV.second); 13459 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13460 dbgs() << "Value " << *KV.first 13461 << " is in ValueExprMap but not in ExprValueMap\n"; 13462 std::abort(); 13463 } 13464 13465 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13466 if (!ReachableBlocks.contains(I->getParent())) 13467 continue; 13468 const SCEV *OldSCEV = SCM.visit(KV.second); 13469 const SCEV *NewSCEV = SE2.getSCEV(I); 13470 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13471 if (Delta && !Delta->isZero()) { 13472 dbgs() << "SCEV for value " << *I << " changed!\n" 13473 << "Old: " << *OldSCEV << "\n" 13474 << "New: " << *NewSCEV << "\n" 13475 << "Delta: " << *Delta << "\n"; 13476 std::abort(); 13477 } 13478 } 13479 } 13480 13481 for (const auto &KV : ExprValueMap) { 13482 for (Value *V : KV.second) { 13483 auto It = ValueExprMap.find_as(V); 13484 if (It == ValueExprMap.end()) { 13485 dbgs() << "Value " << *V 13486 << " is in ExprValueMap but not in ValueExprMap\n"; 13487 std::abort(); 13488 } 13489 if (It->second != KV.first) { 13490 dbgs() << "Value " << *V << " mapped to " << *It->second 13491 << " rather than " << *KV.first << "\n"; 13492 std::abort(); 13493 } 13494 } 13495 } 13496 13497 // Verify integrity of SCEV users. 13498 for (const auto &S : UniqueSCEVs) { 13499 SmallVector<const SCEV *, 4> Ops; 13500 collectUniqueOps(&S, Ops); 13501 for (const auto *Op : Ops) { 13502 // We do not store dependencies of constants. 13503 if (isa<SCEVConstant>(Op)) 13504 continue; 13505 auto It = SCEVUsers.find(Op); 13506 if (It != SCEVUsers.end() && It->second.count(&S)) 13507 continue; 13508 dbgs() << "Use of operand " << *Op << " by user " << S 13509 << " is not being tracked!\n"; 13510 std::abort(); 13511 } 13512 } 13513 13514 // Verify integrity of ValuesAtScopes users. 13515 for (const auto &ValueAndVec : ValuesAtScopes) { 13516 const SCEV *Value = ValueAndVec.first; 13517 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13518 const Loop *L = LoopAndValueAtScope.first; 13519 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13520 if (!isa<SCEVConstant>(ValueAtScope)) { 13521 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13522 if (It != ValuesAtScopesUsers.end() && 13523 is_contained(It->second, std::make_pair(L, Value))) 13524 continue; 13525 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13526 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13527 std::abort(); 13528 } 13529 } 13530 } 13531 13532 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13533 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13534 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13535 const Loop *L = LoopAndValue.first; 13536 const SCEV *Value = LoopAndValue.second; 13537 assert(!isa<SCEVConstant>(Value)); 13538 auto It = ValuesAtScopes.find(Value); 13539 if (It != ValuesAtScopes.end() && 13540 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13541 continue; 13542 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13543 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13544 std::abort(); 13545 } 13546 } 13547 13548 // Verify integrity of BECountUsers. 13549 auto VerifyBECountUsers = [&](bool Predicated) { 13550 auto &BECounts = 13551 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13552 for (const auto &LoopAndBEInfo : BECounts) { 13553 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13554 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13555 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13556 if (UserIt != BECountUsers.end() && 13557 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13558 continue; 13559 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13560 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13561 std::abort(); 13562 } 13563 } 13564 } 13565 }; 13566 VerifyBECountUsers(/* Predicated */ false); 13567 VerifyBECountUsers(/* Predicated */ true); 13568 } 13569 13570 bool ScalarEvolution::invalidate( 13571 Function &F, const PreservedAnalyses &PA, 13572 FunctionAnalysisManager::Invalidator &Inv) { 13573 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13574 // of its dependencies is invalidated. 13575 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13576 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13577 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13578 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13579 Inv.invalidate<LoopAnalysis>(F, PA); 13580 } 13581 13582 AnalysisKey ScalarEvolutionAnalysis::Key; 13583 13584 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13585 FunctionAnalysisManager &AM) { 13586 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13587 AM.getResult<AssumptionAnalysis>(F), 13588 AM.getResult<DominatorTreeAnalysis>(F), 13589 AM.getResult<LoopAnalysis>(F)); 13590 } 13591 13592 PreservedAnalyses 13593 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13594 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13595 return PreservedAnalyses::all(); 13596 } 13597 13598 PreservedAnalyses 13599 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13600 // For compatibility with opt's -analyze feature under legacy pass manager 13601 // which was not ported to NPM. This keeps tests using 13602 // update_analyze_test_checks.py working. 13603 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13604 << F.getName() << "':\n"; 13605 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13606 return PreservedAnalyses::all(); 13607 } 13608 13609 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13610 "Scalar Evolution Analysis", false, true) 13611 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13612 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13613 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13614 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13615 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13616 "Scalar Evolution Analysis", false, true) 13617 13618 char ScalarEvolutionWrapperPass::ID = 0; 13619 13620 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13621 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13622 } 13623 13624 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13625 SE.reset(new ScalarEvolution( 13626 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13627 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13628 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13629 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13630 return false; 13631 } 13632 13633 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13634 13635 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13636 SE->print(OS); 13637 } 13638 13639 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13640 if (!VerifySCEV) 13641 return; 13642 13643 SE->verify(); 13644 } 13645 13646 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13647 AU.setPreservesAll(); 13648 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13649 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13650 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13651 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13652 } 13653 13654 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13655 const SCEV *RHS) { 13656 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13657 } 13658 13659 const SCEVPredicate * 13660 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13661 const SCEV *LHS, const SCEV *RHS) { 13662 FoldingSetNodeID ID; 13663 assert(LHS->getType() == RHS->getType() && 13664 "Type mismatch between LHS and RHS"); 13665 // Unique this node based on the arguments 13666 ID.AddInteger(SCEVPredicate::P_Compare); 13667 ID.AddInteger(Pred); 13668 ID.AddPointer(LHS); 13669 ID.AddPointer(RHS); 13670 void *IP = nullptr; 13671 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13672 return S; 13673 SCEVComparePredicate *Eq = new (SCEVAllocator) 13674 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13675 UniquePreds.InsertNode(Eq, IP); 13676 return Eq; 13677 } 13678 13679 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13680 const SCEVAddRecExpr *AR, 13681 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13682 FoldingSetNodeID ID; 13683 // Unique this node based on the arguments 13684 ID.AddInteger(SCEVPredicate::P_Wrap); 13685 ID.AddPointer(AR); 13686 ID.AddInteger(AddedFlags); 13687 void *IP = nullptr; 13688 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13689 return S; 13690 auto *OF = new (SCEVAllocator) 13691 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13692 UniquePreds.InsertNode(OF, IP); 13693 return OF; 13694 } 13695 13696 namespace { 13697 13698 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13699 public: 13700 13701 /// Rewrites \p S in the context of a loop L and the SCEV predication 13702 /// infrastructure. 13703 /// 13704 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13705 /// equivalences present in \p Pred. 13706 /// 13707 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13708 /// \p NewPreds such that the result will be an AddRecExpr. 13709 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13710 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13711 const SCEVPredicate *Pred) { 13712 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13713 return Rewriter.visit(S); 13714 } 13715 13716 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13717 if (Pred) { 13718 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13719 for (auto *Pred : U->getPredicates()) 13720 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13721 if (IPred->getLHS() == Expr && 13722 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13723 return IPred->getRHS(); 13724 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13725 if (IPred->getLHS() == Expr && 13726 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13727 return IPred->getRHS(); 13728 } 13729 } 13730 return convertToAddRecWithPreds(Expr); 13731 } 13732 13733 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13734 const SCEV *Operand = visit(Expr->getOperand()); 13735 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13736 if (AR && AR->getLoop() == L && AR->isAffine()) { 13737 // This couldn't be folded because the operand didn't have the nuw 13738 // flag. Add the nusw flag as an assumption that we could make. 13739 const SCEV *Step = AR->getStepRecurrence(SE); 13740 Type *Ty = Expr->getType(); 13741 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13742 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13743 SE.getSignExtendExpr(Step, Ty), L, 13744 AR->getNoWrapFlags()); 13745 } 13746 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13747 } 13748 13749 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13750 const SCEV *Operand = visit(Expr->getOperand()); 13751 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13752 if (AR && AR->getLoop() == L && AR->isAffine()) { 13753 // This couldn't be folded because the operand didn't have the nsw 13754 // flag. Add the nssw flag as an assumption that we could make. 13755 const SCEV *Step = AR->getStepRecurrence(SE); 13756 Type *Ty = Expr->getType(); 13757 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13758 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13759 SE.getSignExtendExpr(Step, Ty), L, 13760 AR->getNoWrapFlags()); 13761 } 13762 return SE.getSignExtendExpr(Operand, Expr->getType()); 13763 } 13764 13765 private: 13766 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13767 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13768 const SCEVPredicate *Pred) 13769 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13770 13771 bool addOverflowAssumption(const SCEVPredicate *P) { 13772 if (!NewPreds) { 13773 // Check if we've already made this assumption. 13774 return Pred && Pred->implies(P); 13775 } 13776 NewPreds->insert(P); 13777 return true; 13778 } 13779 13780 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13781 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13782 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13783 return addOverflowAssumption(A); 13784 } 13785 13786 // If \p Expr represents a PHINode, we try to see if it can be represented 13787 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13788 // to add this predicate as a runtime overflow check, we return the AddRec. 13789 // If \p Expr does not meet these conditions (is not a PHI node, or we 13790 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13791 // return \p Expr. 13792 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13793 if (!isa<PHINode>(Expr->getValue())) 13794 return Expr; 13795 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13796 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13797 if (!PredicatedRewrite) 13798 return Expr; 13799 for (auto *P : PredicatedRewrite->second){ 13800 // Wrap predicates from outer loops are not supported. 13801 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13802 if (L != WP->getExpr()->getLoop()) 13803 return Expr; 13804 } 13805 if (!addOverflowAssumption(P)) 13806 return Expr; 13807 } 13808 return PredicatedRewrite->first; 13809 } 13810 13811 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13812 const SCEVPredicate *Pred; 13813 const Loop *L; 13814 }; 13815 13816 } // end anonymous namespace 13817 13818 const SCEV * 13819 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13820 const SCEVPredicate &Preds) { 13821 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13822 } 13823 13824 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13825 const SCEV *S, const Loop *L, 13826 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13827 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13828 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13829 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13830 13831 if (!AddRec) 13832 return nullptr; 13833 13834 // Since the transformation was successful, we can now transfer the SCEV 13835 // predicates. 13836 for (auto *P : TransformPreds) 13837 Preds.insert(P); 13838 13839 return AddRec; 13840 } 13841 13842 /// SCEV predicates 13843 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13844 SCEVPredicateKind Kind) 13845 : FastID(ID), Kind(Kind) {} 13846 13847 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13848 const ICmpInst::Predicate Pred, 13849 const SCEV *LHS, const SCEV *RHS) 13850 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13851 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13852 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13853 } 13854 13855 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13856 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13857 13858 if (!Op) 13859 return false; 13860 13861 if (Pred != ICmpInst::ICMP_EQ) 13862 return false; 13863 13864 return Op->LHS == LHS && Op->RHS == RHS; 13865 } 13866 13867 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13868 13869 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13870 if (Pred == ICmpInst::ICMP_EQ) 13871 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13872 else 13873 OS.indent(Depth) << "Compare predicate: " << *LHS 13874 << " " << CmpInst::getPredicateName(Pred) << ") " 13875 << *RHS << "\n"; 13876 13877 } 13878 13879 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13880 const SCEVAddRecExpr *AR, 13881 IncrementWrapFlags Flags) 13882 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13883 13884 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13885 13886 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13887 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13888 13889 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13890 } 13891 13892 bool SCEVWrapPredicate::isAlwaysTrue() const { 13893 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13894 IncrementWrapFlags IFlags = Flags; 13895 13896 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13897 IFlags = clearFlags(IFlags, IncrementNSSW); 13898 13899 return IFlags == IncrementAnyWrap; 13900 } 13901 13902 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13903 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13904 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13905 OS << "<nusw>"; 13906 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13907 OS << "<nssw>"; 13908 OS << "\n"; 13909 } 13910 13911 SCEVWrapPredicate::IncrementWrapFlags 13912 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13913 ScalarEvolution &SE) { 13914 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13915 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13916 13917 // We can safely transfer the NSW flag as NSSW. 13918 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13919 ImpliedFlags = IncrementNSSW; 13920 13921 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13922 // If the increment is positive, the SCEV NUW flag will also imply the 13923 // WrapPredicate NUSW flag. 13924 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13925 if (Step->getValue()->getValue().isNonNegative()) 13926 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13927 } 13928 13929 return ImpliedFlags; 13930 } 13931 13932 /// Union predicates don't get cached so create a dummy set ID for it. 13933 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 13934 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 13935 for (auto *P : Preds) 13936 add(P); 13937 } 13938 13939 bool SCEVUnionPredicate::isAlwaysTrue() const { 13940 return all_of(Preds, 13941 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13942 } 13943 13944 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13945 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13946 return all_of(Set->Preds, 13947 [this](const SCEVPredicate *I) { return this->implies(I); }); 13948 13949 return any_of(Preds, 13950 [N](const SCEVPredicate *I) { return I->implies(N); }); 13951 } 13952 13953 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13954 for (auto Pred : Preds) 13955 Pred->print(OS, Depth); 13956 } 13957 13958 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13959 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13960 for (auto Pred : Set->Preds) 13961 add(Pred); 13962 return; 13963 } 13964 13965 Preds.push_back(N); 13966 } 13967 13968 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13969 Loop &L) 13970 : SE(SE), L(L) { 13971 SmallVector<const SCEVPredicate*, 4> Empty; 13972 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 13973 } 13974 13975 void ScalarEvolution::registerUser(const SCEV *User, 13976 ArrayRef<const SCEV *> Ops) { 13977 for (auto *Op : Ops) 13978 // We do not expect that forgetting cached data for SCEVConstants will ever 13979 // open any prospects for sharpening or introduce any correctness issues, 13980 // so we don't bother storing their dependencies. 13981 if (!isa<SCEVConstant>(Op)) 13982 SCEVUsers[Op].insert(User); 13983 } 13984 13985 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13986 const SCEV *Expr = SE.getSCEV(V); 13987 RewriteEntry &Entry = RewriteMap[Expr]; 13988 13989 // If we already have an entry and the version matches, return it. 13990 if (Entry.second && Generation == Entry.first) 13991 return Entry.second; 13992 13993 // We found an entry but it's stale. Rewrite the stale entry 13994 // according to the current predicate. 13995 if (Entry.second) 13996 Expr = Entry.second; 13997 13998 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 13999 Entry = {Generation, NewSCEV}; 14000 14001 return NewSCEV; 14002 } 14003 14004 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14005 if (!BackedgeCount) { 14006 SmallVector<const SCEVPredicate *, 4> Preds; 14007 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14008 for (auto *P : Preds) 14009 addPredicate(*P); 14010 } 14011 return BackedgeCount; 14012 } 14013 14014 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14015 if (Preds->implies(&Pred)) 14016 return; 14017 14018 auto &OldPreds = Preds->getPredicates(); 14019 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14020 NewPreds.push_back(&Pred); 14021 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14022 updateGeneration(); 14023 } 14024 14025 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14026 return *Preds; 14027 } 14028 14029 void PredicatedScalarEvolution::updateGeneration() { 14030 // If the generation number wrapped recompute everything. 14031 if (++Generation == 0) { 14032 for (auto &II : RewriteMap) { 14033 const SCEV *Rewritten = II.second.second; 14034 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14035 } 14036 } 14037 } 14038 14039 void PredicatedScalarEvolution::setNoOverflow( 14040 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14041 const SCEV *Expr = getSCEV(V); 14042 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14043 14044 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14045 14046 // Clear the statically implied flags. 14047 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14048 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14049 14050 auto II = FlagsMap.insert({V, Flags}); 14051 if (!II.second) 14052 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14053 } 14054 14055 bool PredicatedScalarEvolution::hasNoOverflow( 14056 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14057 const SCEV *Expr = getSCEV(V); 14058 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14059 14060 Flags = SCEVWrapPredicate::clearFlags( 14061 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14062 14063 auto II = FlagsMap.find(V); 14064 14065 if (II != FlagsMap.end()) 14066 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14067 14068 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14069 } 14070 14071 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14072 const SCEV *Expr = this->getSCEV(V); 14073 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14074 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14075 14076 if (!New) 14077 return nullptr; 14078 14079 for (auto *P : NewPreds) 14080 addPredicate(*P); 14081 14082 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14083 return New; 14084 } 14085 14086 PredicatedScalarEvolution::PredicatedScalarEvolution( 14087 const PredicatedScalarEvolution &Init) 14088 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14089 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14090 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14091 for (auto I : Init.FlagsMap) 14092 FlagsMap.insert(I); 14093 } 14094 14095 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14096 // For each block. 14097 for (auto *BB : L.getBlocks()) 14098 for (auto &I : *BB) { 14099 if (!SE.isSCEVable(I.getType())) 14100 continue; 14101 14102 auto *Expr = SE.getSCEV(&I); 14103 auto II = RewriteMap.find(Expr); 14104 14105 if (II == RewriteMap.end()) 14106 continue; 14107 14108 // Don't print things that are not interesting. 14109 if (II->second.second == Expr) 14110 continue; 14111 14112 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14113 OS.indent(Depth + 2) << *Expr << "\n"; 14114 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14115 } 14116 } 14117 14118 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14119 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14120 // for URem with constant power-of-2 second operands. 14121 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14122 // 4, A / B becomes X / 8). 14123 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14124 const SCEV *&RHS) { 14125 // Try to match 'zext (trunc A to iB) to iY', which is used 14126 // for URem with constant power-of-2 second operands. Make sure the size of 14127 // the operand A matches the size of the whole expressions. 14128 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14129 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14130 LHS = Trunc->getOperand(); 14131 // Bail out if the type of the LHS is larger than the type of the 14132 // expression for now. 14133 if (getTypeSizeInBits(LHS->getType()) > 14134 getTypeSizeInBits(Expr->getType())) 14135 return false; 14136 if (LHS->getType() != Expr->getType()) 14137 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14138 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14139 << getTypeSizeInBits(Trunc->getType())); 14140 return true; 14141 } 14142 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14143 if (Add == nullptr || Add->getNumOperands() != 2) 14144 return false; 14145 14146 const SCEV *A = Add->getOperand(1); 14147 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14148 14149 if (Mul == nullptr) 14150 return false; 14151 14152 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14153 // (SomeExpr + (-(SomeExpr / B) * B)). 14154 if (Expr == getURemExpr(A, B)) { 14155 LHS = A; 14156 RHS = B; 14157 return true; 14158 } 14159 return false; 14160 }; 14161 14162 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14163 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14164 return MatchURemWithDivisor(Mul->getOperand(1)) || 14165 MatchURemWithDivisor(Mul->getOperand(2)); 14166 14167 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14168 if (Mul->getNumOperands() == 2) 14169 return MatchURemWithDivisor(Mul->getOperand(1)) || 14170 MatchURemWithDivisor(Mul->getOperand(0)) || 14171 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14172 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14173 return false; 14174 } 14175 14176 const SCEV * 14177 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14178 SmallVector<BasicBlock*, 16> ExitingBlocks; 14179 L->getExitingBlocks(ExitingBlocks); 14180 14181 // Form an expression for the maximum exit count possible for this loop. We 14182 // merge the max and exact information to approximate a version of 14183 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14184 SmallVector<const SCEV*, 4> ExitCounts; 14185 for (BasicBlock *ExitingBB : ExitingBlocks) { 14186 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14187 if (isa<SCEVCouldNotCompute>(ExitCount)) 14188 ExitCount = getExitCount(L, ExitingBB, 14189 ScalarEvolution::ConstantMaximum); 14190 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14191 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14192 "We should only have known counts for exiting blocks that " 14193 "dominate latch!"); 14194 ExitCounts.push_back(ExitCount); 14195 } 14196 } 14197 if (ExitCounts.empty()) 14198 return getCouldNotCompute(); 14199 return getUMinFromMismatchedTypes(ExitCounts); 14200 } 14201 14202 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14203 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14204 /// replacement is loop invariant in the loop of the AddRec. 14205 /// 14206 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14207 /// supported. 14208 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14209 const DenseMap<const SCEV *, const SCEV *> ⤅ 14210 14211 public: 14212 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14213 DenseMap<const SCEV *, const SCEV *> &M) 14214 : SCEVRewriteVisitor(SE), Map(M) {} 14215 14216 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14217 14218 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14219 auto I = Map.find(Expr); 14220 if (I == Map.end()) 14221 return Expr; 14222 return I->second; 14223 } 14224 14225 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14226 auto I = Map.find(Expr); 14227 if (I == Map.end()) 14228 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14229 Expr); 14230 return I->second; 14231 } 14232 }; 14233 14234 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14235 SmallVector<const SCEV *> ExprsToRewrite; 14236 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14237 const SCEV *RHS, 14238 DenseMap<const SCEV *, const SCEV *> 14239 &RewriteMap) { 14240 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14241 // replacement SCEV which isn't directly implied by the structure of that 14242 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14243 // legal. See the scoping rules for flags in the header to understand why. 14244 14245 // If LHS is a constant, apply information to the other expression. 14246 if (isa<SCEVConstant>(LHS)) { 14247 std::swap(LHS, RHS); 14248 Predicate = CmpInst::getSwappedPredicate(Predicate); 14249 } 14250 14251 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14252 // create this form when combining two checks of the form (X u< C2 + C1) and 14253 // (X >=u C1). 14254 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14255 &ExprsToRewrite]() { 14256 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14257 if (!AddExpr || AddExpr->getNumOperands() != 2) 14258 return false; 14259 14260 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14261 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14262 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14263 if (!C1 || !C2 || !LHSUnknown) 14264 return false; 14265 14266 auto ExactRegion = 14267 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14268 .sub(C1->getAPInt()); 14269 14270 // Bail out, unless we have a non-wrapping, monotonic range. 14271 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14272 return false; 14273 auto I = RewriteMap.find(LHSUnknown); 14274 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14275 RewriteMap[LHSUnknown] = getUMaxExpr( 14276 getConstant(ExactRegion.getUnsignedMin()), 14277 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14278 ExprsToRewrite.push_back(LHSUnknown); 14279 return true; 14280 }; 14281 if (MatchRangeCheckIdiom()) 14282 return; 14283 14284 // If we have LHS == 0, check if LHS is computing a property of some unknown 14285 // SCEV %v which we can rewrite %v to express explicitly. 14286 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14287 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14288 RHSC->getValue()->isNullValue()) { 14289 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14290 // explicitly express that. 14291 const SCEV *URemLHS = nullptr; 14292 const SCEV *URemRHS = nullptr; 14293 if (matchURem(LHS, URemLHS, URemRHS)) { 14294 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14295 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14296 RewriteMap[LHSUnknown] = Multiple; 14297 ExprsToRewrite.push_back(LHSUnknown); 14298 return; 14299 } 14300 } 14301 } 14302 14303 // Do not apply information for constants or if RHS contains an AddRec. 14304 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14305 return; 14306 14307 // If RHS is SCEVUnknown, make sure the information is applied to it. 14308 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14309 std::swap(LHS, RHS); 14310 Predicate = CmpInst::getSwappedPredicate(Predicate); 14311 } 14312 14313 // Limit to expressions that can be rewritten. 14314 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14315 return; 14316 14317 // Check whether LHS has already been rewritten. In that case we want to 14318 // chain further rewrites onto the already rewritten value. 14319 auto I = RewriteMap.find(LHS); 14320 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14321 14322 const SCEV *RewrittenRHS = nullptr; 14323 switch (Predicate) { 14324 case CmpInst::ICMP_ULT: 14325 RewrittenRHS = 14326 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14327 break; 14328 case CmpInst::ICMP_SLT: 14329 RewrittenRHS = 14330 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14331 break; 14332 case CmpInst::ICMP_ULE: 14333 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14334 break; 14335 case CmpInst::ICMP_SLE: 14336 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14337 break; 14338 case CmpInst::ICMP_UGT: 14339 RewrittenRHS = 14340 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14341 break; 14342 case CmpInst::ICMP_SGT: 14343 RewrittenRHS = 14344 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14345 break; 14346 case CmpInst::ICMP_UGE: 14347 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14348 break; 14349 case CmpInst::ICMP_SGE: 14350 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14351 break; 14352 case CmpInst::ICMP_EQ: 14353 if (isa<SCEVConstant>(RHS)) 14354 RewrittenRHS = RHS; 14355 break; 14356 case CmpInst::ICMP_NE: 14357 if (isa<SCEVConstant>(RHS) && 14358 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14359 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14360 break; 14361 default: 14362 break; 14363 } 14364 14365 if (RewrittenRHS) { 14366 RewriteMap[LHS] = RewrittenRHS; 14367 if (LHS == RewrittenLHS) 14368 ExprsToRewrite.push_back(LHS); 14369 } 14370 }; 14371 // First, collect conditions from dominating branches. Starting at the loop 14372 // predecessor, climb up the predecessor chain, as long as there are 14373 // predecessors that can be found that have unique successors leading to the 14374 // original header. 14375 // TODO: share this logic with isLoopEntryGuardedByCond. 14376 SmallVector<std::pair<Value *, bool>> Terms; 14377 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14378 L->getLoopPredecessor(), L->getHeader()); 14379 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14380 14381 const BranchInst *LoopEntryPredicate = 14382 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14383 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14384 continue; 14385 14386 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14387 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14388 } 14389 14390 // Now apply the information from the collected conditions to RewriteMap. 14391 // Conditions are processed in reverse order, so the earliest conditions is 14392 // processed first. This ensures the SCEVs with the shortest dependency chains 14393 // are constructed first. 14394 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14395 for (auto &E : reverse(Terms)) { 14396 bool EnterIfTrue = E.second; 14397 SmallVector<Value *, 8> Worklist; 14398 SmallPtrSet<Value *, 8> Visited; 14399 Worklist.push_back(E.first); 14400 while (!Worklist.empty()) { 14401 Value *Cond = Worklist.pop_back_val(); 14402 if (!Visited.insert(Cond).second) 14403 continue; 14404 14405 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14406 auto Predicate = 14407 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14408 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14409 getSCEV(Cmp->getOperand(1)), RewriteMap); 14410 continue; 14411 } 14412 14413 Value *L, *R; 14414 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14415 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14416 Worklist.push_back(L); 14417 Worklist.push_back(R); 14418 } 14419 } 14420 } 14421 14422 // Also collect information from assumptions dominating the loop. 14423 for (auto &AssumeVH : AC.assumptions()) { 14424 if (!AssumeVH) 14425 continue; 14426 auto *AssumeI = cast<CallInst>(AssumeVH); 14427 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14428 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14429 continue; 14430 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14431 getSCEV(Cmp->getOperand(1)), RewriteMap); 14432 } 14433 14434 if (RewriteMap.empty()) 14435 return Expr; 14436 14437 // Now that all rewrite information is collect, rewrite the collected 14438 // expressions with the information in the map. This applies information to 14439 // sub-expressions. 14440 if (ExprsToRewrite.size() > 1) { 14441 for (const SCEV *Expr : ExprsToRewrite) { 14442 const SCEV *RewriteTo = RewriteMap[Expr]; 14443 RewriteMap.erase(Expr); 14444 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14445 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14446 } 14447 } 14448 14449 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14450 return Rewriter.visit(Expr); 14451 } 14452