1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451 
452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453                                    const SCEV *op, Type *ty)
454   : SCEVCastExpr(ID, scTruncate, op, ty) {
455   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456          "Cannot truncate non-integer value!");
457 }
458 
459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460                                        const SCEV *op, Type *ty)
461   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463          "Cannot zero extend non-integer value!");
464 }
465 
466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467                                        const SCEV *op, Type *ty)
468   : SCEVCastExpr(ID, scSignExtend, op, ty) {
469   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470          "Cannot sign extend non-integer value!");
471 }
472 
473 void SCEVUnknown::deleted() {
474   // Clear this SCEVUnknown from various maps.
475   SE->forgetMemoizedResults(this);
476 
477   // Remove this SCEVUnknown from the uniquing map.
478   SE->UniqueSCEVs.RemoveNode(this);
479 
480   // Release the value.
481   setValPtr(nullptr);
482 }
483 
484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485   // Remove this SCEVUnknown from the uniquing map.
486   SE->UniqueSCEVs.RemoveNode(this);
487 
488   // Update this SCEVUnknown to point to the new value. This is needed
489   // because there may still be outstanding SCEVs which still point to
490   // this SCEVUnknown.
491   setValPtr(New);
492 }
493 
494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496     if (VCE->getOpcode() == Instruction::PtrToInt)
497       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498         if (CE->getOpcode() == Instruction::GetElementPtr &&
499             CE->getOperand(0)->isNullValue() &&
500             CE->getNumOperands() == 2)
501           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502             if (CI->isOne()) {
503               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504                                  ->getElementType();
505               return true;
506             }
507 
508   return false;
509 }
510 
511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513     if (VCE->getOpcode() == Instruction::PtrToInt)
514       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515         if (CE->getOpcode() == Instruction::GetElementPtr &&
516             CE->getOperand(0)->isNullValue()) {
517           Type *Ty =
518             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519           if (StructType *STy = dyn_cast<StructType>(Ty))
520             if (!STy->isPacked() &&
521                 CE->getNumOperands() == 3 &&
522                 CE->getOperand(1)->isNullValue()) {
523               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524                 if (CI->isOne() &&
525                     STy->getNumElements() == 2 &&
526                     STy->getElementType(0)->isIntegerTy(1)) {
527                   AllocTy = STy->getElementType(1);
528                   return true;
529                 }
530             }
531         }
532 
533   return false;
534 }
535 
536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538     if (VCE->getOpcode() == Instruction::PtrToInt)
539       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540         if (CE->getOpcode() == Instruction::GetElementPtr &&
541             CE->getNumOperands() == 3 &&
542             CE->getOperand(0)->isNullValue() &&
543             CE->getOperand(1)->isNullValue()) {
544           Type *Ty =
545             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546           // Ignore vector types here so that ScalarEvolutionExpander doesn't
547           // emit getelementptrs that index into vectors.
548           if (Ty->isStructTy() || Ty->isArrayTy()) {
549             CTy = Ty;
550             FieldNo = CE->getOperand(2);
551             return true;
552           }
553         }
554 
555   return false;
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //                               SCEV Utilities
560 //===----------------------------------------------------------------------===//
561 
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine.  It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 ///   %a = f(%x, %y)
569 ///   %b = f(%a, %a)
570 ///   %c = f(%b, %b)
571 ///
572 ///   %d = f(%x, %y)
573 ///   %e = f(%d, %d)
574 ///   %f = f(%e, %e)
575 ///
576 ///   CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582                        const LoopInfo *const LI, Value *LV, Value *RV,
583                        unsigned Depth) {
584   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585     return 0;
586 
587   // Order pointer values after integer values. This helps SCEVExpander form
588   // GEPs.
589   bool LIsPointer = LV->getType()->isPointerTy(),
590        RIsPointer = RV->getType()->isPointerTy();
591   if (LIsPointer != RIsPointer)
592     return (int)LIsPointer - (int)RIsPointer;
593 
594   // Compare getValueID values.
595   unsigned LID = LV->getValueID(), RID = RV->getValueID();
596   if (LID != RID)
597     return (int)LID - (int)RID;
598 
599   // Sort arguments by their position.
600   if (const auto *LA = dyn_cast<Argument>(LV)) {
601     const auto *RA = cast<Argument>(RV);
602     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603     return (int)LArgNo - (int)RArgNo;
604   }
605 
606   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607     const auto *RGV = cast<GlobalValue>(RV);
608 
609     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610       auto LT = GV->getLinkage();
611       return !(GlobalValue::isPrivateLinkage(LT) ||
612                GlobalValue::isInternalLinkage(LT));
613     };
614 
615     // Use the names to distinguish the two values, but only if the
616     // names are semantically important.
617     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618       return LGV->getName().compare(RGV->getName());
619   }
620 
621   // For instructions, compare their loop depth, and their operand count.  This
622   // is pretty loose.
623   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624     const auto *RInst = cast<Instruction>(RV);
625 
626     // Compare loop depths.
627     const BasicBlock *LParent = LInst->getParent(),
628                      *RParent = RInst->getParent();
629     if (LParent != RParent) {
630       unsigned LDepth = LI->getLoopDepth(LParent),
631                RDepth = LI->getLoopDepth(RParent);
632       if (LDepth != RDepth)
633         return (int)LDepth - (int)RDepth;
634     }
635 
636     // Compare the number of operands.
637     unsigned LNumOps = LInst->getNumOperands(),
638              RNumOps = RInst->getNumOperands();
639     if (LNumOps != RNumOps)
640       return (int)LNumOps - (int)RNumOps;
641 
642     for (unsigned Idx : seq(0u, LNumOps)) {
643       int Result =
644           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645                                  RInst->getOperand(Idx), Depth + 1);
646       if (Result != 0)
647         return Result;
648     }
649   }
650 
651   EqCacheValue.unionSets(LV, RV);
652   return 0;
653 }
654 
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
658 static int CompareSCEVComplexity(
659     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660     EquivalenceClasses<const Value *> &EqCacheValue,
661     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662     DominatorTree &DT, unsigned Depth = 0) {
663   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664   if (LHS == RHS)
665     return 0;
666 
667   // Primarily, sort the SCEVs by their getSCEVType().
668   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669   if (LType != RType)
670     return (int)LType - (int)RType;
671 
672   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673     return 0;
674   // Aside from the getSCEVType() ordering, the particular ordering
675   // isn't very important except that it's beneficial to be consistent,
676   // so that (a + b) and (b + a) don't end up as different expressions.
677   switch (static_cast<SCEVTypes>(LType)) {
678   case scUnknown: {
679     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681 
682     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683                                    RU->getValue(), Depth + 1);
684     if (X == 0)
685       EqCacheSCEV.unionSets(LHS, RHS);
686     return X;
687   }
688 
689   case scConstant: {
690     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692 
693     // Compare constant values.
694     const APInt &LA = LC->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697     if (LBitWidth != RBitWidth)
698       return (int)LBitWidth - (int)RBitWidth;
699     return LA.ult(RA) ? -1 : 1;
700   }
701 
702   case scAddRecExpr: {
703     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705 
706     // There is always a dominance between two recs that are used by one SCEV,
707     // so we can safely sort recs by loop header dominance. We require such
708     // order in getAddExpr.
709     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710     if (LLoop != RLoop) {
711       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712       assert(LHead != RHead && "Two loops share the same header?");
713       if (DT.dominates(LHead, RHead))
714         return 1;
715       else
716         assert(DT.dominates(RHead, LHead) &&
717                "No dominance between recurrences used by one SCEV?");
718       return -1;
719     }
720 
721     // Addrec complexity grows with operand count.
722     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723     if (LNumOps != RNumOps)
724       return (int)LNumOps - (int)RNumOps;
725 
726     // Lexicographically compare.
727     for (unsigned i = 0; i != LNumOps; ++i) {
728       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729                                     LA->getOperand(i), RA->getOperand(i), DT,
730                                     Depth + 1);
731       if (X != 0)
732         return X;
733     }
734     EqCacheSCEV.unionSets(LHS, RHS);
735     return 0;
736   }
737 
738   case scAddExpr:
739   case scMulExpr:
740   case scSMaxExpr:
741   case scUMaxExpr:
742   case scSMinExpr:
743   case scUMinExpr: {
744     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746 
747     // Lexicographically compare n-ary expressions.
748     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749     if (LNumOps != RNumOps)
750       return (int)LNumOps - (int)RNumOps;
751 
752     for (unsigned i = 0; i != LNumOps; ++i) {
753       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754                                     LC->getOperand(i), RC->getOperand(i), DT,
755                                     Depth + 1);
756       if (X != 0)
757         return X;
758     }
759     EqCacheSCEV.unionSets(LHS, RHS);
760     return 0;
761   }
762 
763   case scUDivExpr: {
764     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766 
767     // Lexicographically compare udiv expressions.
768     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769                                   RC->getLHS(), DT, Depth + 1);
770     if (X != 0)
771       return X;
772     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773                               RC->getRHS(), DT, Depth + 1);
774     if (X == 0)
775       EqCacheSCEV.unionSets(LHS, RHS);
776     return X;
777   }
778 
779   case scTruncate:
780   case scZeroExtend:
781   case scSignExtend: {
782     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784 
785     // Compare cast expressions by operand.
786     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                   LC->getOperand(), RC->getOperand(), DT,
788                                   Depth + 1);
789     if (X == 0)
790       EqCacheSCEV.unionSets(LHS, RHS);
791     return X;
792   }
793 
794   case scCouldNotCompute:
795     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796   }
797   llvm_unreachable("Unknown SCEV kind!");
798 }
799 
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value.  When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine.  In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810                               LoopInfo *LI, DominatorTree &DT) {
811   if (Ops.size() < 2) return;  // Noop
812 
813   EquivalenceClasses<const SCEV *> EqCacheSCEV;
814   EquivalenceClasses<const Value *> EqCacheValue;
815   if (Ops.size() == 2) {
816     // This is the common case, which also happens to be trivially simple.
817     // Special case it.
818     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820       std::swap(LHS, RHS);
821     return;
822   }
823 
824   // Do the rough sort by complexity.
825   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827            0;
828   });
829 
830   // Now that we are sorted by complexity, group elements of the same
831   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
832   // be extremely short in practice.  Note that we take this approach because we
833   // do not want to depend on the addresses of the objects we are grouping.
834   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835     const SCEV *S = Ops[i];
836     unsigned Complexity = S->getSCEVType();
837 
838     // If there are any objects of the same complexity and same value as this
839     // one, group them.
840     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841       if (Ops[j] == S) { // Found a duplicate.
842         // Move it to immediately after i'th element.
843         std::swap(Ops[i+1], Ops[j]);
844         ++i;   // no need to rescan it.
845         if (i == e-2) return;  // Done!
846       }
847     }
848   }
849 }
850 
851 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
852 /// least HugeExprThreshold nodes).
853 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
854   return any_of(Ops, [](const SCEV *S) {
855     return S->getExpressionSize() >= HugeExprThreshold;
856   });
857 }
858 
859 //===----------------------------------------------------------------------===//
860 //                      Simple SCEV method implementations
861 //===----------------------------------------------------------------------===//
862 
863 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
864 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
865                                        ScalarEvolution &SE,
866                                        Type *ResultTy) {
867   // Handle the simplest case efficiently.
868   if (K == 1)
869     return SE.getTruncateOrZeroExtend(It, ResultTy);
870 
871   // We are using the following formula for BC(It, K):
872   //
873   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
874   //
875   // Suppose, W is the bitwidth of the return value.  We must be prepared for
876   // overflow.  Hence, we must assure that the result of our computation is
877   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
878   // safe in modular arithmetic.
879   //
880   // However, this code doesn't use exactly that formula; the formula it uses
881   // is something like the following, where T is the number of factors of 2 in
882   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
883   // exponentiation:
884   //
885   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
886   //
887   // This formula is trivially equivalent to the previous formula.  However,
888   // this formula can be implemented much more efficiently.  The trick is that
889   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
890   // arithmetic.  To do exact division in modular arithmetic, all we have
891   // to do is multiply by the inverse.  Therefore, this step can be done at
892   // width W.
893   //
894   // The next issue is how to safely do the division by 2^T.  The way this
895   // is done is by doing the multiplication step at a width of at least W + T
896   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
897   // when we perform the division by 2^T (which is equivalent to a right shift
898   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
899   // truncated out after the division by 2^T.
900   //
901   // In comparison to just directly using the first formula, this technique
902   // is much more efficient; using the first formula requires W * K bits,
903   // but this formula less than W + K bits. Also, the first formula requires
904   // a division step, whereas this formula only requires multiplies and shifts.
905   //
906   // It doesn't matter whether the subtraction step is done in the calculation
907   // width or the input iteration count's width; if the subtraction overflows,
908   // the result must be zero anyway.  We prefer here to do it in the width of
909   // the induction variable because it helps a lot for certain cases; CodeGen
910   // isn't smart enough to ignore the overflow, which leads to much less
911   // efficient code if the width of the subtraction is wider than the native
912   // register width.
913   //
914   // (It's possible to not widen at all by pulling out factors of 2 before
915   // the multiplication; for example, K=2 can be calculated as
916   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
917   // extra arithmetic, so it's not an obvious win, and it gets
918   // much more complicated for K > 3.)
919 
920   // Protection from insane SCEVs; this bound is conservative,
921   // but it probably doesn't matter.
922   if (K > 1000)
923     return SE.getCouldNotCompute();
924 
925   unsigned W = SE.getTypeSizeInBits(ResultTy);
926 
927   // Calculate K! / 2^T and T; we divide out the factors of two before
928   // multiplying for calculating K! / 2^T to avoid overflow.
929   // Other overflow doesn't matter because we only care about the bottom
930   // W bits of the result.
931   APInt OddFactorial(W, 1);
932   unsigned T = 1;
933   for (unsigned i = 3; i <= K; ++i) {
934     APInt Mult(W, i);
935     unsigned TwoFactors = Mult.countTrailingZeros();
936     T += TwoFactors;
937     Mult.lshrInPlace(TwoFactors);
938     OddFactorial *= Mult;
939   }
940 
941   // We need at least W + T bits for the multiplication step
942   unsigned CalculationBits = W + T;
943 
944   // Calculate 2^T, at width T+W.
945   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
946 
947   // Calculate the multiplicative inverse of K! / 2^T;
948   // this multiplication factor will perform the exact division by
949   // K! / 2^T.
950   APInt Mod = APInt::getSignedMinValue(W+1);
951   APInt MultiplyFactor = OddFactorial.zext(W+1);
952   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
953   MultiplyFactor = MultiplyFactor.trunc(W);
954 
955   // Calculate the product, at width T+W
956   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
957                                                       CalculationBits);
958   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
959   for (unsigned i = 1; i != K; ++i) {
960     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
961     Dividend = SE.getMulExpr(Dividend,
962                              SE.getTruncateOrZeroExtend(S, CalculationTy));
963   }
964 
965   // Divide by 2^T
966   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
967 
968   // Truncate the result, and divide by K! / 2^T.
969 
970   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
971                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
972 }
973 
974 /// Return the value of this chain of recurrences at the specified iteration
975 /// number.  We can evaluate this recurrence by multiplying each element in the
976 /// chain by the binomial coefficient corresponding to it.  In other words, we
977 /// can evaluate {A,+,B,+,C,+,D} as:
978 ///
979 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
980 ///
981 /// where BC(It, k) stands for binomial coefficient.
982 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
983                                                 ScalarEvolution &SE) const {
984   const SCEV *Result = getStart();
985   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
986     // The computation is correct in the face of overflow provided that the
987     // multiplication is performed _after_ the evaluation of the binomial
988     // coefficient.
989     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
990     if (isa<SCEVCouldNotCompute>(Coeff))
991       return Coeff;
992 
993     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
994   }
995   return Result;
996 }
997 
998 //===----------------------------------------------------------------------===//
999 //                    SCEV Expression folder implementations
1000 //===----------------------------------------------------------------------===//
1001 
1002 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1003                                              unsigned Depth) {
1004   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1005          "This is not a truncating conversion!");
1006   assert(isSCEVable(Ty) &&
1007          "This is not a conversion to a SCEVable type!");
1008   Ty = getEffectiveSCEVType(Ty);
1009 
1010   FoldingSetNodeID ID;
1011   ID.AddInteger(scTruncate);
1012   ID.AddPointer(Op);
1013   ID.AddPointer(Ty);
1014   void *IP = nullptr;
1015   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1016 
1017   // Fold if the operand is constant.
1018   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1019     return getConstant(
1020       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1021 
1022   // trunc(trunc(x)) --> trunc(x)
1023   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1024     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1025 
1026   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1027   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1028     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1029 
1030   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1031   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1032     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1033 
1034   if (Depth > MaxCastDepth) {
1035     SCEV *S =
1036         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1037     UniqueSCEVs.InsertNode(S, IP);
1038     addToLoopUseLists(S);
1039     return S;
1040   }
1041 
1042   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1043   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1044   // if after transforming we have at most one truncate, not counting truncates
1045   // that replace other casts.
1046   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1047     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1048     SmallVector<const SCEV *, 4> Operands;
1049     unsigned numTruncs = 0;
1050     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1051          ++i) {
1052       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1053       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1054         numTruncs++;
1055       Operands.push_back(S);
1056     }
1057     if (numTruncs < 2) {
1058       if (isa<SCEVAddExpr>(Op))
1059         return getAddExpr(Operands);
1060       else if (isa<SCEVMulExpr>(Op))
1061         return getMulExpr(Operands);
1062       else
1063         llvm_unreachable("Unexpected SCEV type for Op.");
1064     }
1065     // Although we checked in the beginning that ID is not in the cache, it is
1066     // possible that during recursion and different modification ID was inserted
1067     // into the cache. So if we find it, just return it.
1068     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069       return S;
1070   }
1071 
1072   // If the input value is a chrec scev, truncate the chrec's operands.
1073   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1074     SmallVector<const SCEV *, 4> Operands;
1075     for (const SCEV *Op : AddRec->operands())
1076       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1077     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1078   }
1079 
1080   // The cast wasn't folded; create an explicit cast node. We can reuse
1081   // the existing insert position since if we get here, we won't have
1082   // made any changes which would invalidate it.
1083   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1084                                                  Op, Ty);
1085   UniqueSCEVs.InsertNode(S, IP);
1086   addToLoopUseLists(S);
1087   return S;
1088 }
1089 
1090 // Get the limit of a recurrence such that incrementing by Step cannot cause
1091 // signed overflow as long as the value of the recurrence within the
1092 // loop does not exceed this limit before incrementing.
1093 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1094                                                  ICmpInst::Predicate *Pred,
1095                                                  ScalarEvolution *SE) {
1096   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1097   if (SE->isKnownPositive(Step)) {
1098     *Pred = ICmpInst::ICMP_SLT;
1099     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1100                            SE->getSignedRangeMax(Step));
1101   }
1102   if (SE->isKnownNegative(Step)) {
1103     *Pred = ICmpInst::ICMP_SGT;
1104     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1105                            SE->getSignedRangeMin(Step));
1106   }
1107   return nullptr;
1108 }
1109 
1110 // Get the limit of a recurrence such that incrementing by Step cannot cause
1111 // unsigned overflow as long as the value of the recurrence within the loop does
1112 // not exceed this limit before incrementing.
1113 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1114                                                    ICmpInst::Predicate *Pred,
1115                                                    ScalarEvolution *SE) {
1116   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1117   *Pred = ICmpInst::ICMP_ULT;
1118 
1119   return SE->getConstant(APInt::getMinValue(BitWidth) -
1120                          SE->getUnsignedRangeMax(Step));
1121 }
1122 
1123 namespace {
1124 
1125 struct ExtendOpTraitsBase {
1126   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1127                                                           unsigned);
1128 };
1129 
1130 // Used to make code generic over signed and unsigned overflow.
1131 template <typename ExtendOp> struct ExtendOpTraits {
1132   // Members present:
1133   //
1134   // static const SCEV::NoWrapFlags WrapType;
1135   //
1136   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1137   //
1138   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1139   //                                           ICmpInst::Predicate *Pred,
1140   //                                           ScalarEvolution *SE);
1141 };
1142 
1143 template <>
1144 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1145   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1146 
1147   static const GetExtendExprTy GetExtendExpr;
1148 
1149   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1150                                              ICmpInst::Predicate *Pred,
1151                                              ScalarEvolution *SE) {
1152     return getSignedOverflowLimitForStep(Step, Pred, SE);
1153   }
1154 };
1155 
1156 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1157     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1158 
1159 template <>
1160 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1161   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1162 
1163   static const GetExtendExprTy GetExtendExpr;
1164 
1165   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1166                                              ICmpInst::Predicate *Pred,
1167                                              ScalarEvolution *SE) {
1168     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1169   }
1170 };
1171 
1172 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1173     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1174 
1175 } // end anonymous namespace
1176 
1177 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1178 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1179 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1180 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1181 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1182 // expression "Step + sext/zext(PreIncAR)" is congruent with
1183 // "sext/zext(PostIncAR)"
1184 template <typename ExtendOpTy>
1185 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1186                                         ScalarEvolution *SE, unsigned Depth) {
1187   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1188   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1189 
1190   const Loop *L = AR->getLoop();
1191   const SCEV *Start = AR->getStart();
1192   const SCEV *Step = AR->getStepRecurrence(*SE);
1193 
1194   // Check for a simple looking step prior to loop entry.
1195   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1196   if (!SA)
1197     return nullptr;
1198 
1199   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1200   // subtraction is expensive. For this purpose, perform a quick and dirty
1201   // difference, by checking for Step in the operand list.
1202   SmallVector<const SCEV *, 4> DiffOps;
1203   for (const SCEV *Op : SA->operands())
1204     if (Op != Step)
1205       DiffOps.push_back(Op);
1206 
1207   if (DiffOps.size() == SA->getNumOperands())
1208     return nullptr;
1209 
1210   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1211   // `Step`:
1212 
1213   // 1. NSW/NUW flags on the step increment.
1214   auto PreStartFlags =
1215     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1216   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1217   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1218       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1219 
1220   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1221   // "S+X does not sign/unsign-overflow".
1222   //
1223 
1224   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1225   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1226       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1227     return PreStart;
1228 
1229   // 2. Direct overflow check on the step operation's expression.
1230   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1231   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1232   const SCEV *OperandExtendedStart =
1233       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1234                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1235   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1236     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1237       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1238       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1239       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1240       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1241     }
1242     return PreStart;
1243   }
1244 
1245   // 3. Loop precondition.
1246   ICmpInst::Predicate Pred;
1247   const SCEV *OverflowLimit =
1248       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1249 
1250   if (OverflowLimit &&
1251       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1252     return PreStart;
1253 
1254   return nullptr;
1255 }
1256 
1257 // Get the normalized zero or sign extended expression for this AddRec's Start.
1258 template <typename ExtendOpTy>
1259 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1260                                         ScalarEvolution *SE,
1261                                         unsigned Depth) {
1262   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1263 
1264   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1265   if (!PreStart)
1266     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1267 
1268   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1269                                              Depth),
1270                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1271 }
1272 
1273 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1274 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1275 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1276 //
1277 // Formally:
1278 //
1279 //     {S,+,X} == {S-T,+,X} + T
1280 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1281 //
1282 // If ({S-T,+,X} + T) does not overflow  ... (1)
1283 //
1284 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1285 //
1286 // If {S-T,+,X} does not overflow  ... (2)
1287 //
1288 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1289 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1290 //
1291 // If (S-T)+T does not overflow  ... (3)
1292 //
1293 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1294 //      == {Ext(S),+,Ext(X)} == LHS
1295 //
1296 // Thus, if (1), (2) and (3) are true for some T, then
1297 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1298 //
1299 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1300 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1301 // to check for (1) and (2).
1302 //
1303 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1304 // is `Delta` (defined below).
1305 template <typename ExtendOpTy>
1306 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1307                                                 const SCEV *Step,
1308                                                 const Loop *L) {
1309   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1310 
1311   // We restrict `Start` to a constant to prevent SCEV from spending too much
1312   // time here.  It is correct (but more expensive) to continue with a
1313   // non-constant `Start` and do a general SCEV subtraction to compute
1314   // `PreStart` below.
1315   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1316   if (!StartC)
1317     return false;
1318 
1319   APInt StartAI = StartC->getAPInt();
1320 
1321   for (unsigned Delta : {-2, -1, 1, 2}) {
1322     const SCEV *PreStart = getConstant(StartAI - Delta);
1323 
1324     FoldingSetNodeID ID;
1325     ID.AddInteger(scAddRecExpr);
1326     ID.AddPointer(PreStart);
1327     ID.AddPointer(Step);
1328     ID.AddPointer(L);
1329     void *IP = nullptr;
1330     const auto *PreAR =
1331       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1332 
1333     // Give up if we don't already have the add recurrence we need because
1334     // actually constructing an add recurrence is relatively expensive.
1335     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1336       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1337       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1338       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1339           DeltaS, &Pred, this);
1340       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1341         return true;
1342     }
1343   }
1344 
1345   return false;
1346 }
1347 
1348 // Finds an integer D for an expression (C + x + y + ...) such that the top
1349 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1350 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1351 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1352 // the (C + x + y + ...) expression is \p WholeAddExpr.
1353 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1354                                             const SCEVConstant *ConstantTerm,
1355                                             const SCEVAddExpr *WholeAddExpr) {
1356   const APInt &C = ConstantTerm->getAPInt();
1357   const unsigned BitWidth = C.getBitWidth();
1358   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1359   uint32_t TZ = BitWidth;
1360   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1361     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1362   if (TZ) {
1363     // Set D to be as many least significant bits of C as possible while still
1364     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1365     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1366   }
1367   return APInt(BitWidth, 0);
1368 }
1369 
1370 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1371 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1372 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1373 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1374 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1375                                             const APInt &ConstantStart,
1376                                             const SCEV *Step) {
1377   const unsigned BitWidth = ConstantStart.getBitWidth();
1378   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1379   if (TZ)
1380     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1381                          : ConstantStart;
1382   return APInt(BitWidth, 0);
1383 }
1384 
1385 const SCEV *
1386 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1387   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1388          "This is not an extending conversion!");
1389   assert(isSCEVable(Ty) &&
1390          "This is not a conversion to a SCEVable type!");
1391   Ty = getEffectiveSCEVType(Ty);
1392 
1393   // Fold if the operand is constant.
1394   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1395     return getConstant(
1396       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1397 
1398   // zext(zext(x)) --> zext(x)
1399   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1400     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1401 
1402   // Before doing any expensive analysis, check to see if we've already
1403   // computed a SCEV for this Op and Ty.
1404   FoldingSetNodeID ID;
1405   ID.AddInteger(scZeroExtend);
1406   ID.AddPointer(Op);
1407   ID.AddPointer(Ty);
1408   void *IP = nullptr;
1409   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1410   if (Depth > MaxCastDepth) {
1411     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1412                                                      Op, Ty);
1413     UniqueSCEVs.InsertNode(S, IP);
1414     addToLoopUseLists(S);
1415     return S;
1416   }
1417 
1418   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1419   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1420     // It's possible the bits taken off by the truncate were all zero bits. If
1421     // so, we should be able to simplify this further.
1422     const SCEV *X = ST->getOperand();
1423     ConstantRange CR = getUnsignedRange(X);
1424     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1425     unsigned NewBits = getTypeSizeInBits(Ty);
1426     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1427             CR.zextOrTrunc(NewBits)))
1428       return getTruncateOrZeroExtend(X, Ty, Depth);
1429   }
1430 
1431   // If the input value is a chrec scev, and we can prove that the value
1432   // did not overflow the old, smaller, value, we can zero extend all of the
1433   // operands (often constants).  This allows analysis of something like
1434   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1435   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1436     if (AR->isAffine()) {
1437       const SCEV *Start = AR->getStart();
1438       const SCEV *Step = AR->getStepRecurrence(*this);
1439       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1440       const Loop *L = AR->getLoop();
1441 
1442       if (!AR->hasNoUnsignedWrap()) {
1443         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1444         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1445       }
1446 
1447       // If we have special knowledge that this addrec won't overflow,
1448       // we don't need to do any further analysis.
1449       if (AR->hasNoUnsignedWrap())
1450         return getAddRecExpr(
1451             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1452             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1453 
1454       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1455       // Note that this serves two purposes: It filters out loops that are
1456       // simply not analyzable, and it covers the case where this code is
1457       // being called from within backedge-taken count analysis, such that
1458       // attempting to ask for the backedge-taken count would likely result
1459       // in infinite recursion. In the later case, the analysis code will
1460       // cope with a conservative value, and it will take care to purge
1461       // that value once it has finished.
1462       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1463       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1464         // Manually compute the final value for AR, checking for
1465         // overflow.
1466 
1467         // Check whether the backedge-taken count can be losslessly casted to
1468         // the addrec's type. The count is always unsigned.
1469         const SCEV *CastedMaxBECount =
1470             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1471         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1472             CastedMaxBECount, MaxBECount->getType(), Depth);
1473         if (MaxBECount == RecastedMaxBECount) {
1474           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1475           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1476           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1477                                         SCEV::FlagAnyWrap, Depth + 1);
1478           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1479                                                           SCEV::FlagAnyWrap,
1480                                                           Depth + 1),
1481                                                WideTy, Depth + 1);
1482           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1483           const SCEV *WideMaxBECount =
1484             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1485           const SCEV *OperandExtendedAdd =
1486             getAddExpr(WideStart,
1487                        getMulExpr(WideMaxBECount,
1488                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1489                                   SCEV::FlagAnyWrap, Depth + 1),
1490                        SCEV::FlagAnyWrap, Depth + 1);
1491           if (ZAdd == OperandExtendedAdd) {
1492             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1494             // Return the expression with the addrec on the outside.
1495             return getAddRecExpr(
1496                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1497                                                          Depth + 1),
1498                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1499                 AR->getNoWrapFlags());
1500           }
1501           // Similar to above, only this time treat the step value as signed.
1502           // This covers loops that count down.
1503           OperandExtendedAdd =
1504             getAddExpr(WideStart,
1505                        getMulExpr(WideMaxBECount,
1506                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1507                                   SCEV::FlagAnyWrap, Depth + 1),
1508                        SCEV::FlagAnyWrap, Depth + 1);
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1516                                                          Depth + 1),
1517                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1518                 AR->getNoWrapFlags());
1519           }
1520         }
1521       }
1522 
1523       // Normally, in the cases we can prove no-overflow via a
1524       // backedge guarding condition, we can also compute a backedge
1525       // taken count for the loop.  The exceptions are assumptions and
1526       // guards present in the loop -- SCEV is not great at exploiting
1527       // these to compute max backedge taken counts, but can still use
1528       // these to prove lack of overflow.  Use this fact to avoid
1529       // doing extra work that may not pay off.
1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531           !AC.assumptions().empty()) {
1532         // If the backedge is guarded by a comparison with the pre-inc
1533         // value the addrec is safe. Also, if the entry is guarded by
1534         // a comparison with the start value and the backedge is
1535         // guarded by a comparison with the post-inc value, the addrec
1536         // is safe.
1537         if (isKnownPositive(Step)) {
1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539                                       getUnsignedRangeMax(Step));
1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1542             // Cache knowledge of AR NUW, which is propagated to this
1543             // AddRec.
1544             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1545             // Return the expression with the addrec on the outside.
1546             return getAddRecExpr(
1547                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1548                                                          Depth + 1),
1549                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1550                 AR->getNoWrapFlags());
1551           }
1552         } else if (isKnownNegative(Step)) {
1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554                                       getSignedRangeMin(Step));
1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1557             // Cache knowledge of AR NW, which is propagated to this
1558             // AddRec.  Negative step causes unsigned wrap, but it
1559             // still can't self-wrap.
1560             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1561             // Return the expression with the addrec on the outside.
1562             return getAddRecExpr(
1563                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1564                                                          Depth + 1),
1565                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1566                 AR->getNoWrapFlags());
1567           }
1568         }
1569       }
1570 
1571       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1572       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1573       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1574       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1575         const APInt &C = SC->getAPInt();
1576         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1577         if (D != 0) {
1578           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1579           const SCEV *SResidual =
1580               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1581           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1582           return getAddExpr(SZExtD, SZExtR,
1583                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1584                             Depth + 1);
1585         }
1586       }
1587 
1588       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1589         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1590         return getAddRecExpr(
1591             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1592             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1593       }
1594     }
1595 
1596   // zext(A % B) --> zext(A) % zext(B)
1597   {
1598     const SCEV *LHS;
1599     const SCEV *RHS;
1600     if (matchURem(Op, LHS, RHS))
1601       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1602                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1603   }
1604 
1605   // zext(A / B) --> zext(A) / zext(B).
1606   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1607     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1608                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1609 
1610   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1611     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1612     if (SA->hasNoUnsignedWrap()) {
1613       // If the addition does not unsign overflow then we can, by definition,
1614       // commute the zero extension with the addition operation.
1615       SmallVector<const SCEV *, 4> Ops;
1616       for (const auto *Op : SA->operands())
1617         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1618       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1619     }
1620 
1621     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1622     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1623     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1624     //
1625     // Often address arithmetics contain expressions like
1626     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1627     // This transformation is useful while proving that such expressions are
1628     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1629     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1630       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1631       if (D != 0) {
1632         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1633         const SCEV *SResidual =
1634             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1635         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1636         return getAddExpr(SZExtD, SZExtR,
1637                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1638                           Depth + 1);
1639       }
1640     }
1641   }
1642 
1643   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1644     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1645     if (SM->hasNoUnsignedWrap()) {
1646       // If the multiply does not unsign overflow then we can, by definition,
1647       // commute the zero extension with the multiply operation.
1648       SmallVector<const SCEV *, 4> Ops;
1649       for (const auto *Op : SM->operands())
1650         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1651       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1652     }
1653 
1654     // zext(2^K * (trunc X to iN)) to iM ->
1655     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1656     //
1657     // Proof:
1658     //
1659     //     zext(2^K * (trunc X to iN)) to iM
1660     //   = zext((trunc X to iN) << K) to iM
1661     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1662     //     (because shl removes the top K bits)
1663     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1664     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1665     //
1666     if (SM->getNumOperands() == 2)
1667       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1668         if (MulLHS->getAPInt().isPowerOf2())
1669           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1670             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1671                                MulLHS->getAPInt().logBase2();
1672             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1673             return getMulExpr(
1674                 getZeroExtendExpr(MulLHS, Ty),
1675                 getZeroExtendExpr(
1676                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1677                 SCEV::FlagNUW, Depth + 1);
1678           }
1679   }
1680 
1681   // The cast wasn't folded; create an explicit cast node.
1682   // Recompute the insert position, as it may have been invalidated.
1683   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1684   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1685                                                    Op, Ty);
1686   UniqueSCEVs.InsertNode(S, IP);
1687   addToLoopUseLists(S);
1688   return S;
1689 }
1690 
1691 const SCEV *
1692 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1693   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1694          "This is not an extending conversion!");
1695   assert(isSCEVable(Ty) &&
1696          "This is not a conversion to a SCEVable type!");
1697   Ty = getEffectiveSCEVType(Ty);
1698 
1699   // Fold if the operand is constant.
1700   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1701     return getConstant(
1702       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1703 
1704   // sext(sext(x)) --> sext(x)
1705   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1706     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1707 
1708   // sext(zext(x)) --> zext(x)
1709   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1710     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1711 
1712   // Before doing any expensive analysis, check to see if we've already
1713   // computed a SCEV for this Op and Ty.
1714   FoldingSetNodeID ID;
1715   ID.AddInteger(scSignExtend);
1716   ID.AddPointer(Op);
1717   ID.AddPointer(Ty);
1718   void *IP = nullptr;
1719   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1720   // Limit recursion depth.
1721   if (Depth > MaxCastDepth) {
1722     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1723                                                      Op, Ty);
1724     UniqueSCEVs.InsertNode(S, IP);
1725     addToLoopUseLists(S);
1726     return S;
1727   }
1728 
1729   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1730   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1731     // It's possible the bits taken off by the truncate were all sign bits. If
1732     // so, we should be able to simplify this further.
1733     const SCEV *X = ST->getOperand();
1734     ConstantRange CR = getSignedRange(X);
1735     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1736     unsigned NewBits = getTypeSizeInBits(Ty);
1737     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1738             CR.sextOrTrunc(NewBits)))
1739       return getTruncateOrSignExtend(X, Ty, Depth);
1740   }
1741 
1742   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1743     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1744     if (SA->hasNoSignedWrap()) {
1745       // If the addition does not sign overflow then we can, by definition,
1746       // commute the sign extension with the addition operation.
1747       SmallVector<const SCEV *, 4> Ops;
1748       for (const auto *Op : SA->operands())
1749         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1750       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1751     }
1752 
1753     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1754     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1755     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1756     //
1757     // For instance, this will bring two seemingly different expressions:
1758     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1759     //         sext(6 + 20 * %x + 24 * %y)
1760     // to the same form:
1761     //     2 + sext(4 + 20 * %x + 24 * %y)
1762     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1763       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1764       if (D != 0) {
1765         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1766         const SCEV *SResidual =
1767             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1768         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1769         return getAddExpr(SSExtD, SSExtR,
1770                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1771                           Depth + 1);
1772       }
1773     }
1774   }
1775   // If the input value is a chrec scev, and we can prove that the value
1776   // did not overflow the old, smaller, value, we can sign extend all of the
1777   // operands (often constants).  This allows analysis of something like
1778   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1779   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1780     if (AR->isAffine()) {
1781       const SCEV *Start = AR->getStart();
1782       const SCEV *Step = AR->getStepRecurrence(*this);
1783       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1784       const Loop *L = AR->getLoop();
1785 
1786       if (!AR->hasNoSignedWrap()) {
1787         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1788         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1789       }
1790 
1791       // If we have special knowledge that this addrec won't overflow,
1792       // we don't need to do any further analysis.
1793       if (AR->hasNoSignedWrap())
1794         return getAddRecExpr(
1795             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1796             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1797 
1798       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1799       // Note that this serves two purposes: It filters out loops that are
1800       // simply not analyzable, and it covers the case where this code is
1801       // being called from within backedge-taken count analysis, such that
1802       // attempting to ask for the backedge-taken count would likely result
1803       // in infinite recursion. In the later case, the analysis code will
1804       // cope with a conservative value, and it will take care to purge
1805       // that value once it has finished.
1806       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1807       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1808         // Manually compute the final value for AR, checking for
1809         // overflow.
1810 
1811         // Check whether the backedge-taken count can be losslessly casted to
1812         // the addrec's type. The count is always unsigned.
1813         const SCEV *CastedMaxBECount =
1814             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1815         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1816             CastedMaxBECount, MaxBECount->getType(), Depth);
1817         if (MaxBECount == RecastedMaxBECount) {
1818           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1819           // Check whether Start+Step*MaxBECount has no signed overflow.
1820           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1821                                         SCEV::FlagAnyWrap, Depth + 1);
1822           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1823                                                           SCEV::FlagAnyWrap,
1824                                                           Depth + 1),
1825                                                WideTy, Depth + 1);
1826           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1827           const SCEV *WideMaxBECount =
1828             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1829           const SCEV *OperandExtendedAdd =
1830             getAddExpr(WideStart,
1831                        getMulExpr(WideMaxBECount,
1832                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1833                                   SCEV::FlagAnyWrap, Depth + 1),
1834                        SCEV::FlagAnyWrap, Depth + 1);
1835           if (SAdd == OperandExtendedAdd) {
1836             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1837             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1838             // Return the expression with the addrec on the outside.
1839             return getAddRecExpr(
1840                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1841                                                          Depth + 1),
1842                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1843                 AR->getNoWrapFlags());
1844           }
1845           // Similar to above, only this time treat the step value as unsigned.
1846           // This covers loops that count up with an unsigned step.
1847           OperandExtendedAdd =
1848             getAddExpr(WideStart,
1849                        getMulExpr(WideMaxBECount,
1850                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1851                                   SCEV::FlagAnyWrap, Depth + 1),
1852                        SCEV::FlagAnyWrap, Depth + 1);
1853           if (SAdd == OperandExtendedAdd) {
1854             // If AR wraps around then
1855             //
1856             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1857             // => SAdd != OperandExtendedAdd
1858             //
1859             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1860             // (SAdd == OperandExtendedAdd => AR is NW)
1861 
1862             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1863 
1864             // Return the expression with the addrec on the outside.
1865             return getAddRecExpr(
1866                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1867                                                          Depth + 1),
1868                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1869                 AR->getNoWrapFlags());
1870           }
1871         }
1872       }
1873 
1874       // Normally, in the cases we can prove no-overflow via a
1875       // backedge guarding condition, we can also compute a backedge
1876       // taken count for the loop.  The exceptions are assumptions and
1877       // guards present in the loop -- SCEV is not great at exploiting
1878       // these to compute max backedge taken counts, but can still use
1879       // these to prove lack of overflow.  Use this fact to avoid
1880       // doing extra work that may not pay off.
1881 
1882       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1883           !AC.assumptions().empty()) {
1884         // If the backedge is guarded by a comparison with the pre-inc
1885         // value the addrec is safe. Also, if the entry is guarded by
1886         // a comparison with the start value and the backedge is
1887         // guarded by a comparison with the post-inc value, the addrec
1888         // is safe.
1889         ICmpInst::Predicate Pred;
1890         const SCEV *OverflowLimit =
1891             getSignedOverflowLimitForStep(Step, &Pred, this);
1892         if (OverflowLimit &&
1893             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1894              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1895           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1896           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1897           return getAddRecExpr(
1898               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1899               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1900         }
1901       }
1902 
1903       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1904       // if D + (C - D + Step * n) could be proven to not signed wrap
1905       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1906       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1907         const APInt &C = SC->getAPInt();
1908         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1909         if (D != 0) {
1910           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1911           const SCEV *SResidual =
1912               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1913           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1914           return getAddExpr(SSExtD, SSExtR,
1915                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1916                             Depth + 1);
1917         }
1918       }
1919 
1920       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1921         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1922         return getAddRecExpr(
1923             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1924             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1925       }
1926     }
1927 
1928   // If the input value is provably positive and we could not simplify
1929   // away the sext build a zext instead.
1930   if (isKnownNonNegative(Op))
1931     return getZeroExtendExpr(Op, Ty, Depth + 1);
1932 
1933   // The cast wasn't folded; create an explicit cast node.
1934   // Recompute the insert position, as it may have been invalidated.
1935   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1936   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1937                                                    Op, Ty);
1938   UniqueSCEVs.InsertNode(S, IP);
1939   addToLoopUseLists(S);
1940   return S;
1941 }
1942 
1943 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1944 /// unspecified bits out to the given type.
1945 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1946                                               Type *Ty) {
1947   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1948          "This is not an extending conversion!");
1949   assert(isSCEVable(Ty) &&
1950          "This is not a conversion to a SCEVable type!");
1951   Ty = getEffectiveSCEVType(Ty);
1952 
1953   // Sign-extend negative constants.
1954   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1955     if (SC->getAPInt().isNegative())
1956       return getSignExtendExpr(Op, Ty);
1957 
1958   // Peel off a truncate cast.
1959   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1960     const SCEV *NewOp = T->getOperand();
1961     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1962       return getAnyExtendExpr(NewOp, Ty);
1963     return getTruncateOrNoop(NewOp, Ty);
1964   }
1965 
1966   // Next try a zext cast. If the cast is folded, use it.
1967   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1968   if (!isa<SCEVZeroExtendExpr>(ZExt))
1969     return ZExt;
1970 
1971   // Next try a sext cast. If the cast is folded, use it.
1972   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1973   if (!isa<SCEVSignExtendExpr>(SExt))
1974     return SExt;
1975 
1976   // Force the cast to be folded into the operands of an addrec.
1977   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1978     SmallVector<const SCEV *, 4> Ops;
1979     for (const SCEV *Op : AR->operands())
1980       Ops.push_back(getAnyExtendExpr(Op, Ty));
1981     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1982   }
1983 
1984   // If the expression is obviously signed, use the sext cast value.
1985   if (isa<SCEVSMaxExpr>(Op))
1986     return SExt;
1987 
1988   // Absent any other information, use the zext cast value.
1989   return ZExt;
1990 }
1991 
1992 /// Process the given Ops list, which is a list of operands to be added under
1993 /// the given scale, update the given map. This is a helper function for
1994 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1995 /// that would form an add expression like this:
1996 ///
1997 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1998 ///
1999 /// where A and B are constants, update the map with these values:
2000 ///
2001 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2002 ///
2003 /// and add 13 + A*B*29 to AccumulatedConstant.
2004 /// This will allow getAddRecExpr to produce this:
2005 ///
2006 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2007 ///
2008 /// This form often exposes folding opportunities that are hidden in
2009 /// the original operand list.
2010 ///
2011 /// Return true iff it appears that any interesting folding opportunities
2012 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2013 /// the common case where no interesting opportunities are present, and
2014 /// is also used as a check to avoid infinite recursion.
2015 static bool
2016 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2017                              SmallVectorImpl<const SCEV *> &NewOps,
2018                              APInt &AccumulatedConstant,
2019                              const SCEV *const *Ops, size_t NumOperands,
2020                              const APInt &Scale,
2021                              ScalarEvolution &SE) {
2022   bool Interesting = false;
2023 
2024   // Iterate over the add operands. They are sorted, with constants first.
2025   unsigned i = 0;
2026   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2027     ++i;
2028     // Pull a buried constant out to the outside.
2029     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2030       Interesting = true;
2031     AccumulatedConstant += Scale * C->getAPInt();
2032   }
2033 
2034   // Next comes everything else. We're especially interested in multiplies
2035   // here, but they're in the middle, so just visit the rest with one loop.
2036   for (; i != NumOperands; ++i) {
2037     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2038     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2039       APInt NewScale =
2040           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2041       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2042         // A multiplication of a constant with another add; recurse.
2043         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2044         Interesting |=
2045           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2046                                        Add->op_begin(), Add->getNumOperands(),
2047                                        NewScale, SE);
2048       } else {
2049         // A multiplication of a constant with some other value. Update
2050         // the map.
2051         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2052         const SCEV *Key = SE.getMulExpr(MulOps);
2053         auto Pair = M.insert({Key, NewScale});
2054         if (Pair.second) {
2055           NewOps.push_back(Pair.first->first);
2056         } else {
2057           Pair.first->second += NewScale;
2058           // The map already had an entry for this value, which may indicate
2059           // a folding opportunity.
2060           Interesting = true;
2061         }
2062       }
2063     } else {
2064       // An ordinary operand. Update the map.
2065       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2066           M.insert({Ops[i], Scale});
2067       if (Pair.second) {
2068         NewOps.push_back(Pair.first->first);
2069       } else {
2070         Pair.first->second += Scale;
2071         // The map already had an entry for this value, which may indicate
2072         // a folding opportunity.
2073         Interesting = true;
2074       }
2075     }
2076   }
2077 
2078   return Interesting;
2079 }
2080 
2081 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2082 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2083 // can't-overflow flags for the operation if possible.
2084 static SCEV::NoWrapFlags
2085 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2086                       const ArrayRef<const SCEV *> Ops,
2087                       SCEV::NoWrapFlags Flags) {
2088   using namespace std::placeholders;
2089 
2090   using OBO = OverflowingBinaryOperator;
2091 
2092   bool CanAnalyze =
2093       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2094   (void)CanAnalyze;
2095   assert(CanAnalyze && "don't call from other places!");
2096 
2097   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2098   SCEV::NoWrapFlags SignOrUnsignWrap =
2099       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2100 
2101   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2102   auto IsKnownNonNegative = [&](const SCEV *S) {
2103     return SE->isKnownNonNegative(S);
2104   };
2105 
2106   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2107     Flags =
2108         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2109 
2110   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2111 
2112   if (SignOrUnsignWrap != SignOrUnsignMask &&
2113       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2114       isa<SCEVConstant>(Ops[0])) {
2115 
2116     auto Opcode = [&] {
2117       switch (Type) {
2118       case scAddExpr:
2119         return Instruction::Add;
2120       case scMulExpr:
2121         return Instruction::Mul;
2122       default:
2123         llvm_unreachable("Unexpected SCEV op.");
2124       }
2125     }();
2126 
2127     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2128 
2129     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2130     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2131       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2132           Opcode, C, OBO::NoSignedWrap);
2133       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2134         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2135     }
2136 
2137     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2138     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2139       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2140           Opcode, C, OBO::NoUnsignedWrap);
2141       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2142         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2143     }
2144   }
2145 
2146   return Flags;
2147 }
2148 
2149 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2150   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2151 }
2152 
2153 /// Get a canonical add expression, or something simpler if possible.
2154 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2155                                         SCEV::NoWrapFlags Flags,
2156                                         unsigned Depth) {
2157   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2158          "only nuw or nsw allowed");
2159   assert(!Ops.empty() && "Cannot get empty add!");
2160   if (Ops.size() == 1) return Ops[0];
2161 #ifndef NDEBUG
2162   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2163   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2164     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2165            "SCEVAddExpr operand types don't match!");
2166 #endif
2167 
2168   // Sort by complexity, this groups all similar expression types together.
2169   GroupByComplexity(Ops, &LI, DT);
2170 
2171   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2172 
2173   // If there are any constants, fold them together.
2174   unsigned Idx = 0;
2175   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2176     ++Idx;
2177     assert(Idx < Ops.size());
2178     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2179       // We found two constants, fold them together!
2180       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2181       if (Ops.size() == 2) return Ops[0];
2182       Ops.erase(Ops.begin()+1);  // Erase the folded element
2183       LHSC = cast<SCEVConstant>(Ops[0]);
2184     }
2185 
2186     // If we are left with a constant zero being added, strip it off.
2187     if (LHSC->getValue()->isZero()) {
2188       Ops.erase(Ops.begin());
2189       --Idx;
2190     }
2191 
2192     if (Ops.size() == 1) return Ops[0];
2193   }
2194 
2195   // Limit recursion calls depth.
2196   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2197     return getOrCreateAddExpr(Ops, Flags);
2198 
2199   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2200     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2201     return S;
2202   }
2203 
2204   // Okay, check to see if the same value occurs in the operand list more than
2205   // once.  If so, merge them together into an multiply expression.  Since we
2206   // sorted the list, these values are required to be adjacent.
2207   Type *Ty = Ops[0]->getType();
2208   bool FoundMatch = false;
2209   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2210     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2211       // Scan ahead to count how many equal operands there are.
2212       unsigned Count = 2;
2213       while (i+Count != e && Ops[i+Count] == Ops[i])
2214         ++Count;
2215       // Merge the values into a multiply.
2216       const SCEV *Scale = getConstant(Ty, Count);
2217       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2218       if (Ops.size() == Count)
2219         return Mul;
2220       Ops[i] = Mul;
2221       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2222       --i; e -= Count - 1;
2223       FoundMatch = true;
2224     }
2225   if (FoundMatch)
2226     return getAddExpr(Ops, Flags, Depth + 1);
2227 
2228   // Check for truncates. If all the operands are truncated from the same
2229   // type, see if factoring out the truncate would permit the result to be
2230   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2231   // if the contents of the resulting outer trunc fold to something simple.
2232   auto FindTruncSrcType = [&]() -> Type * {
2233     // We're ultimately looking to fold an addrec of truncs and muls of only
2234     // constants and truncs, so if we find any other types of SCEV
2235     // as operands of the addrec then we bail and return nullptr here.
2236     // Otherwise, we return the type of the operand of a trunc that we find.
2237     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2238       return T->getOperand()->getType();
2239     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2240       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2241       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2242         return T->getOperand()->getType();
2243     }
2244     return nullptr;
2245   };
2246   if (auto *SrcType = FindTruncSrcType()) {
2247     SmallVector<const SCEV *, 8> LargeOps;
2248     bool Ok = true;
2249     // Check all the operands to see if they can be represented in the
2250     // source type of the truncate.
2251     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2252       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2253         if (T->getOperand()->getType() != SrcType) {
2254           Ok = false;
2255           break;
2256         }
2257         LargeOps.push_back(T->getOperand());
2258       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2259         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2260       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2261         SmallVector<const SCEV *, 8> LargeMulOps;
2262         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2263           if (const SCEVTruncateExpr *T =
2264                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2265             if (T->getOperand()->getType() != SrcType) {
2266               Ok = false;
2267               break;
2268             }
2269             LargeMulOps.push_back(T->getOperand());
2270           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2271             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2272           } else {
2273             Ok = false;
2274             break;
2275           }
2276         }
2277         if (Ok)
2278           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2279       } else {
2280         Ok = false;
2281         break;
2282       }
2283     }
2284     if (Ok) {
2285       // Evaluate the expression in the larger type.
2286       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2287       // If it folds to something simple, use it. Otherwise, don't.
2288       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2289         return getTruncateExpr(Fold, Ty);
2290     }
2291   }
2292 
2293   // Skip past any other cast SCEVs.
2294   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2295     ++Idx;
2296 
2297   // If there are add operands they would be next.
2298   if (Idx < Ops.size()) {
2299     bool DeletedAdd = false;
2300     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2301       if (Ops.size() > AddOpsInlineThreshold ||
2302           Add->getNumOperands() > AddOpsInlineThreshold)
2303         break;
2304       // If we have an add, expand the add operands onto the end of the operands
2305       // list.
2306       Ops.erase(Ops.begin()+Idx);
2307       Ops.append(Add->op_begin(), Add->op_end());
2308       DeletedAdd = true;
2309     }
2310 
2311     // If we deleted at least one add, we added operands to the end of the list,
2312     // and they are not necessarily sorted.  Recurse to resort and resimplify
2313     // any operands we just acquired.
2314     if (DeletedAdd)
2315       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2316   }
2317 
2318   // Skip over the add expression until we get to a multiply.
2319   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2320     ++Idx;
2321 
2322   // Check to see if there are any folding opportunities present with
2323   // operands multiplied by constant values.
2324   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2325     uint64_t BitWidth = getTypeSizeInBits(Ty);
2326     DenseMap<const SCEV *, APInt> M;
2327     SmallVector<const SCEV *, 8> NewOps;
2328     APInt AccumulatedConstant(BitWidth, 0);
2329     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2330                                      Ops.data(), Ops.size(),
2331                                      APInt(BitWidth, 1), *this)) {
2332       struct APIntCompare {
2333         bool operator()(const APInt &LHS, const APInt &RHS) const {
2334           return LHS.ult(RHS);
2335         }
2336       };
2337 
2338       // Some interesting folding opportunity is present, so its worthwhile to
2339       // re-generate the operands list. Group the operands by constant scale,
2340       // to avoid multiplying by the same constant scale multiple times.
2341       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2342       for (const SCEV *NewOp : NewOps)
2343         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2344       // Re-generate the operands list.
2345       Ops.clear();
2346       if (AccumulatedConstant != 0)
2347         Ops.push_back(getConstant(AccumulatedConstant));
2348       for (auto &MulOp : MulOpLists)
2349         if (MulOp.first != 0)
2350           Ops.push_back(getMulExpr(
2351               getConstant(MulOp.first),
2352               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2353               SCEV::FlagAnyWrap, Depth + 1));
2354       if (Ops.empty())
2355         return getZero(Ty);
2356       if (Ops.size() == 1)
2357         return Ops[0];
2358       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2359     }
2360   }
2361 
2362   // If we are adding something to a multiply expression, make sure the
2363   // something is not already an operand of the multiply.  If so, merge it into
2364   // the multiply.
2365   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2366     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2367     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2368       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2369       if (isa<SCEVConstant>(MulOpSCEV))
2370         continue;
2371       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2372         if (MulOpSCEV == Ops[AddOp]) {
2373           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2374           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2375           if (Mul->getNumOperands() != 2) {
2376             // If the multiply has more than two operands, we must get the
2377             // Y*Z term.
2378             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2379                                                 Mul->op_begin()+MulOp);
2380             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2381             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2382           }
2383           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2384           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2385           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2386                                             SCEV::FlagAnyWrap, Depth + 1);
2387           if (Ops.size() == 2) return OuterMul;
2388           if (AddOp < Idx) {
2389             Ops.erase(Ops.begin()+AddOp);
2390             Ops.erase(Ops.begin()+Idx-1);
2391           } else {
2392             Ops.erase(Ops.begin()+Idx);
2393             Ops.erase(Ops.begin()+AddOp-1);
2394           }
2395           Ops.push_back(OuterMul);
2396           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2397         }
2398 
2399       // Check this multiply against other multiplies being added together.
2400       for (unsigned OtherMulIdx = Idx+1;
2401            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2402            ++OtherMulIdx) {
2403         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2404         // If MulOp occurs in OtherMul, we can fold the two multiplies
2405         // together.
2406         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2407              OMulOp != e; ++OMulOp)
2408           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2409             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2410             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2411             if (Mul->getNumOperands() != 2) {
2412               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2413                                                   Mul->op_begin()+MulOp);
2414               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2415               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2416             }
2417             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2418             if (OtherMul->getNumOperands() != 2) {
2419               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2420                                                   OtherMul->op_begin()+OMulOp);
2421               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2422               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2423             }
2424             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2425             const SCEV *InnerMulSum =
2426                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2427             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2428                                               SCEV::FlagAnyWrap, Depth + 1);
2429             if (Ops.size() == 2) return OuterMul;
2430             Ops.erase(Ops.begin()+Idx);
2431             Ops.erase(Ops.begin()+OtherMulIdx-1);
2432             Ops.push_back(OuterMul);
2433             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2434           }
2435       }
2436     }
2437   }
2438 
2439   // If there are any add recurrences in the operands list, see if any other
2440   // added values are loop invariant.  If so, we can fold them into the
2441   // recurrence.
2442   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2443     ++Idx;
2444 
2445   // Scan over all recurrences, trying to fold loop invariants into them.
2446   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2447     // Scan all of the other operands to this add and add them to the vector if
2448     // they are loop invariant w.r.t. the recurrence.
2449     SmallVector<const SCEV *, 8> LIOps;
2450     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2451     const Loop *AddRecLoop = AddRec->getLoop();
2452     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2453       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2454         LIOps.push_back(Ops[i]);
2455         Ops.erase(Ops.begin()+i);
2456         --i; --e;
2457       }
2458 
2459     // If we found some loop invariants, fold them into the recurrence.
2460     if (!LIOps.empty()) {
2461       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2462       LIOps.push_back(AddRec->getStart());
2463 
2464       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2465                                              AddRec->op_end());
2466       // This follows from the fact that the no-wrap flags on the outer add
2467       // expression are applicable on the 0th iteration, when the add recurrence
2468       // will be equal to its start value.
2469       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2470 
2471       // Build the new addrec. Propagate the NUW and NSW flags if both the
2472       // outer add and the inner addrec are guaranteed to have no overflow.
2473       // Always propagate NW.
2474       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2475       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2476 
2477       // If all of the other operands were loop invariant, we are done.
2478       if (Ops.size() == 1) return NewRec;
2479 
2480       // Otherwise, add the folded AddRec by the non-invariant parts.
2481       for (unsigned i = 0;; ++i)
2482         if (Ops[i] == AddRec) {
2483           Ops[i] = NewRec;
2484           break;
2485         }
2486       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2487     }
2488 
2489     // Okay, if there weren't any loop invariants to be folded, check to see if
2490     // there are multiple AddRec's with the same loop induction variable being
2491     // added together.  If so, we can fold them.
2492     for (unsigned OtherIdx = Idx+1;
2493          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2494          ++OtherIdx) {
2495       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2496       // so that the 1st found AddRecExpr is dominated by all others.
2497       assert(DT.dominates(
2498            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2499            AddRec->getLoop()->getHeader()) &&
2500         "AddRecExprs are not sorted in reverse dominance order?");
2501       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2502         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2503         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2504                                                AddRec->op_end());
2505         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2506              ++OtherIdx) {
2507           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2508           if (OtherAddRec->getLoop() == AddRecLoop) {
2509             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2510                  i != e; ++i) {
2511               if (i >= AddRecOps.size()) {
2512                 AddRecOps.append(OtherAddRec->op_begin()+i,
2513                                  OtherAddRec->op_end());
2514                 break;
2515               }
2516               SmallVector<const SCEV *, 2> TwoOps = {
2517                   AddRecOps[i], OtherAddRec->getOperand(i)};
2518               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2519             }
2520             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2521           }
2522         }
2523         // Step size has changed, so we cannot guarantee no self-wraparound.
2524         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2525         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2526       }
2527     }
2528 
2529     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2530     // next one.
2531   }
2532 
2533   // Okay, it looks like we really DO need an add expr.  Check to see if we
2534   // already have one, otherwise create a new one.
2535   return getOrCreateAddExpr(Ops, Flags);
2536 }
2537 
2538 const SCEV *
2539 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2540                                     SCEV::NoWrapFlags Flags) {
2541   FoldingSetNodeID ID;
2542   ID.AddInteger(scAddExpr);
2543   for (const SCEV *Op : Ops)
2544     ID.AddPointer(Op);
2545   void *IP = nullptr;
2546   SCEVAddExpr *S =
2547       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2548   if (!S) {
2549     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2550     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2551     S = new (SCEVAllocator)
2552         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2553     UniqueSCEVs.InsertNode(S, IP);
2554     addToLoopUseLists(S);
2555   }
2556   S->setNoWrapFlags(Flags);
2557   return S;
2558 }
2559 
2560 const SCEV *
2561 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2562                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2563   FoldingSetNodeID ID;
2564   ID.AddInteger(scAddRecExpr);
2565   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2566     ID.AddPointer(Ops[i]);
2567   ID.AddPointer(L);
2568   void *IP = nullptr;
2569   SCEVAddRecExpr *S =
2570       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2571   if (!S) {
2572     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2573     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2574     S = new (SCEVAllocator)
2575         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2576     UniqueSCEVs.InsertNode(S, IP);
2577     addToLoopUseLists(S);
2578   }
2579   S->setNoWrapFlags(Flags);
2580   return S;
2581 }
2582 
2583 const SCEV *
2584 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2585                                     SCEV::NoWrapFlags Flags) {
2586   FoldingSetNodeID ID;
2587   ID.AddInteger(scMulExpr);
2588   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2589     ID.AddPointer(Ops[i]);
2590   void *IP = nullptr;
2591   SCEVMulExpr *S =
2592     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2593   if (!S) {
2594     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2595     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2596     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2597                                         O, Ops.size());
2598     UniqueSCEVs.InsertNode(S, IP);
2599     addToLoopUseLists(S);
2600   }
2601   S->setNoWrapFlags(Flags);
2602   return S;
2603 }
2604 
2605 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2606   uint64_t k = i*j;
2607   if (j > 1 && k / j != i) Overflow = true;
2608   return k;
2609 }
2610 
2611 /// Compute the result of "n choose k", the binomial coefficient.  If an
2612 /// intermediate computation overflows, Overflow will be set and the return will
2613 /// be garbage. Overflow is not cleared on absence of overflow.
2614 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2615   // We use the multiplicative formula:
2616   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2617   // At each iteration, we take the n-th term of the numeral and divide by the
2618   // (k-n)th term of the denominator.  This division will always produce an
2619   // integral result, and helps reduce the chance of overflow in the
2620   // intermediate computations. However, we can still overflow even when the
2621   // final result would fit.
2622 
2623   if (n == 0 || n == k) return 1;
2624   if (k > n) return 0;
2625 
2626   if (k > n/2)
2627     k = n-k;
2628 
2629   uint64_t r = 1;
2630   for (uint64_t i = 1; i <= k; ++i) {
2631     r = umul_ov(r, n-(i-1), Overflow);
2632     r /= i;
2633   }
2634   return r;
2635 }
2636 
2637 /// Determine if any of the operands in this SCEV are a constant or if
2638 /// any of the add or multiply expressions in this SCEV contain a constant.
2639 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2640   struct FindConstantInAddMulChain {
2641     bool FoundConstant = false;
2642 
2643     bool follow(const SCEV *S) {
2644       FoundConstant |= isa<SCEVConstant>(S);
2645       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2646     }
2647 
2648     bool isDone() const {
2649       return FoundConstant;
2650     }
2651   };
2652 
2653   FindConstantInAddMulChain F;
2654   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2655   ST.visitAll(StartExpr);
2656   return F.FoundConstant;
2657 }
2658 
2659 /// Get a canonical multiply expression, or something simpler if possible.
2660 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2661                                         SCEV::NoWrapFlags Flags,
2662                                         unsigned Depth) {
2663   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2664          "only nuw or nsw allowed");
2665   assert(!Ops.empty() && "Cannot get empty mul!");
2666   if (Ops.size() == 1) return Ops[0];
2667 #ifndef NDEBUG
2668   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2669   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2670     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2671            "SCEVMulExpr operand types don't match!");
2672 #endif
2673 
2674   // Sort by complexity, this groups all similar expression types together.
2675   GroupByComplexity(Ops, &LI, DT);
2676 
2677   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2678 
2679   // Limit recursion calls depth, but fold all-constant expressions.
2680   // `Ops` is sorted, so it's enough to check just last one.
2681   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2682       !isa<SCEVConstant>(Ops.back()))
2683     return getOrCreateMulExpr(Ops, Flags);
2684 
2685   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2686     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2687     return S;
2688   }
2689 
2690   // If there are any constants, fold them together.
2691   unsigned Idx = 0;
2692   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2693 
2694     if (Ops.size() == 2)
2695       // C1*(C2+V) -> C1*C2 + C1*V
2696       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2697         // If any of Add's ops are Adds or Muls with a constant, apply this
2698         // transformation as well.
2699         //
2700         // TODO: There are some cases where this transformation is not
2701         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2702         // this transformation should be narrowed down.
2703         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2704           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2705                                        SCEV::FlagAnyWrap, Depth + 1),
2706                             getMulExpr(LHSC, Add->getOperand(1),
2707                                        SCEV::FlagAnyWrap, Depth + 1),
2708                             SCEV::FlagAnyWrap, Depth + 1);
2709 
2710     ++Idx;
2711     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2712       // We found two constants, fold them together!
2713       ConstantInt *Fold =
2714           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2715       Ops[0] = getConstant(Fold);
2716       Ops.erase(Ops.begin()+1);  // Erase the folded element
2717       if (Ops.size() == 1) return Ops[0];
2718       LHSC = cast<SCEVConstant>(Ops[0]);
2719     }
2720 
2721     // If we are left with a constant one being multiplied, strip it off.
2722     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2723       Ops.erase(Ops.begin());
2724       --Idx;
2725     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2726       // If we have a multiply of zero, it will always be zero.
2727       return Ops[0];
2728     } else if (Ops[0]->isAllOnesValue()) {
2729       // If we have a mul by -1 of an add, try distributing the -1 among the
2730       // add operands.
2731       if (Ops.size() == 2) {
2732         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2733           SmallVector<const SCEV *, 4> NewOps;
2734           bool AnyFolded = false;
2735           for (const SCEV *AddOp : Add->operands()) {
2736             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2737                                          Depth + 1);
2738             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2739             NewOps.push_back(Mul);
2740           }
2741           if (AnyFolded)
2742             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2743         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2744           // Negation preserves a recurrence's no self-wrap property.
2745           SmallVector<const SCEV *, 4> Operands;
2746           for (const SCEV *AddRecOp : AddRec->operands())
2747             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2748                                           Depth + 1));
2749 
2750           return getAddRecExpr(Operands, AddRec->getLoop(),
2751                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2752         }
2753       }
2754     }
2755 
2756     if (Ops.size() == 1)
2757       return Ops[0];
2758   }
2759 
2760   // Skip over the add expression until we get to a multiply.
2761   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2762     ++Idx;
2763 
2764   // If there are mul operands inline them all into this expression.
2765   if (Idx < Ops.size()) {
2766     bool DeletedMul = false;
2767     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2768       if (Ops.size() > MulOpsInlineThreshold)
2769         break;
2770       // If we have an mul, expand the mul operands onto the end of the
2771       // operands list.
2772       Ops.erase(Ops.begin()+Idx);
2773       Ops.append(Mul->op_begin(), Mul->op_end());
2774       DeletedMul = true;
2775     }
2776 
2777     // If we deleted at least one mul, we added operands to the end of the
2778     // list, and they are not necessarily sorted.  Recurse to resort and
2779     // resimplify any operands we just acquired.
2780     if (DeletedMul)
2781       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2782   }
2783 
2784   // If there are any add recurrences in the operands list, see if any other
2785   // added values are loop invariant.  If so, we can fold them into the
2786   // recurrence.
2787   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2788     ++Idx;
2789 
2790   // Scan over all recurrences, trying to fold loop invariants into them.
2791   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2792     // Scan all of the other operands to this mul and add them to the vector
2793     // if they are loop invariant w.r.t. the recurrence.
2794     SmallVector<const SCEV *, 8> LIOps;
2795     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2796     const Loop *AddRecLoop = AddRec->getLoop();
2797     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2798       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2799         LIOps.push_back(Ops[i]);
2800         Ops.erase(Ops.begin()+i);
2801         --i; --e;
2802       }
2803 
2804     // If we found some loop invariants, fold them into the recurrence.
2805     if (!LIOps.empty()) {
2806       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2807       SmallVector<const SCEV *, 4> NewOps;
2808       NewOps.reserve(AddRec->getNumOperands());
2809       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2810       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2811         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2812                                     SCEV::FlagAnyWrap, Depth + 1));
2813 
2814       // Build the new addrec. Propagate the NUW and NSW flags if both the
2815       // outer mul and the inner addrec are guaranteed to have no overflow.
2816       //
2817       // No self-wrap cannot be guaranteed after changing the step size, but
2818       // will be inferred if either NUW or NSW is true.
2819       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2820       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2821 
2822       // If all of the other operands were loop invariant, we are done.
2823       if (Ops.size() == 1) return NewRec;
2824 
2825       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2826       for (unsigned i = 0;; ++i)
2827         if (Ops[i] == AddRec) {
2828           Ops[i] = NewRec;
2829           break;
2830         }
2831       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2832     }
2833 
2834     // Okay, if there weren't any loop invariants to be folded, check to see
2835     // if there are multiple AddRec's with the same loop induction variable
2836     // being multiplied together.  If so, we can fold them.
2837 
2838     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2839     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2840     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2841     //   ]]],+,...up to x=2n}.
2842     // Note that the arguments to choose() are always integers with values
2843     // known at compile time, never SCEV objects.
2844     //
2845     // The implementation avoids pointless extra computations when the two
2846     // addrec's are of different length (mathematically, it's equivalent to
2847     // an infinite stream of zeros on the right).
2848     bool OpsModified = false;
2849     for (unsigned OtherIdx = Idx+1;
2850          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2851          ++OtherIdx) {
2852       const SCEVAddRecExpr *OtherAddRec =
2853         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2854       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2855         continue;
2856 
2857       // Limit max number of arguments to avoid creation of unreasonably big
2858       // SCEVAddRecs with very complex operands.
2859       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2860           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2861         continue;
2862 
2863       bool Overflow = false;
2864       Type *Ty = AddRec->getType();
2865       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2866       SmallVector<const SCEV*, 7> AddRecOps;
2867       for (int x = 0, xe = AddRec->getNumOperands() +
2868              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2869         SmallVector <const SCEV *, 7> SumOps;
2870         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2871           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2872           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2873                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2874                z < ze && !Overflow; ++z) {
2875             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2876             uint64_t Coeff;
2877             if (LargerThan64Bits)
2878               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2879             else
2880               Coeff = Coeff1*Coeff2;
2881             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2882             const SCEV *Term1 = AddRec->getOperand(y-z);
2883             const SCEV *Term2 = OtherAddRec->getOperand(z);
2884             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2885                                         SCEV::FlagAnyWrap, Depth + 1));
2886           }
2887         }
2888         if (SumOps.empty())
2889           SumOps.push_back(getZero(Ty));
2890         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2891       }
2892       if (!Overflow) {
2893         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2894                                               SCEV::FlagAnyWrap);
2895         if (Ops.size() == 2) return NewAddRec;
2896         Ops[Idx] = NewAddRec;
2897         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2898         OpsModified = true;
2899         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2900         if (!AddRec)
2901           break;
2902       }
2903     }
2904     if (OpsModified)
2905       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2906 
2907     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2908     // next one.
2909   }
2910 
2911   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2912   // already have one, otherwise create a new one.
2913   return getOrCreateMulExpr(Ops, Flags);
2914 }
2915 
2916 /// Represents an unsigned remainder expression based on unsigned division.
2917 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2918                                          const SCEV *RHS) {
2919   assert(getEffectiveSCEVType(LHS->getType()) ==
2920          getEffectiveSCEVType(RHS->getType()) &&
2921          "SCEVURemExpr operand types don't match!");
2922 
2923   // Short-circuit easy cases
2924   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2925     // If constant is one, the result is trivial
2926     if (RHSC->getValue()->isOne())
2927       return getZero(LHS->getType()); // X urem 1 --> 0
2928 
2929     // If constant is a power of two, fold into a zext(trunc(LHS)).
2930     if (RHSC->getAPInt().isPowerOf2()) {
2931       Type *FullTy = LHS->getType();
2932       Type *TruncTy =
2933           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2934       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2935     }
2936   }
2937 
2938   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2939   const SCEV *UDiv = getUDivExpr(LHS, RHS);
2940   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2941   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2942 }
2943 
2944 /// Get a canonical unsigned division expression, or something simpler if
2945 /// possible.
2946 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2947                                          const SCEV *RHS) {
2948   assert(getEffectiveSCEVType(LHS->getType()) ==
2949          getEffectiveSCEVType(RHS->getType()) &&
2950          "SCEVUDivExpr operand types don't match!");
2951 
2952   FoldingSetNodeID ID;
2953   ID.AddInteger(scUDivExpr);
2954   ID.AddPointer(LHS);
2955   ID.AddPointer(RHS);
2956   void *IP = nullptr;
2957   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2958     return S;
2959 
2960   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2961     if (RHSC->getValue()->isOne())
2962       return LHS;                               // X udiv 1 --> x
2963     // If the denominator is zero, the result of the udiv is undefined. Don't
2964     // try to analyze it, because the resolution chosen here may differ from
2965     // the resolution chosen in other parts of the compiler.
2966     if (!RHSC->getValue()->isZero()) {
2967       // Determine if the division can be folded into the operands of
2968       // its operands.
2969       // TODO: Generalize this to non-constants by using known-bits information.
2970       Type *Ty = LHS->getType();
2971       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2972       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2973       // For non-power-of-two values, effectively round the value up to the
2974       // nearest power of two.
2975       if (!RHSC->getAPInt().isPowerOf2())
2976         ++MaxShiftAmt;
2977       IntegerType *ExtTy =
2978         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2979       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2980         if (const SCEVConstant *Step =
2981             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2982           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2983           const APInt &StepInt = Step->getAPInt();
2984           const APInt &DivInt = RHSC->getAPInt();
2985           if (!StepInt.urem(DivInt) &&
2986               getZeroExtendExpr(AR, ExtTy) ==
2987               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2988                             getZeroExtendExpr(Step, ExtTy),
2989                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2990             SmallVector<const SCEV *, 4> Operands;
2991             for (const SCEV *Op : AR->operands())
2992               Operands.push_back(getUDivExpr(Op, RHS));
2993             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2994           }
2995           /// Get a canonical UDivExpr for a recurrence.
2996           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2997           // We can currently only fold X%N if X is constant.
2998           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2999           if (StartC && !DivInt.urem(StepInt) &&
3000               getZeroExtendExpr(AR, ExtTy) ==
3001               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3002                             getZeroExtendExpr(Step, ExtTy),
3003                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3004             const APInt &StartInt = StartC->getAPInt();
3005             const APInt &StartRem = StartInt.urem(StepInt);
3006             if (StartRem != 0) {
3007               const SCEV *NewLHS =
3008                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3009                                 AR->getLoop(), SCEV::FlagNW);
3010               if (LHS != NewLHS) {
3011                 LHS = NewLHS;
3012 
3013                 // Reset the ID to include the new LHS, and check if it is
3014                 // already cached.
3015                 ID.clear();
3016                 ID.AddInteger(scUDivExpr);
3017                 ID.AddPointer(LHS);
3018                 ID.AddPointer(RHS);
3019                 IP = nullptr;
3020                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3021                   return S;
3022               }
3023             }
3024           }
3025         }
3026       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3027       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3028         SmallVector<const SCEV *, 4> Operands;
3029         for (const SCEV *Op : M->operands())
3030           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3031         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3032           // Find an operand that's safely divisible.
3033           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3034             const SCEV *Op = M->getOperand(i);
3035             const SCEV *Div = getUDivExpr(Op, RHSC);
3036             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3037               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3038                                                       M->op_end());
3039               Operands[i] = Div;
3040               return getMulExpr(Operands);
3041             }
3042           }
3043       }
3044 
3045       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3046       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3047         if (auto *DivisorConstant =
3048                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3049           bool Overflow = false;
3050           APInt NewRHS =
3051               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3052           if (Overflow) {
3053             return getConstant(RHSC->getType(), 0, false);
3054           }
3055           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3056         }
3057       }
3058 
3059       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3060       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3061         SmallVector<const SCEV *, 4> Operands;
3062         for (const SCEV *Op : A->operands())
3063           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3064         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3065           Operands.clear();
3066           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3067             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3068             if (isa<SCEVUDivExpr>(Op) ||
3069                 getMulExpr(Op, RHS) != A->getOperand(i))
3070               break;
3071             Operands.push_back(Op);
3072           }
3073           if (Operands.size() == A->getNumOperands())
3074             return getAddExpr(Operands);
3075         }
3076       }
3077 
3078       // Fold if both operands are constant.
3079       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3080         Constant *LHSCV = LHSC->getValue();
3081         Constant *RHSCV = RHSC->getValue();
3082         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3083                                                                    RHSCV)));
3084       }
3085     }
3086   }
3087 
3088   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3089   // changes). Make sure we get a new one.
3090   IP = nullptr;
3091   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3092   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3093                                              LHS, RHS);
3094   UniqueSCEVs.InsertNode(S, IP);
3095   addToLoopUseLists(S);
3096   return S;
3097 }
3098 
3099 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3100   APInt A = C1->getAPInt().abs();
3101   APInt B = C2->getAPInt().abs();
3102   uint32_t ABW = A.getBitWidth();
3103   uint32_t BBW = B.getBitWidth();
3104 
3105   if (ABW > BBW)
3106     B = B.zext(ABW);
3107   else if (ABW < BBW)
3108     A = A.zext(BBW);
3109 
3110   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3111 }
3112 
3113 /// Get a canonical unsigned division expression, or something simpler if
3114 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3115 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3116 /// it's not exact because the udiv may be clearing bits.
3117 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3118                                               const SCEV *RHS) {
3119   // TODO: we could try to find factors in all sorts of things, but for now we
3120   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3121   // end of this file for inspiration.
3122 
3123   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3124   if (!Mul || !Mul->hasNoUnsignedWrap())
3125     return getUDivExpr(LHS, RHS);
3126 
3127   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3128     // If the mulexpr multiplies by a constant, then that constant must be the
3129     // first element of the mulexpr.
3130     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3131       if (LHSCst == RHSCst) {
3132         SmallVector<const SCEV *, 2> Operands;
3133         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3134         return getMulExpr(Operands);
3135       }
3136 
3137       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3138       // that there's a factor provided by one of the other terms. We need to
3139       // check.
3140       APInt Factor = gcd(LHSCst, RHSCst);
3141       if (!Factor.isIntN(1)) {
3142         LHSCst =
3143             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3144         RHSCst =
3145             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3146         SmallVector<const SCEV *, 2> Operands;
3147         Operands.push_back(LHSCst);
3148         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3149         LHS = getMulExpr(Operands);
3150         RHS = RHSCst;
3151         Mul = dyn_cast<SCEVMulExpr>(LHS);
3152         if (!Mul)
3153           return getUDivExactExpr(LHS, RHS);
3154       }
3155     }
3156   }
3157 
3158   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3159     if (Mul->getOperand(i) == RHS) {
3160       SmallVector<const SCEV *, 2> Operands;
3161       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3162       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3163       return getMulExpr(Operands);
3164     }
3165   }
3166 
3167   return getUDivExpr(LHS, RHS);
3168 }
3169 
3170 /// Get an add recurrence expression for the specified loop.  Simplify the
3171 /// expression as much as possible.
3172 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3173                                            const Loop *L,
3174                                            SCEV::NoWrapFlags Flags) {
3175   SmallVector<const SCEV *, 4> Operands;
3176   Operands.push_back(Start);
3177   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3178     if (StepChrec->getLoop() == L) {
3179       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3180       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3181     }
3182 
3183   Operands.push_back(Step);
3184   return getAddRecExpr(Operands, L, Flags);
3185 }
3186 
3187 /// Get an add recurrence expression for the specified loop.  Simplify the
3188 /// expression as much as possible.
3189 const SCEV *
3190 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3191                                const Loop *L, SCEV::NoWrapFlags Flags) {
3192   if (Operands.size() == 1) return Operands[0];
3193 #ifndef NDEBUG
3194   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3195   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3196     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3197            "SCEVAddRecExpr operand types don't match!");
3198   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3199     assert(isLoopInvariant(Operands[i], L) &&
3200            "SCEVAddRecExpr operand is not loop-invariant!");
3201 #endif
3202 
3203   if (Operands.back()->isZero()) {
3204     Operands.pop_back();
3205     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3206   }
3207 
3208   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3209   // use that information to infer NUW and NSW flags. However, computing a
3210   // BE count requires calling getAddRecExpr, so we may not yet have a
3211   // meaningful BE count at this point (and if we don't, we'd be stuck
3212   // with a SCEVCouldNotCompute as the cached BE count).
3213 
3214   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3215 
3216   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3217   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3218     const Loop *NestedLoop = NestedAR->getLoop();
3219     if (L->contains(NestedLoop)
3220             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3221             : (!NestedLoop->contains(L) &&
3222                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3223       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3224                                                   NestedAR->op_end());
3225       Operands[0] = NestedAR->getStart();
3226       // AddRecs require their operands be loop-invariant with respect to their
3227       // loops. Don't perform this transformation if it would break this
3228       // requirement.
3229       bool AllInvariant = all_of(
3230           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3231 
3232       if (AllInvariant) {
3233         // Create a recurrence for the outer loop with the same step size.
3234         //
3235         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3236         // inner recurrence has the same property.
3237         SCEV::NoWrapFlags OuterFlags =
3238           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3239 
3240         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3241         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3242           return isLoopInvariant(Op, NestedLoop);
3243         });
3244 
3245         if (AllInvariant) {
3246           // Ok, both add recurrences are valid after the transformation.
3247           //
3248           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3249           // the outer recurrence has the same property.
3250           SCEV::NoWrapFlags InnerFlags =
3251             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3252           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3253         }
3254       }
3255       // Reset Operands to its original state.
3256       Operands[0] = NestedAR;
3257     }
3258   }
3259 
3260   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3261   // already have one, otherwise create a new one.
3262   return getOrCreateAddRecExpr(Operands, L, Flags);
3263 }
3264 
3265 const SCEV *
3266 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3267                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3268   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3269   // getSCEV(Base)->getType() has the same address space as Base->getType()
3270   // because SCEV::getType() preserves the address space.
3271   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3272   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3273   // instruction to its SCEV, because the Instruction may be guarded by control
3274   // flow and the no-overflow bits may not be valid for the expression in any
3275   // context. This can be fixed similarly to how these flags are handled for
3276   // adds.
3277   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3278                                              : SCEV::FlagAnyWrap;
3279 
3280   const SCEV *TotalOffset = getZero(IntIdxTy);
3281   Type *CurTy = GEP->getType();
3282   bool FirstIter = true;
3283   for (const SCEV *IndexExpr : IndexExprs) {
3284     // Compute the (potentially symbolic) offset in bytes for this index.
3285     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3286       // For a struct, add the member offset.
3287       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3288       unsigned FieldNo = Index->getZExtValue();
3289       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3290 
3291       // Add the field offset to the running total offset.
3292       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3293 
3294       // Update CurTy to the type of the field at Index.
3295       CurTy = STy->getTypeAtIndex(Index);
3296     } else {
3297       // Update CurTy to its element type.
3298       if (FirstIter) {
3299         assert(isa<PointerType>(CurTy) &&
3300                "The first index of a GEP indexes a pointer");
3301         CurTy = GEP->getSourceElementType();
3302         FirstIter = false;
3303       } else {
3304         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3305       }
3306       // For an array, add the element offset, explicitly scaled.
3307       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3308       // Getelementptr indices are signed.
3309       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3310 
3311       // Multiply the index by the element size to compute the element offset.
3312       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3313 
3314       // Add the element offset to the running total offset.
3315       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3316     }
3317   }
3318 
3319   // Add the total offset from all the GEP indices to the base.
3320   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3321 }
3322 
3323 std::tuple<SCEV *, FoldingSetNodeID, void *>
3324 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3325                                          ArrayRef<const SCEV *> Ops) {
3326   FoldingSetNodeID ID;
3327   void *IP = nullptr;
3328   ID.AddInteger(SCEVType);
3329   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3330     ID.AddPointer(Ops[i]);
3331   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3332       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3333 }
3334 
3335 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3336                                            SmallVectorImpl<const SCEV *> &Ops) {
3337   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3338   if (Ops.size() == 1) return Ops[0];
3339 #ifndef NDEBUG
3340   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3341   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3342     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3343            "Operand types don't match!");
3344 #endif
3345 
3346   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3347   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3348 
3349   // Sort by complexity, this groups all similar expression types together.
3350   GroupByComplexity(Ops, &LI, DT);
3351 
3352   // Check if we have created the same expression before.
3353   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3354     return S;
3355   }
3356 
3357   // If there are any constants, fold them together.
3358   unsigned Idx = 0;
3359   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3360     ++Idx;
3361     assert(Idx < Ops.size());
3362     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3363       if (Kind == scSMaxExpr)
3364         return APIntOps::smax(LHS, RHS);
3365       else if (Kind == scSMinExpr)
3366         return APIntOps::smin(LHS, RHS);
3367       else if (Kind == scUMaxExpr)
3368         return APIntOps::umax(LHS, RHS);
3369       else if (Kind == scUMinExpr)
3370         return APIntOps::umin(LHS, RHS);
3371       llvm_unreachable("Unknown SCEV min/max opcode");
3372     };
3373 
3374     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3375       // We found two constants, fold them together!
3376       ConstantInt *Fold = ConstantInt::get(
3377           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3378       Ops[0] = getConstant(Fold);
3379       Ops.erase(Ops.begin()+1);  // Erase the folded element
3380       if (Ops.size() == 1) return Ops[0];
3381       LHSC = cast<SCEVConstant>(Ops[0]);
3382     }
3383 
3384     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3385     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3386 
3387     if (IsMax ? IsMinV : IsMaxV) {
3388       // If we are left with a constant minimum(/maximum)-int, strip it off.
3389       Ops.erase(Ops.begin());
3390       --Idx;
3391     } else if (IsMax ? IsMaxV : IsMinV) {
3392       // If we have a max(/min) with a constant maximum(/minimum)-int,
3393       // it will always be the extremum.
3394       return LHSC;
3395     }
3396 
3397     if (Ops.size() == 1) return Ops[0];
3398   }
3399 
3400   // Find the first operation of the same kind
3401   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3402     ++Idx;
3403 
3404   // Check to see if one of the operands is of the same kind. If so, expand its
3405   // operands onto our operand list, and recurse to simplify.
3406   if (Idx < Ops.size()) {
3407     bool DeletedAny = false;
3408     while (Ops[Idx]->getSCEVType() == Kind) {
3409       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3410       Ops.erase(Ops.begin()+Idx);
3411       Ops.append(SMME->op_begin(), SMME->op_end());
3412       DeletedAny = true;
3413     }
3414 
3415     if (DeletedAny)
3416       return getMinMaxExpr(Kind, Ops);
3417   }
3418 
3419   // Okay, check to see if the same value occurs in the operand list twice.  If
3420   // so, delete one.  Since we sorted the list, these values are required to
3421   // be adjacent.
3422   llvm::CmpInst::Predicate GEPred =
3423       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3424   llvm::CmpInst::Predicate LEPred =
3425       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3426   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3427   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3428   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3429     if (Ops[i] == Ops[i + 1] ||
3430         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3431       //  X op Y op Y  -->  X op Y
3432       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3433       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3434       --i;
3435       --e;
3436     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3437                                                Ops[i + 1])) {
3438       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3439       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3440       --i;
3441       --e;
3442     }
3443   }
3444 
3445   if (Ops.size() == 1) return Ops[0];
3446 
3447   assert(!Ops.empty() && "Reduced smax down to nothing!");
3448 
3449   // Okay, it looks like we really DO need an expr.  Check to see if we
3450   // already have one, otherwise create a new one.
3451   const SCEV *ExistingSCEV;
3452   FoldingSetNodeID ID;
3453   void *IP;
3454   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3455   if (ExistingSCEV)
3456     return ExistingSCEV;
3457   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3458   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3459   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3460       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3461 
3462   UniqueSCEVs.InsertNode(S, IP);
3463   addToLoopUseLists(S);
3464   return S;
3465 }
3466 
3467 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3468   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3469   return getSMaxExpr(Ops);
3470 }
3471 
3472 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3473   return getMinMaxExpr(scSMaxExpr, Ops);
3474 }
3475 
3476 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3477   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3478   return getUMaxExpr(Ops);
3479 }
3480 
3481 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3482   return getMinMaxExpr(scUMaxExpr, Ops);
3483 }
3484 
3485 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3486                                          const SCEV *RHS) {
3487   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3488   return getSMinExpr(Ops);
3489 }
3490 
3491 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3492   return getMinMaxExpr(scSMinExpr, Ops);
3493 }
3494 
3495 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3496                                          const SCEV *RHS) {
3497   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3498   return getUMinExpr(Ops);
3499 }
3500 
3501 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3502   return getMinMaxExpr(scUMinExpr, Ops);
3503 }
3504 
3505 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3506   // We can bypass creating a target-independent
3507   // constant expression and then folding it back into a ConstantInt.
3508   // This is just a compile-time optimization.
3509   if (isa<ScalableVectorType>(AllocTy)) {
3510     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3511     Constant *One = ConstantInt::get(IntTy, 1);
3512     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3513     return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3514   }
3515   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3516 }
3517 
3518 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3519                                              StructType *STy,
3520                                              unsigned FieldNo) {
3521   // We can bypass creating a target-independent
3522   // constant expression and then folding it back into a ConstantInt.
3523   // This is just a compile-time optimization.
3524   return getConstant(
3525       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3526 }
3527 
3528 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3529   // Don't attempt to do anything other than create a SCEVUnknown object
3530   // here.  createSCEV only calls getUnknown after checking for all other
3531   // interesting possibilities, and any other code that calls getUnknown
3532   // is doing so in order to hide a value from SCEV canonicalization.
3533 
3534   FoldingSetNodeID ID;
3535   ID.AddInteger(scUnknown);
3536   ID.AddPointer(V);
3537   void *IP = nullptr;
3538   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3539     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3540            "Stale SCEVUnknown in uniquing map!");
3541     return S;
3542   }
3543   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3544                                             FirstUnknown);
3545   FirstUnknown = cast<SCEVUnknown>(S);
3546   UniqueSCEVs.InsertNode(S, IP);
3547   return S;
3548 }
3549 
3550 //===----------------------------------------------------------------------===//
3551 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3552 //
3553 
3554 /// Test if values of the given type are analyzable within the SCEV
3555 /// framework. This primarily includes integer types, and it can optionally
3556 /// include pointer types if the ScalarEvolution class has access to
3557 /// target-specific information.
3558 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3559   // Integers and pointers are always SCEVable.
3560   return Ty->isIntOrPtrTy();
3561 }
3562 
3563 /// Return the size in bits of the specified type, for which isSCEVable must
3564 /// return true.
3565 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3566   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3567   if (Ty->isPointerTy())
3568     return getDataLayout().getIndexTypeSizeInBits(Ty);
3569   return getDataLayout().getTypeSizeInBits(Ty);
3570 }
3571 
3572 /// Return a type with the same bitwidth as the given type and which represents
3573 /// how SCEV will treat the given type, for which isSCEVable must return
3574 /// true. For pointer types, this is the pointer index sized integer type.
3575 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3576   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3577 
3578   if (Ty->isIntegerTy())
3579     return Ty;
3580 
3581   // The only other support type is pointer.
3582   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3583   return getDataLayout().getIndexType(Ty);
3584 }
3585 
3586 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3587   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3588 }
3589 
3590 const SCEV *ScalarEvolution::getCouldNotCompute() {
3591   return CouldNotCompute.get();
3592 }
3593 
3594 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3595   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3596     auto *SU = dyn_cast<SCEVUnknown>(S);
3597     return SU && SU->getValue() == nullptr;
3598   });
3599 
3600   return !ContainsNulls;
3601 }
3602 
3603 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3604   HasRecMapType::iterator I = HasRecMap.find(S);
3605   if (I != HasRecMap.end())
3606     return I->second;
3607 
3608   bool FoundAddRec =
3609       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3610   HasRecMap.insert({S, FoundAddRec});
3611   return FoundAddRec;
3612 }
3613 
3614 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3615 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3616 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3617 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3618   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3619   if (!Add)
3620     return {S, nullptr};
3621 
3622   if (Add->getNumOperands() != 2)
3623     return {S, nullptr};
3624 
3625   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3626   if (!ConstOp)
3627     return {S, nullptr};
3628 
3629   return {Add->getOperand(1), ConstOp->getValue()};
3630 }
3631 
3632 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3633 /// by the value and offset from any ValueOffsetPair in the set.
3634 SetVector<ScalarEvolution::ValueOffsetPair> *
3635 ScalarEvolution::getSCEVValues(const SCEV *S) {
3636   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3637   if (SI == ExprValueMap.end())
3638     return nullptr;
3639 #ifndef NDEBUG
3640   if (VerifySCEVMap) {
3641     // Check there is no dangling Value in the set returned.
3642     for (const auto &VE : SI->second)
3643       assert(ValueExprMap.count(VE.first));
3644   }
3645 #endif
3646   return &SI->second;
3647 }
3648 
3649 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3650 /// cannot be used separately. eraseValueFromMap should be used to remove
3651 /// V from ValueExprMap and ExprValueMap at the same time.
3652 void ScalarEvolution::eraseValueFromMap(Value *V) {
3653   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3654   if (I != ValueExprMap.end()) {
3655     const SCEV *S = I->second;
3656     // Remove {V, 0} from the set of ExprValueMap[S]
3657     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3658       SV->remove({V, nullptr});
3659 
3660     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3661     const SCEV *Stripped;
3662     ConstantInt *Offset;
3663     std::tie(Stripped, Offset) = splitAddExpr(S);
3664     if (Offset != nullptr) {
3665       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3666         SV->remove({V, Offset});
3667     }
3668     ValueExprMap.erase(V);
3669   }
3670 }
3671 
3672 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3673 /// TODO: In reality it is better to check the poison recursively
3674 /// but this is better than nothing.
3675 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3676   if (auto *I = dyn_cast<Instruction>(V)) {
3677     if (isa<OverflowingBinaryOperator>(I)) {
3678       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3679         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3680           return true;
3681         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3682           return true;
3683       }
3684     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3685       return true;
3686   }
3687   return false;
3688 }
3689 
3690 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3691 /// create a new one.
3692 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3693   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3694 
3695   const SCEV *S = getExistingSCEV(V);
3696   if (S == nullptr) {
3697     S = createSCEV(V);
3698     // During PHI resolution, it is possible to create two SCEVs for the same
3699     // V, so it is needed to double check whether V->S is inserted into
3700     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3701     std::pair<ValueExprMapType::iterator, bool> Pair =
3702         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3703     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3704       ExprValueMap[S].insert({V, nullptr});
3705 
3706       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3707       // ExprValueMap.
3708       const SCEV *Stripped = S;
3709       ConstantInt *Offset = nullptr;
3710       std::tie(Stripped, Offset) = splitAddExpr(S);
3711       // If stripped is SCEVUnknown, don't bother to save
3712       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3713       // increase the complexity of the expansion code.
3714       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3715       // because it may generate add/sub instead of GEP in SCEV expansion.
3716       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3717           !isa<GetElementPtrInst>(V))
3718         ExprValueMap[Stripped].insert({V, Offset});
3719     }
3720   }
3721   return S;
3722 }
3723 
3724 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3725   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3726 
3727   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3728   if (I != ValueExprMap.end()) {
3729     const SCEV *S = I->second;
3730     if (checkValidity(S))
3731       return S;
3732     eraseValueFromMap(V);
3733     forgetMemoizedResults(S);
3734   }
3735   return nullptr;
3736 }
3737 
3738 /// Return a SCEV corresponding to -V = -1*V
3739 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3740                                              SCEV::NoWrapFlags Flags) {
3741   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3742     return getConstant(
3743                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3744 
3745   Type *Ty = V->getType();
3746   Ty = getEffectiveSCEVType(Ty);
3747   return getMulExpr(
3748       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3749 }
3750 
3751 /// If Expr computes ~A, return A else return nullptr
3752 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3753   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3754   if (!Add || Add->getNumOperands() != 2 ||
3755       !Add->getOperand(0)->isAllOnesValue())
3756     return nullptr;
3757 
3758   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3759   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3760       !AddRHS->getOperand(0)->isAllOnesValue())
3761     return nullptr;
3762 
3763   return AddRHS->getOperand(1);
3764 }
3765 
3766 /// Return a SCEV corresponding to ~V = -1-V
3767 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3768   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3769     return getConstant(
3770                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3771 
3772   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3773   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3774     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3775       SmallVector<const SCEV *, 2> MatchedOperands;
3776       for (const SCEV *Operand : MME->operands()) {
3777         const SCEV *Matched = MatchNotExpr(Operand);
3778         if (!Matched)
3779           return (const SCEV *)nullptr;
3780         MatchedOperands.push_back(Matched);
3781       }
3782       return getMinMaxExpr(
3783           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3784           MatchedOperands);
3785     };
3786     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3787       return Replaced;
3788   }
3789 
3790   Type *Ty = V->getType();
3791   Ty = getEffectiveSCEVType(Ty);
3792   const SCEV *AllOnes =
3793                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3794   return getMinusSCEV(AllOnes, V);
3795 }
3796 
3797 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3798                                           SCEV::NoWrapFlags Flags,
3799                                           unsigned Depth) {
3800   // Fast path: X - X --> 0.
3801   if (LHS == RHS)
3802     return getZero(LHS->getType());
3803 
3804   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3805   // makes it so that we cannot make much use of NUW.
3806   auto AddFlags = SCEV::FlagAnyWrap;
3807   const bool RHSIsNotMinSigned =
3808       !getSignedRangeMin(RHS).isMinSignedValue();
3809   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3810     // Let M be the minimum representable signed value. Then (-1)*RHS
3811     // signed-wraps if and only if RHS is M. That can happen even for
3812     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3813     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3814     // (-1)*RHS, we need to prove that RHS != M.
3815     //
3816     // If LHS is non-negative and we know that LHS - RHS does not
3817     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3818     // either by proving that RHS > M or that LHS >= 0.
3819     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3820       AddFlags = SCEV::FlagNSW;
3821     }
3822   }
3823 
3824   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3825   // RHS is NSW and LHS >= 0.
3826   //
3827   // The difficulty here is that the NSW flag may have been proven
3828   // relative to a loop that is to be found in a recurrence in LHS and
3829   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3830   // larger scope than intended.
3831   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3832 
3833   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3834 }
3835 
3836 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3837                                                      unsigned Depth) {
3838   Type *SrcTy = V->getType();
3839   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3840          "Cannot truncate or zero extend with non-integer arguments!");
3841   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3842     return V;  // No conversion
3843   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3844     return getTruncateExpr(V, Ty, Depth);
3845   return getZeroExtendExpr(V, Ty, Depth);
3846 }
3847 
3848 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3849                                                      unsigned Depth) {
3850   Type *SrcTy = V->getType();
3851   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3852          "Cannot truncate or zero extend with non-integer arguments!");
3853   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3854     return V;  // No conversion
3855   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3856     return getTruncateExpr(V, Ty, Depth);
3857   return getSignExtendExpr(V, Ty, Depth);
3858 }
3859 
3860 const SCEV *
3861 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3862   Type *SrcTy = V->getType();
3863   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3864          "Cannot noop or zero extend with non-integer arguments!");
3865   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3866          "getNoopOrZeroExtend cannot truncate!");
3867   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3868     return V;  // No conversion
3869   return getZeroExtendExpr(V, Ty);
3870 }
3871 
3872 const SCEV *
3873 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3874   Type *SrcTy = V->getType();
3875   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3876          "Cannot noop or sign extend with non-integer arguments!");
3877   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3878          "getNoopOrSignExtend cannot truncate!");
3879   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3880     return V;  // No conversion
3881   return getSignExtendExpr(V, Ty);
3882 }
3883 
3884 const SCEV *
3885 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3886   Type *SrcTy = V->getType();
3887   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3888          "Cannot noop or any extend with non-integer arguments!");
3889   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3890          "getNoopOrAnyExtend cannot truncate!");
3891   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3892     return V;  // No conversion
3893   return getAnyExtendExpr(V, Ty);
3894 }
3895 
3896 const SCEV *
3897 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3898   Type *SrcTy = V->getType();
3899   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3900          "Cannot truncate or noop with non-integer arguments!");
3901   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3902          "getTruncateOrNoop cannot extend!");
3903   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3904     return V;  // No conversion
3905   return getTruncateExpr(V, Ty);
3906 }
3907 
3908 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3909                                                         const SCEV *RHS) {
3910   const SCEV *PromotedLHS = LHS;
3911   const SCEV *PromotedRHS = RHS;
3912 
3913   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3914     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3915   else
3916     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3917 
3918   return getUMaxExpr(PromotedLHS, PromotedRHS);
3919 }
3920 
3921 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3922                                                         const SCEV *RHS) {
3923   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3924   return getUMinFromMismatchedTypes(Ops);
3925 }
3926 
3927 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3928     SmallVectorImpl<const SCEV *> &Ops) {
3929   assert(!Ops.empty() && "At least one operand must be!");
3930   // Trivial case.
3931   if (Ops.size() == 1)
3932     return Ops[0];
3933 
3934   // Find the max type first.
3935   Type *MaxType = nullptr;
3936   for (auto *S : Ops)
3937     if (MaxType)
3938       MaxType = getWiderType(MaxType, S->getType());
3939     else
3940       MaxType = S->getType();
3941 
3942   // Extend all ops to max type.
3943   SmallVector<const SCEV *, 2> PromotedOps;
3944   for (auto *S : Ops)
3945     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3946 
3947   // Generate umin.
3948   return getUMinExpr(PromotedOps);
3949 }
3950 
3951 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3952   // A pointer operand may evaluate to a nonpointer expression, such as null.
3953   if (!V->getType()->isPointerTy())
3954     return V;
3955 
3956   while (true) {
3957     if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3958       V = Cast->getOperand();
3959     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3960       const SCEV *PtrOp = nullptr;
3961       for (const SCEV *NAryOp : NAry->operands()) {
3962         if (NAryOp->getType()->isPointerTy()) {
3963           // Cannot find the base of an expression with multiple pointer ops.
3964           if (PtrOp)
3965             return V;
3966           PtrOp = NAryOp;
3967         }
3968       }
3969       if (!PtrOp) // All operands were non-pointer.
3970         return V;
3971       V = PtrOp;
3972     } else // Not something we can look further into.
3973       return V;
3974   }
3975 }
3976 
3977 /// Push users of the given Instruction onto the given Worklist.
3978 static void
3979 PushDefUseChildren(Instruction *I,
3980                    SmallVectorImpl<Instruction *> &Worklist) {
3981   // Push the def-use children onto the Worklist stack.
3982   for (User *U : I->users())
3983     Worklist.push_back(cast<Instruction>(U));
3984 }
3985 
3986 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3987   SmallVector<Instruction *, 16> Worklist;
3988   PushDefUseChildren(PN, Worklist);
3989 
3990   SmallPtrSet<Instruction *, 8> Visited;
3991   Visited.insert(PN);
3992   while (!Worklist.empty()) {
3993     Instruction *I = Worklist.pop_back_val();
3994     if (!Visited.insert(I).second)
3995       continue;
3996 
3997     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3998     if (It != ValueExprMap.end()) {
3999       const SCEV *Old = It->second;
4000 
4001       // Short-circuit the def-use traversal if the symbolic name
4002       // ceases to appear in expressions.
4003       if (Old != SymName && !hasOperand(Old, SymName))
4004         continue;
4005 
4006       // SCEVUnknown for a PHI either means that it has an unrecognized
4007       // structure, it's a PHI that's in the progress of being computed
4008       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4009       // additional loop trip count information isn't going to change anything.
4010       // In the second case, createNodeForPHI will perform the necessary
4011       // updates on its own when it gets to that point. In the third, we do
4012       // want to forget the SCEVUnknown.
4013       if (!isa<PHINode>(I) ||
4014           !isa<SCEVUnknown>(Old) ||
4015           (I != PN && Old == SymName)) {
4016         eraseValueFromMap(It->first);
4017         forgetMemoizedResults(Old);
4018       }
4019     }
4020 
4021     PushDefUseChildren(I, Worklist);
4022   }
4023 }
4024 
4025 namespace {
4026 
4027 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4028 /// expression in case its Loop is L. If it is not L then
4029 /// if IgnoreOtherLoops is true then use AddRec itself
4030 /// otherwise rewrite cannot be done.
4031 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4032 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4033 public:
4034   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4035                              bool IgnoreOtherLoops = true) {
4036     SCEVInitRewriter Rewriter(L, SE);
4037     const SCEV *Result = Rewriter.visit(S);
4038     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4039       return SE.getCouldNotCompute();
4040     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4041                ? SE.getCouldNotCompute()
4042                : Result;
4043   }
4044 
4045   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4046     if (!SE.isLoopInvariant(Expr, L))
4047       SeenLoopVariantSCEVUnknown = true;
4048     return Expr;
4049   }
4050 
4051   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4052     // Only re-write AddRecExprs for this loop.
4053     if (Expr->getLoop() == L)
4054       return Expr->getStart();
4055     SeenOtherLoops = true;
4056     return Expr;
4057   }
4058 
4059   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4060 
4061   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4062 
4063 private:
4064   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4065       : SCEVRewriteVisitor(SE), L(L) {}
4066 
4067   const Loop *L;
4068   bool SeenLoopVariantSCEVUnknown = false;
4069   bool SeenOtherLoops = false;
4070 };
4071 
4072 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4073 /// increment expression in case its Loop is L. If it is not L then
4074 /// use AddRec itself.
4075 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4076 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4077 public:
4078   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4079     SCEVPostIncRewriter Rewriter(L, SE);
4080     const SCEV *Result = Rewriter.visit(S);
4081     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4082         ? SE.getCouldNotCompute()
4083         : Result;
4084   }
4085 
4086   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4087     if (!SE.isLoopInvariant(Expr, L))
4088       SeenLoopVariantSCEVUnknown = true;
4089     return Expr;
4090   }
4091 
4092   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4093     // Only re-write AddRecExprs for this loop.
4094     if (Expr->getLoop() == L)
4095       return Expr->getPostIncExpr(SE);
4096     SeenOtherLoops = true;
4097     return Expr;
4098   }
4099 
4100   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4101 
4102   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4103 
4104 private:
4105   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4106       : SCEVRewriteVisitor(SE), L(L) {}
4107 
4108   const Loop *L;
4109   bool SeenLoopVariantSCEVUnknown = false;
4110   bool SeenOtherLoops = false;
4111 };
4112 
4113 /// This class evaluates the compare condition by matching it against the
4114 /// condition of loop latch. If there is a match we assume a true value
4115 /// for the condition while building SCEV nodes.
4116 class SCEVBackedgeConditionFolder
4117     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4118 public:
4119   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4120                              ScalarEvolution &SE) {
4121     bool IsPosBECond = false;
4122     Value *BECond = nullptr;
4123     if (BasicBlock *Latch = L->getLoopLatch()) {
4124       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4125       if (BI && BI->isConditional()) {
4126         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4127                "Both outgoing branches should not target same header!");
4128         BECond = BI->getCondition();
4129         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4130       } else {
4131         return S;
4132       }
4133     }
4134     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4135     return Rewriter.visit(S);
4136   }
4137 
4138   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4139     const SCEV *Result = Expr;
4140     bool InvariantF = SE.isLoopInvariant(Expr, L);
4141 
4142     if (!InvariantF) {
4143       Instruction *I = cast<Instruction>(Expr->getValue());
4144       switch (I->getOpcode()) {
4145       case Instruction::Select: {
4146         SelectInst *SI = cast<SelectInst>(I);
4147         Optional<const SCEV *> Res =
4148             compareWithBackedgeCondition(SI->getCondition());
4149         if (Res.hasValue()) {
4150           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4151           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4152         }
4153         break;
4154       }
4155       default: {
4156         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4157         if (Res.hasValue())
4158           Result = Res.getValue();
4159         break;
4160       }
4161       }
4162     }
4163     return Result;
4164   }
4165 
4166 private:
4167   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4168                                        bool IsPosBECond, ScalarEvolution &SE)
4169       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4170         IsPositiveBECond(IsPosBECond) {}
4171 
4172   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4173 
4174   const Loop *L;
4175   /// Loop back condition.
4176   Value *BackedgeCond = nullptr;
4177   /// Set to true if loop back is on positive branch condition.
4178   bool IsPositiveBECond;
4179 };
4180 
4181 Optional<const SCEV *>
4182 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4183 
4184   // If value matches the backedge condition for loop latch,
4185   // then return a constant evolution node based on loopback
4186   // branch taken.
4187   if (BackedgeCond == IC)
4188     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4189                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4190   return None;
4191 }
4192 
4193 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4194 public:
4195   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4196                              ScalarEvolution &SE) {
4197     SCEVShiftRewriter Rewriter(L, SE);
4198     const SCEV *Result = Rewriter.visit(S);
4199     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4200   }
4201 
4202   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4203     // Only allow AddRecExprs for this loop.
4204     if (!SE.isLoopInvariant(Expr, L))
4205       Valid = false;
4206     return Expr;
4207   }
4208 
4209   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4210     if (Expr->getLoop() == L && Expr->isAffine())
4211       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4212     Valid = false;
4213     return Expr;
4214   }
4215 
4216   bool isValid() { return Valid; }
4217 
4218 private:
4219   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4220       : SCEVRewriteVisitor(SE), L(L) {}
4221 
4222   const Loop *L;
4223   bool Valid = true;
4224 };
4225 
4226 } // end anonymous namespace
4227 
4228 SCEV::NoWrapFlags
4229 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4230   if (!AR->isAffine())
4231     return SCEV::FlagAnyWrap;
4232 
4233   using OBO = OverflowingBinaryOperator;
4234 
4235   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4236 
4237   if (!AR->hasNoSignedWrap()) {
4238     ConstantRange AddRecRange = getSignedRange(AR);
4239     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4240 
4241     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4242         Instruction::Add, IncRange, OBO::NoSignedWrap);
4243     if (NSWRegion.contains(AddRecRange))
4244       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4245   }
4246 
4247   if (!AR->hasNoUnsignedWrap()) {
4248     ConstantRange AddRecRange = getUnsignedRange(AR);
4249     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4250 
4251     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4252         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4253     if (NUWRegion.contains(AddRecRange))
4254       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4255   }
4256 
4257   return Result;
4258 }
4259 
4260 namespace {
4261 
4262 /// Represents an abstract binary operation.  This may exist as a
4263 /// normal instruction or constant expression, or may have been
4264 /// derived from an expression tree.
4265 struct BinaryOp {
4266   unsigned Opcode;
4267   Value *LHS;
4268   Value *RHS;
4269   bool IsNSW = false;
4270   bool IsNUW = false;
4271 
4272   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4273   /// constant expression.
4274   Operator *Op = nullptr;
4275 
4276   explicit BinaryOp(Operator *Op)
4277       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4278         Op(Op) {
4279     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4280       IsNSW = OBO->hasNoSignedWrap();
4281       IsNUW = OBO->hasNoUnsignedWrap();
4282     }
4283   }
4284 
4285   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4286                     bool IsNUW = false)
4287       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4288 };
4289 
4290 } // end anonymous namespace
4291 
4292 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4293 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4294   auto *Op = dyn_cast<Operator>(V);
4295   if (!Op)
4296     return None;
4297 
4298   // Implementation detail: all the cleverness here should happen without
4299   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4300   // SCEV expressions when possible, and we should not break that.
4301 
4302   switch (Op->getOpcode()) {
4303   case Instruction::Add:
4304   case Instruction::Sub:
4305   case Instruction::Mul:
4306   case Instruction::UDiv:
4307   case Instruction::URem:
4308   case Instruction::And:
4309   case Instruction::Or:
4310   case Instruction::AShr:
4311   case Instruction::Shl:
4312     return BinaryOp(Op);
4313 
4314   case Instruction::Xor:
4315     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4316       // If the RHS of the xor is a signmask, then this is just an add.
4317       // Instcombine turns add of signmask into xor as a strength reduction step.
4318       if (RHSC->getValue().isSignMask())
4319         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4320     return BinaryOp(Op);
4321 
4322   case Instruction::LShr:
4323     // Turn logical shift right of a constant into a unsigned divide.
4324     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4325       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4326 
4327       // If the shift count is not less than the bitwidth, the result of
4328       // the shift is undefined. Don't try to analyze it, because the
4329       // resolution chosen here may differ from the resolution chosen in
4330       // other parts of the compiler.
4331       if (SA->getValue().ult(BitWidth)) {
4332         Constant *X =
4333             ConstantInt::get(SA->getContext(),
4334                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4335         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4336       }
4337     }
4338     return BinaryOp(Op);
4339 
4340   case Instruction::ExtractValue: {
4341     auto *EVI = cast<ExtractValueInst>(Op);
4342     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4343       break;
4344 
4345     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4346     if (!WO)
4347       break;
4348 
4349     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4350     bool Signed = WO->isSigned();
4351     // TODO: Should add nuw/nsw flags for mul as well.
4352     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4353       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4354 
4355     // Now that we know that all uses of the arithmetic-result component of
4356     // CI are guarded by the overflow check, we can go ahead and pretend
4357     // that the arithmetic is non-overflowing.
4358     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4359                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4360   }
4361 
4362   default:
4363     break;
4364   }
4365 
4366   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4367   // semantics as a Sub, return a binary sub expression.
4368   if (auto *II = dyn_cast<IntrinsicInst>(V))
4369     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4370       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4371 
4372   return None;
4373 }
4374 
4375 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4376 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4377 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4378 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4379 /// follows one of the following patterns:
4380 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4381 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4382 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4383 /// we return the type of the truncation operation, and indicate whether the
4384 /// truncated type should be treated as signed/unsigned by setting
4385 /// \p Signed to true/false, respectively.
4386 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4387                                bool &Signed, ScalarEvolution &SE) {
4388   // The case where Op == SymbolicPHI (that is, with no type conversions on
4389   // the way) is handled by the regular add recurrence creating logic and
4390   // would have already been triggered in createAddRecForPHI. Reaching it here
4391   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4392   // because one of the other operands of the SCEVAddExpr updating this PHI is
4393   // not invariant).
4394   //
4395   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4396   // this case predicates that allow us to prove that Op == SymbolicPHI will
4397   // be added.
4398   if (Op == SymbolicPHI)
4399     return nullptr;
4400 
4401   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4402   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4403   if (SourceBits != NewBits)
4404     return nullptr;
4405 
4406   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4407   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4408   if (!SExt && !ZExt)
4409     return nullptr;
4410   const SCEVTruncateExpr *Trunc =
4411       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4412            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4413   if (!Trunc)
4414     return nullptr;
4415   const SCEV *X = Trunc->getOperand();
4416   if (X != SymbolicPHI)
4417     return nullptr;
4418   Signed = SExt != nullptr;
4419   return Trunc->getType();
4420 }
4421 
4422 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4423   if (!PN->getType()->isIntegerTy())
4424     return nullptr;
4425   const Loop *L = LI.getLoopFor(PN->getParent());
4426   if (!L || L->getHeader() != PN->getParent())
4427     return nullptr;
4428   return L;
4429 }
4430 
4431 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4432 // computation that updates the phi follows the following pattern:
4433 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4434 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4435 // If so, try to see if it can be rewritten as an AddRecExpr under some
4436 // Predicates. If successful, return them as a pair. Also cache the results
4437 // of the analysis.
4438 //
4439 // Example usage scenario:
4440 //    Say the Rewriter is called for the following SCEV:
4441 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4442 //    where:
4443 //         %X = phi i64 (%Start, %BEValue)
4444 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4445 //    and call this function with %SymbolicPHI = %X.
4446 //
4447 //    The analysis will find that the value coming around the backedge has
4448 //    the following SCEV:
4449 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4450 //    Upon concluding that this matches the desired pattern, the function
4451 //    will return the pair {NewAddRec, SmallPredsVec} where:
4452 //         NewAddRec = {%Start,+,%Step}
4453 //         SmallPredsVec = {P1, P2, P3} as follows:
4454 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4455 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4456 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4457 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4458 //    under the predicates {P1,P2,P3}.
4459 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4460 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4461 //
4462 // TODO's:
4463 //
4464 // 1) Extend the Induction descriptor to also support inductions that involve
4465 //    casts: When needed (namely, when we are called in the context of the
4466 //    vectorizer induction analysis), a Set of cast instructions will be
4467 //    populated by this method, and provided back to isInductionPHI. This is
4468 //    needed to allow the vectorizer to properly record them to be ignored by
4469 //    the cost model and to avoid vectorizing them (otherwise these casts,
4470 //    which are redundant under the runtime overflow checks, will be
4471 //    vectorized, which can be costly).
4472 //
4473 // 2) Support additional induction/PHISCEV patterns: We also want to support
4474 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4475 //    after the induction update operation (the induction increment):
4476 //
4477 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4478 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4479 //
4480 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4481 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4482 //
4483 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4484 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4485 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4486   SmallVector<const SCEVPredicate *, 3> Predicates;
4487 
4488   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4489   // return an AddRec expression under some predicate.
4490 
4491   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4492   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4493   assert(L && "Expecting an integer loop header phi");
4494 
4495   // The loop may have multiple entrances or multiple exits; we can analyze
4496   // this phi as an addrec if it has a unique entry value and a unique
4497   // backedge value.
4498   Value *BEValueV = nullptr, *StartValueV = nullptr;
4499   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4500     Value *V = PN->getIncomingValue(i);
4501     if (L->contains(PN->getIncomingBlock(i))) {
4502       if (!BEValueV) {
4503         BEValueV = V;
4504       } else if (BEValueV != V) {
4505         BEValueV = nullptr;
4506         break;
4507       }
4508     } else if (!StartValueV) {
4509       StartValueV = V;
4510     } else if (StartValueV != V) {
4511       StartValueV = nullptr;
4512       break;
4513     }
4514   }
4515   if (!BEValueV || !StartValueV)
4516     return None;
4517 
4518   const SCEV *BEValue = getSCEV(BEValueV);
4519 
4520   // If the value coming around the backedge is an add with the symbolic
4521   // value we just inserted, possibly with casts that we can ignore under
4522   // an appropriate runtime guard, then we found a simple induction variable!
4523   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4524   if (!Add)
4525     return None;
4526 
4527   // If there is a single occurrence of the symbolic value, possibly
4528   // casted, replace it with a recurrence.
4529   unsigned FoundIndex = Add->getNumOperands();
4530   Type *TruncTy = nullptr;
4531   bool Signed;
4532   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4533     if ((TruncTy =
4534              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4535       if (FoundIndex == e) {
4536         FoundIndex = i;
4537         break;
4538       }
4539 
4540   if (FoundIndex == Add->getNumOperands())
4541     return None;
4542 
4543   // Create an add with everything but the specified operand.
4544   SmallVector<const SCEV *, 8> Ops;
4545   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4546     if (i != FoundIndex)
4547       Ops.push_back(Add->getOperand(i));
4548   const SCEV *Accum = getAddExpr(Ops);
4549 
4550   // The runtime checks will not be valid if the step amount is
4551   // varying inside the loop.
4552   if (!isLoopInvariant(Accum, L))
4553     return None;
4554 
4555   // *** Part2: Create the predicates
4556 
4557   // Analysis was successful: we have a phi-with-cast pattern for which we
4558   // can return an AddRec expression under the following predicates:
4559   //
4560   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4561   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4562   // P2: An Equal predicate that guarantees that
4563   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4564   // P3: An Equal predicate that guarantees that
4565   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4566   //
4567   // As we next prove, the above predicates guarantee that:
4568   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4569   //
4570   //
4571   // More formally, we want to prove that:
4572   //     Expr(i+1) = Start + (i+1) * Accum
4573   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4574   //
4575   // Given that:
4576   // 1) Expr(0) = Start
4577   // 2) Expr(1) = Start + Accum
4578   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4579   // 3) Induction hypothesis (step i):
4580   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4581   //
4582   // Proof:
4583   //  Expr(i+1) =
4584   //   = Start + (i+1)*Accum
4585   //   = (Start + i*Accum) + Accum
4586   //   = Expr(i) + Accum
4587   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4588   //                                                             :: from step i
4589   //
4590   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4591   //
4592   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4593   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4594   //     + Accum                                                     :: from P3
4595   //
4596   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4597   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4598   //
4599   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4600   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4601   //
4602   // By induction, the same applies to all iterations 1<=i<n:
4603   //
4604 
4605   // Create a truncated addrec for which we will add a no overflow check (P1).
4606   const SCEV *StartVal = getSCEV(StartValueV);
4607   const SCEV *PHISCEV =
4608       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4609                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4610 
4611   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4612   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4613   // will be constant.
4614   //
4615   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4616   // add P1.
4617   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4618     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4619         Signed ? SCEVWrapPredicate::IncrementNSSW
4620                : SCEVWrapPredicate::IncrementNUSW;
4621     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4622     Predicates.push_back(AddRecPred);
4623   }
4624 
4625   // Create the Equal Predicates P2,P3:
4626 
4627   // It is possible that the predicates P2 and/or P3 are computable at
4628   // compile time due to StartVal and/or Accum being constants.
4629   // If either one is, then we can check that now and escape if either P2
4630   // or P3 is false.
4631 
4632   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4633   // for each of StartVal and Accum
4634   auto getExtendedExpr = [&](const SCEV *Expr,
4635                              bool CreateSignExtend) -> const SCEV * {
4636     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4637     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4638     const SCEV *ExtendedExpr =
4639         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4640                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4641     return ExtendedExpr;
4642   };
4643 
4644   // Given:
4645   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4646   //               = getExtendedExpr(Expr)
4647   // Determine whether the predicate P: Expr == ExtendedExpr
4648   // is known to be false at compile time
4649   auto PredIsKnownFalse = [&](const SCEV *Expr,
4650                               const SCEV *ExtendedExpr) -> bool {
4651     return Expr != ExtendedExpr &&
4652            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4653   };
4654 
4655   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4656   if (PredIsKnownFalse(StartVal, StartExtended)) {
4657     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4658     return None;
4659   }
4660 
4661   // The Step is always Signed (because the overflow checks are either
4662   // NSSW or NUSW)
4663   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4664   if (PredIsKnownFalse(Accum, AccumExtended)) {
4665     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4666     return None;
4667   }
4668 
4669   auto AppendPredicate = [&](const SCEV *Expr,
4670                              const SCEV *ExtendedExpr) -> void {
4671     if (Expr != ExtendedExpr &&
4672         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4673       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4674       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4675       Predicates.push_back(Pred);
4676     }
4677   };
4678 
4679   AppendPredicate(StartVal, StartExtended);
4680   AppendPredicate(Accum, AccumExtended);
4681 
4682   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4683   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4684   // into NewAR if it will also add the runtime overflow checks specified in
4685   // Predicates.
4686   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4687 
4688   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4689       std::make_pair(NewAR, Predicates);
4690   // Remember the result of the analysis for this SCEV at this locayyytion.
4691   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4692   return PredRewrite;
4693 }
4694 
4695 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4696 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4697   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4698   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4699   if (!L)
4700     return None;
4701 
4702   // Check to see if we already analyzed this PHI.
4703   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4704   if (I != PredicatedSCEVRewrites.end()) {
4705     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4706         I->second;
4707     // Analysis was done before and failed to create an AddRec:
4708     if (Rewrite.first == SymbolicPHI)
4709       return None;
4710     // Analysis was done before and succeeded to create an AddRec under
4711     // a predicate:
4712     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4713     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4714     return Rewrite;
4715   }
4716 
4717   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4718     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4719 
4720   // Record in the cache that the analysis failed
4721   if (!Rewrite) {
4722     SmallVector<const SCEVPredicate *, 3> Predicates;
4723     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4724     return None;
4725   }
4726 
4727   return Rewrite;
4728 }
4729 
4730 // FIXME: This utility is currently required because the Rewriter currently
4731 // does not rewrite this expression:
4732 // {0, +, (sext ix (trunc iy to ix) to iy)}
4733 // into {0, +, %step},
4734 // even when the following Equal predicate exists:
4735 // "%step == (sext ix (trunc iy to ix) to iy)".
4736 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4737     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4738   if (AR1 == AR2)
4739     return true;
4740 
4741   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4742     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4743         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4744       return false;
4745     return true;
4746   };
4747 
4748   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4749       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4750     return false;
4751   return true;
4752 }
4753 
4754 /// A helper function for createAddRecFromPHI to handle simple cases.
4755 ///
4756 /// This function tries to find an AddRec expression for the simplest (yet most
4757 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4758 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4759 /// technique for finding the AddRec expression.
4760 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4761                                                       Value *BEValueV,
4762                                                       Value *StartValueV) {
4763   const Loop *L = LI.getLoopFor(PN->getParent());
4764   assert(L && L->getHeader() == PN->getParent());
4765   assert(BEValueV && StartValueV);
4766 
4767   auto BO = MatchBinaryOp(BEValueV, DT);
4768   if (!BO)
4769     return nullptr;
4770 
4771   if (BO->Opcode != Instruction::Add)
4772     return nullptr;
4773 
4774   const SCEV *Accum = nullptr;
4775   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4776     Accum = getSCEV(BO->RHS);
4777   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4778     Accum = getSCEV(BO->LHS);
4779 
4780   if (!Accum)
4781     return nullptr;
4782 
4783   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4784   if (BO->IsNUW)
4785     Flags = setFlags(Flags, SCEV::FlagNUW);
4786   if (BO->IsNSW)
4787     Flags = setFlags(Flags, SCEV::FlagNSW);
4788 
4789   const SCEV *StartVal = getSCEV(StartValueV);
4790   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4791 
4792   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4793 
4794   // We can add Flags to the post-inc expression only if we
4795   // know that it is *undefined behavior* for BEValueV to
4796   // overflow.
4797   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4798     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4799       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4800 
4801   return PHISCEV;
4802 }
4803 
4804 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4805   const Loop *L = LI.getLoopFor(PN->getParent());
4806   if (!L || L->getHeader() != PN->getParent())
4807     return nullptr;
4808 
4809   // The loop may have multiple entrances or multiple exits; we can analyze
4810   // this phi as an addrec if it has a unique entry value and a unique
4811   // backedge value.
4812   Value *BEValueV = nullptr, *StartValueV = nullptr;
4813   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4814     Value *V = PN->getIncomingValue(i);
4815     if (L->contains(PN->getIncomingBlock(i))) {
4816       if (!BEValueV) {
4817         BEValueV = V;
4818       } else if (BEValueV != V) {
4819         BEValueV = nullptr;
4820         break;
4821       }
4822     } else if (!StartValueV) {
4823       StartValueV = V;
4824     } else if (StartValueV != V) {
4825       StartValueV = nullptr;
4826       break;
4827     }
4828   }
4829   if (!BEValueV || !StartValueV)
4830     return nullptr;
4831 
4832   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4833          "PHI node already processed?");
4834 
4835   // First, try to find AddRec expression without creating a fictituos symbolic
4836   // value for PN.
4837   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4838     return S;
4839 
4840   // Handle PHI node value symbolically.
4841   const SCEV *SymbolicName = getUnknown(PN);
4842   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4843 
4844   // Using this symbolic name for the PHI, analyze the value coming around
4845   // the back-edge.
4846   const SCEV *BEValue = getSCEV(BEValueV);
4847 
4848   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4849   // has a special value for the first iteration of the loop.
4850 
4851   // If the value coming around the backedge is an add with the symbolic
4852   // value we just inserted, then we found a simple induction variable!
4853   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4854     // If there is a single occurrence of the symbolic value, replace it
4855     // with a recurrence.
4856     unsigned FoundIndex = Add->getNumOperands();
4857     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4858       if (Add->getOperand(i) == SymbolicName)
4859         if (FoundIndex == e) {
4860           FoundIndex = i;
4861           break;
4862         }
4863 
4864     if (FoundIndex != Add->getNumOperands()) {
4865       // Create an add with everything but the specified operand.
4866       SmallVector<const SCEV *, 8> Ops;
4867       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4868         if (i != FoundIndex)
4869           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4870                                                              L, *this));
4871       const SCEV *Accum = getAddExpr(Ops);
4872 
4873       // This is not a valid addrec if the step amount is varying each
4874       // loop iteration, but is not itself an addrec in this loop.
4875       if (isLoopInvariant(Accum, L) ||
4876           (isa<SCEVAddRecExpr>(Accum) &&
4877            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4878         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4879 
4880         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4881           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4882             if (BO->IsNUW)
4883               Flags = setFlags(Flags, SCEV::FlagNUW);
4884             if (BO->IsNSW)
4885               Flags = setFlags(Flags, SCEV::FlagNSW);
4886           }
4887         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4888           // If the increment is an inbounds GEP, then we know the address
4889           // space cannot be wrapped around. We cannot make any guarantee
4890           // about signed or unsigned overflow because pointers are
4891           // unsigned but we may have a negative index from the base
4892           // pointer. We can guarantee that no unsigned wrap occurs if the
4893           // indices form a positive value.
4894           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4895             Flags = setFlags(Flags, SCEV::FlagNW);
4896 
4897             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4898             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4899               Flags = setFlags(Flags, SCEV::FlagNUW);
4900           }
4901 
4902           // We cannot transfer nuw and nsw flags from subtraction
4903           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4904           // for instance.
4905         }
4906 
4907         const SCEV *StartVal = getSCEV(StartValueV);
4908         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4909 
4910         // Okay, for the entire analysis of this edge we assumed the PHI
4911         // to be symbolic.  We now need to go back and purge all of the
4912         // entries for the scalars that use the symbolic expression.
4913         forgetSymbolicName(PN, SymbolicName);
4914         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4915 
4916         // We can add Flags to the post-inc expression only if we
4917         // know that it is *undefined behavior* for BEValueV to
4918         // overflow.
4919         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4920           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4921             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4922 
4923         return PHISCEV;
4924       }
4925     }
4926   } else {
4927     // Otherwise, this could be a loop like this:
4928     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4929     // In this case, j = {1,+,1}  and BEValue is j.
4930     // Because the other in-value of i (0) fits the evolution of BEValue
4931     // i really is an addrec evolution.
4932     //
4933     // We can generalize this saying that i is the shifted value of BEValue
4934     // by one iteration:
4935     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4936     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4937     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4938     if (Shifted != getCouldNotCompute() &&
4939         Start != getCouldNotCompute()) {
4940       const SCEV *StartVal = getSCEV(StartValueV);
4941       if (Start == StartVal) {
4942         // Okay, for the entire analysis of this edge we assumed the PHI
4943         // to be symbolic.  We now need to go back and purge all of the
4944         // entries for the scalars that use the symbolic expression.
4945         forgetSymbolicName(PN, SymbolicName);
4946         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4947         return Shifted;
4948       }
4949     }
4950   }
4951 
4952   // Remove the temporary PHI node SCEV that has been inserted while intending
4953   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4954   // as it will prevent later (possibly simpler) SCEV expressions to be added
4955   // to the ValueExprMap.
4956   eraseValueFromMap(PN);
4957 
4958   return nullptr;
4959 }
4960 
4961 // Checks if the SCEV S is available at BB.  S is considered available at BB
4962 // if S can be materialized at BB without introducing a fault.
4963 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4964                                BasicBlock *BB) {
4965   struct CheckAvailable {
4966     bool TraversalDone = false;
4967     bool Available = true;
4968 
4969     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4970     BasicBlock *BB = nullptr;
4971     DominatorTree &DT;
4972 
4973     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4974       : L(L), BB(BB), DT(DT) {}
4975 
4976     bool setUnavailable() {
4977       TraversalDone = true;
4978       Available = false;
4979       return false;
4980     }
4981 
4982     bool follow(const SCEV *S) {
4983       switch (S->getSCEVType()) {
4984       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4985       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4986       case scUMinExpr:
4987       case scSMinExpr:
4988         // These expressions are available if their operand(s) is/are.
4989         return true;
4990 
4991       case scAddRecExpr: {
4992         // We allow add recurrences that are on the loop BB is in, or some
4993         // outer loop.  This guarantees availability because the value of the
4994         // add recurrence at BB is simply the "current" value of the induction
4995         // variable.  We can relax this in the future; for instance an add
4996         // recurrence on a sibling dominating loop is also available at BB.
4997         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4998         if (L && (ARLoop == L || ARLoop->contains(L)))
4999           return true;
5000 
5001         return setUnavailable();
5002       }
5003 
5004       case scUnknown: {
5005         // For SCEVUnknown, we check for simple dominance.
5006         const auto *SU = cast<SCEVUnknown>(S);
5007         Value *V = SU->getValue();
5008 
5009         if (isa<Argument>(V))
5010           return false;
5011 
5012         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5013           return false;
5014 
5015         return setUnavailable();
5016       }
5017 
5018       case scUDivExpr:
5019       case scCouldNotCompute:
5020         // We do not try to smart about these at all.
5021         return setUnavailable();
5022       }
5023       llvm_unreachable("switch should be fully covered!");
5024     }
5025 
5026     bool isDone() { return TraversalDone; }
5027   };
5028 
5029   CheckAvailable CA(L, BB, DT);
5030   SCEVTraversal<CheckAvailable> ST(CA);
5031 
5032   ST.visitAll(S);
5033   return CA.Available;
5034 }
5035 
5036 // Try to match a control flow sequence that branches out at BI and merges back
5037 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5038 // match.
5039 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5040                           Value *&C, Value *&LHS, Value *&RHS) {
5041   C = BI->getCondition();
5042 
5043   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5044   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5045 
5046   if (!LeftEdge.isSingleEdge())
5047     return false;
5048 
5049   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5050 
5051   Use &LeftUse = Merge->getOperandUse(0);
5052   Use &RightUse = Merge->getOperandUse(1);
5053 
5054   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5055     LHS = LeftUse;
5056     RHS = RightUse;
5057     return true;
5058   }
5059 
5060   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5061     LHS = RightUse;
5062     RHS = LeftUse;
5063     return true;
5064   }
5065 
5066   return false;
5067 }
5068 
5069 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5070   auto IsReachable =
5071       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5072   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5073     const Loop *L = LI.getLoopFor(PN->getParent());
5074 
5075     // We don't want to break LCSSA, even in a SCEV expression tree.
5076     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5077       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5078         return nullptr;
5079 
5080     // Try to match
5081     //
5082     //  br %cond, label %left, label %right
5083     // left:
5084     //  br label %merge
5085     // right:
5086     //  br label %merge
5087     // merge:
5088     //  V = phi [ %x, %left ], [ %y, %right ]
5089     //
5090     // as "select %cond, %x, %y"
5091 
5092     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5093     assert(IDom && "At least the entry block should dominate PN");
5094 
5095     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5096     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5097 
5098     if (BI && BI->isConditional() &&
5099         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5100         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5101         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5102       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5103   }
5104 
5105   return nullptr;
5106 }
5107 
5108 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5109   if (const SCEV *S = createAddRecFromPHI(PN))
5110     return S;
5111 
5112   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5113     return S;
5114 
5115   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5116     return getSCEV(V);
5117 
5118   // If it's not a loop phi, we can't handle it yet.
5119   return getUnknown(PN);
5120 }
5121 
5122 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5123                                                       Value *Cond,
5124                                                       Value *TrueVal,
5125                                                       Value *FalseVal) {
5126   // Handle "constant" branch or select. This can occur for instance when a
5127   // loop pass transforms an inner loop and moves on to process the outer loop.
5128   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5129     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5130 
5131   // Try to match some simple smax or umax patterns.
5132   auto *ICI = dyn_cast<ICmpInst>(Cond);
5133   if (!ICI)
5134     return getUnknown(I);
5135 
5136   Value *LHS = ICI->getOperand(0);
5137   Value *RHS = ICI->getOperand(1);
5138 
5139   switch (ICI->getPredicate()) {
5140   case ICmpInst::ICMP_SLT:
5141   case ICmpInst::ICMP_SLE:
5142     std::swap(LHS, RHS);
5143     LLVM_FALLTHROUGH;
5144   case ICmpInst::ICMP_SGT:
5145   case ICmpInst::ICMP_SGE:
5146     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5147     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5148     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5149       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5150       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5151       const SCEV *LA = getSCEV(TrueVal);
5152       const SCEV *RA = getSCEV(FalseVal);
5153       const SCEV *LDiff = getMinusSCEV(LA, LS);
5154       const SCEV *RDiff = getMinusSCEV(RA, RS);
5155       if (LDiff == RDiff)
5156         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5157       LDiff = getMinusSCEV(LA, RS);
5158       RDiff = getMinusSCEV(RA, LS);
5159       if (LDiff == RDiff)
5160         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5161     }
5162     break;
5163   case ICmpInst::ICMP_ULT:
5164   case ICmpInst::ICMP_ULE:
5165     std::swap(LHS, RHS);
5166     LLVM_FALLTHROUGH;
5167   case ICmpInst::ICMP_UGT:
5168   case ICmpInst::ICMP_UGE:
5169     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5170     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5171     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5172       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5173       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5174       const SCEV *LA = getSCEV(TrueVal);
5175       const SCEV *RA = getSCEV(FalseVal);
5176       const SCEV *LDiff = getMinusSCEV(LA, LS);
5177       const SCEV *RDiff = getMinusSCEV(RA, RS);
5178       if (LDiff == RDiff)
5179         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5180       LDiff = getMinusSCEV(LA, RS);
5181       RDiff = getMinusSCEV(RA, LS);
5182       if (LDiff == RDiff)
5183         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5184     }
5185     break;
5186   case ICmpInst::ICMP_NE:
5187     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5188     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5189         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5190       const SCEV *One = getOne(I->getType());
5191       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5192       const SCEV *LA = getSCEV(TrueVal);
5193       const SCEV *RA = getSCEV(FalseVal);
5194       const SCEV *LDiff = getMinusSCEV(LA, LS);
5195       const SCEV *RDiff = getMinusSCEV(RA, One);
5196       if (LDiff == RDiff)
5197         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5198     }
5199     break;
5200   case ICmpInst::ICMP_EQ:
5201     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5202     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5203         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5204       const SCEV *One = getOne(I->getType());
5205       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5206       const SCEV *LA = getSCEV(TrueVal);
5207       const SCEV *RA = getSCEV(FalseVal);
5208       const SCEV *LDiff = getMinusSCEV(LA, One);
5209       const SCEV *RDiff = getMinusSCEV(RA, LS);
5210       if (LDiff == RDiff)
5211         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5212     }
5213     break;
5214   default:
5215     break;
5216   }
5217 
5218   return getUnknown(I);
5219 }
5220 
5221 /// Expand GEP instructions into add and multiply operations. This allows them
5222 /// to be analyzed by regular SCEV code.
5223 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5224   // Don't attempt to analyze GEPs over unsized objects.
5225   if (!GEP->getSourceElementType()->isSized())
5226     return getUnknown(GEP);
5227 
5228   SmallVector<const SCEV *, 4> IndexExprs;
5229   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5230     IndexExprs.push_back(getSCEV(*Index));
5231   return getGEPExpr(GEP, IndexExprs);
5232 }
5233 
5234 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5235   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5236     return C->getAPInt().countTrailingZeros();
5237 
5238   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5239     return std::min(GetMinTrailingZeros(T->getOperand()),
5240                     (uint32_t)getTypeSizeInBits(T->getType()));
5241 
5242   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5243     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5244     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5245                ? getTypeSizeInBits(E->getType())
5246                : OpRes;
5247   }
5248 
5249   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5250     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5251     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5252                ? getTypeSizeInBits(E->getType())
5253                : OpRes;
5254   }
5255 
5256   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5257     // The result is the min of all operands results.
5258     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5259     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5260       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5261     return MinOpRes;
5262   }
5263 
5264   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5265     // The result is the sum of all operands results.
5266     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5267     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5268     for (unsigned i = 1, e = M->getNumOperands();
5269          SumOpRes != BitWidth && i != e; ++i)
5270       SumOpRes =
5271           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5272     return SumOpRes;
5273   }
5274 
5275   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5276     // The result is the min of all operands results.
5277     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5278     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5279       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5280     return MinOpRes;
5281   }
5282 
5283   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5284     // The result is the min of all operands results.
5285     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5286     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5287       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5288     return MinOpRes;
5289   }
5290 
5291   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5292     // The result is the min of all operands results.
5293     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5294     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5295       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5296     return MinOpRes;
5297   }
5298 
5299   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5300     // For a SCEVUnknown, ask ValueTracking.
5301     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5302     return Known.countMinTrailingZeros();
5303   }
5304 
5305   // SCEVUDivExpr
5306   return 0;
5307 }
5308 
5309 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5310   auto I = MinTrailingZerosCache.find(S);
5311   if (I != MinTrailingZerosCache.end())
5312     return I->second;
5313 
5314   uint32_t Result = GetMinTrailingZerosImpl(S);
5315   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5316   assert(InsertPair.second && "Should insert a new key");
5317   return InsertPair.first->second;
5318 }
5319 
5320 /// Helper method to assign a range to V from metadata present in the IR.
5321 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5322   if (Instruction *I = dyn_cast<Instruction>(V))
5323     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5324       return getConstantRangeFromMetadata(*MD);
5325 
5326   return None;
5327 }
5328 
5329 /// Determine the range for a particular SCEV.  If SignHint is
5330 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5331 /// with a "cleaner" unsigned (resp. signed) representation.
5332 const ConstantRange &
5333 ScalarEvolution::getRangeRef(const SCEV *S,
5334                              ScalarEvolution::RangeSignHint SignHint) {
5335   DenseMap<const SCEV *, ConstantRange> &Cache =
5336       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5337                                                        : SignedRanges;
5338   ConstantRange::PreferredRangeType RangeType =
5339       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5340           ? ConstantRange::Unsigned : ConstantRange::Signed;
5341 
5342   // See if we've computed this range already.
5343   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5344   if (I != Cache.end())
5345     return I->second;
5346 
5347   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5348     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5349 
5350   unsigned BitWidth = getTypeSizeInBits(S->getType());
5351   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5352   using OBO = OverflowingBinaryOperator;
5353 
5354   // If the value has known zeros, the maximum value will have those known zeros
5355   // as well.
5356   uint32_t TZ = GetMinTrailingZeros(S);
5357   if (TZ != 0) {
5358     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5359       ConservativeResult =
5360           ConstantRange(APInt::getMinValue(BitWidth),
5361                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5362     else
5363       ConservativeResult = ConstantRange(
5364           APInt::getSignedMinValue(BitWidth),
5365           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5366   }
5367 
5368   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5369     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5370     unsigned WrapType = OBO::AnyWrap;
5371     if (Add->hasNoSignedWrap())
5372       WrapType |= OBO::NoSignedWrap;
5373     if (Add->hasNoUnsignedWrap())
5374       WrapType |= OBO::NoUnsignedWrap;
5375     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5376       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5377                           WrapType, RangeType);
5378     return setRange(Add, SignHint,
5379                     ConservativeResult.intersectWith(X, RangeType));
5380   }
5381 
5382   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5383     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5384     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5385       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5386     return setRange(Mul, SignHint,
5387                     ConservativeResult.intersectWith(X, RangeType));
5388   }
5389 
5390   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5391     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5392     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5393       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5394     return setRange(SMax, SignHint,
5395                     ConservativeResult.intersectWith(X, RangeType));
5396   }
5397 
5398   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5399     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5400     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5401       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5402     return setRange(UMax, SignHint,
5403                     ConservativeResult.intersectWith(X, RangeType));
5404   }
5405 
5406   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5407     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5408     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5409       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5410     return setRange(SMin, SignHint,
5411                     ConservativeResult.intersectWith(X, RangeType));
5412   }
5413 
5414   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5415     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5416     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5417       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5418     return setRange(UMin, SignHint,
5419                     ConservativeResult.intersectWith(X, RangeType));
5420   }
5421 
5422   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5423     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5424     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5425     return setRange(UDiv, SignHint,
5426                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5427   }
5428 
5429   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5430     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5431     return setRange(ZExt, SignHint,
5432                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5433                                                      RangeType));
5434   }
5435 
5436   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5437     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5438     return setRange(SExt, SignHint,
5439                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5440                                                      RangeType));
5441   }
5442 
5443   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5444     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5445     return setRange(Trunc, SignHint,
5446                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5447                                                      RangeType));
5448   }
5449 
5450   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5451     // If there's no unsigned wrap, the value will never be less than its
5452     // initial value.
5453     if (AddRec->hasNoUnsignedWrap()) {
5454       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5455       if (!UnsignedMinValue.isNullValue())
5456         ConservativeResult = ConservativeResult.intersectWith(
5457             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5458     }
5459 
5460     // If there's no signed wrap, and all the operands except initial value have
5461     // the same sign or zero, the value won't ever be:
5462     // 1: smaller than initial value if operands are non negative,
5463     // 2: bigger than initial value if operands are non positive.
5464     // For both cases, value can not cross signed min/max boundary.
5465     if (AddRec->hasNoSignedWrap()) {
5466       bool AllNonNeg = true;
5467       bool AllNonPos = true;
5468       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5469         if (!isKnownNonNegative(AddRec->getOperand(i)))
5470           AllNonNeg = false;
5471         if (!isKnownNonPositive(AddRec->getOperand(i)))
5472           AllNonPos = false;
5473       }
5474       if (AllNonNeg)
5475         ConservativeResult = ConservativeResult.intersectWith(
5476             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5477                                        APInt::getSignedMinValue(BitWidth)),
5478             RangeType);
5479       else if (AllNonPos)
5480         ConservativeResult = ConservativeResult.intersectWith(
5481             ConstantRange::getNonEmpty(
5482                 APInt::getSignedMinValue(BitWidth),
5483                 getSignedRangeMax(AddRec->getStart()) + 1),
5484             RangeType);
5485     }
5486 
5487     // TODO: non-affine addrec
5488     if (AddRec->isAffine()) {
5489       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5490       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5491           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5492         auto RangeFromAffine = getRangeForAffineAR(
5493             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5494             BitWidth);
5495         if (!RangeFromAffine.isFullSet())
5496           ConservativeResult =
5497               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5498 
5499         auto RangeFromFactoring = getRangeViaFactoring(
5500             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5501             BitWidth);
5502         if (!RangeFromFactoring.isFullSet())
5503           ConservativeResult =
5504               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5505       }
5506     }
5507 
5508     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5509   }
5510 
5511   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5512     // Check if the IR explicitly contains !range metadata.
5513     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5514     if (MDRange.hasValue())
5515       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5516                                                             RangeType);
5517 
5518     // Split here to avoid paying the compile-time cost of calling both
5519     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5520     // if needed.
5521     const DataLayout &DL = getDataLayout();
5522     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5523       // For a SCEVUnknown, ask ValueTracking.
5524       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5525       if (Known.getBitWidth() != BitWidth)
5526         Known = Known.zextOrTrunc(BitWidth);
5527       // If Known does not result in full-set, intersect with it.
5528       if (Known.getMinValue() != Known.getMaxValue() + 1)
5529         ConservativeResult = ConservativeResult.intersectWith(
5530             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5531             RangeType);
5532     } else {
5533       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5534              "generalize as needed!");
5535       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5536       // If the pointer size is larger than the index size type, this can cause
5537       // NS to be larger than BitWidth. So compensate for this.
5538       if (U->getType()->isPointerTy()) {
5539         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5540         int ptrIdxDiff = ptrSize - BitWidth;
5541         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5542           NS -= ptrIdxDiff;
5543       }
5544 
5545       if (NS > 1)
5546         ConservativeResult = ConservativeResult.intersectWith(
5547             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5548                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5549             RangeType);
5550     }
5551 
5552     // A range of Phi is a subset of union of all ranges of its input.
5553     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5554       // Make sure that we do not run over cycled Phis.
5555       if (PendingPhiRanges.insert(Phi).second) {
5556         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5557         for (auto &Op : Phi->operands()) {
5558           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5559           RangeFromOps = RangeFromOps.unionWith(OpRange);
5560           // No point to continue if we already have a full set.
5561           if (RangeFromOps.isFullSet())
5562             break;
5563         }
5564         ConservativeResult =
5565             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5566         bool Erased = PendingPhiRanges.erase(Phi);
5567         assert(Erased && "Failed to erase Phi properly?");
5568         (void) Erased;
5569       }
5570     }
5571 
5572     return setRange(U, SignHint, std::move(ConservativeResult));
5573   }
5574 
5575   return setRange(S, SignHint, std::move(ConservativeResult));
5576 }
5577 
5578 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5579 // values that the expression can take. Initially, the expression has a value
5580 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5581 // argument defines if we treat Step as signed or unsigned.
5582 static ConstantRange getRangeForAffineARHelper(APInt Step,
5583                                                const ConstantRange &StartRange,
5584                                                const APInt &MaxBECount,
5585                                                unsigned BitWidth, bool Signed) {
5586   // If either Step or MaxBECount is 0, then the expression won't change, and we
5587   // just need to return the initial range.
5588   if (Step == 0 || MaxBECount == 0)
5589     return StartRange;
5590 
5591   // If we don't know anything about the initial value (i.e. StartRange is
5592   // FullRange), then we don't know anything about the final range either.
5593   // Return FullRange.
5594   if (StartRange.isFullSet())
5595     return ConstantRange::getFull(BitWidth);
5596 
5597   // If Step is signed and negative, then we use its absolute value, but we also
5598   // note that we're moving in the opposite direction.
5599   bool Descending = Signed && Step.isNegative();
5600 
5601   if (Signed)
5602     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5603     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5604     // This equations hold true due to the well-defined wrap-around behavior of
5605     // APInt.
5606     Step = Step.abs();
5607 
5608   // Check if Offset is more than full span of BitWidth. If it is, the
5609   // expression is guaranteed to overflow.
5610   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5611     return ConstantRange::getFull(BitWidth);
5612 
5613   // Offset is by how much the expression can change. Checks above guarantee no
5614   // overflow here.
5615   APInt Offset = Step * MaxBECount;
5616 
5617   // Minimum value of the final range will match the minimal value of StartRange
5618   // if the expression is increasing and will be decreased by Offset otherwise.
5619   // Maximum value of the final range will match the maximal value of StartRange
5620   // if the expression is decreasing and will be increased by Offset otherwise.
5621   APInt StartLower = StartRange.getLower();
5622   APInt StartUpper = StartRange.getUpper() - 1;
5623   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5624                                    : (StartUpper + std::move(Offset));
5625 
5626   // It's possible that the new minimum/maximum value will fall into the initial
5627   // range (due to wrap around). This means that the expression can take any
5628   // value in this bitwidth, and we have to return full range.
5629   if (StartRange.contains(MovedBoundary))
5630     return ConstantRange::getFull(BitWidth);
5631 
5632   APInt NewLower =
5633       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5634   APInt NewUpper =
5635       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5636   NewUpper += 1;
5637 
5638   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5639   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5640 }
5641 
5642 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5643                                                    const SCEV *Step,
5644                                                    const SCEV *MaxBECount,
5645                                                    unsigned BitWidth) {
5646   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5647          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5648          "Precondition!");
5649 
5650   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5651   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5652 
5653   // First, consider step signed.
5654   ConstantRange StartSRange = getSignedRange(Start);
5655   ConstantRange StepSRange = getSignedRange(Step);
5656 
5657   // If Step can be both positive and negative, we need to find ranges for the
5658   // maximum absolute step values in both directions and union them.
5659   ConstantRange SR =
5660       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5661                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5662   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5663                                               StartSRange, MaxBECountValue,
5664                                               BitWidth, /* Signed = */ true));
5665 
5666   // Next, consider step unsigned.
5667   ConstantRange UR = getRangeForAffineARHelper(
5668       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5669       MaxBECountValue, BitWidth, /* Signed = */ false);
5670 
5671   // Finally, intersect signed and unsigned ranges.
5672   return SR.intersectWith(UR, ConstantRange::Smallest);
5673 }
5674 
5675 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5676                                                     const SCEV *Step,
5677                                                     const SCEV *MaxBECount,
5678                                                     unsigned BitWidth) {
5679   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5680   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5681 
5682   struct SelectPattern {
5683     Value *Condition = nullptr;
5684     APInt TrueValue;
5685     APInt FalseValue;
5686 
5687     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5688                            const SCEV *S) {
5689       Optional<unsigned> CastOp;
5690       APInt Offset(BitWidth, 0);
5691 
5692       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5693              "Should be!");
5694 
5695       // Peel off a constant offset:
5696       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5697         // In the future we could consider being smarter here and handle
5698         // {Start+Step,+,Step} too.
5699         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5700           return;
5701 
5702         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5703         S = SA->getOperand(1);
5704       }
5705 
5706       // Peel off a cast operation
5707       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5708         CastOp = SCast->getSCEVType();
5709         S = SCast->getOperand();
5710       }
5711 
5712       using namespace llvm::PatternMatch;
5713 
5714       auto *SU = dyn_cast<SCEVUnknown>(S);
5715       const APInt *TrueVal, *FalseVal;
5716       if (!SU ||
5717           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5718                                           m_APInt(FalseVal)))) {
5719         Condition = nullptr;
5720         return;
5721       }
5722 
5723       TrueValue = *TrueVal;
5724       FalseValue = *FalseVal;
5725 
5726       // Re-apply the cast we peeled off earlier
5727       if (CastOp.hasValue())
5728         switch (*CastOp) {
5729         default:
5730           llvm_unreachable("Unknown SCEV cast type!");
5731 
5732         case scTruncate:
5733           TrueValue = TrueValue.trunc(BitWidth);
5734           FalseValue = FalseValue.trunc(BitWidth);
5735           break;
5736         case scZeroExtend:
5737           TrueValue = TrueValue.zext(BitWidth);
5738           FalseValue = FalseValue.zext(BitWidth);
5739           break;
5740         case scSignExtend:
5741           TrueValue = TrueValue.sext(BitWidth);
5742           FalseValue = FalseValue.sext(BitWidth);
5743           break;
5744         }
5745 
5746       // Re-apply the constant offset we peeled off earlier
5747       TrueValue += Offset;
5748       FalseValue += Offset;
5749     }
5750 
5751     bool isRecognized() { return Condition != nullptr; }
5752   };
5753 
5754   SelectPattern StartPattern(*this, BitWidth, Start);
5755   if (!StartPattern.isRecognized())
5756     return ConstantRange::getFull(BitWidth);
5757 
5758   SelectPattern StepPattern(*this, BitWidth, Step);
5759   if (!StepPattern.isRecognized())
5760     return ConstantRange::getFull(BitWidth);
5761 
5762   if (StartPattern.Condition != StepPattern.Condition) {
5763     // We don't handle this case today; but we could, by considering four
5764     // possibilities below instead of two. I'm not sure if there are cases where
5765     // that will help over what getRange already does, though.
5766     return ConstantRange::getFull(BitWidth);
5767   }
5768 
5769   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5770   // construct arbitrary general SCEV expressions here.  This function is called
5771   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5772   // say) can end up caching a suboptimal value.
5773 
5774   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5775   // C2352 and C2512 (otherwise it isn't needed).
5776 
5777   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5778   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5779   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5780   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5781 
5782   ConstantRange TrueRange =
5783       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5784   ConstantRange FalseRange =
5785       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5786 
5787   return TrueRange.unionWith(FalseRange);
5788 }
5789 
5790 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5791   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5792   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5793 
5794   // Return early if there are no flags to propagate to the SCEV.
5795   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5796   if (BinOp->hasNoUnsignedWrap())
5797     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5798   if (BinOp->hasNoSignedWrap())
5799     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5800   if (Flags == SCEV::FlagAnyWrap)
5801     return SCEV::FlagAnyWrap;
5802 
5803   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5804 }
5805 
5806 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5807   // Here we check that I is in the header of the innermost loop containing I,
5808   // since we only deal with instructions in the loop header. The actual loop we
5809   // need to check later will come from an add recurrence, but getting that
5810   // requires computing the SCEV of the operands, which can be expensive. This
5811   // check we can do cheaply to rule out some cases early.
5812   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5813   if (InnermostContainingLoop == nullptr ||
5814       InnermostContainingLoop->getHeader() != I->getParent())
5815     return false;
5816 
5817   // Only proceed if we can prove that I does not yield poison.
5818   if (!programUndefinedIfPoison(I))
5819     return false;
5820 
5821   // At this point we know that if I is executed, then it does not wrap
5822   // according to at least one of NSW or NUW. If I is not executed, then we do
5823   // not know if the calculation that I represents would wrap. Multiple
5824   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5825   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5826   // derived from other instructions that map to the same SCEV. We cannot make
5827   // that guarantee for cases where I is not executed. So we need to find the
5828   // loop that I is considered in relation to and prove that I is executed for
5829   // every iteration of that loop. That implies that the value that I
5830   // calculates does not wrap anywhere in the loop, so then we can apply the
5831   // flags to the SCEV.
5832   //
5833   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5834   // from different loops, so that we know which loop to prove that I is
5835   // executed in.
5836   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5837     // I could be an extractvalue from a call to an overflow intrinsic.
5838     // TODO: We can do better here in some cases.
5839     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5840       return false;
5841     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5842     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5843       bool AllOtherOpsLoopInvariant = true;
5844       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5845            ++OtherOpIndex) {
5846         if (OtherOpIndex != OpIndex) {
5847           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5848           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5849             AllOtherOpsLoopInvariant = false;
5850             break;
5851           }
5852         }
5853       }
5854       if (AllOtherOpsLoopInvariant &&
5855           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5856         return true;
5857     }
5858   }
5859   return false;
5860 }
5861 
5862 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5863   // If we know that \c I can never be poison period, then that's enough.
5864   if (isSCEVExprNeverPoison(I))
5865     return true;
5866 
5867   // For an add recurrence specifically, we assume that infinite loops without
5868   // side effects are undefined behavior, and then reason as follows:
5869   //
5870   // If the add recurrence is poison in any iteration, it is poison on all
5871   // future iterations (since incrementing poison yields poison). If the result
5872   // of the add recurrence is fed into the loop latch condition and the loop
5873   // does not contain any throws or exiting blocks other than the latch, we now
5874   // have the ability to "choose" whether the backedge is taken or not (by
5875   // choosing a sufficiently evil value for the poison feeding into the branch)
5876   // for every iteration including and after the one in which \p I first became
5877   // poison.  There are two possibilities (let's call the iteration in which \p
5878   // I first became poison as K):
5879   //
5880   //  1. In the set of iterations including and after K, the loop body executes
5881   //     no side effects.  In this case executing the backege an infinte number
5882   //     of times will yield undefined behavior.
5883   //
5884   //  2. In the set of iterations including and after K, the loop body executes
5885   //     at least one side effect.  In this case, that specific instance of side
5886   //     effect is control dependent on poison, which also yields undefined
5887   //     behavior.
5888 
5889   auto *ExitingBB = L->getExitingBlock();
5890   auto *LatchBB = L->getLoopLatch();
5891   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5892     return false;
5893 
5894   SmallPtrSet<const Instruction *, 16> Pushed;
5895   SmallVector<const Instruction *, 8> PoisonStack;
5896 
5897   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5898   // things that are known to be poison under that assumption go on the
5899   // PoisonStack.
5900   Pushed.insert(I);
5901   PoisonStack.push_back(I);
5902 
5903   bool LatchControlDependentOnPoison = false;
5904   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5905     const Instruction *Poison = PoisonStack.pop_back_val();
5906 
5907     for (auto *PoisonUser : Poison->users()) {
5908       if (propagatesPoison(cast<Instruction>(PoisonUser))) {
5909         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5910           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5911       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5912         assert(BI->isConditional() && "Only possibility!");
5913         if (BI->getParent() == LatchBB) {
5914           LatchControlDependentOnPoison = true;
5915           break;
5916         }
5917       }
5918     }
5919   }
5920 
5921   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5922 }
5923 
5924 ScalarEvolution::LoopProperties
5925 ScalarEvolution::getLoopProperties(const Loop *L) {
5926   using LoopProperties = ScalarEvolution::LoopProperties;
5927 
5928   auto Itr = LoopPropertiesCache.find(L);
5929   if (Itr == LoopPropertiesCache.end()) {
5930     auto HasSideEffects = [](Instruction *I) {
5931       if (auto *SI = dyn_cast<StoreInst>(I))
5932         return !SI->isSimple();
5933 
5934       return I->mayHaveSideEffects();
5935     };
5936 
5937     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5938                          /*HasNoSideEffects*/ true};
5939 
5940     for (auto *BB : L->getBlocks())
5941       for (auto &I : *BB) {
5942         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5943           LP.HasNoAbnormalExits = false;
5944         if (HasSideEffects(&I))
5945           LP.HasNoSideEffects = false;
5946         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5947           break; // We're already as pessimistic as we can get.
5948       }
5949 
5950     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5951     assert(InsertPair.second && "We just checked!");
5952     Itr = InsertPair.first;
5953   }
5954 
5955   return Itr->second;
5956 }
5957 
5958 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5959   if (!isSCEVable(V->getType()))
5960     return getUnknown(V);
5961 
5962   if (Instruction *I = dyn_cast<Instruction>(V)) {
5963     // Don't attempt to analyze instructions in blocks that aren't
5964     // reachable. Such instructions don't matter, and they aren't required
5965     // to obey basic rules for definitions dominating uses which this
5966     // analysis depends on.
5967     if (!DT.isReachableFromEntry(I->getParent()))
5968       return getUnknown(UndefValue::get(V->getType()));
5969   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5970     return getConstant(CI);
5971   else if (isa<ConstantPointerNull>(V))
5972     return getZero(V->getType());
5973   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5974     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5975   else if (!isa<ConstantExpr>(V))
5976     return getUnknown(V);
5977 
5978   Operator *U = cast<Operator>(V);
5979   if (auto BO = MatchBinaryOp(U, DT)) {
5980     switch (BO->Opcode) {
5981     case Instruction::Add: {
5982       // The simple thing to do would be to just call getSCEV on both operands
5983       // and call getAddExpr with the result. However if we're looking at a
5984       // bunch of things all added together, this can be quite inefficient,
5985       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5986       // Instead, gather up all the operands and make a single getAddExpr call.
5987       // LLVM IR canonical form means we need only traverse the left operands.
5988       SmallVector<const SCEV *, 4> AddOps;
5989       do {
5990         if (BO->Op) {
5991           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5992             AddOps.push_back(OpSCEV);
5993             break;
5994           }
5995 
5996           // If a NUW or NSW flag can be applied to the SCEV for this
5997           // addition, then compute the SCEV for this addition by itself
5998           // with a separate call to getAddExpr. We need to do that
5999           // instead of pushing the operands of the addition onto AddOps,
6000           // since the flags are only known to apply to this particular
6001           // addition - they may not apply to other additions that can be
6002           // formed with operands from AddOps.
6003           const SCEV *RHS = getSCEV(BO->RHS);
6004           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6005           if (Flags != SCEV::FlagAnyWrap) {
6006             const SCEV *LHS = getSCEV(BO->LHS);
6007             if (BO->Opcode == Instruction::Sub)
6008               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6009             else
6010               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6011             break;
6012           }
6013         }
6014 
6015         if (BO->Opcode == Instruction::Sub)
6016           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6017         else
6018           AddOps.push_back(getSCEV(BO->RHS));
6019 
6020         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6021         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6022                        NewBO->Opcode != Instruction::Sub)) {
6023           AddOps.push_back(getSCEV(BO->LHS));
6024           break;
6025         }
6026         BO = NewBO;
6027       } while (true);
6028 
6029       return getAddExpr(AddOps);
6030     }
6031 
6032     case Instruction::Mul: {
6033       SmallVector<const SCEV *, 4> MulOps;
6034       do {
6035         if (BO->Op) {
6036           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6037             MulOps.push_back(OpSCEV);
6038             break;
6039           }
6040 
6041           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6042           if (Flags != SCEV::FlagAnyWrap) {
6043             MulOps.push_back(
6044                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6045             break;
6046           }
6047         }
6048 
6049         MulOps.push_back(getSCEV(BO->RHS));
6050         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6051         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6052           MulOps.push_back(getSCEV(BO->LHS));
6053           break;
6054         }
6055         BO = NewBO;
6056       } while (true);
6057 
6058       return getMulExpr(MulOps);
6059     }
6060     case Instruction::UDiv:
6061       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6062     case Instruction::URem:
6063       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6064     case Instruction::Sub: {
6065       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6066       if (BO->Op)
6067         Flags = getNoWrapFlagsFromUB(BO->Op);
6068       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6069     }
6070     case Instruction::And:
6071       // For an expression like x&255 that merely masks off the high bits,
6072       // use zext(trunc(x)) as the SCEV expression.
6073       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6074         if (CI->isZero())
6075           return getSCEV(BO->RHS);
6076         if (CI->isMinusOne())
6077           return getSCEV(BO->LHS);
6078         const APInt &A = CI->getValue();
6079 
6080         // Instcombine's ShrinkDemandedConstant may strip bits out of
6081         // constants, obscuring what would otherwise be a low-bits mask.
6082         // Use computeKnownBits to compute what ShrinkDemandedConstant
6083         // knew about to reconstruct a low-bits mask value.
6084         unsigned LZ = A.countLeadingZeros();
6085         unsigned TZ = A.countTrailingZeros();
6086         unsigned BitWidth = A.getBitWidth();
6087         KnownBits Known(BitWidth);
6088         computeKnownBits(BO->LHS, Known, getDataLayout(),
6089                          0, &AC, nullptr, &DT);
6090 
6091         APInt EffectiveMask =
6092             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6093         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6094           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6095           const SCEV *LHS = getSCEV(BO->LHS);
6096           const SCEV *ShiftedLHS = nullptr;
6097           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6098             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6099               // For an expression like (x * 8) & 8, simplify the multiply.
6100               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6101               unsigned GCD = std::min(MulZeros, TZ);
6102               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6103               SmallVector<const SCEV*, 4> MulOps;
6104               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6105               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6106               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6107               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6108             }
6109           }
6110           if (!ShiftedLHS)
6111             ShiftedLHS = getUDivExpr(LHS, MulCount);
6112           return getMulExpr(
6113               getZeroExtendExpr(
6114                   getTruncateExpr(ShiftedLHS,
6115                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6116                   BO->LHS->getType()),
6117               MulCount);
6118         }
6119       }
6120       break;
6121 
6122     case Instruction::Or:
6123       // If the RHS of the Or is a constant, we may have something like:
6124       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6125       // optimizations will transparently handle this case.
6126       //
6127       // In order for this transformation to be safe, the LHS must be of the
6128       // form X*(2^n) and the Or constant must be less than 2^n.
6129       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6130         const SCEV *LHS = getSCEV(BO->LHS);
6131         const APInt &CIVal = CI->getValue();
6132         if (GetMinTrailingZeros(LHS) >=
6133             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6134           // Build a plain add SCEV.
6135           return getAddExpr(LHS, getSCEV(CI),
6136                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6137         }
6138       }
6139       break;
6140 
6141     case Instruction::Xor:
6142       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6143         // If the RHS of xor is -1, then this is a not operation.
6144         if (CI->isMinusOne())
6145           return getNotSCEV(getSCEV(BO->LHS));
6146 
6147         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6148         // This is a variant of the check for xor with -1, and it handles
6149         // the case where instcombine has trimmed non-demanded bits out
6150         // of an xor with -1.
6151         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6152           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6153             if (LBO->getOpcode() == Instruction::And &&
6154                 LCI->getValue() == CI->getValue())
6155               if (const SCEVZeroExtendExpr *Z =
6156                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6157                 Type *UTy = BO->LHS->getType();
6158                 const SCEV *Z0 = Z->getOperand();
6159                 Type *Z0Ty = Z0->getType();
6160                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6161 
6162                 // If C is a low-bits mask, the zero extend is serving to
6163                 // mask off the high bits. Complement the operand and
6164                 // re-apply the zext.
6165                 if (CI->getValue().isMask(Z0TySize))
6166                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6167 
6168                 // If C is a single bit, it may be in the sign-bit position
6169                 // before the zero-extend. In this case, represent the xor
6170                 // using an add, which is equivalent, and re-apply the zext.
6171                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6172                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6173                     Trunc.isSignMask())
6174                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6175                                            UTy);
6176               }
6177       }
6178       break;
6179 
6180     case Instruction::Shl:
6181       // Turn shift left of a constant amount into a multiply.
6182       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6183         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6184 
6185         // If the shift count is not less than the bitwidth, the result of
6186         // the shift is undefined. Don't try to analyze it, because the
6187         // resolution chosen here may differ from the resolution chosen in
6188         // other parts of the compiler.
6189         if (SA->getValue().uge(BitWidth))
6190           break;
6191 
6192         // We can safely preserve the nuw flag in all cases. It's also safe to
6193         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6194         // requires special handling. It can be preserved as long as we're not
6195         // left shifting by bitwidth - 1.
6196         auto Flags = SCEV::FlagAnyWrap;
6197         if (BO->Op) {
6198           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6199           if ((MulFlags & SCEV::FlagNSW) &&
6200               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6201             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6202           if (MulFlags & SCEV::FlagNUW)
6203             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6204         }
6205 
6206         Constant *X = ConstantInt::get(
6207             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6208         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6209       }
6210       break;
6211 
6212     case Instruction::AShr: {
6213       // AShr X, C, where C is a constant.
6214       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6215       if (!CI)
6216         break;
6217 
6218       Type *OuterTy = BO->LHS->getType();
6219       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6220       // If the shift count is not less than the bitwidth, the result of
6221       // the shift is undefined. Don't try to analyze it, because the
6222       // resolution chosen here may differ from the resolution chosen in
6223       // other parts of the compiler.
6224       if (CI->getValue().uge(BitWidth))
6225         break;
6226 
6227       if (CI->isZero())
6228         return getSCEV(BO->LHS); // shift by zero --> noop
6229 
6230       uint64_t AShrAmt = CI->getZExtValue();
6231       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6232 
6233       Operator *L = dyn_cast<Operator>(BO->LHS);
6234       if (L && L->getOpcode() == Instruction::Shl) {
6235         // X = Shl A, n
6236         // Y = AShr X, m
6237         // Both n and m are constant.
6238 
6239         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6240         if (L->getOperand(1) == BO->RHS)
6241           // For a two-shift sext-inreg, i.e. n = m,
6242           // use sext(trunc(x)) as the SCEV expression.
6243           return getSignExtendExpr(
6244               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6245 
6246         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6247         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6248           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6249           if (ShlAmt > AShrAmt) {
6250             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6251             // expression. We already checked that ShlAmt < BitWidth, so
6252             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6253             // ShlAmt - AShrAmt < Amt.
6254             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6255                                             ShlAmt - AShrAmt);
6256             return getSignExtendExpr(
6257                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6258                 getConstant(Mul)), OuterTy);
6259           }
6260         }
6261       }
6262       break;
6263     }
6264     }
6265   }
6266 
6267   switch (U->getOpcode()) {
6268   case Instruction::Trunc:
6269     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6270 
6271   case Instruction::ZExt:
6272     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6273 
6274   case Instruction::SExt:
6275     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6276       // The NSW flag of a subtract does not always survive the conversion to
6277       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6278       // more likely to preserve NSW and allow later AddRec optimisations.
6279       //
6280       // NOTE: This is effectively duplicating this logic from getSignExtend:
6281       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6282       // but by that point the NSW information has potentially been lost.
6283       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6284         Type *Ty = U->getType();
6285         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6286         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6287         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6288       }
6289     }
6290     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6291 
6292   case Instruction::BitCast:
6293     // BitCasts are no-op casts so we just eliminate the cast.
6294     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6295       return getSCEV(U->getOperand(0));
6296     break;
6297 
6298   case Instruction::SDiv:
6299     // If both operands are non-negative, this is just an udiv.
6300     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6301         isKnownNonNegative(getSCEV(U->getOperand(1))))
6302       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6303     break;
6304 
6305   case Instruction::SRem:
6306     // If both operands are non-negative, this is just an urem.
6307     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6308         isKnownNonNegative(getSCEV(U->getOperand(1))))
6309       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6310     break;
6311 
6312   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6313   // lead to pointer expressions which cannot safely be expanded to GEPs,
6314   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6315   // simplifying integer expressions.
6316 
6317   case Instruction::GetElementPtr:
6318     return createNodeForGEP(cast<GEPOperator>(U));
6319 
6320   case Instruction::PHI:
6321     return createNodeForPHI(cast<PHINode>(U));
6322 
6323   case Instruction::Select:
6324     // U can also be a select constant expr, which let fall through.  Since
6325     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6326     // constant expressions cannot have instructions as operands, we'd have
6327     // returned getUnknown for a select constant expressions anyway.
6328     if (isa<Instruction>(U))
6329       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6330                                       U->getOperand(1), U->getOperand(2));
6331     break;
6332 
6333   case Instruction::Call:
6334   case Instruction::Invoke:
6335     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6336       return getSCEV(RV);
6337     break;
6338   }
6339 
6340   return getUnknown(V);
6341 }
6342 
6343 //===----------------------------------------------------------------------===//
6344 //                   Iteration Count Computation Code
6345 //
6346 
6347 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6348   if (!ExitCount)
6349     return 0;
6350 
6351   ConstantInt *ExitConst = ExitCount->getValue();
6352 
6353   // Guard against huge trip counts.
6354   if (ExitConst->getValue().getActiveBits() > 32)
6355     return 0;
6356 
6357   // In case of integer overflow, this returns 0, which is correct.
6358   return ((unsigned)ExitConst->getZExtValue()) + 1;
6359 }
6360 
6361 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6362   if (BasicBlock *ExitingBB = L->getExitingBlock())
6363     return getSmallConstantTripCount(L, ExitingBB);
6364 
6365   // No trip count information for multiple exits.
6366   return 0;
6367 }
6368 
6369 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6370                                                     BasicBlock *ExitingBlock) {
6371   assert(ExitingBlock && "Must pass a non-null exiting block!");
6372   assert(L->isLoopExiting(ExitingBlock) &&
6373          "Exiting block must actually branch out of the loop!");
6374   const SCEVConstant *ExitCount =
6375       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6376   return getConstantTripCount(ExitCount);
6377 }
6378 
6379 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6380   const auto *MaxExitCount =
6381       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6382   return getConstantTripCount(MaxExitCount);
6383 }
6384 
6385 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6386   if (BasicBlock *ExitingBB = L->getExitingBlock())
6387     return getSmallConstantTripMultiple(L, ExitingBB);
6388 
6389   // No trip multiple information for multiple exits.
6390   return 0;
6391 }
6392 
6393 /// Returns the largest constant divisor of the trip count of this loop as a
6394 /// normal unsigned value, if possible. This means that the actual trip count is
6395 /// always a multiple of the returned value (don't forget the trip count could
6396 /// very well be zero as well!).
6397 ///
6398 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6399 /// multiple of a constant (which is also the case if the trip count is simply
6400 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6401 /// if the trip count is very large (>= 2^32).
6402 ///
6403 /// As explained in the comments for getSmallConstantTripCount, this assumes
6404 /// that control exits the loop via ExitingBlock.
6405 unsigned
6406 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6407                                               BasicBlock *ExitingBlock) {
6408   assert(ExitingBlock && "Must pass a non-null exiting block!");
6409   assert(L->isLoopExiting(ExitingBlock) &&
6410          "Exiting block must actually branch out of the loop!");
6411   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6412   if (ExitCount == getCouldNotCompute())
6413     return 1;
6414 
6415   // Get the trip count from the BE count by adding 1.
6416   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6417 
6418   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6419   if (!TC)
6420     // Attempt to factor more general cases. Returns the greatest power of
6421     // two divisor. If overflow happens, the trip count expression is still
6422     // divisible by the greatest power of 2 divisor returned.
6423     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6424 
6425   ConstantInt *Result = TC->getValue();
6426 
6427   // Guard against huge trip counts (this requires checking
6428   // for zero to handle the case where the trip count == -1 and the
6429   // addition wraps).
6430   if (!Result || Result->getValue().getActiveBits() > 32 ||
6431       Result->getValue().getActiveBits() == 0)
6432     return 1;
6433 
6434   return (unsigned)Result->getZExtValue();
6435 }
6436 
6437 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6438                                           BasicBlock *ExitingBlock,
6439                                           ExitCountKind Kind) {
6440   switch (Kind) {
6441   case Exact:
6442     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6443   case ConstantMaximum:
6444     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6445   };
6446   llvm_unreachable("Invalid ExitCountKind!");
6447 }
6448 
6449 const SCEV *
6450 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6451                                                  SCEVUnionPredicate &Preds) {
6452   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6453 }
6454 
6455 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6456                                                    ExitCountKind Kind) {
6457   switch (Kind) {
6458   case Exact:
6459     return getBackedgeTakenInfo(L).getExact(L, this);
6460   case ConstantMaximum:
6461     return getBackedgeTakenInfo(L).getMax(this);
6462   };
6463   llvm_unreachable("Invalid ExitCountKind!");
6464 }
6465 
6466 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6467   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6468 }
6469 
6470 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6471 static void
6472 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6473   BasicBlock *Header = L->getHeader();
6474 
6475   // Push all Loop-header PHIs onto the Worklist stack.
6476   for (PHINode &PN : Header->phis())
6477     Worklist.push_back(&PN);
6478 }
6479 
6480 const ScalarEvolution::BackedgeTakenInfo &
6481 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6482   auto &BTI = getBackedgeTakenInfo(L);
6483   if (BTI.hasFullInfo())
6484     return BTI;
6485 
6486   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6487 
6488   if (!Pair.second)
6489     return Pair.first->second;
6490 
6491   BackedgeTakenInfo Result =
6492       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6493 
6494   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6495 }
6496 
6497 const ScalarEvolution::BackedgeTakenInfo &
6498 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6499   // Initially insert an invalid entry for this loop. If the insertion
6500   // succeeds, proceed to actually compute a backedge-taken count and
6501   // update the value. The temporary CouldNotCompute value tells SCEV
6502   // code elsewhere that it shouldn't attempt to request a new
6503   // backedge-taken count, which could result in infinite recursion.
6504   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6505       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6506   if (!Pair.second)
6507     return Pair.first->second;
6508 
6509   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6510   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6511   // must be cleared in this scope.
6512   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6513 
6514   // In product build, there are no usage of statistic.
6515   (void)NumTripCountsComputed;
6516   (void)NumTripCountsNotComputed;
6517 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6518   const SCEV *BEExact = Result.getExact(L, this);
6519   if (BEExact != getCouldNotCompute()) {
6520     assert(isLoopInvariant(BEExact, L) &&
6521            isLoopInvariant(Result.getMax(this), L) &&
6522            "Computed backedge-taken count isn't loop invariant for loop!");
6523     ++NumTripCountsComputed;
6524   }
6525   else if (Result.getMax(this) == getCouldNotCompute() &&
6526            isa<PHINode>(L->getHeader()->begin())) {
6527     // Only count loops that have phi nodes as not being computable.
6528     ++NumTripCountsNotComputed;
6529   }
6530 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6531 
6532   // Now that we know more about the trip count for this loop, forget any
6533   // existing SCEV values for PHI nodes in this loop since they are only
6534   // conservative estimates made without the benefit of trip count
6535   // information. This is similar to the code in forgetLoop, except that
6536   // it handles SCEVUnknown PHI nodes specially.
6537   if (Result.hasAnyInfo()) {
6538     SmallVector<Instruction *, 16> Worklist;
6539     PushLoopPHIs(L, Worklist);
6540 
6541     SmallPtrSet<Instruction *, 8> Discovered;
6542     while (!Worklist.empty()) {
6543       Instruction *I = Worklist.pop_back_val();
6544 
6545       ValueExprMapType::iterator It =
6546         ValueExprMap.find_as(static_cast<Value *>(I));
6547       if (It != ValueExprMap.end()) {
6548         const SCEV *Old = It->second;
6549 
6550         // SCEVUnknown for a PHI either means that it has an unrecognized
6551         // structure, or it's a PHI that's in the progress of being computed
6552         // by createNodeForPHI.  In the former case, additional loop trip
6553         // count information isn't going to change anything. In the later
6554         // case, createNodeForPHI will perform the necessary updates on its
6555         // own when it gets to that point.
6556         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6557           eraseValueFromMap(It->first);
6558           forgetMemoizedResults(Old);
6559         }
6560         if (PHINode *PN = dyn_cast<PHINode>(I))
6561           ConstantEvolutionLoopExitValue.erase(PN);
6562       }
6563 
6564       // Since we don't need to invalidate anything for correctness and we're
6565       // only invalidating to make SCEV's results more precise, we get to stop
6566       // early to avoid invalidating too much.  This is especially important in
6567       // cases like:
6568       //
6569       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6570       // loop0:
6571       //   %pn0 = phi
6572       //   ...
6573       // loop1:
6574       //   %pn1 = phi
6575       //   ...
6576       //
6577       // where both loop0 and loop1's backedge taken count uses the SCEV
6578       // expression for %v.  If we don't have the early stop below then in cases
6579       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6580       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6581       // count for loop1, effectively nullifying SCEV's trip count cache.
6582       for (auto *U : I->users())
6583         if (auto *I = dyn_cast<Instruction>(U)) {
6584           auto *LoopForUser = LI.getLoopFor(I->getParent());
6585           if (LoopForUser && L->contains(LoopForUser) &&
6586               Discovered.insert(I).second)
6587             Worklist.push_back(I);
6588         }
6589     }
6590   }
6591 
6592   // Re-lookup the insert position, since the call to
6593   // computeBackedgeTakenCount above could result in a
6594   // recusive call to getBackedgeTakenInfo (on a different
6595   // loop), which would invalidate the iterator computed
6596   // earlier.
6597   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6598 }
6599 
6600 void ScalarEvolution::forgetAllLoops() {
6601   // This method is intended to forget all info about loops. It should
6602   // invalidate caches as if the following happened:
6603   // - The trip counts of all loops have changed arbitrarily
6604   // - Every llvm::Value has been updated in place to produce a different
6605   // result.
6606   BackedgeTakenCounts.clear();
6607   PredicatedBackedgeTakenCounts.clear();
6608   LoopPropertiesCache.clear();
6609   ConstantEvolutionLoopExitValue.clear();
6610   ValueExprMap.clear();
6611   ValuesAtScopes.clear();
6612   LoopDispositions.clear();
6613   BlockDispositions.clear();
6614   UnsignedRanges.clear();
6615   SignedRanges.clear();
6616   ExprValueMap.clear();
6617   HasRecMap.clear();
6618   MinTrailingZerosCache.clear();
6619   PredicatedSCEVRewrites.clear();
6620 }
6621 
6622 void ScalarEvolution::forgetLoop(const Loop *L) {
6623   // Drop any stored trip count value.
6624   auto RemoveLoopFromBackedgeMap =
6625       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6626         auto BTCPos = Map.find(L);
6627         if (BTCPos != Map.end()) {
6628           BTCPos->second.clear();
6629           Map.erase(BTCPos);
6630         }
6631       };
6632 
6633   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6634   SmallVector<Instruction *, 32> Worklist;
6635   SmallPtrSet<Instruction *, 16> Visited;
6636 
6637   // Iterate over all the loops and sub-loops to drop SCEV information.
6638   while (!LoopWorklist.empty()) {
6639     auto *CurrL = LoopWorklist.pop_back_val();
6640 
6641     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6642     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6643 
6644     // Drop information about predicated SCEV rewrites for this loop.
6645     for (auto I = PredicatedSCEVRewrites.begin();
6646          I != PredicatedSCEVRewrites.end();) {
6647       std::pair<const SCEV *, const Loop *> Entry = I->first;
6648       if (Entry.second == CurrL)
6649         PredicatedSCEVRewrites.erase(I++);
6650       else
6651         ++I;
6652     }
6653 
6654     auto LoopUsersItr = LoopUsers.find(CurrL);
6655     if (LoopUsersItr != LoopUsers.end()) {
6656       for (auto *S : LoopUsersItr->second)
6657         forgetMemoizedResults(S);
6658       LoopUsers.erase(LoopUsersItr);
6659     }
6660 
6661     // Drop information about expressions based on loop-header PHIs.
6662     PushLoopPHIs(CurrL, Worklist);
6663 
6664     while (!Worklist.empty()) {
6665       Instruction *I = Worklist.pop_back_val();
6666       if (!Visited.insert(I).second)
6667         continue;
6668 
6669       ValueExprMapType::iterator It =
6670           ValueExprMap.find_as(static_cast<Value *>(I));
6671       if (It != ValueExprMap.end()) {
6672         eraseValueFromMap(It->first);
6673         forgetMemoizedResults(It->second);
6674         if (PHINode *PN = dyn_cast<PHINode>(I))
6675           ConstantEvolutionLoopExitValue.erase(PN);
6676       }
6677 
6678       PushDefUseChildren(I, Worklist);
6679     }
6680 
6681     LoopPropertiesCache.erase(CurrL);
6682     // Forget all contained loops too, to avoid dangling entries in the
6683     // ValuesAtScopes map.
6684     LoopWorklist.append(CurrL->begin(), CurrL->end());
6685   }
6686 }
6687 
6688 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6689   while (Loop *Parent = L->getParentLoop())
6690     L = Parent;
6691   forgetLoop(L);
6692 }
6693 
6694 void ScalarEvolution::forgetValue(Value *V) {
6695   Instruction *I = dyn_cast<Instruction>(V);
6696   if (!I) return;
6697 
6698   // Drop information about expressions based on loop-header PHIs.
6699   SmallVector<Instruction *, 16> Worklist;
6700   Worklist.push_back(I);
6701 
6702   SmallPtrSet<Instruction *, 8> Visited;
6703   while (!Worklist.empty()) {
6704     I = Worklist.pop_back_val();
6705     if (!Visited.insert(I).second)
6706       continue;
6707 
6708     ValueExprMapType::iterator It =
6709       ValueExprMap.find_as(static_cast<Value *>(I));
6710     if (It != ValueExprMap.end()) {
6711       eraseValueFromMap(It->first);
6712       forgetMemoizedResults(It->second);
6713       if (PHINode *PN = dyn_cast<PHINode>(I))
6714         ConstantEvolutionLoopExitValue.erase(PN);
6715     }
6716 
6717     PushDefUseChildren(I, Worklist);
6718   }
6719 }
6720 
6721 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6722   LoopDispositions.clear();
6723 }
6724 
6725 /// Get the exact loop backedge taken count considering all loop exits. A
6726 /// computable result can only be returned for loops with all exiting blocks
6727 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6728 /// is never skipped. This is a valid assumption as long as the loop exits via
6729 /// that test. For precise results, it is the caller's responsibility to specify
6730 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6731 const SCEV *
6732 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6733                                              SCEVUnionPredicate *Preds) const {
6734   // If any exits were not computable, the loop is not computable.
6735   if (!isComplete() || ExitNotTaken.empty())
6736     return SE->getCouldNotCompute();
6737 
6738   const BasicBlock *Latch = L->getLoopLatch();
6739   // All exiting blocks we have collected must dominate the only backedge.
6740   if (!Latch)
6741     return SE->getCouldNotCompute();
6742 
6743   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6744   // count is simply a minimum out of all these calculated exit counts.
6745   SmallVector<const SCEV *, 2> Ops;
6746   for (auto &ENT : ExitNotTaken) {
6747     const SCEV *BECount = ENT.ExactNotTaken;
6748     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6749     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6750            "We should only have known counts for exiting blocks that dominate "
6751            "latch!");
6752 
6753     Ops.push_back(BECount);
6754 
6755     if (Preds && !ENT.hasAlwaysTruePredicate())
6756       Preds->add(ENT.Predicate.get());
6757 
6758     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6759            "Predicate should be always true!");
6760   }
6761 
6762   return SE->getUMinFromMismatchedTypes(Ops);
6763 }
6764 
6765 /// Get the exact not taken count for this loop exit.
6766 const SCEV *
6767 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6768                                              ScalarEvolution *SE) const {
6769   for (auto &ENT : ExitNotTaken)
6770     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6771       return ENT.ExactNotTaken;
6772 
6773   return SE->getCouldNotCompute();
6774 }
6775 
6776 const SCEV *
6777 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
6778                                            ScalarEvolution *SE) const {
6779   for (auto &ENT : ExitNotTaken)
6780     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6781       return ENT.MaxNotTaken;
6782 
6783   return SE->getCouldNotCompute();
6784 }
6785 
6786 /// getMax - Get the max backedge taken count for the loop.
6787 const SCEV *
6788 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6789   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6790     return !ENT.hasAlwaysTruePredicate();
6791   };
6792 
6793   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6794     return SE->getCouldNotCompute();
6795 
6796   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6797          "No point in having a non-constant max backedge taken count!");
6798   return getMax();
6799 }
6800 
6801 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6802   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6803     return !ENT.hasAlwaysTruePredicate();
6804   };
6805   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6806 }
6807 
6808 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6809                                                     ScalarEvolution *SE) const {
6810   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6811       SE->hasOperand(getMax(), S))
6812     return true;
6813 
6814   for (auto &ENT : ExitNotTaken)
6815     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6816         SE->hasOperand(ENT.ExactNotTaken, S))
6817       return true;
6818 
6819   return false;
6820 }
6821 
6822 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6823     : ExactNotTaken(E), MaxNotTaken(E) {
6824   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6825           isa<SCEVConstant>(MaxNotTaken)) &&
6826          "No point in having a non-constant max backedge taken count!");
6827 }
6828 
6829 ScalarEvolution::ExitLimit::ExitLimit(
6830     const SCEV *E, const SCEV *M, bool MaxOrZero,
6831     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6832     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6833   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6834           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6835          "Exact is not allowed to be less precise than Max");
6836   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6837           isa<SCEVConstant>(MaxNotTaken)) &&
6838          "No point in having a non-constant max backedge taken count!");
6839   for (auto *PredSet : PredSetList)
6840     for (auto *P : *PredSet)
6841       addPredicate(P);
6842 }
6843 
6844 ScalarEvolution::ExitLimit::ExitLimit(
6845     const SCEV *E, const SCEV *M, bool MaxOrZero,
6846     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6847     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6848   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6849           isa<SCEVConstant>(MaxNotTaken)) &&
6850          "No point in having a non-constant max backedge taken count!");
6851 }
6852 
6853 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6854                                       bool MaxOrZero)
6855     : ExitLimit(E, M, MaxOrZero, None) {
6856   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6857           isa<SCEVConstant>(MaxNotTaken)) &&
6858          "No point in having a non-constant max backedge taken count!");
6859 }
6860 
6861 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6862 /// computable exit into a persistent ExitNotTakenInfo array.
6863 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6864     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6865         ExitCounts,
6866     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6867     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6868   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6869 
6870   ExitNotTaken.reserve(ExitCounts.size());
6871   std::transform(
6872       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6873       [&](const EdgeExitInfo &EEI) {
6874         BasicBlock *ExitBB = EEI.first;
6875         const ExitLimit &EL = EEI.second;
6876         if (EL.Predicates.empty())
6877           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6878                                   nullptr);
6879 
6880         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6881         for (auto *Pred : EL.Predicates)
6882           Predicate->add(Pred);
6883 
6884         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6885                                 std::move(Predicate));
6886       });
6887   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6888          "No point in having a non-constant max backedge taken count!");
6889 }
6890 
6891 /// Invalidate this result and free the ExitNotTakenInfo array.
6892 void ScalarEvolution::BackedgeTakenInfo::clear() {
6893   ExitNotTaken.clear();
6894 }
6895 
6896 /// Compute the number of times the backedge of the specified loop will execute.
6897 ScalarEvolution::BackedgeTakenInfo
6898 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6899                                            bool AllowPredicates) {
6900   SmallVector<BasicBlock *, 8> ExitingBlocks;
6901   L->getExitingBlocks(ExitingBlocks);
6902 
6903   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6904 
6905   SmallVector<EdgeExitInfo, 4> ExitCounts;
6906   bool CouldComputeBECount = true;
6907   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6908   const SCEV *MustExitMaxBECount = nullptr;
6909   const SCEV *MayExitMaxBECount = nullptr;
6910   bool MustExitMaxOrZero = false;
6911 
6912   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6913   // and compute maxBECount.
6914   // Do a union of all the predicates here.
6915   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6916     BasicBlock *ExitBB = ExitingBlocks[i];
6917 
6918     // We canonicalize untaken exits to br (constant), ignore them so that
6919     // proving an exit untaken doesn't negatively impact our ability to reason
6920     // about the loop as whole.
6921     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6922       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6923         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6924         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6925           continue;
6926       }
6927 
6928     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6929 
6930     assert((AllowPredicates || EL.Predicates.empty()) &&
6931            "Predicated exit limit when predicates are not allowed!");
6932 
6933     // 1. For each exit that can be computed, add an entry to ExitCounts.
6934     // CouldComputeBECount is true only if all exits can be computed.
6935     if (EL.ExactNotTaken == getCouldNotCompute())
6936       // We couldn't compute an exact value for this exit, so
6937       // we won't be able to compute an exact value for the loop.
6938       CouldComputeBECount = false;
6939     else
6940       ExitCounts.emplace_back(ExitBB, EL);
6941 
6942     // 2. Derive the loop's MaxBECount from each exit's max number of
6943     // non-exiting iterations. Partition the loop exits into two kinds:
6944     // LoopMustExits and LoopMayExits.
6945     //
6946     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6947     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6948     // MaxBECount is the minimum EL.MaxNotTaken of computable
6949     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6950     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6951     // computable EL.MaxNotTaken.
6952     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6953         DT.dominates(ExitBB, Latch)) {
6954       if (!MustExitMaxBECount) {
6955         MustExitMaxBECount = EL.MaxNotTaken;
6956         MustExitMaxOrZero = EL.MaxOrZero;
6957       } else {
6958         MustExitMaxBECount =
6959             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6960       }
6961     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6962       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6963         MayExitMaxBECount = EL.MaxNotTaken;
6964       else {
6965         MayExitMaxBECount =
6966             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6967       }
6968     }
6969   }
6970   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6971     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6972   // The loop backedge will be taken the maximum or zero times if there's
6973   // a single exit that must be taken the maximum or zero times.
6974   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6975   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6976                            MaxBECount, MaxOrZero);
6977 }
6978 
6979 ScalarEvolution::ExitLimit
6980 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6981                                       bool AllowPredicates) {
6982   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
6983   // If our exiting block does not dominate the latch, then its connection with
6984   // loop's exit limit may be far from trivial.
6985   const BasicBlock *Latch = L->getLoopLatch();
6986   if (!Latch || !DT.dominates(ExitingBlock, Latch))
6987     return getCouldNotCompute();
6988 
6989   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6990   Instruction *Term = ExitingBlock->getTerminator();
6991   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
6992     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
6993     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6994     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
6995            "It should have one successor in loop and one exit block!");
6996     // Proceed to the next level to examine the exit condition expression.
6997     return computeExitLimitFromCond(
6998         L, BI->getCondition(), ExitIfTrue,
6999         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7000   }
7001 
7002   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7003     // For switch, make sure that there is a single exit from the loop.
7004     BasicBlock *Exit = nullptr;
7005     for (auto *SBB : successors(ExitingBlock))
7006       if (!L->contains(SBB)) {
7007         if (Exit) // Multiple exit successors.
7008           return getCouldNotCompute();
7009         Exit = SBB;
7010       }
7011     assert(Exit && "Exiting block must have at least one exit");
7012     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7013                                                 /*ControlsExit=*/IsOnlyExit);
7014   }
7015 
7016   return getCouldNotCompute();
7017 }
7018 
7019 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7020     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7021     bool ControlsExit, bool AllowPredicates) {
7022   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7023   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7024                                         ControlsExit, AllowPredicates);
7025 }
7026 
7027 Optional<ScalarEvolution::ExitLimit>
7028 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7029                                       bool ExitIfTrue, bool ControlsExit,
7030                                       bool AllowPredicates) {
7031   (void)this->L;
7032   (void)this->ExitIfTrue;
7033   (void)this->AllowPredicates;
7034 
7035   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7036          this->AllowPredicates == AllowPredicates &&
7037          "Variance in assumed invariant key components!");
7038   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7039   if (Itr == TripCountMap.end())
7040     return None;
7041   return Itr->second;
7042 }
7043 
7044 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7045                                              bool ExitIfTrue,
7046                                              bool ControlsExit,
7047                                              bool AllowPredicates,
7048                                              const ExitLimit &EL) {
7049   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7050          this->AllowPredicates == AllowPredicates &&
7051          "Variance in assumed invariant key components!");
7052 
7053   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7054   assert(InsertResult.second && "Expected successful insertion!");
7055   (void)InsertResult;
7056   (void)ExitIfTrue;
7057 }
7058 
7059 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7060     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7061     bool ControlsExit, bool AllowPredicates) {
7062 
7063   if (auto MaybeEL =
7064           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7065     return *MaybeEL;
7066 
7067   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7068                                               ControlsExit, AllowPredicates);
7069   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7070   return EL;
7071 }
7072 
7073 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7074     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7075     bool ControlsExit, bool AllowPredicates) {
7076   // Check if the controlling expression for this loop is an And or Or.
7077   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7078     if (BO->getOpcode() == Instruction::And) {
7079       // Recurse on the operands of the and.
7080       bool EitherMayExit = !ExitIfTrue;
7081       ExitLimit EL0 = computeExitLimitFromCondCached(
7082           Cache, L, BO->getOperand(0), ExitIfTrue,
7083           ControlsExit && !EitherMayExit, AllowPredicates);
7084       ExitLimit EL1 = computeExitLimitFromCondCached(
7085           Cache, L, BO->getOperand(1), ExitIfTrue,
7086           ControlsExit && !EitherMayExit, AllowPredicates);
7087       // Be robust against unsimplified IR for the form "and i1 X, true"
7088       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7089         return CI->isOne() ? EL0 : EL1;
7090       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7091         return CI->isOne() ? EL1 : EL0;
7092       const SCEV *BECount = getCouldNotCompute();
7093       const SCEV *MaxBECount = getCouldNotCompute();
7094       if (EitherMayExit) {
7095         // Both conditions must be true for the loop to continue executing.
7096         // Choose the less conservative count.
7097         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7098             EL1.ExactNotTaken == getCouldNotCompute())
7099           BECount = getCouldNotCompute();
7100         else
7101           BECount =
7102               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7103         if (EL0.MaxNotTaken == getCouldNotCompute())
7104           MaxBECount = EL1.MaxNotTaken;
7105         else if (EL1.MaxNotTaken == getCouldNotCompute())
7106           MaxBECount = EL0.MaxNotTaken;
7107         else
7108           MaxBECount =
7109               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7110       } else {
7111         // Both conditions must be true at the same time for the loop to exit.
7112         // For now, be conservative.
7113         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7114           MaxBECount = EL0.MaxNotTaken;
7115         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7116           BECount = EL0.ExactNotTaken;
7117       }
7118 
7119       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7120       // to be more aggressive when computing BECount than when computing
7121       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7122       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7123       // to not.
7124       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7125           !isa<SCEVCouldNotCompute>(BECount))
7126         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7127 
7128       return ExitLimit(BECount, MaxBECount, false,
7129                        {&EL0.Predicates, &EL1.Predicates});
7130     }
7131     if (BO->getOpcode() == Instruction::Or) {
7132       // Recurse on the operands of the or.
7133       bool EitherMayExit = ExitIfTrue;
7134       ExitLimit EL0 = computeExitLimitFromCondCached(
7135           Cache, L, BO->getOperand(0), ExitIfTrue,
7136           ControlsExit && !EitherMayExit, AllowPredicates);
7137       ExitLimit EL1 = computeExitLimitFromCondCached(
7138           Cache, L, BO->getOperand(1), ExitIfTrue,
7139           ControlsExit && !EitherMayExit, AllowPredicates);
7140       // Be robust against unsimplified IR for the form "or i1 X, true"
7141       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7142         return CI->isZero() ? EL0 : EL1;
7143       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7144         return CI->isZero() ? EL1 : EL0;
7145       const SCEV *BECount = getCouldNotCompute();
7146       const SCEV *MaxBECount = getCouldNotCompute();
7147       if (EitherMayExit) {
7148         // Both conditions must be false for the loop to continue executing.
7149         // Choose the less conservative count.
7150         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7151             EL1.ExactNotTaken == getCouldNotCompute())
7152           BECount = getCouldNotCompute();
7153         else
7154           BECount =
7155               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7156         if (EL0.MaxNotTaken == getCouldNotCompute())
7157           MaxBECount = EL1.MaxNotTaken;
7158         else if (EL1.MaxNotTaken == getCouldNotCompute())
7159           MaxBECount = EL0.MaxNotTaken;
7160         else
7161           MaxBECount =
7162               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7163       } else {
7164         // Both conditions must be false at the same time for the loop to exit.
7165         // For now, be conservative.
7166         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7167           MaxBECount = EL0.MaxNotTaken;
7168         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7169           BECount = EL0.ExactNotTaken;
7170       }
7171       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7172       // to be more aggressive when computing BECount than when computing
7173       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7174       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7175       // to not.
7176       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7177           !isa<SCEVCouldNotCompute>(BECount))
7178         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7179 
7180       return ExitLimit(BECount, MaxBECount, false,
7181                        {&EL0.Predicates, &EL1.Predicates});
7182     }
7183   }
7184 
7185   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7186   // Proceed to the next level to examine the icmp.
7187   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7188     ExitLimit EL =
7189         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7190     if (EL.hasFullInfo() || !AllowPredicates)
7191       return EL;
7192 
7193     // Try again, but use SCEV predicates this time.
7194     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7195                                     /*AllowPredicates=*/true);
7196   }
7197 
7198   // Check for a constant condition. These are normally stripped out by
7199   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7200   // preserve the CFG and is temporarily leaving constant conditions
7201   // in place.
7202   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7203     if (ExitIfTrue == !CI->getZExtValue())
7204       // The backedge is always taken.
7205       return getCouldNotCompute();
7206     else
7207       // The backedge is never taken.
7208       return getZero(CI->getType());
7209   }
7210 
7211   // If it's not an integer or pointer comparison then compute it the hard way.
7212   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7213 }
7214 
7215 ScalarEvolution::ExitLimit
7216 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7217                                           ICmpInst *ExitCond,
7218                                           bool ExitIfTrue,
7219                                           bool ControlsExit,
7220                                           bool AllowPredicates) {
7221   // If the condition was exit on true, convert the condition to exit on false
7222   ICmpInst::Predicate Pred;
7223   if (!ExitIfTrue)
7224     Pred = ExitCond->getPredicate();
7225   else
7226     Pred = ExitCond->getInversePredicate();
7227   const ICmpInst::Predicate OriginalPred = Pred;
7228 
7229   // Handle common loops like: for (X = "string"; *X; ++X)
7230   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7231     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7232       ExitLimit ItCnt =
7233         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7234       if (ItCnt.hasAnyInfo())
7235         return ItCnt;
7236     }
7237 
7238   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7239   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7240 
7241   // Try to evaluate any dependencies out of the loop.
7242   LHS = getSCEVAtScope(LHS, L);
7243   RHS = getSCEVAtScope(RHS, L);
7244 
7245   // At this point, we would like to compute how many iterations of the
7246   // loop the predicate will return true for these inputs.
7247   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7248     // If there is a loop-invariant, force it into the RHS.
7249     std::swap(LHS, RHS);
7250     Pred = ICmpInst::getSwappedPredicate(Pred);
7251   }
7252 
7253   // Simplify the operands before analyzing them.
7254   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7255 
7256   // If we have a comparison of a chrec against a constant, try to use value
7257   // ranges to answer this query.
7258   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7259     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7260       if (AddRec->getLoop() == L) {
7261         // Form the constant range.
7262         ConstantRange CompRange =
7263             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7264 
7265         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7266         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7267       }
7268 
7269   switch (Pred) {
7270   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7271     // Convert to: while (X-Y != 0)
7272     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7273                                 AllowPredicates);
7274     if (EL.hasAnyInfo()) return EL;
7275     break;
7276   }
7277   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7278     // Convert to: while (X-Y == 0)
7279     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7280     if (EL.hasAnyInfo()) return EL;
7281     break;
7282   }
7283   case ICmpInst::ICMP_SLT:
7284   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7285     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7286     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7287                                     AllowPredicates);
7288     if (EL.hasAnyInfo()) return EL;
7289     break;
7290   }
7291   case ICmpInst::ICMP_SGT:
7292   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7293     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7294     ExitLimit EL =
7295         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7296                             AllowPredicates);
7297     if (EL.hasAnyInfo()) return EL;
7298     break;
7299   }
7300   default:
7301     break;
7302   }
7303 
7304   auto *ExhaustiveCount =
7305       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7306 
7307   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7308     return ExhaustiveCount;
7309 
7310   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7311                                       ExitCond->getOperand(1), L, OriginalPred);
7312 }
7313 
7314 ScalarEvolution::ExitLimit
7315 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7316                                                       SwitchInst *Switch,
7317                                                       BasicBlock *ExitingBlock,
7318                                                       bool ControlsExit) {
7319   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7320 
7321   // Give up if the exit is the default dest of a switch.
7322   if (Switch->getDefaultDest() == ExitingBlock)
7323     return getCouldNotCompute();
7324 
7325   assert(L->contains(Switch->getDefaultDest()) &&
7326          "Default case must not exit the loop!");
7327   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7328   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7329 
7330   // while (X != Y) --> while (X-Y != 0)
7331   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7332   if (EL.hasAnyInfo())
7333     return EL;
7334 
7335   return getCouldNotCompute();
7336 }
7337 
7338 static ConstantInt *
7339 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7340                                 ScalarEvolution &SE) {
7341   const SCEV *InVal = SE.getConstant(C);
7342   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7343   assert(isa<SCEVConstant>(Val) &&
7344          "Evaluation of SCEV at constant didn't fold correctly?");
7345   return cast<SCEVConstant>(Val)->getValue();
7346 }
7347 
7348 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7349 /// compute the backedge execution count.
7350 ScalarEvolution::ExitLimit
7351 ScalarEvolution::computeLoadConstantCompareExitLimit(
7352   LoadInst *LI,
7353   Constant *RHS,
7354   const Loop *L,
7355   ICmpInst::Predicate predicate) {
7356   if (LI->isVolatile()) return getCouldNotCompute();
7357 
7358   // Check to see if the loaded pointer is a getelementptr of a global.
7359   // TODO: Use SCEV instead of manually grubbing with GEPs.
7360   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7361   if (!GEP) return getCouldNotCompute();
7362 
7363   // Make sure that it is really a constant global we are gepping, with an
7364   // initializer, and make sure the first IDX is really 0.
7365   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7366   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7367       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7368       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7369     return getCouldNotCompute();
7370 
7371   // Okay, we allow one non-constant index into the GEP instruction.
7372   Value *VarIdx = nullptr;
7373   std::vector<Constant*> Indexes;
7374   unsigned VarIdxNum = 0;
7375   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7376     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7377       Indexes.push_back(CI);
7378     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7379       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7380       VarIdx = GEP->getOperand(i);
7381       VarIdxNum = i-2;
7382       Indexes.push_back(nullptr);
7383     }
7384 
7385   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7386   if (!VarIdx)
7387     return getCouldNotCompute();
7388 
7389   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7390   // Check to see if X is a loop variant variable value now.
7391   const SCEV *Idx = getSCEV(VarIdx);
7392   Idx = getSCEVAtScope(Idx, L);
7393 
7394   // We can only recognize very limited forms of loop index expressions, in
7395   // particular, only affine AddRec's like {C1,+,C2}.
7396   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7397   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7398       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7399       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7400     return getCouldNotCompute();
7401 
7402   unsigned MaxSteps = MaxBruteForceIterations;
7403   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7404     ConstantInt *ItCst = ConstantInt::get(
7405                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7406     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7407 
7408     // Form the GEP offset.
7409     Indexes[VarIdxNum] = Val;
7410 
7411     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7412                                                          Indexes);
7413     if (!Result) break;  // Cannot compute!
7414 
7415     // Evaluate the condition for this iteration.
7416     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7417     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7418     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7419       ++NumArrayLenItCounts;
7420       return getConstant(ItCst);   // Found terminating iteration!
7421     }
7422   }
7423   return getCouldNotCompute();
7424 }
7425 
7426 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7427     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7428   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7429   if (!RHS)
7430     return getCouldNotCompute();
7431 
7432   const BasicBlock *Latch = L->getLoopLatch();
7433   if (!Latch)
7434     return getCouldNotCompute();
7435 
7436   const BasicBlock *Predecessor = L->getLoopPredecessor();
7437   if (!Predecessor)
7438     return getCouldNotCompute();
7439 
7440   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7441   // Return LHS in OutLHS and shift_opt in OutOpCode.
7442   auto MatchPositiveShift =
7443       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7444 
7445     using namespace PatternMatch;
7446 
7447     ConstantInt *ShiftAmt;
7448     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7449       OutOpCode = Instruction::LShr;
7450     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7451       OutOpCode = Instruction::AShr;
7452     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7453       OutOpCode = Instruction::Shl;
7454     else
7455       return false;
7456 
7457     return ShiftAmt->getValue().isStrictlyPositive();
7458   };
7459 
7460   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7461   //
7462   // loop:
7463   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7464   //   %iv.shifted = lshr i32 %iv, <positive constant>
7465   //
7466   // Return true on a successful match.  Return the corresponding PHI node (%iv
7467   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7468   auto MatchShiftRecurrence =
7469       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7470     Optional<Instruction::BinaryOps> PostShiftOpCode;
7471 
7472     {
7473       Instruction::BinaryOps OpC;
7474       Value *V;
7475 
7476       // If we encounter a shift instruction, "peel off" the shift operation,
7477       // and remember that we did so.  Later when we inspect %iv's backedge
7478       // value, we will make sure that the backedge value uses the same
7479       // operation.
7480       //
7481       // Note: the peeled shift operation does not have to be the same
7482       // instruction as the one feeding into the PHI's backedge value.  We only
7483       // really care about it being the same *kind* of shift instruction --
7484       // that's all that is required for our later inferences to hold.
7485       if (MatchPositiveShift(LHS, V, OpC)) {
7486         PostShiftOpCode = OpC;
7487         LHS = V;
7488       }
7489     }
7490 
7491     PNOut = dyn_cast<PHINode>(LHS);
7492     if (!PNOut || PNOut->getParent() != L->getHeader())
7493       return false;
7494 
7495     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7496     Value *OpLHS;
7497 
7498     return
7499         // The backedge value for the PHI node must be a shift by a positive
7500         // amount
7501         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7502 
7503         // of the PHI node itself
7504         OpLHS == PNOut &&
7505 
7506         // and the kind of shift should be match the kind of shift we peeled
7507         // off, if any.
7508         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7509   };
7510 
7511   PHINode *PN;
7512   Instruction::BinaryOps OpCode;
7513   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7514     return getCouldNotCompute();
7515 
7516   const DataLayout &DL = getDataLayout();
7517 
7518   // The key rationale for this optimization is that for some kinds of shift
7519   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7520   // within a finite number of iterations.  If the condition guarding the
7521   // backedge (in the sense that the backedge is taken if the condition is true)
7522   // is false for the value the shift recurrence stabilizes to, then we know
7523   // that the backedge is taken only a finite number of times.
7524 
7525   ConstantInt *StableValue = nullptr;
7526   switch (OpCode) {
7527   default:
7528     llvm_unreachable("Impossible case!");
7529 
7530   case Instruction::AShr: {
7531     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7532     // bitwidth(K) iterations.
7533     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7534     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7535                                        Predecessor->getTerminator(), &DT);
7536     auto *Ty = cast<IntegerType>(RHS->getType());
7537     if (Known.isNonNegative())
7538       StableValue = ConstantInt::get(Ty, 0);
7539     else if (Known.isNegative())
7540       StableValue = ConstantInt::get(Ty, -1, true);
7541     else
7542       return getCouldNotCompute();
7543 
7544     break;
7545   }
7546   case Instruction::LShr:
7547   case Instruction::Shl:
7548     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7549     // stabilize to 0 in at most bitwidth(K) iterations.
7550     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7551     break;
7552   }
7553 
7554   auto *Result =
7555       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7556   assert(Result->getType()->isIntegerTy(1) &&
7557          "Otherwise cannot be an operand to a branch instruction");
7558 
7559   if (Result->isZeroValue()) {
7560     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7561     const SCEV *UpperBound =
7562         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7563     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7564   }
7565 
7566   return getCouldNotCompute();
7567 }
7568 
7569 /// Return true if we can constant fold an instruction of the specified type,
7570 /// assuming that all operands were constants.
7571 static bool CanConstantFold(const Instruction *I) {
7572   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7573       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7574       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7575     return true;
7576 
7577   if (const CallInst *CI = dyn_cast<CallInst>(I))
7578     if (const Function *F = CI->getCalledFunction())
7579       return canConstantFoldCallTo(CI, F);
7580   return false;
7581 }
7582 
7583 /// Determine whether this instruction can constant evolve within this loop
7584 /// assuming its operands can all constant evolve.
7585 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7586   // An instruction outside of the loop can't be derived from a loop PHI.
7587   if (!L->contains(I)) return false;
7588 
7589   if (isa<PHINode>(I)) {
7590     // We don't currently keep track of the control flow needed to evaluate
7591     // PHIs, so we cannot handle PHIs inside of loops.
7592     return L->getHeader() == I->getParent();
7593   }
7594 
7595   // If we won't be able to constant fold this expression even if the operands
7596   // are constants, bail early.
7597   return CanConstantFold(I);
7598 }
7599 
7600 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7601 /// recursing through each instruction operand until reaching a loop header phi.
7602 static PHINode *
7603 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7604                                DenseMap<Instruction *, PHINode *> &PHIMap,
7605                                unsigned Depth) {
7606   if (Depth > MaxConstantEvolvingDepth)
7607     return nullptr;
7608 
7609   // Otherwise, we can evaluate this instruction if all of its operands are
7610   // constant or derived from a PHI node themselves.
7611   PHINode *PHI = nullptr;
7612   for (Value *Op : UseInst->operands()) {
7613     if (isa<Constant>(Op)) continue;
7614 
7615     Instruction *OpInst = dyn_cast<Instruction>(Op);
7616     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7617 
7618     PHINode *P = dyn_cast<PHINode>(OpInst);
7619     if (!P)
7620       // If this operand is already visited, reuse the prior result.
7621       // We may have P != PHI if this is the deepest point at which the
7622       // inconsistent paths meet.
7623       P = PHIMap.lookup(OpInst);
7624     if (!P) {
7625       // Recurse and memoize the results, whether a phi is found or not.
7626       // This recursive call invalidates pointers into PHIMap.
7627       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7628       PHIMap[OpInst] = P;
7629     }
7630     if (!P)
7631       return nullptr;  // Not evolving from PHI
7632     if (PHI && PHI != P)
7633       return nullptr;  // Evolving from multiple different PHIs.
7634     PHI = P;
7635   }
7636   // This is a expression evolving from a constant PHI!
7637   return PHI;
7638 }
7639 
7640 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7641 /// in the loop that V is derived from.  We allow arbitrary operations along the
7642 /// way, but the operands of an operation must either be constants or a value
7643 /// derived from a constant PHI.  If this expression does not fit with these
7644 /// constraints, return null.
7645 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7646   Instruction *I = dyn_cast<Instruction>(V);
7647   if (!I || !canConstantEvolve(I, L)) return nullptr;
7648 
7649   if (PHINode *PN = dyn_cast<PHINode>(I))
7650     return PN;
7651 
7652   // Record non-constant instructions contained by the loop.
7653   DenseMap<Instruction *, PHINode *> PHIMap;
7654   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7655 }
7656 
7657 /// EvaluateExpression - Given an expression that passes the
7658 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7659 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7660 /// reason, return null.
7661 static Constant *EvaluateExpression(Value *V, const Loop *L,
7662                                     DenseMap<Instruction *, Constant *> &Vals,
7663                                     const DataLayout &DL,
7664                                     const TargetLibraryInfo *TLI) {
7665   // Convenient constant check, but redundant for recursive calls.
7666   if (Constant *C = dyn_cast<Constant>(V)) return C;
7667   Instruction *I = dyn_cast<Instruction>(V);
7668   if (!I) return nullptr;
7669 
7670   if (Constant *C = Vals.lookup(I)) return C;
7671 
7672   // An instruction inside the loop depends on a value outside the loop that we
7673   // weren't given a mapping for, or a value such as a call inside the loop.
7674   if (!canConstantEvolve(I, L)) return nullptr;
7675 
7676   // An unmapped PHI can be due to a branch or another loop inside this loop,
7677   // or due to this not being the initial iteration through a loop where we
7678   // couldn't compute the evolution of this particular PHI last time.
7679   if (isa<PHINode>(I)) return nullptr;
7680 
7681   std::vector<Constant*> Operands(I->getNumOperands());
7682 
7683   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7684     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7685     if (!Operand) {
7686       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7687       if (!Operands[i]) return nullptr;
7688       continue;
7689     }
7690     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7691     Vals[Operand] = C;
7692     if (!C) return nullptr;
7693     Operands[i] = C;
7694   }
7695 
7696   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7697     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7698                                            Operands[1], DL, TLI);
7699   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7700     if (!LI->isVolatile())
7701       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7702   }
7703   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7704 }
7705 
7706 
7707 // If every incoming value to PN except the one for BB is a specific Constant,
7708 // return that, else return nullptr.
7709 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7710   Constant *IncomingVal = nullptr;
7711 
7712   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7713     if (PN->getIncomingBlock(i) == BB)
7714       continue;
7715 
7716     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7717     if (!CurrentVal)
7718       return nullptr;
7719 
7720     if (IncomingVal != CurrentVal) {
7721       if (IncomingVal)
7722         return nullptr;
7723       IncomingVal = CurrentVal;
7724     }
7725   }
7726 
7727   return IncomingVal;
7728 }
7729 
7730 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7731 /// in the header of its containing loop, we know the loop executes a
7732 /// constant number of times, and the PHI node is just a recurrence
7733 /// involving constants, fold it.
7734 Constant *
7735 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7736                                                    const APInt &BEs,
7737                                                    const Loop *L) {
7738   auto I = ConstantEvolutionLoopExitValue.find(PN);
7739   if (I != ConstantEvolutionLoopExitValue.end())
7740     return I->second;
7741 
7742   if (BEs.ugt(MaxBruteForceIterations))
7743     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7744 
7745   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7746 
7747   DenseMap<Instruction *, Constant *> CurrentIterVals;
7748   BasicBlock *Header = L->getHeader();
7749   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7750 
7751   BasicBlock *Latch = L->getLoopLatch();
7752   if (!Latch)
7753     return nullptr;
7754 
7755   for (PHINode &PHI : Header->phis()) {
7756     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7757       CurrentIterVals[&PHI] = StartCST;
7758   }
7759   if (!CurrentIterVals.count(PN))
7760     return RetVal = nullptr;
7761 
7762   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7763 
7764   // Execute the loop symbolically to determine the exit value.
7765   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7766          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7767 
7768   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7769   unsigned IterationNum = 0;
7770   const DataLayout &DL = getDataLayout();
7771   for (; ; ++IterationNum) {
7772     if (IterationNum == NumIterations)
7773       return RetVal = CurrentIterVals[PN];  // Got exit value!
7774 
7775     // Compute the value of the PHIs for the next iteration.
7776     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7777     DenseMap<Instruction *, Constant *> NextIterVals;
7778     Constant *NextPHI =
7779         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7780     if (!NextPHI)
7781       return nullptr;        // Couldn't evaluate!
7782     NextIterVals[PN] = NextPHI;
7783 
7784     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7785 
7786     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7787     // cease to be able to evaluate one of them or if they stop evolving,
7788     // because that doesn't necessarily prevent us from computing PN.
7789     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7790     for (const auto &I : CurrentIterVals) {
7791       PHINode *PHI = dyn_cast<PHINode>(I.first);
7792       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7793       PHIsToCompute.emplace_back(PHI, I.second);
7794     }
7795     // We use two distinct loops because EvaluateExpression may invalidate any
7796     // iterators into CurrentIterVals.
7797     for (const auto &I : PHIsToCompute) {
7798       PHINode *PHI = I.first;
7799       Constant *&NextPHI = NextIterVals[PHI];
7800       if (!NextPHI) {   // Not already computed.
7801         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7802         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7803       }
7804       if (NextPHI != I.second)
7805         StoppedEvolving = false;
7806     }
7807 
7808     // If all entries in CurrentIterVals == NextIterVals then we can stop
7809     // iterating, the loop can't continue to change.
7810     if (StoppedEvolving)
7811       return RetVal = CurrentIterVals[PN];
7812 
7813     CurrentIterVals.swap(NextIterVals);
7814   }
7815 }
7816 
7817 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7818                                                           Value *Cond,
7819                                                           bool ExitWhen) {
7820   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7821   if (!PN) return getCouldNotCompute();
7822 
7823   // If the loop is canonicalized, the PHI will have exactly two entries.
7824   // That's the only form we support here.
7825   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7826 
7827   DenseMap<Instruction *, Constant *> CurrentIterVals;
7828   BasicBlock *Header = L->getHeader();
7829   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7830 
7831   BasicBlock *Latch = L->getLoopLatch();
7832   assert(Latch && "Should follow from NumIncomingValues == 2!");
7833 
7834   for (PHINode &PHI : Header->phis()) {
7835     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7836       CurrentIterVals[&PHI] = StartCST;
7837   }
7838   if (!CurrentIterVals.count(PN))
7839     return getCouldNotCompute();
7840 
7841   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7842   // the loop symbolically to determine when the condition gets a value of
7843   // "ExitWhen".
7844   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7845   const DataLayout &DL = getDataLayout();
7846   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7847     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7848         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7849 
7850     // Couldn't symbolically evaluate.
7851     if (!CondVal) return getCouldNotCompute();
7852 
7853     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7854       ++NumBruteForceTripCountsComputed;
7855       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7856     }
7857 
7858     // Update all the PHI nodes for the next iteration.
7859     DenseMap<Instruction *, Constant *> NextIterVals;
7860 
7861     // Create a list of which PHIs we need to compute. We want to do this before
7862     // calling EvaluateExpression on them because that may invalidate iterators
7863     // into CurrentIterVals.
7864     SmallVector<PHINode *, 8> PHIsToCompute;
7865     for (const auto &I : CurrentIterVals) {
7866       PHINode *PHI = dyn_cast<PHINode>(I.first);
7867       if (!PHI || PHI->getParent() != Header) continue;
7868       PHIsToCompute.push_back(PHI);
7869     }
7870     for (PHINode *PHI : PHIsToCompute) {
7871       Constant *&NextPHI = NextIterVals[PHI];
7872       if (NextPHI) continue;    // Already computed!
7873 
7874       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7875       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7876     }
7877     CurrentIterVals.swap(NextIterVals);
7878   }
7879 
7880   // Too many iterations were needed to evaluate.
7881   return getCouldNotCompute();
7882 }
7883 
7884 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7885   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7886       ValuesAtScopes[V];
7887   // Check to see if we've folded this expression at this loop before.
7888   for (auto &LS : Values)
7889     if (LS.first == L)
7890       return LS.second ? LS.second : V;
7891 
7892   Values.emplace_back(L, nullptr);
7893 
7894   // Otherwise compute it.
7895   const SCEV *C = computeSCEVAtScope(V, L);
7896   for (auto &LS : reverse(ValuesAtScopes[V]))
7897     if (LS.first == L) {
7898       LS.second = C;
7899       break;
7900     }
7901   return C;
7902 }
7903 
7904 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7905 /// will return Constants for objects which aren't represented by a
7906 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7907 /// Returns NULL if the SCEV isn't representable as a Constant.
7908 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7909   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7910     case scCouldNotCompute:
7911     case scAddRecExpr:
7912       break;
7913     case scConstant:
7914       return cast<SCEVConstant>(V)->getValue();
7915     case scUnknown:
7916       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7917     case scSignExtend: {
7918       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7919       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7920         return ConstantExpr::getSExt(CastOp, SS->getType());
7921       break;
7922     }
7923     case scZeroExtend: {
7924       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7925       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7926         return ConstantExpr::getZExt(CastOp, SZ->getType());
7927       break;
7928     }
7929     case scTruncate: {
7930       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7931       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7932         return ConstantExpr::getTrunc(CastOp, ST->getType());
7933       break;
7934     }
7935     case scAddExpr: {
7936       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7937       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7938         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7939           unsigned AS = PTy->getAddressSpace();
7940           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7941           C = ConstantExpr::getBitCast(C, DestPtrTy);
7942         }
7943         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7944           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7945           if (!C2) return nullptr;
7946 
7947           // First pointer!
7948           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7949             unsigned AS = C2->getType()->getPointerAddressSpace();
7950             std::swap(C, C2);
7951             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7952             // The offsets have been converted to bytes.  We can add bytes to an
7953             // i8* by GEP with the byte count in the first index.
7954             C = ConstantExpr::getBitCast(C, DestPtrTy);
7955           }
7956 
7957           // Don't bother trying to sum two pointers. We probably can't
7958           // statically compute a load that results from it anyway.
7959           if (C2->getType()->isPointerTy())
7960             return nullptr;
7961 
7962           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7963             if (PTy->getElementType()->isStructTy())
7964               C2 = ConstantExpr::getIntegerCast(
7965                   C2, Type::getInt32Ty(C->getContext()), true);
7966             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7967           } else
7968             C = ConstantExpr::getAdd(C, C2);
7969         }
7970         return C;
7971       }
7972       break;
7973     }
7974     case scMulExpr: {
7975       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7976       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7977         // Don't bother with pointers at all.
7978         if (C->getType()->isPointerTy()) return nullptr;
7979         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7980           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7981           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7982           C = ConstantExpr::getMul(C, C2);
7983         }
7984         return C;
7985       }
7986       break;
7987     }
7988     case scUDivExpr: {
7989       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7990       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7991         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
7992           if (LHS->getType() == RHS->getType())
7993             return ConstantExpr::getUDiv(LHS, RHS);
7994       break;
7995     }
7996     case scSMaxExpr:
7997     case scUMaxExpr:
7998     case scSMinExpr:
7999     case scUMinExpr:
8000       break; // TODO: smax, umax, smin, umax.
8001   }
8002   return nullptr;
8003 }
8004 
8005 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8006   if (isa<SCEVConstant>(V)) return V;
8007 
8008   // If this instruction is evolved from a constant-evolving PHI, compute the
8009   // exit value from the loop without using SCEVs.
8010   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8011     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8012       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8013         const Loop *LI = this->LI[I->getParent()];
8014         // Looking for loop exit value.
8015         if (LI && LI->getParentLoop() == L &&
8016             PN->getParent() == LI->getHeader()) {
8017           // Okay, there is no closed form solution for the PHI node.  Check
8018           // to see if the loop that contains it has a known backedge-taken
8019           // count.  If so, we may be able to force computation of the exit
8020           // value.
8021           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8022           // This trivial case can show up in some degenerate cases where
8023           // the incoming IR has not yet been fully simplified.
8024           if (BackedgeTakenCount->isZero()) {
8025             Value *InitValue = nullptr;
8026             bool MultipleInitValues = false;
8027             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8028               if (!LI->contains(PN->getIncomingBlock(i))) {
8029                 if (!InitValue)
8030                   InitValue = PN->getIncomingValue(i);
8031                 else if (InitValue != PN->getIncomingValue(i)) {
8032                   MultipleInitValues = true;
8033                   break;
8034                 }
8035               }
8036             }
8037             if (!MultipleInitValues && InitValue)
8038               return getSCEV(InitValue);
8039           }
8040           // Do we have a loop invariant value flowing around the backedge
8041           // for a loop which must execute the backedge?
8042           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8043               isKnownPositive(BackedgeTakenCount) &&
8044               PN->getNumIncomingValues() == 2) {
8045 
8046             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8047             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8048             if (LI->isLoopInvariant(BackedgeVal))
8049               return getSCEV(BackedgeVal);
8050           }
8051           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8052             // Okay, we know how many times the containing loop executes.  If
8053             // this is a constant evolving PHI node, get the final value at
8054             // the specified iteration number.
8055             Constant *RV =
8056                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8057             if (RV) return getSCEV(RV);
8058           }
8059         }
8060 
8061         // If there is a single-input Phi, evaluate it at our scope. If we can
8062         // prove that this replacement does not break LCSSA form, use new value.
8063         if (PN->getNumOperands() == 1) {
8064           const SCEV *Input = getSCEV(PN->getOperand(0));
8065           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8066           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8067           // for the simplest case just support constants.
8068           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8069         }
8070       }
8071 
8072       // Okay, this is an expression that we cannot symbolically evaluate
8073       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8074       // the arguments into constants, and if so, try to constant propagate the
8075       // result.  This is particularly useful for computing loop exit values.
8076       if (CanConstantFold(I)) {
8077         SmallVector<Constant *, 4> Operands;
8078         bool MadeImprovement = false;
8079         for (Value *Op : I->operands()) {
8080           if (Constant *C = dyn_cast<Constant>(Op)) {
8081             Operands.push_back(C);
8082             continue;
8083           }
8084 
8085           // If any of the operands is non-constant and if they are
8086           // non-integer and non-pointer, don't even try to analyze them
8087           // with scev techniques.
8088           if (!isSCEVable(Op->getType()))
8089             return V;
8090 
8091           const SCEV *OrigV = getSCEV(Op);
8092           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8093           MadeImprovement |= OrigV != OpV;
8094 
8095           Constant *C = BuildConstantFromSCEV(OpV);
8096           if (!C) return V;
8097           if (C->getType() != Op->getType())
8098             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8099                                                               Op->getType(),
8100                                                               false),
8101                                       C, Op->getType());
8102           Operands.push_back(C);
8103         }
8104 
8105         // Check to see if getSCEVAtScope actually made an improvement.
8106         if (MadeImprovement) {
8107           Constant *C = nullptr;
8108           const DataLayout &DL = getDataLayout();
8109           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8110             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8111                                                 Operands[1], DL, &TLI);
8112           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8113             if (!LI->isVolatile())
8114               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8115           } else
8116             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8117           if (!C) return V;
8118           return getSCEV(C);
8119         }
8120       }
8121     }
8122 
8123     // This is some other type of SCEVUnknown, just return it.
8124     return V;
8125   }
8126 
8127   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8128     // Avoid performing the look-up in the common case where the specified
8129     // expression has no loop-variant portions.
8130     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8131       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8132       if (OpAtScope != Comm->getOperand(i)) {
8133         // Okay, at least one of these operands is loop variant but might be
8134         // foldable.  Build a new instance of the folded commutative expression.
8135         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8136                                             Comm->op_begin()+i);
8137         NewOps.push_back(OpAtScope);
8138 
8139         for (++i; i != e; ++i) {
8140           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8141           NewOps.push_back(OpAtScope);
8142         }
8143         if (isa<SCEVAddExpr>(Comm))
8144           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8145         if (isa<SCEVMulExpr>(Comm))
8146           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8147         if (isa<SCEVMinMaxExpr>(Comm))
8148           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8149         llvm_unreachable("Unknown commutative SCEV type!");
8150       }
8151     }
8152     // If we got here, all operands are loop invariant.
8153     return Comm;
8154   }
8155 
8156   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8157     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8158     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8159     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8160       return Div;   // must be loop invariant
8161     return getUDivExpr(LHS, RHS);
8162   }
8163 
8164   // If this is a loop recurrence for a loop that does not contain L, then we
8165   // are dealing with the final value computed by the loop.
8166   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8167     // First, attempt to evaluate each operand.
8168     // Avoid performing the look-up in the common case where the specified
8169     // expression has no loop-variant portions.
8170     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8171       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8172       if (OpAtScope == AddRec->getOperand(i))
8173         continue;
8174 
8175       // Okay, at least one of these operands is loop variant but might be
8176       // foldable.  Build a new instance of the folded commutative expression.
8177       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8178                                           AddRec->op_begin()+i);
8179       NewOps.push_back(OpAtScope);
8180       for (++i; i != e; ++i)
8181         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8182 
8183       const SCEV *FoldedRec =
8184         getAddRecExpr(NewOps, AddRec->getLoop(),
8185                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8186       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8187       // The addrec may be folded to a nonrecurrence, for example, if the
8188       // induction variable is multiplied by zero after constant folding. Go
8189       // ahead and return the folded value.
8190       if (!AddRec)
8191         return FoldedRec;
8192       break;
8193     }
8194 
8195     // If the scope is outside the addrec's loop, evaluate it by using the
8196     // loop exit value of the addrec.
8197     if (!AddRec->getLoop()->contains(L)) {
8198       // To evaluate this recurrence, we need to know how many times the AddRec
8199       // loop iterates.  Compute this now.
8200       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8201       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8202 
8203       // Then, evaluate the AddRec.
8204       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8205     }
8206 
8207     return AddRec;
8208   }
8209 
8210   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8211     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8212     if (Op == Cast->getOperand())
8213       return Cast;  // must be loop invariant
8214     return getZeroExtendExpr(Op, Cast->getType());
8215   }
8216 
8217   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8218     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8219     if (Op == Cast->getOperand())
8220       return Cast;  // must be loop invariant
8221     return getSignExtendExpr(Op, Cast->getType());
8222   }
8223 
8224   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8225     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8226     if (Op == Cast->getOperand())
8227       return Cast;  // must be loop invariant
8228     return getTruncateExpr(Op, Cast->getType());
8229   }
8230 
8231   llvm_unreachable("Unknown SCEV type!");
8232 }
8233 
8234 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8235   return getSCEVAtScope(getSCEV(V), L);
8236 }
8237 
8238 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8239   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8240     return stripInjectiveFunctions(ZExt->getOperand());
8241   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8242     return stripInjectiveFunctions(SExt->getOperand());
8243   return S;
8244 }
8245 
8246 /// Finds the minimum unsigned root of the following equation:
8247 ///
8248 ///     A * X = B (mod N)
8249 ///
8250 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8251 /// A and B isn't important.
8252 ///
8253 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8254 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8255                                                ScalarEvolution &SE) {
8256   uint32_t BW = A.getBitWidth();
8257   assert(BW == SE.getTypeSizeInBits(B->getType()));
8258   assert(A != 0 && "A must be non-zero.");
8259 
8260   // 1. D = gcd(A, N)
8261   //
8262   // The gcd of A and N may have only one prime factor: 2. The number of
8263   // trailing zeros in A is its multiplicity
8264   uint32_t Mult2 = A.countTrailingZeros();
8265   // D = 2^Mult2
8266 
8267   // 2. Check if B is divisible by D.
8268   //
8269   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8270   // is not less than multiplicity of this prime factor for D.
8271   if (SE.GetMinTrailingZeros(B) < Mult2)
8272     return SE.getCouldNotCompute();
8273 
8274   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8275   // modulo (N / D).
8276   //
8277   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8278   // (N / D) in general. The inverse itself always fits into BW bits, though,
8279   // so we immediately truncate it.
8280   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8281   APInt Mod(BW + 1, 0);
8282   Mod.setBit(BW - Mult2);  // Mod = N / D
8283   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8284 
8285   // 4. Compute the minimum unsigned root of the equation:
8286   // I * (B / D) mod (N / D)
8287   // To simplify the computation, we factor out the divide by D:
8288   // (I * B mod N) / D
8289   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8290   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8291 }
8292 
8293 /// For a given quadratic addrec, generate coefficients of the corresponding
8294 /// quadratic equation, multiplied by a common value to ensure that they are
8295 /// integers.
8296 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8297 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8298 /// were multiplied by, and BitWidth is the bit width of the original addrec
8299 /// coefficients.
8300 /// This function returns None if the addrec coefficients are not compile-
8301 /// time constants.
8302 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8303 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8304   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8305   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8306   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8307   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8308   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8309                     << *AddRec << '\n');
8310 
8311   // We currently can only solve this if the coefficients are constants.
8312   if (!LC || !MC || !NC) {
8313     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8314     return None;
8315   }
8316 
8317   APInt L = LC->getAPInt();
8318   APInt M = MC->getAPInt();
8319   APInt N = NC->getAPInt();
8320   assert(!N.isNullValue() && "This is not a quadratic addrec");
8321 
8322   unsigned BitWidth = LC->getAPInt().getBitWidth();
8323   unsigned NewWidth = BitWidth + 1;
8324   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8325                     << BitWidth << '\n');
8326   // The sign-extension (as opposed to a zero-extension) here matches the
8327   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8328   N = N.sext(NewWidth);
8329   M = M.sext(NewWidth);
8330   L = L.sext(NewWidth);
8331 
8332   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8333   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8334   //   L+M, L+2M+N, L+3M+3N, ...
8335   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8336   //
8337   // The equation Acc = 0 is then
8338   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8339   // In a quadratic form it becomes:
8340   //   N n^2 + (2M-N) n + 2L = 0.
8341 
8342   APInt A = N;
8343   APInt B = 2 * M - A;
8344   APInt C = 2 * L;
8345   APInt T = APInt(NewWidth, 2);
8346   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8347                     << "x + " << C << ", coeff bw: " << NewWidth
8348                     << ", multiplied by " << T << '\n');
8349   return std::make_tuple(A, B, C, T, BitWidth);
8350 }
8351 
8352 /// Helper function to compare optional APInts:
8353 /// (a) if X and Y both exist, return min(X, Y),
8354 /// (b) if neither X nor Y exist, return None,
8355 /// (c) if exactly one of X and Y exists, return that value.
8356 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8357   if (X.hasValue() && Y.hasValue()) {
8358     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8359     APInt XW = X->sextOrSelf(W);
8360     APInt YW = Y->sextOrSelf(W);
8361     return XW.slt(YW) ? *X : *Y;
8362   }
8363   if (!X.hasValue() && !Y.hasValue())
8364     return None;
8365   return X.hasValue() ? *X : *Y;
8366 }
8367 
8368 /// Helper function to truncate an optional APInt to a given BitWidth.
8369 /// When solving addrec-related equations, it is preferable to return a value
8370 /// that has the same bit width as the original addrec's coefficients. If the
8371 /// solution fits in the original bit width, truncate it (except for i1).
8372 /// Returning a value of a different bit width may inhibit some optimizations.
8373 ///
8374 /// In general, a solution to a quadratic equation generated from an addrec
8375 /// may require BW+1 bits, where BW is the bit width of the addrec's
8376 /// coefficients. The reason is that the coefficients of the quadratic
8377 /// equation are BW+1 bits wide (to avoid truncation when converting from
8378 /// the addrec to the equation).
8379 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8380   if (!X.hasValue())
8381     return None;
8382   unsigned W = X->getBitWidth();
8383   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8384     return X->trunc(BitWidth);
8385   return X;
8386 }
8387 
8388 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8389 /// iterations. The values L, M, N are assumed to be signed, and they
8390 /// should all have the same bit widths.
8391 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8392 /// where BW is the bit width of the addrec's coefficients.
8393 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8394 /// returned as such, otherwise the bit width of the returned value may
8395 /// be greater than BW.
8396 ///
8397 /// This function returns None if
8398 /// (a) the addrec coefficients are not constant, or
8399 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8400 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8401 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8402 static Optional<APInt>
8403 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8404   APInt A, B, C, M;
8405   unsigned BitWidth;
8406   auto T = GetQuadraticEquation(AddRec);
8407   if (!T.hasValue())
8408     return None;
8409 
8410   std::tie(A, B, C, M, BitWidth) = *T;
8411   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8412   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8413   if (!X.hasValue())
8414     return None;
8415 
8416   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8417   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8418   if (!V->isZero())
8419     return None;
8420 
8421   return TruncIfPossible(X, BitWidth);
8422 }
8423 
8424 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8425 /// iterations. The values M, N are assumed to be signed, and they
8426 /// should all have the same bit widths.
8427 /// Find the least n such that c(n) does not belong to the given range,
8428 /// while c(n-1) does.
8429 ///
8430 /// This function returns None if
8431 /// (a) the addrec coefficients are not constant, or
8432 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8433 ///     bounds of the range.
8434 static Optional<APInt>
8435 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8436                           const ConstantRange &Range, ScalarEvolution &SE) {
8437   assert(AddRec->getOperand(0)->isZero() &&
8438          "Starting value of addrec should be 0");
8439   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8440                     << Range << ", addrec " << *AddRec << '\n');
8441   // This case is handled in getNumIterationsInRange. Here we can assume that
8442   // we start in the range.
8443   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8444          "Addrec's initial value should be in range");
8445 
8446   APInt A, B, C, M;
8447   unsigned BitWidth;
8448   auto T = GetQuadraticEquation(AddRec);
8449   if (!T.hasValue())
8450     return None;
8451 
8452   // Be careful about the return value: there can be two reasons for not
8453   // returning an actual number. First, if no solutions to the equations
8454   // were found, and second, if the solutions don't leave the given range.
8455   // The first case means that the actual solution is "unknown", the second
8456   // means that it's known, but not valid. If the solution is unknown, we
8457   // cannot make any conclusions.
8458   // Return a pair: the optional solution and a flag indicating if the
8459   // solution was found.
8460   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8461     // Solve for signed overflow and unsigned overflow, pick the lower
8462     // solution.
8463     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8464                       << Bound << " (before multiplying by " << M << ")\n");
8465     Bound *= M; // The quadratic equation multiplier.
8466 
8467     Optional<APInt> SO = None;
8468     if (BitWidth > 1) {
8469       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8470                            "signed overflow\n");
8471       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8472     }
8473     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8474                          "unsigned overflow\n");
8475     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8476                                                               BitWidth+1);
8477 
8478     auto LeavesRange = [&] (const APInt &X) {
8479       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8480       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8481       if (Range.contains(V0->getValue()))
8482         return false;
8483       // X should be at least 1, so X-1 is non-negative.
8484       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8485       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8486       if (Range.contains(V1->getValue()))
8487         return true;
8488       return false;
8489     };
8490 
8491     // If SolveQuadraticEquationWrap returns None, it means that there can
8492     // be a solution, but the function failed to find it. We cannot treat it
8493     // as "no solution".
8494     if (!SO.hasValue() || !UO.hasValue())
8495       return { None, false };
8496 
8497     // Check the smaller value first to see if it leaves the range.
8498     // At this point, both SO and UO must have values.
8499     Optional<APInt> Min = MinOptional(SO, UO);
8500     if (LeavesRange(*Min))
8501       return { Min, true };
8502     Optional<APInt> Max = Min == SO ? UO : SO;
8503     if (LeavesRange(*Max))
8504       return { Max, true };
8505 
8506     // Solutions were found, but were eliminated, hence the "true".
8507     return { None, true };
8508   };
8509 
8510   std::tie(A, B, C, M, BitWidth) = *T;
8511   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8512   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8513   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8514   auto SL = SolveForBoundary(Lower);
8515   auto SU = SolveForBoundary(Upper);
8516   // If any of the solutions was unknown, no meaninigful conclusions can
8517   // be made.
8518   if (!SL.second || !SU.second)
8519     return None;
8520 
8521   // Claim: The correct solution is not some value between Min and Max.
8522   //
8523   // Justification: Assuming that Min and Max are different values, one of
8524   // them is when the first signed overflow happens, the other is when the
8525   // first unsigned overflow happens. Crossing the range boundary is only
8526   // possible via an overflow (treating 0 as a special case of it, modeling
8527   // an overflow as crossing k*2^W for some k).
8528   //
8529   // The interesting case here is when Min was eliminated as an invalid
8530   // solution, but Max was not. The argument is that if there was another
8531   // overflow between Min and Max, it would also have been eliminated if
8532   // it was considered.
8533   //
8534   // For a given boundary, it is possible to have two overflows of the same
8535   // type (signed/unsigned) without having the other type in between: this
8536   // can happen when the vertex of the parabola is between the iterations
8537   // corresponding to the overflows. This is only possible when the two
8538   // overflows cross k*2^W for the same k. In such case, if the second one
8539   // left the range (and was the first one to do so), the first overflow
8540   // would have to enter the range, which would mean that either we had left
8541   // the range before or that we started outside of it. Both of these cases
8542   // are contradictions.
8543   //
8544   // Claim: In the case where SolveForBoundary returns None, the correct
8545   // solution is not some value between the Max for this boundary and the
8546   // Min of the other boundary.
8547   //
8548   // Justification: Assume that we had such Max_A and Min_B corresponding
8549   // to range boundaries A and B and such that Max_A < Min_B. If there was
8550   // a solution between Max_A and Min_B, it would have to be caused by an
8551   // overflow corresponding to either A or B. It cannot correspond to B,
8552   // since Min_B is the first occurrence of such an overflow. If it
8553   // corresponded to A, it would have to be either a signed or an unsigned
8554   // overflow that is larger than both eliminated overflows for A. But
8555   // between the eliminated overflows and this overflow, the values would
8556   // cover the entire value space, thus crossing the other boundary, which
8557   // is a contradiction.
8558 
8559   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8560 }
8561 
8562 ScalarEvolution::ExitLimit
8563 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8564                               bool AllowPredicates) {
8565 
8566   // This is only used for loops with a "x != y" exit test. The exit condition
8567   // is now expressed as a single expression, V = x-y. So the exit test is
8568   // effectively V != 0.  We know and take advantage of the fact that this
8569   // expression only being used in a comparison by zero context.
8570 
8571   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8572   // If the value is a constant
8573   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8574     // If the value is already zero, the branch will execute zero times.
8575     if (C->getValue()->isZero()) return C;
8576     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8577   }
8578 
8579   const SCEVAddRecExpr *AddRec =
8580       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8581 
8582   if (!AddRec && AllowPredicates)
8583     // Try to make this an AddRec using runtime tests, in the first X
8584     // iterations of this loop, where X is the SCEV expression found by the
8585     // algorithm below.
8586     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8587 
8588   if (!AddRec || AddRec->getLoop() != L)
8589     return getCouldNotCompute();
8590 
8591   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8592   // the quadratic equation to solve it.
8593   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8594     // We can only use this value if the chrec ends up with an exact zero
8595     // value at this index.  When solving for "X*X != 5", for example, we
8596     // should not accept a root of 2.
8597     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8598       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8599       return ExitLimit(R, R, false, Predicates);
8600     }
8601     return getCouldNotCompute();
8602   }
8603 
8604   // Otherwise we can only handle this if it is affine.
8605   if (!AddRec->isAffine())
8606     return getCouldNotCompute();
8607 
8608   // If this is an affine expression, the execution count of this branch is
8609   // the minimum unsigned root of the following equation:
8610   //
8611   //     Start + Step*N = 0 (mod 2^BW)
8612   //
8613   // equivalent to:
8614   //
8615   //             Step*N = -Start (mod 2^BW)
8616   //
8617   // where BW is the common bit width of Start and Step.
8618 
8619   // Get the initial value for the loop.
8620   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8621   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8622 
8623   // For now we handle only constant steps.
8624   //
8625   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8626   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8627   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8628   // We have not yet seen any such cases.
8629   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8630   if (!StepC || StepC->getValue()->isZero())
8631     return getCouldNotCompute();
8632 
8633   // For positive steps (counting up until unsigned overflow):
8634   //   N = -Start/Step (as unsigned)
8635   // For negative steps (counting down to zero):
8636   //   N = Start/-Step
8637   // First compute the unsigned distance from zero in the direction of Step.
8638   bool CountDown = StepC->getAPInt().isNegative();
8639   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8640 
8641   // Handle unitary steps, which cannot wraparound.
8642   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8643   //   N = Distance (as unsigned)
8644   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8645     APInt MaxBECount = getUnsignedRangeMax(Distance);
8646 
8647     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8648     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8649     // case, and see if we can improve the bound.
8650     //
8651     // Explicitly handling this here is necessary because getUnsignedRange
8652     // isn't context-sensitive; it doesn't know that we only care about the
8653     // range inside the loop.
8654     const SCEV *Zero = getZero(Distance->getType());
8655     const SCEV *One = getOne(Distance->getType());
8656     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8657     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8658       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8659       // as "unsigned_max(Distance + 1) - 1".
8660       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8661       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8662     }
8663     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8664   }
8665 
8666   // If the condition controls loop exit (the loop exits only if the expression
8667   // is true) and the addition is no-wrap we can use unsigned divide to
8668   // compute the backedge count.  In this case, the step may not divide the
8669   // distance, but we don't care because if the condition is "missed" the loop
8670   // will have undefined behavior due to wrapping.
8671   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8672       loopHasNoAbnormalExits(AddRec->getLoop())) {
8673     const SCEV *Exact =
8674         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8675     const SCEV *Max =
8676         Exact == getCouldNotCompute()
8677             ? Exact
8678             : getConstant(getUnsignedRangeMax(Exact));
8679     return ExitLimit(Exact, Max, false, Predicates);
8680   }
8681 
8682   // Solve the general equation.
8683   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8684                                                getNegativeSCEV(Start), *this);
8685   const SCEV *M = E == getCouldNotCompute()
8686                       ? E
8687                       : getConstant(getUnsignedRangeMax(E));
8688   return ExitLimit(E, M, false, Predicates);
8689 }
8690 
8691 ScalarEvolution::ExitLimit
8692 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8693   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8694   // handle them yet except for the trivial case.  This could be expanded in the
8695   // future as needed.
8696 
8697   // If the value is a constant, check to see if it is known to be non-zero
8698   // already.  If so, the backedge will execute zero times.
8699   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8700     if (!C->getValue()->isZero())
8701       return getZero(C->getType());
8702     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8703   }
8704 
8705   // We could implement others, but I really doubt anyone writes loops like
8706   // this, and if they did, they would already be constant folded.
8707   return getCouldNotCompute();
8708 }
8709 
8710 std::pair<BasicBlock *, BasicBlock *>
8711 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8712   // If the block has a unique predecessor, then there is no path from the
8713   // predecessor to the block that does not go through the direct edge
8714   // from the predecessor to the block.
8715   if (BasicBlock *Pred = BB->getSinglePredecessor())
8716     return {Pred, BB};
8717 
8718   // A loop's header is defined to be a block that dominates the loop.
8719   // If the header has a unique predecessor outside the loop, it must be
8720   // a block that has exactly one successor that can reach the loop.
8721   if (Loop *L = LI.getLoopFor(BB))
8722     return {L->getLoopPredecessor(), L->getHeader()};
8723 
8724   return {nullptr, nullptr};
8725 }
8726 
8727 /// SCEV structural equivalence is usually sufficient for testing whether two
8728 /// expressions are equal, however for the purposes of looking for a condition
8729 /// guarding a loop, it can be useful to be a little more general, since a
8730 /// front-end may have replicated the controlling expression.
8731 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8732   // Quick check to see if they are the same SCEV.
8733   if (A == B) return true;
8734 
8735   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8736     // Not all instructions that are "identical" compute the same value.  For
8737     // instance, two distinct alloca instructions allocating the same type are
8738     // identical and do not read memory; but compute distinct values.
8739     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8740   };
8741 
8742   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8743   // two different instructions with the same value. Check for this case.
8744   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8745     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8746       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8747         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8748           if (ComputesEqualValues(AI, BI))
8749             return true;
8750 
8751   // Otherwise assume they may have a different value.
8752   return false;
8753 }
8754 
8755 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8756                                            const SCEV *&LHS, const SCEV *&RHS,
8757                                            unsigned Depth) {
8758   bool Changed = false;
8759   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8760   // '0 != 0'.
8761   auto TrivialCase = [&](bool TriviallyTrue) {
8762     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8763     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8764     return true;
8765   };
8766   // If we hit the max recursion limit bail out.
8767   if (Depth >= 3)
8768     return false;
8769 
8770   // Canonicalize a constant to the right side.
8771   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8772     // Check for both operands constant.
8773     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8774       if (ConstantExpr::getICmp(Pred,
8775                                 LHSC->getValue(),
8776                                 RHSC->getValue())->isNullValue())
8777         return TrivialCase(false);
8778       else
8779         return TrivialCase(true);
8780     }
8781     // Otherwise swap the operands to put the constant on the right.
8782     std::swap(LHS, RHS);
8783     Pred = ICmpInst::getSwappedPredicate(Pred);
8784     Changed = true;
8785   }
8786 
8787   // If we're comparing an addrec with a value which is loop-invariant in the
8788   // addrec's loop, put the addrec on the left. Also make a dominance check,
8789   // as both operands could be addrecs loop-invariant in each other's loop.
8790   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8791     const Loop *L = AR->getLoop();
8792     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8793       std::swap(LHS, RHS);
8794       Pred = ICmpInst::getSwappedPredicate(Pred);
8795       Changed = true;
8796     }
8797   }
8798 
8799   // If there's a constant operand, canonicalize comparisons with boundary
8800   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8801   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8802     const APInt &RA = RC->getAPInt();
8803 
8804     bool SimplifiedByConstantRange = false;
8805 
8806     if (!ICmpInst::isEquality(Pred)) {
8807       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8808       if (ExactCR.isFullSet())
8809         return TrivialCase(true);
8810       else if (ExactCR.isEmptySet())
8811         return TrivialCase(false);
8812 
8813       APInt NewRHS;
8814       CmpInst::Predicate NewPred;
8815       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8816           ICmpInst::isEquality(NewPred)) {
8817         // We were able to convert an inequality to an equality.
8818         Pred = NewPred;
8819         RHS = getConstant(NewRHS);
8820         Changed = SimplifiedByConstantRange = true;
8821       }
8822     }
8823 
8824     if (!SimplifiedByConstantRange) {
8825       switch (Pred) {
8826       default:
8827         break;
8828       case ICmpInst::ICMP_EQ:
8829       case ICmpInst::ICMP_NE:
8830         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8831         if (!RA)
8832           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8833             if (const SCEVMulExpr *ME =
8834                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8835               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8836                   ME->getOperand(0)->isAllOnesValue()) {
8837                 RHS = AE->getOperand(1);
8838                 LHS = ME->getOperand(1);
8839                 Changed = true;
8840               }
8841         break;
8842 
8843 
8844         // The "Should have been caught earlier!" messages refer to the fact
8845         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8846         // should have fired on the corresponding cases, and canonicalized the
8847         // check to trivial case.
8848 
8849       case ICmpInst::ICMP_UGE:
8850         assert(!RA.isMinValue() && "Should have been caught earlier!");
8851         Pred = ICmpInst::ICMP_UGT;
8852         RHS = getConstant(RA - 1);
8853         Changed = true;
8854         break;
8855       case ICmpInst::ICMP_ULE:
8856         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8857         Pred = ICmpInst::ICMP_ULT;
8858         RHS = getConstant(RA + 1);
8859         Changed = true;
8860         break;
8861       case ICmpInst::ICMP_SGE:
8862         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8863         Pred = ICmpInst::ICMP_SGT;
8864         RHS = getConstant(RA - 1);
8865         Changed = true;
8866         break;
8867       case ICmpInst::ICMP_SLE:
8868         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8869         Pred = ICmpInst::ICMP_SLT;
8870         RHS = getConstant(RA + 1);
8871         Changed = true;
8872         break;
8873       }
8874     }
8875   }
8876 
8877   // Check for obvious equality.
8878   if (HasSameValue(LHS, RHS)) {
8879     if (ICmpInst::isTrueWhenEqual(Pred))
8880       return TrivialCase(true);
8881     if (ICmpInst::isFalseWhenEqual(Pred))
8882       return TrivialCase(false);
8883   }
8884 
8885   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8886   // adding or subtracting 1 from one of the operands.
8887   switch (Pred) {
8888   case ICmpInst::ICMP_SLE:
8889     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8890       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8891                        SCEV::FlagNSW);
8892       Pred = ICmpInst::ICMP_SLT;
8893       Changed = true;
8894     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8895       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8896                        SCEV::FlagNSW);
8897       Pred = ICmpInst::ICMP_SLT;
8898       Changed = true;
8899     }
8900     break;
8901   case ICmpInst::ICMP_SGE:
8902     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8903       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8904                        SCEV::FlagNSW);
8905       Pred = ICmpInst::ICMP_SGT;
8906       Changed = true;
8907     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8908       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8909                        SCEV::FlagNSW);
8910       Pred = ICmpInst::ICMP_SGT;
8911       Changed = true;
8912     }
8913     break;
8914   case ICmpInst::ICMP_ULE:
8915     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8916       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8917                        SCEV::FlagNUW);
8918       Pred = ICmpInst::ICMP_ULT;
8919       Changed = true;
8920     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8921       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8922       Pred = ICmpInst::ICMP_ULT;
8923       Changed = true;
8924     }
8925     break;
8926   case ICmpInst::ICMP_UGE:
8927     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8928       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8929       Pred = ICmpInst::ICMP_UGT;
8930       Changed = true;
8931     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8932       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8933                        SCEV::FlagNUW);
8934       Pred = ICmpInst::ICMP_UGT;
8935       Changed = true;
8936     }
8937     break;
8938   default:
8939     break;
8940   }
8941 
8942   // TODO: More simplifications are possible here.
8943 
8944   // Recursively simplify until we either hit a recursion limit or nothing
8945   // changes.
8946   if (Changed)
8947     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8948 
8949   return Changed;
8950 }
8951 
8952 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8953   return getSignedRangeMax(S).isNegative();
8954 }
8955 
8956 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8957   return getSignedRangeMin(S).isStrictlyPositive();
8958 }
8959 
8960 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8961   return !getSignedRangeMin(S).isNegative();
8962 }
8963 
8964 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8965   return !getSignedRangeMax(S).isStrictlyPositive();
8966 }
8967 
8968 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8969   return isKnownNegative(S) || isKnownPositive(S);
8970 }
8971 
8972 std::pair<const SCEV *, const SCEV *>
8973 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
8974   // Compute SCEV on entry of loop L.
8975   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
8976   if (Start == getCouldNotCompute())
8977     return { Start, Start };
8978   // Compute post increment SCEV for loop L.
8979   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
8980   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
8981   return { Start, PostInc };
8982 }
8983 
8984 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
8985                                           const SCEV *LHS, const SCEV *RHS) {
8986   // First collect all loops.
8987   SmallPtrSet<const Loop *, 8> LoopsUsed;
8988   getUsedLoops(LHS, LoopsUsed);
8989   getUsedLoops(RHS, LoopsUsed);
8990 
8991   if (LoopsUsed.empty())
8992     return false;
8993 
8994   // Domination relationship must be a linear order on collected loops.
8995 #ifndef NDEBUG
8996   for (auto *L1 : LoopsUsed)
8997     for (auto *L2 : LoopsUsed)
8998       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
8999               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9000              "Domination relationship is not a linear order");
9001 #endif
9002 
9003   const Loop *MDL =
9004       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9005                         [&](const Loop *L1, const Loop *L2) {
9006          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9007        });
9008 
9009   // Get init and post increment value for LHS.
9010   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9011   // if LHS contains unknown non-invariant SCEV then bail out.
9012   if (SplitLHS.first == getCouldNotCompute())
9013     return false;
9014   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9015   // Get init and post increment value for RHS.
9016   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9017   // if RHS contains unknown non-invariant SCEV then bail out.
9018   if (SplitRHS.first == getCouldNotCompute())
9019     return false;
9020   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9021   // It is possible that init SCEV contains an invariant load but it does
9022   // not dominate MDL and is not available at MDL loop entry, so we should
9023   // check it here.
9024   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9025       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9026     return false;
9027 
9028   // It seems backedge guard check is faster than entry one so in some cases
9029   // it can speed up whole estimation by short circuit
9030   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9031                                      SplitRHS.second) &&
9032          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9033 }
9034 
9035 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9036                                        const SCEV *LHS, const SCEV *RHS) {
9037   // Canonicalize the inputs first.
9038   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9039 
9040   if (isKnownViaInduction(Pred, LHS, RHS))
9041     return true;
9042 
9043   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9044     return true;
9045 
9046   // Otherwise see what can be done with some simple reasoning.
9047   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9048 }
9049 
9050 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9051                                               const SCEVAddRecExpr *LHS,
9052                                               const SCEV *RHS) {
9053   const Loop *L = LHS->getLoop();
9054   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9055          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9056 }
9057 
9058 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9059                                            ICmpInst::Predicate Pred,
9060                                            bool &Increasing) {
9061   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9062 
9063 #ifndef NDEBUG
9064   // Verify an invariant: inverting the predicate should turn a monotonically
9065   // increasing change to a monotonically decreasing one, and vice versa.
9066   bool IncreasingSwapped;
9067   bool ResultSwapped = isMonotonicPredicateImpl(
9068       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9069 
9070   assert(Result == ResultSwapped && "should be able to analyze both!");
9071   if (ResultSwapped)
9072     assert(Increasing == !IncreasingSwapped &&
9073            "monotonicity should flip as we flip the predicate");
9074 #endif
9075 
9076   return Result;
9077 }
9078 
9079 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9080                                                ICmpInst::Predicate Pred,
9081                                                bool &Increasing) {
9082 
9083   // A zero step value for LHS means the induction variable is essentially a
9084   // loop invariant value. We don't really depend on the predicate actually
9085   // flipping from false to true (for increasing predicates, and the other way
9086   // around for decreasing predicates), all we care about is that *if* the
9087   // predicate changes then it only changes from false to true.
9088   //
9089   // A zero step value in itself is not very useful, but there may be places
9090   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9091   // as general as possible.
9092 
9093   switch (Pred) {
9094   default:
9095     return false; // Conservative answer
9096 
9097   case ICmpInst::ICMP_UGT:
9098   case ICmpInst::ICMP_UGE:
9099   case ICmpInst::ICMP_ULT:
9100   case ICmpInst::ICMP_ULE:
9101     if (!LHS->hasNoUnsignedWrap())
9102       return false;
9103 
9104     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9105     return true;
9106 
9107   case ICmpInst::ICMP_SGT:
9108   case ICmpInst::ICMP_SGE:
9109   case ICmpInst::ICMP_SLT:
9110   case ICmpInst::ICMP_SLE: {
9111     if (!LHS->hasNoSignedWrap())
9112       return false;
9113 
9114     const SCEV *Step = LHS->getStepRecurrence(*this);
9115 
9116     if (isKnownNonNegative(Step)) {
9117       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9118       return true;
9119     }
9120 
9121     if (isKnownNonPositive(Step)) {
9122       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9123       return true;
9124     }
9125 
9126     return false;
9127   }
9128 
9129   }
9130 
9131   llvm_unreachable("switch has default clause!");
9132 }
9133 
9134 bool ScalarEvolution::isLoopInvariantPredicate(
9135     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9136     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9137     const SCEV *&InvariantRHS) {
9138 
9139   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9140   if (!isLoopInvariant(RHS, L)) {
9141     if (!isLoopInvariant(LHS, L))
9142       return false;
9143 
9144     std::swap(LHS, RHS);
9145     Pred = ICmpInst::getSwappedPredicate(Pred);
9146   }
9147 
9148   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9149   if (!ArLHS || ArLHS->getLoop() != L)
9150     return false;
9151 
9152   bool Increasing;
9153   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9154     return false;
9155 
9156   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9157   // true as the loop iterates, and the backedge is control dependent on
9158   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9159   //
9160   //   * if the predicate was false in the first iteration then the predicate
9161   //     is never evaluated again, since the loop exits without taking the
9162   //     backedge.
9163   //   * if the predicate was true in the first iteration then it will
9164   //     continue to be true for all future iterations since it is
9165   //     monotonically increasing.
9166   //
9167   // For both the above possibilities, we can replace the loop varying
9168   // predicate with its value on the first iteration of the loop (which is
9169   // loop invariant).
9170   //
9171   // A similar reasoning applies for a monotonically decreasing predicate, by
9172   // replacing true with false and false with true in the above two bullets.
9173 
9174   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9175 
9176   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9177     return false;
9178 
9179   InvariantPred = Pred;
9180   InvariantLHS = ArLHS->getStart();
9181   InvariantRHS = RHS;
9182   return true;
9183 }
9184 
9185 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9186     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9187   if (HasSameValue(LHS, RHS))
9188     return ICmpInst::isTrueWhenEqual(Pred);
9189 
9190   // This code is split out from isKnownPredicate because it is called from
9191   // within isLoopEntryGuardedByCond.
9192 
9193   auto CheckRanges =
9194       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9195     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9196         .contains(RangeLHS);
9197   };
9198 
9199   // The check at the top of the function catches the case where the values are
9200   // known to be equal.
9201   if (Pred == CmpInst::ICMP_EQ)
9202     return false;
9203 
9204   if (Pred == CmpInst::ICMP_NE)
9205     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9206            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9207            isKnownNonZero(getMinusSCEV(LHS, RHS));
9208 
9209   if (CmpInst::isSigned(Pred))
9210     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9211 
9212   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9213 }
9214 
9215 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9216                                                     const SCEV *LHS,
9217                                                     const SCEV *RHS) {
9218   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9219   // Return Y via OutY.
9220   auto MatchBinaryAddToConst =
9221       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9222              SCEV::NoWrapFlags ExpectedFlags) {
9223     const SCEV *NonConstOp, *ConstOp;
9224     SCEV::NoWrapFlags FlagsPresent;
9225 
9226     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9227         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9228       return false;
9229 
9230     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9231     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9232   };
9233 
9234   APInt C;
9235 
9236   switch (Pred) {
9237   default:
9238     break;
9239 
9240   case ICmpInst::ICMP_SGE:
9241     std::swap(LHS, RHS);
9242     LLVM_FALLTHROUGH;
9243   case ICmpInst::ICMP_SLE:
9244     // X s<= (X + C)<nsw> if C >= 0
9245     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9246       return true;
9247 
9248     // (X + C)<nsw> s<= X if C <= 0
9249     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9250         !C.isStrictlyPositive())
9251       return true;
9252     break;
9253 
9254   case ICmpInst::ICMP_SGT:
9255     std::swap(LHS, RHS);
9256     LLVM_FALLTHROUGH;
9257   case ICmpInst::ICMP_SLT:
9258     // X s< (X + C)<nsw> if C > 0
9259     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9260         C.isStrictlyPositive())
9261       return true;
9262 
9263     // (X + C)<nsw> s< X if C < 0
9264     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9265       return true;
9266     break;
9267   }
9268 
9269   return false;
9270 }
9271 
9272 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9273                                                    const SCEV *LHS,
9274                                                    const SCEV *RHS) {
9275   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9276     return false;
9277 
9278   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9279   // the stack can result in exponential time complexity.
9280   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9281 
9282   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9283   //
9284   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9285   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9286   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9287   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9288   // use isKnownPredicate later if needed.
9289   return isKnownNonNegative(RHS) &&
9290          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9291          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9292 }
9293 
9294 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9295                                         ICmpInst::Predicate Pred,
9296                                         const SCEV *LHS, const SCEV *RHS) {
9297   // No need to even try if we know the module has no guards.
9298   if (!HasGuards)
9299     return false;
9300 
9301   return any_of(*BB, [&](Instruction &I) {
9302     using namespace llvm::PatternMatch;
9303 
9304     Value *Condition;
9305     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9306                          m_Value(Condition))) &&
9307            isImpliedCond(Pred, LHS, RHS, Condition, false);
9308   });
9309 }
9310 
9311 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9312 /// protected by a conditional between LHS and RHS.  This is used to
9313 /// to eliminate casts.
9314 bool
9315 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9316                                              ICmpInst::Predicate Pred,
9317                                              const SCEV *LHS, const SCEV *RHS) {
9318   // Interpret a null as meaning no loop, where there is obviously no guard
9319   // (interprocedural conditions notwithstanding).
9320   if (!L) return true;
9321 
9322   if (VerifyIR)
9323     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9324            "This cannot be done on broken IR!");
9325 
9326 
9327   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9328     return true;
9329 
9330   BasicBlock *Latch = L->getLoopLatch();
9331   if (!Latch)
9332     return false;
9333 
9334   BranchInst *LoopContinuePredicate =
9335     dyn_cast<BranchInst>(Latch->getTerminator());
9336   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9337       isImpliedCond(Pred, LHS, RHS,
9338                     LoopContinuePredicate->getCondition(),
9339                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9340     return true;
9341 
9342   // We don't want more than one activation of the following loops on the stack
9343   // -- that can lead to O(n!) time complexity.
9344   if (WalkingBEDominatingConds)
9345     return false;
9346 
9347   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9348 
9349   // See if we can exploit a trip count to prove the predicate.
9350   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9351   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9352   if (LatchBECount != getCouldNotCompute()) {
9353     // We know that Latch branches back to the loop header exactly
9354     // LatchBECount times.  This means the backdege condition at Latch is
9355     // equivalent to  "{0,+,1} u< LatchBECount".
9356     Type *Ty = LatchBECount->getType();
9357     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9358     const SCEV *LoopCounter =
9359       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9360     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9361                       LatchBECount))
9362       return true;
9363   }
9364 
9365   // Check conditions due to any @llvm.assume intrinsics.
9366   for (auto &AssumeVH : AC.assumptions()) {
9367     if (!AssumeVH)
9368       continue;
9369     auto *CI = cast<CallInst>(AssumeVH);
9370     if (!DT.dominates(CI, Latch->getTerminator()))
9371       continue;
9372 
9373     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9374       return true;
9375   }
9376 
9377   // If the loop is not reachable from the entry block, we risk running into an
9378   // infinite loop as we walk up into the dom tree.  These loops do not matter
9379   // anyway, so we just return a conservative answer when we see them.
9380   if (!DT.isReachableFromEntry(L->getHeader()))
9381     return false;
9382 
9383   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9384     return true;
9385 
9386   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9387        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9388     assert(DTN && "should reach the loop header before reaching the root!");
9389 
9390     BasicBlock *BB = DTN->getBlock();
9391     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9392       return true;
9393 
9394     BasicBlock *PBB = BB->getSinglePredecessor();
9395     if (!PBB)
9396       continue;
9397 
9398     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9399     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9400       continue;
9401 
9402     Value *Condition = ContinuePredicate->getCondition();
9403 
9404     // If we have an edge `E` within the loop body that dominates the only
9405     // latch, the condition guarding `E` also guards the backedge.  This
9406     // reasoning works only for loops with a single latch.
9407 
9408     BasicBlockEdge DominatingEdge(PBB, BB);
9409     if (DominatingEdge.isSingleEdge()) {
9410       // We're constructively (and conservatively) enumerating edges within the
9411       // loop body that dominate the latch.  The dominator tree better agree
9412       // with us on this:
9413       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9414 
9415       if (isImpliedCond(Pred, LHS, RHS, Condition,
9416                         BB != ContinuePredicate->getSuccessor(0)))
9417         return true;
9418     }
9419   }
9420 
9421   return false;
9422 }
9423 
9424 bool
9425 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9426                                           ICmpInst::Predicate Pred,
9427                                           const SCEV *LHS, const SCEV *RHS) {
9428   // Interpret a null as meaning no loop, where there is obviously no guard
9429   // (interprocedural conditions notwithstanding).
9430   if (!L) return false;
9431 
9432   if (VerifyIR)
9433     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9434            "This cannot be done on broken IR!");
9435 
9436   // Both LHS and RHS must be available at loop entry.
9437   assert(isAvailableAtLoopEntry(LHS, L) &&
9438          "LHS is not available at Loop Entry");
9439   assert(isAvailableAtLoopEntry(RHS, L) &&
9440          "RHS is not available at Loop Entry");
9441 
9442   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9443     return true;
9444 
9445   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9446   // the facts (a >= b && a != b) separately. A typical situation is when the
9447   // non-strict comparison is known from ranges and non-equality is known from
9448   // dominating predicates. If we are proving strict comparison, we always try
9449   // to prove non-equality and non-strict comparison separately.
9450   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9451   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9452   bool ProvedNonStrictComparison = false;
9453   bool ProvedNonEquality = false;
9454 
9455   if (ProvingStrictComparison) {
9456     ProvedNonStrictComparison =
9457         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9458     ProvedNonEquality =
9459         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9460     if (ProvedNonStrictComparison && ProvedNonEquality)
9461       return true;
9462   }
9463 
9464   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9465   auto ProveViaGuard = [&](BasicBlock *Block) {
9466     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9467       return true;
9468     if (ProvingStrictComparison) {
9469       if (!ProvedNonStrictComparison)
9470         ProvedNonStrictComparison =
9471             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9472       if (!ProvedNonEquality)
9473         ProvedNonEquality =
9474             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9475       if (ProvedNonStrictComparison && ProvedNonEquality)
9476         return true;
9477     }
9478     return false;
9479   };
9480 
9481   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9482   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9483     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9484       return true;
9485     if (ProvingStrictComparison) {
9486       if (!ProvedNonStrictComparison)
9487         ProvedNonStrictComparison =
9488             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9489       if (!ProvedNonEquality)
9490         ProvedNonEquality =
9491             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9492       if (ProvedNonStrictComparison && ProvedNonEquality)
9493         return true;
9494     }
9495     return false;
9496   };
9497 
9498   // Starting at the loop predecessor, climb up the predecessor chain, as long
9499   // as there are predecessors that can be found that have unique successors
9500   // leading to the original header.
9501   for (std::pair<BasicBlock *, BasicBlock *>
9502          Pair(L->getLoopPredecessor(), L->getHeader());
9503        Pair.first;
9504        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9505 
9506     if (ProveViaGuard(Pair.first))
9507       return true;
9508 
9509     BranchInst *LoopEntryPredicate =
9510       dyn_cast<BranchInst>(Pair.first->getTerminator());
9511     if (!LoopEntryPredicate ||
9512         LoopEntryPredicate->isUnconditional())
9513       continue;
9514 
9515     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9516                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9517       return true;
9518   }
9519 
9520   // Check conditions due to any @llvm.assume intrinsics.
9521   for (auto &AssumeVH : AC.assumptions()) {
9522     if (!AssumeVH)
9523       continue;
9524     auto *CI = cast<CallInst>(AssumeVH);
9525     if (!DT.dominates(CI, L->getHeader()))
9526       continue;
9527 
9528     if (ProveViaCond(CI->getArgOperand(0), false))
9529       return true;
9530   }
9531 
9532   return false;
9533 }
9534 
9535 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9536                                     const SCEV *LHS, const SCEV *RHS,
9537                                     Value *FoundCondValue,
9538                                     bool Inverse) {
9539   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9540     return false;
9541 
9542   auto ClearOnExit =
9543       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9544 
9545   // Recursively handle And and Or conditions.
9546   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9547     if (BO->getOpcode() == Instruction::And) {
9548       if (!Inverse)
9549         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9550                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9551     } else if (BO->getOpcode() == Instruction::Or) {
9552       if (Inverse)
9553         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9554                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9555     }
9556   }
9557 
9558   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9559   if (!ICI) return false;
9560 
9561   // Now that we found a conditional branch that dominates the loop or controls
9562   // the loop latch. Check to see if it is the comparison we are looking for.
9563   ICmpInst::Predicate FoundPred;
9564   if (Inverse)
9565     FoundPred = ICI->getInversePredicate();
9566   else
9567     FoundPred = ICI->getPredicate();
9568 
9569   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9570   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9571 
9572   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9573 }
9574 
9575 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9576                                     const SCEV *RHS,
9577                                     ICmpInst::Predicate FoundPred,
9578                                     const SCEV *FoundLHS,
9579                                     const SCEV *FoundRHS) {
9580   // Balance the types.
9581   if (getTypeSizeInBits(LHS->getType()) <
9582       getTypeSizeInBits(FoundLHS->getType())) {
9583     if (CmpInst::isSigned(Pred)) {
9584       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9585       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9586     } else {
9587       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9588       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9589     }
9590   } else if (getTypeSizeInBits(LHS->getType()) >
9591       getTypeSizeInBits(FoundLHS->getType())) {
9592     if (CmpInst::isSigned(FoundPred)) {
9593       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9594       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9595     } else {
9596       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9597       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9598     }
9599   }
9600 
9601   // Canonicalize the query to match the way instcombine will have
9602   // canonicalized the comparison.
9603   if (SimplifyICmpOperands(Pred, LHS, RHS))
9604     if (LHS == RHS)
9605       return CmpInst::isTrueWhenEqual(Pred);
9606   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9607     if (FoundLHS == FoundRHS)
9608       return CmpInst::isFalseWhenEqual(FoundPred);
9609 
9610   // Check to see if we can make the LHS or RHS match.
9611   if (LHS == FoundRHS || RHS == FoundLHS) {
9612     if (isa<SCEVConstant>(RHS)) {
9613       std::swap(FoundLHS, FoundRHS);
9614       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9615     } else {
9616       std::swap(LHS, RHS);
9617       Pred = ICmpInst::getSwappedPredicate(Pred);
9618     }
9619   }
9620 
9621   // Check whether the found predicate is the same as the desired predicate.
9622   if (FoundPred == Pred)
9623     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9624 
9625   // Check whether swapping the found predicate makes it the same as the
9626   // desired predicate.
9627   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9628     if (isa<SCEVConstant>(RHS))
9629       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9630     else
9631       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9632                                    RHS, LHS, FoundLHS, FoundRHS);
9633   }
9634 
9635   // Unsigned comparison is the same as signed comparison when both the operands
9636   // are non-negative.
9637   if (CmpInst::isUnsigned(FoundPred) &&
9638       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9639       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9640     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9641 
9642   // Check if we can make progress by sharpening ranges.
9643   if (FoundPred == ICmpInst::ICMP_NE &&
9644       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9645 
9646     const SCEVConstant *C = nullptr;
9647     const SCEV *V = nullptr;
9648 
9649     if (isa<SCEVConstant>(FoundLHS)) {
9650       C = cast<SCEVConstant>(FoundLHS);
9651       V = FoundRHS;
9652     } else {
9653       C = cast<SCEVConstant>(FoundRHS);
9654       V = FoundLHS;
9655     }
9656 
9657     // The guarding predicate tells us that C != V. If the known range
9658     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9659     // range we consider has to correspond to same signedness as the
9660     // predicate we're interested in folding.
9661 
9662     APInt Min = ICmpInst::isSigned(Pred) ?
9663         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9664 
9665     if (Min == C->getAPInt()) {
9666       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9667       // This is true even if (Min + 1) wraps around -- in case of
9668       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9669 
9670       APInt SharperMin = Min + 1;
9671 
9672       switch (Pred) {
9673         case ICmpInst::ICMP_SGE:
9674         case ICmpInst::ICMP_UGE:
9675           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9676           // RHS, we're done.
9677           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9678                                     getConstant(SharperMin)))
9679             return true;
9680           LLVM_FALLTHROUGH;
9681 
9682         case ICmpInst::ICMP_SGT:
9683         case ICmpInst::ICMP_UGT:
9684           // We know from the range information that (V `Pred` Min ||
9685           // V == Min).  We know from the guarding condition that !(V
9686           // == Min).  This gives us
9687           //
9688           //       V `Pred` Min || V == Min && !(V == Min)
9689           //   =>  V `Pred` Min
9690           //
9691           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9692 
9693           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9694             return true;
9695           LLVM_FALLTHROUGH;
9696 
9697         default:
9698           // No change
9699           break;
9700       }
9701     }
9702   }
9703 
9704   // Check whether the actual condition is beyond sufficient.
9705   if (FoundPred == ICmpInst::ICMP_EQ)
9706     if (ICmpInst::isTrueWhenEqual(Pred))
9707       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9708         return true;
9709   if (Pred == ICmpInst::ICMP_NE)
9710     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9711       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9712         return true;
9713 
9714   // Otherwise assume the worst.
9715   return false;
9716 }
9717 
9718 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9719                                      const SCEV *&L, const SCEV *&R,
9720                                      SCEV::NoWrapFlags &Flags) {
9721   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9722   if (!AE || AE->getNumOperands() != 2)
9723     return false;
9724 
9725   L = AE->getOperand(0);
9726   R = AE->getOperand(1);
9727   Flags = AE->getNoWrapFlags();
9728   return true;
9729 }
9730 
9731 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9732                                                            const SCEV *Less) {
9733   // We avoid subtracting expressions here because this function is usually
9734   // fairly deep in the call stack (i.e. is called many times).
9735 
9736   // X - X = 0.
9737   if (More == Less)
9738     return APInt(getTypeSizeInBits(More->getType()), 0);
9739 
9740   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9741     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9742     const auto *MAR = cast<SCEVAddRecExpr>(More);
9743 
9744     if (LAR->getLoop() != MAR->getLoop())
9745       return None;
9746 
9747     // We look at affine expressions only; not for correctness but to keep
9748     // getStepRecurrence cheap.
9749     if (!LAR->isAffine() || !MAR->isAffine())
9750       return None;
9751 
9752     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9753       return None;
9754 
9755     Less = LAR->getStart();
9756     More = MAR->getStart();
9757 
9758     // fall through
9759   }
9760 
9761   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9762     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9763     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9764     return M - L;
9765   }
9766 
9767   SCEV::NoWrapFlags Flags;
9768   const SCEV *LLess = nullptr, *RLess = nullptr;
9769   const SCEV *LMore = nullptr, *RMore = nullptr;
9770   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9771   // Compare (X + C1) vs X.
9772   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9773     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9774       if (RLess == More)
9775         return -(C1->getAPInt());
9776 
9777   // Compare X vs (X + C2).
9778   if (splitBinaryAdd(More, LMore, RMore, Flags))
9779     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9780       if (RMore == Less)
9781         return C2->getAPInt();
9782 
9783   // Compare (X + C1) vs (X + C2).
9784   if (C1 && C2 && RLess == RMore)
9785     return C2->getAPInt() - C1->getAPInt();
9786 
9787   return None;
9788 }
9789 
9790 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9791     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9792     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9793   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9794     return false;
9795 
9796   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9797   if (!AddRecLHS)
9798     return false;
9799 
9800   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9801   if (!AddRecFoundLHS)
9802     return false;
9803 
9804   // We'd like to let SCEV reason about control dependencies, so we constrain
9805   // both the inequalities to be about add recurrences on the same loop.  This
9806   // way we can use isLoopEntryGuardedByCond later.
9807 
9808   const Loop *L = AddRecFoundLHS->getLoop();
9809   if (L != AddRecLHS->getLoop())
9810     return false;
9811 
9812   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9813   //
9814   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9815   //                                                                  ... (2)
9816   //
9817   // Informal proof for (2), assuming (1) [*]:
9818   //
9819   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9820   //
9821   // Then
9822   //
9823   //       FoundLHS s< FoundRHS s< INT_MIN - C
9824   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9825   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9826   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9827   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9828   // <=>  FoundLHS + C s< FoundRHS + C
9829   //
9830   // [*]: (1) can be proved by ruling out overflow.
9831   //
9832   // [**]: This can be proved by analyzing all the four possibilities:
9833   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9834   //    (A s>= 0, B s>= 0).
9835   //
9836   // Note:
9837   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9838   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9839   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9840   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9841   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9842   // C)".
9843 
9844   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9845   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9846   if (!LDiff || !RDiff || *LDiff != *RDiff)
9847     return false;
9848 
9849   if (LDiff->isMinValue())
9850     return true;
9851 
9852   APInt FoundRHSLimit;
9853 
9854   if (Pred == CmpInst::ICMP_ULT) {
9855     FoundRHSLimit = -(*RDiff);
9856   } else {
9857     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9858     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9859   }
9860 
9861   // Try to prove (1) or (2), as needed.
9862   return isAvailableAtLoopEntry(FoundRHS, L) &&
9863          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9864                                   getConstant(FoundRHSLimit));
9865 }
9866 
9867 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9868                                         const SCEV *LHS, const SCEV *RHS,
9869                                         const SCEV *FoundLHS,
9870                                         const SCEV *FoundRHS, unsigned Depth) {
9871   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9872 
9873   auto ClearOnExit = make_scope_exit([&]() {
9874     if (LPhi) {
9875       bool Erased = PendingMerges.erase(LPhi);
9876       assert(Erased && "Failed to erase LPhi!");
9877       (void)Erased;
9878     }
9879     if (RPhi) {
9880       bool Erased = PendingMerges.erase(RPhi);
9881       assert(Erased && "Failed to erase RPhi!");
9882       (void)Erased;
9883     }
9884   });
9885 
9886   // Find respective Phis and check that they are not being pending.
9887   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9888     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9889       if (!PendingMerges.insert(Phi).second)
9890         return false;
9891       LPhi = Phi;
9892     }
9893   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9894     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9895       // If we detect a loop of Phi nodes being processed by this method, for
9896       // example:
9897       //
9898       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9899       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9900       //
9901       // we don't want to deal with a case that complex, so return conservative
9902       // answer false.
9903       if (!PendingMerges.insert(Phi).second)
9904         return false;
9905       RPhi = Phi;
9906     }
9907 
9908   // If none of LHS, RHS is a Phi, nothing to do here.
9909   if (!LPhi && !RPhi)
9910     return false;
9911 
9912   // If there is a SCEVUnknown Phi we are interested in, make it left.
9913   if (!LPhi) {
9914     std::swap(LHS, RHS);
9915     std::swap(FoundLHS, FoundRHS);
9916     std::swap(LPhi, RPhi);
9917     Pred = ICmpInst::getSwappedPredicate(Pred);
9918   }
9919 
9920   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9921   const BasicBlock *LBB = LPhi->getParent();
9922   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9923 
9924   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9925     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9926            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9927            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9928   };
9929 
9930   if (RPhi && RPhi->getParent() == LBB) {
9931     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9932     // If we compare two Phis from the same block, and for each entry block
9933     // the predicate is true for incoming values from this block, then the
9934     // predicate is also true for the Phis.
9935     for (const BasicBlock *IncBB : predecessors(LBB)) {
9936       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9937       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9938       if (!ProvedEasily(L, R))
9939         return false;
9940     }
9941   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9942     // Case two: RHS is also a Phi from the same basic block, and it is an
9943     // AddRec. It means that there is a loop which has both AddRec and Unknown
9944     // PHIs, for it we can compare incoming values of AddRec from above the loop
9945     // and latch with their respective incoming values of LPhi.
9946     // TODO: Generalize to handle loops with many inputs in a header.
9947     if (LPhi->getNumIncomingValues() != 2) return false;
9948 
9949     auto *RLoop = RAR->getLoop();
9950     auto *Predecessor = RLoop->getLoopPredecessor();
9951     assert(Predecessor && "Loop with AddRec with no predecessor?");
9952     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9953     if (!ProvedEasily(L1, RAR->getStart()))
9954       return false;
9955     auto *Latch = RLoop->getLoopLatch();
9956     assert(Latch && "Loop with AddRec with no latch?");
9957     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
9958     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
9959       return false;
9960   } else {
9961     // In all other cases go over inputs of LHS and compare each of them to RHS,
9962     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
9963     // At this point RHS is either a non-Phi, or it is a Phi from some block
9964     // different from LBB.
9965     for (const BasicBlock *IncBB : predecessors(LBB)) {
9966       // Check that RHS is available in this block.
9967       if (!dominates(RHS, IncBB))
9968         return false;
9969       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9970       if (!ProvedEasily(L, RHS))
9971         return false;
9972     }
9973   }
9974   return true;
9975 }
9976 
9977 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9978                                             const SCEV *LHS, const SCEV *RHS,
9979                                             const SCEV *FoundLHS,
9980                                             const SCEV *FoundRHS) {
9981   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9982     return true;
9983 
9984   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9985     return true;
9986 
9987   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9988                                      FoundLHS, FoundRHS) ||
9989          // ~x < ~y --> x > y
9990          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9991                                      getNotSCEV(FoundRHS),
9992                                      getNotSCEV(FoundLHS));
9993 }
9994 
9995 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
9996 template <typename MinMaxExprType>
9997 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
9998                                  const SCEV *Candidate) {
9999   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10000   if (!MinMaxExpr)
10001     return false;
10002 
10003   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10004 }
10005 
10006 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10007                                            ICmpInst::Predicate Pred,
10008                                            const SCEV *LHS, const SCEV *RHS) {
10009   // If both sides are affine addrecs for the same loop, with equal
10010   // steps, and we know the recurrences don't wrap, then we only
10011   // need to check the predicate on the starting values.
10012 
10013   if (!ICmpInst::isRelational(Pred))
10014     return false;
10015 
10016   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10017   if (!LAR)
10018     return false;
10019   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10020   if (!RAR)
10021     return false;
10022   if (LAR->getLoop() != RAR->getLoop())
10023     return false;
10024   if (!LAR->isAffine() || !RAR->isAffine())
10025     return false;
10026 
10027   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10028     return false;
10029 
10030   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10031                          SCEV::FlagNSW : SCEV::FlagNUW;
10032   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10033     return false;
10034 
10035   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10036 }
10037 
10038 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10039 /// expression?
10040 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10041                                         ICmpInst::Predicate Pred,
10042                                         const SCEV *LHS, const SCEV *RHS) {
10043   switch (Pred) {
10044   default:
10045     return false;
10046 
10047   case ICmpInst::ICMP_SGE:
10048     std::swap(LHS, RHS);
10049     LLVM_FALLTHROUGH;
10050   case ICmpInst::ICMP_SLE:
10051     return
10052         // min(A, ...) <= A
10053         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10054         // A <= max(A, ...)
10055         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10056 
10057   case ICmpInst::ICMP_UGE:
10058     std::swap(LHS, RHS);
10059     LLVM_FALLTHROUGH;
10060   case ICmpInst::ICMP_ULE:
10061     return
10062         // min(A, ...) <= A
10063         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10064         // A <= max(A, ...)
10065         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10066   }
10067 
10068   llvm_unreachable("covered switch fell through?!");
10069 }
10070 
10071 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10072                                              const SCEV *LHS, const SCEV *RHS,
10073                                              const SCEV *FoundLHS,
10074                                              const SCEV *FoundRHS,
10075                                              unsigned Depth) {
10076   assert(getTypeSizeInBits(LHS->getType()) ==
10077              getTypeSizeInBits(RHS->getType()) &&
10078          "LHS and RHS have different sizes?");
10079   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10080              getTypeSizeInBits(FoundRHS->getType()) &&
10081          "FoundLHS and FoundRHS have different sizes?");
10082   // We want to avoid hurting the compile time with analysis of too big trees.
10083   if (Depth > MaxSCEVOperationsImplicationDepth)
10084     return false;
10085   // We only want to work with ICMP_SGT comparison so far.
10086   // TODO: Extend to ICMP_UGT?
10087   if (Pred == ICmpInst::ICMP_SLT) {
10088     Pred = ICmpInst::ICMP_SGT;
10089     std::swap(LHS, RHS);
10090     std::swap(FoundLHS, FoundRHS);
10091   }
10092   if (Pred != ICmpInst::ICMP_SGT)
10093     return false;
10094 
10095   auto GetOpFromSExt = [&](const SCEV *S) {
10096     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10097       return Ext->getOperand();
10098     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10099     // the constant in some cases.
10100     return S;
10101   };
10102 
10103   // Acquire values from extensions.
10104   auto *OrigLHS = LHS;
10105   auto *OrigFoundLHS = FoundLHS;
10106   LHS = GetOpFromSExt(LHS);
10107   FoundLHS = GetOpFromSExt(FoundLHS);
10108 
10109   // Is the SGT predicate can be proved trivially or using the found context.
10110   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10111     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10112            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10113                                   FoundRHS, Depth + 1);
10114   };
10115 
10116   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10117     // We want to avoid creation of any new non-constant SCEV. Since we are
10118     // going to compare the operands to RHS, we should be certain that we don't
10119     // need any size extensions for this. So let's decline all cases when the
10120     // sizes of types of LHS and RHS do not match.
10121     // TODO: Maybe try to get RHS from sext to catch more cases?
10122     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10123       return false;
10124 
10125     // Should not overflow.
10126     if (!LHSAddExpr->hasNoSignedWrap())
10127       return false;
10128 
10129     auto *LL = LHSAddExpr->getOperand(0);
10130     auto *LR = LHSAddExpr->getOperand(1);
10131     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10132 
10133     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10134     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10135       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10136     };
10137     // Try to prove the following rule:
10138     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10139     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10140     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10141       return true;
10142   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10143     Value *LL, *LR;
10144     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10145 
10146     using namespace llvm::PatternMatch;
10147 
10148     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10149       // Rules for division.
10150       // We are going to perform some comparisons with Denominator and its
10151       // derivative expressions. In general case, creating a SCEV for it may
10152       // lead to a complex analysis of the entire graph, and in particular it
10153       // can request trip count recalculation for the same loop. This would
10154       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10155       // this, we only want to create SCEVs that are constants in this section.
10156       // So we bail if Denominator is not a constant.
10157       if (!isa<ConstantInt>(LR))
10158         return false;
10159 
10160       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10161 
10162       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10163       // then a SCEV for the numerator already exists and matches with FoundLHS.
10164       auto *Numerator = getExistingSCEV(LL);
10165       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10166         return false;
10167 
10168       // Make sure that the numerator matches with FoundLHS and the denominator
10169       // is positive.
10170       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10171         return false;
10172 
10173       auto *DTy = Denominator->getType();
10174       auto *FRHSTy = FoundRHS->getType();
10175       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10176         // One of types is a pointer and another one is not. We cannot extend
10177         // them properly to a wider type, so let us just reject this case.
10178         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10179         // to avoid this check.
10180         return false;
10181 
10182       // Given that:
10183       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10184       auto *WTy = getWiderType(DTy, FRHSTy);
10185       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10186       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10187 
10188       // Try to prove the following rule:
10189       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10190       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10191       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10192       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10193       if (isKnownNonPositive(RHS) &&
10194           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10195         return true;
10196 
10197       // Try to prove the following rule:
10198       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10199       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10200       // If we divide it by Denominator > 2, then:
10201       // 1. If FoundLHS is negative, then the result is 0.
10202       // 2. If FoundLHS is non-negative, then the result is non-negative.
10203       // Anyways, the result is non-negative.
10204       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10205       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10206       if (isKnownNegative(RHS) &&
10207           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10208         return true;
10209     }
10210   }
10211 
10212   // If our expression contained SCEVUnknown Phis, and we split it down and now
10213   // need to prove something for them, try to prove the predicate for every
10214   // possible incoming values of those Phis.
10215   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10216     return true;
10217 
10218   return false;
10219 }
10220 
10221 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10222                                         const SCEV *LHS, const SCEV *RHS) {
10223   // zext x u<= sext x, sext x s<= zext x
10224   switch (Pred) {
10225   case ICmpInst::ICMP_SGE:
10226     std::swap(LHS, RHS);
10227     LLVM_FALLTHROUGH;
10228   case ICmpInst::ICMP_SLE: {
10229     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10230     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10231     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10232     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10233       return true;
10234     break;
10235   }
10236   case ICmpInst::ICMP_UGE:
10237     std::swap(LHS, RHS);
10238     LLVM_FALLTHROUGH;
10239   case ICmpInst::ICMP_ULE: {
10240     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10241     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10242     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10243     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10244       return true;
10245     break;
10246   }
10247   default:
10248     break;
10249   };
10250   return false;
10251 }
10252 
10253 bool
10254 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10255                                            const SCEV *LHS, const SCEV *RHS) {
10256   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10257          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10258          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10259          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10260          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10261 }
10262 
10263 bool
10264 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10265                                              const SCEV *LHS, const SCEV *RHS,
10266                                              const SCEV *FoundLHS,
10267                                              const SCEV *FoundRHS) {
10268   switch (Pred) {
10269   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10270   case ICmpInst::ICMP_EQ:
10271   case ICmpInst::ICMP_NE:
10272     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10273       return true;
10274     break;
10275   case ICmpInst::ICMP_SLT:
10276   case ICmpInst::ICMP_SLE:
10277     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10278         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10279       return true;
10280     break;
10281   case ICmpInst::ICMP_SGT:
10282   case ICmpInst::ICMP_SGE:
10283     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10284         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10285       return true;
10286     break;
10287   case ICmpInst::ICMP_ULT:
10288   case ICmpInst::ICMP_ULE:
10289     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10290         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10291       return true;
10292     break;
10293   case ICmpInst::ICMP_UGT:
10294   case ICmpInst::ICMP_UGE:
10295     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10296         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10297       return true;
10298     break;
10299   }
10300 
10301   // Maybe it can be proved via operations?
10302   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10303     return true;
10304 
10305   return false;
10306 }
10307 
10308 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10309                                                      const SCEV *LHS,
10310                                                      const SCEV *RHS,
10311                                                      const SCEV *FoundLHS,
10312                                                      const SCEV *FoundRHS) {
10313   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10314     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10315     // reduce the compile time impact of this optimization.
10316     return false;
10317 
10318   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10319   if (!Addend)
10320     return false;
10321 
10322   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10323 
10324   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10325   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10326   ConstantRange FoundLHSRange =
10327       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10328 
10329   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10330   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10331 
10332   // We can also compute the range of values for `LHS` that satisfy the
10333   // consequent, "`LHS` `Pred` `RHS`":
10334   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10335   ConstantRange SatisfyingLHSRange =
10336       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10337 
10338   // The antecedent implies the consequent if every value of `LHS` that
10339   // satisfies the antecedent also satisfies the consequent.
10340   return SatisfyingLHSRange.contains(LHSRange);
10341 }
10342 
10343 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10344                                          bool IsSigned, bool NoWrap) {
10345   assert(isKnownPositive(Stride) && "Positive stride expected!");
10346 
10347   if (NoWrap) return false;
10348 
10349   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10350   const SCEV *One = getOne(Stride->getType());
10351 
10352   if (IsSigned) {
10353     APInt MaxRHS = getSignedRangeMax(RHS);
10354     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10355     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10356 
10357     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10358     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10359   }
10360 
10361   APInt MaxRHS = getUnsignedRangeMax(RHS);
10362   APInt MaxValue = APInt::getMaxValue(BitWidth);
10363   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10364 
10365   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10366   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10367 }
10368 
10369 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10370                                          bool IsSigned, bool NoWrap) {
10371   if (NoWrap) return false;
10372 
10373   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10374   const SCEV *One = getOne(Stride->getType());
10375 
10376   if (IsSigned) {
10377     APInt MinRHS = getSignedRangeMin(RHS);
10378     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10379     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10380 
10381     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10382     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10383   }
10384 
10385   APInt MinRHS = getUnsignedRangeMin(RHS);
10386   APInt MinValue = APInt::getMinValue(BitWidth);
10387   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10388 
10389   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10390   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10391 }
10392 
10393 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10394                                             bool Equality) {
10395   const SCEV *One = getOne(Step->getType());
10396   Delta = Equality ? getAddExpr(Delta, Step)
10397                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10398   return getUDivExpr(Delta, Step);
10399 }
10400 
10401 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10402                                                     const SCEV *Stride,
10403                                                     const SCEV *End,
10404                                                     unsigned BitWidth,
10405                                                     bool IsSigned) {
10406 
10407   assert(!isKnownNonPositive(Stride) &&
10408          "Stride is expected strictly positive!");
10409   // Calculate the maximum backedge count based on the range of values
10410   // permitted by Start, End, and Stride.
10411   const SCEV *MaxBECount;
10412   APInt MinStart =
10413       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10414 
10415   APInt StrideForMaxBECount =
10416       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10417 
10418   // We already know that the stride is positive, so we paper over conservatism
10419   // in our range computation by forcing StrideForMaxBECount to be at least one.
10420   // In theory this is unnecessary, but we expect MaxBECount to be a
10421   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10422   // is nothing to constant fold it to).
10423   APInt One(BitWidth, 1, IsSigned);
10424   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10425 
10426   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10427                             : APInt::getMaxValue(BitWidth);
10428   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10429 
10430   // Although End can be a MAX expression we estimate MaxEnd considering only
10431   // the case End = RHS of the loop termination condition. This is safe because
10432   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10433   // taken count.
10434   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10435                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10436 
10437   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10438                               getConstant(StrideForMaxBECount) /* Step */,
10439                               false /* Equality */);
10440 
10441   return MaxBECount;
10442 }
10443 
10444 ScalarEvolution::ExitLimit
10445 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10446                                   const Loop *L, bool IsSigned,
10447                                   bool ControlsExit, bool AllowPredicates) {
10448   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10449 
10450   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10451   bool PredicatedIV = false;
10452 
10453   if (!IV && AllowPredicates) {
10454     // Try to make this an AddRec using runtime tests, in the first X
10455     // iterations of this loop, where X is the SCEV expression found by the
10456     // algorithm below.
10457     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10458     PredicatedIV = true;
10459   }
10460 
10461   // Avoid weird loops
10462   if (!IV || IV->getLoop() != L || !IV->isAffine())
10463     return getCouldNotCompute();
10464 
10465   bool NoWrap = ControlsExit &&
10466                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10467 
10468   const SCEV *Stride = IV->getStepRecurrence(*this);
10469 
10470   bool PositiveStride = isKnownPositive(Stride);
10471 
10472   // Avoid negative or zero stride values.
10473   if (!PositiveStride) {
10474     // We can compute the correct backedge taken count for loops with unknown
10475     // strides if we can prove that the loop is not an infinite loop with side
10476     // effects. Here's the loop structure we are trying to handle -
10477     //
10478     // i = start
10479     // do {
10480     //   A[i] = i;
10481     //   i += s;
10482     // } while (i < end);
10483     //
10484     // The backedge taken count for such loops is evaluated as -
10485     // (max(end, start + stride) - start - 1) /u stride
10486     //
10487     // The additional preconditions that we need to check to prove correctness
10488     // of the above formula is as follows -
10489     //
10490     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10491     //    NoWrap flag).
10492     // b) loop is single exit with no side effects.
10493     //
10494     //
10495     // Precondition a) implies that if the stride is negative, this is a single
10496     // trip loop. The backedge taken count formula reduces to zero in this case.
10497     //
10498     // Precondition b) implies that the unknown stride cannot be zero otherwise
10499     // we have UB.
10500     //
10501     // The positive stride case is the same as isKnownPositive(Stride) returning
10502     // true (original behavior of the function).
10503     //
10504     // We want to make sure that the stride is truly unknown as there are edge
10505     // cases where ScalarEvolution propagates no wrap flags to the
10506     // post-increment/decrement IV even though the increment/decrement operation
10507     // itself is wrapping. The computed backedge taken count may be wrong in
10508     // such cases. This is prevented by checking that the stride is not known to
10509     // be either positive or non-positive. For example, no wrap flags are
10510     // propagated to the post-increment IV of this loop with a trip count of 2 -
10511     //
10512     // unsigned char i;
10513     // for(i=127; i<128; i+=129)
10514     //   A[i] = i;
10515     //
10516     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10517         !loopHasNoSideEffects(L))
10518       return getCouldNotCompute();
10519   } else if (!Stride->isOne() &&
10520              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10521     // Avoid proven overflow cases: this will ensure that the backedge taken
10522     // count will not generate any unsigned overflow. Relaxed no-overflow
10523     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10524     // undefined behaviors like the case of C language.
10525     return getCouldNotCompute();
10526 
10527   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10528                                       : ICmpInst::ICMP_ULT;
10529   const SCEV *Start = IV->getStart();
10530   const SCEV *End = RHS;
10531   // When the RHS is not invariant, we do not know the end bound of the loop and
10532   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10533   // calculate the MaxBECount, given the start, stride and max value for the end
10534   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10535   // checked above).
10536   if (!isLoopInvariant(RHS, L)) {
10537     const SCEV *MaxBECount = computeMaxBECountForLT(
10538         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10539     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10540                      false /*MaxOrZero*/, Predicates);
10541   }
10542   // If the backedge is taken at least once, then it will be taken
10543   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10544   // is the LHS value of the less-than comparison the first time it is evaluated
10545   // and End is the RHS.
10546   const SCEV *BECountIfBackedgeTaken =
10547     computeBECount(getMinusSCEV(End, Start), Stride, false);
10548   // If the loop entry is guarded by the result of the backedge test of the
10549   // first loop iteration, then we know the backedge will be taken at least
10550   // once and so the backedge taken count is as above. If not then we use the
10551   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10552   // as if the backedge is taken at least once max(End,Start) is End and so the
10553   // result is as above, and if not max(End,Start) is Start so we get a backedge
10554   // count of zero.
10555   const SCEV *BECount;
10556   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10557     BECount = BECountIfBackedgeTaken;
10558   else {
10559     // If we know that RHS >= Start in the context of loop, then we know that
10560     // max(RHS, Start) = RHS at this point.
10561     if (isLoopEntryGuardedByCond(
10562             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
10563       End = RHS;
10564     else
10565       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10566     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10567   }
10568 
10569   const SCEV *MaxBECount;
10570   bool MaxOrZero = false;
10571   if (isa<SCEVConstant>(BECount))
10572     MaxBECount = BECount;
10573   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10574     // If we know exactly how many times the backedge will be taken if it's
10575     // taken at least once, then the backedge count will either be that or
10576     // zero.
10577     MaxBECount = BECountIfBackedgeTaken;
10578     MaxOrZero = true;
10579   } else {
10580     MaxBECount = computeMaxBECountForLT(
10581         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10582   }
10583 
10584   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10585       !isa<SCEVCouldNotCompute>(BECount))
10586     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10587 
10588   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10589 }
10590 
10591 ScalarEvolution::ExitLimit
10592 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10593                                      const Loop *L, bool IsSigned,
10594                                      bool ControlsExit, bool AllowPredicates) {
10595   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10596   // We handle only IV > Invariant
10597   if (!isLoopInvariant(RHS, L))
10598     return getCouldNotCompute();
10599 
10600   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10601   if (!IV && AllowPredicates)
10602     // Try to make this an AddRec using runtime tests, in the first X
10603     // iterations of this loop, where X is the SCEV expression found by the
10604     // algorithm below.
10605     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10606 
10607   // Avoid weird loops
10608   if (!IV || IV->getLoop() != L || !IV->isAffine())
10609     return getCouldNotCompute();
10610 
10611   bool NoWrap = ControlsExit &&
10612                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10613 
10614   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10615 
10616   // Avoid negative or zero stride values
10617   if (!isKnownPositive(Stride))
10618     return getCouldNotCompute();
10619 
10620   // Avoid proven overflow cases: this will ensure that the backedge taken count
10621   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10622   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10623   // behaviors like the case of C language.
10624   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10625     return getCouldNotCompute();
10626 
10627   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10628                                       : ICmpInst::ICMP_UGT;
10629 
10630   const SCEV *Start = IV->getStart();
10631   const SCEV *End = RHS;
10632   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
10633     // If we know that Start >= RHS in the context of loop, then we know that
10634     // min(RHS, Start) = RHS at this point.
10635     if (isLoopEntryGuardedByCond(
10636             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
10637       End = RHS;
10638     else
10639       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10640   }
10641 
10642   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10643 
10644   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10645                             : getUnsignedRangeMax(Start);
10646 
10647   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10648                              : getUnsignedRangeMin(Stride);
10649 
10650   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10651   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10652                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10653 
10654   // Although End can be a MIN expression we estimate MinEnd considering only
10655   // the case End = RHS. This is safe because in the other case (Start - End)
10656   // is zero, leading to a zero maximum backedge taken count.
10657   APInt MinEnd =
10658     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10659              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10660 
10661   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10662                                ? BECount
10663                                : computeBECount(getConstant(MaxStart - MinEnd),
10664                                                 getConstant(MinStride), false);
10665 
10666   if (isa<SCEVCouldNotCompute>(MaxBECount))
10667     MaxBECount = BECount;
10668 
10669   return ExitLimit(BECount, MaxBECount, false, Predicates);
10670 }
10671 
10672 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10673                                                     ScalarEvolution &SE) const {
10674   if (Range.isFullSet())  // Infinite loop.
10675     return SE.getCouldNotCompute();
10676 
10677   // If the start is a non-zero constant, shift the range to simplify things.
10678   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10679     if (!SC->getValue()->isZero()) {
10680       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10681       Operands[0] = SE.getZero(SC->getType());
10682       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10683                                              getNoWrapFlags(FlagNW));
10684       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10685         return ShiftedAddRec->getNumIterationsInRange(
10686             Range.subtract(SC->getAPInt()), SE);
10687       // This is strange and shouldn't happen.
10688       return SE.getCouldNotCompute();
10689     }
10690 
10691   // The only time we can solve this is when we have all constant indices.
10692   // Otherwise, we cannot determine the overflow conditions.
10693   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10694     return SE.getCouldNotCompute();
10695 
10696   // Okay at this point we know that all elements of the chrec are constants and
10697   // that the start element is zero.
10698 
10699   // First check to see if the range contains zero.  If not, the first
10700   // iteration exits.
10701   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10702   if (!Range.contains(APInt(BitWidth, 0)))
10703     return SE.getZero(getType());
10704 
10705   if (isAffine()) {
10706     // If this is an affine expression then we have this situation:
10707     //   Solve {0,+,A} in Range  ===  Ax in Range
10708 
10709     // We know that zero is in the range.  If A is positive then we know that
10710     // the upper value of the range must be the first possible exit value.
10711     // If A is negative then the lower of the range is the last possible loop
10712     // value.  Also note that we already checked for a full range.
10713     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10714     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10715 
10716     // The exit value should be (End+A)/A.
10717     APInt ExitVal = (End + A).udiv(A);
10718     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10719 
10720     // Evaluate at the exit value.  If we really did fall out of the valid
10721     // range, then we computed our trip count, otherwise wrap around or other
10722     // things must have happened.
10723     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10724     if (Range.contains(Val->getValue()))
10725       return SE.getCouldNotCompute();  // Something strange happened
10726 
10727     // Ensure that the previous value is in the range.  This is a sanity check.
10728     assert(Range.contains(
10729            EvaluateConstantChrecAtConstant(this,
10730            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10731            "Linear scev computation is off in a bad way!");
10732     return SE.getConstant(ExitValue);
10733   }
10734 
10735   if (isQuadratic()) {
10736     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10737       return SE.getConstant(S.getValue());
10738   }
10739 
10740   return SE.getCouldNotCompute();
10741 }
10742 
10743 const SCEVAddRecExpr *
10744 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10745   assert(getNumOperands() > 1 && "AddRec with zero step?");
10746   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10747   // but in this case we cannot guarantee that the value returned will be an
10748   // AddRec because SCEV does not have a fixed point where it stops
10749   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10750   // may happen if we reach arithmetic depth limit while simplifying. So we
10751   // construct the returned value explicitly.
10752   SmallVector<const SCEV *, 3> Ops;
10753   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10754   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10755   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10756     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10757   // We know that the last operand is not a constant zero (otherwise it would
10758   // have been popped out earlier). This guarantees us that if the result has
10759   // the same last operand, then it will also not be popped out, meaning that
10760   // the returned value will be an AddRec.
10761   const SCEV *Last = getOperand(getNumOperands() - 1);
10762   assert(!Last->isZero() && "Recurrency with zero step?");
10763   Ops.push_back(Last);
10764   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10765                                                SCEV::FlagAnyWrap));
10766 }
10767 
10768 // Return true when S contains at least an undef value.
10769 static inline bool containsUndefs(const SCEV *S) {
10770   return SCEVExprContains(S, [](const SCEV *S) {
10771     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10772       return isa<UndefValue>(SU->getValue());
10773     return false;
10774   });
10775 }
10776 
10777 namespace {
10778 
10779 // Collect all steps of SCEV expressions.
10780 struct SCEVCollectStrides {
10781   ScalarEvolution &SE;
10782   SmallVectorImpl<const SCEV *> &Strides;
10783 
10784   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10785       : SE(SE), Strides(S) {}
10786 
10787   bool follow(const SCEV *S) {
10788     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10789       Strides.push_back(AR->getStepRecurrence(SE));
10790     return true;
10791   }
10792 
10793   bool isDone() const { return false; }
10794 };
10795 
10796 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10797 struct SCEVCollectTerms {
10798   SmallVectorImpl<const SCEV *> &Terms;
10799 
10800   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10801 
10802   bool follow(const SCEV *S) {
10803     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10804         isa<SCEVSignExtendExpr>(S)) {
10805       if (!containsUndefs(S))
10806         Terms.push_back(S);
10807 
10808       // Stop recursion: once we collected a term, do not walk its operands.
10809       return false;
10810     }
10811 
10812     // Keep looking.
10813     return true;
10814   }
10815 
10816   bool isDone() const { return false; }
10817 };
10818 
10819 // Check if a SCEV contains an AddRecExpr.
10820 struct SCEVHasAddRec {
10821   bool &ContainsAddRec;
10822 
10823   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10824     ContainsAddRec = false;
10825   }
10826 
10827   bool follow(const SCEV *S) {
10828     if (isa<SCEVAddRecExpr>(S)) {
10829       ContainsAddRec = true;
10830 
10831       // Stop recursion: once we collected a term, do not walk its operands.
10832       return false;
10833     }
10834 
10835     // Keep looking.
10836     return true;
10837   }
10838 
10839   bool isDone() const { return false; }
10840 };
10841 
10842 // Find factors that are multiplied with an expression that (possibly as a
10843 // subexpression) contains an AddRecExpr. In the expression:
10844 //
10845 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10846 //
10847 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10848 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10849 // parameters as they form a product with an induction variable.
10850 //
10851 // This collector expects all array size parameters to be in the same MulExpr.
10852 // It might be necessary to later add support for collecting parameters that are
10853 // spread over different nested MulExpr.
10854 struct SCEVCollectAddRecMultiplies {
10855   SmallVectorImpl<const SCEV *> &Terms;
10856   ScalarEvolution &SE;
10857 
10858   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10859       : Terms(T), SE(SE) {}
10860 
10861   bool follow(const SCEV *S) {
10862     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10863       bool HasAddRec = false;
10864       SmallVector<const SCEV *, 0> Operands;
10865       for (auto Op : Mul->operands()) {
10866         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10867         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10868           Operands.push_back(Op);
10869         } else if (Unknown) {
10870           HasAddRec = true;
10871         } else {
10872           bool ContainsAddRec = false;
10873           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10874           visitAll(Op, ContiansAddRec);
10875           HasAddRec |= ContainsAddRec;
10876         }
10877       }
10878       if (Operands.size() == 0)
10879         return true;
10880 
10881       if (!HasAddRec)
10882         return false;
10883 
10884       Terms.push_back(SE.getMulExpr(Operands));
10885       // Stop recursion: once we collected a term, do not walk its operands.
10886       return false;
10887     }
10888 
10889     // Keep looking.
10890     return true;
10891   }
10892 
10893   bool isDone() const { return false; }
10894 };
10895 
10896 } // end anonymous namespace
10897 
10898 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10899 /// two places:
10900 ///   1) The strides of AddRec expressions.
10901 ///   2) Unknowns that are multiplied with AddRec expressions.
10902 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10903     SmallVectorImpl<const SCEV *> &Terms) {
10904   SmallVector<const SCEV *, 4> Strides;
10905   SCEVCollectStrides StrideCollector(*this, Strides);
10906   visitAll(Expr, StrideCollector);
10907 
10908   LLVM_DEBUG({
10909     dbgs() << "Strides:\n";
10910     for (const SCEV *S : Strides)
10911       dbgs() << *S << "\n";
10912   });
10913 
10914   for (const SCEV *S : Strides) {
10915     SCEVCollectTerms TermCollector(Terms);
10916     visitAll(S, TermCollector);
10917   }
10918 
10919   LLVM_DEBUG({
10920     dbgs() << "Terms:\n";
10921     for (const SCEV *T : Terms)
10922       dbgs() << *T << "\n";
10923   });
10924 
10925   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10926   visitAll(Expr, MulCollector);
10927 }
10928 
10929 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10930                                    SmallVectorImpl<const SCEV *> &Terms,
10931                                    SmallVectorImpl<const SCEV *> &Sizes) {
10932   int Last = Terms.size() - 1;
10933   const SCEV *Step = Terms[Last];
10934 
10935   // End of recursion.
10936   if (Last == 0) {
10937     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10938       SmallVector<const SCEV *, 2> Qs;
10939       for (const SCEV *Op : M->operands())
10940         if (!isa<SCEVConstant>(Op))
10941           Qs.push_back(Op);
10942 
10943       Step = SE.getMulExpr(Qs);
10944     }
10945 
10946     Sizes.push_back(Step);
10947     return true;
10948   }
10949 
10950   for (const SCEV *&Term : Terms) {
10951     // Normalize the terms before the next call to findArrayDimensionsRec.
10952     const SCEV *Q, *R;
10953     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10954 
10955     // Bail out when GCD does not evenly divide one of the terms.
10956     if (!R->isZero())
10957       return false;
10958 
10959     Term = Q;
10960   }
10961 
10962   // Remove all SCEVConstants.
10963   Terms.erase(
10964       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10965       Terms.end());
10966 
10967   if (Terms.size() > 0)
10968     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10969       return false;
10970 
10971   Sizes.push_back(Step);
10972   return true;
10973 }
10974 
10975 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
10976 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10977   for (const SCEV *T : Terms)
10978     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
10979       return true;
10980 
10981   return false;
10982 }
10983 
10984 // Return the number of product terms in S.
10985 static inline int numberOfTerms(const SCEV *S) {
10986   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10987     return Expr->getNumOperands();
10988   return 1;
10989 }
10990 
10991 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10992   if (isa<SCEVConstant>(T))
10993     return nullptr;
10994 
10995   if (isa<SCEVUnknown>(T))
10996     return T;
10997 
10998   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10999     SmallVector<const SCEV *, 2> Factors;
11000     for (const SCEV *Op : M->operands())
11001       if (!isa<SCEVConstant>(Op))
11002         Factors.push_back(Op);
11003 
11004     return SE.getMulExpr(Factors);
11005   }
11006 
11007   return T;
11008 }
11009 
11010 /// Return the size of an element read or written by Inst.
11011 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11012   Type *Ty;
11013   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11014     Ty = Store->getValueOperand()->getType();
11015   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11016     Ty = Load->getType();
11017   else
11018     return nullptr;
11019 
11020   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11021   return getSizeOfExpr(ETy, Ty);
11022 }
11023 
11024 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11025                                           SmallVectorImpl<const SCEV *> &Sizes,
11026                                           const SCEV *ElementSize) {
11027   if (Terms.size() < 1 || !ElementSize)
11028     return;
11029 
11030   // Early return when Terms do not contain parameters: we do not delinearize
11031   // non parametric SCEVs.
11032   if (!containsParameters(Terms))
11033     return;
11034 
11035   LLVM_DEBUG({
11036     dbgs() << "Terms:\n";
11037     for (const SCEV *T : Terms)
11038       dbgs() << *T << "\n";
11039   });
11040 
11041   // Remove duplicates.
11042   array_pod_sort(Terms.begin(), Terms.end());
11043   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11044 
11045   // Put larger terms first.
11046   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11047     return numberOfTerms(LHS) > numberOfTerms(RHS);
11048   });
11049 
11050   // Try to divide all terms by the element size. If term is not divisible by
11051   // element size, proceed with the original term.
11052   for (const SCEV *&Term : Terms) {
11053     const SCEV *Q, *R;
11054     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11055     if (!Q->isZero())
11056       Term = Q;
11057   }
11058 
11059   SmallVector<const SCEV *, 4> NewTerms;
11060 
11061   // Remove constant factors.
11062   for (const SCEV *T : Terms)
11063     if (const SCEV *NewT = removeConstantFactors(*this, T))
11064       NewTerms.push_back(NewT);
11065 
11066   LLVM_DEBUG({
11067     dbgs() << "Terms after sorting:\n";
11068     for (const SCEV *T : NewTerms)
11069       dbgs() << *T << "\n";
11070   });
11071 
11072   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11073     Sizes.clear();
11074     return;
11075   }
11076 
11077   // The last element to be pushed into Sizes is the size of an element.
11078   Sizes.push_back(ElementSize);
11079 
11080   LLVM_DEBUG({
11081     dbgs() << "Sizes:\n";
11082     for (const SCEV *S : Sizes)
11083       dbgs() << *S << "\n";
11084   });
11085 }
11086 
11087 void ScalarEvolution::computeAccessFunctions(
11088     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11089     SmallVectorImpl<const SCEV *> &Sizes) {
11090   // Early exit in case this SCEV is not an affine multivariate function.
11091   if (Sizes.empty())
11092     return;
11093 
11094   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11095     if (!AR->isAffine())
11096       return;
11097 
11098   const SCEV *Res = Expr;
11099   int Last = Sizes.size() - 1;
11100   for (int i = Last; i >= 0; i--) {
11101     const SCEV *Q, *R;
11102     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11103 
11104     LLVM_DEBUG({
11105       dbgs() << "Res: " << *Res << "\n";
11106       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11107       dbgs() << "Res divided by Sizes[i]:\n";
11108       dbgs() << "Quotient: " << *Q << "\n";
11109       dbgs() << "Remainder: " << *R << "\n";
11110     });
11111 
11112     Res = Q;
11113 
11114     // Do not record the last subscript corresponding to the size of elements in
11115     // the array.
11116     if (i == Last) {
11117 
11118       // Bail out if the remainder is too complex.
11119       if (isa<SCEVAddRecExpr>(R)) {
11120         Subscripts.clear();
11121         Sizes.clear();
11122         return;
11123       }
11124 
11125       continue;
11126     }
11127 
11128     // Record the access function for the current subscript.
11129     Subscripts.push_back(R);
11130   }
11131 
11132   // Also push in last position the remainder of the last division: it will be
11133   // the access function of the innermost dimension.
11134   Subscripts.push_back(Res);
11135 
11136   std::reverse(Subscripts.begin(), Subscripts.end());
11137 
11138   LLVM_DEBUG({
11139     dbgs() << "Subscripts:\n";
11140     for (const SCEV *S : Subscripts)
11141       dbgs() << *S << "\n";
11142   });
11143 }
11144 
11145 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11146 /// sizes of an array access. Returns the remainder of the delinearization that
11147 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11148 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11149 /// expressions in the stride and base of a SCEV corresponding to the
11150 /// computation of a GCD (greatest common divisor) of base and stride.  When
11151 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11152 ///
11153 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11154 ///
11155 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11156 ///
11157 ///    for (long i = 0; i < n; i++)
11158 ///      for (long j = 0; j < m; j++)
11159 ///        for (long k = 0; k < o; k++)
11160 ///          A[i][j][k] = 1.0;
11161 ///  }
11162 ///
11163 /// the delinearization input is the following AddRec SCEV:
11164 ///
11165 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11166 ///
11167 /// From this SCEV, we are able to say that the base offset of the access is %A
11168 /// because it appears as an offset that does not divide any of the strides in
11169 /// the loops:
11170 ///
11171 ///  CHECK: Base offset: %A
11172 ///
11173 /// and then SCEV->delinearize determines the size of some of the dimensions of
11174 /// the array as these are the multiples by which the strides are happening:
11175 ///
11176 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11177 ///
11178 /// Note that the outermost dimension remains of UnknownSize because there are
11179 /// no strides that would help identifying the size of the last dimension: when
11180 /// the array has been statically allocated, one could compute the size of that
11181 /// dimension by dividing the overall size of the array by the size of the known
11182 /// dimensions: %m * %o * 8.
11183 ///
11184 /// Finally delinearize provides the access functions for the array reference
11185 /// that does correspond to A[i][j][k] of the above C testcase:
11186 ///
11187 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11188 ///
11189 /// The testcases are checking the output of a function pass:
11190 /// DelinearizationPass that walks through all loads and stores of a function
11191 /// asking for the SCEV of the memory access with respect to all enclosing
11192 /// loops, calling SCEV->delinearize on that and printing the results.
11193 void ScalarEvolution::delinearize(const SCEV *Expr,
11194                                  SmallVectorImpl<const SCEV *> &Subscripts,
11195                                  SmallVectorImpl<const SCEV *> &Sizes,
11196                                  const SCEV *ElementSize) {
11197   // First step: collect parametric terms.
11198   SmallVector<const SCEV *, 4> Terms;
11199   collectParametricTerms(Expr, Terms);
11200 
11201   if (Terms.empty())
11202     return;
11203 
11204   // Second step: find subscript sizes.
11205   findArrayDimensions(Terms, Sizes, ElementSize);
11206 
11207   if (Sizes.empty())
11208     return;
11209 
11210   // Third step: compute the access functions for each subscript.
11211   computeAccessFunctions(Expr, Subscripts, Sizes);
11212 
11213   if (Subscripts.empty())
11214     return;
11215 
11216   LLVM_DEBUG({
11217     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11218     dbgs() << "ArrayDecl[UnknownSize]";
11219     for (const SCEV *S : Sizes)
11220       dbgs() << "[" << *S << "]";
11221 
11222     dbgs() << "\nArrayRef";
11223     for (const SCEV *S : Subscripts)
11224       dbgs() << "[" << *S << "]";
11225     dbgs() << "\n";
11226   });
11227 }
11228 
11229 bool ScalarEvolution::getIndexExpressionsFromGEP(
11230     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11231     SmallVectorImpl<int> &Sizes) {
11232   assert(Subscripts.empty() && Sizes.empty() &&
11233          "Expected output lists to be empty on entry to this function.");
11234   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11235   Type *Ty = GEP->getPointerOperandType();
11236   bool DroppedFirstDim = false;
11237   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11238     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11239     if (i == 1) {
11240       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11241         Ty = PtrTy->getElementType();
11242       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11243         Ty = ArrayTy->getElementType();
11244       } else {
11245         Subscripts.clear();
11246         Sizes.clear();
11247         return false;
11248       }
11249       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11250         if (Const->getValue()->isZero()) {
11251           DroppedFirstDim = true;
11252           continue;
11253         }
11254       Subscripts.push_back(Expr);
11255       continue;
11256     }
11257 
11258     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11259     if (!ArrayTy) {
11260       Subscripts.clear();
11261       Sizes.clear();
11262       return false;
11263     }
11264 
11265     Subscripts.push_back(Expr);
11266     if (!(DroppedFirstDim && i == 2))
11267       Sizes.push_back(ArrayTy->getNumElements());
11268 
11269     Ty = ArrayTy->getElementType();
11270   }
11271   return !Subscripts.empty();
11272 }
11273 
11274 //===----------------------------------------------------------------------===//
11275 //                   SCEVCallbackVH Class Implementation
11276 //===----------------------------------------------------------------------===//
11277 
11278 void ScalarEvolution::SCEVCallbackVH::deleted() {
11279   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11280   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11281     SE->ConstantEvolutionLoopExitValue.erase(PN);
11282   SE->eraseValueFromMap(getValPtr());
11283   // this now dangles!
11284 }
11285 
11286 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11287   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11288 
11289   // Forget all the expressions associated with users of the old value,
11290   // so that future queries will recompute the expressions using the new
11291   // value.
11292   Value *Old = getValPtr();
11293   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11294   SmallPtrSet<User *, 8> Visited;
11295   while (!Worklist.empty()) {
11296     User *U = Worklist.pop_back_val();
11297     // Deleting the Old value will cause this to dangle. Postpone
11298     // that until everything else is done.
11299     if (U == Old)
11300       continue;
11301     if (!Visited.insert(U).second)
11302       continue;
11303     if (PHINode *PN = dyn_cast<PHINode>(U))
11304       SE->ConstantEvolutionLoopExitValue.erase(PN);
11305     SE->eraseValueFromMap(U);
11306     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11307   }
11308   // Delete the Old value.
11309   if (PHINode *PN = dyn_cast<PHINode>(Old))
11310     SE->ConstantEvolutionLoopExitValue.erase(PN);
11311   SE->eraseValueFromMap(Old);
11312   // this now dangles!
11313 }
11314 
11315 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11316   : CallbackVH(V), SE(se) {}
11317 
11318 //===----------------------------------------------------------------------===//
11319 //                   ScalarEvolution Class Implementation
11320 //===----------------------------------------------------------------------===//
11321 
11322 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11323                                  AssumptionCache &AC, DominatorTree &DT,
11324                                  LoopInfo &LI)
11325     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11326       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11327       LoopDispositions(64), BlockDispositions(64) {
11328   // To use guards for proving predicates, we need to scan every instruction in
11329   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11330   // time if the IR does not actually contain any calls to
11331   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11332   //
11333   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11334   // to _add_ guards to the module when there weren't any before, and wants
11335   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11336   // efficient in lieu of being smart in that rather obscure case.
11337 
11338   auto *GuardDecl = F.getParent()->getFunction(
11339       Intrinsic::getName(Intrinsic::experimental_guard));
11340   HasGuards = GuardDecl && !GuardDecl->use_empty();
11341 }
11342 
11343 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11344     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11345       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11346       ValueExprMap(std::move(Arg.ValueExprMap)),
11347       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11348       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11349       PendingMerges(std::move(Arg.PendingMerges)),
11350       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11351       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11352       PredicatedBackedgeTakenCounts(
11353           std::move(Arg.PredicatedBackedgeTakenCounts)),
11354       ConstantEvolutionLoopExitValue(
11355           std::move(Arg.ConstantEvolutionLoopExitValue)),
11356       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11357       LoopDispositions(std::move(Arg.LoopDispositions)),
11358       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11359       BlockDispositions(std::move(Arg.BlockDispositions)),
11360       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11361       SignedRanges(std::move(Arg.SignedRanges)),
11362       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11363       UniquePreds(std::move(Arg.UniquePreds)),
11364       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11365       LoopUsers(std::move(Arg.LoopUsers)),
11366       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11367       FirstUnknown(Arg.FirstUnknown) {
11368   Arg.FirstUnknown = nullptr;
11369 }
11370 
11371 ScalarEvolution::~ScalarEvolution() {
11372   // Iterate through all the SCEVUnknown instances and call their
11373   // destructors, so that they release their references to their values.
11374   for (SCEVUnknown *U = FirstUnknown; U;) {
11375     SCEVUnknown *Tmp = U;
11376     U = U->Next;
11377     Tmp->~SCEVUnknown();
11378   }
11379   FirstUnknown = nullptr;
11380 
11381   ExprValueMap.clear();
11382   ValueExprMap.clear();
11383   HasRecMap.clear();
11384 
11385   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11386   // that a loop had multiple computable exits.
11387   for (auto &BTCI : BackedgeTakenCounts)
11388     BTCI.second.clear();
11389   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11390     BTCI.second.clear();
11391 
11392   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11393   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11394   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11395   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11396   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11397 }
11398 
11399 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11400   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11401 }
11402 
11403 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11404                           const Loop *L) {
11405   // Print all inner loops first
11406   for (Loop *I : *L)
11407     PrintLoopInfo(OS, SE, I);
11408 
11409   OS << "Loop ";
11410   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11411   OS << ": ";
11412 
11413   SmallVector<BasicBlock *, 8> ExitingBlocks;
11414   L->getExitingBlocks(ExitingBlocks);
11415   if (ExitingBlocks.size() != 1)
11416     OS << "<multiple exits> ";
11417 
11418   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11419     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11420   else
11421     OS << "Unpredictable backedge-taken count.\n";
11422 
11423   if (ExitingBlocks.size() > 1)
11424     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11425       OS << "  exit count for " << ExitingBlock->getName() << ": "
11426          << *SE->getExitCount(L, ExitingBlock) << "\n";
11427     }
11428 
11429   OS << "Loop ";
11430   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11431   OS << ": ";
11432 
11433   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11434     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11435     if (SE->isBackedgeTakenCountMaxOrZero(L))
11436       OS << ", actual taken count either this or zero.";
11437   } else {
11438     OS << "Unpredictable max backedge-taken count. ";
11439   }
11440 
11441   OS << "\n"
11442         "Loop ";
11443   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11444   OS << ": ";
11445 
11446   SCEVUnionPredicate Pred;
11447   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11448   if (!isa<SCEVCouldNotCompute>(PBT)) {
11449     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11450     OS << " Predicates:\n";
11451     Pred.print(OS, 4);
11452   } else {
11453     OS << "Unpredictable predicated backedge-taken count. ";
11454   }
11455   OS << "\n";
11456 
11457   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11458     OS << "Loop ";
11459     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11460     OS << ": ";
11461     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11462   }
11463 }
11464 
11465 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11466   switch (LD) {
11467   case ScalarEvolution::LoopVariant:
11468     return "Variant";
11469   case ScalarEvolution::LoopInvariant:
11470     return "Invariant";
11471   case ScalarEvolution::LoopComputable:
11472     return "Computable";
11473   }
11474   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11475 }
11476 
11477 void ScalarEvolution::print(raw_ostream &OS) const {
11478   // ScalarEvolution's implementation of the print method is to print
11479   // out SCEV values of all instructions that are interesting. Doing
11480   // this potentially causes it to create new SCEV objects though,
11481   // which technically conflicts with the const qualifier. This isn't
11482   // observable from outside the class though, so casting away the
11483   // const isn't dangerous.
11484   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11485 
11486   if (ClassifyExpressions) {
11487     OS << "Classifying expressions for: ";
11488     F.printAsOperand(OS, /*PrintType=*/false);
11489     OS << "\n";
11490     for (Instruction &I : instructions(F))
11491       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11492         OS << I << '\n';
11493         OS << "  -->  ";
11494         const SCEV *SV = SE.getSCEV(&I);
11495         SV->print(OS);
11496         if (!isa<SCEVCouldNotCompute>(SV)) {
11497           OS << " U: ";
11498           SE.getUnsignedRange(SV).print(OS);
11499           OS << " S: ";
11500           SE.getSignedRange(SV).print(OS);
11501         }
11502 
11503         const Loop *L = LI.getLoopFor(I.getParent());
11504 
11505         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11506         if (AtUse != SV) {
11507           OS << "  -->  ";
11508           AtUse->print(OS);
11509           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11510             OS << " U: ";
11511             SE.getUnsignedRange(AtUse).print(OS);
11512             OS << " S: ";
11513             SE.getSignedRange(AtUse).print(OS);
11514           }
11515         }
11516 
11517         if (L) {
11518           OS << "\t\t" "Exits: ";
11519           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11520           if (!SE.isLoopInvariant(ExitValue, L)) {
11521             OS << "<<Unknown>>";
11522           } else {
11523             OS << *ExitValue;
11524           }
11525 
11526           bool First = true;
11527           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11528             if (First) {
11529               OS << "\t\t" "LoopDispositions: { ";
11530               First = false;
11531             } else {
11532               OS << ", ";
11533             }
11534 
11535             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11536             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11537           }
11538 
11539           for (auto *InnerL : depth_first(L)) {
11540             if (InnerL == L)
11541               continue;
11542             if (First) {
11543               OS << "\t\t" "LoopDispositions: { ";
11544               First = false;
11545             } else {
11546               OS << ", ";
11547             }
11548 
11549             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11550             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11551           }
11552 
11553           OS << " }";
11554         }
11555 
11556         OS << "\n";
11557       }
11558   }
11559 
11560   OS << "Determining loop execution counts for: ";
11561   F.printAsOperand(OS, /*PrintType=*/false);
11562   OS << "\n";
11563   for (Loop *I : LI)
11564     PrintLoopInfo(OS, &SE, I);
11565 }
11566 
11567 ScalarEvolution::LoopDisposition
11568 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11569   auto &Values = LoopDispositions[S];
11570   for (auto &V : Values) {
11571     if (V.getPointer() == L)
11572       return V.getInt();
11573   }
11574   Values.emplace_back(L, LoopVariant);
11575   LoopDisposition D = computeLoopDisposition(S, L);
11576   auto &Values2 = LoopDispositions[S];
11577   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11578     if (V.getPointer() == L) {
11579       V.setInt(D);
11580       break;
11581     }
11582   }
11583   return D;
11584 }
11585 
11586 ScalarEvolution::LoopDisposition
11587 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11588   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11589   case scConstant:
11590     return LoopInvariant;
11591   case scTruncate:
11592   case scZeroExtend:
11593   case scSignExtend:
11594     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11595   case scAddRecExpr: {
11596     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11597 
11598     // If L is the addrec's loop, it's computable.
11599     if (AR->getLoop() == L)
11600       return LoopComputable;
11601 
11602     // Add recurrences are never invariant in the function-body (null loop).
11603     if (!L)
11604       return LoopVariant;
11605 
11606     // Everything that is not defined at loop entry is variant.
11607     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11608       return LoopVariant;
11609     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11610            " dominate the contained loop's header?");
11611 
11612     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11613     if (AR->getLoop()->contains(L))
11614       return LoopInvariant;
11615 
11616     // This recurrence is variant w.r.t. L if any of its operands
11617     // are variant.
11618     for (auto *Op : AR->operands())
11619       if (!isLoopInvariant(Op, L))
11620         return LoopVariant;
11621 
11622     // Otherwise it's loop-invariant.
11623     return LoopInvariant;
11624   }
11625   case scAddExpr:
11626   case scMulExpr:
11627   case scUMaxExpr:
11628   case scSMaxExpr:
11629   case scUMinExpr:
11630   case scSMinExpr: {
11631     bool HasVarying = false;
11632     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11633       LoopDisposition D = getLoopDisposition(Op, L);
11634       if (D == LoopVariant)
11635         return LoopVariant;
11636       if (D == LoopComputable)
11637         HasVarying = true;
11638     }
11639     return HasVarying ? LoopComputable : LoopInvariant;
11640   }
11641   case scUDivExpr: {
11642     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11643     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11644     if (LD == LoopVariant)
11645       return LoopVariant;
11646     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11647     if (RD == LoopVariant)
11648       return LoopVariant;
11649     return (LD == LoopInvariant && RD == LoopInvariant) ?
11650            LoopInvariant : LoopComputable;
11651   }
11652   case scUnknown:
11653     // All non-instruction values are loop invariant.  All instructions are loop
11654     // invariant if they are not contained in the specified loop.
11655     // Instructions are never considered invariant in the function body
11656     // (null loop) because they are defined within the "loop".
11657     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11658       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11659     return LoopInvariant;
11660   case scCouldNotCompute:
11661     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11662   }
11663   llvm_unreachable("Unknown SCEV kind!");
11664 }
11665 
11666 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11667   return getLoopDisposition(S, L) == LoopInvariant;
11668 }
11669 
11670 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11671   return getLoopDisposition(S, L) == LoopComputable;
11672 }
11673 
11674 ScalarEvolution::BlockDisposition
11675 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11676   auto &Values = BlockDispositions[S];
11677   for (auto &V : Values) {
11678     if (V.getPointer() == BB)
11679       return V.getInt();
11680   }
11681   Values.emplace_back(BB, DoesNotDominateBlock);
11682   BlockDisposition D = computeBlockDisposition(S, BB);
11683   auto &Values2 = BlockDispositions[S];
11684   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11685     if (V.getPointer() == BB) {
11686       V.setInt(D);
11687       break;
11688     }
11689   }
11690   return D;
11691 }
11692 
11693 ScalarEvolution::BlockDisposition
11694 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11695   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11696   case scConstant:
11697     return ProperlyDominatesBlock;
11698   case scTruncate:
11699   case scZeroExtend:
11700   case scSignExtend:
11701     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11702   case scAddRecExpr: {
11703     // This uses a "dominates" query instead of "properly dominates" query
11704     // to test for proper dominance too, because the instruction which
11705     // produces the addrec's value is a PHI, and a PHI effectively properly
11706     // dominates its entire containing block.
11707     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11708     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11709       return DoesNotDominateBlock;
11710 
11711     // Fall through into SCEVNAryExpr handling.
11712     LLVM_FALLTHROUGH;
11713   }
11714   case scAddExpr:
11715   case scMulExpr:
11716   case scUMaxExpr:
11717   case scSMaxExpr:
11718   case scUMinExpr:
11719   case scSMinExpr: {
11720     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11721     bool Proper = true;
11722     for (const SCEV *NAryOp : NAry->operands()) {
11723       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11724       if (D == DoesNotDominateBlock)
11725         return DoesNotDominateBlock;
11726       if (D == DominatesBlock)
11727         Proper = false;
11728     }
11729     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11730   }
11731   case scUDivExpr: {
11732     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11733     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11734     BlockDisposition LD = getBlockDisposition(LHS, BB);
11735     if (LD == DoesNotDominateBlock)
11736       return DoesNotDominateBlock;
11737     BlockDisposition RD = getBlockDisposition(RHS, BB);
11738     if (RD == DoesNotDominateBlock)
11739       return DoesNotDominateBlock;
11740     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11741       ProperlyDominatesBlock : DominatesBlock;
11742   }
11743   case scUnknown:
11744     if (Instruction *I =
11745           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11746       if (I->getParent() == BB)
11747         return DominatesBlock;
11748       if (DT.properlyDominates(I->getParent(), BB))
11749         return ProperlyDominatesBlock;
11750       return DoesNotDominateBlock;
11751     }
11752     return ProperlyDominatesBlock;
11753   case scCouldNotCompute:
11754     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11755   }
11756   llvm_unreachable("Unknown SCEV kind!");
11757 }
11758 
11759 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11760   return getBlockDisposition(S, BB) >= DominatesBlock;
11761 }
11762 
11763 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11764   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11765 }
11766 
11767 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11768   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11769 }
11770 
11771 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11772   auto IsS = [&](const SCEV *X) { return S == X; };
11773   auto ContainsS = [&](const SCEV *X) {
11774     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11775   };
11776   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11777 }
11778 
11779 void
11780 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11781   ValuesAtScopes.erase(S);
11782   LoopDispositions.erase(S);
11783   BlockDispositions.erase(S);
11784   UnsignedRanges.erase(S);
11785   SignedRanges.erase(S);
11786   ExprValueMap.erase(S);
11787   HasRecMap.erase(S);
11788   MinTrailingZerosCache.erase(S);
11789 
11790   for (auto I = PredicatedSCEVRewrites.begin();
11791        I != PredicatedSCEVRewrites.end();) {
11792     std::pair<const SCEV *, const Loop *> Entry = I->first;
11793     if (Entry.first == S)
11794       PredicatedSCEVRewrites.erase(I++);
11795     else
11796       ++I;
11797   }
11798 
11799   auto RemoveSCEVFromBackedgeMap =
11800       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11801         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11802           BackedgeTakenInfo &BEInfo = I->second;
11803           if (BEInfo.hasOperand(S, this)) {
11804             BEInfo.clear();
11805             Map.erase(I++);
11806           } else
11807             ++I;
11808         }
11809       };
11810 
11811   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11812   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11813 }
11814 
11815 void
11816 ScalarEvolution::getUsedLoops(const SCEV *S,
11817                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11818   struct FindUsedLoops {
11819     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11820         : LoopsUsed(LoopsUsed) {}
11821     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11822     bool follow(const SCEV *S) {
11823       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11824         LoopsUsed.insert(AR->getLoop());
11825       return true;
11826     }
11827 
11828     bool isDone() const { return false; }
11829   };
11830 
11831   FindUsedLoops F(LoopsUsed);
11832   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11833 }
11834 
11835 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11836   SmallPtrSet<const Loop *, 8> LoopsUsed;
11837   getUsedLoops(S, LoopsUsed);
11838   for (auto *L : LoopsUsed)
11839     LoopUsers[L].push_back(S);
11840 }
11841 
11842 void ScalarEvolution::verify() const {
11843   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11844   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11845 
11846   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11847 
11848   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11849   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11850     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11851 
11852     const SCEV *visitConstant(const SCEVConstant *Constant) {
11853       return SE.getConstant(Constant->getAPInt());
11854     }
11855 
11856     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11857       return SE.getUnknown(Expr->getValue());
11858     }
11859 
11860     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11861       return SE.getCouldNotCompute();
11862     }
11863   };
11864 
11865   SCEVMapper SCM(SE2);
11866 
11867   while (!LoopStack.empty()) {
11868     auto *L = LoopStack.pop_back_val();
11869     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11870 
11871     auto *CurBECount = SCM.visit(
11872         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11873     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11874 
11875     if (CurBECount == SE2.getCouldNotCompute() ||
11876         NewBECount == SE2.getCouldNotCompute()) {
11877       // NB! This situation is legal, but is very suspicious -- whatever pass
11878       // change the loop to make a trip count go from could not compute to
11879       // computable or vice-versa *should have* invalidated SCEV.  However, we
11880       // choose not to assert here (for now) since we don't want false
11881       // positives.
11882       continue;
11883     }
11884 
11885     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11886       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11887       // not propagate undef aggressively).  This means we can (and do) fail
11888       // verification in cases where a transform makes the trip count of a loop
11889       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11890       // both cases the loop iterates "undef" times, but SCEV thinks we
11891       // increased the trip count of the loop by 1 incorrectly.
11892       continue;
11893     }
11894 
11895     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11896         SE.getTypeSizeInBits(NewBECount->getType()))
11897       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11898     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11899              SE.getTypeSizeInBits(NewBECount->getType()))
11900       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11901 
11902     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
11903 
11904     // Unless VerifySCEVStrict is set, we only compare constant deltas.
11905     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
11906       dbgs() << "Trip Count for " << *L << " Changed!\n";
11907       dbgs() << "Old: " << *CurBECount << "\n";
11908       dbgs() << "New: " << *NewBECount << "\n";
11909       dbgs() << "Delta: " << *Delta << "\n";
11910       std::abort();
11911     }
11912   }
11913 }
11914 
11915 bool ScalarEvolution::invalidate(
11916     Function &F, const PreservedAnalyses &PA,
11917     FunctionAnalysisManager::Invalidator &Inv) {
11918   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11919   // of its dependencies is invalidated.
11920   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11921   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11922          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11923          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11924          Inv.invalidate<LoopAnalysis>(F, PA);
11925 }
11926 
11927 AnalysisKey ScalarEvolutionAnalysis::Key;
11928 
11929 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11930                                              FunctionAnalysisManager &AM) {
11931   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11932                          AM.getResult<AssumptionAnalysis>(F),
11933                          AM.getResult<DominatorTreeAnalysis>(F),
11934                          AM.getResult<LoopAnalysis>(F));
11935 }
11936 
11937 PreservedAnalyses
11938 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
11939   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
11940   return PreservedAnalyses::all();
11941 }
11942 
11943 PreservedAnalyses
11944 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11945   // For compatibility with opt's -analyze feature under legacy pass manager
11946   // which was not ported to NPM. This keeps tests using
11947   // update_analyze_test_checks.py working.
11948   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
11949      << F.getName() << "':\n";
11950   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11951   return PreservedAnalyses::all();
11952 }
11953 
11954 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11955                       "Scalar Evolution Analysis", false, true)
11956 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11957 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11958 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11959 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11960 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11961                     "Scalar Evolution Analysis", false, true)
11962 
11963 char ScalarEvolutionWrapperPass::ID = 0;
11964 
11965 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11966   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11967 }
11968 
11969 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11970   SE.reset(new ScalarEvolution(
11971       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
11972       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11973       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11974       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11975   return false;
11976 }
11977 
11978 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11979 
11980 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11981   SE->print(OS);
11982 }
11983 
11984 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11985   if (!VerifySCEV)
11986     return;
11987 
11988   SE->verify();
11989 }
11990 
11991 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11992   AU.setPreservesAll();
11993   AU.addRequiredTransitive<AssumptionCacheTracker>();
11994   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11995   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11996   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11997 }
11998 
11999 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12000                                                         const SCEV *RHS) {
12001   FoldingSetNodeID ID;
12002   assert(LHS->getType() == RHS->getType() &&
12003          "Type mismatch between LHS and RHS");
12004   // Unique this node based on the arguments
12005   ID.AddInteger(SCEVPredicate::P_Equal);
12006   ID.AddPointer(LHS);
12007   ID.AddPointer(RHS);
12008   void *IP = nullptr;
12009   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12010     return S;
12011   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12012       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12013   UniquePreds.InsertNode(Eq, IP);
12014   return Eq;
12015 }
12016 
12017 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12018     const SCEVAddRecExpr *AR,
12019     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12020   FoldingSetNodeID ID;
12021   // Unique this node based on the arguments
12022   ID.AddInteger(SCEVPredicate::P_Wrap);
12023   ID.AddPointer(AR);
12024   ID.AddInteger(AddedFlags);
12025   void *IP = nullptr;
12026   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12027     return S;
12028   auto *OF = new (SCEVAllocator)
12029       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12030   UniquePreds.InsertNode(OF, IP);
12031   return OF;
12032 }
12033 
12034 namespace {
12035 
12036 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12037 public:
12038 
12039   /// Rewrites \p S in the context of a loop L and the SCEV predication
12040   /// infrastructure.
12041   ///
12042   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12043   /// equivalences present in \p Pred.
12044   ///
12045   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12046   /// \p NewPreds such that the result will be an AddRecExpr.
12047   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12048                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12049                              SCEVUnionPredicate *Pred) {
12050     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12051     return Rewriter.visit(S);
12052   }
12053 
12054   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12055     if (Pred) {
12056       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12057       for (auto *Pred : ExprPreds)
12058         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12059           if (IPred->getLHS() == Expr)
12060             return IPred->getRHS();
12061     }
12062     return convertToAddRecWithPreds(Expr);
12063   }
12064 
12065   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12066     const SCEV *Operand = visit(Expr->getOperand());
12067     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12068     if (AR && AR->getLoop() == L && AR->isAffine()) {
12069       // This couldn't be folded because the operand didn't have the nuw
12070       // flag. Add the nusw flag as an assumption that we could make.
12071       const SCEV *Step = AR->getStepRecurrence(SE);
12072       Type *Ty = Expr->getType();
12073       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12074         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12075                                 SE.getSignExtendExpr(Step, Ty), L,
12076                                 AR->getNoWrapFlags());
12077     }
12078     return SE.getZeroExtendExpr(Operand, Expr->getType());
12079   }
12080 
12081   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12082     const SCEV *Operand = visit(Expr->getOperand());
12083     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12084     if (AR && AR->getLoop() == L && AR->isAffine()) {
12085       // This couldn't be folded because the operand didn't have the nsw
12086       // flag. Add the nssw flag as an assumption that we could make.
12087       const SCEV *Step = AR->getStepRecurrence(SE);
12088       Type *Ty = Expr->getType();
12089       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12090         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12091                                 SE.getSignExtendExpr(Step, Ty), L,
12092                                 AR->getNoWrapFlags());
12093     }
12094     return SE.getSignExtendExpr(Operand, Expr->getType());
12095   }
12096 
12097 private:
12098   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12099                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12100                         SCEVUnionPredicate *Pred)
12101       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12102 
12103   bool addOverflowAssumption(const SCEVPredicate *P) {
12104     if (!NewPreds) {
12105       // Check if we've already made this assumption.
12106       return Pred && Pred->implies(P);
12107     }
12108     NewPreds->insert(P);
12109     return true;
12110   }
12111 
12112   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12113                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12114     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12115     return addOverflowAssumption(A);
12116   }
12117 
12118   // If \p Expr represents a PHINode, we try to see if it can be represented
12119   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12120   // to add this predicate as a runtime overflow check, we return the AddRec.
12121   // If \p Expr does not meet these conditions (is not a PHI node, or we
12122   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12123   // return \p Expr.
12124   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12125     if (!isa<PHINode>(Expr->getValue()))
12126       return Expr;
12127     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12128     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12129     if (!PredicatedRewrite)
12130       return Expr;
12131     for (auto *P : PredicatedRewrite->second){
12132       // Wrap predicates from outer loops are not supported.
12133       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12134         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12135         if (L != AR->getLoop())
12136           return Expr;
12137       }
12138       if (!addOverflowAssumption(P))
12139         return Expr;
12140     }
12141     return PredicatedRewrite->first;
12142   }
12143 
12144   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12145   SCEVUnionPredicate *Pred;
12146   const Loop *L;
12147 };
12148 
12149 } // end anonymous namespace
12150 
12151 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12152                                                    SCEVUnionPredicate &Preds) {
12153   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12154 }
12155 
12156 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12157     const SCEV *S, const Loop *L,
12158     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12159   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12160   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12161   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12162 
12163   if (!AddRec)
12164     return nullptr;
12165 
12166   // Since the transformation was successful, we can now transfer the SCEV
12167   // predicates.
12168   for (auto *P : TransformPreds)
12169     Preds.insert(P);
12170 
12171   return AddRec;
12172 }
12173 
12174 /// SCEV predicates
12175 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12176                              SCEVPredicateKind Kind)
12177     : FastID(ID), Kind(Kind) {}
12178 
12179 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12180                                        const SCEV *LHS, const SCEV *RHS)
12181     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12182   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12183   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12184 }
12185 
12186 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12187   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12188 
12189   if (!Op)
12190     return false;
12191 
12192   return Op->LHS == LHS && Op->RHS == RHS;
12193 }
12194 
12195 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12196 
12197 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12198 
12199 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12200   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12201 }
12202 
12203 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12204                                      const SCEVAddRecExpr *AR,
12205                                      IncrementWrapFlags Flags)
12206     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12207 
12208 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12209 
12210 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12211   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12212 
12213   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12214 }
12215 
12216 bool SCEVWrapPredicate::isAlwaysTrue() const {
12217   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12218   IncrementWrapFlags IFlags = Flags;
12219 
12220   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12221     IFlags = clearFlags(IFlags, IncrementNSSW);
12222 
12223   return IFlags == IncrementAnyWrap;
12224 }
12225 
12226 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12227   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12228   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12229     OS << "<nusw>";
12230   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12231     OS << "<nssw>";
12232   OS << "\n";
12233 }
12234 
12235 SCEVWrapPredicate::IncrementWrapFlags
12236 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12237                                    ScalarEvolution &SE) {
12238   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12239   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12240 
12241   // We can safely transfer the NSW flag as NSSW.
12242   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12243     ImpliedFlags = IncrementNSSW;
12244 
12245   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12246     // If the increment is positive, the SCEV NUW flag will also imply the
12247     // WrapPredicate NUSW flag.
12248     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12249       if (Step->getValue()->getValue().isNonNegative())
12250         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12251   }
12252 
12253   return ImpliedFlags;
12254 }
12255 
12256 /// Union predicates don't get cached so create a dummy set ID for it.
12257 SCEVUnionPredicate::SCEVUnionPredicate()
12258     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12259 
12260 bool SCEVUnionPredicate::isAlwaysTrue() const {
12261   return all_of(Preds,
12262                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12263 }
12264 
12265 ArrayRef<const SCEVPredicate *>
12266 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12267   auto I = SCEVToPreds.find(Expr);
12268   if (I == SCEVToPreds.end())
12269     return ArrayRef<const SCEVPredicate *>();
12270   return I->second;
12271 }
12272 
12273 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12274   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12275     return all_of(Set->Preds,
12276                   [this](const SCEVPredicate *I) { return this->implies(I); });
12277 
12278   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12279   if (ScevPredsIt == SCEVToPreds.end())
12280     return false;
12281   auto &SCEVPreds = ScevPredsIt->second;
12282 
12283   return any_of(SCEVPreds,
12284                 [N](const SCEVPredicate *I) { return I->implies(N); });
12285 }
12286 
12287 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12288 
12289 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12290   for (auto Pred : Preds)
12291     Pred->print(OS, Depth);
12292 }
12293 
12294 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12295   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12296     for (auto Pred : Set->Preds)
12297       add(Pred);
12298     return;
12299   }
12300 
12301   if (implies(N))
12302     return;
12303 
12304   const SCEV *Key = N->getExpr();
12305   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12306                 " associated expression!");
12307 
12308   SCEVToPreds[Key].push_back(N);
12309   Preds.push_back(N);
12310 }
12311 
12312 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12313                                                      Loop &L)
12314     : SE(SE), L(L) {}
12315 
12316 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12317   const SCEV *Expr = SE.getSCEV(V);
12318   RewriteEntry &Entry = RewriteMap[Expr];
12319 
12320   // If we already have an entry and the version matches, return it.
12321   if (Entry.second && Generation == Entry.first)
12322     return Entry.second;
12323 
12324   // We found an entry but it's stale. Rewrite the stale entry
12325   // according to the current predicate.
12326   if (Entry.second)
12327     Expr = Entry.second;
12328 
12329   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12330   Entry = {Generation, NewSCEV};
12331 
12332   return NewSCEV;
12333 }
12334 
12335 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12336   if (!BackedgeCount) {
12337     SCEVUnionPredicate BackedgePred;
12338     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12339     addPredicate(BackedgePred);
12340   }
12341   return BackedgeCount;
12342 }
12343 
12344 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12345   if (Preds.implies(&Pred))
12346     return;
12347   Preds.add(&Pred);
12348   updateGeneration();
12349 }
12350 
12351 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12352   return Preds;
12353 }
12354 
12355 void PredicatedScalarEvolution::updateGeneration() {
12356   // If the generation number wrapped recompute everything.
12357   if (++Generation == 0) {
12358     for (auto &II : RewriteMap) {
12359       const SCEV *Rewritten = II.second.second;
12360       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12361     }
12362   }
12363 }
12364 
12365 void PredicatedScalarEvolution::setNoOverflow(
12366     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12367   const SCEV *Expr = getSCEV(V);
12368   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12369 
12370   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12371 
12372   // Clear the statically implied flags.
12373   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12374   addPredicate(*SE.getWrapPredicate(AR, Flags));
12375 
12376   auto II = FlagsMap.insert({V, Flags});
12377   if (!II.second)
12378     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12379 }
12380 
12381 bool PredicatedScalarEvolution::hasNoOverflow(
12382     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12383   const SCEV *Expr = getSCEV(V);
12384   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12385 
12386   Flags = SCEVWrapPredicate::clearFlags(
12387       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12388 
12389   auto II = FlagsMap.find(V);
12390 
12391   if (II != FlagsMap.end())
12392     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12393 
12394   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12395 }
12396 
12397 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12398   const SCEV *Expr = this->getSCEV(V);
12399   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12400   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12401 
12402   if (!New)
12403     return nullptr;
12404 
12405   for (auto *P : NewPreds)
12406     Preds.add(P);
12407 
12408   updateGeneration();
12409   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12410   return New;
12411 }
12412 
12413 PredicatedScalarEvolution::PredicatedScalarEvolution(
12414     const PredicatedScalarEvolution &Init)
12415     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12416       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12417   for (auto I : Init.FlagsMap)
12418     FlagsMap.insert(I);
12419 }
12420 
12421 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12422   // For each block.
12423   for (auto *BB : L.getBlocks())
12424     for (auto &I : *BB) {
12425       if (!SE.isSCEVable(I.getType()))
12426         continue;
12427 
12428       auto *Expr = SE.getSCEV(&I);
12429       auto II = RewriteMap.find(Expr);
12430 
12431       if (II == RewriteMap.end())
12432         continue;
12433 
12434       // Don't print things that are not interesting.
12435       if (II->second.second == Expr)
12436         continue;
12437 
12438       OS.indent(Depth) << "[PSE]" << I << ":\n";
12439       OS.indent(Depth + 2) << *Expr << "\n";
12440       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12441     }
12442 }
12443 
12444 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12445 // arbitrary expressions.
12446 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12447 // 4, A / B becomes X / 8).
12448 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12449                                 const SCEV *&RHS) {
12450   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12451   if (Add == nullptr || Add->getNumOperands() != 2)
12452     return false;
12453 
12454   const SCEV *A = Add->getOperand(1);
12455   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12456 
12457   if (Mul == nullptr)
12458     return false;
12459 
12460   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12461     // (SomeExpr + (-(SomeExpr / B) * B)).
12462     if (Expr == getURemExpr(A, B)) {
12463       LHS = A;
12464       RHS = B;
12465       return true;
12466     }
12467     return false;
12468   };
12469 
12470   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12471   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12472     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12473            MatchURemWithDivisor(Mul->getOperand(2));
12474 
12475   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12476   if (Mul->getNumOperands() == 2)
12477     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12478            MatchURemWithDivisor(Mul->getOperand(0)) ||
12479            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12480            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12481   return false;
12482 }
12483