1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Support/SaveAndRestore.h" 95 #include <algorithm> 96 using namespace llvm; 97 98 #define DEBUG_TYPE "scalar-evolution" 99 100 STATISTIC(NumArrayLenItCounts, 101 "Number of trip counts computed with array length"); 102 STATISTIC(NumTripCountsComputed, 103 "Number of loops with predictable loop counts"); 104 STATISTIC(NumTripCountsNotComputed, 105 "Number of loops without predictable loop counts"); 106 STATISTIC(NumBruteForceTripCountsComputed, 107 "Number of loops with trip counts computed by force"); 108 109 static cl::opt<unsigned> 110 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 111 cl::desc("Maximum number of iterations SCEV will " 112 "symbolically execute a constant " 113 "derived loop"), 114 cl::init(100)); 115 116 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 117 static cl::opt<bool> 118 VerifySCEV("verify-scev", 119 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 120 static cl::opt<bool> 121 VerifySCEVMap("verify-scev-maps", 122 cl::desc("Verify no dangling value in ScalarEvolution's " 123 "ExprValueMap (slow)")); 124 125 static cl::opt<unsigned> MulOpsInlineThreshold( 126 "scev-mulops-inline-threshold", cl::Hidden, 127 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 128 cl::init(1000)); 129 130 static cl::opt<unsigned> AddOpsInlineThreshold( 131 "scev-addops-inline-threshold", cl::Hidden, 132 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 133 cl::init(500)); 134 135 static cl::opt<unsigned> MaxSCEVCompareDepth( 136 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 137 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 138 cl::init(32)); 139 140 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 141 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 142 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 143 cl::init(2)); 144 145 static cl::opt<unsigned> MaxValueCompareDepth( 146 "scalar-evolution-max-value-compare-depth", cl::Hidden, 147 cl::desc("Maximum depth of recursive value complexity comparisons"), 148 cl::init(2)); 149 150 static cl::opt<unsigned> 151 MaxAddExprDepth("scalar-evolution-max-addexpr-depth", cl::Hidden, 152 cl::desc("Maximum depth of recursive AddExpr"), 153 cl::init(32)); 154 155 static cl::opt<unsigned> MaxConstantEvolvingDepth( 156 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 157 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 158 159 //===----------------------------------------------------------------------===// 160 // SCEV class definitions 161 //===----------------------------------------------------------------------===// 162 163 //===----------------------------------------------------------------------===// 164 // Implementation of the SCEV class. 165 // 166 167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 168 LLVM_DUMP_METHOD void SCEV::dump() const { 169 print(dbgs()); 170 dbgs() << '\n'; 171 } 172 #endif 173 174 void SCEV::print(raw_ostream &OS) const { 175 switch (static_cast<SCEVTypes>(getSCEVType())) { 176 case scConstant: 177 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 178 return; 179 case scTruncate: { 180 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 181 const SCEV *Op = Trunc->getOperand(); 182 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 183 << *Trunc->getType() << ")"; 184 return; 185 } 186 case scZeroExtend: { 187 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 188 const SCEV *Op = ZExt->getOperand(); 189 OS << "(zext " << *Op->getType() << " " << *Op << " to " 190 << *ZExt->getType() << ")"; 191 return; 192 } 193 case scSignExtend: { 194 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 195 const SCEV *Op = SExt->getOperand(); 196 OS << "(sext " << *Op->getType() << " " << *Op << " to " 197 << *SExt->getType() << ")"; 198 return; 199 } 200 case scAddRecExpr: { 201 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 202 OS << "{" << *AR->getOperand(0); 203 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 204 OS << ",+," << *AR->getOperand(i); 205 OS << "}<"; 206 if (AR->hasNoUnsignedWrap()) 207 OS << "nuw><"; 208 if (AR->hasNoSignedWrap()) 209 OS << "nsw><"; 210 if (AR->hasNoSelfWrap() && 211 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 212 OS << "nw><"; 213 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 214 OS << ">"; 215 return; 216 } 217 case scAddExpr: 218 case scMulExpr: 219 case scUMaxExpr: 220 case scSMaxExpr: { 221 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 222 const char *OpStr = nullptr; 223 switch (NAry->getSCEVType()) { 224 case scAddExpr: OpStr = " + "; break; 225 case scMulExpr: OpStr = " * "; break; 226 case scUMaxExpr: OpStr = " umax "; break; 227 case scSMaxExpr: OpStr = " smax "; break; 228 } 229 OS << "("; 230 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 231 I != E; ++I) { 232 OS << **I; 233 if (std::next(I) != E) 234 OS << OpStr; 235 } 236 OS << ")"; 237 switch (NAry->getSCEVType()) { 238 case scAddExpr: 239 case scMulExpr: 240 if (NAry->hasNoUnsignedWrap()) 241 OS << "<nuw>"; 242 if (NAry->hasNoSignedWrap()) 243 OS << "<nsw>"; 244 } 245 return; 246 } 247 case scUDivExpr: { 248 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 249 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 250 return; 251 } 252 case scUnknown: { 253 const SCEVUnknown *U = cast<SCEVUnknown>(this); 254 Type *AllocTy; 255 if (U->isSizeOf(AllocTy)) { 256 OS << "sizeof(" << *AllocTy << ")"; 257 return; 258 } 259 if (U->isAlignOf(AllocTy)) { 260 OS << "alignof(" << *AllocTy << ")"; 261 return; 262 } 263 264 Type *CTy; 265 Constant *FieldNo; 266 if (U->isOffsetOf(CTy, FieldNo)) { 267 OS << "offsetof(" << *CTy << ", "; 268 FieldNo->printAsOperand(OS, false); 269 OS << ")"; 270 return; 271 } 272 273 // Otherwise just print it normally. 274 U->getValue()->printAsOperand(OS, false); 275 return; 276 } 277 case scCouldNotCompute: 278 OS << "***COULDNOTCOMPUTE***"; 279 return; 280 } 281 llvm_unreachable("Unknown SCEV kind!"); 282 } 283 284 Type *SCEV::getType() const { 285 switch (static_cast<SCEVTypes>(getSCEVType())) { 286 case scConstant: 287 return cast<SCEVConstant>(this)->getType(); 288 case scTruncate: 289 case scZeroExtend: 290 case scSignExtend: 291 return cast<SCEVCastExpr>(this)->getType(); 292 case scAddRecExpr: 293 case scMulExpr: 294 case scUMaxExpr: 295 case scSMaxExpr: 296 return cast<SCEVNAryExpr>(this)->getType(); 297 case scAddExpr: 298 return cast<SCEVAddExpr>(this)->getType(); 299 case scUDivExpr: 300 return cast<SCEVUDivExpr>(this)->getType(); 301 case scUnknown: 302 return cast<SCEVUnknown>(this)->getType(); 303 case scCouldNotCompute: 304 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 305 } 306 llvm_unreachable("Unknown SCEV kind!"); 307 } 308 309 bool SCEV::isZero() const { 310 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 311 return SC->getValue()->isZero(); 312 return false; 313 } 314 315 bool SCEV::isOne() const { 316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 317 return SC->getValue()->isOne(); 318 return false; 319 } 320 321 bool SCEV::isAllOnesValue() const { 322 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 323 return SC->getValue()->isAllOnesValue(); 324 return false; 325 } 326 327 bool SCEV::isNonConstantNegative() const { 328 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 329 if (!Mul) return false; 330 331 // If there is a constant factor, it will be first. 332 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 333 if (!SC) return false; 334 335 // Return true if the value is negative, this matches things like (-42 * V). 336 return SC->getAPInt().isNegative(); 337 } 338 339 SCEVCouldNotCompute::SCEVCouldNotCompute() : 340 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 341 342 bool SCEVCouldNotCompute::classof(const SCEV *S) { 343 return S->getSCEVType() == scCouldNotCompute; 344 } 345 346 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 347 FoldingSetNodeID ID; 348 ID.AddInteger(scConstant); 349 ID.AddPointer(V); 350 void *IP = nullptr; 351 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 352 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 353 UniqueSCEVs.InsertNode(S, IP); 354 return S; 355 } 356 357 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 358 return getConstant(ConstantInt::get(getContext(), Val)); 359 } 360 361 const SCEV * 362 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 363 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 364 return getConstant(ConstantInt::get(ITy, V, isSigned)); 365 } 366 367 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 368 unsigned SCEVTy, const SCEV *op, Type *ty) 369 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 370 371 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 372 const SCEV *op, Type *ty) 373 : SCEVCastExpr(ID, scTruncate, op, ty) { 374 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 375 (Ty->isIntegerTy() || Ty->isPointerTy()) && 376 "Cannot truncate non-integer value!"); 377 } 378 379 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 380 const SCEV *op, Type *ty) 381 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 382 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 383 (Ty->isIntegerTy() || Ty->isPointerTy()) && 384 "Cannot zero extend non-integer value!"); 385 } 386 387 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 388 const SCEV *op, Type *ty) 389 : SCEVCastExpr(ID, scSignExtend, op, ty) { 390 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 391 (Ty->isIntegerTy() || Ty->isPointerTy()) && 392 "Cannot sign extend non-integer value!"); 393 } 394 395 void SCEVUnknown::deleted() { 396 // Clear this SCEVUnknown from various maps. 397 SE->forgetMemoizedResults(this); 398 399 // Remove this SCEVUnknown from the uniquing map. 400 SE->UniqueSCEVs.RemoveNode(this); 401 402 // Release the value. 403 setValPtr(nullptr); 404 } 405 406 void SCEVUnknown::allUsesReplacedWith(Value *New) { 407 // Clear this SCEVUnknown from various maps. 408 SE->forgetMemoizedResults(this); 409 410 // Remove this SCEVUnknown from the uniquing map. 411 SE->UniqueSCEVs.RemoveNode(this); 412 413 // Update this SCEVUnknown to point to the new value. This is needed 414 // because there may still be outstanding SCEVs which still point to 415 // this SCEVUnknown. 416 setValPtr(New); 417 } 418 419 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 420 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 421 if (VCE->getOpcode() == Instruction::PtrToInt) 422 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 423 if (CE->getOpcode() == Instruction::GetElementPtr && 424 CE->getOperand(0)->isNullValue() && 425 CE->getNumOperands() == 2) 426 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 427 if (CI->isOne()) { 428 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 429 ->getElementType(); 430 return true; 431 } 432 433 return false; 434 } 435 436 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 437 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 438 if (VCE->getOpcode() == Instruction::PtrToInt) 439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 440 if (CE->getOpcode() == Instruction::GetElementPtr && 441 CE->getOperand(0)->isNullValue()) { 442 Type *Ty = 443 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 444 if (StructType *STy = dyn_cast<StructType>(Ty)) 445 if (!STy->isPacked() && 446 CE->getNumOperands() == 3 && 447 CE->getOperand(1)->isNullValue()) { 448 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 449 if (CI->isOne() && 450 STy->getNumElements() == 2 && 451 STy->getElementType(0)->isIntegerTy(1)) { 452 AllocTy = STy->getElementType(1); 453 return true; 454 } 455 } 456 } 457 458 return false; 459 } 460 461 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 462 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 463 if (VCE->getOpcode() == Instruction::PtrToInt) 464 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 465 if (CE->getOpcode() == Instruction::GetElementPtr && 466 CE->getNumOperands() == 3 && 467 CE->getOperand(0)->isNullValue() && 468 CE->getOperand(1)->isNullValue()) { 469 Type *Ty = 470 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 471 // Ignore vector types here so that ScalarEvolutionExpander doesn't 472 // emit getelementptrs that index into vectors. 473 if (Ty->isStructTy() || Ty->isArrayTy()) { 474 CTy = Ty; 475 FieldNo = CE->getOperand(2); 476 return true; 477 } 478 } 479 480 return false; 481 } 482 483 //===----------------------------------------------------------------------===// 484 // SCEV Utilities 485 //===----------------------------------------------------------------------===// 486 487 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 488 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 489 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 490 /// have been previously deemed to be "equally complex" by this routine. It is 491 /// intended to avoid exponential time complexity in cases like: 492 /// 493 /// %a = f(%x, %y) 494 /// %b = f(%a, %a) 495 /// %c = f(%b, %b) 496 /// 497 /// %d = f(%x, %y) 498 /// %e = f(%d, %d) 499 /// %f = f(%e, %e) 500 /// 501 /// CompareValueComplexity(%f, %c) 502 /// 503 /// Since we do not continue running this routine on expression trees once we 504 /// have seen unequal values, there is no need to track them in the cache. 505 static int 506 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 507 const LoopInfo *const LI, Value *LV, Value *RV, 508 unsigned Depth) { 509 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 510 return 0; 511 512 // Order pointer values after integer values. This helps SCEVExpander form 513 // GEPs. 514 bool LIsPointer = LV->getType()->isPointerTy(), 515 RIsPointer = RV->getType()->isPointerTy(); 516 if (LIsPointer != RIsPointer) 517 return (int)LIsPointer - (int)RIsPointer; 518 519 // Compare getValueID values. 520 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 521 if (LID != RID) 522 return (int)LID - (int)RID; 523 524 // Sort arguments by their position. 525 if (const auto *LA = dyn_cast<Argument>(LV)) { 526 const auto *RA = cast<Argument>(RV); 527 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 528 return (int)LArgNo - (int)RArgNo; 529 } 530 531 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 532 const auto *RGV = cast<GlobalValue>(RV); 533 534 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 535 auto LT = GV->getLinkage(); 536 return !(GlobalValue::isPrivateLinkage(LT) || 537 GlobalValue::isInternalLinkage(LT)); 538 }; 539 540 // Use the names to distinguish the two values, but only if the 541 // names are semantically important. 542 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 543 return LGV->getName().compare(RGV->getName()); 544 } 545 546 // For instructions, compare their loop depth, and their operand count. This 547 // is pretty loose. 548 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 549 const auto *RInst = cast<Instruction>(RV); 550 551 // Compare loop depths. 552 const BasicBlock *LParent = LInst->getParent(), 553 *RParent = RInst->getParent(); 554 if (LParent != RParent) { 555 unsigned LDepth = LI->getLoopDepth(LParent), 556 RDepth = LI->getLoopDepth(RParent); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Compare the number of operands. 562 unsigned LNumOps = LInst->getNumOperands(), 563 RNumOps = RInst->getNumOperands(); 564 if (LNumOps != RNumOps) 565 return (int)LNumOps - (int)RNumOps; 566 567 for (unsigned Idx : seq(0u, LNumOps)) { 568 int Result = 569 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 570 RInst->getOperand(Idx), Depth + 1); 571 if (Result != 0) 572 return Result; 573 } 574 } 575 576 EqCache.insert({LV, RV}); 577 return 0; 578 } 579 580 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 581 // than RHS, respectively. A three-way result allows recursive comparisons to be 582 // more efficient. 583 static int CompareSCEVComplexity( 584 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 585 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 586 unsigned Depth = 0) { 587 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 588 if (LHS == RHS) 589 return 0; 590 591 // Primarily, sort the SCEVs by their getSCEVType(). 592 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 593 if (LType != RType) 594 return (int)LType - (int)RType; 595 596 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 597 return 0; 598 // Aside from the getSCEVType() ordering, the particular ordering 599 // isn't very important except that it's beneficial to be consistent, 600 // so that (a + b) and (b + a) don't end up as different expressions. 601 switch (static_cast<SCEVTypes>(LType)) { 602 case scUnknown: { 603 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 604 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 605 606 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 607 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 608 Depth + 1); 609 if (X == 0) 610 EqCacheSCEV.insert({LHS, RHS}); 611 return X; 612 } 613 614 case scConstant: { 615 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 616 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 617 618 // Compare constant values. 619 const APInt &LA = LC->getAPInt(); 620 const APInt &RA = RC->getAPInt(); 621 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 622 if (LBitWidth != RBitWidth) 623 return (int)LBitWidth - (int)RBitWidth; 624 return LA.ult(RA) ? -1 : 1; 625 } 626 627 case scAddRecExpr: { 628 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 629 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 630 631 // Compare addrec loop depths. 632 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 633 if (LLoop != RLoop) { 634 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth(); 635 if (LDepth != RDepth) 636 return (int)LDepth - (int)RDepth; 637 } 638 639 // Addrec complexity grows with operand count. 640 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 641 if (LNumOps != RNumOps) 642 return (int)LNumOps - (int)RNumOps; 643 644 // Lexicographically compare. 645 for (unsigned i = 0; i != LNumOps; ++i) { 646 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 647 RA->getOperand(i), Depth + 1); 648 if (X != 0) 649 return X; 650 } 651 EqCacheSCEV.insert({LHS, RHS}); 652 return 0; 653 } 654 655 case scAddExpr: 656 case scMulExpr: 657 case scSMaxExpr: 658 case scUMaxExpr: { 659 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 660 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 661 662 // Lexicographically compare n-ary expressions. 663 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 664 if (LNumOps != RNumOps) 665 return (int)LNumOps - (int)RNumOps; 666 667 for (unsigned i = 0; i != LNumOps; ++i) { 668 if (i >= RNumOps) 669 return 1; 670 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 671 RC->getOperand(i), Depth + 1); 672 if (X != 0) 673 return X; 674 } 675 EqCacheSCEV.insert({LHS, RHS}); 676 return 0; 677 } 678 679 case scUDivExpr: { 680 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 681 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 682 683 // Lexicographically compare udiv expressions. 684 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 685 Depth + 1); 686 if (X != 0) 687 return X; 688 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), 689 Depth + 1); 690 if (X == 0) 691 EqCacheSCEV.insert({LHS, RHS}); 692 return X; 693 } 694 695 case scTruncate: 696 case scZeroExtend: 697 case scSignExtend: { 698 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 699 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 700 701 // Compare cast expressions by operand. 702 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 703 RC->getOperand(), Depth + 1); 704 if (X == 0) 705 EqCacheSCEV.insert({LHS, RHS}); 706 return X; 707 } 708 709 case scCouldNotCompute: 710 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 711 } 712 llvm_unreachable("Unknown SCEV kind!"); 713 } 714 715 /// Given a list of SCEV objects, order them by their complexity, and group 716 /// objects of the same complexity together by value. When this routine is 717 /// finished, we know that any duplicates in the vector are consecutive and that 718 /// complexity is monotonically increasing. 719 /// 720 /// Note that we go take special precautions to ensure that we get deterministic 721 /// results from this routine. In other words, we don't want the results of 722 /// this to depend on where the addresses of various SCEV objects happened to 723 /// land in memory. 724 /// 725 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 726 LoopInfo *LI) { 727 if (Ops.size() < 2) return; // Noop 728 729 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 730 if (Ops.size() == 2) { 731 // This is the common case, which also happens to be trivially simple. 732 // Special case it. 733 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 734 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0) 735 std::swap(LHS, RHS); 736 return; 737 } 738 739 // Do the rough sort by complexity. 740 std::stable_sort(Ops.begin(), Ops.end(), 741 [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) { 742 return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0; 743 }); 744 745 // Now that we are sorted by complexity, group elements of the same 746 // complexity. Note that this is, at worst, N^2, but the vector is likely to 747 // be extremely short in practice. Note that we take this approach because we 748 // do not want to depend on the addresses of the objects we are grouping. 749 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 750 const SCEV *S = Ops[i]; 751 unsigned Complexity = S->getSCEVType(); 752 753 // If there are any objects of the same complexity and same value as this 754 // one, group them. 755 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 756 if (Ops[j] == S) { // Found a duplicate. 757 // Move it to immediately after i'th element. 758 std::swap(Ops[i+1], Ops[j]); 759 ++i; // no need to rescan it. 760 if (i == e-2) return; // Done! 761 } 762 } 763 } 764 } 765 766 // Returns the size of the SCEV S. 767 static inline int sizeOfSCEV(const SCEV *S) { 768 struct FindSCEVSize { 769 int Size; 770 FindSCEVSize() : Size(0) {} 771 772 bool follow(const SCEV *S) { 773 ++Size; 774 // Keep looking at all operands of S. 775 return true; 776 } 777 bool isDone() const { 778 return false; 779 } 780 }; 781 782 FindSCEVSize F; 783 SCEVTraversal<FindSCEVSize> ST(F); 784 ST.visitAll(S); 785 return F.Size; 786 } 787 788 namespace { 789 790 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 791 public: 792 // Computes the Quotient and Remainder of the division of Numerator by 793 // Denominator. 794 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 795 const SCEV *Denominator, const SCEV **Quotient, 796 const SCEV **Remainder) { 797 assert(Numerator && Denominator && "Uninitialized SCEV"); 798 799 SCEVDivision D(SE, Numerator, Denominator); 800 801 // Check for the trivial case here to avoid having to check for it in the 802 // rest of the code. 803 if (Numerator == Denominator) { 804 *Quotient = D.One; 805 *Remainder = D.Zero; 806 return; 807 } 808 809 if (Numerator->isZero()) { 810 *Quotient = D.Zero; 811 *Remainder = D.Zero; 812 return; 813 } 814 815 // A simple case when N/1. The quotient is N. 816 if (Denominator->isOne()) { 817 *Quotient = Numerator; 818 *Remainder = D.Zero; 819 return; 820 } 821 822 // Split the Denominator when it is a product. 823 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 824 const SCEV *Q, *R; 825 *Quotient = Numerator; 826 for (const SCEV *Op : T->operands()) { 827 divide(SE, *Quotient, Op, &Q, &R); 828 *Quotient = Q; 829 830 // Bail out when the Numerator is not divisible by one of the terms of 831 // the Denominator. 832 if (!R->isZero()) { 833 *Quotient = D.Zero; 834 *Remainder = Numerator; 835 return; 836 } 837 } 838 *Remainder = D.Zero; 839 return; 840 } 841 842 D.visit(Numerator); 843 *Quotient = D.Quotient; 844 *Remainder = D.Remainder; 845 } 846 847 // Except in the trivial case described above, we do not know how to divide 848 // Expr by Denominator for the following functions with empty implementation. 849 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 850 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 851 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 852 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 853 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 854 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 855 void visitUnknown(const SCEVUnknown *Numerator) {} 856 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 857 858 void visitConstant(const SCEVConstant *Numerator) { 859 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 860 APInt NumeratorVal = Numerator->getAPInt(); 861 APInt DenominatorVal = D->getAPInt(); 862 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 863 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 864 865 if (NumeratorBW > DenominatorBW) 866 DenominatorVal = DenominatorVal.sext(NumeratorBW); 867 else if (NumeratorBW < DenominatorBW) 868 NumeratorVal = NumeratorVal.sext(DenominatorBW); 869 870 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 871 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 872 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 873 Quotient = SE.getConstant(QuotientVal); 874 Remainder = SE.getConstant(RemainderVal); 875 return; 876 } 877 } 878 879 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 880 const SCEV *StartQ, *StartR, *StepQ, *StepR; 881 if (!Numerator->isAffine()) 882 return cannotDivide(Numerator); 883 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 884 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 885 // Bail out if the types do not match. 886 Type *Ty = Denominator->getType(); 887 if (Ty != StartQ->getType() || Ty != StartR->getType() || 888 Ty != StepQ->getType() || Ty != StepR->getType()) 889 return cannotDivide(Numerator); 890 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 891 Numerator->getNoWrapFlags()); 892 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 893 Numerator->getNoWrapFlags()); 894 } 895 896 void visitAddExpr(const SCEVAddExpr *Numerator) { 897 SmallVector<const SCEV *, 2> Qs, Rs; 898 Type *Ty = Denominator->getType(); 899 900 for (const SCEV *Op : Numerator->operands()) { 901 const SCEV *Q, *R; 902 divide(SE, Op, Denominator, &Q, &R); 903 904 // Bail out if types do not match. 905 if (Ty != Q->getType() || Ty != R->getType()) 906 return cannotDivide(Numerator); 907 908 Qs.push_back(Q); 909 Rs.push_back(R); 910 } 911 912 if (Qs.size() == 1) { 913 Quotient = Qs[0]; 914 Remainder = Rs[0]; 915 return; 916 } 917 918 Quotient = SE.getAddExpr(Qs); 919 Remainder = SE.getAddExpr(Rs); 920 } 921 922 void visitMulExpr(const SCEVMulExpr *Numerator) { 923 SmallVector<const SCEV *, 2> Qs; 924 Type *Ty = Denominator->getType(); 925 926 bool FoundDenominatorTerm = false; 927 for (const SCEV *Op : Numerator->operands()) { 928 // Bail out if types do not match. 929 if (Ty != Op->getType()) 930 return cannotDivide(Numerator); 931 932 if (FoundDenominatorTerm) { 933 Qs.push_back(Op); 934 continue; 935 } 936 937 // Check whether Denominator divides one of the product operands. 938 const SCEV *Q, *R; 939 divide(SE, Op, Denominator, &Q, &R); 940 if (!R->isZero()) { 941 Qs.push_back(Op); 942 continue; 943 } 944 945 // Bail out if types do not match. 946 if (Ty != Q->getType()) 947 return cannotDivide(Numerator); 948 949 FoundDenominatorTerm = true; 950 Qs.push_back(Q); 951 } 952 953 if (FoundDenominatorTerm) { 954 Remainder = Zero; 955 if (Qs.size() == 1) 956 Quotient = Qs[0]; 957 else 958 Quotient = SE.getMulExpr(Qs); 959 return; 960 } 961 962 if (!isa<SCEVUnknown>(Denominator)) 963 return cannotDivide(Numerator); 964 965 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 966 ValueToValueMap RewriteMap; 967 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 968 cast<SCEVConstant>(Zero)->getValue(); 969 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 970 971 if (Remainder->isZero()) { 972 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 973 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 974 cast<SCEVConstant>(One)->getValue(); 975 Quotient = 976 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 977 return; 978 } 979 980 // Quotient is (Numerator - Remainder) divided by Denominator. 981 const SCEV *Q, *R; 982 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 983 // This SCEV does not seem to simplify: fail the division here. 984 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 985 return cannotDivide(Numerator); 986 divide(SE, Diff, Denominator, &Q, &R); 987 if (R != Zero) 988 return cannotDivide(Numerator); 989 Quotient = Q; 990 } 991 992 private: 993 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 994 const SCEV *Denominator) 995 : SE(S), Denominator(Denominator) { 996 Zero = SE.getZero(Denominator->getType()); 997 One = SE.getOne(Denominator->getType()); 998 999 // We generally do not know how to divide Expr by Denominator. We 1000 // initialize the division to a "cannot divide" state to simplify the rest 1001 // of the code. 1002 cannotDivide(Numerator); 1003 } 1004 1005 // Convenience function for giving up on the division. We set the quotient to 1006 // be equal to zero and the remainder to be equal to the numerator. 1007 void cannotDivide(const SCEV *Numerator) { 1008 Quotient = Zero; 1009 Remainder = Numerator; 1010 } 1011 1012 ScalarEvolution &SE; 1013 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1014 }; 1015 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Simple SCEV method implementations 1020 //===----------------------------------------------------------------------===// 1021 1022 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1023 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1024 ScalarEvolution &SE, 1025 Type *ResultTy) { 1026 // Handle the simplest case efficiently. 1027 if (K == 1) 1028 return SE.getTruncateOrZeroExtend(It, ResultTy); 1029 1030 // We are using the following formula for BC(It, K): 1031 // 1032 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1033 // 1034 // Suppose, W is the bitwidth of the return value. We must be prepared for 1035 // overflow. Hence, we must assure that the result of our computation is 1036 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1037 // safe in modular arithmetic. 1038 // 1039 // However, this code doesn't use exactly that formula; the formula it uses 1040 // is something like the following, where T is the number of factors of 2 in 1041 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1042 // exponentiation: 1043 // 1044 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1045 // 1046 // This formula is trivially equivalent to the previous formula. However, 1047 // this formula can be implemented much more efficiently. The trick is that 1048 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1049 // arithmetic. To do exact division in modular arithmetic, all we have 1050 // to do is multiply by the inverse. Therefore, this step can be done at 1051 // width W. 1052 // 1053 // The next issue is how to safely do the division by 2^T. The way this 1054 // is done is by doing the multiplication step at a width of at least W + T 1055 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1056 // when we perform the division by 2^T (which is equivalent to a right shift 1057 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1058 // truncated out after the division by 2^T. 1059 // 1060 // In comparison to just directly using the first formula, this technique 1061 // is much more efficient; using the first formula requires W * K bits, 1062 // but this formula less than W + K bits. Also, the first formula requires 1063 // a division step, whereas this formula only requires multiplies and shifts. 1064 // 1065 // It doesn't matter whether the subtraction step is done in the calculation 1066 // width or the input iteration count's width; if the subtraction overflows, 1067 // the result must be zero anyway. We prefer here to do it in the width of 1068 // the induction variable because it helps a lot for certain cases; CodeGen 1069 // isn't smart enough to ignore the overflow, which leads to much less 1070 // efficient code if the width of the subtraction is wider than the native 1071 // register width. 1072 // 1073 // (It's possible to not widen at all by pulling out factors of 2 before 1074 // the multiplication; for example, K=2 can be calculated as 1075 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1076 // extra arithmetic, so it's not an obvious win, and it gets 1077 // much more complicated for K > 3.) 1078 1079 // Protection from insane SCEVs; this bound is conservative, 1080 // but it probably doesn't matter. 1081 if (K > 1000) 1082 return SE.getCouldNotCompute(); 1083 1084 unsigned W = SE.getTypeSizeInBits(ResultTy); 1085 1086 // Calculate K! / 2^T and T; we divide out the factors of two before 1087 // multiplying for calculating K! / 2^T to avoid overflow. 1088 // Other overflow doesn't matter because we only care about the bottom 1089 // W bits of the result. 1090 APInt OddFactorial(W, 1); 1091 unsigned T = 1; 1092 for (unsigned i = 3; i <= K; ++i) { 1093 APInt Mult(W, i); 1094 unsigned TwoFactors = Mult.countTrailingZeros(); 1095 T += TwoFactors; 1096 Mult.lshrInPlace(TwoFactors); 1097 OddFactorial *= Mult; 1098 } 1099 1100 // We need at least W + T bits for the multiplication step 1101 unsigned CalculationBits = W + T; 1102 1103 // Calculate 2^T, at width T+W. 1104 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1105 1106 // Calculate the multiplicative inverse of K! / 2^T; 1107 // this multiplication factor will perform the exact division by 1108 // K! / 2^T. 1109 APInt Mod = APInt::getSignedMinValue(W+1); 1110 APInt MultiplyFactor = OddFactorial.zext(W+1); 1111 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1112 MultiplyFactor = MultiplyFactor.trunc(W); 1113 1114 // Calculate the product, at width T+W 1115 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1116 CalculationBits); 1117 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1118 for (unsigned i = 1; i != K; ++i) { 1119 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1120 Dividend = SE.getMulExpr(Dividend, 1121 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1122 } 1123 1124 // Divide by 2^T 1125 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1126 1127 // Truncate the result, and divide by K! / 2^T. 1128 1129 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1130 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1131 } 1132 1133 /// Return the value of this chain of recurrences at the specified iteration 1134 /// number. We can evaluate this recurrence by multiplying each element in the 1135 /// chain by the binomial coefficient corresponding to it. In other words, we 1136 /// can evaluate {A,+,B,+,C,+,D} as: 1137 /// 1138 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1139 /// 1140 /// where BC(It, k) stands for binomial coefficient. 1141 /// 1142 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1143 ScalarEvolution &SE) const { 1144 const SCEV *Result = getStart(); 1145 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1146 // The computation is correct in the face of overflow provided that the 1147 // multiplication is performed _after_ the evaluation of the binomial 1148 // coefficient. 1149 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1150 if (isa<SCEVCouldNotCompute>(Coeff)) 1151 return Coeff; 1152 1153 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1154 } 1155 return Result; 1156 } 1157 1158 //===----------------------------------------------------------------------===// 1159 // SCEV Expression folder implementations 1160 //===----------------------------------------------------------------------===// 1161 1162 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1163 Type *Ty) { 1164 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1165 "This is not a truncating conversion!"); 1166 assert(isSCEVable(Ty) && 1167 "This is not a conversion to a SCEVable type!"); 1168 Ty = getEffectiveSCEVType(Ty); 1169 1170 FoldingSetNodeID ID; 1171 ID.AddInteger(scTruncate); 1172 ID.AddPointer(Op); 1173 ID.AddPointer(Ty); 1174 void *IP = nullptr; 1175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1176 1177 // Fold if the operand is constant. 1178 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1179 return getConstant( 1180 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1181 1182 // trunc(trunc(x)) --> trunc(x) 1183 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1184 return getTruncateExpr(ST->getOperand(), Ty); 1185 1186 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1187 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1188 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1189 1190 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1191 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1192 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1193 1194 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1195 // eliminate all the truncates, or we replace other casts with truncates. 1196 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1197 SmallVector<const SCEV *, 4> Operands; 1198 bool hasTrunc = false; 1199 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1200 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1201 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1202 hasTrunc = isa<SCEVTruncateExpr>(S); 1203 Operands.push_back(S); 1204 } 1205 if (!hasTrunc) 1206 return getAddExpr(Operands); 1207 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1208 } 1209 1210 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1211 // eliminate all the truncates, or we replace other casts with truncates. 1212 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1213 SmallVector<const SCEV *, 4> Operands; 1214 bool hasTrunc = false; 1215 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1216 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1217 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1218 hasTrunc = isa<SCEVTruncateExpr>(S); 1219 Operands.push_back(S); 1220 } 1221 if (!hasTrunc) 1222 return getMulExpr(Operands); 1223 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1224 } 1225 1226 // If the input value is a chrec scev, truncate the chrec's operands. 1227 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1228 SmallVector<const SCEV *, 4> Operands; 1229 for (const SCEV *Op : AddRec->operands()) 1230 Operands.push_back(getTruncateExpr(Op, Ty)); 1231 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1232 } 1233 1234 // The cast wasn't folded; create an explicit cast node. We can reuse 1235 // the existing insert position since if we get here, we won't have 1236 // made any changes which would invalidate it. 1237 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1238 Op, Ty); 1239 UniqueSCEVs.InsertNode(S, IP); 1240 return S; 1241 } 1242 1243 // Get the limit of a recurrence such that incrementing by Step cannot cause 1244 // signed overflow as long as the value of the recurrence within the 1245 // loop does not exceed this limit before incrementing. 1246 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1247 ICmpInst::Predicate *Pred, 1248 ScalarEvolution *SE) { 1249 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1250 if (SE->isKnownPositive(Step)) { 1251 *Pred = ICmpInst::ICMP_SLT; 1252 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1253 SE->getSignedRange(Step).getSignedMax()); 1254 } 1255 if (SE->isKnownNegative(Step)) { 1256 *Pred = ICmpInst::ICMP_SGT; 1257 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1258 SE->getSignedRange(Step).getSignedMin()); 1259 } 1260 return nullptr; 1261 } 1262 1263 // Get the limit of a recurrence such that incrementing by Step cannot cause 1264 // unsigned overflow as long as the value of the recurrence within the loop does 1265 // not exceed this limit before incrementing. 1266 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1267 ICmpInst::Predicate *Pred, 1268 ScalarEvolution *SE) { 1269 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1270 *Pred = ICmpInst::ICMP_ULT; 1271 1272 return SE->getConstant(APInt::getMinValue(BitWidth) - 1273 SE->getUnsignedRange(Step).getUnsignedMax()); 1274 } 1275 1276 namespace { 1277 1278 struct ExtendOpTraitsBase { 1279 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)( 1280 const SCEV *, Type *, ScalarEvolution::ExtendCacheTy &Cache); 1281 }; 1282 1283 // Used to make code generic over signed and unsigned overflow. 1284 template <typename ExtendOp> struct ExtendOpTraits { 1285 // Members present: 1286 // 1287 // static const SCEV::NoWrapFlags WrapType; 1288 // 1289 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1290 // 1291 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1292 // ICmpInst::Predicate *Pred, 1293 // ScalarEvolution *SE); 1294 }; 1295 1296 template <> 1297 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1299 1300 static const GetExtendExprTy GetExtendExpr; 1301 1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 return getSignedOverflowLimitForStep(Step, Pred, SE); 1306 } 1307 }; 1308 1309 const ExtendOpTraitsBase::GetExtendExprTy 1310 ExtendOpTraits<SCEVSignExtendExpr>::GetExtendExpr = 1311 &ScalarEvolution::getSignExtendExprCached; 1312 1313 template <> 1314 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1315 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1316 1317 static const GetExtendExprTy GetExtendExpr; 1318 1319 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1320 ICmpInst::Predicate *Pred, 1321 ScalarEvolution *SE) { 1322 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1323 } 1324 }; 1325 1326 const ExtendOpTraitsBase::GetExtendExprTy 1327 ExtendOpTraits<SCEVZeroExtendExpr>::GetExtendExpr = 1328 &ScalarEvolution::getZeroExtendExprCached; 1329 } 1330 1331 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1332 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1333 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1334 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1335 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1336 // expression "Step + sext/zext(PreIncAR)" is congruent with 1337 // "sext/zext(PostIncAR)" 1338 template <typename ExtendOpTy> 1339 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1340 ScalarEvolution *SE, 1341 ScalarEvolution::ExtendCacheTy &Cache) { 1342 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1343 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1344 1345 const Loop *L = AR->getLoop(); 1346 const SCEV *Start = AR->getStart(); 1347 const SCEV *Step = AR->getStepRecurrence(*SE); 1348 1349 // Check for a simple looking step prior to loop entry. 1350 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1351 if (!SA) 1352 return nullptr; 1353 1354 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1355 // subtraction is expensive. For this purpose, perform a quick and dirty 1356 // difference, by checking for Step in the operand list. 1357 SmallVector<const SCEV *, 4> DiffOps; 1358 for (const SCEV *Op : SA->operands()) 1359 if (Op != Step) 1360 DiffOps.push_back(Op); 1361 1362 if (DiffOps.size() == SA->getNumOperands()) 1363 return nullptr; 1364 1365 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1366 // `Step`: 1367 1368 // 1. NSW/NUW flags on the step increment. 1369 auto PreStartFlags = 1370 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1371 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1372 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1373 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1374 1375 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1376 // "S+X does not sign/unsign-overflow". 1377 // 1378 1379 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1380 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1381 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1382 return PreStart; 1383 1384 // 2. Direct overflow check on the step operation's expression. 1385 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1386 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1387 const SCEV *OperandExtendedStart = 1388 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Cache), 1389 (SE->*GetExtendExpr)(Step, WideTy, Cache)); 1390 if ((SE->*GetExtendExpr)(Start, WideTy, Cache) == OperandExtendedStart) { 1391 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1392 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1393 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1394 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1395 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1396 } 1397 return PreStart; 1398 } 1399 1400 // 3. Loop precondition. 1401 ICmpInst::Predicate Pred; 1402 const SCEV *OverflowLimit = 1403 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1404 1405 if (OverflowLimit && 1406 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1407 return PreStart; 1408 1409 return nullptr; 1410 } 1411 1412 // Get the normalized zero or sign extended expression for this AddRec's Start. 1413 template <typename ExtendOpTy> 1414 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1415 ScalarEvolution *SE, 1416 ScalarEvolution::ExtendCacheTy &Cache) { 1417 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1418 1419 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Cache); 1420 if (!PreStart) 1421 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Cache); 1422 1423 return SE->getAddExpr( 1424 (SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, Cache), 1425 (SE->*GetExtendExpr)(PreStart, Ty, Cache)); 1426 } 1427 1428 // Try to prove away overflow by looking at "nearby" add recurrences. A 1429 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1430 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1431 // 1432 // Formally: 1433 // 1434 // {S,+,X} == {S-T,+,X} + T 1435 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1436 // 1437 // If ({S-T,+,X} + T) does not overflow ... (1) 1438 // 1439 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1440 // 1441 // If {S-T,+,X} does not overflow ... (2) 1442 // 1443 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1444 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1445 // 1446 // If (S-T)+T does not overflow ... (3) 1447 // 1448 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1449 // == {Ext(S),+,Ext(X)} == LHS 1450 // 1451 // Thus, if (1), (2) and (3) are true for some T, then 1452 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1453 // 1454 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1455 // does not overflow" restricted to the 0th iteration. Therefore we only need 1456 // to check for (1) and (2). 1457 // 1458 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1459 // is `Delta` (defined below). 1460 // 1461 template <typename ExtendOpTy> 1462 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1463 const SCEV *Step, 1464 const Loop *L) { 1465 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1466 1467 // We restrict `Start` to a constant to prevent SCEV from spending too much 1468 // time here. It is correct (but more expensive) to continue with a 1469 // non-constant `Start` and do a general SCEV subtraction to compute 1470 // `PreStart` below. 1471 // 1472 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1473 if (!StartC) 1474 return false; 1475 1476 APInt StartAI = StartC->getAPInt(); 1477 1478 for (unsigned Delta : {-2, -1, 1, 2}) { 1479 const SCEV *PreStart = getConstant(StartAI - Delta); 1480 1481 FoldingSetNodeID ID; 1482 ID.AddInteger(scAddRecExpr); 1483 ID.AddPointer(PreStart); 1484 ID.AddPointer(Step); 1485 ID.AddPointer(L); 1486 void *IP = nullptr; 1487 const auto *PreAR = 1488 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1489 1490 // Give up if we don't already have the add recurrence we need because 1491 // actually constructing an add recurrence is relatively expensive. 1492 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1493 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1494 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1495 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1496 DeltaS, &Pred, this); 1497 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1498 return true; 1499 } 1500 } 1501 1502 return false; 1503 } 1504 1505 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty) { 1506 // Use the local cache to prevent exponential behavior of 1507 // getZeroExtendExprImpl. 1508 ExtendCacheTy Cache; 1509 return getZeroExtendExprCached(Op, Ty, Cache); 1510 } 1511 1512 /// Query \p Cache before calling getZeroExtendExprImpl. If there is no 1513 /// related entry in the \p Cache, call getZeroExtendExprImpl and save 1514 /// the result in the \p Cache. 1515 const SCEV *ScalarEvolution::getZeroExtendExprCached(const SCEV *Op, Type *Ty, 1516 ExtendCacheTy &Cache) { 1517 auto It = Cache.find({Op, Ty}); 1518 if (It != Cache.end()) 1519 return It->second; 1520 const SCEV *ZExt = getZeroExtendExprImpl(Op, Ty, Cache); 1521 auto InsertResult = Cache.insert({{Op, Ty}, ZExt}); 1522 assert(InsertResult.second && "Expect the key was not in the cache"); 1523 (void)InsertResult; 1524 return ZExt; 1525 } 1526 1527 /// The real implementation of getZeroExtendExpr. 1528 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1529 ExtendCacheTy &Cache) { 1530 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1531 "This is not an extending conversion!"); 1532 assert(isSCEVable(Ty) && 1533 "This is not a conversion to a SCEVable type!"); 1534 Ty = getEffectiveSCEVType(Ty); 1535 1536 // Fold if the operand is constant. 1537 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1538 return getConstant( 1539 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1540 1541 // zext(zext(x)) --> zext(x) 1542 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1543 return getZeroExtendExprCached(SZ->getOperand(), Ty, Cache); 1544 1545 // Before doing any expensive analysis, check to see if we've already 1546 // computed a SCEV for this Op and Ty. 1547 FoldingSetNodeID ID; 1548 ID.AddInteger(scZeroExtend); 1549 ID.AddPointer(Op); 1550 ID.AddPointer(Ty); 1551 void *IP = nullptr; 1552 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1553 1554 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1555 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1556 // It's possible the bits taken off by the truncate were all zero bits. If 1557 // so, we should be able to simplify this further. 1558 const SCEV *X = ST->getOperand(); 1559 ConstantRange CR = getUnsignedRange(X); 1560 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1561 unsigned NewBits = getTypeSizeInBits(Ty); 1562 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1563 CR.zextOrTrunc(NewBits))) 1564 return getTruncateOrZeroExtend(X, Ty); 1565 } 1566 1567 // If the input value is a chrec scev, and we can prove that the value 1568 // did not overflow the old, smaller, value, we can zero extend all of the 1569 // operands (often constants). This allows analysis of something like 1570 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1571 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1572 if (AR->isAffine()) { 1573 const SCEV *Start = AR->getStart(); 1574 const SCEV *Step = AR->getStepRecurrence(*this); 1575 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1576 const Loop *L = AR->getLoop(); 1577 1578 if (!AR->hasNoUnsignedWrap()) { 1579 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1580 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1581 } 1582 1583 // If we have special knowledge that this addrec won't overflow, 1584 // we don't need to do any further analysis. 1585 if (AR->hasNoUnsignedWrap()) 1586 return getAddRecExpr( 1587 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1588 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1589 1590 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1591 // Note that this serves two purposes: It filters out loops that are 1592 // simply not analyzable, and it covers the case where this code is 1593 // being called from within backedge-taken count analysis, such that 1594 // attempting to ask for the backedge-taken count would likely result 1595 // in infinite recursion. In the later case, the analysis code will 1596 // cope with a conservative value, and it will take care to purge 1597 // that value once it has finished. 1598 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1599 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1600 // Manually compute the final value for AR, checking for 1601 // overflow. 1602 1603 // Check whether the backedge-taken count can be losslessly casted to 1604 // the addrec's type. The count is always unsigned. 1605 const SCEV *CastedMaxBECount = 1606 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1607 const SCEV *RecastedMaxBECount = 1608 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1609 if (MaxBECount == RecastedMaxBECount) { 1610 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1611 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1612 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1613 const SCEV *ZAdd = 1614 getZeroExtendExprCached(getAddExpr(Start, ZMul), WideTy, Cache); 1615 const SCEV *WideStart = getZeroExtendExprCached(Start, WideTy, Cache); 1616 const SCEV *WideMaxBECount = 1617 getZeroExtendExprCached(CastedMaxBECount, WideTy, Cache); 1618 const SCEV *OperandExtendedAdd = getAddExpr( 1619 WideStart, getMulExpr(WideMaxBECount, getZeroExtendExprCached( 1620 Step, WideTy, Cache))); 1621 if (ZAdd == OperandExtendedAdd) { 1622 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1623 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1624 // Return the expression with the addrec on the outside. 1625 return getAddRecExpr( 1626 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1627 getZeroExtendExprCached(Step, Ty, Cache), L, 1628 AR->getNoWrapFlags()); 1629 } 1630 // Similar to above, only this time treat the step value as signed. 1631 // This covers loops that count down. 1632 OperandExtendedAdd = 1633 getAddExpr(WideStart, 1634 getMulExpr(WideMaxBECount, 1635 getSignExtendExpr(Step, WideTy))); 1636 if (ZAdd == OperandExtendedAdd) { 1637 // Cache knowledge of AR NW, which is propagated to this AddRec. 1638 // Negative step causes unsigned wrap, but it still can't self-wrap. 1639 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1640 // Return the expression with the addrec on the outside. 1641 return getAddRecExpr( 1642 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1643 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1644 } 1645 } 1646 } 1647 1648 // Normally, in the cases we can prove no-overflow via a 1649 // backedge guarding condition, we can also compute a backedge 1650 // taken count for the loop. The exceptions are assumptions and 1651 // guards present in the loop -- SCEV is not great at exploiting 1652 // these to compute max backedge taken counts, but can still use 1653 // these to prove lack of overflow. Use this fact to avoid 1654 // doing extra work that may not pay off. 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1656 !AC.assumptions().empty()) { 1657 // If the backedge is guarded by a comparison with the pre-inc 1658 // value the addrec is safe. Also, if the entry is guarded by 1659 // a comparison with the start value and the backedge is 1660 // guarded by a comparison with the post-inc value, the addrec 1661 // is safe. 1662 if (isKnownPositive(Step)) { 1663 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1664 getUnsignedRange(Step).getUnsignedMax()); 1665 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1666 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1667 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1668 AR->getPostIncExpr(*this), N))) { 1669 // Cache knowledge of AR NUW, which is propagated to this 1670 // AddRec. 1671 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1672 // Return the expression with the addrec on the outside. 1673 return getAddRecExpr( 1674 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1675 getZeroExtendExprCached(Step, Ty, Cache), L, 1676 AR->getNoWrapFlags()); 1677 } 1678 } else if (isKnownNegative(Step)) { 1679 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1680 getSignedRange(Step).getSignedMin()); 1681 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1682 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1683 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1684 AR->getPostIncExpr(*this), N))) { 1685 // Cache knowledge of AR NW, which is propagated to this 1686 // AddRec. Negative step causes unsigned wrap, but it 1687 // still can't self-wrap. 1688 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1689 // Return the expression with the addrec on the outside. 1690 return getAddRecExpr( 1691 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1692 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1693 } 1694 } 1695 } 1696 1697 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1698 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1699 return getAddRecExpr( 1700 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1701 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1702 } 1703 } 1704 1705 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1706 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1707 if (SA->hasNoUnsignedWrap()) { 1708 // If the addition does not unsign overflow then we can, by definition, 1709 // commute the zero extension with the addition operation. 1710 SmallVector<const SCEV *, 4> Ops; 1711 for (const auto *Op : SA->operands()) 1712 Ops.push_back(getZeroExtendExprCached(Op, Ty, Cache)); 1713 return getAddExpr(Ops, SCEV::FlagNUW); 1714 } 1715 } 1716 1717 // The cast wasn't folded; create an explicit cast node. 1718 // Recompute the insert position, as it may have been invalidated. 1719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1720 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1721 Op, Ty); 1722 UniqueSCEVs.InsertNode(S, IP); 1723 return S; 1724 } 1725 1726 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty) { 1727 // Use the local cache to prevent exponential behavior of 1728 // getSignExtendExprImpl. 1729 ExtendCacheTy Cache; 1730 return getSignExtendExprCached(Op, Ty, Cache); 1731 } 1732 1733 /// Query \p Cache before calling getSignExtendExprImpl. If there is no 1734 /// related entry in the \p Cache, call getSignExtendExprImpl and save 1735 /// the result in the \p Cache. 1736 const SCEV *ScalarEvolution::getSignExtendExprCached(const SCEV *Op, Type *Ty, 1737 ExtendCacheTy &Cache) { 1738 auto It = Cache.find({Op, Ty}); 1739 if (It != Cache.end()) 1740 return It->second; 1741 const SCEV *SExt = getSignExtendExprImpl(Op, Ty, Cache); 1742 auto InsertResult = Cache.insert({{Op, Ty}, SExt}); 1743 assert(InsertResult.second && "Expect the key was not in the cache"); 1744 (void)InsertResult; 1745 return SExt; 1746 } 1747 1748 /// The real implementation of getSignExtendExpr. 1749 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1750 ExtendCacheTy &Cache) { 1751 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1752 "This is not an extending conversion!"); 1753 assert(isSCEVable(Ty) && 1754 "This is not a conversion to a SCEVable type!"); 1755 Ty = getEffectiveSCEVType(Ty); 1756 1757 // Fold if the operand is constant. 1758 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1759 return getConstant( 1760 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1761 1762 // sext(sext(x)) --> sext(x) 1763 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1764 return getSignExtendExprCached(SS->getOperand(), Ty, Cache); 1765 1766 // sext(zext(x)) --> zext(x) 1767 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1768 return getZeroExtendExpr(SZ->getOperand(), Ty); 1769 1770 // Before doing any expensive analysis, check to see if we've already 1771 // computed a SCEV for this Op and Ty. 1772 FoldingSetNodeID ID; 1773 ID.AddInteger(scSignExtend); 1774 ID.AddPointer(Op); 1775 ID.AddPointer(Ty); 1776 void *IP = nullptr; 1777 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1778 1779 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1780 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1781 // It's possible the bits taken off by the truncate were all sign bits. If 1782 // so, we should be able to simplify this further. 1783 const SCEV *X = ST->getOperand(); 1784 ConstantRange CR = getSignedRange(X); 1785 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1786 unsigned NewBits = getTypeSizeInBits(Ty); 1787 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1788 CR.sextOrTrunc(NewBits))) 1789 return getTruncateOrSignExtend(X, Ty); 1790 } 1791 1792 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1793 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1794 if (SA->getNumOperands() == 2) { 1795 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1796 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1797 if (SMul && SC1) { 1798 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1799 const APInt &C1 = SC1->getAPInt(); 1800 const APInt &C2 = SC2->getAPInt(); 1801 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1802 C2.ugt(C1) && C2.isPowerOf2()) 1803 return getAddExpr(getSignExtendExprCached(SC1, Ty, Cache), 1804 getSignExtendExprCached(SMul, Ty, Cache)); 1805 } 1806 } 1807 } 1808 1809 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1810 if (SA->hasNoSignedWrap()) { 1811 // If the addition does not sign overflow then we can, by definition, 1812 // commute the sign extension with the addition operation. 1813 SmallVector<const SCEV *, 4> Ops; 1814 for (const auto *Op : SA->operands()) 1815 Ops.push_back(getSignExtendExprCached(Op, Ty, Cache)); 1816 return getAddExpr(Ops, SCEV::FlagNSW); 1817 } 1818 } 1819 // If the input value is a chrec scev, and we can prove that the value 1820 // did not overflow the old, smaller, value, we can sign extend all of the 1821 // operands (often constants). This allows analysis of something like 1822 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1824 if (AR->isAffine()) { 1825 const SCEV *Start = AR->getStart(); 1826 const SCEV *Step = AR->getStepRecurrence(*this); 1827 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1828 const Loop *L = AR->getLoop(); 1829 1830 if (!AR->hasNoSignedWrap()) { 1831 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1832 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1833 } 1834 1835 // If we have special knowledge that this addrec won't overflow, 1836 // we don't need to do any further analysis. 1837 if (AR->hasNoSignedWrap()) 1838 return getAddRecExpr( 1839 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1840 getSignExtendExprCached(Step, Ty, Cache), L, SCEV::FlagNSW); 1841 1842 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1843 // Note that this serves two purposes: It filters out loops that are 1844 // simply not analyzable, and it covers the case where this code is 1845 // being called from within backedge-taken count analysis, such that 1846 // attempting to ask for the backedge-taken count would likely result 1847 // in infinite recursion. In the later case, the analysis code will 1848 // cope with a conservative value, and it will take care to purge 1849 // that value once it has finished. 1850 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1851 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1852 // Manually compute the final value for AR, checking for 1853 // overflow. 1854 1855 // Check whether the backedge-taken count can be losslessly casted to 1856 // the addrec's type. The count is always unsigned. 1857 const SCEV *CastedMaxBECount = 1858 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1859 const SCEV *RecastedMaxBECount = 1860 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1861 if (MaxBECount == RecastedMaxBECount) { 1862 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1863 // Check whether Start+Step*MaxBECount has no signed overflow. 1864 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1865 const SCEV *SAdd = 1866 getSignExtendExprCached(getAddExpr(Start, SMul), WideTy, Cache); 1867 const SCEV *WideStart = getSignExtendExprCached(Start, WideTy, Cache); 1868 const SCEV *WideMaxBECount = 1869 getZeroExtendExpr(CastedMaxBECount, WideTy); 1870 const SCEV *OperandExtendedAdd = getAddExpr( 1871 WideStart, getMulExpr(WideMaxBECount, getSignExtendExprCached( 1872 Step, WideTy, Cache))); 1873 if (SAdd == OperandExtendedAdd) { 1874 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1875 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1876 // Return the expression with the addrec on the outside. 1877 return getAddRecExpr( 1878 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1879 getSignExtendExprCached(Step, Ty, Cache), L, 1880 AR->getNoWrapFlags()); 1881 } 1882 // Similar to above, only this time treat the step value as unsigned. 1883 // This covers loops that count up with an unsigned step. 1884 OperandExtendedAdd = 1885 getAddExpr(WideStart, 1886 getMulExpr(WideMaxBECount, 1887 getZeroExtendExpr(Step, WideTy))); 1888 if (SAdd == OperandExtendedAdd) { 1889 // If AR wraps around then 1890 // 1891 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1892 // => SAdd != OperandExtendedAdd 1893 // 1894 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1895 // (SAdd == OperandExtendedAdd => AR is NW) 1896 1897 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1898 1899 // Return the expression with the addrec on the outside. 1900 return getAddRecExpr( 1901 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1902 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1903 } 1904 } 1905 } 1906 1907 // Normally, in the cases we can prove no-overflow via a 1908 // backedge guarding condition, we can also compute a backedge 1909 // taken count for the loop. The exceptions are assumptions and 1910 // guards present in the loop -- SCEV is not great at exploiting 1911 // these to compute max backedge taken counts, but can still use 1912 // these to prove lack of overflow. Use this fact to avoid 1913 // doing extra work that may not pay off. 1914 1915 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1916 !AC.assumptions().empty()) { 1917 // If the backedge is guarded by a comparison with the pre-inc 1918 // value the addrec is safe. Also, if the entry is guarded by 1919 // a comparison with the start value and the backedge is 1920 // guarded by a comparison with the post-inc value, the addrec 1921 // is safe. 1922 ICmpInst::Predicate Pred; 1923 const SCEV *OverflowLimit = 1924 getSignedOverflowLimitForStep(Step, &Pred, this); 1925 if (OverflowLimit && 1926 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1927 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1928 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1929 OverflowLimit)))) { 1930 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1931 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1932 return getAddRecExpr( 1933 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1934 getSignExtendExprCached(Step, Ty, Cache), L, 1935 AR->getNoWrapFlags()); 1936 } 1937 } 1938 1939 // If Start and Step are constants, check if we can apply this 1940 // transformation: 1941 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1942 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1943 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1944 if (SC1 && SC2) { 1945 const APInt &C1 = SC1->getAPInt(); 1946 const APInt &C2 = SC2->getAPInt(); 1947 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1948 C2.isPowerOf2()) { 1949 Start = getSignExtendExprCached(Start, Ty, Cache); 1950 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1951 AR->getNoWrapFlags()); 1952 return getAddExpr(Start, getSignExtendExprCached(NewAR, Ty, Cache)); 1953 } 1954 } 1955 1956 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1957 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1958 return getAddRecExpr( 1959 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1960 getSignExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1961 } 1962 } 1963 1964 // If the input value is provably positive and we could not simplify 1965 // away the sext build a zext instead. 1966 if (isKnownNonNegative(Op)) 1967 return getZeroExtendExpr(Op, Ty); 1968 1969 // The cast wasn't folded; create an explicit cast node. 1970 // Recompute the insert position, as it may have been invalidated. 1971 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1972 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1973 Op, Ty); 1974 UniqueSCEVs.InsertNode(S, IP); 1975 return S; 1976 } 1977 1978 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1979 /// unspecified bits out to the given type. 1980 /// 1981 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1982 Type *Ty) { 1983 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1984 "This is not an extending conversion!"); 1985 assert(isSCEVable(Ty) && 1986 "This is not a conversion to a SCEVable type!"); 1987 Ty = getEffectiveSCEVType(Ty); 1988 1989 // Sign-extend negative constants. 1990 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1991 if (SC->getAPInt().isNegative()) 1992 return getSignExtendExpr(Op, Ty); 1993 1994 // Peel off a truncate cast. 1995 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1996 const SCEV *NewOp = T->getOperand(); 1997 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1998 return getAnyExtendExpr(NewOp, Ty); 1999 return getTruncateOrNoop(NewOp, Ty); 2000 } 2001 2002 // Next try a zext cast. If the cast is folded, use it. 2003 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2004 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2005 return ZExt; 2006 2007 // Next try a sext cast. If the cast is folded, use it. 2008 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2009 if (!isa<SCEVSignExtendExpr>(SExt)) 2010 return SExt; 2011 2012 // Force the cast to be folded into the operands of an addrec. 2013 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2014 SmallVector<const SCEV *, 4> Ops; 2015 for (const SCEV *Op : AR->operands()) 2016 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2017 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2018 } 2019 2020 // If the expression is obviously signed, use the sext cast value. 2021 if (isa<SCEVSMaxExpr>(Op)) 2022 return SExt; 2023 2024 // Absent any other information, use the zext cast value. 2025 return ZExt; 2026 } 2027 2028 /// Process the given Ops list, which is a list of operands to be added under 2029 /// the given scale, update the given map. This is a helper function for 2030 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2031 /// that would form an add expression like this: 2032 /// 2033 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2034 /// 2035 /// where A and B are constants, update the map with these values: 2036 /// 2037 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2038 /// 2039 /// and add 13 + A*B*29 to AccumulatedConstant. 2040 /// This will allow getAddRecExpr to produce this: 2041 /// 2042 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2043 /// 2044 /// This form often exposes folding opportunities that are hidden in 2045 /// the original operand list. 2046 /// 2047 /// Return true iff it appears that any interesting folding opportunities 2048 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2049 /// the common case where no interesting opportunities are present, and 2050 /// is also used as a check to avoid infinite recursion. 2051 /// 2052 static bool 2053 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2054 SmallVectorImpl<const SCEV *> &NewOps, 2055 APInt &AccumulatedConstant, 2056 const SCEV *const *Ops, size_t NumOperands, 2057 const APInt &Scale, 2058 ScalarEvolution &SE) { 2059 bool Interesting = false; 2060 2061 // Iterate over the add operands. They are sorted, with constants first. 2062 unsigned i = 0; 2063 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2064 ++i; 2065 // Pull a buried constant out to the outside. 2066 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2067 Interesting = true; 2068 AccumulatedConstant += Scale * C->getAPInt(); 2069 } 2070 2071 // Next comes everything else. We're especially interested in multiplies 2072 // here, but they're in the middle, so just visit the rest with one loop. 2073 for (; i != NumOperands; ++i) { 2074 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2075 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2076 APInt NewScale = 2077 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2078 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2079 // A multiplication of a constant with another add; recurse. 2080 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2081 Interesting |= 2082 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2083 Add->op_begin(), Add->getNumOperands(), 2084 NewScale, SE); 2085 } else { 2086 // A multiplication of a constant with some other value. Update 2087 // the map. 2088 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2089 const SCEV *Key = SE.getMulExpr(MulOps); 2090 auto Pair = M.insert({Key, NewScale}); 2091 if (Pair.second) { 2092 NewOps.push_back(Pair.first->first); 2093 } else { 2094 Pair.first->second += NewScale; 2095 // The map already had an entry for this value, which may indicate 2096 // a folding opportunity. 2097 Interesting = true; 2098 } 2099 } 2100 } else { 2101 // An ordinary operand. Update the map. 2102 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2103 M.insert({Ops[i], Scale}); 2104 if (Pair.second) { 2105 NewOps.push_back(Pair.first->first); 2106 } else { 2107 Pair.first->second += Scale; 2108 // The map already had an entry for this value, which may indicate 2109 // a folding opportunity. 2110 Interesting = true; 2111 } 2112 } 2113 } 2114 2115 return Interesting; 2116 } 2117 2118 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2119 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2120 // can't-overflow flags for the operation if possible. 2121 static SCEV::NoWrapFlags 2122 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2123 const SmallVectorImpl<const SCEV *> &Ops, 2124 SCEV::NoWrapFlags Flags) { 2125 using namespace std::placeholders; 2126 typedef OverflowingBinaryOperator OBO; 2127 2128 bool CanAnalyze = 2129 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2130 (void)CanAnalyze; 2131 assert(CanAnalyze && "don't call from other places!"); 2132 2133 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2134 SCEV::NoWrapFlags SignOrUnsignWrap = 2135 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2136 2137 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2138 auto IsKnownNonNegative = [&](const SCEV *S) { 2139 return SE->isKnownNonNegative(S); 2140 }; 2141 2142 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2143 Flags = 2144 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2145 2146 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2147 2148 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2149 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2150 2151 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2152 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2153 2154 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2155 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2156 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2157 Instruction::Add, C, OBO::NoSignedWrap); 2158 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2159 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2160 } 2161 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2162 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2163 Instruction::Add, C, OBO::NoUnsignedWrap); 2164 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2165 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2166 } 2167 } 2168 2169 return Flags; 2170 } 2171 2172 /// Get a canonical add expression, or something simpler if possible. 2173 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2174 SCEV::NoWrapFlags Flags, 2175 unsigned Depth) { 2176 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2177 "only nuw or nsw allowed"); 2178 assert(!Ops.empty() && "Cannot get empty add!"); 2179 if (Ops.size() == 1) return Ops[0]; 2180 #ifndef NDEBUG 2181 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2182 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2183 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2184 "SCEVAddExpr operand types don't match!"); 2185 #endif 2186 2187 // Sort by complexity, this groups all similar expression types together. 2188 GroupByComplexity(Ops, &LI); 2189 2190 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2191 2192 // If there are any constants, fold them together. 2193 unsigned Idx = 0; 2194 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2195 ++Idx; 2196 assert(Idx < Ops.size()); 2197 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2198 // We found two constants, fold them together! 2199 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2200 if (Ops.size() == 2) return Ops[0]; 2201 Ops.erase(Ops.begin()+1); // Erase the folded element 2202 LHSC = cast<SCEVConstant>(Ops[0]); 2203 } 2204 2205 // If we are left with a constant zero being added, strip it off. 2206 if (LHSC->getValue()->isZero()) { 2207 Ops.erase(Ops.begin()); 2208 --Idx; 2209 } 2210 2211 if (Ops.size() == 1) return Ops[0]; 2212 } 2213 2214 // Limit recursion calls depth 2215 if (Depth > MaxAddExprDepth) 2216 return getOrCreateAddExpr(Ops, Flags); 2217 2218 // Okay, check to see if the same value occurs in the operand list more than 2219 // once. If so, merge them together into an multiply expression. Since we 2220 // sorted the list, these values are required to be adjacent. 2221 Type *Ty = Ops[0]->getType(); 2222 bool FoundMatch = false; 2223 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2224 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2225 // Scan ahead to count how many equal operands there are. 2226 unsigned Count = 2; 2227 while (i+Count != e && Ops[i+Count] == Ops[i]) 2228 ++Count; 2229 // Merge the values into a multiply. 2230 const SCEV *Scale = getConstant(Ty, Count); 2231 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2232 if (Ops.size() == Count) 2233 return Mul; 2234 Ops[i] = Mul; 2235 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2236 --i; e -= Count - 1; 2237 FoundMatch = true; 2238 } 2239 if (FoundMatch) 2240 return getAddExpr(Ops, Flags); 2241 2242 // Check for truncates. If all the operands are truncated from the same 2243 // type, see if factoring out the truncate would permit the result to be 2244 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2245 // if the contents of the resulting outer trunc fold to something simple. 2246 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2247 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2248 Type *DstType = Trunc->getType(); 2249 Type *SrcType = Trunc->getOperand()->getType(); 2250 SmallVector<const SCEV *, 8> LargeOps; 2251 bool Ok = true; 2252 // Check all the operands to see if they can be represented in the 2253 // source type of the truncate. 2254 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2255 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2256 if (T->getOperand()->getType() != SrcType) { 2257 Ok = false; 2258 break; 2259 } 2260 LargeOps.push_back(T->getOperand()); 2261 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2262 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2263 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2264 SmallVector<const SCEV *, 8> LargeMulOps; 2265 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2266 if (const SCEVTruncateExpr *T = 2267 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2268 if (T->getOperand()->getType() != SrcType) { 2269 Ok = false; 2270 break; 2271 } 2272 LargeMulOps.push_back(T->getOperand()); 2273 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2274 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2275 } else { 2276 Ok = false; 2277 break; 2278 } 2279 } 2280 if (Ok) 2281 LargeOps.push_back(getMulExpr(LargeMulOps)); 2282 } else { 2283 Ok = false; 2284 break; 2285 } 2286 } 2287 if (Ok) { 2288 // Evaluate the expression in the larger type. 2289 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2290 // If it folds to something simple, use it. Otherwise, don't. 2291 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2292 return getTruncateExpr(Fold, DstType); 2293 } 2294 } 2295 2296 // Skip past any other cast SCEVs. 2297 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2298 ++Idx; 2299 2300 // If there are add operands they would be next. 2301 if (Idx < Ops.size()) { 2302 bool DeletedAdd = false; 2303 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2304 if (Ops.size() > AddOpsInlineThreshold || 2305 Add->getNumOperands() > AddOpsInlineThreshold) 2306 break; 2307 // If we have an add, expand the add operands onto the end of the operands 2308 // list. 2309 Ops.erase(Ops.begin()+Idx); 2310 Ops.append(Add->op_begin(), Add->op_end()); 2311 DeletedAdd = true; 2312 } 2313 2314 // If we deleted at least one add, we added operands to the end of the list, 2315 // and they are not necessarily sorted. Recurse to resort and resimplify 2316 // any operands we just acquired. 2317 if (DeletedAdd) 2318 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2319 } 2320 2321 // Skip over the add expression until we get to a multiply. 2322 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2323 ++Idx; 2324 2325 // Check to see if there are any folding opportunities present with 2326 // operands multiplied by constant values. 2327 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2328 uint64_t BitWidth = getTypeSizeInBits(Ty); 2329 DenseMap<const SCEV *, APInt> M; 2330 SmallVector<const SCEV *, 8> NewOps; 2331 APInt AccumulatedConstant(BitWidth, 0); 2332 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2333 Ops.data(), Ops.size(), 2334 APInt(BitWidth, 1), *this)) { 2335 struct APIntCompare { 2336 bool operator()(const APInt &LHS, const APInt &RHS) const { 2337 return LHS.ult(RHS); 2338 } 2339 }; 2340 2341 // Some interesting folding opportunity is present, so its worthwhile to 2342 // re-generate the operands list. Group the operands by constant scale, 2343 // to avoid multiplying by the same constant scale multiple times. 2344 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2345 for (const SCEV *NewOp : NewOps) 2346 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2347 // Re-generate the operands list. 2348 Ops.clear(); 2349 if (AccumulatedConstant != 0) 2350 Ops.push_back(getConstant(AccumulatedConstant)); 2351 for (auto &MulOp : MulOpLists) 2352 if (MulOp.first != 0) 2353 Ops.push_back(getMulExpr( 2354 getConstant(MulOp.first), 2355 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1))); 2356 if (Ops.empty()) 2357 return getZero(Ty); 2358 if (Ops.size() == 1) 2359 return Ops[0]; 2360 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2361 } 2362 } 2363 2364 // If we are adding something to a multiply expression, make sure the 2365 // something is not already an operand of the multiply. If so, merge it into 2366 // the multiply. 2367 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2368 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2369 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2370 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2371 if (isa<SCEVConstant>(MulOpSCEV)) 2372 continue; 2373 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2374 if (MulOpSCEV == Ops[AddOp]) { 2375 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2376 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2377 if (Mul->getNumOperands() != 2) { 2378 // If the multiply has more than two operands, we must get the 2379 // Y*Z term. 2380 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2381 Mul->op_begin()+MulOp); 2382 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2383 InnerMul = getMulExpr(MulOps); 2384 } 2385 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2386 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2387 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2388 if (Ops.size() == 2) return OuterMul; 2389 if (AddOp < Idx) { 2390 Ops.erase(Ops.begin()+AddOp); 2391 Ops.erase(Ops.begin()+Idx-1); 2392 } else { 2393 Ops.erase(Ops.begin()+Idx); 2394 Ops.erase(Ops.begin()+AddOp-1); 2395 } 2396 Ops.push_back(OuterMul); 2397 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2398 } 2399 2400 // Check this multiply against other multiplies being added together. 2401 for (unsigned OtherMulIdx = Idx+1; 2402 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2403 ++OtherMulIdx) { 2404 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2405 // If MulOp occurs in OtherMul, we can fold the two multiplies 2406 // together. 2407 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2408 OMulOp != e; ++OMulOp) 2409 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2410 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2411 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2412 if (Mul->getNumOperands() != 2) { 2413 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2414 Mul->op_begin()+MulOp); 2415 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2416 InnerMul1 = getMulExpr(MulOps); 2417 } 2418 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2419 if (OtherMul->getNumOperands() != 2) { 2420 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2421 OtherMul->op_begin()+OMulOp); 2422 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2423 InnerMul2 = getMulExpr(MulOps); 2424 } 2425 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2426 const SCEV *InnerMulSum = 2427 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2428 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2429 if (Ops.size() == 2) return OuterMul; 2430 Ops.erase(Ops.begin()+Idx); 2431 Ops.erase(Ops.begin()+OtherMulIdx-1); 2432 Ops.push_back(OuterMul); 2433 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2434 } 2435 } 2436 } 2437 } 2438 2439 // If there are any add recurrences in the operands list, see if any other 2440 // added values are loop invariant. If so, we can fold them into the 2441 // recurrence. 2442 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2443 ++Idx; 2444 2445 // Scan over all recurrences, trying to fold loop invariants into them. 2446 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2447 // Scan all of the other operands to this add and add them to the vector if 2448 // they are loop invariant w.r.t. the recurrence. 2449 SmallVector<const SCEV *, 8> LIOps; 2450 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2451 const Loop *AddRecLoop = AddRec->getLoop(); 2452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2453 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2454 LIOps.push_back(Ops[i]); 2455 Ops.erase(Ops.begin()+i); 2456 --i; --e; 2457 } 2458 2459 // If we found some loop invariants, fold them into the recurrence. 2460 if (!LIOps.empty()) { 2461 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2462 LIOps.push_back(AddRec->getStart()); 2463 2464 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2465 AddRec->op_end()); 2466 // This follows from the fact that the no-wrap flags on the outer add 2467 // expression are applicable on the 0th iteration, when the add recurrence 2468 // will be equal to its start value. 2469 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2470 2471 // Build the new addrec. Propagate the NUW and NSW flags if both the 2472 // outer add and the inner addrec are guaranteed to have no overflow. 2473 // Always propagate NW. 2474 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2475 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2476 2477 // If all of the other operands were loop invariant, we are done. 2478 if (Ops.size() == 1) return NewRec; 2479 2480 // Otherwise, add the folded AddRec by the non-invariant parts. 2481 for (unsigned i = 0;; ++i) 2482 if (Ops[i] == AddRec) { 2483 Ops[i] = NewRec; 2484 break; 2485 } 2486 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2487 } 2488 2489 // Okay, if there weren't any loop invariants to be folded, check to see if 2490 // there are multiple AddRec's with the same loop induction variable being 2491 // added together. If so, we can fold them. 2492 for (unsigned OtherIdx = Idx+1; 2493 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2494 ++OtherIdx) 2495 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2496 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2497 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2498 AddRec->op_end()); 2499 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2500 ++OtherIdx) 2501 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2502 if (OtherAddRec->getLoop() == AddRecLoop) { 2503 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2504 i != e; ++i) { 2505 if (i >= AddRecOps.size()) { 2506 AddRecOps.append(OtherAddRec->op_begin()+i, 2507 OtherAddRec->op_end()); 2508 break; 2509 } 2510 SmallVector<const SCEV *, 2> TwoOps = { 2511 AddRecOps[i], OtherAddRec->getOperand(i)}; 2512 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2513 } 2514 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2515 } 2516 // Step size has changed, so we cannot guarantee no self-wraparound. 2517 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2518 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2519 } 2520 2521 // Otherwise couldn't fold anything into this recurrence. Move onto the 2522 // next one. 2523 } 2524 2525 // Okay, it looks like we really DO need an add expr. Check to see if we 2526 // already have one, otherwise create a new one. 2527 return getOrCreateAddExpr(Ops, Flags); 2528 } 2529 2530 const SCEV * 2531 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2532 SCEV::NoWrapFlags Flags) { 2533 FoldingSetNodeID ID; 2534 ID.AddInteger(scAddExpr); 2535 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2536 ID.AddPointer(Ops[i]); 2537 void *IP = nullptr; 2538 SCEVAddExpr *S = 2539 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2540 if (!S) { 2541 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2542 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2543 S = new (SCEVAllocator) 2544 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2545 UniqueSCEVs.InsertNode(S, IP); 2546 } 2547 S->setNoWrapFlags(Flags); 2548 return S; 2549 } 2550 2551 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2552 uint64_t k = i*j; 2553 if (j > 1 && k / j != i) Overflow = true; 2554 return k; 2555 } 2556 2557 /// Compute the result of "n choose k", the binomial coefficient. If an 2558 /// intermediate computation overflows, Overflow will be set and the return will 2559 /// be garbage. Overflow is not cleared on absence of overflow. 2560 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2561 // We use the multiplicative formula: 2562 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2563 // At each iteration, we take the n-th term of the numeral and divide by the 2564 // (k-n)th term of the denominator. This division will always produce an 2565 // integral result, and helps reduce the chance of overflow in the 2566 // intermediate computations. However, we can still overflow even when the 2567 // final result would fit. 2568 2569 if (n == 0 || n == k) return 1; 2570 if (k > n) return 0; 2571 2572 if (k > n/2) 2573 k = n-k; 2574 2575 uint64_t r = 1; 2576 for (uint64_t i = 1; i <= k; ++i) { 2577 r = umul_ov(r, n-(i-1), Overflow); 2578 r /= i; 2579 } 2580 return r; 2581 } 2582 2583 /// Determine if any of the operands in this SCEV are a constant or if 2584 /// any of the add or multiply expressions in this SCEV contain a constant. 2585 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2586 SmallVector<const SCEV *, 4> Ops; 2587 Ops.push_back(StartExpr); 2588 while (!Ops.empty()) { 2589 const SCEV *CurrentExpr = Ops.pop_back_val(); 2590 if (isa<SCEVConstant>(*CurrentExpr)) 2591 return true; 2592 2593 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2594 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2595 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2596 } 2597 } 2598 return false; 2599 } 2600 2601 /// Get a canonical multiply expression, or something simpler if possible. 2602 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2603 SCEV::NoWrapFlags Flags) { 2604 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2605 "only nuw or nsw allowed"); 2606 assert(!Ops.empty() && "Cannot get empty mul!"); 2607 if (Ops.size() == 1) return Ops[0]; 2608 #ifndef NDEBUG 2609 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2610 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2611 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2612 "SCEVMulExpr operand types don't match!"); 2613 #endif 2614 2615 // Sort by complexity, this groups all similar expression types together. 2616 GroupByComplexity(Ops, &LI); 2617 2618 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2619 2620 // If there are any constants, fold them together. 2621 unsigned Idx = 0; 2622 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2623 2624 // C1*(C2+V) -> C1*C2 + C1*V 2625 if (Ops.size() == 2) 2626 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2627 // If any of Add's ops are Adds or Muls with a constant, 2628 // apply this transformation as well. 2629 if (Add->getNumOperands() == 2) 2630 if (containsConstantSomewhere(Add)) 2631 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2632 getMulExpr(LHSC, Add->getOperand(1))); 2633 2634 ++Idx; 2635 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2636 // We found two constants, fold them together! 2637 ConstantInt *Fold = 2638 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2639 Ops[0] = getConstant(Fold); 2640 Ops.erase(Ops.begin()+1); // Erase the folded element 2641 if (Ops.size() == 1) return Ops[0]; 2642 LHSC = cast<SCEVConstant>(Ops[0]); 2643 } 2644 2645 // If we are left with a constant one being multiplied, strip it off. 2646 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2647 Ops.erase(Ops.begin()); 2648 --Idx; 2649 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2650 // If we have a multiply of zero, it will always be zero. 2651 return Ops[0]; 2652 } else if (Ops[0]->isAllOnesValue()) { 2653 // If we have a mul by -1 of an add, try distributing the -1 among the 2654 // add operands. 2655 if (Ops.size() == 2) { 2656 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2657 SmallVector<const SCEV *, 4> NewOps; 2658 bool AnyFolded = false; 2659 for (const SCEV *AddOp : Add->operands()) { 2660 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2661 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2662 NewOps.push_back(Mul); 2663 } 2664 if (AnyFolded) 2665 return getAddExpr(NewOps); 2666 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2667 // Negation preserves a recurrence's no self-wrap property. 2668 SmallVector<const SCEV *, 4> Operands; 2669 for (const SCEV *AddRecOp : AddRec->operands()) 2670 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2671 2672 return getAddRecExpr(Operands, AddRec->getLoop(), 2673 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2674 } 2675 } 2676 } 2677 2678 if (Ops.size() == 1) 2679 return Ops[0]; 2680 } 2681 2682 // Skip over the add expression until we get to a multiply. 2683 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2684 ++Idx; 2685 2686 // If there are mul operands inline them all into this expression. 2687 if (Idx < Ops.size()) { 2688 bool DeletedMul = false; 2689 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2690 if (Ops.size() > MulOpsInlineThreshold) 2691 break; 2692 // If we have an mul, expand the mul operands onto the end of the operands 2693 // list. 2694 Ops.erase(Ops.begin()+Idx); 2695 Ops.append(Mul->op_begin(), Mul->op_end()); 2696 DeletedMul = true; 2697 } 2698 2699 // If we deleted at least one mul, we added operands to the end of the list, 2700 // and they are not necessarily sorted. Recurse to resort and resimplify 2701 // any operands we just acquired. 2702 if (DeletedMul) 2703 return getMulExpr(Ops); 2704 } 2705 2706 // If there are any add recurrences in the operands list, see if any other 2707 // added values are loop invariant. If so, we can fold them into the 2708 // recurrence. 2709 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2710 ++Idx; 2711 2712 // Scan over all recurrences, trying to fold loop invariants into them. 2713 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2714 // Scan all of the other operands to this mul and add them to the vector if 2715 // they are loop invariant w.r.t. the recurrence. 2716 SmallVector<const SCEV *, 8> LIOps; 2717 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2718 const Loop *AddRecLoop = AddRec->getLoop(); 2719 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2720 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2721 LIOps.push_back(Ops[i]); 2722 Ops.erase(Ops.begin()+i); 2723 --i; --e; 2724 } 2725 2726 // If we found some loop invariants, fold them into the recurrence. 2727 if (!LIOps.empty()) { 2728 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2729 SmallVector<const SCEV *, 4> NewOps; 2730 NewOps.reserve(AddRec->getNumOperands()); 2731 const SCEV *Scale = getMulExpr(LIOps); 2732 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2733 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2734 2735 // Build the new addrec. Propagate the NUW and NSW flags if both the 2736 // outer mul and the inner addrec are guaranteed to have no overflow. 2737 // 2738 // No self-wrap cannot be guaranteed after changing the step size, but 2739 // will be inferred if either NUW or NSW is true. 2740 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2741 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2742 2743 // If all of the other operands were loop invariant, we are done. 2744 if (Ops.size() == 1) return NewRec; 2745 2746 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2747 for (unsigned i = 0;; ++i) 2748 if (Ops[i] == AddRec) { 2749 Ops[i] = NewRec; 2750 break; 2751 } 2752 return getMulExpr(Ops); 2753 } 2754 2755 // Okay, if there weren't any loop invariants to be folded, check to see if 2756 // there are multiple AddRec's with the same loop induction variable being 2757 // multiplied together. If so, we can fold them. 2758 2759 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2760 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2761 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2762 // ]]],+,...up to x=2n}. 2763 // Note that the arguments to choose() are always integers with values 2764 // known at compile time, never SCEV objects. 2765 // 2766 // The implementation avoids pointless extra computations when the two 2767 // addrec's are of different length (mathematically, it's equivalent to 2768 // an infinite stream of zeros on the right). 2769 bool OpsModified = false; 2770 for (unsigned OtherIdx = Idx+1; 2771 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2772 ++OtherIdx) { 2773 const SCEVAddRecExpr *OtherAddRec = 2774 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2775 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2776 continue; 2777 2778 bool Overflow = false; 2779 Type *Ty = AddRec->getType(); 2780 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2781 SmallVector<const SCEV*, 7> AddRecOps; 2782 for (int x = 0, xe = AddRec->getNumOperands() + 2783 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2784 const SCEV *Term = getZero(Ty); 2785 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2786 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2787 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2788 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2789 z < ze && !Overflow; ++z) { 2790 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2791 uint64_t Coeff; 2792 if (LargerThan64Bits) 2793 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2794 else 2795 Coeff = Coeff1*Coeff2; 2796 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2797 const SCEV *Term1 = AddRec->getOperand(y-z); 2798 const SCEV *Term2 = OtherAddRec->getOperand(z); 2799 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2800 } 2801 } 2802 AddRecOps.push_back(Term); 2803 } 2804 if (!Overflow) { 2805 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2806 SCEV::FlagAnyWrap); 2807 if (Ops.size() == 2) return NewAddRec; 2808 Ops[Idx] = NewAddRec; 2809 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2810 OpsModified = true; 2811 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2812 if (!AddRec) 2813 break; 2814 } 2815 } 2816 if (OpsModified) 2817 return getMulExpr(Ops); 2818 2819 // Otherwise couldn't fold anything into this recurrence. Move onto the 2820 // next one. 2821 } 2822 2823 // Okay, it looks like we really DO need an mul expr. Check to see if we 2824 // already have one, otherwise create a new one. 2825 FoldingSetNodeID ID; 2826 ID.AddInteger(scMulExpr); 2827 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2828 ID.AddPointer(Ops[i]); 2829 void *IP = nullptr; 2830 SCEVMulExpr *S = 2831 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2832 if (!S) { 2833 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2834 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2835 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2836 O, Ops.size()); 2837 UniqueSCEVs.InsertNode(S, IP); 2838 } 2839 S->setNoWrapFlags(Flags); 2840 return S; 2841 } 2842 2843 /// Get a canonical unsigned division expression, or something simpler if 2844 /// possible. 2845 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2846 const SCEV *RHS) { 2847 assert(getEffectiveSCEVType(LHS->getType()) == 2848 getEffectiveSCEVType(RHS->getType()) && 2849 "SCEVUDivExpr operand types don't match!"); 2850 2851 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2852 if (RHSC->getValue()->equalsInt(1)) 2853 return LHS; // X udiv 1 --> x 2854 // If the denominator is zero, the result of the udiv is undefined. Don't 2855 // try to analyze it, because the resolution chosen here may differ from 2856 // the resolution chosen in other parts of the compiler. 2857 if (!RHSC->getValue()->isZero()) { 2858 // Determine if the division can be folded into the operands of 2859 // its operands. 2860 // TODO: Generalize this to non-constants by using known-bits information. 2861 Type *Ty = LHS->getType(); 2862 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2863 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2864 // For non-power-of-two values, effectively round the value up to the 2865 // nearest power of two. 2866 if (!RHSC->getAPInt().isPowerOf2()) 2867 ++MaxShiftAmt; 2868 IntegerType *ExtTy = 2869 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2870 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2871 if (const SCEVConstant *Step = 2872 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2873 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2874 const APInt &StepInt = Step->getAPInt(); 2875 const APInt &DivInt = RHSC->getAPInt(); 2876 if (!StepInt.urem(DivInt) && 2877 getZeroExtendExpr(AR, ExtTy) == 2878 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2879 getZeroExtendExpr(Step, ExtTy), 2880 AR->getLoop(), SCEV::FlagAnyWrap)) { 2881 SmallVector<const SCEV *, 4> Operands; 2882 for (const SCEV *Op : AR->operands()) 2883 Operands.push_back(getUDivExpr(Op, RHS)); 2884 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2885 } 2886 /// Get a canonical UDivExpr for a recurrence. 2887 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2888 // We can currently only fold X%N if X is constant. 2889 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2890 if (StartC && !DivInt.urem(StepInt) && 2891 getZeroExtendExpr(AR, ExtTy) == 2892 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2893 getZeroExtendExpr(Step, ExtTy), 2894 AR->getLoop(), SCEV::FlagAnyWrap)) { 2895 const APInt &StartInt = StartC->getAPInt(); 2896 const APInt &StartRem = StartInt.urem(StepInt); 2897 if (StartRem != 0) 2898 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2899 AR->getLoop(), SCEV::FlagNW); 2900 } 2901 } 2902 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2903 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2904 SmallVector<const SCEV *, 4> Operands; 2905 for (const SCEV *Op : M->operands()) 2906 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2907 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2908 // Find an operand that's safely divisible. 2909 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2910 const SCEV *Op = M->getOperand(i); 2911 const SCEV *Div = getUDivExpr(Op, RHSC); 2912 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2913 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2914 M->op_end()); 2915 Operands[i] = Div; 2916 return getMulExpr(Operands); 2917 } 2918 } 2919 } 2920 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2921 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2922 SmallVector<const SCEV *, 4> Operands; 2923 for (const SCEV *Op : A->operands()) 2924 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2925 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2926 Operands.clear(); 2927 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2928 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2929 if (isa<SCEVUDivExpr>(Op) || 2930 getMulExpr(Op, RHS) != A->getOperand(i)) 2931 break; 2932 Operands.push_back(Op); 2933 } 2934 if (Operands.size() == A->getNumOperands()) 2935 return getAddExpr(Operands); 2936 } 2937 } 2938 2939 // Fold if both operands are constant. 2940 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2941 Constant *LHSCV = LHSC->getValue(); 2942 Constant *RHSCV = RHSC->getValue(); 2943 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2944 RHSCV))); 2945 } 2946 } 2947 } 2948 2949 FoldingSetNodeID ID; 2950 ID.AddInteger(scUDivExpr); 2951 ID.AddPointer(LHS); 2952 ID.AddPointer(RHS); 2953 void *IP = nullptr; 2954 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2955 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2956 LHS, RHS); 2957 UniqueSCEVs.InsertNode(S, IP); 2958 return S; 2959 } 2960 2961 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2962 APInt A = C1->getAPInt().abs(); 2963 APInt B = C2->getAPInt().abs(); 2964 uint32_t ABW = A.getBitWidth(); 2965 uint32_t BBW = B.getBitWidth(); 2966 2967 if (ABW > BBW) 2968 B = B.zext(ABW); 2969 else if (ABW < BBW) 2970 A = A.zext(BBW); 2971 2972 return APIntOps::GreatestCommonDivisor(A, B); 2973 } 2974 2975 /// Get a canonical unsigned division expression, or something simpler if 2976 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2977 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2978 /// it's not exact because the udiv may be clearing bits. 2979 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2980 const SCEV *RHS) { 2981 // TODO: we could try to find factors in all sorts of things, but for now we 2982 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2983 // end of this file for inspiration. 2984 2985 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2986 if (!Mul || !Mul->hasNoUnsignedWrap()) 2987 return getUDivExpr(LHS, RHS); 2988 2989 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2990 // If the mulexpr multiplies by a constant, then that constant must be the 2991 // first element of the mulexpr. 2992 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2993 if (LHSCst == RHSCst) { 2994 SmallVector<const SCEV *, 2> Operands; 2995 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2996 return getMulExpr(Operands); 2997 } 2998 2999 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3000 // that there's a factor provided by one of the other terms. We need to 3001 // check. 3002 APInt Factor = gcd(LHSCst, RHSCst); 3003 if (!Factor.isIntN(1)) { 3004 LHSCst = 3005 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3006 RHSCst = 3007 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3008 SmallVector<const SCEV *, 2> Operands; 3009 Operands.push_back(LHSCst); 3010 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3011 LHS = getMulExpr(Operands); 3012 RHS = RHSCst; 3013 Mul = dyn_cast<SCEVMulExpr>(LHS); 3014 if (!Mul) 3015 return getUDivExactExpr(LHS, RHS); 3016 } 3017 } 3018 } 3019 3020 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3021 if (Mul->getOperand(i) == RHS) { 3022 SmallVector<const SCEV *, 2> Operands; 3023 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3024 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3025 return getMulExpr(Operands); 3026 } 3027 } 3028 3029 return getUDivExpr(LHS, RHS); 3030 } 3031 3032 /// Get an add recurrence expression for the specified loop. Simplify the 3033 /// expression as much as possible. 3034 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3035 const Loop *L, 3036 SCEV::NoWrapFlags Flags) { 3037 SmallVector<const SCEV *, 4> Operands; 3038 Operands.push_back(Start); 3039 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3040 if (StepChrec->getLoop() == L) { 3041 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3042 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3043 } 3044 3045 Operands.push_back(Step); 3046 return getAddRecExpr(Operands, L, Flags); 3047 } 3048 3049 /// Get an add recurrence expression for the specified loop. Simplify the 3050 /// expression as much as possible. 3051 const SCEV * 3052 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3053 const Loop *L, SCEV::NoWrapFlags Flags) { 3054 if (Operands.size() == 1) return Operands[0]; 3055 #ifndef NDEBUG 3056 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3057 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3058 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3059 "SCEVAddRecExpr operand types don't match!"); 3060 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3061 assert(isLoopInvariant(Operands[i], L) && 3062 "SCEVAddRecExpr operand is not loop-invariant!"); 3063 #endif 3064 3065 if (Operands.back()->isZero()) { 3066 Operands.pop_back(); 3067 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3068 } 3069 3070 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3071 // use that information to infer NUW and NSW flags. However, computing a 3072 // BE count requires calling getAddRecExpr, so we may not yet have a 3073 // meaningful BE count at this point (and if we don't, we'd be stuck 3074 // with a SCEVCouldNotCompute as the cached BE count). 3075 3076 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3077 3078 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3079 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3080 const Loop *NestedLoop = NestedAR->getLoop(); 3081 if (L->contains(NestedLoop) 3082 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3083 : (!NestedLoop->contains(L) && 3084 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3085 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3086 NestedAR->op_end()); 3087 Operands[0] = NestedAR->getStart(); 3088 // AddRecs require their operands be loop-invariant with respect to their 3089 // loops. Don't perform this transformation if it would break this 3090 // requirement. 3091 bool AllInvariant = all_of( 3092 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3093 3094 if (AllInvariant) { 3095 // Create a recurrence for the outer loop with the same step size. 3096 // 3097 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3098 // inner recurrence has the same property. 3099 SCEV::NoWrapFlags OuterFlags = 3100 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3101 3102 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3103 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3104 return isLoopInvariant(Op, NestedLoop); 3105 }); 3106 3107 if (AllInvariant) { 3108 // Ok, both add recurrences are valid after the transformation. 3109 // 3110 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3111 // the outer recurrence has the same property. 3112 SCEV::NoWrapFlags InnerFlags = 3113 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3114 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3115 } 3116 } 3117 // Reset Operands to its original state. 3118 Operands[0] = NestedAR; 3119 } 3120 } 3121 3122 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3123 // already have one, otherwise create a new one. 3124 FoldingSetNodeID ID; 3125 ID.AddInteger(scAddRecExpr); 3126 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3127 ID.AddPointer(Operands[i]); 3128 ID.AddPointer(L); 3129 void *IP = nullptr; 3130 SCEVAddRecExpr *S = 3131 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3132 if (!S) { 3133 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3134 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3135 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3136 O, Operands.size(), L); 3137 UniqueSCEVs.InsertNode(S, IP); 3138 } 3139 S->setNoWrapFlags(Flags); 3140 return S; 3141 } 3142 3143 const SCEV * 3144 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3145 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3146 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3147 // getSCEV(Base)->getType() has the same address space as Base->getType() 3148 // because SCEV::getType() preserves the address space. 3149 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3150 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3151 // instruction to its SCEV, because the Instruction may be guarded by control 3152 // flow and the no-overflow bits may not be valid for the expression in any 3153 // context. This can be fixed similarly to how these flags are handled for 3154 // adds. 3155 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3156 : SCEV::FlagAnyWrap; 3157 3158 const SCEV *TotalOffset = getZero(IntPtrTy); 3159 // The array size is unimportant. The first thing we do on CurTy is getting 3160 // its element type. 3161 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3162 for (const SCEV *IndexExpr : IndexExprs) { 3163 // Compute the (potentially symbolic) offset in bytes for this index. 3164 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3165 // For a struct, add the member offset. 3166 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3167 unsigned FieldNo = Index->getZExtValue(); 3168 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3169 3170 // Add the field offset to the running total offset. 3171 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3172 3173 // Update CurTy to the type of the field at Index. 3174 CurTy = STy->getTypeAtIndex(Index); 3175 } else { 3176 // Update CurTy to its element type. 3177 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3178 // For an array, add the element offset, explicitly scaled. 3179 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3180 // Getelementptr indices are signed. 3181 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3182 3183 // Multiply the index by the element size to compute the element offset. 3184 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3185 3186 // Add the element offset to the running total offset. 3187 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3188 } 3189 } 3190 3191 // Add the total offset from all the GEP indices to the base. 3192 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3193 } 3194 3195 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3196 const SCEV *RHS) { 3197 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3198 return getSMaxExpr(Ops); 3199 } 3200 3201 const SCEV * 3202 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3203 assert(!Ops.empty() && "Cannot get empty smax!"); 3204 if (Ops.size() == 1) return Ops[0]; 3205 #ifndef NDEBUG 3206 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3207 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3208 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3209 "SCEVSMaxExpr operand types don't match!"); 3210 #endif 3211 3212 // Sort by complexity, this groups all similar expression types together. 3213 GroupByComplexity(Ops, &LI); 3214 3215 // If there are any constants, fold them together. 3216 unsigned Idx = 0; 3217 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3218 ++Idx; 3219 assert(Idx < Ops.size()); 3220 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3221 // We found two constants, fold them together! 3222 ConstantInt *Fold = ConstantInt::get( 3223 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3224 Ops[0] = getConstant(Fold); 3225 Ops.erase(Ops.begin()+1); // Erase the folded element 3226 if (Ops.size() == 1) return Ops[0]; 3227 LHSC = cast<SCEVConstant>(Ops[0]); 3228 } 3229 3230 // If we are left with a constant minimum-int, strip it off. 3231 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3232 Ops.erase(Ops.begin()); 3233 --Idx; 3234 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3235 // If we have an smax with a constant maximum-int, it will always be 3236 // maximum-int. 3237 return Ops[0]; 3238 } 3239 3240 if (Ops.size() == 1) return Ops[0]; 3241 } 3242 3243 // Find the first SMax 3244 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3245 ++Idx; 3246 3247 // Check to see if one of the operands is an SMax. If so, expand its operands 3248 // onto our operand list, and recurse to simplify. 3249 if (Idx < Ops.size()) { 3250 bool DeletedSMax = false; 3251 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3252 Ops.erase(Ops.begin()+Idx); 3253 Ops.append(SMax->op_begin(), SMax->op_end()); 3254 DeletedSMax = true; 3255 } 3256 3257 if (DeletedSMax) 3258 return getSMaxExpr(Ops); 3259 } 3260 3261 // Okay, check to see if the same value occurs in the operand list twice. If 3262 // so, delete one. Since we sorted the list, these values are required to 3263 // be adjacent. 3264 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3265 // X smax Y smax Y --> X smax Y 3266 // X smax Y --> X, if X is always greater than Y 3267 if (Ops[i] == Ops[i+1] || 3268 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3269 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3270 --i; --e; 3271 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3272 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3273 --i; --e; 3274 } 3275 3276 if (Ops.size() == 1) return Ops[0]; 3277 3278 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3279 3280 // Okay, it looks like we really DO need an smax expr. Check to see if we 3281 // already have one, otherwise create a new one. 3282 FoldingSetNodeID ID; 3283 ID.AddInteger(scSMaxExpr); 3284 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3285 ID.AddPointer(Ops[i]); 3286 void *IP = nullptr; 3287 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3288 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3289 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3290 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3291 O, Ops.size()); 3292 UniqueSCEVs.InsertNode(S, IP); 3293 return S; 3294 } 3295 3296 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3297 const SCEV *RHS) { 3298 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3299 return getUMaxExpr(Ops); 3300 } 3301 3302 const SCEV * 3303 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3304 assert(!Ops.empty() && "Cannot get empty umax!"); 3305 if (Ops.size() == 1) return Ops[0]; 3306 #ifndef NDEBUG 3307 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3308 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3309 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3310 "SCEVUMaxExpr operand types don't match!"); 3311 #endif 3312 3313 // Sort by complexity, this groups all similar expression types together. 3314 GroupByComplexity(Ops, &LI); 3315 3316 // If there are any constants, fold them together. 3317 unsigned Idx = 0; 3318 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3319 ++Idx; 3320 assert(Idx < Ops.size()); 3321 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3322 // We found two constants, fold them together! 3323 ConstantInt *Fold = ConstantInt::get( 3324 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3325 Ops[0] = getConstant(Fold); 3326 Ops.erase(Ops.begin()+1); // Erase the folded element 3327 if (Ops.size() == 1) return Ops[0]; 3328 LHSC = cast<SCEVConstant>(Ops[0]); 3329 } 3330 3331 // If we are left with a constant minimum-int, strip it off. 3332 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3333 Ops.erase(Ops.begin()); 3334 --Idx; 3335 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3336 // If we have an umax with a constant maximum-int, it will always be 3337 // maximum-int. 3338 return Ops[0]; 3339 } 3340 3341 if (Ops.size() == 1) return Ops[0]; 3342 } 3343 3344 // Find the first UMax 3345 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3346 ++Idx; 3347 3348 // Check to see if one of the operands is a UMax. If so, expand its operands 3349 // onto our operand list, and recurse to simplify. 3350 if (Idx < Ops.size()) { 3351 bool DeletedUMax = false; 3352 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3353 Ops.erase(Ops.begin()+Idx); 3354 Ops.append(UMax->op_begin(), UMax->op_end()); 3355 DeletedUMax = true; 3356 } 3357 3358 if (DeletedUMax) 3359 return getUMaxExpr(Ops); 3360 } 3361 3362 // Okay, check to see if the same value occurs in the operand list twice. If 3363 // so, delete one. Since we sorted the list, these values are required to 3364 // be adjacent. 3365 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3366 // X umax Y umax Y --> X umax Y 3367 // X umax Y --> X, if X is always greater than Y 3368 if (Ops[i] == Ops[i+1] || 3369 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3370 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3371 --i; --e; 3372 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3373 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3374 --i; --e; 3375 } 3376 3377 if (Ops.size() == 1) return Ops[0]; 3378 3379 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3380 3381 // Okay, it looks like we really DO need a umax expr. Check to see if we 3382 // already have one, otherwise create a new one. 3383 FoldingSetNodeID ID; 3384 ID.AddInteger(scUMaxExpr); 3385 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3386 ID.AddPointer(Ops[i]); 3387 void *IP = nullptr; 3388 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3389 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3390 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3391 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3392 O, Ops.size()); 3393 UniqueSCEVs.InsertNode(S, IP); 3394 return S; 3395 } 3396 3397 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3398 const SCEV *RHS) { 3399 // ~smax(~x, ~y) == smin(x, y). 3400 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3401 } 3402 3403 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3404 const SCEV *RHS) { 3405 // ~umax(~x, ~y) == umin(x, y) 3406 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3407 } 3408 3409 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3410 // We can bypass creating a target-independent 3411 // constant expression and then folding it back into a ConstantInt. 3412 // This is just a compile-time optimization. 3413 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3414 } 3415 3416 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3417 StructType *STy, 3418 unsigned FieldNo) { 3419 // We can bypass creating a target-independent 3420 // constant expression and then folding it back into a ConstantInt. 3421 // This is just a compile-time optimization. 3422 return getConstant( 3423 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3424 } 3425 3426 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3427 // Don't attempt to do anything other than create a SCEVUnknown object 3428 // here. createSCEV only calls getUnknown after checking for all other 3429 // interesting possibilities, and any other code that calls getUnknown 3430 // is doing so in order to hide a value from SCEV canonicalization. 3431 3432 FoldingSetNodeID ID; 3433 ID.AddInteger(scUnknown); 3434 ID.AddPointer(V); 3435 void *IP = nullptr; 3436 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3437 assert(cast<SCEVUnknown>(S)->getValue() == V && 3438 "Stale SCEVUnknown in uniquing map!"); 3439 return S; 3440 } 3441 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3442 FirstUnknown); 3443 FirstUnknown = cast<SCEVUnknown>(S); 3444 UniqueSCEVs.InsertNode(S, IP); 3445 return S; 3446 } 3447 3448 //===----------------------------------------------------------------------===// 3449 // Basic SCEV Analysis and PHI Idiom Recognition Code 3450 // 3451 3452 /// Test if values of the given type are analyzable within the SCEV 3453 /// framework. This primarily includes integer types, and it can optionally 3454 /// include pointer types if the ScalarEvolution class has access to 3455 /// target-specific information. 3456 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3457 // Integers and pointers are always SCEVable. 3458 return Ty->isIntegerTy() || Ty->isPointerTy(); 3459 } 3460 3461 /// Return the size in bits of the specified type, for which isSCEVable must 3462 /// return true. 3463 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3464 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3465 return getDataLayout().getTypeSizeInBits(Ty); 3466 } 3467 3468 /// Return a type with the same bitwidth as the given type and which represents 3469 /// how SCEV will treat the given type, for which isSCEVable must return 3470 /// true. For pointer types, this is the pointer-sized integer type. 3471 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3472 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3473 3474 if (Ty->isIntegerTy()) 3475 return Ty; 3476 3477 // The only other support type is pointer. 3478 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3479 return getDataLayout().getIntPtrType(Ty); 3480 } 3481 3482 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3483 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3484 } 3485 3486 const SCEV *ScalarEvolution::getCouldNotCompute() { 3487 return CouldNotCompute.get(); 3488 } 3489 3490 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3491 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3492 auto *SU = dyn_cast<SCEVUnknown>(S); 3493 return SU && SU->getValue() == nullptr; 3494 }); 3495 3496 return !ContainsNulls; 3497 } 3498 3499 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3500 HasRecMapType::iterator I = HasRecMap.find(S); 3501 if (I != HasRecMap.end()) 3502 return I->second; 3503 3504 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3505 HasRecMap.insert({S, FoundAddRec}); 3506 return FoundAddRec; 3507 } 3508 3509 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3510 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3511 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3512 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3513 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3514 if (!Add) 3515 return {S, nullptr}; 3516 3517 if (Add->getNumOperands() != 2) 3518 return {S, nullptr}; 3519 3520 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3521 if (!ConstOp) 3522 return {S, nullptr}; 3523 3524 return {Add->getOperand(1), ConstOp->getValue()}; 3525 } 3526 3527 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3528 /// by the value and offset from any ValueOffsetPair in the set. 3529 SetVector<ScalarEvolution::ValueOffsetPair> * 3530 ScalarEvolution::getSCEVValues(const SCEV *S) { 3531 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3532 if (SI == ExprValueMap.end()) 3533 return nullptr; 3534 #ifndef NDEBUG 3535 if (VerifySCEVMap) { 3536 // Check there is no dangling Value in the set returned. 3537 for (const auto &VE : SI->second) 3538 assert(ValueExprMap.count(VE.first)); 3539 } 3540 #endif 3541 return &SI->second; 3542 } 3543 3544 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3545 /// cannot be used separately. eraseValueFromMap should be used to remove 3546 /// V from ValueExprMap and ExprValueMap at the same time. 3547 void ScalarEvolution::eraseValueFromMap(Value *V) { 3548 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3549 if (I != ValueExprMap.end()) { 3550 const SCEV *S = I->second; 3551 // Remove {V, 0} from the set of ExprValueMap[S] 3552 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3553 SV->remove({V, nullptr}); 3554 3555 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3556 const SCEV *Stripped; 3557 ConstantInt *Offset; 3558 std::tie(Stripped, Offset) = splitAddExpr(S); 3559 if (Offset != nullptr) { 3560 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3561 SV->remove({V, Offset}); 3562 } 3563 ValueExprMap.erase(V); 3564 } 3565 } 3566 3567 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3568 /// create a new one. 3569 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3570 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3571 3572 const SCEV *S = getExistingSCEV(V); 3573 if (S == nullptr) { 3574 S = createSCEV(V); 3575 // During PHI resolution, it is possible to create two SCEVs for the same 3576 // V, so it is needed to double check whether V->S is inserted into 3577 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3578 std::pair<ValueExprMapType::iterator, bool> Pair = 3579 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3580 if (Pair.second) { 3581 ExprValueMap[S].insert({V, nullptr}); 3582 3583 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3584 // ExprValueMap. 3585 const SCEV *Stripped = S; 3586 ConstantInt *Offset = nullptr; 3587 std::tie(Stripped, Offset) = splitAddExpr(S); 3588 // If stripped is SCEVUnknown, don't bother to save 3589 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3590 // increase the complexity of the expansion code. 3591 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3592 // because it may generate add/sub instead of GEP in SCEV expansion. 3593 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3594 !isa<GetElementPtrInst>(V)) 3595 ExprValueMap[Stripped].insert({V, Offset}); 3596 } 3597 } 3598 return S; 3599 } 3600 3601 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3602 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3603 3604 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3605 if (I != ValueExprMap.end()) { 3606 const SCEV *S = I->second; 3607 if (checkValidity(S)) 3608 return S; 3609 eraseValueFromMap(V); 3610 forgetMemoizedResults(S); 3611 } 3612 return nullptr; 3613 } 3614 3615 /// Return a SCEV corresponding to -V = -1*V 3616 /// 3617 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3618 SCEV::NoWrapFlags Flags) { 3619 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3620 return getConstant( 3621 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3622 3623 Type *Ty = V->getType(); 3624 Ty = getEffectiveSCEVType(Ty); 3625 return getMulExpr( 3626 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3627 } 3628 3629 /// Return a SCEV corresponding to ~V = -1-V 3630 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3631 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3632 return getConstant( 3633 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3634 3635 Type *Ty = V->getType(); 3636 Ty = getEffectiveSCEVType(Ty); 3637 const SCEV *AllOnes = 3638 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3639 return getMinusSCEV(AllOnes, V); 3640 } 3641 3642 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3643 SCEV::NoWrapFlags Flags) { 3644 // Fast path: X - X --> 0. 3645 if (LHS == RHS) 3646 return getZero(LHS->getType()); 3647 3648 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3649 // makes it so that we cannot make much use of NUW. 3650 auto AddFlags = SCEV::FlagAnyWrap; 3651 const bool RHSIsNotMinSigned = 3652 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3653 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3654 // Let M be the minimum representable signed value. Then (-1)*RHS 3655 // signed-wraps if and only if RHS is M. That can happen even for 3656 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3657 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3658 // (-1)*RHS, we need to prove that RHS != M. 3659 // 3660 // If LHS is non-negative and we know that LHS - RHS does not 3661 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3662 // either by proving that RHS > M or that LHS >= 0. 3663 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3664 AddFlags = SCEV::FlagNSW; 3665 } 3666 } 3667 3668 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3669 // RHS is NSW and LHS >= 0. 3670 // 3671 // The difficulty here is that the NSW flag may have been proven 3672 // relative to a loop that is to be found in a recurrence in LHS and 3673 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3674 // larger scope than intended. 3675 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3676 3677 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3678 } 3679 3680 const SCEV * 3681 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3682 Type *SrcTy = V->getType(); 3683 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3684 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3685 "Cannot truncate or zero extend with non-integer arguments!"); 3686 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3687 return V; // No conversion 3688 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3689 return getTruncateExpr(V, Ty); 3690 return getZeroExtendExpr(V, Ty); 3691 } 3692 3693 const SCEV * 3694 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3695 Type *Ty) { 3696 Type *SrcTy = V->getType(); 3697 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3698 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3699 "Cannot truncate or zero extend with non-integer arguments!"); 3700 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3701 return V; // No conversion 3702 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3703 return getTruncateExpr(V, Ty); 3704 return getSignExtendExpr(V, Ty); 3705 } 3706 3707 const SCEV * 3708 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3709 Type *SrcTy = V->getType(); 3710 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3711 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3712 "Cannot noop or zero extend with non-integer arguments!"); 3713 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3714 "getNoopOrZeroExtend cannot truncate!"); 3715 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3716 return V; // No conversion 3717 return getZeroExtendExpr(V, Ty); 3718 } 3719 3720 const SCEV * 3721 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3722 Type *SrcTy = V->getType(); 3723 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3724 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3725 "Cannot noop or sign extend with non-integer arguments!"); 3726 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3727 "getNoopOrSignExtend cannot truncate!"); 3728 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3729 return V; // No conversion 3730 return getSignExtendExpr(V, Ty); 3731 } 3732 3733 const SCEV * 3734 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3735 Type *SrcTy = V->getType(); 3736 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3737 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3738 "Cannot noop or any extend with non-integer arguments!"); 3739 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3740 "getNoopOrAnyExtend cannot truncate!"); 3741 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3742 return V; // No conversion 3743 return getAnyExtendExpr(V, Ty); 3744 } 3745 3746 const SCEV * 3747 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3748 Type *SrcTy = V->getType(); 3749 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3750 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3751 "Cannot truncate or noop with non-integer arguments!"); 3752 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3753 "getTruncateOrNoop cannot extend!"); 3754 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3755 return V; // No conversion 3756 return getTruncateExpr(V, Ty); 3757 } 3758 3759 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3760 const SCEV *RHS) { 3761 const SCEV *PromotedLHS = LHS; 3762 const SCEV *PromotedRHS = RHS; 3763 3764 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3765 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3766 else 3767 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3768 3769 return getUMaxExpr(PromotedLHS, PromotedRHS); 3770 } 3771 3772 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3773 const SCEV *RHS) { 3774 const SCEV *PromotedLHS = LHS; 3775 const SCEV *PromotedRHS = RHS; 3776 3777 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3778 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3779 else 3780 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3781 3782 return getUMinExpr(PromotedLHS, PromotedRHS); 3783 } 3784 3785 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3786 // A pointer operand may evaluate to a nonpointer expression, such as null. 3787 if (!V->getType()->isPointerTy()) 3788 return V; 3789 3790 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3791 return getPointerBase(Cast->getOperand()); 3792 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3793 const SCEV *PtrOp = nullptr; 3794 for (const SCEV *NAryOp : NAry->operands()) { 3795 if (NAryOp->getType()->isPointerTy()) { 3796 // Cannot find the base of an expression with multiple pointer operands. 3797 if (PtrOp) 3798 return V; 3799 PtrOp = NAryOp; 3800 } 3801 } 3802 if (!PtrOp) 3803 return V; 3804 return getPointerBase(PtrOp); 3805 } 3806 return V; 3807 } 3808 3809 /// Push users of the given Instruction onto the given Worklist. 3810 static void 3811 PushDefUseChildren(Instruction *I, 3812 SmallVectorImpl<Instruction *> &Worklist) { 3813 // Push the def-use children onto the Worklist stack. 3814 for (User *U : I->users()) 3815 Worklist.push_back(cast<Instruction>(U)); 3816 } 3817 3818 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3819 SmallVector<Instruction *, 16> Worklist; 3820 PushDefUseChildren(PN, Worklist); 3821 3822 SmallPtrSet<Instruction *, 8> Visited; 3823 Visited.insert(PN); 3824 while (!Worklist.empty()) { 3825 Instruction *I = Worklist.pop_back_val(); 3826 if (!Visited.insert(I).second) 3827 continue; 3828 3829 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3830 if (It != ValueExprMap.end()) { 3831 const SCEV *Old = It->second; 3832 3833 // Short-circuit the def-use traversal if the symbolic name 3834 // ceases to appear in expressions. 3835 if (Old != SymName && !hasOperand(Old, SymName)) 3836 continue; 3837 3838 // SCEVUnknown for a PHI either means that it has an unrecognized 3839 // structure, it's a PHI that's in the progress of being computed 3840 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3841 // additional loop trip count information isn't going to change anything. 3842 // In the second case, createNodeForPHI will perform the necessary 3843 // updates on its own when it gets to that point. In the third, we do 3844 // want to forget the SCEVUnknown. 3845 if (!isa<PHINode>(I) || 3846 !isa<SCEVUnknown>(Old) || 3847 (I != PN && Old == SymName)) { 3848 eraseValueFromMap(It->first); 3849 forgetMemoizedResults(Old); 3850 } 3851 } 3852 3853 PushDefUseChildren(I, Worklist); 3854 } 3855 } 3856 3857 namespace { 3858 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3859 public: 3860 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3861 ScalarEvolution &SE) { 3862 SCEVInitRewriter Rewriter(L, SE); 3863 const SCEV *Result = Rewriter.visit(S); 3864 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3865 } 3866 3867 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3868 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3869 3870 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3871 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3872 Valid = false; 3873 return Expr; 3874 } 3875 3876 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3877 // Only allow AddRecExprs for this loop. 3878 if (Expr->getLoop() == L) 3879 return Expr->getStart(); 3880 Valid = false; 3881 return Expr; 3882 } 3883 3884 bool isValid() { return Valid; } 3885 3886 private: 3887 const Loop *L; 3888 bool Valid; 3889 }; 3890 3891 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3892 public: 3893 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3894 ScalarEvolution &SE) { 3895 SCEVShiftRewriter Rewriter(L, SE); 3896 const SCEV *Result = Rewriter.visit(S); 3897 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3898 } 3899 3900 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3901 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3902 3903 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3904 // Only allow AddRecExprs for this loop. 3905 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3906 Valid = false; 3907 return Expr; 3908 } 3909 3910 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3911 if (Expr->getLoop() == L && Expr->isAffine()) 3912 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3913 Valid = false; 3914 return Expr; 3915 } 3916 bool isValid() { return Valid; } 3917 3918 private: 3919 const Loop *L; 3920 bool Valid; 3921 }; 3922 } // end anonymous namespace 3923 3924 SCEV::NoWrapFlags 3925 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3926 if (!AR->isAffine()) 3927 return SCEV::FlagAnyWrap; 3928 3929 typedef OverflowingBinaryOperator OBO; 3930 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3931 3932 if (!AR->hasNoSignedWrap()) { 3933 ConstantRange AddRecRange = getSignedRange(AR); 3934 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3935 3936 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3937 Instruction::Add, IncRange, OBO::NoSignedWrap); 3938 if (NSWRegion.contains(AddRecRange)) 3939 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3940 } 3941 3942 if (!AR->hasNoUnsignedWrap()) { 3943 ConstantRange AddRecRange = getUnsignedRange(AR); 3944 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3945 3946 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3947 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3948 if (NUWRegion.contains(AddRecRange)) 3949 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3950 } 3951 3952 return Result; 3953 } 3954 3955 namespace { 3956 /// Represents an abstract binary operation. This may exist as a 3957 /// normal instruction or constant expression, or may have been 3958 /// derived from an expression tree. 3959 struct BinaryOp { 3960 unsigned Opcode; 3961 Value *LHS; 3962 Value *RHS; 3963 bool IsNSW; 3964 bool IsNUW; 3965 3966 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3967 /// constant expression. 3968 Operator *Op; 3969 3970 explicit BinaryOp(Operator *Op) 3971 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3972 IsNSW(false), IsNUW(false), Op(Op) { 3973 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3974 IsNSW = OBO->hasNoSignedWrap(); 3975 IsNUW = OBO->hasNoUnsignedWrap(); 3976 } 3977 } 3978 3979 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3980 bool IsNUW = false) 3981 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3982 Op(nullptr) {} 3983 }; 3984 } 3985 3986 3987 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3988 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3989 auto *Op = dyn_cast<Operator>(V); 3990 if (!Op) 3991 return None; 3992 3993 // Implementation detail: all the cleverness here should happen without 3994 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3995 // SCEV expressions when possible, and we should not break that. 3996 3997 switch (Op->getOpcode()) { 3998 case Instruction::Add: 3999 case Instruction::Sub: 4000 case Instruction::Mul: 4001 case Instruction::UDiv: 4002 case Instruction::And: 4003 case Instruction::Or: 4004 case Instruction::AShr: 4005 case Instruction::Shl: 4006 return BinaryOp(Op); 4007 4008 case Instruction::Xor: 4009 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4010 // If the RHS of the xor is a signbit, then this is just an add. 4011 // Instcombine turns add of signbit into xor as a strength reduction step. 4012 if (RHSC->getValue().isSignBit()) 4013 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4014 return BinaryOp(Op); 4015 4016 case Instruction::LShr: 4017 // Turn logical shift right of a constant into a unsigned divide. 4018 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4019 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4020 4021 // If the shift count is not less than the bitwidth, the result of 4022 // the shift is undefined. Don't try to analyze it, because the 4023 // resolution chosen here may differ from the resolution chosen in 4024 // other parts of the compiler. 4025 if (SA->getValue().ult(BitWidth)) { 4026 Constant *X = 4027 ConstantInt::get(SA->getContext(), 4028 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4029 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4030 } 4031 } 4032 return BinaryOp(Op); 4033 4034 case Instruction::ExtractValue: { 4035 auto *EVI = cast<ExtractValueInst>(Op); 4036 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4037 break; 4038 4039 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4040 if (!CI) 4041 break; 4042 4043 if (auto *F = CI->getCalledFunction()) 4044 switch (F->getIntrinsicID()) { 4045 case Intrinsic::sadd_with_overflow: 4046 case Intrinsic::uadd_with_overflow: { 4047 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4048 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4049 CI->getArgOperand(1)); 4050 4051 // Now that we know that all uses of the arithmetic-result component of 4052 // CI are guarded by the overflow check, we can go ahead and pretend 4053 // that the arithmetic is non-overflowing. 4054 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4055 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4056 CI->getArgOperand(1), /* IsNSW = */ true, 4057 /* IsNUW = */ false); 4058 else 4059 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4060 CI->getArgOperand(1), /* IsNSW = */ false, 4061 /* IsNUW*/ true); 4062 } 4063 4064 case Intrinsic::ssub_with_overflow: 4065 case Intrinsic::usub_with_overflow: 4066 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4067 CI->getArgOperand(1)); 4068 4069 case Intrinsic::smul_with_overflow: 4070 case Intrinsic::umul_with_overflow: 4071 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4072 CI->getArgOperand(1)); 4073 default: 4074 break; 4075 } 4076 } 4077 4078 default: 4079 break; 4080 } 4081 4082 return None; 4083 } 4084 4085 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4086 const Loop *L = LI.getLoopFor(PN->getParent()); 4087 if (!L || L->getHeader() != PN->getParent()) 4088 return nullptr; 4089 4090 // The loop may have multiple entrances or multiple exits; we can analyze 4091 // this phi as an addrec if it has a unique entry value and a unique 4092 // backedge value. 4093 Value *BEValueV = nullptr, *StartValueV = nullptr; 4094 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4095 Value *V = PN->getIncomingValue(i); 4096 if (L->contains(PN->getIncomingBlock(i))) { 4097 if (!BEValueV) { 4098 BEValueV = V; 4099 } else if (BEValueV != V) { 4100 BEValueV = nullptr; 4101 break; 4102 } 4103 } else if (!StartValueV) { 4104 StartValueV = V; 4105 } else if (StartValueV != V) { 4106 StartValueV = nullptr; 4107 break; 4108 } 4109 } 4110 if (BEValueV && StartValueV) { 4111 // While we are analyzing this PHI node, handle its value symbolically. 4112 const SCEV *SymbolicName = getUnknown(PN); 4113 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4114 "PHI node already processed?"); 4115 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4116 4117 // Using this symbolic name for the PHI, analyze the value coming around 4118 // the back-edge. 4119 const SCEV *BEValue = getSCEV(BEValueV); 4120 4121 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4122 // has a special value for the first iteration of the loop. 4123 4124 // If the value coming around the backedge is an add with the symbolic 4125 // value we just inserted, then we found a simple induction variable! 4126 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4127 // If there is a single occurrence of the symbolic value, replace it 4128 // with a recurrence. 4129 unsigned FoundIndex = Add->getNumOperands(); 4130 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4131 if (Add->getOperand(i) == SymbolicName) 4132 if (FoundIndex == e) { 4133 FoundIndex = i; 4134 break; 4135 } 4136 4137 if (FoundIndex != Add->getNumOperands()) { 4138 // Create an add with everything but the specified operand. 4139 SmallVector<const SCEV *, 8> Ops; 4140 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4141 if (i != FoundIndex) 4142 Ops.push_back(Add->getOperand(i)); 4143 const SCEV *Accum = getAddExpr(Ops); 4144 4145 // This is not a valid addrec if the step amount is varying each 4146 // loop iteration, but is not itself an addrec in this loop. 4147 if (isLoopInvariant(Accum, L) || 4148 (isa<SCEVAddRecExpr>(Accum) && 4149 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4150 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4151 4152 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4153 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4154 if (BO->IsNUW) 4155 Flags = setFlags(Flags, SCEV::FlagNUW); 4156 if (BO->IsNSW) 4157 Flags = setFlags(Flags, SCEV::FlagNSW); 4158 } 4159 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4160 // If the increment is an inbounds GEP, then we know the address 4161 // space cannot be wrapped around. We cannot make any guarantee 4162 // about signed or unsigned overflow because pointers are 4163 // unsigned but we may have a negative index from the base 4164 // pointer. We can guarantee that no unsigned wrap occurs if the 4165 // indices form a positive value. 4166 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4167 Flags = setFlags(Flags, SCEV::FlagNW); 4168 4169 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4170 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4171 Flags = setFlags(Flags, SCEV::FlagNUW); 4172 } 4173 4174 // We cannot transfer nuw and nsw flags from subtraction 4175 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4176 // for instance. 4177 } 4178 4179 const SCEV *StartVal = getSCEV(StartValueV); 4180 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4181 4182 // Okay, for the entire analysis of this edge we assumed the PHI 4183 // to be symbolic. We now need to go back and purge all of the 4184 // entries for the scalars that use the symbolic expression. 4185 forgetSymbolicName(PN, SymbolicName); 4186 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4187 4188 // We can add Flags to the post-inc expression only if we 4189 // know that it us *undefined behavior* for BEValueV to 4190 // overflow. 4191 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4192 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4193 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4194 4195 return PHISCEV; 4196 } 4197 } 4198 } else { 4199 // Otherwise, this could be a loop like this: 4200 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4201 // In this case, j = {1,+,1} and BEValue is j. 4202 // Because the other in-value of i (0) fits the evolution of BEValue 4203 // i really is an addrec evolution. 4204 // 4205 // We can generalize this saying that i is the shifted value of BEValue 4206 // by one iteration: 4207 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4208 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4209 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4210 if (Shifted != getCouldNotCompute() && 4211 Start != getCouldNotCompute()) { 4212 const SCEV *StartVal = getSCEV(StartValueV); 4213 if (Start == StartVal) { 4214 // Okay, for the entire analysis of this edge we assumed the PHI 4215 // to be symbolic. We now need to go back and purge all of the 4216 // entries for the scalars that use the symbolic expression. 4217 forgetSymbolicName(PN, SymbolicName); 4218 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4219 return Shifted; 4220 } 4221 } 4222 } 4223 4224 // Remove the temporary PHI node SCEV that has been inserted while intending 4225 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4226 // as it will prevent later (possibly simpler) SCEV expressions to be added 4227 // to the ValueExprMap. 4228 eraseValueFromMap(PN); 4229 } 4230 4231 return nullptr; 4232 } 4233 4234 // Checks if the SCEV S is available at BB. S is considered available at BB 4235 // if S can be materialized at BB without introducing a fault. 4236 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4237 BasicBlock *BB) { 4238 struct CheckAvailable { 4239 bool TraversalDone = false; 4240 bool Available = true; 4241 4242 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4243 BasicBlock *BB = nullptr; 4244 DominatorTree &DT; 4245 4246 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4247 : L(L), BB(BB), DT(DT) {} 4248 4249 bool setUnavailable() { 4250 TraversalDone = true; 4251 Available = false; 4252 return false; 4253 } 4254 4255 bool follow(const SCEV *S) { 4256 switch (S->getSCEVType()) { 4257 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4258 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4259 // These expressions are available if their operand(s) is/are. 4260 return true; 4261 4262 case scAddRecExpr: { 4263 // We allow add recurrences that are on the loop BB is in, or some 4264 // outer loop. This guarantees availability because the value of the 4265 // add recurrence at BB is simply the "current" value of the induction 4266 // variable. We can relax this in the future; for instance an add 4267 // recurrence on a sibling dominating loop is also available at BB. 4268 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4269 if (L && (ARLoop == L || ARLoop->contains(L))) 4270 return true; 4271 4272 return setUnavailable(); 4273 } 4274 4275 case scUnknown: { 4276 // For SCEVUnknown, we check for simple dominance. 4277 const auto *SU = cast<SCEVUnknown>(S); 4278 Value *V = SU->getValue(); 4279 4280 if (isa<Argument>(V)) 4281 return false; 4282 4283 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4284 return false; 4285 4286 return setUnavailable(); 4287 } 4288 4289 case scUDivExpr: 4290 case scCouldNotCompute: 4291 // We do not try to smart about these at all. 4292 return setUnavailable(); 4293 } 4294 llvm_unreachable("switch should be fully covered!"); 4295 } 4296 4297 bool isDone() { return TraversalDone; } 4298 }; 4299 4300 CheckAvailable CA(L, BB, DT); 4301 SCEVTraversal<CheckAvailable> ST(CA); 4302 4303 ST.visitAll(S); 4304 return CA.Available; 4305 } 4306 4307 // Try to match a control flow sequence that branches out at BI and merges back 4308 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4309 // match. 4310 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4311 Value *&C, Value *&LHS, Value *&RHS) { 4312 C = BI->getCondition(); 4313 4314 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4315 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4316 4317 if (!LeftEdge.isSingleEdge()) 4318 return false; 4319 4320 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4321 4322 Use &LeftUse = Merge->getOperandUse(0); 4323 Use &RightUse = Merge->getOperandUse(1); 4324 4325 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4326 LHS = LeftUse; 4327 RHS = RightUse; 4328 return true; 4329 } 4330 4331 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4332 LHS = RightUse; 4333 RHS = LeftUse; 4334 return true; 4335 } 4336 4337 return false; 4338 } 4339 4340 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4341 auto IsReachable = 4342 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4343 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4344 const Loop *L = LI.getLoopFor(PN->getParent()); 4345 4346 // We don't want to break LCSSA, even in a SCEV expression tree. 4347 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4348 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4349 return nullptr; 4350 4351 // Try to match 4352 // 4353 // br %cond, label %left, label %right 4354 // left: 4355 // br label %merge 4356 // right: 4357 // br label %merge 4358 // merge: 4359 // V = phi [ %x, %left ], [ %y, %right ] 4360 // 4361 // as "select %cond, %x, %y" 4362 4363 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4364 assert(IDom && "At least the entry block should dominate PN"); 4365 4366 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4367 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4368 4369 if (BI && BI->isConditional() && 4370 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4371 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4372 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4373 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4374 } 4375 4376 return nullptr; 4377 } 4378 4379 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4380 if (const SCEV *S = createAddRecFromPHI(PN)) 4381 return S; 4382 4383 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4384 return S; 4385 4386 // If the PHI has a single incoming value, follow that value, unless the 4387 // PHI's incoming blocks are in a different loop, in which case doing so 4388 // risks breaking LCSSA form. Instcombine would normally zap these, but 4389 // it doesn't have DominatorTree information, so it may miss cases. 4390 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4391 if (LI.replacementPreservesLCSSAForm(PN, V)) 4392 return getSCEV(V); 4393 4394 // If it's not a loop phi, we can't handle it yet. 4395 return getUnknown(PN); 4396 } 4397 4398 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4399 Value *Cond, 4400 Value *TrueVal, 4401 Value *FalseVal) { 4402 // Handle "constant" branch or select. This can occur for instance when a 4403 // loop pass transforms an inner loop and moves on to process the outer loop. 4404 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4405 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4406 4407 // Try to match some simple smax or umax patterns. 4408 auto *ICI = dyn_cast<ICmpInst>(Cond); 4409 if (!ICI) 4410 return getUnknown(I); 4411 4412 Value *LHS = ICI->getOperand(0); 4413 Value *RHS = ICI->getOperand(1); 4414 4415 switch (ICI->getPredicate()) { 4416 case ICmpInst::ICMP_SLT: 4417 case ICmpInst::ICMP_SLE: 4418 std::swap(LHS, RHS); 4419 LLVM_FALLTHROUGH; 4420 case ICmpInst::ICMP_SGT: 4421 case ICmpInst::ICMP_SGE: 4422 // a >s b ? a+x : b+x -> smax(a, b)+x 4423 // a >s b ? b+x : a+x -> smin(a, b)+x 4424 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4425 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4426 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4427 const SCEV *LA = getSCEV(TrueVal); 4428 const SCEV *RA = getSCEV(FalseVal); 4429 const SCEV *LDiff = getMinusSCEV(LA, LS); 4430 const SCEV *RDiff = getMinusSCEV(RA, RS); 4431 if (LDiff == RDiff) 4432 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4433 LDiff = getMinusSCEV(LA, RS); 4434 RDiff = getMinusSCEV(RA, LS); 4435 if (LDiff == RDiff) 4436 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4437 } 4438 break; 4439 case ICmpInst::ICMP_ULT: 4440 case ICmpInst::ICMP_ULE: 4441 std::swap(LHS, RHS); 4442 LLVM_FALLTHROUGH; 4443 case ICmpInst::ICMP_UGT: 4444 case ICmpInst::ICMP_UGE: 4445 // a >u b ? a+x : b+x -> umax(a, b)+x 4446 // a >u b ? b+x : a+x -> umin(a, b)+x 4447 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4448 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4449 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4450 const SCEV *LA = getSCEV(TrueVal); 4451 const SCEV *RA = getSCEV(FalseVal); 4452 const SCEV *LDiff = getMinusSCEV(LA, LS); 4453 const SCEV *RDiff = getMinusSCEV(RA, RS); 4454 if (LDiff == RDiff) 4455 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4456 LDiff = getMinusSCEV(LA, RS); 4457 RDiff = getMinusSCEV(RA, LS); 4458 if (LDiff == RDiff) 4459 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4460 } 4461 break; 4462 case ICmpInst::ICMP_NE: 4463 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4464 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4465 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4466 const SCEV *One = getOne(I->getType()); 4467 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4468 const SCEV *LA = getSCEV(TrueVal); 4469 const SCEV *RA = getSCEV(FalseVal); 4470 const SCEV *LDiff = getMinusSCEV(LA, LS); 4471 const SCEV *RDiff = getMinusSCEV(RA, One); 4472 if (LDiff == RDiff) 4473 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4474 } 4475 break; 4476 case ICmpInst::ICMP_EQ: 4477 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4478 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4479 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4480 const SCEV *One = getOne(I->getType()); 4481 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4482 const SCEV *LA = getSCEV(TrueVal); 4483 const SCEV *RA = getSCEV(FalseVal); 4484 const SCEV *LDiff = getMinusSCEV(LA, One); 4485 const SCEV *RDiff = getMinusSCEV(RA, LS); 4486 if (LDiff == RDiff) 4487 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4488 } 4489 break; 4490 default: 4491 break; 4492 } 4493 4494 return getUnknown(I); 4495 } 4496 4497 /// Expand GEP instructions into add and multiply operations. This allows them 4498 /// to be analyzed by regular SCEV code. 4499 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4500 // Don't attempt to analyze GEPs over unsized objects. 4501 if (!GEP->getSourceElementType()->isSized()) 4502 return getUnknown(GEP); 4503 4504 SmallVector<const SCEV *, 4> IndexExprs; 4505 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4506 IndexExprs.push_back(getSCEV(*Index)); 4507 return getGEPExpr(GEP, IndexExprs); 4508 } 4509 4510 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 4511 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4512 return C->getAPInt().countTrailingZeros(); 4513 4514 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4515 return std::min(GetMinTrailingZeros(T->getOperand()), 4516 (uint32_t)getTypeSizeInBits(T->getType())); 4517 4518 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4519 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4520 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4521 ? getTypeSizeInBits(E->getType()) 4522 : OpRes; 4523 } 4524 4525 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4526 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4527 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4528 ? getTypeSizeInBits(E->getType()) 4529 : OpRes; 4530 } 4531 4532 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4533 // The result is the min of all operands results. 4534 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4535 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4536 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4537 return MinOpRes; 4538 } 4539 4540 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4541 // The result is the sum of all operands results. 4542 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4543 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4544 for (unsigned i = 1, e = M->getNumOperands(); 4545 SumOpRes != BitWidth && i != e; ++i) 4546 SumOpRes = 4547 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 4548 return SumOpRes; 4549 } 4550 4551 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4552 // The result is the min of all operands results. 4553 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4554 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4555 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4556 return MinOpRes; 4557 } 4558 4559 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4560 // The result is the min of all operands results. 4561 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4562 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4563 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4564 return MinOpRes; 4565 } 4566 4567 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4568 // The result is the min of all operands results. 4569 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4570 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4571 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4572 return MinOpRes; 4573 } 4574 4575 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4576 // For a SCEVUnknown, ask ValueTracking. 4577 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4578 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4579 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4580 nullptr, &DT); 4581 return Zeros.countTrailingOnes(); 4582 } 4583 4584 // SCEVUDivExpr 4585 return 0; 4586 } 4587 4588 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4589 auto I = MinTrailingZerosCache.find(S); 4590 if (I != MinTrailingZerosCache.end()) 4591 return I->second; 4592 4593 uint32_t Result = GetMinTrailingZerosImpl(S); 4594 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 4595 assert(InsertPair.second && "Should insert a new key"); 4596 return InsertPair.first->second; 4597 } 4598 4599 /// Helper method to assign a range to V from metadata present in the IR. 4600 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4601 if (Instruction *I = dyn_cast<Instruction>(V)) 4602 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4603 return getConstantRangeFromMetadata(*MD); 4604 4605 return None; 4606 } 4607 4608 /// Determine the range for a particular SCEV. If SignHint is 4609 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4610 /// with a "cleaner" unsigned (resp. signed) representation. 4611 ConstantRange 4612 ScalarEvolution::getRange(const SCEV *S, 4613 ScalarEvolution::RangeSignHint SignHint) { 4614 DenseMap<const SCEV *, ConstantRange> &Cache = 4615 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4616 : SignedRanges; 4617 4618 // See if we've computed this range already. 4619 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4620 if (I != Cache.end()) 4621 return I->second; 4622 4623 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4624 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4625 4626 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4627 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4628 4629 // If the value has known zeros, the maximum value will have those known zeros 4630 // as well. 4631 uint32_t TZ = GetMinTrailingZeros(S); 4632 if (TZ != 0) { 4633 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4634 ConservativeResult = 4635 ConstantRange(APInt::getMinValue(BitWidth), 4636 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4637 else 4638 ConservativeResult = ConstantRange( 4639 APInt::getSignedMinValue(BitWidth), 4640 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4641 } 4642 4643 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4644 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4645 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4646 X = X.add(getRange(Add->getOperand(i), SignHint)); 4647 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4648 } 4649 4650 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4651 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4652 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4653 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4654 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4655 } 4656 4657 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4658 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4659 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4660 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4661 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4662 } 4663 4664 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4665 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4666 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4667 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4668 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4669 } 4670 4671 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4672 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4673 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4674 return setRange(UDiv, SignHint, 4675 ConservativeResult.intersectWith(X.udiv(Y))); 4676 } 4677 4678 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4679 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4680 return setRange(ZExt, SignHint, 4681 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4682 } 4683 4684 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4685 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4686 return setRange(SExt, SignHint, 4687 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4688 } 4689 4690 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4691 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4692 return setRange(Trunc, SignHint, 4693 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4694 } 4695 4696 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4697 // If there's no unsigned wrap, the value will never be less than its 4698 // initial value. 4699 if (AddRec->hasNoUnsignedWrap()) 4700 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4701 if (!C->getValue()->isZero()) 4702 ConservativeResult = ConservativeResult.intersectWith( 4703 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4704 4705 // If there's no signed wrap, and all the operands have the same sign or 4706 // zero, the value won't ever change sign. 4707 if (AddRec->hasNoSignedWrap()) { 4708 bool AllNonNeg = true; 4709 bool AllNonPos = true; 4710 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4711 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4712 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4713 } 4714 if (AllNonNeg) 4715 ConservativeResult = ConservativeResult.intersectWith( 4716 ConstantRange(APInt(BitWidth, 0), 4717 APInt::getSignedMinValue(BitWidth))); 4718 else if (AllNonPos) 4719 ConservativeResult = ConservativeResult.intersectWith( 4720 ConstantRange(APInt::getSignedMinValue(BitWidth), 4721 APInt(BitWidth, 1))); 4722 } 4723 4724 // TODO: non-affine addrec 4725 if (AddRec->isAffine()) { 4726 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4727 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4728 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4729 auto RangeFromAffine = getRangeForAffineAR( 4730 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4731 BitWidth); 4732 if (!RangeFromAffine.isFullSet()) 4733 ConservativeResult = 4734 ConservativeResult.intersectWith(RangeFromAffine); 4735 4736 auto RangeFromFactoring = getRangeViaFactoring( 4737 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4738 BitWidth); 4739 if (!RangeFromFactoring.isFullSet()) 4740 ConservativeResult = 4741 ConservativeResult.intersectWith(RangeFromFactoring); 4742 } 4743 } 4744 4745 return setRange(AddRec, SignHint, ConservativeResult); 4746 } 4747 4748 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4749 // Check if the IR explicitly contains !range metadata. 4750 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4751 if (MDRange.hasValue()) 4752 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4753 4754 // Split here to avoid paying the compile-time cost of calling both 4755 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4756 // if needed. 4757 const DataLayout &DL = getDataLayout(); 4758 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4759 // For a SCEVUnknown, ask ValueTracking. 4760 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4761 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4762 if (Ones != ~Zeros + 1) 4763 ConservativeResult = 4764 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4765 } else { 4766 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4767 "generalize as needed!"); 4768 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4769 if (NS > 1) 4770 ConservativeResult = ConservativeResult.intersectWith( 4771 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4772 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4773 } 4774 4775 return setRange(U, SignHint, ConservativeResult); 4776 } 4777 4778 return setRange(S, SignHint, ConservativeResult); 4779 } 4780 4781 // Given a StartRange, Step and MaxBECount for an expression compute a range of 4782 // values that the expression can take. Initially, the expression has a value 4783 // from StartRange and then is changed by Step up to MaxBECount times. Signed 4784 // argument defines if we treat Step as signed or unsigned. 4785 static ConstantRange getRangeForAffineARHelper(APInt Step, 4786 ConstantRange StartRange, 4787 APInt MaxBECount, 4788 unsigned BitWidth, bool Signed) { 4789 // If either Step or MaxBECount is 0, then the expression won't change, and we 4790 // just need to return the initial range. 4791 if (Step == 0 || MaxBECount == 0) 4792 return StartRange; 4793 4794 // If we don't know anything about the initial value (i.e. StartRange is 4795 // FullRange), then we don't know anything about the final range either. 4796 // Return FullRange. 4797 if (StartRange.isFullSet()) 4798 return ConstantRange(BitWidth, /* isFullSet = */ true); 4799 4800 // If Step is signed and negative, then we use its absolute value, but we also 4801 // note that we're moving in the opposite direction. 4802 bool Descending = Signed && Step.isNegative(); 4803 4804 if (Signed) 4805 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 4806 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 4807 // This equations hold true due to the well-defined wrap-around behavior of 4808 // APInt. 4809 Step = Step.abs(); 4810 4811 // Check if Offset is more than full span of BitWidth. If it is, the 4812 // expression is guaranteed to overflow. 4813 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 4814 return ConstantRange(BitWidth, /* isFullSet = */ true); 4815 4816 // Offset is by how much the expression can change. Checks above guarantee no 4817 // overflow here. 4818 APInt Offset = Step * MaxBECount; 4819 4820 // Minimum value of the final range will match the minimal value of StartRange 4821 // if the expression is increasing and will be decreased by Offset otherwise. 4822 // Maximum value of the final range will match the maximal value of StartRange 4823 // if the expression is decreasing and will be increased by Offset otherwise. 4824 APInt StartLower = StartRange.getLower(); 4825 APInt StartUpper = StartRange.getUpper() - 1; 4826 APInt MovedBoundary = 4827 Descending ? (StartLower - Offset) : (StartUpper + Offset); 4828 4829 // It's possible that the new minimum/maximum value will fall into the initial 4830 // range (due to wrap around). This means that the expression can take any 4831 // value in this bitwidth, and we have to return full range. 4832 if (StartRange.contains(MovedBoundary)) 4833 return ConstantRange(BitWidth, /* isFullSet = */ true); 4834 4835 APInt NewLower, NewUpper; 4836 if (Descending) { 4837 NewLower = MovedBoundary; 4838 NewUpper = StartUpper; 4839 } else { 4840 NewLower = StartLower; 4841 NewUpper = MovedBoundary; 4842 } 4843 4844 // If we end up with full range, return a proper full range. 4845 if (NewLower == NewUpper + 1) 4846 return ConstantRange(BitWidth, /* isFullSet = */ true); 4847 4848 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 4849 return ConstantRange(NewLower, NewUpper + 1); 4850 } 4851 4852 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4853 const SCEV *Step, 4854 const SCEV *MaxBECount, 4855 unsigned BitWidth) { 4856 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4857 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4858 "Precondition!"); 4859 4860 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4861 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4862 APInt MaxBECountValue = MaxBECountRange.getUnsignedMax(); 4863 4864 // First, consider step signed. 4865 ConstantRange StartSRange = getSignedRange(Start); 4866 ConstantRange StepSRange = getSignedRange(Step); 4867 4868 // If Step can be both positive and negative, we need to find ranges for the 4869 // maximum absolute step values in both directions and union them. 4870 ConstantRange SR = 4871 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 4872 MaxBECountValue, BitWidth, /* Signed = */ true); 4873 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 4874 StartSRange, MaxBECountValue, 4875 BitWidth, /* Signed = */ true)); 4876 4877 // Next, consider step unsigned. 4878 ConstantRange UR = getRangeForAffineARHelper( 4879 getUnsignedRange(Step).getUnsignedMax(), getUnsignedRange(Start), 4880 MaxBECountValue, BitWidth, /* Signed = */ false); 4881 4882 // Finally, intersect signed and unsigned ranges. 4883 return SR.intersectWith(UR); 4884 } 4885 4886 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4887 const SCEV *Step, 4888 const SCEV *MaxBECount, 4889 unsigned BitWidth) { 4890 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4891 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4892 4893 struct SelectPattern { 4894 Value *Condition = nullptr; 4895 APInt TrueValue; 4896 APInt FalseValue; 4897 4898 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4899 const SCEV *S) { 4900 Optional<unsigned> CastOp; 4901 APInt Offset(BitWidth, 0); 4902 4903 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4904 "Should be!"); 4905 4906 // Peel off a constant offset: 4907 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4908 // In the future we could consider being smarter here and handle 4909 // {Start+Step,+,Step} too. 4910 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4911 return; 4912 4913 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4914 S = SA->getOperand(1); 4915 } 4916 4917 // Peel off a cast operation 4918 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4919 CastOp = SCast->getSCEVType(); 4920 S = SCast->getOperand(); 4921 } 4922 4923 using namespace llvm::PatternMatch; 4924 4925 auto *SU = dyn_cast<SCEVUnknown>(S); 4926 const APInt *TrueVal, *FalseVal; 4927 if (!SU || 4928 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4929 m_APInt(FalseVal)))) { 4930 Condition = nullptr; 4931 return; 4932 } 4933 4934 TrueValue = *TrueVal; 4935 FalseValue = *FalseVal; 4936 4937 // Re-apply the cast we peeled off earlier 4938 if (CastOp.hasValue()) 4939 switch (*CastOp) { 4940 default: 4941 llvm_unreachable("Unknown SCEV cast type!"); 4942 4943 case scTruncate: 4944 TrueValue = TrueValue.trunc(BitWidth); 4945 FalseValue = FalseValue.trunc(BitWidth); 4946 break; 4947 case scZeroExtend: 4948 TrueValue = TrueValue.zext(BitWidth); 4949 FalseValue = FalseValue.zext(BitWidth); 4950 break; 4951 case scSignExtend: 4952 TrueValue = TrueValue.sext(BitWidth); 4953 FalseValue = FalseValue.sext(BitWidth); 4954 break; 4955 } 4956 4957 // Re-apply the constant offset we peeled off earlier 4958 TrueValue += Offset; 4959 FalseValue += Offset; 4960 } 4961 4962 bool isRecognized() { return Condition != nullptr; } 4963 }; 4964 4965 SelectPattern StartPattern(*this, BitWidth, Start); 4966 if (!StartPattern.isRecognized()) 4967 return ConstantRange(BitWidth, /* isFullSet = */ true); 4968 4969 SelectPattern StepPattern(*this, BitWidth, Step); 4970 if (!StepPattern.isRecognized()) 4971 return ConstantRange(BitWidth, /* isFullSet = */ true); 4972 4973 if (StartPattern.Condition != StepPattern.Condition) { 4974 // We don't handle this case today; but we could, by considering four 4975 // possibilities below instead of two. I'm not sure if there are cases where 4976 // that will help over what getRange already does, though. 4977 return ConstantRange(BitWidth, /* isFullSet = */ true); 4978 } 4979 4980 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4981 // construct arbitrary general SCEV expressions here. This function is called 4982 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4983 // say) can end up caching a suboptimal value. 4984 4985 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4986 // C2352 and C2512 (otherwise it isn't needed). 4987 4988 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4989 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4990 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4991 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4992 4993 ConstantRange TrueRange = 4994 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4995 ConstantRange FalseRange = 4996 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4997 4998 return TrueRange.unionWith(FalseRange); 4999 } 5000 5001 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5002 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5003 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5004 5005 // Return early if there are no flags to propagate to the SCEV. 5006 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5007 if (BinOp->hasNoUnsignedWrap()) 5008 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5009 if (BinOp->hasNoSignedWrap()) 5010 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5011 if (Flags == SCEV::FlagAnyWrap) 5012 return SCEV::FlagAnyWrap; 5013 5014 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5015 } 5016 5017 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5018 // Here we check that I is in the header of the innermost loop containing I, 5019 // since we only deal with instructions in the loop header. The actual loop we 5020 // need to check later will come from an add recurrence, but getting that 5021 // requires computing the SCEV of the operands, which can be expensive. This 5022 // check we can do cheaply to rule out some cases early. 5023 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5024 if (InnermostContainingLoop == nullptr || 5025 InnermostContainingLoop->getHeader() != I->getParent()) 5026 return false; 5027 5028 // Only proceed if we can prove that I does not yield poison. 5029 if (!isKnownNotFullPoison(I)) return false; 5030 5031 // At this point we know that if I is executed, then it does not wrap 5032 // according to at least one of NSW or NUW. If I is not executed, then we do 5033 // not know if the calculation that I represents would wrap. Multiple 5034 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5035 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5036 // derived from other instructions that map to the same SCEV. We cannot make 5037 // that guarantee for cases where I is not executed. So we need to find the 5038 // loop that I is considered in relation to and prove that I is executed for 5039 // every iteration of that loop. That implies that the value that I 5040 // calculates does not wrap anywhere in the loop, so then we can apply the 5041 // flags to the SCEV. 5042 // 5043 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5044 // from different loops, so that we know which loop to prove that I is 5045 // executed in. 5046 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5047 // I could be an extractvalue from a call to an overflow intrinsic. 5048 // TODO: We can do better here in some cases. 5049 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5050 return false; 5051 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5052 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5053 bool AllOtherOpsLoopInvariant = true; 5054 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5055 ++OtherOpIndex) { 5056 if (OtherOpIndex != OpIndex) { 5057 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5058 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5059 AllOtherOpsLoopInvariant = false; 5060 break; 5061 } 5062 } 5063 } 5064 if (AllOtherOpsLoopInvariant && 5065 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5066 return true; 5067 } 5068 } 5069 return false; 5070 } 5071 5072 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5073 // If we know that \c I can never be poison period, then that's enough. 5074 if (isSCEVExprNeverPoison(I)) 5075 return true; 5076 5077 // For an add recurrence specifically, we assume that infinite loops without 5078 // side effects are undefined behavior, and then reason as follows: 5079 // 5080 // If the add recurrence is poison in any iteration, it is poison on all 5081 // future iterations (since incrementing poison yields poison). If the result 5082 // of the add recurrence is fed into the loop latch condition and the loop 5083 // does not contain any throws or exiting blocks other than the latch, we now 5084 // have the ability to "choose" whether the backedge is taken or not (by 5085 // choosing a sufficiently evil value for the poison feeding into the branch) 5086 // for every iteration including and after the one in which \p I first became 5087 // poison. There are two possibilities (let's call the iteration in which \p 5088 // I first became poison as K): 5089 // 5090 // 1. In the set of iterations including and after K, the loop body executes 5091 // no side effects. In this case executing the backege an infinte number 5092 // of times will yield undefined behavior. 5093 // 5094 // 2. In the set of iterations including and after K, the loop body executes 5095 // at least one side effect. In this case, that specific instance of side 5096 // effect is control dependent on poison, which also yields undefined 5097 // behavior. 5098 5099 auto *ExitingBB = L->getExitingBlock(); 5100 auto *LatchBB = L->getLoopLatch(); 5101 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5102 return false; 5103 5104 SmallPtrSet<const Instruction *, 16> Pushed; 5105 SmallVector<const Instruction *, 8> PoisonStack; 5106 5107 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5108 // things that are known to be fully poison under that assumption go on the 5109 // PoisonStack. 5110 Pushed.insert(I); 5111 PoisonStack.push_back(I); 5112 5113 bool LatchControlDependentOnPoison = false; 5114 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5115 const Instruction *Poison = PoisonStack.pop_back_val(); 5116 5117 for (auto *PoisonUser : Poison->users()) { 5118 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5119 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5120 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5121 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5122 assert(BI->isConditional() && "Only possibility!"); 5123 if (BI->getParent() == LatchBB) { 5124 LatchControlDependentOnPoison = true; 5125 break; 5126 } 5127 } 5128 } 5129 } 5130 5131 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5132 } 5133 5134 ScalarEvolution::LoopProperties 5135 ScalarEvolution::getLoopProperties(const Loop *L) { 5136 typedef ScalarEvolution::LoopProperties LoopProperties; 5137 5138 auto Itr = LoopPropertiesCache.find(L); 5139 if (Itr == LoopPropertiesCache.end()) { 5140 auto HasSideEffects = [](Instruction *I) { 5141 if (auto *SI = dyn_cast<StoreInst>(I)) 5142 return !SI->isSimple(); 5143 5144 return I->mayHaveSideEffects(); 5145 }; 5146 5147 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5148 /*HasNoSideEffects*/ true}; 5149 5150 for (auto *BB : L->getBlocks()) 5151 for (auto &I : *BB) { 5152 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5153 LP.HasNoAbnormalExits = false; 5154 if (HasSideEffects(&I)) 5155 LP.HasNoSideEffects = false; 5156 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5157 break; // We're already as pessimistic as we can get. 5158 } 5159 5160 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5161 assert(InsertPair.second && "We just checked!"); 5162 Itr = InsertPair.first; 5163 } 5164 5165 return Itr->second; 5166 } 5167 5168 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5169 if (!isSCEVable(V->getType())) 5170 return getUnknown(V); 5171 5172 if (Instruction *I = dyn_cast<Instruction>(V)) { 5173 // Don't attempt to analyze instructions in blocks that aren't 5174 // reachable. Such instructions don't matter, and they aren't required 5175 // to obey basic rules for definitions dominating uses which this 5176 // analysis depends on. 5177 if (!DT.isReachableFromEntry(I->getParent())) 5178 return getUnknown(V); 5179 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5180 return getConstant(CI); 5181 else if (isa<ConstantPointerNull>(V)) 5182 return getZero(V->getType()); 5183 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5184 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5185 else if (!isa<ConstantExpr>(V)) 5186 return getUnknown(V); 5187 5188 Operator *U = cast<Operator>(V); 5189 if (auto BO = MatchBinaryOp(U, DT)) { 5190 switch (BO->Opcode) { 5191 case Instruction::Add: { 5192 // The simple thing to do would be to just call getSCEV on both operands 5193 // and call getAddExpr with the result. However if we're looking at a 5194 // bunch of things all added together, this can be quite inefficient, 5195 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5196 // Instead, gather up all the operands and make a single getAddExpr call. 5197 // LLVM IR canonical form means we need only traverse the left operands. 5198 SmallVector<const SCEV *, 4> AddOps; 5199 do { 5200 if (BO->Op) { 5201 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5202 AddOps.push_back(OpSCEV); 5203 break; 5204 } 5205 5206 // If a NUW or NSW flag can be applied to the SCEV for this 5207 // addition, then compute the SCEV for this addition by itself 5208 // with a separate call to getAddExpr. We need to do that 5209 // instead of pushing the operands of the addition onto AddOps, 5210 // since the flags are only known to apply to this particular 5211 // addition - they may not apply to other additions that can be 5212 // formed with operands from AddOps. 5213 const SCEV *RHS = getSCEV(BO->RHS); 5214 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5215 if (Flags != SCEV::FlagAnyWrap) { 5216 const SCEV *LHS = getSCEV(BO->LHS); 5217 if (BO->Opcode == Instruction::Sub) 5218 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5219 else 5220 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5221 break; 5222 } 5223 } 5224 5225 if (BO->Opcode == Instruction::Sub) 5226 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5227 else 5228 AddOps.push_back(getSCEV(BO->RHS)); 5229 5230 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5231 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5232 NewBO->Opcode != Instruction::Sub)) { 5233 AddOps.push_back(getSCEV(BO->LHS)); 5234 break; 5235 } 5236 BO = NewBO; 5237 } while (true); 5238 5239 return getAddExpr(AddOps); 5240 } 5241 5242 case Instruction::Mul: { 5243 SmallVector<const SCEV *, 4> MulOps; 5244 do { 5245 if (BO->Op) { 5246 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5247 MulOps.push_back(OpSCEV); 5248 break; 5249 } 5250 5251 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5252 if (Flags != SCEV::FlagAnyWrap) { 5253 MulOps.push_back( 5254 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5255 break; 5256 } 5257 } 5258 5259 MulOps.push_back(getSCEV(BO->RHS)); 5260 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5261 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5262 MulOps.push_back(getSCEV(BO->LHS)); 5263 break; 5264 } 5265 BO = NewBO; 5266 } while (true); 5267 5268 return getMulExpr(MulOps); 5269 } 5270 case Instruction::UDiv: 5271 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5272 case Instruction::Sub: { 5273 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5274 if (BO->Op) 5275 Flags = getNoWrapFlagsFromUB(BO->Op); 5276 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5277 } 5278 case Instruction::And: 5279 // For an expression like x&255 that merely masks off the high bits, 5280 // use zext(trunc(x)) as the SCEV expression. 5281 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5282 if (CI->isNullValue()) 5283 return getSCEV(BO->RHS); 5284 if (CI->isAllOnesValue()) 5285 return getSCEV(BO->LHS); 5286 const APInt &A = CI->getValue(); 5287 5288 // Instcombine's ShrinkDemandedConstant may strip bits out of 5289 // constants, obscuring what would otherwise be a low-bits mask. 5290 // Use computeKnownBits to compute what ShrinkDemandedConstant 5291 // knew about to reconstruct a low-bits mask value. 5292 unsigned LZ = A.countLeadingZeros(); 5293 unsigned TZ = A.countTrailingZeros(); 5294 unsigned BitWidth = A.getBitWidth(); 5295 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5296 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5297 0, &AC, nullptr, &DT); 5298 5299 APInt EffectiveMask = 5300 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5301 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5302 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5303 const SCEV *LHS = getSCEV(BO->LHS); 5304 const SCEV *ShiftedLHS = nullptr; 5305 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5306 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5307 // For an expression like (x * 8) & 8, simplify the multiply. 5308 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5309 unsigned GCD = std::min(MulZeros, TZ); 5310 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5311 SmallVector<const SCEV*, 4> MulOps; 5312 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5313 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5314 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5315 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5316 } 5317 } 5318 if (!ShiftedLHS) 5319 ShiftedLHS = getUDivExpr(LHS, MulCount); 5320 return getMulExpr( 5321 getZeroExtendExpr( 5322 getTruncateExpr(ShiftedLHS, 5323 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5324 BO->LHS->getType()), 5325 MulCount); 5326 } 5327 } 5328 break; 5329 5330 case Instruction::Or: 5331 // If the RHS of the Or is a constant, we may have something like: 5332 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5333 // optimizations will transparently handle this case. 5334 // 5335 // In order for this transformation to be safe, the LHS must be of the 5336 // form X*(2^n) and the Or constant must be less than 2^n. 5337 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5338 const SCEV *LHS = getSCEV(BO->LHS); 5339 const APInt &CIVal = CI->getValue(); 5340 if (GetMinTrailingZeros(LHS) >= 5341 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5342 // Build a plain add SCEV. 5343 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5344 // If the LHS of the add was an addrec and it has no-wrap flags, 5345 // transfer the no-wrap flags, since an or won't introduce a wrap. 5346 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5347 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5348 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5349 OldAR->getNoWrapFlags()); 5350 } 5351 return S; 5352 } 5353 } 5354 break; 5355 5356 case Instruction::Xor: 5357 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5358 // If the RHS of xor is -1, then this is a not operation. 5359 if (CI->isAllOnesValue()) 5360 return getNotSCEV(getSCEV(BO->LHS)); 5361 5362 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5363 // This is a variant of the check for xor with -1, and it handles 5364 // the case where instcombine has trimmed non-demanded bits out 5365 // of an xor with -1. 5366 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5367 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5368 if (LBO->getOpcode() == Instruction::And && 5369 LCI->getValue() == CI->getValue()) 5370 if (const SCEVZeroExtendExpr *Z = 5371 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5372 Type *UTy = BO->LHS->getType(); 5373 const SCEV *Z0 = Z->getOperand(); 5374 Type *Z0Ty = Z0->getType(); 5375 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5376 5377 // If C is a low-bits mask, the zero extend is serving to 5378 // mask off the high bits. Complement the operand and 5379 // re-apply the zext. 5380 if (CI->getValue().isMask(Z0TySize)) 5381 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5382 5383 // If C is a single bit, it may be in the sign-bit position 5384 // before the zero-extend. In this case, represent the xor 5385 // using an add, which is equivalent, and re-apply the zext. 5386 APInt Trunc = CI->getValue().trunc(Z0TySize); 5387 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5388 Trunc.isSignBit()) 5389 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5390 UTy); 5391 } 5392 } 5393 break; 5394 5395 case Instruction::Shl: 5396 // Turn shift left of a constant amount into a multiply. 5397 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5398 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5399 5400 // If the shift count is not less than the bitwidth, the result of 5401 // the shift is undefined. Don't try to analyze it, because the 5402 // resolution chosen here may differ from the resolution chosen in 5403 // other parts of the compiler. 5404 if (SA->getValue().uge(BitWidth)) 5405 break; 5406 5407 // It is currently not resolved how to interpret NSW for left 5408 // shift by BitWidth - 1, so we avoid applying flags in that 5409 // case. Remove this check (or this comment) once the situation 5410 // is resolved. See 5411 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5412 // and http://reviews.llvm.org/D8890 . 5413 auto Flags = SCEV::FlagAnyWrap; 5414 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5415 Flags = getNoWrapFlagsFromUB(BO->Op); 5416 5417 Constant *X = ConstantInt::get(getContext(), 5418 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5419 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5420 } 5421 break; 5422 5423 case Instruction::AShr: 5424 // AShr X, C, where C is a constant. 5425 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 5426 if (!CI) 5427 break; 5428 5429 Type *OuterTy = BO->LHS->getType(); 5430 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 5431 // If the shift count is not less than the bitwidth, the result of 5432 // the shift is undefined. Don't try to analyze it, because the 5433 // resolution chosen here may differ from the resolution chosen in 5434 // other parts of the compiler. 5435 if (CI->getValue().uge(BitWidth)) 5436 break; 5437 5438 if (CI->isNullValue()) 5439 return getSCEV(BO->LHS); // shift by zero --> noop 5440 5441 uint64_t AShrAmt = CI->getZExtValue(); 5442 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 5443 5444 Operator *L = dyn_cast<Operator>(BO->LHS); 5445 if (L && L->getOpcode() == Instruction::Shl) { 5446 // X = Shl A, n 5447 // Y = AShr X, m 5448 // Both n and m are constant. 5449 5450 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 5451 if (L->getOperand(1) == BO->RHS) 5452 // For a two-shift sext-inreg, i.e. n = m, 5453 // use sext(trunc(x)) as the SCEV expression. 5454 return getSignExtendExpr( 5455 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 5456 5457 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 5458 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 5459 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 5460 if (ShlAmt > AShrAmt) { 5461 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 5462 // expression. We already checked that ShlAmt < BitWidth, so 5463 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 5464 // ShlAmt - AShrAmt < Amt. 5465 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 5466 ShlAmt - AShrAmt); 5467 return getSignExtendExpr( 5468 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 5469 getConstant(Mul)), OuterTy); 5470 } 5471 } 5472 } 5473 break; 5474 } 5475 } 5476 5477 switch (U->getOpcode()) { 5478 case Instruction::Trunc: 5479 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5480 5481 case Instruction::ZExt: 5482 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5483 5484 case Instruction::SExt: 5485 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5486 5487 case Instruction::BitCast: 5488 // BitCasts are no-op casts so we just eliminate the cast. 5489 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5490 return getSCEV(U->getOperand(0)); 5491 break; 5492 5493 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5494 // lead to pointer expressions which cannot safely be expanded to GEPs, 5495 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5496 // simplifying integer expressions. 5497 5498 case Instruction::GetElementPtr: 5499 return createNodeForGEP(cast<GEPOperator>(U)); 5500 5501 case Instruction::PHI: 5502 return createNodeForPHI(cast<PHINode>(U)); 5503 5504 case Instruction::Select: 5505 // U can also be a select constant expr, which let fall through. Since 5506 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5507 // constant expressions cannot have instructions as operands, we'd have 5508 // returned getUnknown for a select constant expressions anyway. 5509 if (isa<Instruction>(U)) 5510 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5511 U->getOperand(1), U->getOperand(2)); 5512 break; 5513 5514 case Instruction::Call: 5515 case Instruction::Invoke: 5516 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5517 return getSCEV(RV); 5518 break; 5519 } 5520 5521 return getUnknown(V); 5522 } 5523 5524 5525 5526 //===----------------------------------------------------------------------===// 5527 // Iteration Count Computation Code 5528 // 5529 5530 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5531 if (!ExitCount) 5532 return 0; 5533 5534 ConstantInt *ExitConst = ExitCount->getValue(); 5535 5536 // Guard against huge trip counts. 5537 if (ExitConst->getValue().getActiveBits() > 32) 5538 return 0; 5539 5540 // In case of integer overflow, this returns 0, which is correct. 5541 return ((unsigned)ExitConst->getZExtValue()) + 1; 5542 } 5543 5544 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 5545 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5546 return getSmallConstantTripCount(L, ExitingBB); 5547 5548 // No trip count information for multiple exits. 5549 return 0; 5550 } 5551 5552 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 5553 BasicBlock *ExitingBlock) { 5554 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5555 assert(L->isLoopExiting(ExitingBlock) && 5556 "Exiting block must actually branch out of the loop!"); 5557 const SCEVConstant *ExitCount = 5558 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5559 return getConstantTripCount(ExitCount); 5560 } 5561 5562 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 5563 const auto *MaxExitCount = 5564 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5565 return getConstantTripCount(MaxExitCount); 5566 } 5567 5568 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 5569 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5570 return getSmallConstantTripMultiple(L, ExitingBB); 5571 5572 // No trip multiple information for multiple exits. 5573 return 0; 5574 } 5575 5576 /// Returns the largest constant divisor of the trip count of this loop as a 5577 /// normal unsigned value, if possible. This means that the actual trip count is 5578 /// always a multiple of the returned value (don't forget the trip count could 5579 /// very well be zero as well!). 5580 /// 5581 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5582 /// multiple of a constant (which is also the case if the trip count is simply 5583 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5584 /// if the trip count is very large (>= 2^32). 5585 /// 5586 /// As explained in the comments for getSmallConstantTripCount, this assumes 5587 /// that control exits the loop via ExitingBlock. 5588 unsigned 5589 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 5590 BasicBlock *ExitingBlock) { 5591 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5592 assert(L->isLoopExiting(ExitingBlock) && 5593 "Exiting block must actually branch out of the loop!"); 5594 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5595 if (ExitCount == getCouldNotCompute()) 5596 return 1; 5597 5598 // Get the trip count from the BE count by adding 1. 5599 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5600 5601 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 5602 if (!TC) 5603 // Attempt to factor more general cases. Returns the greatest power of 5604 // two divisor. If overflow happens, the trip count expression is still 5605 // divisible by the greatest power of 2 divisor returned. 5606 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 5607 5608 ConstantInt *Result = TC->getValue(); 5609 5610 // Guard against huge trip counts (this requires checking 5611 // for zero to handle the case where the trip count == -1 and the 5612 // addition wraps). 5613 if (!Result || Result->getValue().getActiveBits() > 32 || 5614 Result->getValue().getActiveBits() == 0) 5615 return 1; 5616 5617 return (unsigned)Result->getZExtValue(); 5618 } 5619 5620 /// Get the expression for the number of loop iterations for which this loop is 5621 /// guaranteed not to exit via ExitingBlock. Otherwise return 5622 /// SCEVCouldNotCompute. 5623 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 5624 BasicBlock *ExitingBlock) { 5625 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5626 } 5627 5628 const SCEV * 5629 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5630 SCEVUnionPredicate &Preds) { 5631 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5632 } 5633 5634 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5635 return getBackedgeTakenInfo(L).getExact(this); 5636 } 5637 5638 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5639 /// known never to be less than the actual backedge taken count. 5640 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5641 return getBackedgeTakenInfo(L).getMax(this); 5642 } 5643 5644 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5645 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5646 } 5647 5648 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5649 static void 5650 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5651 BasicBlock *Header = L->getHeader(); 5652 5653 // Push all Loop-header PHIs onto the Worklist stack. 5654 for (BasicBlock::iterator I = Header->begin(); 5655 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5656 Worklist.push_back(PN); 5657 } 5658 5659 const ScalarEvolution::BackedgeTakenInfo & 5660 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5661 auto &BTI = getBackedgeTakenInfo(L); 5662 if (BTI.hasFullInfo()) 5663 return BTI; 5664 5665 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5666 5667 if (!Pair.second) 5668 return Pair.first->second; 5669 5670 BackedgeTakenInfo Result = 5671 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5672 5673 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5674 } 5675 5676 const ScalarEvolution::BackedgeTakenInfo & 5677 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5678 // Initially insert an invalid entry for this loop. If the insertion 5679 // succeeds, proceed to actually compute a backedge-taken count and 5680 // update the value. The temporary CouldNotCompute value tells SCEV 5681 // code elsewhere that it shouldn't attempt to request a new 5682 // backedge-taken count, which could result in infinite recursion. 5683 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5684 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5685 if (!Pair.second) 5686 return Pair.first->second; 5687 5688 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5689 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5690 // must be cleared in this scope. 5691 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5692 5693 if (Result.getExact(this) != getCouldNotCompute()) { 5694 assert(isLoopInvariant(Result.getExact(this), L) && 5695 isLoopInvariant(Result.getMax(this), L) && 5696 "Computed backedge-taken count isn't loop invariant for loop!"); 5697 ++NumTripCountsComputed; 5698 } 5699 else if (Result.getMax(this) == getCouldNotCompute() && 5700 isa<PHINode>(L->getHeader()->begin())) { 5701 // Only count loops that have phi nodes as not being computable. 5702 ++NumTripCountsNotComputed; 5703 } 5704 5705 // Now that we know more about the trip count for this loop, forget any 5706 // existing SCEV values for PHI nodes in this loop since they are only 5707 // conservative estimates made without the benefit of trip count 5708 // information. This is similar to the code in forgetLoop, except that 5709 // it handles SCEVUnknown PHI nodes specially. 5710 if (Result.hasAnyInfo()) { 5711 SmallVector<Instruction *, 16> Worklist; 5712 PushLoopPHIs(L, Worklist); 5713 5714 SmallPtrSet<Instruction *, 8> Visited; 5715 while (!Worklist.empty()) { 5716 Instruction *I = Worklist.pop_back_val(); 5717 if (!Visited.insert(I).second) 5718 continue; 5719 5720 ValueExprMapType::iterator It = 5721 ValueExprMap.find_as(static_cast<Value *>(I)); 5722 if (It != ValueExprMap.end()) { 5723 const SCEV *Old = It->second; 5724 5725 // SCEVUnknown for a PHI either means that it has an unrecognized 5726 // structure, or it's a PHI that's in the progress of being computed 5727 // by createNodeForPHI. In the former case, additional loop trip 5728 // count information isn't going to change anything. In the later 5729 // case, createNodeForPHI will perform the necessary updates on its 5730 // own when it gets to that point. 5731 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5732 eraseValueFromMap(It->first); 5733 forgetMemoizedResults(Old); 5734 } 5735 if (PHINode *PN = dyn_cast<PHINode>(I)) 5736 ConstantEvolutionLoopExitValue.erase(PN); 5737 } 5738 5739 PushDefUseChildren(I, Worklist); 5740 } 5741 } 5742 5743 // Re-lookup the insert position, since the call to 5744 // computeBackedgeTakenCount above could result in a 5745 // recusive call to getBackedgeTakenInfo (on a different 5746 // loop), which would invalidate the iterator computed 5747 // earlier. 5748 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5749 } 5750 5751 void ScalarEvolution::forgetLoop(const Loop *L) { 5752 // Drop any stored trip count value. 5753 auto RemoveLoopFromBackedgeMap = 5754 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5755 auto BTCPos = Map.find(L); 5756 if (BTCPos != Map.end()) { 5757 BTCPos->second.clear(); 5758 Map.erase(BTCPos); 5759 } 5760 }; 5761 5762 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5763 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5764 5765 // Drop information about expressions based on loop-header PHIs. 5766 SmallVector<Instruction *, 16> Worklist; 5767 PushLoopPHIs(L, Worklist); 5768 5769 SmallPtrSet<Instruction *, 8> Visited; 5770 while (!Worklist.empty()) { 5771 Instruction *I = Worklist.pop_back_val(); 5772 if (!Visited.insert(I).second) 5773 continue; 5774 5775 ValueExprMapType::iterator It = 5776 ValueExprMap.find_as(static_cast<Value *>(I)); 5777 if (It != ValueExprMap.end()) { 5778 eraseValueFromMap(It->first); 5779 forgetMemoizedResults(It->second); 5780 if (PHINode *PN = dyn_cast<PHINode>(I)) 5781 ConstantEvolutionLoopExitValue.erase(PN); 5782 } 5783 5784 PushDefUseChildren(I, Worklist); 5785 } 5786 5787 // Forget all contained loops too, to avoid dangling entries in the 5788 // ValuesAtScopes map. 5789 for (Loop *I : *L) 5790 forgetLoop(I); 5791 5792 LoopPropertiesCache.erase(L); 5793 } 5794 5795 void ScalarEvolution::forgetValue(Value *V) { 5796 Instruction *I = dyn_cast<Instruction>(V); 5797 if (!I) return; 5798 5799 // Drop information about expressions based on loop-header PHIs. 5800 SmallVector<Instruction *, 16> Worklist; 5801 Worklist.push_back(I); 5802 5803 SmallPtrSet<Instruction *, 8> Visited; 5804 while (!Worklist.empty()) { 5805 I = Worklist.pop_back_val(); 5806 if (!Visited.insert(I).second) 5807 continue; 5808 5809 ValueExprMapType::iterator It = 5810 ValueExprMap.find_as(static_cast<Value *>(I)); 5811 if (It != ValueExprMap.end()) { 5812 eraseValueFromMap(It->first); 5813 forgetMemoizedResults(It->second); 5814 if (PHINode *PN = dyn_cast<PHINode>(I)) 5815 ConstantEvolutionLoopExitValue.erase(PN); 5816 } 5817 5818 PushDefUseChildren(I, Worklist); 5819 } 5820 } 5821 5822 /// Get the exact loop backedge taken count considering all loop exits. A 5823 /// computable result can only be returned for loops with a single exit. 5824 /// Returning the minimum taken count among all exits is incorrect because one 5825 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5826 /// the limit of each loop test is never skipped. This is a valid assumption as 5827 /// long as the loop exits via that test. For precise results, it is the 5828 /// caller's responsibility to specify the relevant loop exit using 5829 /// getExact(ExitingBlock, SE). 5830 const SCEV * 5831 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5832 SCEVUnionPredicate *Preds) const { 5833 // If any exits were not computable, the loop is not computable. 5834 if (!isComplete() || ExitNotTaken.empty()) 5835 return SE->getCouldNotCompute(); 5836 5837 const SCEV *BECount = nullptr; 5838 for (auto &ENT : ExitNotTaken) { 5839 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5840 5841 if (!BECount) 5842 BECount = ENT.ExactNotTaken; 5843 else if (BECount != ENT.ExactNotTaken) 5844 return SE->getCouldNotCompute(); 5845 if (Preds && !ENT.hasAlwaysTruePredicate()) 5846 Preds->add(ENT.Predicate.get()); 5847 5848 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5849 "Predicate should be always true!"); 5850 } 5851 5852 assert(BECount && "Invalid not taken count for loop exit"); 5853 return BECount; 5854 } 5855 5856 /// Get the exact not taken count for this loop exit. 5857 const SCEV * 5858 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5859 ScalarEvolution *SE) const { 5860 for (auto &ENT : ExitNotTaken) 5861 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5862 return ENT.ExactNotTaken; 5863 5864 return SE->getCouldNotCompute(); 5865 } 5866 5867 /// getMax - Get the max backedge taken count for the loop. 5868 const SCEV * 5869 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5870 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5871 return !ENT.hasAlwaysTruePredicate(); 5872 }; 5873 5874 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5875 return SE->getCouldNotCompute(); 5876 5877 return getMax(); 5878 } 5879 5880 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 5881 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5882 return !ENT.hasAlwaysTruePredicate(); 5883 }; 5884 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 5885 } 5886 5887 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5888 ScalarEvolution *SE) const { 5889 if (getMax() && getMax() != SE->getCouldNotCompute() && 5890 SE->hasOperand(getMax(), S)) 5891 return true; 5892 5893 for (auto &ENT : ExitNotTaken) 5894 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5895 SE->hasOperand(ENT.ExactNotTaken, S)) 5896 return true; 5897 5898 return false; 5899 } 5900 5901 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5902 /// computable exit into a persistent ExitNotTakenInfo array. 5903 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5904 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5905 &&ExitCounts, 5906 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 5907 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 5908 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5909 ExitNotTaken.reserve(ExitCounts.size()); 5910 std::transform( 5911 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5912 [&](const EdgeExitInfo &EEI) { 5913 BasicBlock *ExitBB = EEI.first; 5914 const ExitLimit &EL = EEI.second; 5915 if (EL.Predicates.empty()) 5916 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5917 5918 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 5919 for (auto *Pred : EL.Predicates) 5920 Predicate->add(Pred); 5921 5922 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 5923 }); 5924 } 5925 5926 /// Invalidate this result and free the ExitNotTakenInfo array. 5927 void ScalarEvolution::BackedgeTakenInfo::clear() { 5928 ExitNotTaken.clear(); 5929 } 5930 5931 /// Compute the number of times the backedge of the specified loop will execute. 5932 ScalarEvolution::BackedgeTakenInfo 5933 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5934 bool AllowPredicates) { 5935 SmallVector<BasicBlock *, 8> ExitingBlocks; 5936 L->getExitingBlocks(ExitingBlocks); 5937 5938 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5939 5940 SmallVector<EdgeExitInfo, 4> ExitCounts; 5941 bool CouldComputeBECount = true; 5942 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5943 const SCEV *MustExitMaxBECount = nullptr; 5944 const SCEV *MayExitMaxBECount = nullptr; 5945 bool MustExitMaxOrZero = false; 5946 5947 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5948 // and compute maxBECount. 5949 // Do a union of all the predicates here. 5950 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5951 BasicBlock *ExitBB = ExitingBlocks[i]; 5952 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5953 5954 assert((AllowPredicates || EL.Predicates.empty()) && 5955 "Predicated exit limit when predicates are not allowed!"); 5956 5957 // 1. For each exit that can be computed, add an entry to ExitCounts. 5958 // CouldComputeBECount is true only if all exits can be computed. 5959 if (EL.ExactNotTaken == getCouldNotCompute()) 5960 // We couldn't compute an exact value for this exit, so 5961 // we won't be able to compute an exact value for the loop. 5962 CouldComputeBECount = false; 5963 else 5964 ExitCounts.emplace_back(ExitBB, EL); 5965 5966 // 2. Derive the loop's MaxBECount from each exit's max number of 5967 // non-exiting iterations. Partition the loop exits into two kinds: 5968 // LoopMustExits and LoopMayExits. 5969 // 5970 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5971 // is a LoopMayExit. If any computable LoopMustExit is found, then 5972 // MaxBECount is the minimum EL.MaxNotTaken of computable 5973 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5974 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5975 // computable EL.MaxNotTaken. 5976 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5977 DT.dominates(ExitBB, Latch)) { 5978 if (!MustExitMaxBECount) { 5979 MustExitMaxBECount = EL.MaxNotTaken; 5980 MustExitMaxOrZero = EL.MaxOrZero; 5981 } else { 5982 MustExitMaxBECount = 5983 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5984 } 5985 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5986 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5987 MayExitMaxBECount = EL.MaxNotTaken; 5988 else { 5989 MayExitMaxBECount = 5990 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5991 } 5992 } 5993 } 5994 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5995 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5996 // The loop backedge will be taken the maximum or zero times if there's 5997 // a single exit that must be taken the maximum or zero times. 5998 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 5999 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6000 MaxBECount, MaxOrZero); 6001 } 6002 6003 ScalarEvolution::ExitLimit 6004 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6005 bool AllowPredicates) { 6006 6007 // Okay, we've chosen an exiting block. See what condition causes us to exit 6008 // at this block and remember the exit block and whether all other targets 6009 // lead to the loop header. 6010 bool MustExecuteLoopHeader = true; 6011 BasicBlock *Exit = nullptr; 6012 for (auto *SBB : successors(ExitingBlock)) 6013 if (!L->contains(SBB)) { 6014 if (Exit) // Multiple exit successors. 6015 return getCouldNotCompute(); 6016 Exit = SBB; 6017 } else if (SBB != L->getHeader()) { 6018 MustExecuteLoopHeader = false; 6019 } 6020 6021 // At this point, we know we have a conditional branch that determines whether 6022 // the loop is exited. However, we don't know if the branch is executed each 6023 // time through the loop. If not, then the execution count of the branch will 6024 // not be equal to the trip count of the loop. 6025 // 6026 // Currently we check for this by checking to see if the Exit branch goes to 6027 // the loop header. If so, we know it will always execute the same number of 6028 // times as the loop. We also handle the case where the exit block *is* the 6029 // loop header. This is common for un-rotated loops. 6030 // 6031 // If both of those tests fail, walk up the unique predecessor chain to the 6032 // header, stopping if there is an edge that doesn't exit the loop. If the 6033 // header is reached, the execution count of the branch will be equal to the 6034 // trip count of the loop. 6035 // 6036 // More extensive analysis could be done to handle more cases here. 6037 // 6038 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6039 // The simple checks failed, try climbing the unique predecessor chain 6040 // up to the header. 6041 bool Ok = false; 6042 for (BasicBlock *BB = ExitingBlock; BB; ) { 6043 BasicBlock *Pred = BB->getUniquePredecessor(); 6044 if (!Pred) 6045 return getCouldNotCompute(); 6046 TerminatorInst *PredTerm = Pred->getTerminator(); 6047 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6048 if (PredSucc == BB) 6049 continue; 6050 // If the predecessor has a successor that isn't BB and isn't 6051 // outside the loop, assume the worst. 6052 if (L->contains(PredSucc)) 6053 return getCouldNotCompute(); 6054 } 6055 if (Pred == L->getHeader()) { 6056 Ok = true; 6057 break; 6058 } 6059 BB = Pred; 6060 } 6061 if (!Ok) 6062 return getCouldNotCompute(); 6063 } 6064 6065 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6066 TerminatorInst *Term = ExitingBlock->getTerminator(); 6067 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6068 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6069 // Proceed to the next level to examine the exit condition expression. 6070 return computeExitLimitFromCond( 6071 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 6072 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6073 } 6074 6075 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 6076 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6077 /*ControlsExit=*/IsOnlyExit); 6078 6079 return getCouldNotCompute(); 6080 } 6081 6082 ScalarEvolution::ExitLimit 6083 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 6084 Value *ExitCond, 6085 BasicBlock *TBB, 6086 BasicBlock *FBB, 6087 bool ControlsExit, 6088 bool AllowPredicates) { 6089 // Check if the controlling expression for this loop is an And or Or. 6090 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 6091 if (BO->getOpcode() == Instruction::And) { 6092 // Recurse on the operands of the and. 6093 bool EitherMayExit = L->contains(TBB); 6094 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 6095 ControlsExit && !EitherMayExit, 6096 AllowPredicates); 6097 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 6098 ControlsExit && !EitherMayExit, 6099 AllowPredicates); 6100 const SCEV *BECount = getCouldNotCompute(); 6101 const SCEV *MaxBECount = getCouldNotCompute(); 6102 if (EitherMayExit) { 6103 // Both conditions must be true for the loop to continue executing. 6104 // Choose the less conservative count. 6105 if (EL0.ExactNotTaken == getCouldNotCompute() || 6106 EL1.ExactNotTaken == getCouldNotCompute()) 6107 BECount = getCouldNotCompute(); 6108 else 6109 BECount = 6110 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6111 if (EL0.MaxNotTaken == getCouldNotCompute()) 6112 MaxBECount = EL1.MaxNotTaken; 6113 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6114 MaxBECount = EL0.MaxNotTaken; 6115 else 6116 MaxBECount = 6117 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6118 } else { 6119 // Both conditions must be true at the same time for the loop to exit. 6120 // For now, be conservative. 6121 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6122 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6123 MaxBECount = EL0.MaxNotTaken; 6124 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6125 BECount = EL0.ExactNotTaken; 6126 } 6127 6128 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6129 // to be more aggressive when computing BECount than when computing 6130 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6131 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6132 // to not. 6133 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6134 !isa<SCEVCouldNotCompute>(BECount)) 6135 MaxBECount = BECount; 6136 6137 return ExitLimit(BECount, MaxBECount, false, 6138 {&EL0.Predicates, &EL1.Predicates}); 6139 } 6140 if (BO->getOpcode() == Instruction::Or) { 6141 // Recurse on the operands of the or. 6142 bool EitherMayExit = L->contains(FBB); 6143 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 6144 ControlsExit && !EitherMayExit, 6145 AllowPredicates); 6146 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 6147 ControlsExit && !EitherMayExit, 6148 AllowPredicates); 6149 const SCEV *BECount = getCouldNotCompute(); 6150 const SCEV *MaxBECount = getCouldNotCompute(); 6151 if (EitherMayExit) { 6152 // Both conditions must be false for the loop to continue executing. 6153 // Choose the less conservative count. 6154 if (EL0.ExactNotTaken == getCouldNotCompute() || 6155 EL1.ExactNotTaken == getCouldNotCompute()) 6156 BECount = getCouldNotCompute(); 6157 else 6158 BECount = 6159 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6160 if (EL0.MaxNotTaken == getCouldNotCompute()) 6161 MaxBECount = EL1.MaxNotTaken; 6162 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6163 MaxBECount = EL0.MaxNotTaken; 6164 else 6165 MaxBECount = 6166 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6167 } else { 6168 // Both conditions must be false at the same time for the loop to exit. 6169 // For now, be conservative. 6170 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6171 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6172 MaxBECount = EL0.MaxNotTaken; 6173 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6174 BECount = EL0.ExactNotTaken; 6175 } 6176 6177 return ExitLimit(BECount, MaxBECount, false, 6178 {&EL0.Predicates, &EL1.Predicates}); 6179 } 6180 } 6181 6182 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6183 // Proceed to the next level to examine the icmp. 6184 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6185 ExitLimit EL = 6186 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6187 if (EL.hasFullInfo() || !AllowPredicates) 6188 return EL; 6189 6190 // Try again, but use SCEV predicates this time. 6191 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6192 /*AllowPredicates=*/true); 6193 } 6194 6195 // Check for a constant condition. These are normally stripped out by 6196 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6197 // preserve the CFG and is temporarily leaving constant conditions 6198 // in place. 6199 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6200 if (L->contains(FBB) == !CI->getZExtValue()) 6201 // The backedge is always taken. 6202 return getCouldNotCompute(); 6203 else 6204 // The backedge is never taken. 6205 return getZero(CI->getType()); 6206 } 6207 6208 // If it's not an integer or pointer comparison then compute it the hard way. 6209 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6210 } 6211 6212 ScalarEvolution::ExitLimit 6213 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6214 ICmpInst *ExitCond, 6215 BasicBlock *TBB, 6216 BasicBlock *FBB, 6217 bool ControlsExit, 6218 bool AllowPredicates) { 6219 6220 // If the condition was exit on true, convert the condition to exit on false 6221 ICmpInst::Predicate Cond; 6222 if (!L->contains(FBB)) 6223 Cond = ExitCond->getPredicate(); 6224 else 6225 Cond = ExitCond->getInversePredicate(); 6226 6227 // Handle common loops like: for (X = "string"; *X; ++X) 6228 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6229 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6230 ExitLimit ItCnt = 6231 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6232 if (ItCnt.hasAnyInfo()) 6233 return ItCnt; 6234 } 6235 6236 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6237 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6238 6239 // Try to evaluate any dependencies out of the loop. 6240 LHS = getSCEVAtScope(LHS, L); 6241 RHS = getSCEVAtScope(RHS, L); 6242 6243 // At this point, we would like to compute how many iterations of the 6244 // loop the predicate will return true for these inputs. 6245 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6246 // If there is a loop-invariant, force it into the RHS. 6247 std::swap(LHS, RHS); 6248 Cond = ICmpInst::getSwappedPredicate(Cond); 6249 } 6250 6251 // Simplify the operands before analyzing them. 6252 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6253 6254 // If we have a comparison of a chrec against a constant, try to use value 6255 // ranges to answer this query. 6256 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6257 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6258 if (AddRec->getLoop() == L) { 6259 // Form the constant range. 6260 ConstantRange CompRange = 6261 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6262 6263 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6264 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6265 } 6266 6267 switch (Cond) { 6268 case ICmpInst::ICMP_NE: { // while (X != Y) 6269 // Convert to: while (X-Y != 0) 6270 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6271 AllowPredicates); 6272 if (EL.hasAnyInfo()) return EL; 6273 break; 6274 } 6275 case ICmpInst::ICMP_EQ: { // while (X == Y) 6276 // Convert to: while (X-Y == 0) 6277 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6278 if (EL.hasAnyInfo()) return EL; 6279 break; 6280 } 6281 case ICmpInst::ICMP_SLT: 6282 case ICmpInst::ICMP_ULT: { // while (X < Y) 6283 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6284 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6285 AllowPredicates); 6286 if (EL.hasAnyInfo()) return EL; 6287 break; 6288 } 6289 case ICmpInst::ICMP_SGT: 6290 case ICmpInst::ICMP_UGT: { // while (X > Y) 6291 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6292 ExitLimit EL = 6293 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6294 AllowPredicates); 6295 if (EL.hasAnyInfo()) return EL; 6296 break; 6297 } 6298 default: 6299 break; 6300 } 6301 6302 auto *ExhaustiveCount = 6303 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6304 6305 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6306 return ExhaustiveCount; 6307 6308 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6309 ExitCond->getOperand(1), L, Cond); 6310 } 6311 6312 ScalarEvolution::ExitLimit 6313 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6314 SwitchInst *Switch, 6315 BasicBlock *ExitingBlock, 6316 bool ControlsExit) { 6317 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6318 6319 // Give up if the exit is the default dest of a switch. 6320 if (Switch->getDefaultDest() == ExitingBlock) 6321 return getCouldNotCompute(); 6322 6323 assert(L->contains(Switch->getDefaultDest()) && 6324 "Default case must not exit the loop!"); 6325 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6326 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6327 6328 // while (X != Y) --> while (X-Y != 0) 6329 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6330 if (EL.hasAnyInfo()) 6331 return EL; 6332 6333 return getCouldNotCompute(); 6334 } 6335 6336 static ConstantInt * 6337 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6338 ScalarEvolution &SE) { 6339 const SCEV *InVal = SE.getConstant(C); 6340 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6341 assert(isa<SCEVConstant>(Val) && 6342 "Evaluation of SCEV at constant didn't fold correctly?"); 6343 return cast<SCEVConstant>(Val)->getValue(); 6344 } 6345 6346 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6347 /// compute the backedge execution count. 6348 ScalarEvolution::ExitLimit 6349 ScalarEvolution::computeLoadConstantCompareExitLimit( 6350 LoadInst *LI, 6351 Constant *RHS, 6352 const Loop *L, 6353 ICmpInst::Predicate predicate) { 6354 6355 if (LI->isVolatile()) return getCouldNotCompute(); 6356 6357 // Check to see if the loaded pointer is a getelementptr of a global. 6358 // TODO: Use SCEV instead of manually grubbing with GEPs. 6359 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6360 if (!GEP) return getCouldNotCompute(); 6361 6362 // Make sure that it is really a constant global we are gepping, with an 6363 // initializer, and make sure the first IDX is really 0. 6364 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6365 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6366 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6367 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6368 return getCouldNotCompute(); 6369 6370 // Okay, we allow one non-constant index into the GEP instruction. 6371 Value *VarIdx = nullptr; 6372 std::vector<Constant*> Indexes; 6373 unsigned VarIdxNum = 0; 6374 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6375 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6376 Indexes.push_back(CI); 6377 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6378 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6379 VarIdx = GEP->getOperand(i); 6380 VarIdxNum = i-2; 6381 Indexes.push_back(nullptr); 6382 } 6383 6384 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6385 if (!VarIdx) 6386 return getCouldNotCompute(); 6387 6388 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6389 // Check to see if X is a loop variant variable value now. 6390 const SCEV *Idx = getSCEV(VarIdx); 6391 Idx = getSCEVAtScope(Idx, L); 6392 6393 // We can only recognize very limited forms of loop index expressions, in 6394 // particular, only affine AddRec's like {C1,+,C2}. 6395 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6396 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6397 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6398 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6399 return getCouldNotCompute(); 6400 6401 unsigned MaxSteps = MaxBruteForceIterations; 6402 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6403 ConstantInt *ItCst = ConstantInt::get( 6404 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6405 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6406 6407 // Form the GEP offset. 6408 Indexes[VarIdxNum] = Val; 6409 6410 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6411 Indexes); 6412 if (!Result) break; // Cannot compute! 6413 6414 // Evaluate the condition for this iteration. 6415 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6416 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6417 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6418 ++NumArrayLenItCounts; 6419 return getConstant(ItCst); // Found terminating iteration! 6420 } 6421 } 6422 return getCouldNotCompute(); 6423 } 6424 6425 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6426 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6427 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6428 if (!RHS) 6429 return getCouldNotCompute(); 6430 6431 const BasicBlock *Latch = L->getLoopLatch(); 6432 if (!Latch) 6433 return getCouldNotCompute(); 6434 6435 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6436 if (!Predecessor) 6437 return getCouldNotCompute(); 6438 6439 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6440 // Return LHS in OutLHS and shift_opt in OutOpCode. 6441 auto MatchPositiveShift = 6442 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6443 6444 using namespace PatternMatch; 6445 6446 ConstantInt *ShiftAmt; 6447 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6448 OutOpCode = Instruction::LShr; 6449 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6450 OutOpCode = Instruction::AShr; 6451 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6452 OutOpCode = Instruction::Shl; 6453 else 6454 return false; 6455 6456 return ShiftAmt->getValue().isStrictlyPositive(); 6457 }; 6458 6459 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6460 // 6461 // loop: 6462 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6463 // %iv.shifted = lshr i32 %iv, <positive constant> 6464 // 6465 // Return true on a successful match. Return the corresponding PHI node (%iv 6466 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6467 auto MatchShiftRecurrence = 6468 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6469 Optional<Instruction::BinaryOps> PostShiftOpCode; 6470 6471 { 6472 Instruction::BinaryOps OpC; 6473 Value *V; 6474 6475 // If we encounter a shift instruction, "peel off" the shift operation, 6476 // and remember that we did so. Later when we inspect %iv's backedge 6477 // value, we will make sure that the backedge value uses the same 6478 // operation. 6479 // 6480 // Note: the peeled shift operation does not have to be the same 6481 // instruction as the one feeding into the PHI's backedge value. We only 6482 // really care about it being the same *kind* of shift instruction -- 6483 // that's all that is required for our later inferences to hold. 6484 if (MatchPositiveShift(LHS, V, OpC)) { 6485 PostShiftOpCode = OpC; 6486 LHS = V; 6487 } 6488 } 6489 6490 PNOut = dyn_cast<PHINode>(LHS); 6491 if (!PNOut || PNOut->getParent() != L->getHeader()) 6492 return false; 6493 6494 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6495 Value *OpLHS; 6496 6497 return 6498 // The backedge value for the PHI node must be a shift by a positive 6499 // amount 6500 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6501 6502 // of the PHI node itself 6503 OpLHS == PNOut && 6504 6505 // and the kind of shift should be match the kind of shift we peeled 6506 // off, if any. 6507 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6508 }; 6509 6510 PHINode *PN; 6511 Instruction::BinaryOps OpCode; 6512 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6513 return getCouldNotCompute(); 6514 6515 const DataLayout &DL = getDataLayout(); 6516 6517 // The key rationale for this optimization is that for some kinds of shift 6518 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6519 // within a finite number of iterations. If the condition guarding the 6520 // backedge (in the sense that the backedge is taken if the condition is true) 6521 // is false for the value the shift recurrence stabilizes to, then we know 6522 // that the backedge is taken only a finite number of times. 6523 6524 ConstantInt *StableValue = nullptr; 6525 switch (OpCode) { 6526 default: 6527 llvm_unreachable("Impossible case!"); 6528 6529 case Instruction::AShr: { 6530 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6531 // bitwidth(K) iterations. 6532 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6533 bool KnownZero, KnownOne; 6534 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6535 Predecessor->getTerminator(), &DT); 6536 auto *Ty = cast<IntegerType>(RHS->getType()); 6537 if (KnownZero) 6538 StableValue = ConstantInt::get(Ty, 0); 6539 else if (KnownOne) 6540 StableValue = ConstantInt::get(Ty, -1, true); 6541 else 6542 return getCouldNotCompute(); 6543 6544 break; 6545 } 6546 case Instruction::LShr: 6547 case Instruction::Shl: 6548 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6549 // stabilize to 0 in at most bitwidth(K) iterations. 6550 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6551 break; 6552 } 6553 6554 auto *Result = 6555 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6556 assert(Result->getType()->isIntegerTy(1) && 6557 "Otherwise cannot be an operand to a branch instruction"); 6558 6559 if (Result->isZeroValue()) { 6560 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6561 const SCEV *UpperBound = 6562 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6563 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6564 } 6565 6566 return getCouldNotCompute(); 6567 } 6568 6569 /// Return true if we can constant fold an instruction of the specified type, 6570 /// assuming that all operands were constants. 6571 static bool CanConstantFold(const Instruction *I) { 6572 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6573 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6574 isa<LoadInst>(I)) 6575 return true; 6576 6577 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6578 if (const Function *F = CI->getCalledFunction()) 6579 return canConstantFoldCallTo(F); 6580 return false; 6581 } 6582 6583 /// Determine whether this instruction can constant evolve within this loop 6584 /// assuming its operands can all constant evolve. 6585 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6586 // An instruction outside of the loop can't be derived from a loop PHI. 6587 if (!L->contains(I)) return false; 6588 6589 if (isa<PHINode>(I)) { 6590 // We don't currently keep track of the control flow needed to evaluate 6591 // PHIs, so we cannot handle PHIs inside of loops. 6592 return L->getHeader() == I->getParent(); 6593 } 6594 6595 // If we won't be able to constant fold this expression even if the operands 6596 // are constants, bail early. 6597 return CanConstantFold(I); 6598 } 6599 6600 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6601 /// recursing through each instruction operand until reaching a loop header phi. 6602 static PHINode * 6603 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6604 DenseMap<Instruction *, PHINode *> &PHIMap, 6605 unsigned Depth) { 6606 if (Depth > MaxConstantEvolvingDepth) 6607 return nullptr; 6608 6609 // Otherwise, we can evaluate this instruction if all of its operands are 6610 // constant or derived from a PHI node themselves. 6611 PHINode *PHI = nullptr; 6612 for (Value *Op : UseInst->operands()) { 6613 if (isa<Constant>(Op)) continue; 6614 6615 Instruction *OpInst = dyn_cast<Instruction>(Op); 6616 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6617 6618 PHINode *P = dyn_cast<PHINode>(OpInst); 6619 if (!P) 6620 // If this operand is already visited, reuse the prior result. 6621 // We may have P != PHI if this is the deepest point at which the 6622 // inconsistent paths meet. 6623 P = PHIMap.lookup(OpInst); 6624 if (!P) { 6625 // Recurse and memoize the results, whether a phi is found or not. 6626 // This recursive call invalidates pointers into PHIMap. 6627 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 6628 PHIMap[OpInst] = P; 6629 } 6630 if (!P) 6631 return nullptr; // Not evolving from PHI 6632 if (PHI && PHI != P) 6633 return nullptr; // Evolving from multiple different PHIs. 6634 PHI = P; 6635 } 6636 // This is a expression evolving from a constant PHI! 6637 return PHI; 6638 } 6639 6640 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6641 /// in the loop that V is derived from. We allow arbitrary operations along the 6642 /// way, but the operands of an operation must either be constants or a value 6643 /// derived from a constant PHI. If this expression does not fit with these 6644 /// constraints, return null. 6645 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6646 Instruction *I = dyn_cast<Instruction>(V); 6647 if (!I || !canConstantEvolve(I, L)) return nullptr; 6648 6649 if (PHINode *PN = dyn_cast<PHINode>(I)) 6650 return PN; 6651 6652 // Record non-constant instructions contained by the loop. 6653 DenseMap<Instruction *, PHINode *> PHIMap; 6654 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 6655 } 6656 6657 /// EvaluateExpression - Given an expression that passes the 6658 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6659 /// in the loop has the value PHIVal. If we can't fold this expression for some 6660 /// reason, return null. 6661 static Constant *EvaluateExpression(Value *V, const Loop *L, 6662 DenseMap<Instruction *, Constant *> &Vals, 6663 const DataLayout &DL, 6664 const TargetLibraryInfo *TLI) { 6665 // Convenient constant check, but redundant for recursive calls. 6666 if (Constant *C = dyn_cast<Constant>(V)) return C; 6667 Instruction *I = dyn_cast<Instruction>(V); 6668 if (!I) return nullptr; 6669 6670 if (Constant *C = Vals.lookup(I)) return C; 6671 6672 // An instruction inside the loop depends on a value outside the loop that we 6673 // weren't given a mapping for, or a value such as a call inside the loop. 6674 if (!canConstantEvolve(I, L)) return nullptr; 6675 6676 // An unmapped PHI can be due to a branch or another loop inside this loop, 6677 // or due to this not being the initial iteration through a loop where we 6678 // couldn't compute the evolution of this particular PHI last time. 6679 if (isa<PHINode>(I)) return nullptr; 6680 6681 std::vector<Constant*> Operands(I->getNumOperands()); 6682 6683 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6684 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6685 if (!Operand) { 6686 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6687 if (!Operands[i]) return nullptr; 6688 continue; 6689 } 6690 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6691 Vals[Operand] = C; 6692 if (!C) return nullptr; 6693 Operands[i] = C; 6694 } 6695 6696 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6697 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6698 Operands[1], DL, TLI); 6699 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6700 if (!LI->isVolatile()) 6701 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6702 } 6703 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6704 } 6705 6706 6707 // If every incoming value to PN except the one for BB is a specific Constant, 6708 // return that, else return nullptr. 6709 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6710 Constant *IncomingVal = nullptr; 6711 6712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6713 if (PN->getIncomingBlock(i) == BB) 6714 continue; 6715 6716 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6717 if (!CurrentVal) 6718 return nullptr; 6719 6720 if (IncomingVal != CurrentVal) { 6721 if (IncomingVal) 6722 return nullptr; 6723 IncomingVal = CurrentVal; 6724 } 6725 } 6726 6727 return IncomingVal; 6728 } 6729 6730 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6731 /// in the header of its containing loop, we know the loop executes a 6732 /// constant number of times, and the PHI node is just a recurrence 6733 /// involving constants, fold it. 6734 Constant * 6735 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6736 const APInt &BEs, 6737 const Loop *L) { 6738 auto I = ConstantEvolutionLoopExitValue.find(PN); 6739 if (I != ConstantEvolutionLoopExitValue.end()) 6740 return I->second; 6741 6742 if (BEs.ugt(MaxBruteForceIterations)) 6743 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6744 6745 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6746 6747 DenseMap<Instruction *, Constant *> CurrentIterVals; 6748 BasicBlock *Header = L->getHeader(); 6749 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6750 6751 BasicBlock *Latch = L->getLoopLatch(); 6752 if (!Latch) 6753 return nullptr; 6754 6755 for (auto &I : *Header) { 6756 PHINode *PHI = dyn_cast<PHINode>(&I); 6757 if (!PHI) break; 6758 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6759 if (!StartCST) continue; 6760 CurrentIterVals[PHI] = StartCST; 6761 } 6762 if (!CurrentIterVals.count(PN)) 6763 return RetVal = nullptr; 6764 6765 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6766 6767 // Execute the loop symbolically to determine the exit value. 6768 if (BEs.getActiveBits() >= 32) 6769 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6770 6771 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6772 unsigned IterationNum = 0; 6773 const DataLayout &DL = getDataLayout(); 6774 for (; ; ++IterationNum) { 6775 if (IterationNum == NumIterations) 6776 return RetVal = CurrentIterVals[PN]; // Got exit value! 6777 6778 // Compute the value of the PHIs for the next iteration. 6779 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6780 DenseMap<Instruction *, Constant *> NextIterVals; 6781 Constant *NextPHI = 6782 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6783 if (!NextPHI) 6784 return nullptr; // Couldn't evaluate! 6785 NextIterVals[PN] = NextPHI; 6786 6787 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6788 6789 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6790 // cease to be able to evaluate one of them or if they stop evolving, 6791 // because that doesn't necessarily prevent us from computing PN. 6792 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6793 for (const auto &I : CurrentIterVals) { 6794 PHINode *PHI = dyn_cast<PHINode>(I.first); 6795 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6796 PHIsToCompute.emplace_back(PHI, I.second); 6797 } 6798 // We use two distinct loops because EvaluateExpression may invalidate any 6799 // iterators into CurrentIterVals. 6800 for (const auto &I : PHIsToCompute) { 6801 PHINode *PHI = I.first; 6802 Constant *&NextPHI = NextIterVals[PHI]; 6803 if (!NextPHI) { // Not already computed. 6804 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6805 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6806 } 6807 if (NextPHI != I.second) 6808 StoppedEvolving = false; 6809 } 6810 6811 // If all entries in CurrentIterVals == NextIterVals then we can stop 6812 // iterating, the loop can't continue to change. 6813 if (StoppedEvolving) 6814 return RetVal = CurrentIterVals[PN]; 6815 6816 CurrentIterVals.swap(NextIterVals); 6817 } 6818 } 6819 6820 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6821 Value *Cond, 6822 bool ExitWhen) { 6823 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6824 if (!PN) return getCouldNotCompute(); 6825 6826 // If the loop is canonicalized, the PHI will have exactly two entries. 6827 // That's the only form we support here. 6828 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6829 6830 DenseMap<Instruction *, Constant *> CurrentIterVals; 6831 BasicBlock *Header = L->getHeader(); 6832 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6833 6834 BasicBlock *Latch = L->getLoopLatch(); 6835 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6836 6837 for (auto &I : *Header) { 6838 PHINode *PHI = dyn_cast<PHINode>(&I); 6839 if (!PHI) 6840 break; 6841 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6842 if (!StartCST) continue; 6843 CurrentIterVals[PHI] = StartCST; 6844 } 6845 if (!CurrentIterVals.count(PN)) 6846 return getCouldNotCompute(); 6847 6848 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6849 // the loop symbolically to determine when the condition gets a value of 6850 // "ExitWhen". 6851 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6852 const DataLayout &DL = getDataLayout(); 6853 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6854 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6855 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6856 6857 // Couldn't symbolically evaluate. 6858 if (!CondVal) return getCouldNotCompute(); 6859 6860 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6861 ++NumBruteForceTripCountsComputed; 6862 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6863 } 6864 6865 // Update all the PHI nodes for the next iteration. 6866 DenseMap<Instruction *, Constant *> NextIterVals; 6867 6868 // Create a list of which PHIs we need to compute. We want to do this before 6869 // calling EvaluateExpression on them because that may invalidate iterators 6870 // into CurrentIterVals. 6871 SmallVector<PHINode *, 8> PHIsToCompute; 6872 for (const auto &I : CurrentIterVals) { 6873 PHINode *PHI = dyn_cast<PHINode>(I.first); 6874 if (!PHI || PHI->getParent() != Header) continue; 6875 PHIsToCompute.push_back(PHI); 6876 } 6877 for (PHINode *PHI : PHIsToCompute) { 6878 Constant *&NextPHI = NextIterVals[PHI]; 6879 if (NextPHI) continue; // Already computed! 6880 6881 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6882 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6883 } 6884 CurrentIterVals.swap(NextIterVals); 6885 } 6886 6887 // Too many iterations were needed to evaluate. 6888 return getCouldNotCompute(); 6889 } 6890 6891 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6892 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6893 ValuesAtScopes[V]; 6894 // Check to see if we've folded this expression at this loop before. 6895 for (auto &LS : Values) 6896 if (LS.first == L) 6897 return LS.second ? LS.second : V; 6898 6899 Values.emplace_back(L, nullptr); 6900 6901 // Otherwise compute it. 6902 const SCEV *C = computeSCEVAtScope(V, L); 6903 for (auto &LS : reverse(ValuesAtScopes[V])) 6904 if (LS.first == L) { 6905 LS.second = C; 6906 break; 6907 } 6908 return C; 6909 } 6910 6911 /// This builds up a Constant using the ConstantExpr interface. That way, we 6912 /// will return Constants for objects which aren't represented by a 6913 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6914 /// Returns NULL if the SCEV isn't representable as a Constant. 6915 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6916 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6917 case scCouldNotCompute: 6918 case scAddRecExpr: 6919 break; 6920 case scConstant: 6921 return cast<SCEVConstant>(V)->getValue(); 6922 case scUnknown: 6923 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6924 case scSignExtend: { 6925 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6926 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6927 return ConstantExpr::getSExt(CastOp, SS->getType()); 6928 break; 6929 } 6930 case scZeroExtend: { 6931 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6932 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6933 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6934 break; 6935 } 6936 case scTruncate: { 6937 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6938 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6939 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6940 break; 6941 } 6942 case scAddExpr: { 6943 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6944 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6945 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6946 unsigned AS = PTy->getAddressSpace(); 6947 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6948 C = ConstantExpr::getBitCast(C, DestPtrTy); 6949 } 6950 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6951 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6952 if (!C2) return nullptr; 6953 6954 // First pointer! 6955 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6956 unsigned AS = C2->getType()->getPointerAddressSpace(); 6957 std::swap(C, C2); 6958 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6959 // The offsets have been converted to bytes. We can add bytes to an 6960 // i8* by GEP with the byte count in the first index. 6961 C = ConstantExpr::getBitCast(C, DestPtrTy); 6962 } 6963 6964 // Don't bother trying to sum two pointers. We probably can't 6965 // statically compute a load that results from it anyway. 6966 if (C2->getType()->isPointerTy()) 6967 return nullptr; 6968 6969 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6970 if (PTy->getElementType()->isStructTy()) 6971 C2 = ConstantExpr::getIntegerCast( 6972 C2, Type::getInt32Ty(C->getContext()), true); 6973 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6974 } else 6975 C = ConstantExpr::getAdd(C, C2); 6976 } 6977 return C; 6978 } 6979 break; 6980 } 6981 case scMulExpr: { 6982 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6983 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6984 // Don't bother with pointers at all. 6985 if (C->getType()->isPointerTy()) return nullptr; 6986 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6987 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6988 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6989 C = ConstantExpr::getMul(C, C2); 6990 } 6991 return C; 6992 } 6993 break; 6994 } 6995 case scUDivExpr: { 6996 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6997 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6998 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6999 if (LHS->getType() == RHS->getType()) 7000 return ConstantExpr::getUDiv(LHS, RHS); 7001 break; 7002 } 7003 case scSMaxExpr: 7004 case scUMaxExpr: 7005 break; // TODO: smax, umax. 7006 } 7007 return nullptr; 7008 } 7009 7010 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7011 if (isa<SCEVConstant>(V)) return V; 7012 7013 // If this instruction is evolved from a constant-evolving PHI, compute the 7014 // exit value from the loop without using SCEVs. 7015 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7016 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7017 const Loop *LI = this->LI[I->getParent()]; 7018 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7019 if (PHINode *PN = dyn_cast<PHINode>(I)) 7020 if (PN->getParent() == LI->getHeader()) { 7021 // Okay, there is no closed form solution for the PHI node. Check 7022 // to see if the loop that contains it has a known backedge-taken 7023 // count. If so, we may be able to force computation of the exit 7024 // value. 7025 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7026 if (const SCEVConstant *BTCC = 7027 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7028 // Okay, we know how many times the containing loop executes. If 7029 // this is a constant evolving PHI node, get the final value at 7030 // the specified iteration number. 7031 Constant *RV = 7032 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7033 if (RV) return getSCEV(RV); 7034 } 7035 } 7036 7037 // Okay, this is an expression that we cannot symbolically evaluate 7038 // into a SCEV. Check to see if it's possible to symbolically evaluate 7039 // the arguments into constants, and if so, try to constant propagate the 7040 // result. This is particularly useful for computing loop exit values. 7041 if (CanConstantFold(I)) { 7042 SmallVector<Constant *, 4> Operands; 7043 bool MadeImprovement = false; 7044 for (Value *Op : I->operands()) { 7045 if (Constant *C = dyn_cast<Constant>(Op)) { 7046 Operands.push_back(C); 7047 continue; 7048 } 7049 7050 // If any of the operands is non-constant and if they are 7051 // non-integer and non-pointer, don't even try to analyze them 7052 // with scev techniques. 7053 if (!isSCEVable(Op->getType())) 7054 return V; 7055 7056 const SCEV *OrigV = getSCEV(Op); 7057 const SCEV *OpV = getSCEVAtScope(OrigV, L); 7058 MadeImprovement |= OrigV != OpV; 7059 7060 Constant *C = BuildConstantFromSCEV(OpV); 7061 if (!C) return V; 7062 if (C->getType() != Op->getType()) 7063 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 7064 Op->getType(), 7065 false), 7066 C, Op->getType()); 7067 Operands.push_back(C); 7068 } 7069 7070 // Check to see if getSCEVAtScope actually made an improvement. 7071 if (MadeImprovement) { 7072 Constant *C = nullptr; 7073 const DataLayout &DL = getDataLayout(); 7074 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 7075 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7076 Operands[1], DL, &TLI); 7077 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 7078 if (!LI->isVolatile()) 7079 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7080 } else 7081 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 7082 if (!C) return V; 7083 return getSCEV(C); 7084 } 7085 } 7086 } 7087 7088 // This is some other type of SCEVUnknown, just return it. 7089 return V; 7090 } 7091 7092 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7093 // Avoid performing the look-up in the common case where the specified 7094 // expression has no loop-variant portions. 7095 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7096 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7097 if (OpAtScope != Comm->getOperand(i)) { 7098 // Okay, at least one of these operands is loop variant but might be 7099 // foldable. Build a new instance of the folded commutative expression. 7100 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7101 Comm->op_begin()+i); 7102 NewOps.push_back(OpAtScope); 7103 7104 for (++i; i != e; ++i) { 7105 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7106 NewOps.push_back(OpAtScope); 7107 } 7108 if (isa<SCEVAddExpr>(Comm)) 7109 return getAddExpr(NewOps); 7110 if (isa<SCEVMulExpr>(Comm)) 7111 return getMulExpr(NewOps); 7112 if (isa<SCEVSMaxExpr>(Comm)) 7113 return getSMaxExpr(NewOps); 7114 if (isa<SCEVUMaxExpr>(Comm)) 7115 return getUMaxExpr(NewOps); 7116 llvm_unreachable("Unknown commutative SCEV type!"); 7117 } 7118 } 7119 // If we got here, all operands are loop invariant. 7120 return Comm; 7121 } 7122 7123 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7124 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7125 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7126 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7127 return Div; // must be loop invariant 7128 return getUDivExpr(LHS, RHS); 7129 } 7130 7131 // If this is a loop recurrence for a loop that does not contain L, then we 7132 // are dealing with the final value computed by the loop. 7133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7134 // First, attempt to evaluate each operand. 7135 // Avoid performing the look-up in the common case where the specified 7136 // expression has no loop-variant portions. 7137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7138 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7139 if (OpAtScope == AddRec->getOperand(i)) 7140 continue; 7141 7142 // Okay, at least one of these operands is loop variant but might be 7143 // foldable. Build a new instance of the folded commutative expression. 7144 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7145 AddRec->op_begin()+i); 7146 NewOps.push_back(OpAtScope); 7147 for (++i; i != e; ++i) 7148 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 7149 7150 const SCEV *FoldedRec = 7151 getAddRecExpr(NewOps, AddRec->getLoop(), 7152 AddRec->getNoWrapFlags(SCEV::FlagNW)); 7153 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 7154 // The addrec may be folded to a nonrecurrence, for example, if the 7155 // induction variable is multiplied by zero after constant folding. Go 7156 // ahead and return the folded value. 7157 if (!AddRec) 7158 return FoldedRec; 7159 break; 7160 } 7161 7162 // If the scope is outside the addrec's loop, evaluate it by using the 7163 // loop exit value of the addrec. 7164 if (!AddRec->getLoop()->contains(L)) { 7165 // To evaluate this recurrence, we need to know how many times the AddRec 7166 // loop iterates. Compute this now. 7167 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 7168 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 7169 7170 // Then, evaluate the AddRec. 7171 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7172 } 7173 7174 return AddRec; 7175 } 7176 7177 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7178 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7179 if (Op == Cast->getOperand()) 7180 return Cast; // must be loop invariant 7181 return getZeroExtendExpr(Op, Cast->getType()); 7182 } 7183 7184 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7185 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7186 if (Op == Cast->getOperand()) 7187 return Cast; // must be loop invariant 7188 return getSignExtendExpr(Op, Cast->getType()); 7189 } 7190 7191 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7192 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7193 if (Op == Cast->getOperand()) 7194 return Cast; // must be loop invariant 7195 return getTruncateExpr(Op, Cast->getType()); 7196 } 7197 7198 llvm_unreachable("Unknown SCEV type!"); 7199 } 7200 7201 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7202 return getSCEVAtScope(getSCEV(V), L); 7203 } 7204 7205 /// Finds the minimum unsigned root of the following equation: 7206 /// 7207 /// A * X = B (mod N) 7208 /// 7209 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7210 /// A and B isn't important. 7211 /// 7212 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7213 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 7214 ScalarEvolution &SE) { 7215 uint32_t BW = A.getBitWidth(); 7216 assert(BW == SE.getTypeSizeInBits(B->getType())); 7217 assert(A != 0 && "A must be non-zero."); 7218 7219 // 1. D = gcd(A, N) 7220 // 7221 // The gcd of A and N may have only one prime factor: 2. The number of 7222 // trailing zeros in A is its multiplicity 7223 uint32_t Mult2 = A.countTrailingZeros(); 7224 // D = 2^Mult2 7225 7226 // 2. Check if B is divisible by D. 7227 // 7228 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7229 // is not less than multiplicity of this prime factor for D. 7230 if (SE.GetMinTrailingZeros(B) < Mult2) 7231 return SE.getCouldNotCompute(); 7232 7233 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7234 // modulo (N / D). 7235 // 7236 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7237 // (N / D) in general. The inverse itself always fits into BW bits, though, 7238 // so we immediately truncate it. 7239 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7240 APInt Mod(BW + 1, 0); 7241 Mod.setBit(BW - Mult2); // Mod = N / D 7242 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7243 7244 // 4. Compute the minimum unsigned root of the equation: 7245 // I * (B / D) mod (N / D) 7246 // To simplify the computation, we factor out the divide by D: 7247 // (I * B mod N) / D 7248 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 7249 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 7250 } 7251 7252 /// Find the roots of the quadratic equation for the given quadratic chrec 7253 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7254 /// two SCEVCouldNotCompute objects. 7255 /// 7256 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7257 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7258 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7259 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7260 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7261 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7262 7263 // We currently can only solve this if the coefficients are constants. 7264 if (!LC || !MC || !NC) 7265 return None; 7266 7267 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7268 const APInt &L = LC->getAPInt(); 7269 const APInt &M = MC->getAPInt(); 7270 const APInt &N = NC->getAPInt(); 7271 APInt Two(BitWidth, 2); 7272 APInt Four(BitWidth, 4); 7273 7274 { 7275 using namespace APIntOps; 7276 const APInt& C = L; 7277 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7278 // The B coefficient is M-N/2 7279 APInt B(M); 7280 B -= N.sdiv(Two); 7281 7282 // The A coefficient is N/2 7283 APInt A(N.sdiv(Two)); 7284 7285 // Compute the B^2-4ac term. 7286 APInt SqrtTerm(B); 7287 SqrtTerm *= B; 7288 SqrtTerm -= Four * (A * C); 7289 7290 if (SqrtTerm.isNegative()) { 7291 // The loop is provably infinite. 7292 return None; 7293 } 7294 7295 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7296 // integer value or else APInt::sqrt() will assert. 7297 APInt SqrtVal(SqrtTerm.sqrt()); 7298 7299 // Compute the two solutions for the quadratic formula. 7300 // The divisions must be performed as signed divisions. 7301 APInt NegB(-B); 7302 APInt TwoA(A << 1); 7303 if (TwoA.isMinValue()) 7304 return None; 7305 7306 LLVMContext &Context = SE.getContext(); 7307 7308 ConstantInt *Solution1 = 7309 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7310 ConstantInt *Solution2 = 7311 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7312 7313 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7314 cast<SCEVConstant>(SE.getConstant(Solution2))); 7315 } // end APIntOps namespace 7316 } 7317 7318 ScalarEvolution::ExitLimit 7319 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7320 bool AllowPredicates) { 7321 7322 // This is only used for loops with a "x != y" exit test. The exit condition 7323 // is now expressed as a single expression, V = x-y. So the exit test is 7324 // effectively V != 0. We know and take advantage of the fact that this 7325 // expression only being used in a comparison by zero context. 7326 7327 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7328 // If the value is a constant 7329 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7330 // If the value is already zero, the branch will execute zero times. 7331 if (C->getValue()->isZero()) return C; 7332 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7333 } 7334 7335 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7336 if (!AddRec && AllowPredicates) 7337 // Try to make this an AddRec using runtime tests, in the first X 7338 // iterations of this loop, where X is the SCEV expression found by the 7339 // algorithm below. 7340 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7341 7342 if (!AddRec || AddRec->getLoop() != L) 7343 return getCouldNotCompute(); 7344 7345 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7346 // the quadratic equation to solve it. 7347 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7348 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7349 const SCEVConstant *R1 = Roots->first; 7350 const SCEVConstant *R2 = Roots->second; 7351 // Pick the smallest positive root value. 7352 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7353 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7354 if (!CB->getZExtValue()) 7355 std::swap(R1, R2); // R1 is the minimum root now. 7356 7357 // We can only use this value if the chrec ends up with an exact zero 7358 // value at this index. When solving for "X*X != 5", for example, we 7359 // should not accept a root of 2. 7360 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7361 if (Val->isZero()) 7362 // We found a quadratic root! 7363 return ExitLimit(R1, R1, false, Predicates); 7364 } 7365 } 7366 return getCouldNotCompute(); 7367 } 7368 7369 // Otherwise we can only handle this if it is affine. 7370 if (!AddRec->isAffine()) 7371 return getCouldNotCompute(); 7372 7373 // If this is an affine expression, the execution count of this branch is 7374 // the minimum unsigned root of the following equation: 7375 // 7376 // Start + Step*N = 0 (mod 2^BW) 7377 // 7378 // equivalent to: 7379 // 7380 // Step*N = -Start (mod 2^BW) 7381 // 7382 // where BW is the common bit width of Start and Step. 7383 7384 // Get the initial value for the loop. 7385 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7386 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7387 7388 // For now we handle only constant steps. 7389 // 7390 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7391 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7392 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7393 // We have not yet seen any such cases. 7394 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7395 if (!StepC || StepC->getValue()->equalsInt(0)) 7396 return getCouldNotCompute(); 7397 7398 // For positive steps (counting up until unsigned overflow): 7399 // N = -Start/Step (as unsigned) 7400 // For negative steps (counting down to zero): 7401 // N = Start/-Step 7402 // First compute the unsigned distance from zero in the direction of Step. 7403 bool CountDown = StepC->getAPInt().isNegative(); 7404 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7405 7406 // Handle unitary steps, which cannot wraparound. 7407 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7408 // N = Distance (as unsigned) 7409 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7410 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax(); 7411 7412 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 7413 // we end up with a loop whose backedge-taken count is n - 1. Detect this 7414 // case, and see if we can improve the bound. 7415 // 7416 // Explicitly handling this here is necessary because getUnsignedRange 7417 // isn't context-sensitive; it doesn't know that we only care about the 7418 // range inside the loop. 7419 const SCEV *Zero = getZero(Distance->getType()); 7420 const SCEV *One = getOne(Distance->getType()); 7421 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 7422 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 7423 // If Distance + 1 doesn't overflow, we can compute the maximum distance 7424 // as "unsigned_max(Distance + 1) - 1". 7425 ConstantRange CR = getUnsignedRange(DistancePlusOne); 7426 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 7427 } 7428 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 7429 } 7430 7431 // If the condition controls loop exit (the loop exits only if the expression 7432 // is true) and the addition is no-wrap we can use unsigned divide to 7433 // compute the backedge count. In this case, the step may not divide the 7434 // distance, but we don't care because if the condition is "missed" the loop 7435 // will have undefined behavior due to wrapping. 7436 if (ControlsExit && AddRec->hasNoSelfWrap() && 7437 loopHasNoAbnormalExits(AddRec->getLoop())) { 7438 const SCEV *Exact = 7439 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7440 return ExitLimit(Exact, Exact, false, Predicates); 7441 } 7442 7443 // Solve the general equation. 7444 const SCEV *E = SolveLinEquationWithOverflow( 7445 StepC->getAPInt(), getNegativeSCEV(Start), *this); 7446 return ExitLimit(E, E, false, Predicates); 7447 } 7448 7449 ScalarEvolution::ExitLimit 7450 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7451 // Loops that look like: while (X == 0) are very strange indeed. We don't 7452 // handle them yet except for the trivial case. This could be expanded in the 7453 // future as needed. 7454 7455 // If the value is a constant, check to see if it is known to be non-zero 7456 // already. If so, the backedge will execute zero times. 7457 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7458 if (!C->getValue()->isNullValue()) 7459 return getZero(C->getType()); 7460 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7461 } 7462 7463 // We could implement others, but I really doubt anyone writes loops like 7464 // this, and if they did, they would already be constant folded. 7465 return getCouldNotCompute(); 7466 } 7467 7468 std::pair<BasicBlock *, BasicBlock *> 7469 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7470 // If the block has a unique predecessor, then there is no path from the 7471 // predecessor to the block that does not go through the direct edge 7472 // from the predecessor to the block. 7473 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7474 return {Pred, BB}; 7475 7476 // A loop's header is defined to be a block that dominates the loop. 7477 // If the header has a unique predecessor outside the loop, it must be 7478 // a block that has exactly one successor that can reach the loop. 7479 if (Loop *L = LI.getLoopFor(BB)) 7480 return {L->getLoopPredecessor(), L->getHeader()}; 7481 7482 return {nullptr, nullptr}; 7483 } 7484 7485 /// SCEV structural equivalence is usually sufficient for testing whether two 7486 /// expressions are equal, however for the purposes of looking for a condition 7487 /// guarding a loop, it can be useful to be a little more general, since a 7488 /// front-end may have replicated the controlling expression. 7489 /// 7490 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7491 // Quick check to see if they are the same SCEV. 7492 if (A == B) return true; 7493 7494 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7495 // Not all instructions that are "identical" compute the same value. For 7496 // instance, two distinct alloca instructions allocating the same type are 7497 // identical and do not read memory; but compute distinct values. 7498 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7499 }; 7500 7501 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7502 // two different instructions with the same value. Check for this case. 7503 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7504 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7505 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7506 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7507 if (ComputesEqualValues(AI, BI)) 7508 return true; 7509 7510 // Otherwise assume they may have a different value. 7511 return false; 7512 } 7513 7514 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7515 const SCEV *&LHS, const SCEV *&RHS, 7516 unsigned Depth) { 7517 bool Changed = false; 7518 7519 // If we hit the max recursion limit bail out. 7520 if (Depth >= 3) 7521 return false; 7522 7523 // Canonicalize a constant to the right side. 7524 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7525 // Check for both operands constant. 7526 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7527 if (ConstantExpr::getICmp(Pred, 7528 LHSC->getValue(), 7529 RHSC->getValue())->isNullValue()) 7530 goto trivially_false; 7531 else 7532 goto trivially_true; 7533 } 7534 // Otherwise swap the operands to put the constant on the right. 7535 std::swap(LHS, RHS); 7536 Pred = ICmpInst::getSwappedPredicate(Pred); 7537 Changed = true; 7538 } 7539 7540 // If we're comparing an addrec with a value which is loop-invariant in the 7541 // addrec's loop, put the addrec on the left. Also make a dominance check, 7542 // as both operands could be addrecs loop-invariant in each other's loop. 7543 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7544 const Loop *L = AR->getLoop(); 7545 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7546 std::swap(LHS, RHS); 7547 Pred = ICmpInst::getSwappedPredicate(Pred); 7548 Changed = true; 7549 } 7550 } 7551 7552 // If there's a constant operand, canonicalize comparisons with boundary 7553 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7554 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7555 const APInt &RA = RC->getAPInt(); 7556 7557 bool SimplifiedByConstantRange = false; 7558 7559 if (!ICmpInst::isEquality(Pred)) { 7560 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7561 if (ExactCR.isFullSet()) 7562 goto trivially_true; 7563 else if (ExactCR.isEmptySet()) 7564 goto trivially_false; 7565 7566 APInt NewRHS; 7567 CmpInst::Predicate NewPred; 7568 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7569 ICmpInst::isEquality(NewPred)) { 7570 // We were able to convert an inequality to an equality. 7571 Pred = NewPred; 7572 RHS = getConstant(NewRHS); 7573 Changed = SimplifiedByConstantRange = true; 7574 } 7575 } 7576 7577 if (!SimplifiedByConstantRange) { 7578 switch (Pred) { 7579 default: 7580 break; 7581 case ICmpInst::ICMP_EQ: 7582 case ICmpInst::ICMP_NE: 7583 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7584 if (!RA) 7585 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7586 if (const SCEVMulExpr *ME = 7587 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7588 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7589 ME->getOperand(0)->isAllOnesValue()) { 7590 RHS = AE->getOperand(1); 7591 LHS = ME->getOperand(1); 7592 Changed = true; 7593 } 7594 break; 7595 7596 7597 // The "Should have been caught earlier!" messages refer to the fact 7598 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7599 // should have fired on the corresponding cases, and canonicalized the 7600 // check to trivially_true or trivially_false. 7601 7602 case ICmpInst::ICMP_UGE: 7603 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7604 Pred = ICmpInst::ICMP_UGT; 7605 RHS = getConstant(RA - 1); 7606 Changed = true; 7607 break; 7608 case ICmpInst::ICMP_ULE: 7609 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7610 Pred = ICmpInst::ICMP_ULT; 7611 RHS = getConstant(RA + 1); 7612 Changed = true; 7613 break; 7614 case ICmpInst::ICMP_SGE: 7615 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7616 Pred = ICmpInst::ICMP_SGT; 7617 RHS = getConstant(RA - 1); 7618 Changed = true; 7619 break; 7620 case ICmpInst::ICMP_SLE: 7621 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7622 Pred = ICmpInst::ICMP_SLT; 7623 RHS = getConstant(RA + 1); 7624 Changed = true; 7625 break; 7626 } 7627 } 7628 } 7629 7630 // Check for obvious equality. 7631 if (HasSameValue(LHS, RHS)) { 7632 if (ICmpInst::isTrueWhenEqual(Pred)) 7633 goto trivially_true; 7634 if (ICmpInst::isFalseWhenEqual(Pred)) 7635 goto trivially_false; 7636 } 7637 7638 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7639 // adding or subtracting 1 from one of the operands. 7640 switch (Pred) { 7641 case ICmpInst::ICMP_SLE: 7642 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7643 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7644 SCEV::FlagNSW); 7645 Pred = ICmpInst::ICMP_SLT; 7646 Changed = true; 7647 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7648 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7649 SCEV::FlagNSW); 7650 Pred = ICmpInst::ICMP_SLT; 7651 Changed = true; 7652 } 7653 break; 7654 case ICmpInst::ICMP_SGE: 7655 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7656 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7657 SCEV::FlagNSW); 7658 Pred = ICmpInst::ICMP_SGT; 7659 Changed = true; 7660 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7661 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7662 SCEV::FlagNSW); 7663 Pred = ICmpInst::ICMP_SGT; 7664 Changed = true; 7665 } 7666 break; 7667 case ICmpInst::ICMP_ULE: 7668 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7669 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7670 SCEV::FlagNUW); 7671 Pred = ICmpInst::ICMP_ULT; 7672 Changed = true; 7673 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7674 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7675 Pred = ICmpInst::ICMP_ULT; 7676 Changed = true; 7677 } 7678 break; 7679 case ICmpInst::ICMP_UGE: 7680 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7681 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7682 Pred = ICmpInst::ICMP_UGT; 7683 Changed = true; 7684 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7685 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7686 SCEV::FlagNUW); 7687 Pred = ICmpInst::ICMP_UGT; 7688 Changed = true; 7689 } 7690 break; 7691 default: 7692 break; 7693 } 7694 7695 // TODO: More simplifications are possible here. 7696 7697 // Recursively simplify until we either hit a recursion limit or nothing 7698 // changes. 7699 if (Changed) 7700 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7701 7702 return Changed; 7703 7704 trivially_true: 7705 // Return 0 == 0. 7706 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7707 Pred = ICmpInst::ICMP_EQ; 7708 return true; 7709 7710 trivially_false: 7711 // Return 0 != 0. 7712 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7713 Pred = ICmpInst::ICMP_NE; 7714 return true; 7715 } 7716 7717 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7718 return getSignedRange(S).getSignedMax().isNegative(); 7719 } 7720 7721 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7722 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7723 } 7724 7725 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7726 return !getSignedRange(S).getSignedMin().isNegative(); 7727 } 7728 7729 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7730 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7731 } 7732 7733 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7734 return isKnownNegative(S) || isKnownPositive(S); 7735 } 7736 7737 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7738 const SCEV *LHS, const SCEV *RHS) { 7739 // Canonicalize the inputs first. 7740 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7741 7742 // If LHS or RHS is an addrec, check to see if the condition is true in 7743 // every iteration of the loop. 7744 // If LHS and RHS are both addrec, both conditions must be true in 7745 // every iteration of the loop. 7746 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7747 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7748 bool LeftGuarded = false; 7749 bool RightGuarded = false; 7750 if (LAR) { 7751 const Loop *L = LAR->getLoop(); 7752 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7753 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7754 if (!RAR) return true; 7755 LeftGuarded = true; 7756 } 7757 } 7758 if (RAR) { 7759 const Loop *L = RAR->getLoop(); 7760 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7761 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7762 if (!LAR) return true; 7763 RightGuarded = true; 7764 } 7765 } 7766 if (LeftGuarded && RightGuarded) 7767 return true; 7768 7769 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7770 return true; 7771 7772 // Otherwise see what can be done with known constant ranges. 7773 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7774 } 7775 7776 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7777 ICmpInst::Predicate Pred, 7778 bool &Increasing) { 7779 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7780 7781 #ifndef NDEBUG 7782 // Verify an invariant: inverting the predicate should turn a monotonically 7783 // increasing change to a monotonically decreasing one, and vice versa. 7784 bool IncreasingSwapped; 7785 bool ResultSwapped = isMonotonicPredicateImpl( 7786 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7787 7788 assert(Result == ResultSwapped && "should be able to analyze both!"); 7789 if (ResultSwapped) 7790 assert(Increasing == !IncreasingSwapped && 7791 "monotonicity should flip as we flip the predicate"); 7792 #endif 7793 7794 return Result; 7795 } 7796 7797 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7798 ICmpInst::Predicate Pred, 7799 bool &Increasing) { 7800 7801 // A zero step value for LHS means the induction variable is essentially a 7802 // loop invariant value. We don't really depend on the predicate actually 7803 // flipping from false to true (for increasing predicates, and the other way 7804 // around for decreasing predicates), all we care about is that *if* the 7805 // predicate changes then it only changes from false to true. 7806 // 7807 // A zero step value in itself is not very useful, but there may be places 7808 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7809 // as general as possible. 7810 7811 switch (Pred) { 7812 default: 7813 return false; // Conservative answer 7814 7815 case ICmpInst::ICMP_UGT: 7816 case ICmpInst::ICMP_UGE: 7817 case ICmpInst::ICMP_ULT: 7818 case ICmpInst::ICMP_ULE: 7819 if (!LHS->hasNoUnsignedWrap()) 7820 return false; 7821 7822 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7823 return true; 7824 7825 case ICmpInst::ICMP_SGT: 7826 case ICmpInst::ICMP_SGE: 7827 case ICmpInst::ICMP_SLT: 7828 case ICmpInst::ICMP_SLE: { 7829 if (!LHS->hasNoSignedWrap()) 7830 return false; 7831 7832 const SCEV *Step = LHS->getStepRecurrence(*this); 7833 7834 if (isKnownNonNegative(Step)) { 7835 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7836 return true; 7837 } 7838 7839 if (isKnownNonPositive(Step)) { 7840 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7841 return true; 7842 } 7843 7844 return false; 7845 } 7846 7847 } 7848 7849 llvm_unreachable("switch has default clause!"); 7850 } 7851 7852 bool ScalarEvolution::isLoopInvariantPredicate( 7853 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7854 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7855 const SCEV *&InvariantRHS) { 7856 7857 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7858 if (!isLoopInvariant(RHS, L)) { 7859 if (!isLoopInvariant(LHS, L)) 7860 return false; 7861 7862 std::swap(LHS, RHS); 7863 Pred = ICmpInst::getSwappedPredicate(Pred); 7864 } 7865 7866 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7867 if (!ArLHS || ArLHS->getLoop() != L) 7868 return false; 7869 7870 bool Increasing; 7871 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7872 return false; 7873 7874 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7875 // true as the loop iterates, and the backedge is control dependent on 7876 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7877 // 7878 // * if the predicate was false in the first iteration then the predicate 7879 // is never evaluated again, since the loop exits without taking the 7880 // backedge. 7881 // * if the predicate was true in the first iteration then it will 7882 // continue to be true for all future iterations since it is 7883 // monotonically increasing. 7884 // 7885 // For both the above possibilities, we can replace the loop varying 7886 // predicate with its value on the first iteration of the loop (which is 7887 // loop invariant). 7888 // 7889 // A similar reasoning applies for a monotonically decreasing predicate, by 7890 // replacing true with false and false with true in the above two bullets. 7891 7892 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7893 7894 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7895 return false; 7896 7897 InvariantPred = Pred; 7898 InvariantLHS = ArLHS->getStart(); 7899 InvariantRHS = RHS; 7900 return true; 7901 } 7902 7903 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7904 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7905 if (HasSameValue(LHS, RHS)) 7906 return ICmpInst::isTrueWhenEqual(Pred); 7907 7908 // This code is split out from isKnownPredicate because it is called from 7909 // within isLoopEntryGuardedByCond. 7910 7911 auto CheckRanges = 7912 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7913 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7914 .contains(RangeLHS); 7915 }; 7916 7917 // The check at the top of the function catches the case where the values are 7918 // known to be equal. 7919 if (Pred == CmpInst::ICMP_EQ) 7920 return false; 7921 7922 if (Pred == CmpInst::ICMP_NE) 7923 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7924 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7925 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7926 7927 if (CmpInst::isSigned(Pred)) 7928 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7929 7930 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7931 } 7932 7933 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7934 const SCEV *LHS, 7935 const SCEV *RHS) { 7936 7937 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7938 // Return Y via OutY. 7939 auto MatchBinaryAddToConst = 7940 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7941 SCEV::NoWrapFlags ExpectedFlags) { 7942 const SCEV *NonConstOp, *ConstOp; 7943 SCEV::NoWrapFlags FlagsPresent; 7944 7945 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7946 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7947 return false; 7948 7949 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7950 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7951 }; 7952 7953 APInt C; 7954 7955 switch (Pred) { 7956 default: 7957 break; 7958 7959 case ICmpInst::ICMP_SGE: 7960 std::swap(LHS, RHS); 7961 case ICmpInst::ICMP_SLE: 7962 // X s<= (X + C)<nsw> if C >= 0 7963 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7964 return true; 7965 7966 // (X + C)<nsw> s<= X if C <= 0 7967 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7968 !C.isStrictlyPositive()) 7969 return true; 7970 break; 7971 7972 case ICmpInst::ICMP_SGT: 7973 std::swap(LHS, RHS); 7974 case ICmpInst::ICMP_SLT: 7975 // X s< (X + C)<nsw> if C > 0 7976 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7977 C.isStrictlyPositive()) 7978 return true; 7979 7980 // (X + C)<nsw> s< X if C < 0 7981 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7982 return true; 7983 break; 7984 } 7985 7986 return false; 7987 } 7988 7989 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7990 const SCEV *LHS, 7991 const SCEV *RHS) { 7992 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7993 return false; 7994 7995 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7996 // the stack can result in exponential time complexity. 7997 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7998 7999 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8000 // 8001 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 8002 // isKnownPredicate. isKnownPredicate is more powerful, but also more 8003 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 8004 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 8005 // use isKnownPredicate later if needed. 8006 return isKnownNonNegative(RHS) && 8007 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 8008 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 8009 } 8010 8011 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 8012 ICmpInst::Predicate Pred, 8013 const SCEV *LHS, const SCEV *RHS) { 8014 // No need to even try if we know the module has no guards. 8015 if (!HasGuards) 8016 return false; 8017 8018 return any_of(*BB, [&](Instruction &I) { 8019 using namespace llvm::PatternMatch; 8020 8021 Value *Condition; 8022 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 8023 m_Value(Condition))) && 8024 isImpliedCond(Pred, LHS, RHS, Condition, false); 8025 }); 8026 } 8027 8028 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 8029 /// protected by a conditional between LHS and RHS. This is used to 8030 /// to eliminate casts. 8031 bool 8032 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 8033 ICmpInst::Predicate Pred, 8034 const SCEV *LHS, const SCEV *RHS) { 8035 // Interpret a null as meaning no loop, where there is obviously no guard 8036 // (interprocedural conditions notwithstanding). 8037 if (!L) return true; 8038 8039 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8040 return true; 8041 8042 BasicBlock *Latch = L->getLoopLatch(); 8043 if (!Latch) 8044 return false; 8045 8046 BranchInst *LoopContinuePredicate = 8047 dyn_cast<BranchInst>(Latch->getTerminator()); 8048 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8049 isImpliedCond(Pred, LHS, RHS, 8050 LoopContinuePredicate->getCondition(), 8051 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8052 return true; 8053 8054 // We don't want more than one activation of the following loops on the stack 8055 // -- that can lead to O(n!) time complexity. 8056 if (WalkingBEDominatingConds) 8057 return false; 8058 8059 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8060 8061 // See if we can exploit a trip count to prove the predicate. 8062 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8063 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8064 if (LatchBECount != getCouldNotCompute()) { 8065 // We know that Latch branches back to the loop header exactly 8066 // LatchBECount times. This means the backdege condition at Latch is 8067 // equivalent to "{0,+,1} u< LatchBECount". 8068 Type *Ty = LatchBECount->getType(); 8069 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8070 const SCEV *LoopCounter = 8071 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8072 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8073 LatchBECount)) 8074 return true; 8075 } 8076 8077 // Check conditions due to any @llvm.assume intrinsics. 8078 for (auto &AssumeVH : AC.assumptions()) { 8079 if (!AssumeVH) 8080 continue; 8081 auto *CI = cast<CallInst>(AssumeVH); 8082 if (!DT.dominates(CI, Latch->getTerminator())) 8083 continue; 8084 8085 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8086 return true; 8087 } 8088 8089 // If the loop is not reachable from the entry block, we risk running into an 8090 // infinite loop as we walk up into the dom tree. These loops do not matter 8091 // anyway, so we just return a conservative answer when we see them. 8092 if (!DT.isReachableFromEntry(L->getHeader())) 8093 return false; 8094 8095 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8096 return true; 8097 8098 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8099 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8100 8101 assert(DTN && "should reach the loop header before reaching the root!"); 8102 8103 BasicBlock *BB = DTN->getBlock(); 8104 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8105 return true; 8106 8107 BasicBlock *PBB = BB->getSinglePredecessor(); 8108 if (!PBB) 8109 continue; 8110 8111 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8112 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8113 continue; 8114 8115 Value *Condition = ContinuePredicate->getCondition(); 8116 8117 // If we have an edge `E` within the loop body that dominates the only 8118 // latch, the condition guarding `E` also guards the backedge. This 8119 // reasoning works only for loops with a single latch. 8120 8121 BasicBlockEdge DominatingEdge(PBB, BB); 8122 if (DominatingEdge.isSingleEdge()) { 8123 // We're constructively (and conservatively) enumerating edges within the 8124 // loop body that dominate the latch. The dominator tree better agree 8125 // with us on this: 8126 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8127 8128 if (isImpliedCond(Pred, LHS, RHS, Condition, 8129 BB != ContinuePredicate->getSuccessor(0))) 8130 return true; 8131 } 8132 } 8133 8134 return false; 8135 } 8136 8137 bool 8138 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8139 ICmpInst::Predicate Pred, 8140 const SCEV *LHS, const SCEV *RHS) { 8141 // Interpret a null as meaning no loop, where there is obviously no guard 8142 // (interprocedural conditions notwithstanding). 8143 if (!L) return false; 8144 8145 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8146 return true; 8147 8148 // Starting at the loop predecessor, climb up the predecessor chain, as long 8149 // as there are predecessors that can be found that have unique successors 8150 // leading to the original header. 8151 for (std::pair<BasicBlock *, BasicBlock *> 8152 Pair(L->getLoopPredecessor(), L->getHeader()); 8153 Pair.first; 8154 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8155 8156 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8157 return true; 8158 8159 BranchInst *LoopEntryPredicate = 8160 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8161 if (!LoopEntryPredicate || 8162 LoopEntryPredicate->isUnconditional()) 8163 continue; 8164 8165 if (isImpliedCond(Pred, LHS, RHS, 8166 LoopEntryPredicate->getCondition(), 8167 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8168 return true; 8169 } 8170 8171 // Check conditions due to any @llvm.assume intrinsics. 8172 for (auto &AssumeVH : AC.assumptions()) { 8173 if (!AssumeVH) 8174 continue; 8175 auto *CI = cast<CallInst>(AssumeVH); 8176 if (!DT.dominates(CI, L->getHeader())) 8177 continue; 8178 8179 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8180 return true; 8181 } 8182 8183 return false; 8184 } 8185 8186 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8187 const SCEV *LHS, const SCEV *RHS, 8188 Value *FoundCondValue, 8189 bool Inverse) { 8190 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8191 return false; 8192 8193 auto ClearOnExit = 8194 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8195 8196 // Recursively handle And and Or conditions. 8197 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8198 if (BO->getOpcode() == Instruction::And) { 8199 if (!Inverse) 8200 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8201 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8202 } else if (BO->getOpcode() == Instruction::Or) { 8203 if (Inverse) 8204 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8205 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8206 } 8207 } 8208 8209 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8210 if (!ICI) return false; 8211 8212 // Now that we found a conditional branch that dominates the loop or controls 8213 // the loop latch. Check to see if it is the comparison we are looking for. 8214 ICmpInst::Predicate FoundPred; 8215 if (Inverse) 8216 FoundPred = ICI->getInversePredicate(); 8217 else 8218 FoundPred = ICI->getPredicate(); 8219 8220 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8221 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8222 8223 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8224 } 8225 8226 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8227 const SCEV *RHS, 8228 ICmpInst::Predicate FoundPred, 8229 const SCEV *FoundLHS, 8230 const SCEV *FoundRHS) { 8231 // Balance the types. 8232 if (getTypeSizeInBits(LHS->getType()) < 8233 getTypeSizeInBits(FoundLHS->getType())) { 8234 if (CmpInst::isSigned(Pred)) { 8235 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8236 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8237 } else { 8238 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8239 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8240 } 8241 } else if (getTypeSizeInBits(LHS->getType()) > 8242 getTypeSizeInBits(FoundLHS->getType())) { 8243 if (CmpInst::isSigned(FoundPred)) { 8244 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8245 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8246 } else { 8247 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8248 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8249 } 8250 } 8251 8252 // Canonicalize the query to match the way instcombine will have 8253 // canonicalized the comparison. 8254 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8255 if (LHS == RHS) 8256 return CmpInst::isTrueWhenEqual(Pred); 8257 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8258 if (FoundLHS == FoundRHS) 8259 return CmpInst::isFalseWhenEqual(FoundPred); 8260 8261 // Check to see if we can make the LHS or RHS match. 8262 if (LHS == FoundRHS || RHS == FoundLHS) { 8263 if (isa<SCEVConstant>(RHS)) { 8264 std::swap(FoundLHS, FoundRHS); 8265 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8266 } else { 8267 std::swap(LHS, RHS); 8268 Pred = ICmpInst::getSwappedPredicate(Pred); 8269 } 8270 } 8271 8272 // Check whether the found predicate is the same as the desired predicate. 8273 if (FoundPred == Pred) 8274 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8275 8276 // Check whether swapping the found predicate makes it the same as the 8277 // desired predicate. 8278 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8279 if (isa<SCEVConstant>(RHS)) 8280 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8281 else 8282 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8283 RHS, LHS, FoundLHS, FoundRHS); 8284 } 8285 8286 // Unsigned comparison is the same as signed comparison when both the operands 8287 // are non-negative. 8288 if (CmpInst::isUnsigned(FoundPred) && 8289 CmpInst::getSignedPredicate(FoundPred) == Pred && 8290 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8291 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8292 8293 // Check if we can make progress by sharpening ranges. 8294 if (FoundPred == ICmpInst::ICMP_NE && 8295 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8296 8297 const SCEVConstant *C = nullptr; 8298 const SCEV *V = nullptr; 8299 8300 if (isa<SCEVConstant>(FoundLHS)) { 8301 C = cast<SCEVConstant>(FoundLHS); 8302 V = FoundRHS; 8303 } else { 8304 C = cast<SCEVConstant>(FoundRHS); 8305 V = FoundLHS; 8306 } 8307 8308 // The guarding predicate tells us that C != V. If the known range 8309 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8310 // range we consider has to correspond to same signedness as the 8311 // predicate we're interested in folding. 8312 8313 APInt Min = ICmpInst::isSigned(Pred) ? 8314 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8315 8316 if (Min == C->getAPInt()) { 8317 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8318 // This is true even if (Min + 1) wraps around -- in case of 8319 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8320 8321 APInt SharperMin = Min + 1; 8322 8323 switch (Pred) { 8324 case ICmpInst::ICMP_SGE: 8325 case ICmpInst::ICMP_UGE: 8326 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8327 // RHS, we're done. 8328 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8329 getConstant(SharperMin))) 8330 return true; 8331 8332 case ICmpInst::ICMP_SGT: 8333 case ICmpInst::ICMP_UGT: 8334 // We know from the range information that (V `Pred` Min || 8335 // V == Min). We know from the guarding condition that !(V 8336 // == Min). This gives us 8337 // 8338 // V `Pred` Min || V == Min && !(V == Min) 8339 // => V `Pred` Min 8340 // 8341 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8342 8343 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8344 return true; 8345 8346 default: 8347 // No change 8348 break; 8349 } 8350 } 8351 } 8352 8353 // Check whether the actual condition is beyond sufficient. 8354 if (FoundPred == ICmpInst::ICMP_EQ) 8355 if (ICmpInst::isTrueWhenEqual(Pred)) 8356 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8357 return true; 8358 if (Pred == ICmpInst::ICMP_NE) 8359 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8360 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8361 return true; 8362 8363 // Otherwise assume the worst. 8364 return false; 8365 } 8366 8367 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8368 const SCEV *&L, const SCEV *&R, 8369 SCEV::NoWrapFlags &Flags) { 8370 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8371 if (!AE || AE->getNumOperands() != 2) 8372 return false; 8373 8374 L = AE->getOperand(0); 8375 R = AE->getOperand(1); 8376 Flags = AE->getNoWrapFlags(); 8377 return true; 8378 } 8379 8380 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8381 const SCEV *Less) { 8382 // We avoid subtracting expressions here because this function is usually 8383 // fairly deep in the call stack (i.e. is called many times). 8384 8385 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8386 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8387 const auto *MAR = cast<SCEVAddRecExpr>(More); 8388 8389 if (LAR->getLoop() != MAR->getLoop()) 8390 return None; 8391 8392 // We look at affine expressions only; not for correctness but to keep 8393 // getStepRecurrence cheap. 8394 if (!LAR->isAffine() || !MAR->isAffine()) 8395 return None; 8396 8397 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8398 return None; 8399 8400 Less = LAR->getStart(); 8401 More = MAR->getStart(); 8402 8403 // fall through 8404 } 8405 8406 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8407 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8408 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8409 return M - L; 8410 } 8411 8412 const SCEV *L, *R; 8413 SCEV::NoWrapFlags Flags; 8414 if (splitBinaryAdd(Less, L, R, Flags)) 8415 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8416 if (R == More) 8417 return -(LC->getAPInt()); 8418 8419 if (splitBinaryAdd(More, L, R, Flags)) 8420 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8421 if (R == Less) 8422 return LC->getAPInt(); 8423 8424 return None; 8425 } 8426 8427 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8428 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8429 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8430 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8431 return false; 8432 8433 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8434 if (!AddRecLHS) 8435 return false; 8436 8437 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8438 if (!AddRecFoundLHS) 8439 return false; 8440 8441 // We'd like to let SCEV reason about control dependencies, so we constrain 8442 // both the inequalities to be about add recurrences on the same loop. This 8443 // way we can use isLoopEntryGuardedByCond later. 8444 8445 const Loop *L = AddRecFoundLHS->getLoop(); 8446 if (L != AddRecLHS->getLoop()) 8447 return false; 8448 8449 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8450 // 8451 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8452 // ... (2) 8453 // 8454 // Informal proof for (2), assuming (1) [*]: 8455 // 8456 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8457 // 8458 // Then 8459 // 8460 // FoundLHS s< FoundRHS s< INT_MIN - C 8461 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8462 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8463 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8464 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8465 // <=> FoundLHS + C s< FoundRHS + C 8466 // 8467 // [*]: (1) can be proved by ruling out overflow. 8468 // 8469 // [**]: This can be proved by analyzing all the four possibilities: 8470 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8471 // (A s>= 0, B s>= 0). 8472 // 8473 // Note: 8474 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8475 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8476 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8477 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8478 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8479 // C)". 8480 8481 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8482 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8483 if (!LDiff || !RDiff || *LDiff != *RDiff) 8484 return false; 8485 8486 if (LDiff->isMinValue()) 8487 return true; 8488 8489 APInt FoundRHSLimit; 8490 8491 if (Pred == CmpInst::ICMP_ULT) { 8492 FoundRHSLimit = -(*RDiff); 8493 } else { 8494 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8495 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8496 } 8497 8498 // Try to prove (1) or (2), as needed. 8499 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8500 getConstant(FoundRHSLimit)); 8501 } 8502 8503 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8504 const SCEV *LHS, const SCEV *RHS, 8505 const SCEV *FoundLHS, 8506 const SCEV *FoundRHS) { 8507 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8508 return true; 8509 8510 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8511 return true; 8512 8513 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8514 FoundLHS, FoundRHS) || 8515 // ~x < ~y --> x > y 8516 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8517 getNotSCEV(FoundRHS), 8518 getNotSCEV(FoundLHS)); 8519 } 8520 8521 8522 /// If Expr computes ~A, return A else return nullptr 8523 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8524 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8525 if (!Add || Add->getNumOperands() != 2 || 8526 !Add->getOperand(0)->isAllOnesValue()) 8527 return nullptr; 8528 8529 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8530 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8531 !AddRHS->getOperand(0)->isAllOnesValue()) 8532 return nullptr; 8533 8534 return AddRHS->getOperand(1); 8535 } 8536 8537 8538 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8539 template<typename MaxExprType> 8540 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8541 const SCEV *Candidate) { 8542 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8543 if (!MaxExpr) return false; 8544 8545 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8546 } 8547 8548 8549 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8550 template<typename MaxExprType> 8551 static bool IsMinConsistingOf(ScalarEvolution &SE, 8552 const SCEV *MaybeMinExpr, 8553 const SCEV *Candidate) { 8554 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8555 if (!MaybeMaxExpr) 8556 return false; 8557 8558 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8559 } 8560 8561 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8562 ICmpInst::Predicate Pred, 8563 const SCEV *LHS, const SCEV *RHS) { 8564 8565 // If both sides are affine addrecs for the same loop, with equal 8566 // steps, and we know the recurrences don't wrap, then we only 8567 // need to check the predicate on the starting values. 8568 8569 if (!ICmpInst::isRelational(Pred)) 8570 return false; 8571 8572 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8573 if (!LAR) 8574 return false; 8575 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8576 if (!RAR) 8577 return false; 8578 if (LAR->getLoop() != RAR->getLoop()) 8579 return false; 8580 if (!LAR->isAffine() || !RAR->isAffine()) 8581 return false; 8582 8583 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8584 return false; 8585 8586 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8587 SCEV::FlagNSW : SCEV::FlagNUW; 8588 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8589 return false; 8590 8591 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8592 } 8593 8594 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8595 /// expression? 8596 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8597 ICmpInst::Predicate Pred, 8598 const SCEV *LHS, const SCEV *RHS) { 8599 switch (Pred) { 8600 default: 8601 return false; 8602 8603 case ICmpInst::ICMP_SGE: 8604 std::swap(LHS, RHS); 8605 LLVM_FALLTHROUGH; 8606 case ICmpInst::ICMP_SLE: 8607 return 8608 // min(A, ...) <= A 8609 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8610 // A <= max(A, ...) 8611 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8612 8613 case ICmpInst::ICMP_UGE: 8614 std::swap(LHS, RHS); 8615 LLVM_FALLTHROUGH; 8616 case ICmpInst::ICMP_ULE: 8617 return 8618 // min(A, ...) <= A 8619 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8620 // A <= max(A, ...) 8621 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8622 } 8623 8624 llvm_unreachable("covered switch fell through?!"); 8625 } 8626 8627 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 8628 const SCEV *LHS, const SCEV *RHS, 8629 const SCEV *FoundLHS, 8630 const SCEV *FoundRHS, 8631 unsigned Depth) { 8632 assert(getTypeSizeInBits(LHS->getType()) == 8633 getTypeSizeInBits(RHS->getType()) && 8634 "LHS and RHS have different sizes?"); 8635 assert(getTypeSizeInBits(FoundLHS->getType()) == 8636 getTypeSizeInBits(FoundRHS->getType()) && 8637 "FoundLHS and FoundRHS have different sizes?"); 8638 // We want to avoid hurting the compile time with analysis of too big trees. 8639 if (Depth > MaxSCEVOperationsImplicationDepth) 8640 return false; 8641 // We only want to work with ICMP_SGT comparison so far. 8642 // TODO: Extend to ICMP_UGT? 8643 if (Pred == ICmpInst::ICMP_SLT) { 8644 Pred = ICmpInst::ICMP_SGT; 8645 std::swap(LHS, RHS); 8646 std::swap(FoundLHS, FoundRHS); 8647 } 8648 if (Pred != ICmpInst::ICMP_SGT) 8649 return false; 8650 8651 auto GetOpFromSExt = [&](const SCEV *S) { 8652 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 8653 return Ext->getOperand(); 8654 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 8655 // the constant in some cases. 8656 return S; 8657 }; 8658 8659 // Acquire values from extensions. 8660 auto *OrigFoundLHS = FoundLHS; 8661 LHS = GetOpFromSExt(LHS); 8662 FoundLHS = GetOpFromSExt(FoundLHS); 8663 8664 // Is the SGT predicate can be proved trivially or using the found context. 8665 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 8666 return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) || 8667 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 8668 FoundRHS, Depth + 1); 8669 }; 8670 8671 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 8672 // We want to avoid creation of any new non-constant SCEV. Since we are 8673 // going to compare the operands to RHS, we should be certain that we don't 8674 // need any size extensions for this. So let's decline all cases when the 8675 // sizes of types of LHS and RHS do not match. 8676 // TODO: Maybe try to get RHS from sext to catch more cases? 8677 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 8678 return false; 8679 8680 // Should not overflow. 8681 if (!LHSAddExpr->hasNoSignedWrap()) 8682 return false; 8683 8684 auto *LL = LHSAddExpr->getOperand(0); 8685 auto *LR = LHSAddExpr->getOperand(1); 8686 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 8687 8688 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 8689 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 8690 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 8691 }; 8692 // Try to prove the following rule: 8693 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 8694 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 8695 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 8696 return true; 8697 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 8698 Value *LL, *LR; 8699 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 8700 using namespace llvm::PatternMatch; 8701 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 8702 // Rules for division. 8703 // We are going to perform some comparisons with Denominator and its 8704 // derivative expressions. In general case, creating a SCEV for it may 8705 // lead to a complex analysis of the entire graph, and in particular it 8706 // can request trip count recalculation for the same loop. This would 8707 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 8708 // this, we only want to create SCEVs that are constants in this section. 8709 // So we bail if Denominator is not a constant. 8710 if (!isa<ConstantInt>(LR)) 8711 return false; 8712 8713 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 8714 8715 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 8716 // then a SCEV for the numerator already exists and matches with FoundLHS. 8717 auto *Numerator = getExistingSCEV(LL); 8718 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 8719 return false; 8720 8721 // Make sure that the numerator matches with FoundLHS and the denominator 8722 // is positive. 8723 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 8724 return false; 8725 8726 auto *DTy = Denominator->getType(); 8727 auto *FRHSTy = FoundRHS->getType(); 8728 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 8729 // One of types is a pointer and another one is not. We cannot extend 8730 // them properly to a wider type, so let us just reject this case. 8731 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 8732 // to avoid this check. 8733 return false; 8734 8735 // Given that: 8736 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 8737 auto *WTy = getWiderType(DTy, FRHSTy); 8738 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 8739 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 8740 8741 // Try to prove the following rule: 8742 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 8743 // For example, given that FoundLHS > 2. It means that FoundLHS is at 8744 // least 3. If we divide it by Denominator < 4, we will have at least 1. 8745 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 8746 if (isKnownNonPositive(RHS) && 8747 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 8748 return true; 8749 8750 // Try to prove the following rule: 8751 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 8752 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 8753 // If we divide it by Denominator > 2, then: 8754 // 1. If FoundLHS is negative, then the result is 0. 8755 // 2. If FoundLHS is non-negative, then the result is non-negative. 8756 // Anyways, the result is non-negative. 8757 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 8758 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 8759 if (isKnownNegative(RHS) && 8760 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 8761 return true; 8762 } 8763 } 8764 8765 return false; 8766 } 8767 8768 bool 8769 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred, 8770 const SCEV *LHS, const SCEV *RHS) { 8771 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8772 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8773 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8774 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8775 } 8776 8777 bool 8778 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8779 const SCEV *LHS, const SCEV *RHS, 8780 const SCEV *FoundLHS, 8781 const SCEV *FoundRHS) { 8782 switch (Pred) { 8783 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8784 case ICmpInst::ICMP_EQ: 8785 case ICmpInst::ICMP_NE: 8786 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8787 return true; 8788 break; 8789 case ICmpInst::ICMP_SLT: 8790 case ICmpInst::ICMP_SLE: 8791 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8792 isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8793 return true; 8794 break; 8795 case ICmpInst::ICMP_SGT: 8796 case ICmpInst::ICMP_SGE: 8797 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8798 isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8799 return true; 8800 break; 8801 case ICmpInst::ICMP_ULT: 8802 case ICmpInst::ICMP_ULE: 8803 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8804 isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8805 return true; 8806 break; 8807 case ICmpInst::ICMP_UGT: 8808 case ICmpInst::ICMP_UGE: 8809 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8810 isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8811 return true; 8812 break; 8813 } 8814 8815 // Maybe it can be proved via operations? 8816 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8817 return true; 8818 8819 return false; 8820 } 8821 8822 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8823 const SCEV *LHS, 8824 const SCEV *RHS, 8825 const SCEV *FoundLHS, 8826 const SCEV *FoundRHS) { 8827 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8828 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8829 // reduce the compile time impact of this optimization. 8830 return false; 8831 8832 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8833 if (!Addend) 8834 return false; 8835 8836 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8837 8838 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8839 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8840 ConstantRange FoundLHSRange = 8841 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8842 8843 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8844 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8845 8846 // We can also compute the range of values for `LHS` that satisfy the 8847 // consequent, "`LHS` `Pred` `RHS`": 8848 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8849 ConstantRange SatisfyingLHSRange = 8850 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8851 8852 // The antecedent implies the consequent if every value of `LHS` that 8853 // satisfies the antecedent also satisfies the consequent. 8854 return SatisfyingLHSRange.contains(LHSRange); 8855 } 8856 8857 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8858 bool IsSigned, bool NoWrap) { 8859 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8860 8861 if (NoWrap) return false; 8862 8863 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8864 const SCEV *One = getOne(Stride->getType()); 8865 8866 if (IsSigned) { 8867 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8868 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8869 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8870 .getSignedMax(); 8871 8872 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8873 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8874 } 8875 8876 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8877 APInt MaxValue = APInt::getMaxValue(BitWidth); 8878 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8879 .getUnsignedMax(); 8880 8881 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8882 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8883 } 8884 8885 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8886 bool IsSigned, bool NoWrap) { 8887 if (NoWrap) return false; 8888 8889 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8890 const SCEV *One = getOne(Stride->getType()); 8891 8892 if (IsSigned) { 8893 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8894 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8895 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8896 .getSignedMax(); 8897 8898 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8899 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8900 } 8901 8902 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8903 APInt MinValue = APInt::getMinValue(BitWidth); 8904 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8905 .getUnsignedMax(); 8906 8907 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8908 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8909 } 8910 8911 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8912 bool Equality) { 8913 const SCEV *One = getOne(Step->getType()); 8914 Delta = Equality ? getAddExpr(Delta, Step) 8915 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8916 return getUDivExpr(Delta, Step); 8917 } 8918 8919 ScalarEvolution::ExitLimit 8920 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8921 const Loop *L, bool IsSigned, 8922 bool ControlsExit, bool AllowPredicates) { 8923 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8924 // We handle only IV < Invariant 8925 if (!isLoopInvariant(RHS, L)) 8926 return getCouldNotCompute(); 8927 8928 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8929 bool PredicatedIV = false; 8930 8931 if (!IV && AllowPredicates) { 8932 // Try to make this an AddRec using runtime tests, in the first X 8933 // iterations of this loop, where X is the SCEV expression found by the 8934 // algorithm below. 8935 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8936 PredicatedIV = true; 8937 } 8938 8939 // Avoid weird loops 8940 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8941 return getCouldNotCompute(); 8942 8943 bool NoWrap = ControlsExit && 8944 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8945 8946 const SCEV *Stride = IV->getStepRecurrence(*this); 8947 8948 bool PositiveStride = isKnownPositive(Stride); 8949 8950 // Avoid negative or zero stride values. 8951 if (!PositiveStride) { 8952 // We can compute the correct backedge taken count for loops with unknown 8953 // strides if we can prove that the loop is not an infinite loop with side 8954 // effects. Here's the loop structure we are trying to handle - 8955 // 8956 // i = start 8957 // do { 8958 // A[i] = i; 8959 // i += s; 8960 // } while (i < end); 8961 // 8962 // The backedge taken count for such loops is evaluated as - 8963 // (max(end, start + stride) - start - 1) /u stride 8964 // 8965 // The additional preconditions that we need to check to prove correctness 8966 // of the above formula is as follows - 8967 // 8968 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8969 // NoWrap flag). 8970 // b) loop is single exit with no side effects. 8971 // 8972 // 8973 // Precondition a) implies that if the stride is negative, this is a single 8974 // trip loop. The backedge taken count formula reduces to zero in this case. 8975 // 8976 // Precondition b) implies that the unknown stride cannot be zero otherwise 8977 // we have UB. 8978 // 8979 // The positive stride case is the same as isKnownPositive(Stride) returning 8980 // true (original behavior of the function). 8981 // 8982 // We want to make sure that the stride is truly unknown as there are edge 8983 // cases where ScalarEvolution propagates no wrap flags to the 8984 // post-increment/decrement IV even though the increment/decrement operation 8985 // itself is wrapping. The computed backedge taken count may be wrong in 8986 // such cases. This is prevented by checking that the stride is not known to 8987 // be either positive or non-positive. For example, no wrap flags are 8988 // propagated to the post-increment IV of this loop with a trip count of 2 - 8989 // 8990 // unsigned char i; 8991 // for(i=127; i<128; i+=129) 8992 // A[i] = i; 8993 // 8994 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8995 !loopHasNoSideEffects(L)) 8996 return getCouldNotCompute(); 8997 8998 } else if (!Stride->isOne() && 8999 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 9000 // Avoid proven overflow cases: this will ensure that the backedge taken 9001 // count will not generate any unsigned overflow. Relaxed no-overflow 9002 // conditions exploit NoWrapFlags, allowing to optimize in presence of 9003 // undefined behaviors like the case of C language. 9004 return getCouldNotCompute(); 9005 9006 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 9007 : ICmpInst::ICMP_ULT; 9008 const SCEV *Start = IV->getStart(); 9009 const SCEV *End = RHS; 9010 // If the backedge is taken at least once, then it will be taken 9011 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 9012 // is the LHS value of the less-than comparison the first time it is evaluated 9013 // and End is the RHS. 9014 const SCEV *BECountIfBackedgeTaken = 9015 computeBECount(getMinusSCEV(End, Start), Stride, false); 9016 // If the loop entry is guarded by the result of the backedge test of the 9017 // first loop iteration, then we know the backedge will be taken at least 9018 // once and so the backedge taken count is as above. If not then we use the 9019 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 9020 // as if the backedge is taken at least once max(End,Start) is End and so the 9021 // result is as above, and if not max(End,Start) is Start so we get a backedge 9022 // count of zero. 9023 const SCEV *BECount; 9024 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 9025 BECount = BECountIfBackedgeTaken; 9026 else { 9027 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 9028 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 9029 } 9030 9031 const SCEV *MaxBECount; 9032 bool MaxOrZero = false; 9033 if (isa<SCEVConstant>(BECount)) 9034 MaxBECount = BECount; 9035 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 9036 // If we know exactly how many times the backedge will be taken if it's 9037 // taken at least once, then the backedge count will either be that or 9038 // zero. 9039 MaxBECount = BECountIfBackedgeTaken; 9040 MaxOrZero = true; 9041 } else { 9042 // Calculate the maximum backedge count based on the range of values 9043 // permitted by Start, End, and Stride. 9044 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 9045 : getUnsignedRange(Start).getUnsignedMin(); 9046 9047 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9048 9049 APInt StrideForMaxBECount; 9050 9051 if (PositiveStride) 9052 StrideForMaxBECount = 9053 IsSigned ? getSignedRange(Stride).getSignedMin() 9054 : getUnsignedRange(Stride).getUnsignedMin(); 9055 else 9056 // Using a stride of 1 is safe when computing max backedge taken count for 9057 // a loop with unknown stride. 9058 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 9059 9060 APInt Limit = 9061 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 9062 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 9063 9064 // Although End can be a MAX expression we estimate MaxEnd considering only 9065 // the case End = RHS. This is safe because in the other case (End - Start) 9066 // is zero, leading to a zero maximum backedge taken count. 9067 APInt MaxEnd = 9068 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 9069 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 9070 9071 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 9072 getConstant(StrideForMaxBECount), false); 9073 } 9074 9075 if (isa<SCEVCouldNotCompute>(MaxBECount)) 9076 MaxBECount = BECount; 9077 9078 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 9079 } 9080 9081 ScalarEvolution::ExitLimit 9082 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 9083 const Loop *L, bool IsSigned, 9084 bool ControlsExit, bool AllowPredicates) { 9085 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9086 // We handle only IV > Invariant 9087 if (!isLoopInvariant(RHS, L)) 9088 return getCouldNotCompute(); 9089 9090 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9091 if (!IV && AllowPredicates) 9092 // Try to make this an AddRec using runtime tests, in the first X 9093 // iterations of this loop, where X is the SCEV expression found by the 9094 // algorithm below. 9095 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9096 9097 // Avoid weird loops 9098 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9099 return getCouldNotCompute(); 9100 9101 bool NoWrap = ControlsExit && 9102 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9103 9104 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 9105 9106 // Avoid negative or zero stride values 9107 if (!isKnownPositive(Stride)) 9108 return getCouldNotCompute(); 9109 9110 // Avoid proven overflow cases: this will ensure that the backedge taken count 9111 // will not generate any unsigned overflow. Relaxed no-overflow conditions 9112 // exploit NoWrapFlags, allowing to optimize in presence of undefined 9113 // behaviors like the case of C language. 9114 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 9115 return getCouldNotCompute(); 9116 9117 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 9118 : ICmpInst::ICMP_UGT; 9119 9120 const SCEV *Start = IV->getStart(); 9121 const SCEV *End = RHS; 9122 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 9123 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 9124 9125 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 9126 9127 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 9128 : getUnsignedRange(Start).getUnsignedMax(); 9129 9130 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 9131 : getUnsignedRange(Stride).getUnsignedMin(); 9132 9133 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9134 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 9135 : APInt::getMinValue(BitWidth) + (MinStride - 1); 9136 9137 // Although End can be a MIN expression we estimate MinEnd considering only 9138 // the case End = RHS. This is safe because in the other case (Start - End) 9139 // is zero, leading to a zero maximum backedge taken count. 9140 APInt MinEnd = 9141 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 9142 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 9143 9144 9145 const SCEV *MaxBECount = getCouldNotCompute(); 9146 if (isa<SCEVConstant>(BECount)) 9147 MaxBECount = BECount; 9148 else 9149 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 9150 getConstant(MinStride), false); 9151 9152 if (isa<SCEVCouldNotCompute>(MaxBECount)) 9153 MaxBECount = BECount; 9154 9155 return ExitLimit(BECount, MaxBECount, false, Predicates); 9156 } 9157 9158 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 9159 ScalarEvolution &SE) const { 9160 if (Range.isFullSet()) // Infinite loop. 9161 return SE.getCouldNotCompute(); 9162 9163 // If the start is a non-zero constant, shift the range to simplify things. 9164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 9165 if (!SC->getValue()->isZero()) { 9166 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 9167 Operands[0] = SE.getZero(SC->getType()); 9168 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 9169 getNoWrapFlags(FlagNW)); 9170 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 9171 return ShiftedAddRec->getNumIterationsInRange( 9172 Range.subtract(SC->getAPInt()), SE); 9173 // This is strange and shouldn't happen. 9174 return SE.getCouldNotCompute(); 9175 } 9176 9177 // The only time we can solve this is when we have all constant indices. 9178 // Otherwise, we cannot determine the overflow conditions. 9179 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 9180 return SE.getCouldNotCompute(); 9181 9182 // Okay at this point we know that all elements of the chrec are constants and 9183 // that the start element is zero. 9184 9185 // First check to see if the range contains zero. If not, the first 9186 // iteration exits. 9187 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 9188 if (!Range.contains(APInt(BitWidth, 0))) 9189 return SE.getZero(getType()); 9190 9191 if (isAffine()) { 9192 // If this is an affine expression then we have this situation: 9193 // Solve {0,+,A} in Range === Ax in Range 9194 9195 // We know that zero is in the range. If A is positive then we know that 9196 // the upper value of the range must be the first possible exit value. 9197 // If A is negative then the lower of the range is the last possible loop 9198 // value. Also note that we already checked for a full range. 9199 APInt One(BitWidth,1); 9200 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 9201 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 9202 9203 // The exit value should be (End+A)/A. 9204 APInt ExitVal = (End + A).udiv(A); 9205 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 9206 9207 // Evaluate at the exit value. If we really did fall out of the valid 9208 // range, then we computed our trip count, otherwise wrap around or other 9209 // things must have happened. 9210 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 9211 if (Range.contains(Val->getValue())) 9212 return SE.getCouldNotCompute(); // Something strange happened 9213 9214 // Ensure that the previous value is in the range. This is a sanity check. 9215 assert(Range.contains( 9216 EvaluateConstantChrecAtConstant(this, 9217 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 9218 "Linear scev computation is off in a bad way!"); 9219 return SE.getConstant(ExitValue); 9220 } else if (isQuadratic()) { 9221 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 9222 // quadratic equation to solve it. To do this, we must frame our problem in 9223 // terms of figuring out when zero is crossed, instead of when 9224 // Range.getUpper() is crossed. 9225 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 9226 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 9227 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 9228 9229 // Next, solve the constructed addrec 9230 if (auto Roots = 9231 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 9232 const SCEVConstant *R1 = Roots->first; 9233 const SCEVConstant *R2 = Roots->second; 9234 // Pick the smallest positive root value. 9235 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 9236 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 9237 if (!CB->getZExtValue()) 9238 std::swap(R1, R2); // R1 is the minimum root now. 9239 9240 // Make sure the root is not off by one. The returned iteration should 9241 // not be in the range, but the previous one should be. When solving 9242 // for "X*X < 5", for example, we should not return a root of 2. 9243 ConstantInt *R1Val = 9244 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 9245 if (Range.contains(R1Val->getValue())) { 9246 // The next iteration must be out of the range... 9247 ConstantInt *NextVal = 9248 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9249 9250 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9251 if (!Range.contains(R1Val->getValue())) 9252 return SE.getConstant(NextVal); 9253 return SE.getCouldNotCompute(); // Something strange happened 9254 } 9255 9256 // If R1 was not in the range, then it is a good return value. Make 9257 // sure that R1-1 WAS in the range though, just in case. 9258 ConstantInt *NextVal = 9259 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9260 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9261 if (Range.contains(R1Val->getValue())) 9262 return R1; 9263 return SE.getCouldNotCompute(); // Something strange happened 9264 } 9265 } 9266 } 9267 9268 return SE.getCouldNotCompute(); 9269 } 9270 9271 // Return true when S contains at least an undef value. 9272 static inline bool containsUndefs(const SCEV *S) { 9273 return SCEVExprContains(S, [](const SCEV *S) { 9274 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9275 return isa<UndefValue>(SU->getValue()); 9276 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9277 return isa<UndefValue>(SC->getValue()); 9278 return false; 9279 }); 9280 } 9281 9282 namespace { 9283 // Collect all steps of SCEV expressions. 9284 struct SCEVCollectStrides { 9285 ScalarEvolution &SE; 9286 SmallVectorImpl<const SCEV *> &Strides; 9287 9288 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9289 : SE(SE), Strides(S) {} 9290 9291 bool follow(const SCEV *S) { 9292 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9293 Strides.push_back(AR->getStepRecurrence(SE)); 9294 return true; 9295 } 9296 bool isDone() const { return false; } 9297 }; 9298 9299 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9300 struct SCEVCollectTerms { 9301 SmallVectorImpl<const SCEV *> &Terms; 9302 9303 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9304 : Terms(T) {} 9305 9306 bool follow(const SCEV *S) { 9307 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9308 isa<SCEVSignExtendExpr>(S)) { 9309 if (!containsUndefs(S)) 9310 Terms.push_back(S); 9311 9312 // Stop recursion: once we collected a term, do not walk its operands. 9313 return false; 9314 } 9315 9316 // Keep looking. 9317 return true; 9318 } 9319 bool isDone() const { return false; } 9320 }; 9321 9322 // Check if a SCEV contains an AddRecExpr. 9323 struct SCEVHasAddRec { 9324 bool &ContainsAddRec; 9325 9326 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9327 ContainsAddRec = false; 9328 } 9329 9330 bool follow(const SCEV *S) { 9331 if (isa<SCEVAddRecExpr>(S)) { 9332 ContainsAddRec = true; 9333 9334 // Stop recursion: once we collected a term, do not walk its operands. 9335 return false; 9336 } 9337 9338 // Keep looking. 9339 return true; 9340 } 9341 bool isDone() const { return false; } 9342 }; 9343 9344 // Find factors that are multiplied with an expression that (possibly as a 9345 // subexpression) contains an AddRecExpr. In the expression: 9346 // 9347 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9348 // 9349 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9350 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9351 // parameters as they form a product with an induction variable. 9352 // 9353 // This collector expects all array size parameters to be in the same MulExpr. 9354 // It might be necessary to later add support for collecting parameters that are 9355 // spread over different nested MulExpr. 9356 struct SCEVCollectAddRecMultiplies { 9357 SmallVectorImpl<const SCEV *> &Terms; 9358 ScalarEvolution &SE; 9359 9360 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9361 : Terms(T), SE(SE) {} 9362 9363 bool follow(const SCEV *S) { 9364 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9365 bool HasAddRec = false; 9366 SmallVector<const SCEV *, 0> Operands; 9367 for (auto Op : Mul->operands()) { 9368 if (isa<SCEVUnknown>(Op)) { 9369 Operands.push_back(Op); 9370 } else { 9371 bool ContainsAddRec; 9372 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9373 visitAll(Op, ContiansAddRec); 9374 HasAddRec |= ContainsAddRec; 9375 } 9376 } 9377 if (Operands.size() == 0) 9378 return true; 9379 9380 if (!HasAddRec) 9381 return false; 9382 9383 Terms.push_back(SE.getMulExpr(Operands)); 9384 // Stop recursion: once we collected a term, do not walk its operands. 9385 return false; 9386 } 9387 9388 // Keep looking. 9389 return true; 9390 } 9391 bool isDone() const { return false; } 9392 }; 9393 } 9394 9395 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9396 /// two places: 9397 /// 1) The strides of AddRec expressions. 9398 /// 2) Unknowns that are multiplied with AddRec expressions. 9399 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9400 SmallVectorImpl<const SCEV *> &Terms) { 9401 SmallVector<const SCEV *, 4> Strides; 9402 SCEVCollectStrides StrideCollector(*this, Strides); 9403 visitAll(Expr, StrideCollector); 9404 9405 DEBUG({ 9406 dbgs() << "Strides:\n"; 9407 for (const SCEV *S : Strides) 9408 dbgs() << *S << "\n"; 9409 }); 9410 9411 for (const SCEV *S : Strides) { 9412 SCEVCollectTerms TermCollector(Terms); 9413 visitAll(S, TermCollector); 9414 } 9415 9416 DEBUG({ 9417 dbgs() << "Terms:\n"; 9418 for (const SCEV *T : Terms) 9419 dbgs() << *T << "\n"; 9420 }); 9421 9422 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9423 visitAll(Expr, MulCollector); 9424 } 9425 9426 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9427 SmallVectorImpl<const SCEV *> &Terms, 9428 SmallVectorImpl<const SCEV *> &Sizes) { 9429 int Last = Terms.size() - 1; 9430 const SCEV *Step = Terms[Last]; 9431 9432 // End of recursion. 9433 if (Last == 0) { 9434 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9435 SmallVector<const SCEV *, 2> Qs; 9436 for (const SCEV *Op : M->operands()) 9437 if (!isa<SCEVConstant>(Op)) 9438 Qs.push_back(Op); 9439 9440 Step = SE.getMulExpr(Qs); 9441 } 9442 9443 Sizes.push_back(Step); 9444 return true; 9445 } 9446 9447 for (const SCEV *&Term : Terms) { 9448 // Normalize the terms before the next call to findArrayDimensionsRec. 9449 const SCEV *Q, *R; 9450 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9451 9452 // Bail out when GCD does not evenly divide one of the terms. 9453 if (!R->isZero()) 9454 return false; 9455 9456 Term = Q; 9457 } 9458 9459 // Remove all SCEVConstants. 9460 Terms.erase( 9461 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9462 Terms.end()); 9463 9464 if (Terms.size() > 0) 9465 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9466 return false; 9467 9468 Sizes.push_back(Step); 9469 return true; 9470 } 9471 9472 9473 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9474 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9475 for (const SCEV *T : Terms) 9476 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 9477 return true; 9478 return false; 9479 } 9480 9481 // Return the number of product terms in S. 9482 static inline int numberOfTerms(const SCEV *S) { 9483 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9484 return Expr->getNumOperands(); 9485 return 1; 9486 } 9487 9488 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9489 if (isa<SCEVConstant>(T)) 9490 return nullptr; 9491 9492 if (isa<SCEVUnknown>(T)) 9493 return T; 9494 9495 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9496 SmallVector<const SCEV *, 2> Factors; 9497 for (const SCEV *Op : M->operands()) 9498 if (!isa<SCEVConstant>(Op)) 9499 Factors.push_back(Op); 9500 9501 return SE.getMulExpr(Factors); 9502 } 9503 9504 return T; 9505 } 9506 9507 /// Return the size of an element read or written by Inst. 9508 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9509 Type *Ty; 9510 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9511 Ty = Store->getValueOperand()->getType(); 9512 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9513 Ty = Load->getType(); 9514 else 9515 return nullptr; 9516 9517 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9518 return getSizeOfExpr(ETy, Ty); 9519 } 9520 9521 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9522 SmallVectorImpl<const SCEV *> &Sizes, 9523 const SCEV *ElementSize) const { 9524 if (Terms.size() < 1 || !ElementSize) 9525 return; 9526 9527 // Early return when Terms do not contain parameters: we do not delinearize 9528 // non parametric SCEVs. 9529 if (!containsParameters(Terms)) 9530 return; 9531 9532 DEBUG({ 9533 dbgs() << "Terms:\n"; 9534 for (const SCEV *T : Terms) 9535 dbgs() << *T << "\n"; 9536 }); 9537 9538 // Remove duplicates. 9539 std::sort(Terms.begin(), Terms.end()); 9540 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9541 9542 // Put larger terms first. 9543 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9544 return numberOfTerms(LHS) > numberOfTerms(RHS); 9545 }); 9546 9547 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9548 9549 // Try to divide all terms by the element size. If term is not divisible by 9550 // element size, proceed with the original term. 9551 for (const SCEV *&Term : Terms) { 9552 const SCEV *Q, *R; 9553 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9554 if (!Q->isZero()) 9555 Term = Q; 9556 } 9557 9558 SmallVector<const SCEV *, 4> NewTerms; 9559 9560 // Remove constant factors. 9561 for (const SCEV *T : Terms) 9562 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9563 NewTerms.push_back(NewT); 9564 9565 DEBUG({ 9566 dbgs() << "Terms after sorting:\n"; 9567 for (const SCEV *T : NewTerms) 9568 dbgs() << *T << "\n"; 9569 }); 9570 9571 if (NewTerms.empty() || 9572 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9573 Sizes.clear(); 9574 return; 9575 } 9576 9577 // The last element to be pushed into Sizes is the size of an element. 9578 Sizes.push_back(ElementSize); 9579 9580 DEBUG({ 9581 dbgs() << "Sizes:\n"; 9582 for (const SCEV *S : Sizes) 9583 dbgs() << *S << "\n"; 9584 }); 9585 } 9586 9587 void ScalarEvolution::computeAccessFunctions( 9588 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9589 SmallVectorImpl<const SCEV *> &Sizes) { 9590 9591 // Early exit in case this SCEV is not an affine multivariate function. 9592 if (Sizes.empty()) 9593 return; 9594 9595 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9596 if (!AR->isAffine()) 9597 return; 9598 9599 const SCEV *Res = Expr; 9600 int Last = Sizes.size() - 1; 9601 for (int i = Last; i >= 0; i--) { 9602 const SCEV *Q, *R; 9603 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9604 9605 DEBUG({ 9606 dbgs() << "Res: " << *Res << "\n"; 9607 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9608 dbgs() << "Res divided by Sizes[i]:\n"; 9609 dbgs() << "Quotient: " << *Q << "\n"; 9610 dbgs() << "Remainder: " << *R << "\n"; 9611 }); 9612 9613 Res = Q; 9614 9615 // Do not record the last subscript corresponding to the size of elements in 9616 // the array. 9617 if (i == Last) { 9618 9619 // Bail out if the remainder is too complex. 9620 if (isa<SCEVAddRecExpr>(R)) { 9621 Subscripts.clear(); 9622 Sizes.clear(); 9623 return; 9624 } 9625 9626 continue; 9627 } 9628 9629 // Record the access function for the current subscript. 9630 Subscripts.push_back(R); 9631 } 9632 9633 // Also push in last position the remainder of the last division: it will be 9634 // the access function of the innermost dimension. 9635 Subscripts.push_back(Res); 9636 9637 std::reverse(Subscripts.begin(), Subscripts.end()); 9638 9639 DEBUG({ 9640 dbgs() << "Subscripts:\n"; 9641 for (const SCEV *S : Subscripts) 9642 dbgs() << *S << "\n"; 9643 }); 9644 } 9645 9646 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9647 /// sizes of an array access. Returns the remainder of the delinearization that 9648 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9649 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9650 /// expressions in the stride and base of a SCEV corresponding to the 9651 /// computation of a GCD (greatest common divisor) of base and stride. When 9652 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9653 /// 9654 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9655 /// 9656 /// void foo(long n, long m, long o, double A[n][m][o]) { 9657 /// 9658 /// for (long i = 0; i < n; i++) 9659 /// for (long j = 0; j < m; j++) 9660 /// for (long k = 0; k < o; k++) 9661 /// A[i][j][k] = 1.0; 9662 /// } 9663 /// 9664 /// the delinearization input is the following AddRec SCEV: 9665 /// 9666 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9667 /// 9668 /// From this SCEV, we are able to say that the base offset of the access is %A 9669 /// because it appears as an offset that does not divide any of the strides in 9670 /// the loops: 9671 /// 9672 /// CHECK: Base offset: %A 9673 /// 9674 /// and then SCEV->delinearize determines the size of some of the dimensions of 9675 /// the array as these are the multiples by which the strides are happening: 9676 /// 9677 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9678 /// 9679 /// Note that the outermost dimension remains of UnknownSize because there are 9680 /// no strides that would help identifying the size of the last dimension: when 9681 /// the array has been statically allocated, one could compute the size of that 9682 /// dimension by dividing the overall size of the array by the size of the known 9683 /// dimensions: %m * %o * 8. 9684 /// 9685 /// Finally delinearize provides the access functions for the array reference 9686 /// that does correspond to A[i][j][k] of the above C testcase: 9687 /// 9688 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9689 /// 9690 /// The testcases are checking the output of a function pass: 9691 /// DelinearizationPass that walks through all loads and stores of a function 9692 /// asking for the SCEV of the memory access with respect to all enclosing 9693 /// loops, calling SCEV->delinearize on that and printing the results. 9694 9695 void ScalarEvolution::delinearize(const SCEV *Expr, 9696 SmallVectorImpl<const SCEV *> &Subscripts, 9697 SmallVectorImpl<const SCEV *> &Sizes, 9698 const SCEV *ElementSize) { 9699 // First step: collect parametric terms. 9700 SmallVector<const SCEV *, 4> Terms; 9701 collectParametricTerms(Expr, Terms); 9702 9703 if (Terms.empty()) 9704 return; 9705 9706 // Second step: find subscript sizes. 9707 findArrayDimensions(Terms, Sizes, ElementSize); 9708 9709 if (Sizes.empty()) 9710 return; 9711 9712 // Third step: compute the access functions for each subscript. 9713 computeAccessFunctions(Expr, Subscripts, Sizes); 9714 9715 if (Subscripts.empty()) 9716 return; 9717 9718 DEBUG({ 9719 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9720 dbgs() << "ArrayDecl[UnknownSize]"; 9721 for (const SCEV *S : Sizes) 9722 dbgs() << "[" << *S << "]"; 9723 9724 dbgs() << "\nArrayRef"; 9725 for (const SCEV *S : Subscripts) 9726 dbgs() << "[" << *S << "]"; 9727 dbgs() << "\n"; 9728 }); 9729 } 9730 9731 //===----------------------------------------------------------------------===// 9732 // SCEVCallbackVH Class Implementation 9733 //===----------------------------------------------------------------------===// 9734 9735 void ScalarEvolution::SCEVCallbackVH::deleted() { 9736 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9737 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9738 SE->ConstantEvolutionLoopExitValue.erase(PN); 9739 SE->eraseValueFromMap(getValPtr()); 9740 // this now dangles! 9741 } 9742 9743 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9744 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9745 9746 // Forget all the expressions associated with users of the old value, 9747 // so that future queries will recompute the expressions using the new 9748 // value. 9749 Value *Old = getValPtr(); 9750 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9751 SmallPtrSet<User *, 8> Visited; 9752 while (!Worklist.empty()) { 9753 User *U = Worklist.pop_back_val(); 9754 // Deleting the Old value will cause this to dangle. Postpone 9755 // that until everything else is done. 9756 if (U == Old) 9757 continue; 9758 if (!Visited.insert(U).second) 9759 continue; 9760 if (PHINode *PN = dyn_cast<PHINode>(U)) 9761 SE->ConstantEvolutionLoopExitValue.erase(PN); 9762 SE->eraseValueFromMap(U); 9763 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9764 } 9765 // Delete the Old value. 9766 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9767 SE->ConstantEvolutionLoopExitValue.erase(PN); 9768 SE->eraseValueFromMap(Old); 9769 // this now dangles! 9770 } 9771 9772 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9773 : CallbackVH(V), SE(se) {} 9774 9775 //===----------------------------------------------------------------------===// 9776 // ScalarEvolution Class Implementation 9777 //===----------------------------------------------------------------------===// 9778 9779 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9780 AssumptionCache &AC, DominatorTree &DT, 9781 LoopInfo &LI) 9782 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9783 CouldNotCompute(new SCEVCouldNotCompute()), 9784 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9785 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9786 FirstUnknown(nullptr) { 9787 9788 // To use guards for proving predicates, we need to scan every instruction in 9789 // relevant basic blocks, and not just terminators. Doing this is a waste of 9790 // time if the IR does not actually contain any calls to 9791 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9792 // 9793 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9794 // to _add_ guards to the module when there weren't any before, and wants 9795 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9796 // efficient in lieu of being smart in that rather obscure case. 9797 9798 auto *GuardDecl = F.getParent()->getFunction( 9799 Intrinsic::getName(Intrinsic::experimental_guard)); 9800 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9801 } 9802 9803 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9804 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9805 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9806 ValueExprMap(std::move(Arg.ValueExprMap)), 9807 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9808 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9809 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 9810 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9811 PredicatedBackedgeTakenCounts( 9812 std::move(Arg.PredicatedBackedgeTakenCounts)), 9813 ConstantEvolutionLoopExitValue( 9814 std::move(Arg.ConstantEvolutionLoopExitValue)), 9815 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9816 LoopDispositions(std::move(Arg.LoopDispositions)), 9817 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9818 BlockDispositions(std::move(Arg.BlockDispositions)), 9819 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9820 SignedRanges(std::move(Arg.SignedRanges)), 9821 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9822 UniquePreds(std::move(Arg.UniquePreds)), 9823 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9824 FirstUnknown(Arg.FirstUnknown) { 9825 Arg.FirstUnknown = nullptr; 9826 } 9827 9828 ScalarEvolution::~ScalarEvolution() { 9829 // Iterate through all the SCEVUnknown instances and call their 9830 // destructors, so that they release their references to their values. 9831 for (SCEVUnknown *U = FirstUnknown; U;) { 9832 SCEVUnknown *Tmp = U; 9833 U = U->Next; 9834 Tmp->~SCEVUnknown(); 9835 } 9836 FirstUnknown = nullptr; 9837 9838 ExprValueMap.clear(); 9839 ValueExprMap.clear(); 9840 HasRecMap.clear(); 9841 9842 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9843 // that a loop had multiple computable exits. 9844 for (auto &BTCI : BackedgeTakenCounts) 9845 BTCI.second.clear(); 9846 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9847 BTCI.second.clear(); 9848 9849 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9850 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9851 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9852 } 9853 9854 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9855 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9856 } 9857 9858 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9859 const Loop *L) { 9860 // Print all inner loops first 9861 for (Loop *I : *L) 9862 PrintLoopInfo(OS, SE, I); 9863 9864 OS << "Loop "; 9865 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9866 OS << ": "; 9867 9868 SmallVector<BasicBlock *, 8> ExitBlocks; 9869 L->getExitBlocks(ExitBlocks); 9870 if (ExitBlocks.size() != 1) 9871 OS << "<multiple exits> "; 9872 9873 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9874 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9875 } else { 9876 OS << "Unpredictable backedge-taken count. "; 9877 } 9878 9879 OS << "\n" 9880 "Loop "; 9881 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9882 OS << ": "; 9883 9884 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9885 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9886 if (SE->isBackedgeTakenCountMaxOrZero(L)) 9887 OS << ", actual taken count either this or zero."; 9888 } else { 9889 OS << "Unpredictable max backedge-taken count. "; 9890 } 9891 9892 OS << "\n" 9893 "Loop "; 9894 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9895 OS << ": "; 9896 9897 SCEVUnionPredicate Pred; 9898 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9899 if (!isa<SCEVCouldNotCompute>(PBT)) { 9900 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9901 OS << " Predicates:\n"; 9902 Pred.print(OS, 4); 9903 } else { 9904 OS << "Unpredictable predicated backedge-taken count. "; 9905 } 9906 OS << "\n"; 9907 9908 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9909 OS << "Loop "; 9910 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9911 OS << ": "; 9912 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 9913 } 9914 } 9915 9916 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9917 switch (LD) { 9918 case ScalarEvolution::LoopVariant: 9919 return "Variant"; 9920 case ScalarEvolution::LoopInvariant: 9921 return "Invariant"; 9922 case ScalarEvolution::LoopComputable: 9923 return "Computable"; 9924 } 9925 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9926 } 9927 9928 void ScalarEvolution::print(raw_ostream &OS) const { 9929 // ScalarEvolution's implementation of the print method is to print 9930 // out SCEV values of all instructions that are interesting. Doing 9931 // this potentially causes it to create new SCEV objects though, 9932 // which technically conflicts with the const qualifier. This isn't 9933 // observable from outside the class though, so casting away the 9934 // const isn't dangerous. 9935 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9936 9937 OS << "Classifying expressions for: "; 9938 F.printAsOperand(OS, /*PrintType=*/false); 9939 OS << "\n"; 9940 for (Instruction &I : instructions(F)) 9941 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9942 OS << I << '\n'; 9943 OS << " --> "; 9944 const SCEV *SV = SE.getSCEV(&I); 9945 SV->print(OS); 9946 if (!isa<SCEVCouldNotCompute>(SV)) { 9947 OS << " U: "; 9948 SE.getUnsignedRange(SV).print(OS); 9949 OS << " S: "; 9950 SE.getSignedRange(SV).print(OS); 9951 } 9952 9953 const Loop *L = LI.getLoopFor(I.getParent()); 9954 9955 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9956 if (AtUse != SV) { 9957 OS << " --> "; 9958 AtUse->print(OS); 9959 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9960 OS << " U: "; 9961 SE.getUnsignedRange(AtUse).print(OS); 9962 OS << " S: "; 9963 SE.getSignedRange(AtUse).print(OS); 9964 } 9965 } 9966 9967 if (L) { 9968 OS << "\t\t" "Exits: "; 9969 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9970 if (!SE.isLoopInvariant(ExitValue, L)) { 9971 OS << "<<Unknown>>"; 9972 } else { 9973 OS << *ExitValue; 9974 } 9975 9976 bool First = true; 9977 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9978 if (First) { 9979 OS << "\t\t" "LoopDispositions: { "; 9980 First = false; 9981 } else { 9982 OS << ", "; 9983 } 9984 9985 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9986 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9987 } 9988 9989 for (auto *InnerL : depth_first(L)) { 9990 if (InnerL == L) 9991 continue; 9992 if (First) { 9993 OS << "\t\t" "LoopDispositions: { "; 9994 First = false; 9995 } else { 9996 OS << ", "; 9997 } 9998 9999 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10000 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 10001 } 10002 10003 OS << " }"; 10004 } 10005 10006 OS << "\n"; 10007 } 10008 10009 OS << "Determining loop execution counts for: "; 10010 F.printAsOperand(OS, /*PrintType=*/false); 10011 OS << "\n"; 10012 for (Loop *I : LI) 10013 PrintLoopInfo(OS, &SE, I); 10014 } 10015 10016 ScalarEvolution::LoopDisposition 10017 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 10018 auto &Values = LoopDispositions[S]; 10019 for (auto &V : Values) { 10020 if (V.getPointer() == L) 10021 return V.getInt(); 10022 } 10023 Values.emplace_back(L, LoopVariant); 10024 LoopDisposition D = computeLoopDisposition(S, L); 10025 auto &Values2 = LoopDispositions[S]; 10026 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10027 if (V.getPointer() == L) { 10028 V.setInt(D); 10029 break; 10030 } 10031 } 10032 return D; 10033 } 10034 10035 ScalarEvolution::LoopDisposition 10036 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 10037 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10038 case scConstant: 10039 return LoopInvariant; 10040 case scTruncate: 10041 case scZeroExtend: 10042 case scSignExtend: 10043 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 10044 case scAddRecExpr: { 10045 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10046 10047 // If L is the addrec's loop, it's computable. 10048 if (AR->getLoop() == L) 10049 return LoopComputable; 10050 10051 // Add recurrences are never invariant in the function-body (null loop). 10052 if (!L) 10053 return LoopVariant; 10054 10055 // This recurrence is variant w.r.t. L if L contains AR's loop. 10056 if (L->contains(AR->getLoop())) 10057 return LoopVariant; 10058 10059 // This recurrence is invariant w.r.t. L if AR's loop contains L. 10060 if (AR->getLoop()->contains(L)) 10061 return LoopInvariant; 10062 10063 // This recurrence is variant w.r.t. L if any of its operands 10064 // are variant. 10065 for (auto *Op : AR->operands()) 10066 if (!isLoopInvariant(Op, L)) 10067 return LoopVariant; 10068 10069 // Otherwise it's loop-invariant. 10070 return LoopInvariant; 10071 } 10072 case scAddExpr: 10073 case scMulExpr: 10074 case scUMaxExpr: 10075 case scSMaxExpr: { 10076 bool HasVarying = false; 10077 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 10078 LoopDisposition D = getLoopDisposition(Op, L); 10079 if (D == LoopVariant) 10080 return LoopVariant; 10081 if (D == LoopComputable) 10082 HasVarying = true; 10083 } 10084 return HasVarying ? LoopComputable : LoopInvariant; 10085 } 10086 case scUDivExpr: { 10087 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10088 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 10089 if (LD == LoopVariant) 10090 return LoopVariant; 10091 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 10092 if (RD == LoopVariant) 10093 return LoopVariant; 10094 return (LD == LoopInvariant && RD == LoopInvariant) ? 10095 LoopInvariant : LoopComputable; 10096 } 10097 case scUnknown: 10098 // All non-instruction values are loop invariant. All instructions are loop 10099 // invariant if they are not contained in the specified loop. 10100 // Instructions are never considered invariant in the function body 10101 // (null loop) because they are defined within the "loop". 10102 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 10103 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 10104 return LoopInvariant; 10105 case scCouldNotCompute: 10106 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10107 } 10108 llvm_unreachable("Unknown SCEV kind!"); 10109 } 10110 10111 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 10112 return getLoopDisposition(S, L) == LoopInvariant; 10113 } 10114 10115 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 10116 return getLoopDisposition(S, L) == LoopComputable; 10117 } 10118 10119 ScalarEvolution::BlockDisposition 10120 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10121 auto &Values = BlockDispositions[S]; 10122 for (auto &V : Values) { 10123 if (V.getPointer() == BB) 10124 return V.getInt(); 10125 } 10126 Values.emplace_back(BB, DoesNotDominateBlock); 10127 BlockDisposition D = computeBlockDisposition(S, BB); 10128 auto &Values2 = BlockDispositions[S]; 10129 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10130 if (V.getPointer() == BB) { 10131 V.setInt(D); 10132 break; 10133 } 10134 } 10135 return D; 10136 } 10137 10138 ScalarEvolution::BlockDisposition 10139 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10140 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10141 case scConstant: 10142 return ProperlyDominatesBlock; 10143 case scTruncate: 10144 case scZeroExtend: 10145 case scSignExtend: 10146 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 10147 case scAddRecExpr: { 10148 // This uses a "dominates" query instead of "properly dominates" query 10149 // to test for proper dominance too, because the instruction which 10150 // produces the addrec's value is a PHI, and a PHI effectively properly 10151 // dominates its entire containing block. 10152 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10153 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 10154 return DoesNotDominateBlock; 10155 10156 // Fall through into SCEVNAryExpr handling. 10157 LLVM_FALLTHROUGH; 10158 } 10159 case scAddExpr: 10160 case scMulExpr: 10161 case scUMaxExpr: 10162 case scSMaxExpr: { 10163 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 10164 bool Proper = true; 10165 for (const SCEV *NAryOp : NAry->operands()) { 10166 BlockDisposition D = getBlockDisposition(NAryOp, BB); 10167 if (D == DoesNotDominateBlock) 10168 return DoesNotDominateBlock; 10169 if (D == DominatesBlock) 10170 Proper = false; 10171 } 10172 return Proper ? ProperlyDominatesBlock : DominatesBlock; 10173 } 10174 case scUDivExpr: { 10175 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10176 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 10177 BlockDisposition LD = getBlockDisposition(LHS, BB); 10178 if (LD == DoesNotDominateBlock) 10179 return DoesNotDominateBlock; 10180 BlockDisposition RD = getBlockDisposition(RHS, BB); 10181 if (RD == DoesNotDominateBlock) 10182 return DoesNotDominateBlock; 10183 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 10184 ProperlyDominatesBlock : DominatesBlock; 10185 } 10186 case scUnknown: 10187 if (Instruction *I = 10188 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 10189 if (I->getParent() == BB) 10190 return DominatesBlock; 10191 if (DT.properlyDominates(I->getParent(), BB)) 10192 return ProperlyDominatesBlock; 10193 return DoesNotDominateBlock; 10194 } 10195 return ProperlyDominatesBlock; 10196 case scCouldNotCompute: 10197 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10198 } 10199 llvm_unreachable("Unknown SCEV kind!"); 10200 } 10201 10202 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 10203 return getBlockDisposition(S, BB) >= DominatesBlock; 10204 } 10205 10206 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 10207 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 10208 } 10209 10210 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 10211 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 10212 } 10213 10214 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 10215 ValuesAtScopes.erase(S); 10216 LoopDispositions.erase(S); 10217 BlockDispositions.erase(S); 10218 UnsignedRanges.erase(S); 10219 SignedRanges.erase(S); 10220 ExprValueMap.erase(S); 10221 HasRecMap.erase(S); 10222 MinTrailingZerosCache.erase(S); 10223 10224 auto RemoveSCEVFromBackedgeMap = 10225 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10226 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10227 BackedgeTakenInfo &BEInfo = I->second; 10228 if (BEInfo.hasOperand(S, this)) { 10229 BEInfo.clear(); 10230 Map.erase(I++); 10231 } else 10232 ++I; 10233 } 10234 }; 10235 10236 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10237 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10238 } 10239 10240 typedef DenseMap<const Loop *, std::string> VerifyMap; 10241 10242 /// replaceSubString - Replaces all occurrences of From in Str with To. 10243 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 10244 size_t Pos = 0; 10245 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 10246 Str.replace(Pos, From.size(), To.data(), To.size()); 10247 Pos += To.size(); 10248 } 10249 } 10250 10251 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 10252 static void 10253 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 10254 std::string &S = Map[L]; 10255 if (S.empty()) { 10256 raw_string_ostream OS(S); 10257 SE.getBackedgeTakenCount(L)->print(OS); 10258 10259 // false and 0 are semantically equivalent. This can happen in dead loops. 10260 replaceSubString(OS.str(), "false", "0"); 10261 // Remove wrap flags, their use in SCEV is highly fragile. 10262 // FIXME: Remove this when SCEV gets smarter about them. 10263 replaceSubString(OS.str(), "<nw>", ""); 10264 replaceSubString(OS.str(), "<nsw>", ""); 10265 replaceSubString(OS.str(), "<nuw>", ""); 10266 } 10267 10268 for (auto *R : reverse(*L)) 10269 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 10270 } 10271 10272 void ScalarEvolution::verify() const { 10273 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10274 10275 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10276 // FIXME: It would be much better to store actual values instead of strings, 10277 // but SCEV pointers will change if we drop the caches. 10278 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10279 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10280 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10281 10282 // Gather stringified backedge taken counts for all loops using a fresh 10283 // ScalarEvolution object. 10284 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10285 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10286 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10287 10288 // Now compare whether they're the same with and without caches. This allows 10289 // verifying that no pass changed the cache. 10290 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10291 "New loops suddenly appeared!"); 10292 10293 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10294 OldE = BackedgeDumpsOld.end(), 10295 NewI = BackedgeDumpsNew.begin(); 10296 OldI != OldE; ++OldI, ++NewI) { 10297 assert(OldI->first == NewI->first && "Loop order changed!"); 10298 10299 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10300 // changes. 10301 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10302 // means that a pass is buggy or SCEV has to learn a new pattern but is 10303 // usually not harmful. 10304 if (OldI->second != NewI->second && 10305 OldI->second.find("undef") == std::string::npos && 10306 NewI->second.find("undef") == std::string::npos && 10307 OldI->second != "***COULDNOTCOMPUTE***" && 10308 NewI->second != "***COULDNOTCOMPUTE***") { 10309 dbgs() << "SCEVValidator: SCEV for loop '" 10310 << OldI->first->getHeader()->getName() 10311 << "' changed from '" << OldI->second 10312 << "' to '" << NewI->second << "'!\n"; 10313 std::abort(); 10314 } 10315 } 10316 10317 // TODO: Verify more things. 10318 } 10319 10320 bool ScalarEvolution::invalidate( 10321 Function &F, const PreservedAnalyses &PA, 10322 FunctionAnalysisManager::Invalidator &Inv) { 10323 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10324 // of its dependencies is invalidated. 10325 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10326 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10327 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10328 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10329 Inv.invalidate<LoopAnalysis>(F, PA); 10330 } 10331 10332 AnalysisKey ScalarEvolutionAnalysis::Key; 10333 10334 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10335 FunctionAnalysisManager &AM) { 10336 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10337 AM.getResult<AssumptionAnalysis>(F), 10338 AM.getResult<DominatorTreeAnalysis>(F), 10339 AM.getResult<LoopAnalysis>(F)); 10340 } 10341 10342 PreservedAnalyses 10343 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10344 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10345 return PreservedAnalyses::all(); 10346 } 10347 10348 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10349 "Scalar Evolution Analysis", false, true) 10350 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10351 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10353 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10354 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10355 "Scalar Evolution Analysis", false, true) 10356 char ScalarEvolutionWrapperPass::ID = 0; 10357 10358 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10359 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10360 } 10361 10362 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10363 SE.reset(new ScalarEvolution( 10364 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10365 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10366 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10367 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10368 return false; 10369 } 10370 10371 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10372 10373 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10374 SE->print(OS); 10375 } 10376 10377 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10378 if (!VerifySCEV) 10379 return; 10380 10381 SE->verify(); 10382 } 10383 10384 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10385 AU.setPreservesAll(); 10386 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10387 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10388 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10389 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10390 } 10391 10392 const SCEVPredicate * 10393 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10394 const SCEVConstant *RHS) { 10395 FoldingSetNodeID ID; 10396 // Unique this node based on the arguments 10397 ID.AddInteger(SCEVPredicate::P_Equal); 10398 ID.AddPointer(LHS); 10399 ID.AddPointer(RHS); 10400 void *IP = nullptr; 10401 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10402 return S; 10403 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10404 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10405 UniquePreds.InsertNode(Eq, IP); 10406 return Eq; 10407 } 10408 10409 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10410 const SCEVAddRecExpr *AR, 10411 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10412 FoldingSetNodeID ID; 10413 // Unique this node based on the arguments 10414 ID.AddInteger(SCEVPredicate::P_Wrap); 10415 ID.AddPointer(AR); 10416 ID.AddInteger(AddedFlags); 10417 void *IP = nullptr; 10418 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10419 return S; 10420 auto *OF = new (SCEVAllocator) 10421 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10422 UniquePreds.InsertNode(OF, IP); 10423 return OF; 10424 } 10425 10426 namespace { 10427 10428 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10429 public: 10430 /// Rewrites \p S in the context of a loop L and the SCEV predication 10431 /// infrastructure. 10432 /// 10433 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10434 /// equivalences present in \p Pred. 10435 /// 10436 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10437 /// \p NewPreds such that the result will be an AddRecExpr. 10438 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10439 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10440 SCEVUnionPredicate *Pred) { 10441 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10442 return Rewriter.visit(S); 10443 } 10444 10445 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10446 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10447 SCEVUnionPredicate *Pred) 10448 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10449 10450 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10451 if (Pred) { 10452 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10453 for (auto *Pred : ExprPreds) 10454 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10455 if (IPred->getLHS() == Expr) 10456 return IPred->getRHS(); 10457 } 10458 10459 return Expr; 10460 } 10461 10462 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10463 const SCEV *Operand = visit(Expr->getOperand()); 10464 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10465 if (AR && AR->getLoop() == L && AR->isAffine()) { 10466 // This couldn't be folded because the operand didn't have the nuw 10467 // flag. Add the nusw flag as an assumption that we could make. 10468 const SCEV *Step = AR->getStepRecurrence(SE); 10469 Type *Ty = Expr->getType(); 10470 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10471 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10472 SE.getSignExtendExpr(Step, Ty), L, 10473 AR->getNoWrapFlags()); 10474 } 10475 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10476 } 10477 10478 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10479 const SCEV *Operand = visit(Expr->getOperand()); 10480 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10481 if (AR && AR->getLoop() == L && AR->isAffine()) { 10482 // This couldn't be folded because the operand didn't have the nsw 10483 // flag. Add the nssw flag as an assumption that we could make. 10484 const SCEV *Step = AR->getStepRecurrence(SE); 10485 Type *Ty = Expr->getType(); 10486 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10487 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10488 SE.getSignExtendExpr(Step, Ty), L, 10489 AR->getNoWrapFlags()); 10490 } 10491 return SE.getSignExtendExpr(Operand, Expr->getType()); 10492 } 10493 10494 private: 10495 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10496 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10497 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10498 if (!NewPreds) { 10499 // Check if we've already made this assumption. 10500 return Pred && Pred->implies(A); 10501 } 10502 NewPreds->insert(A); 10503 return true; 10504 } 10505 10506 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10507 SCEVUnionPredicate *Pred; 10508 const Loop *L; 10509 }; 10510 } // end anonymous namespace 10511 10512 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10513 SCEVUnionPredicate &Preds) { 10514 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10515 } 10516 10517 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10518 const SCEV *S, const Loop *L, 10519 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10520 10521 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10522 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10523 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10524 10525 if (!AddRec) 10526 return nullptr; 10527 10528 // Since the transformation was successful, we can now transfer the SCEV 10529 // predicates. 10530 for (auto *P : TransformPreds) 10531 Preds.insert(P); 10532 10533 return AddRec; 10534 } 10535 10536 /// SCEV predicates 10537 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10538 SCEVPredicateKind Kind) 10539 : FastID(ID), Kind(Kind) {} 10540 10541 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10542 const SCEVUnknown *LHS, 10543 const SCEVConstant *RHS) 10544 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10545 10546 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10547 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10548 10549 if (!Op) 10550 return false; 10551 10552 return Op->LHS == LHS && Op->RHS == RHS; 10553 } 10554 10555 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10556 10557 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10558 10559 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10560 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10561 } 10562 10563 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10564 const SCEVAddRecExpr *AR, 10565 IncrementWrapFlags Flags) 10566 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10567 10568 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10569 10570 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10571 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10572 10573 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10574 } 10575 10576 bool SCEVWrapPredicate::isAlwaysTrue() const { 10577 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10578 IncrementWrapFlags IFlags = Flags; 10579 10580 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10581 IFlags = clearFlags(IFlags, IncrementNSSW); 10582 10583 return IFlags == IncrementAnyWrap; 10584 } 10585 10586 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10587 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10588 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10589 OS << "<nusw>"; 10590 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10591 OS << "<nssw>"; 10592 OS << "\n"; 10593 } 10594 10595 SCEVWrapPredicate::IncrementWrapFlags 10596 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10597 ScalarEvolution &SE) { 10598 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10599 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10600 10601 // We can safely transfer the NSW flag as NSSW. 10602 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10603 ImpliedFlags = IncrementNSSW; 10604 10605 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10606 // If the increment is positive, the SCEV NUW flag will also imply the 10607 // WrapPredicate NUSW flag. 10608 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10609 if (Step->getValue()->getValue().isNonNegative()) 10610 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10611 } 10612 10613 return ImpliedFlags; 10614 } 10615 10616 /// Union predicates don't get cached so create a dummy set ID for it. 10617 SCEVUnionPredicate::SCEVUnionPredicate() 10618 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10619 10620 bool SCEVUnionPredicate::isAlwaysTrue() const { 10621 return all_of(Preds, 10622 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10623 } 10624 10625 ArrayRef<const SCEVPredicate *> 10626 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10627 auto I = SCEVToPreds.find(Expr); 10628 if (I == SCEVToPreds.end()) 10629 return ArrayRef<const SCEVPredicate *>(); 10630 return I->second; 10631 } 10632 10633 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10634 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10635 return all_of(Set->Preds, 10636 [this](const SCEVPredicate *I) { return this->implies(I); }); 10637 10638 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10639 if (ScevPredsIt == SCEVToPreds.end()) 10640 return false; 10641 auto &SCEVPreds = ScevPredsIt->second; 10642 10643 return any_of(SCEVPreds, 10644 [N](const SCEVPredicate *I) { return I->implies(N); }); 10645 } 10646 10647 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10648 10649 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10650 for (auto Pred : Preds) 10651 Pred->print(OS, Depth); 10652 } 10653 10654 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10655 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10656 for (auto Pred : Set->Preds) 10657 add(Pred); 10658 return; 10659 } 10660 10661 if (implies(N)) 10662 return; 10663 10664 const SCEV *Key = N->getExpr(); 10665 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10666 " associated expression!"); 10667 10668 SCEVToPreds[Key].push_back(N); 10669 Preds.push_back(N); 10670 } 10671 10672 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10673 Loop &L) 10674 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10675 10676 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10677 const SCEV *Expr = SE.getSCEV(V); 10678 RewriteEntry &Entry = RewriteMap[Expr]; 10679 10680 // If we already have an entry and the version matches, return it. 10681 if (Entry.second && Generation == Entry.first) 10682 return Entry.second; 10683 10684 // We found an entry but it's stale. Rewrite the stale entry 10685 // according to the current predicate. 10686 if (Entry.second) 10687 Expr = Entry.second; 10688 10689 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10690 Entry = {Generation, NewSCEV}; 10691 10692 return NewSCEV; 10693 } 10694 10695 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10696 if (!BackedgeCount) { 10697 SCEVUnionPredicate BackedgePred; 10698 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10699 addPredicate(BackedgePred); 10700 } 10701 return BackedgeCount; 10702 } 10703 10704 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10705 if (Preds.implies(&Pred)) 10706 return; 10707 Preds.add(&Pred); 10708 updateGeneration(); 10709 } 10710 10711 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10712 return Preds; 10713 } 10714 10715 void PredicatedScalarEvolution::updateGeneration() { 10716 // If the generation number wrapped recompute everything. 10717 if (++Generation == 0) { 10718 for (auto &II : RewriteMap) { 10719 const SCEV *Rewritten = II.second.second; 10720 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10721 } 10722 } 10723 } 10724 10725 void PredicatedScalarEvolution::setNoOverflow( 10726 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10727 const SCEV *Expr = getSCEV(V); 10728 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10729 10730 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10731 10732 // Clear the statically implied flags. 10733 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10734 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10735 10736 auto II = FlagsMap.insert({V, Flags}); 10737 if (!II.second) 10738 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10739 } 10740 10741 bool PredicatedScalarEvolution::hasNoOverflow( 10742 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10743 const SCEV *Expr = getSCEV(V); 10744 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10745 10746 Flags = SCEVWrapPredicate::clearFlags( 10747 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10748 10749 auto II = FlagsMap.find(V); 10750 10751 if (II != FlagsMap.end()) 10752 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10753 10754 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10755 } 10756 10757 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10758 const SCEV *Expr = this->getSCEV(V); 10759 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10760 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10761 10762 if (!New) 10763 return nullptr; 10764 10765 for (auto *P : NewPreds) 10766 Preds.add(P); 10767 10768 updateGeneration(); 10769 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10770 return New; 10771 } 10772 10773 PredicatedScalarEvolution::PredicatedScalarEvolution( 10774 const PredicatedScalarEvolution &Init) 10775 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10776 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10777 for (const auto &I : Init.FlagsMap) 10778 FlagsMap.insert(I); 10779 } 10780 10781 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10782 // For each block. 10783 for (auto *BB : L.getBlocks()) 10784 for (auto &I : *BB) { 10785 if (!SE.isSCEVable(I.getType())) 10786 continue; 10787 10788 auto *Expr = SE.getSCEV(&I); 10789 auto II = RewriteMap.find(Expr); 10790 10791 if (II == RewriteMap.end()) 10792 continue; 10793 10794 // Don't print things that are not interesting. 10795 if (II->second.second == Expr) 10796 continue; 10797 10798 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10799 OS.indent(Depth + 2) << *Expr << "\n"; 10800 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10801 } 10802 } 10803