1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451 
452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453                                    const SCEV *op, Type *ty)
454   : SCEVCastExpr(ID, scTruncate, op, ty) {
455   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456          "Cannot truncate non-integer value!");
457 }
458 
459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460                                        const SCEV *op, Type *ty)
461   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463          "Cannot zero extend non-integer value!");
464 }
465 
466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467                                        const SCEV *op, Type *ty)
468   : SCEVCastExpr(ID, scSignExtend, op, ty) {
469   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470          "Cannot sign extend non-integer value!");
471 }
472 
473 void SCEVUnknown::deleted() {
474   // Clear this SCEVUnknown from various maps.
475   SE->forgetMemoizedResults(this);
476 
477   // Remove this SCEVUnknown from the uniquing map.
478   SE->UniqueSCEVs.RemoveNode(this);
479 
480   // Release the value.
481   setValPtr(nullptr);
482 }
483 
484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485   // Remove this SCEVUnknown from the uniquing map.
486   SE->UniqueSCEVs.RemoveNode(this);
487 
488   // Update this SCEVUnknown to point to the new value. This is needed
489   // because there may still be outstanding SCEVs which still point to
490   // this SCEVUnknown.
491   setValPtr(New);
492 }
493 
494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496     if (VCE->getOpcode() == Instruction::PtrToInt)
497       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498         if (CE->getOpcode() == Instruction::GetElementPtr &&
499             CE->getOperand(0)->isNullValue() &&
500             CE->getNumOperands() == 2)
501           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502             if (CI->isOne()) {
503               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504                                  ->getElementType();
505               return true;
506             }
507 
508   return false;
509 }
510 
511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513     if (VCE->getOpcode() == Instruction::PtrToInt)
514       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515         if (CE->getOpcode() == Instruction::GetElementPtr &&
516             CE->getOperand(0)->isNullValue()) {
517           Type *Ty =
518             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519           if (StructType *STy = dyn_cast<StructType>(Ty))
520             if (!STy->isPacked() &&
521                 CE->getNumOperands() == 3 &&
522                 CE->getOperand(1)->isNullValue()) {
523               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524                 if (CI->isOne() &&
525                     STy->getNumElements() == 2 &&
526                     STy->getElementType(0)->isIntegerTy(1)) {
527                   AllocTy = STy->getElementType(1);
528                   return true;
529                 }
530             }
531         }
532 
533   return false;
534 }
535 
536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538     if (VCE->getOpcode() == Instruction::PtrToInt)
539       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540         if (CE->getOpcode() == Instruction::GetElementPtr &&
541             CE->getNumOperands() == 3 &&
542             CE->getOperand(0)->isNullValue() &&
543             CE->getOperand(1)->isNullValue()) {
544           Type *Ty =
545             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546           // Ignore vector types here so that ScalarEvolutionExpander doesn't
547           // emit getelementptrs that index into vectors.
548           if (Ty->isStructTy() || Ty->isArrayTy()) {
549             CTy = Ty;
550             FieldNo = CE->getOperand(2);
551             return true;
552           }
553         }
554 
555   return false;
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //                               SCEV Utilities
560 //===----------------------------------------------------------------------===//
561 
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine.  It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 ///   %a = f(%x, %y)
569 ///   %b = f(%a, %a)
570 ///   %c = f(%b, %b)
571 ///
572 ///   %d = f(%x, %y)
573 ///   %e = f(%d, %d)
574 ///   %f = f(%e, %e)
575 ///
576 ///   CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582                        const LoopInfo *const LI, Value *LV, Value *RV,
583                        unsigned Depth) {
584   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585     return 0;
586 
587   // Order pointer values after integer values. This helps SCEVExpander form
588   // GEPs.
589   bool LIsPointer = LV->getType()->isPointerTy(),
590        RIsPointer = RV->getType()->isPointerTy();
591   if (LIsPointer != RIsPointer)
592     return (int)LIsPointer - (int)RIsPointer;
593 
594   // Compare getValueID values.
595   unsigned LID = LV->getValueID(), RID = RV->getValueID();
596   if (LID != RID)
597     return (int)LID - (int)RID;
598 
599   // Sort arguments by their position.
600   if (const auto *LA = dyn_cast<Argument>(LV)) {
601     const auto *RA = cast<Argument>(RV);
602     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603     return (int)LArgNo - (int)RArgNo;
604   }
605 
606   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607     const auto *RGV = cast<GlobalValue>(RV);
608 
609     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610       auto LT = GV->getLinkage();
611       return !(GlobalValue::isPrivateLinkage(LT) ||
612                GlobalValue::isInternalLinkage(LT));
613     };
614 
615     // Use the names to distinguish the two values, but only if the
616     // names are semantically important.
617     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618       return LGV->getName().compare(RGV->getName());
619   }
620 
621   // For instructions, compare their loop depth, and their operand count.  This
622   // is pretty loose.
623   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624     const auto *RInst = cast<Instruction>(RV);
625 
626     // Compare loop depths.
627     const BasicBlock *LParent = LInst->getParent(),
628                      *RParent = RInst->getParent();
629     if (LParent != RParent) {
630       unsigned LDepth = LI->getLoopDepth(LParent),
631                RDepth = LI->getLoopDepth(RParent);
632       if (LDepth != RDepth)
633         return (int)LDepth - (int)RDepth;
634     }
635 
636     // Compare the number of operands.
637     unsigned LNumOps = LInst->getNumOperands(),
638              RNumOps = RInst->getNumOperands();
639     if (LNumOps != RNumOps)
640       return (int)LNumOps - (int)RNumOps;
641 
642     for (unsigned Idx : seq(0u, LNumOps)) {
643       int Result =
644           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645                                  RInst->getOperand(Idx), Depth + 1);
646       if (Result != 0)
647         return Result;
648     }
649   }
650 
651   EqCacheValue.unionSets(LV, RV);
652   return 0;
653 }
654 
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
658 static int CompareSCEVComplexity(
659     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660     EquivalenceClasses<const Value *> &EqCacheValue,
661     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662     DominatorTree &DT, unsigned Depth = 0) {
663   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664   if (LHS == RHS)
665     return 0;
666 
667   // Primarily, sort the SCEVs by their getSCEVType().
668   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669   if (LType != RType)
670     return (int)LType - (int)RType;
671 
672   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673     return 0;
674   // Aside from the getSCEVType() ordering, the particular ordering
675   // isn't very important except that it's beneficial to be consistent,
676   // so that (a + b) and (b + a) don't end up as different expressions.
677   switch (static_cast<SCEVTypes>(LType)) {
678   case scUnknown: {
679     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681 
682     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683                                    RU->getValue(), Depth + 1);
684     if (X == 0)
685       EqCacheSCEV.unionSets(LHS, RHS);
686     return X;
687   }
688 
689   case scConstant: {
690     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692 
693     // Compare constant values.
694     const APInt &LA = LC->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697     if (LBitWidth != RBitWidth)
698       return (int)LBitWidth - (int)RBitWidth;
699     return LA.ult(RA) ? -1 : 1;
700   }
701 
702   case scAddRecExpr: {
703     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705 
706     // There is always a dominance between two recs that are used by one SCEV,
707     // so we can safely sort recs by loop header dominance. We require such
708     // order in getAddExpr.
709     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710     if (LLoop != RLoop) {
711       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712       assert(LHead != RHead && "Two loops share the same header?");
713       if (DT.dominates(LHead, RHead))
714         return 1;
715       else
716         assert(DT.dominates(RHead, LHead) &&
717                "No dominance between recurrences used by one SCEV?");
718       return -1;
719     }
720 
721     // Addrec complexity grows with operand count.
722     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723     if (LNumOps != RNumOps)
724       return (int)LNumOps - (int)RNumOps;
725 
726     // Lexicographically compare.
727     for (unsigned i = 0; i != LNumOps; ++i) {
728       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729                                     LA->getOperand(i), RA->getOperand(i), DT,
730                                     Depth + 1);
731       if (X != 0)
732         return X;
733     }
734     EqCacheSCEV.unionSets(LHS, RHS);
735     return 0;
736   }
737 
738   case scAddExpr:
739   case scMulExpr:
740   case scSMaxExpr:
741   case scUMaxExpr:
742   case scSMinExpr:
743   case scUMinExpr: {
744     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746 
747     // Lexicographically compare n-ary expressions.
748     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749     if (LNumOps != RNumOps)
750       return (int)LNumOps - (int)RNumOps;
751 
752     for (unsigned i = 0; i != LNumOps; ++i) {
753       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754                                     LC->getOperand(i), RC->getOperand(i), DT,
755                                     Depth + 1);
756       if (X != 0)
757         return X;
758     }
759     EqCacheSCEV.unionSets(LHS, RHS);
760     return 0;
761   }
762 
763   case scUDivExpr: {
764     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766 
767     // Lexicographically compare udiv expressions.
768     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769                                   RC->getLHS(), DT, Depth + 1);
770     if (X != 0)
771       return X;
772     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773                               RC->getRHS(), DT, Depth + 1);
774     if (X == 0)
775       EqCacheSCEV.unionSets(LHS, RHS);
776     return X;
777   }
778 
779   case scTruncate:
780   case scZeroExtend:
781   case scSignExtend: {
782     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784 
785     // Compare cast expressions by operand.
786     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                   LC->getOperand(), RC->getOperand(), DT,
788                                   Depth + 1);
789     if (X == 0)
790       EqCacheSCEV.unionSets(LHS, RHS);
791     return X;
792   }
793 
794   case scCouldNotCompute:
795     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796   }
797   llvm_unreachable("Unknown SCEV kind!");
798 }
799 
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value.  When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine.  In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810                               LoopInfo *LI, DominatorTree &DT) {
811   if (Ops.size() < 2) return;  // Noop
812 
813   EquivalenceClasses<const SCEV *> EqCacheSCEV;
814   EquivalenceClasses<const Value *> EqCacheValue;
815   if (Ops.size() == 2) {
816     // This is the common case, which also happens to be trivially simple.
817     // Special case it.
818     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820       std::swap(LHS, RHS);
821     return;
822   }
823 
824   // Do the rough sort by complexity.
825   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827            0;
828   });
829 
830   // Now that we are sorted by complexity, group elements of the same
831   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
832   // be extremely short in practice.  Note that we take this approach because we
833   // do not want to depend on the addresses of the objects we are grouping.
834   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835     const SCEV *S = Ops[i];
836     unsigned Complexity = S->getSCEVType();
837 
838     // If there are any objects of the same complexity and same value as this
839     // one, group them.
840     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841       if (Ops[j] == S) { // Found a duplicate.
842         // Move it to immediately after i'th element.
843         std::swap(Ops[i+1], Ops[j]);
844         ++i;   // no need to rescan it.
845         if (i == e-2) return;  // Done!
846       }
847     }
848   }
849 }
850 
851 // Returns the size of the SCEV S.
852 static inline int sizeOfSCEV(const SCEV *S) {
853   struct FindSCEVSize {
854     int Size = 0;
855 
856     FindSCEVSize() = default;
857 
858     bool follow(const SCEV *S) {
859       ++Size;
860       // Keep looking at all operands of S.
861       return true;
862     }
863 
864     bool isDone() const {
865       return false;
866     }
867   };
868 
869   FindSCEVSize F;
870   SCEVTraversal<FindSCEVSize> ST(F);
871   ST.visitAll(S);
872   return F.Size;
873 }
874 
875 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
876 /// nodes.
877 static bool isHugeExpression(const SCEV *S) {
878   return S->getExpressionSize() >= HugeExprThreshold;
879 }
880 
881 /// Returns true of \p Ops contains a huge SCEV (see definition above).
882 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
883   return any_of(Ops, isHugeExpression);
884 }
885 
886 namespace {
887 
888 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
889 public:
890   // Computes the Quotient and Remainder of the division of Numerator by
891   // Denominator.
892   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
893                      const SCEV *Denominator, const SCEV **Quotient,
894                      const SCEV **Remainder) {
895     assert(Numerator && Denominator && "Uninitialized SCEV");
896 
897     SCEVDivision D(SE, Numerator, Denominator);
898 
899     // Check for the trivial case here to avoid having to check for it in the
900     // rest of the code.
901     if (Numerator == Denominator) {
902       *Quotient = D.One;
903       *Remainder = D.Zero;
904       return;
905     }
906 
907     if (Numerator->isZero()) {
908       *Quotient = D.Zero;
909       *Remainder = D.Zero;
910       return;
911     }
912 
913     // A simple case when N/1. The quotient is N.
914     if (Denominator->isOne()) {
915       *Quotient = Numerator;
916       *Remainder = D.Zero;
917       return;
918     }
919 
920     // Split the Denominator when it is a product.
921     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
922       const SCEV *Q, *R;
923       *Quotient = Numerator;
924       for (const SCEV *Op : T->operands()) {
925         divide(SE, *Quotient, Op, &Q, &R);
926         *Quotient = Q;
927 
928         // Bail out when the Numerator is not divisible by one of the terms of
929         // the Denominator.
930         if (!R->isZero()) {
931           *Quotient = D.Zero;
932           *Remainder = Numerator;
933           return;
934         }
935       }
936       *Remainder = D.Zero;
937       return;
938     }
939 
940     D.visit(Numerator);
941     *Quotient = D.Quotient;
942     *Remainder = D.Remainder;
943   }
944 
945   // Except in the trivial case described above, we do not know how to divide
946   // Expr by Denominator for the following functions with empty implementation.
947   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
948   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
949   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
950   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
951   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
952   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
953   void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
954   void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
955   void visitUnknown(const SCEVUnknown *Numerator) {}
956   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
957 
958   void visitConstant(const SCEVConstant *Numerator) {
959     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
960       APInt NumeratorVal = Numerator->getAPInt();
961       APInt DenominatorVal = D->getAPInt();
962       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
963       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
964 
965       if (NumeratorBW > DenominatorBW)
966         DenominatorVal = DenominatorVal.sext(NumeratorBW);
967       else if (NumeratorBW < DenominatorBW)
968         NumeratorVal = NumeratorVal.sext(DenominatorBW);
969 
970       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
971       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
972       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
973       Quotient = SE.getConstant(QuotientVal);
974       Remainder = SE.getConstant(RemainderVal);
975       return;
976     }
977   }
978 
979   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
980     const SCEV *StartQ, *StartR, *StepQ, *StepR;
981     if (!Numerator->isAffine())
982       return cannotDivide(Numerator);
983     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
984     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
985     // Bail out if the types do not match.
986     Type *Ty = Denominator->getType();
987     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
988         Ty != StepQ->getType() || Ty != StepR->getType())
989       return cannotDivide(Numerator);
990     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
991                                 Numerator->getNoWrapFlags());
992     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
993                                  Numerator->getNoWrapFlags());
994   }
995 
996   void visitAddExpr(const SCEVAddExpr *Numerator) {
997     SmallVector<const SCEV *, 2> Qs, Rs;
998     Type *Ty = Denominator->getType();
999 
1000     for (const SCEV *Op : Numerator->operands()) {
1001       const SCEV *Q, *R;
1002       divide(SE, Op, Denominator, &Q, &R);
1003 
1004       // Bail out if types do not match.
1005       if (Ty != Q->getType() || Ty != R->getType())
1006         return cannotDivide(Numerator);
1007 
1008       Qs.push_back(Q);
1009       Rs.push_back(R);
1010     }
1011 
1012     if (Qs.size() == 1) {
1013       Quotient = Qs[0];
1014       Remainder = Rs[0];
1015       return;
1016     }
1017 
1018     Quotient = SE.getAddExpr(Qs);
1019     Remainder = SE.getAddExpr(Rs);
1020   }
1021 
1022   void visitMulExpr(const SCEVMulExpr *Numerator) {
1023     SmallVector<const SCEV *, 2> Qs;
1024     Type *Ty = Denominator->getType();
1025 
1026     bool FoundDenominatorTerm = false;
1027     for (const SCEV *Op : Numerator->operands()) {
1028       // Bail out if types do not match.
1029       if (Ty != Op->getType())
1030         return cannotDivide(Numerator);
1031 
1032       if (FoundDenominatorTerm) {
1033         Qs.push_back(Op);
1034         continue;
1035       }
1036 
1037       // Check whether Denominator divides one of the product operands.
1038       const SCEV *Q, *R;
1039       divide(SE, Op, Denominator, &Q, &R);
1040       if (!R->isZero()) {
1041         Qs.push_back(Op);
1042         continue;
1043       }
1044 
1045       // Bail out if types do not match.
1046       if (Ty != Q->getType())
1047         return cannotDivide(Numerator);
1048 
1049       FoundDenominatorTerm = true;
1050       Qs.push_back(Q);
1051     }
1052 
1053     if (FoundDenominatorTerm) {
1054       Remainder = Zero;
1055       if (Qs.size() == 1)
1056         Quotient = Qs[0];
1057       else
1058         Quotient = SE.getMulExpr(Qs);
1059       return;
1060     }
1061 
1062     if (!isa<SCEVUnknown>(Denominator))
1063       return cannotDivide(Numerator);
1064 
1065     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1066     ValueToValueMap RewriteMap;
1067     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1068         cast<SCEVConstant>(Zero)->getValue();
1069     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1070 
1071     if (Remainder->isZero()) {
1072       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1073       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1074           cast<SCEVConstant>(One)->getValue();
1075       Quotient =
1076           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1077       return;
1078     }
1079 
1080     // Quotient is (Numerator - Remainder) divided by Denominator.
1081     const SCEV *Q, *R;
1082     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1083     // This SCEV does not seem to simplify: fail the division here.
1084     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1085       return cannotDivide(Numerator);
1086     divide(SE, Diff, Denominator, &Q, &R);
1087     if (R != Zero)
1088       return cannotDivide(Numerator);
1089     Quotient = Q;
1090   }
1091 
1092 private:
1093   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1094                const SCEV *Denominator)
1095       : SE(S), Denominator(Denominator) {
1096     Zero = SE.getZero(Denominator->getType());
1097     One = SE.getOne(Denominator->getType());
1098 
1099     // We generally do not know how to divide Expr by Denominator. We
1100     // initialize the division to a "cannot divide" state to simplify the rest
1101     // of the code.
1102     cannotDivide(Numerator);
1103   }
1104 
1105   // Convenience function for giving up on the division. We set the quotient to
1106   // be equal to zero and the remainder to be equal to the numerator.
1107   void cannotDivide(const SCEV *Numerator) {
1108     Quotient = Zero;
1109     Remainder = Numerator;
1110   }
1111 
1112   ScalarEvolution &SE;
1113   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1114 };
1115 
1116 } // end anonymous namespace
1117 
1118 //===----------------------------------------------------------------------===//
1119 //                      Simple SCEV method implementations
1120 //===----------------------------------------------------------------------===//
1121 
1122 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1123 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1124                                        ScalarEvolution &SE,
1125                                        Type *ResultTy) {
1126   // Handle the simplest case efficiently.
1127   if (K == 1)
1128     return SE.getTruncateOrZeroExtend(It, ResultTy);
1129 
1130   // We are using the following formula for BC(It, K):
1131   //
1132   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1133   //
1134   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1135   // overflow.  Hence, we must assure that the result of our computation is
1136   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1137   // safe in modular arithmetic.
1138   //
1139   // However, this code doesn't use exactly that formula; the formula it uses
1140   // is something like the following, where T is the number of factors of 2 in
1141   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1142   // exponentiation:
1143   //
1144   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1145   //
1146   // This formula is trivially equivalent to the previous formula.  However,
1147   // this formula can be implemented much more efficiently.  The trick is that
1148   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1149   // arithmetic.  To do exact division in modular arithmetic, all we have
1150   // to do is multiply by the inverse.  Therefore, this step can be done at
1151   // width W.
1152   //
1153   // The next issue is how to safely do the division by 2^T.  The way this
1154   // is done is by doing the multiplication step at a width of at least W + T
1155   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1156   // when we perform the division by 2^T (which is equivalent to a right shift
1157   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1158   // truncated out after the division by 2^T.
1159   //
1160   // In comparison to just directly using the first formula, this technique
1161   // is much more efficient; using the first formula requires W * K bits,
1162   // but this formula less than W + K bits. Also, the first formula requires
1163   // a division step, whereas this formula only requires multiplies and shifts.
1164   //
1165   // It doesn't matter whether the subtraction step is done in the calculation
1166   // width or the input iteration count's width; if the subtraction overflows,
1167   // the result must be zero anyway.  We prefer here to do it in the width of
1168   // the induction variable because it helps a lot for certain cases; CodeGen
1169   // isn't smart enough to ignore the overflow, which leads to much less
1170   // efficient code if the width of the subtraction is wider than the native
1171   // register width.
1172   //
1173   // (It's possible to not widen at all by pulling out factors of 2 before
1174   // the multiplication; for example, K=2 can be calculated as
1175   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1176   // extra arithmetic, so it's not an obvious win, and it gets
1177   // much more complicated for K > 3.)
1178 
1179   // Protection from insane SCEVs; this bound is conservative,
1180   // but it probably doesn't matter.
1181   if (K > 1000)
1182     return SE.getCouldNotCompute();
1183 
1184   unsigned W = SE.getTypeSizeInBits(ResultTy);
1185 
1186   // Calculate K! / 2^T and T; we divide out the factors of two before
1187   // multiplying for calculating K! / 2^T to avoid overflow.
1188   // Other overflow doesn't matter because we only care about the bottom
1189   // W bits of the result.
1190   APInt OddFactorial(W, 1);
1191   unsigned T = 1;
1192   for (unsigned i = 3; i <= K; ++i) {
1193     APInt Mult(W, i);
1194     unsigned TwoFactors = Mult.countTrailingZeros();
1195     T += TwoFactors;
1196     Mult.lshrInPlace(TwoFactors);
1197     OddFactorial *= Mult;
1198   }
1199 
1200   // We need at least W + T bits for the multiplication step
1201   unsigned CalculationBits = W + T;
1202 
1203   // Calculate 2^T, at width T+W.
1204   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1205 
1206   // Calculate the multiplicative inverse of K! / 2^T;
1207   // this multiplication factor will perform the exact division by
1208   // K! / 2^T.
1209   APInt Mod = APInt::getSignedMinValue(W+1);
1210   APInt MultiplyFactor = OddFactorial.zext(W+1);
1211   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1212   MultiplyFactor = MultiplyFactor.trunc(W);
1213 
1214   // Calculate the product, at width T+W
1215   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1216                                                       CalculationBits);
1217   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1218   for (unsigned i = 1; i != K; ++i) {
1219     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1220     Dividend = SE.getMulExpr(Dividend,
1221                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1222   }
1223 
1224   // Divide by 2^T
1225   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1226 
1227   // Truncate the result, and divide by K! / 2^T.
1228 
1229   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1230                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1231 }
1232 
1233 /// Return the value of this chain of recurrences at the specified iteration
1234 /// number.  We can evaluate this recurrence by multiplying each element in the
1235 /// chain by the binomial coefficient corresponding to it.  In other words, we
1236 /// can evaluate {A,+,B,+,C,+,D} as:
1237 ///
1238 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1239 ///
1240 /// where BC(It, k) stands for binomial coefficient.
1241 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1242                                                 ScalarEvolution &SE) const {
1243   const SCEV *Result = getStart();
1244   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1245     // The computation is correct in the face of overflow provided that the
1246     // multiplication is performed _after_ the evaluation of the binomial
1247     // coefficient.
1248     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1249     if (isa<SCEVCouldNotCompute>(Coeff))
1250       return Coeff;
1251 
1252     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1253   }
1254   return Result;
1255 }
1256 
1257 //===----------------------------------------------------------------------===//
1258 //                    SCEV Expression folder implementations
1259 //===----------------------------------------------------------------------===//
1260 
1261 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1262                                              unsigned Depth) {
1263   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1264          "This is not a truncating conversion!");
1265   assert(isSCEVable(Ty) &&
1266          "This is not a conversion to a SCEVable type!");
1267   Ty = getEffectiveSCEVType(Ty);
1268 
1269   FoldingSetNodeID ID;
1270   ID.AddInteger(scTruncate);
1271   ID.AddPointer(Op);
1272   ID.AddPointer(Ty);
1273   void *IP = nullptr;
1274   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1275 
1276   // Fold if the operand is constant.
1277   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1278     return getConstant(
1279       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1280 
1281   // trunc(trunc(x)) --> trunc(x)
1282   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1283     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1284 
1285   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1286   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1287     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1288 
1289   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1290   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1291     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1292 
1293   if (Depth > MaxCastDepth) {
1294     SCEV *S =
1295         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1296     UniqueSCEVs.InsertNode(S, IP);
1297     addToLoopUseLists(S);
1298     return S;
1299   }
1300 
1301   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1302   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1303   // if after transforming we have at most one truncate, not counting truncates
1304   // that replace other casts.
1305   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1306     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1307     SmallVector<const SCEV *, 4> Operands;
1308     unsigned numTruncs = 0;
1309     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1310          ++i) {
1311       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1312       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1313         numTruncs++;
1314       Operands.push_back(S);
1315     }
1316     if (numTruncs < 2) {
1317       if (isa<SCEVAddExpr>(Op))
1318         return getAddExpr(Operands);
1319       else if (isa<SCEVMulExpr>(Op))
1320         return getMulExpr(Operands);
1321       else
1322         llvm_unreachable("Unexpected SCEV type for Op.");
1323     }
1324     // Although we checked in the beginning that ID is not in the cache, it is
1325     // possible that during recursion and different modification ID was inserted
1326     // into the cache. So if we find it, just return it.
1327     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1328       return S;
1329   }
1330 
1331   // If the input value is a chrec scev, truncate the chrec's operands.
1332   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1333     SmallVector<const SCEV *, 4> Operands;
1334     for (const SCEV *Op : AddRec->operands())
1335       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1336     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1337   }
1338 
1339   // The cast wasn't folded; create an explicit cast node. We can reuse
1340   // the existing insert position since if we get here, we won't have
1341   // made any changes which would invalidate it.
1342   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1343                                                  Op, Ty);
1344   UniqueSCEVs.InsertNode(S, IP);
1345   addToLoopUseLists(S);
1346   return S;
1347 }
1348 
1349 // Get the limit of a recurrence such that incrementing by Step cannot cause
1350 // signed overflow as long as the value of the recurrence within the
1351 // loop does not exceed this limit before incrementing.
1352 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1353                                                  ICmpInst::Predicate *Pred,
1354                                                  ScalarEvolution *SE) {
1355   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1356   if (SE->isKnownPositive(Step)) {
1357     *Pred = ICmpInst::ICMP_SLT;
1358     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1359                            SE->getSignedRangeMax(Step));
1360   }
1361   if (SE->isKnownNegative(Step)) {
1362     *Pred = ICmpInst::ICMP_SGT;
1363     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1364                            SE->getSignedRangeMin(Step));
1365   }
1366   return nullptr;
1367 }
1368 
1369 // Get the limit of a recurrence such that incrementing by Step cannot cause
1370 // unsigned overflow as long as the value of the recurrence within the loop does
1371 // not exceed this limit before incrementing.
1372 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1373                                                    ICmpInst::Predicate *Pred,
1374                                                    ScalarEvolution *SE) {
1375   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1376   *Pred = ICmpInst::ICMP_ULT;
1377 
1378   return SE->getConstant(APInt::getMinValue(BitWidth) -
1379                          SE->getUnsignedRangeMax(Step));
1380 }
1381 
1382 namespace {
1383 
1384 struct ExtendOpTraitsBase {
1385   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1386                                                           unsigned);
1387 };
1388 
1389 // Used to make code generic over signed and unsigned overflow.
1390 template <typename ExtendOp> struct ExtendOpTraits {
1391   // Members present:
1392   //
1393   // static const SCEV::NoWrapFlags WrapType;
1394   //
1395   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1396   //
1397   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1398   //                                           ICmpInst::Predicate *Pred,
1399   //                                           ScalarEvolution *SE);
1400 };
1401 
1402 template <>
1403 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1404   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1405 
1406   static const GetExtendExprTy GetExtendExpr;
1407 
1408   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1409                                              ICmpInst::Predicate *Pred,
1410                                              ScalarEvolution *SE) {
1411     return getSignedOverflowLimitForStep(Step, Pred, SE);
1412   }
1413 };
1414 
1415 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1416     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1417 
1418 template <>
1419 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1420   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1421 
1422   static const GetExtendExprTy GetExtendExpr;
1423 
1424   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1425                                              ICmpInst::Predicate *Pred,
1426                                              ScalarEvolution *SE) {
1427     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1428   }
1429 };
1430 
1431 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1432     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1433 
1434 } // end anonymous namespace
1435 
1436 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1437 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1438 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1439 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1440 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1441 // expression "Step + sext/zext(PreIncAR)" is congruent with
1442 // "sext/zext(PostIncAR)"
1443 template <typename ExtendOpTy>
1444 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1445                                         ScalarEvolution *SE, unsigned Depth) {
1446   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1447   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1448 
1449   const Loop *L = AR->getLoop();
1450   const SCEV *Start = AR->getStart();
1451   const SCEV *Step = AR->getStepRecurrence(*SE);
1452 
1453   // Check for a simple looking step prior to loop entry.
1454   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1455   if (!SA)
1456     return nullptr;
1457 
1458   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1459   // subtraction is expensive. For this purpose, perform a quick and dirty
1460   // difference, by checking for Step in the operand list.
1461   SmallVector<const SCEV *, 4> DiffOps;
1462   for (const SCEV *Op : SA->operands())
1463     if (Op != Step)
1464       DiffOps.push_back(Op);
1465 
1466   if (DiffOps.size() == SA->getNumOperands())
1467     return nullptr;
1468 
1469   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1470   // `Step`:
1471 
1472   // 1. NSW/NUW flags on the step increment.
1473   auto PreStartFlags =
1474     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1475   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1476   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1477       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1478 
1479   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1480   // "S+X does not sign/unsign-overflow".
1481   //
1482 
1483   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1484   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1485       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1486     return PreStart;
1487 
1488   // 2. Direct overflow check on the step operation's expression.
1489   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1490   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1491   const SCEV *OperandExtendedStart =
1492       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1493                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1494   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1495     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1496       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1497       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1498       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1499       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1500     }
1501     return PreStart;
1502   }
1503 
1504   // 3. Loop precondition.
1505   ICmpInst::Predicate Pred;
1506   const SCEV *OverflowLimit =
1507       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1508 
1509   if (OverflowLimit &&
1510       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1511     return PreStart;
1512 
1513   return nullptr;
1514 }
1515 
1516 // Get the normalized zero or sign extended expression for this AddRec's Start.
1517 template <typename ExtendOpTy>
1518 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1519                                         ScalarEvolution *SE,
1520                                         unsigned Depth) {
1521   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1522 
1523   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1524   if (!PreStart)
1525     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1526 
1527   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1528                                              Depth),
1529                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1530 }
1531 
1532 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1533 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1534 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1535 //
1536 // Formally:
1537 //
1538 //     {S,+,X} == {S-T,+,X} + T
1539 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1540 //
1541 // If ({S-T,+,X} + T) does not overflow  ... (1)
1542 //
1543 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1544 //
1545 // If {S-T,+,X} does not overflow  ... (2)
1546 //
1547 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1548 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1549 //
1550 // If (S-T)+T does not overflow  ... (3)
1551 //
1552 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1553 //      == {Ext(S),+,Ext(X)} == LHS
1554 //
1555 // Thus, if (1), (2) and (3) are true for some T, then
1556 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1557 //
1558 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1559 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1560 // to check for (1) and (2).
1561 //
1562 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1563 // is `Delta` (defined below).
1564 template <typename ExtendOpTy>
1565 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1566                                                 const SCEV *Step,
1567                                                 const Loop *L) {
1568   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1569 
1570   // We restrict `Start` to a constant to prevent SCEV from spending too much
1571   // time here.  It is correct (but more expensive) to continue with a
1572   // non-constant `Start` and do a general SCEV subtraction to compute
1573   // `PreStart` below.
1574   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1575   if (!StartC)
1576     return false;
1577 
1578   APInt StartAI = StartC->getAPInt();
1579 
1580   for (unsigned Delta : {-2, -1, 1, 2}) {
1581     const SCEV *PreStart = getConstant(StartAI - Delta);
1582 
1583     FoldingSetNodeID ID;
1584     ID.AddInteger(scAddRecExpr);
1585     ID.AddPointer(PreStart);
1586     ID.AddPointer(Step);
1587     ID.AddPointer(L);
1588     void *IP = nullptr;
1589     const auto *PreAR =
1590       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1591 
1592     // Give up if we don't already have the add recurrence we need because
1593     // actually constructing an add recurrence is relatively expensive.
1594     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1595       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1596       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1597       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1598           DeltaS, &Pred, this);
1599       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1600         return true;
1601     }
1602   }
1603 
1604   return false;
1605 }
1606 
1607 // Finds an integer D for an expression (C + x + y + ...) such that the top
1608 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1609 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1610 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1611 // the (C + x + y + ...) expression is \p WholeAddExpr.
1612 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1613                                             const SCEVConstant *ConstantTerm,
1614                                             const SCEVAddExpr *WholeAddExpr) {
1615   const APInt C = ConstantTerm->getAPInt();
1616   const unsigned BitWidth = C.getBitWidth();
1617   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1618   uint32_t TZ = BitWidth;
1619   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1620     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1621   if (TZ) {
1622     // Set D to be as many least significant bits of C as possible while still
1623     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1624     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1625   }
1626   return APInt(BitWidth, 0);
1627 }
1628 
1629 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1630 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1631 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1632 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1633 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1634                                             const APInt &ConstantStart,
1635                                             const SCEV *Step) {
1636   const unsigned BitWidth = ConstantStart.getBitWidth();
1637   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1638   if (TZ)
1639     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1640                          : ConstantStart;
1641   return APInt(BitWidth, 0);
1642 }
1643 
1644 const SCEV *
1645 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1646   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1647          "This is not an extending conversion!");
1648   assert(isSCEVable(Ty) &&
1649          "This is not a conversion to a SCEVable type!");
1650   Ty = getEffectiveSCEVType(Ty);
1651 
1652   // Fold if the operand is constant.
1653   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1654     return getConstant(
1655       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1656 
1657   // zext(zext(x)) --> zext(x)
1658   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1659     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1660 
1661   // Before doing any expensive analysis, check to see if we've already
1662   // computed a SCEV for this Op and Ty.
1663   FoldingSetNodeID ID;
1664   ID.AddInteger(scZeroExtend);
1665   ID.AddPointer(Op);
1666   ID.AddPointer(Ty);
1667   void *IP = nullptr;
1668   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1669   if (Depth > MaxCastDepth) {
1670     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1671                                                      Op, Ty);
1672     UniqueSCEVs.InsertNode(S, IP);
1673     addToLoopUseLists(S);
1674     return S;
1675   }
1676 
1677   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1678   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1679     // It's possible the bits taken off by the truncate were all zero bits. If
1680     // so, we should be able to simplify this further.
1681     const SCEV *X = ST->getOperand();
1682     ConstantRange CR = getUnsignedRange(X);
1683     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1684     unsigned NewBits = getTypeSizeInBits(Ty);
1685     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1686             CR.zextOrTrunc(NewBits)))
1687       return getTruncateOrZeroExtend(X, Ty, Depth);
1688   }
1689 
1690   // If the input value is a chrec scev, and we can prove that the value
1691   // did not overflow the old, smaller, value, we can zero extend all of the
1692   // operands (often constants).  This allows analysis of something like
1693   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1694   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1695     if (AR->isAffine()) {
1696       const SCEV *Start = AR->getStart();
1697       const SCEV *Step = AR->getStepRecurrence(*this);
1698       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1699       const Loop *L = AR->getLoop();
1700 
1701       if (!AR->hasNoUnsignedWrap()) {
1702         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1703         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1704       }
1705 
1706       // If we have special knowledge that this addrec won't overflow,
1707       // we don't need to do any further analysis.
1708       if (AR->hasNoUnsignedWrap())
1709         return getAddRecExpr(
1710             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1711             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1712 
1713       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1714       // Note that this serves two purposes: It filters out loops that are
1715       // simply not analyzable, and it covers the case where this code is
1716       // being called from within backedge-taken count analysis, such that
1717       // attempting to ask for the backedge-taken count would likely result
1718       // in infinite recursion. In the later case, the analysis code will
1719       // cope with a conservative value, and it will take care to purge
1720       // that value once it has finished.
1721       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1722       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1723         // Manually compute the final value for AR, checking for
1724         // overflow.
1725 
1726         // Check whether the backedge-taken count can be losslessly casted to
1727         // the addrec's type. The count is always unsigned.
1728         const SCEV *CastedMaxBECount =
1729             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1730         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1731             CastedMaxBECount, MaxBECount->getType(), Depth);
1732         if (MaxBECount == RecastedMaxBECount) {
1733           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1734           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1735           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1736                                         SCEV::FlagAnyWrap, Depth + 1);
1737           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1738                                                           SCEV::FlagAnyWrap,
1739                                                           Depth + 1),
1740                                                WideTy, Depth + 1);
1741           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1742           const SCEV *WideMaxBECount =
1743             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1744           const SCEV *OperandExtendedAdd =
1745             getAddExpr(WideStart,
1746                        getMulExpr(WideMaxBECount,
1747                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1748                                   SCEV::FlagAnyWrap, Depth + 1),
1749                        SCEV::FlagAnyWrap, Depth + 1);
1750           if (ZAdd == OperandExtendedAdd) {
1751             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1752             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1753             // Return the expression with the addrec on the outside.
1754             return getAddRecExpr(
1755                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1756                                                          Depth + 1),
1757                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1758                 AR->getNoWrapFlags());
1759           }
1760           // Similar to above, only this time treat the step value as signed.
1761           // This covers loops that count down.
1762           OperandExtendedAdd =
1763             getAddExpr(WideStart,
1764                        getMulExpr(WideMaxBECount,
1765                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1766                                   SCEV::FlagAnyWrap, Depth + 1),
1767                        SCEV::FlagAnyWrap, Depth + 1);
1768           if (ZAdd == OperandExtendedAdd) {
1769             // Cache knowledge of AR NW, which is propagated to this AddRec.
1770             // Negative step causes unsigned wrap, but it still can't self-wrap.
1771             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1772             // Return the expression with the addrec on the outside.
1773             return getAddRecExpr(
1774                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1775                                                          Depth + 1),
1776                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1777                 AR->getNoWrapFlags());
1778           }
1779         }
1780       }
1781 
1782       // Normally, in the cases we can prove no-overflow via a
1783       // backedge guarding condition, we can also compute a backedge
1784       // taken count for the loop.  The exceptions are assumptions and
1785       // guards present in the loop -- SCEV is not great at exploiting
1786       // these to compute max backedge taken counts, but can still use
1787       // these to prove lack of overflow.  Use this fact to avoid
1788       // doing extra work that may not pay off.
1789       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1790           !AC.assumptions().empty()) {
1791         // If the backedge is guarded by a comparison with the pre-inc
1792         // value the addrec is safe. Also, if the entry is guarded by
1793         // a comparison with the start value and the backedge is
1794         // guarded by a comparison with the post-inc value, the addrec
1795         // is safe.
1796         if (isKnownPositive(Step)) {
1797           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1798                                       getUnsignedRangeMax(Step));
1799           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1800               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1801             // Cache knowledge of AR NUW, which is propagated to this
1802             // AddRec.
1803             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1804             // Return the expression with the addrec on the outside.
1805             return getAddRecExpr(
1806                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1807                                                          Depth + 1),
1808                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1809                 AR->getNoWrapFlags());
1810           }
1811         } else if (isKnownNegative(Step)) {
1812           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1813                                       getSignedRangeMin(Step));
1814           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1815               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1816             // Cache knowledge of AR NW, which is propagated to this
1817             // AddRec.  Negative step causes unsigned wrap, but it
1818             // still can't self-wrap.
1819             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1820             // Return the expression with the addrec on the outside.
1821             return getAddRecExpr(
1822                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1823                                                          Depth + 1),
1824                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1825                 AR->getNoWrapFlags());
1826           }
1827         }
1828       }
1829 
1830       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1831       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1832       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1833       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1834         const APInt &C = SC->getAPInt();
1835         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1836         if (D != 0) {
1837           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1838           const SCEV *SResidual =
1839               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1840           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1841           return getAddExpr(SZExtD, SZExtR,
1842                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1843                             Depth + 1);
1844         }
1845       }
1846 
1847       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1848         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1849         return getAddRecExpr(
1850             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1851             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1852       }
1853     }
1854 
1855   // zext(A % B) --> zext(A) % zext(B)
1856   {
1857     const SCEV *LHS;
1858     const SCEV *RHS;
1859     if (matchURem(Op, LHS, RHS))
1860       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1861                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1862   }
1863 
1864   // zext(A / B) --> zext(A) / zext(B).
1865   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1866     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1867                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1868 
1869   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1870     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1871     if (SA->hasNoUnsignedWrap()) {
1872       // If the addition does not unsign overflow then we can, by definition,
1873       // commute the zero extension with the addition operation.
1874       SmallVector<const SCEV *, 4> Ops;
1875       for (const auto *Op : SA->operands())
1876         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1877       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1878     }
1879 
1880     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1881     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1882     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1883     //
1884     // Often address arithmetics contain expressions like
1885     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1886     // This transformation is useful while proving that such expressions are
1887     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1888     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1889       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1890       if (D != 0) {
1891         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1892         const SCEV *SResidual =
1893             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1894         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1895         return getAddExpr(SZExtD, SZExtR,
1896                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1897                           Depth + 1);
1898       }
1899     }
1900   }
1901 
1902   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1903     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1904     if (SM->hasNoUnsignedWrap()) {
1905       // If the multiply does not unsign overflow then we can, by definition,
1906       // commute the zero extension with the multiply operation.
1907       SmallVector<const SCEV *, 4> Ops;
1908       for (const auto *Op : SM->operands())
1909         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1910       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1911     }
1912 
1913     // zext(2^K * (trunc X to iN)) to iM ->
1914     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1915     //
1916     // Proof:
1917     //
1918     //     zext(2^K * (trunc X to iN)) to iM
1919     //   = zext((trunc X to iN) << K) to iM
1920     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1921     //     (because shl removes the top K bits)
1922     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1923     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1924     //
1925     if (SM->getNumOperands() == 2)
1926       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1927         if (MulLHS->getAPInt().isPowerOf2())
1928           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1929             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1930                                MulLHS->getAPInt().logBase2();
1931             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1932             return getMulExpr(
1933                 getZeroExtendExpr(MulLHS, Ty),
1934                 getZeroExtendExpr(
1935                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1936                 SCEV::FlagNUW, Depth + 1);
1937           }
1938   }
1939 
1940   // The cast wasn't folded; create an explicit cast node.
1941   // Recompute the insert position, as it may have been invalidated.
1942   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1943   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1944                                                    Op, Ty);
1945   UniqueSCEVs.InsertNode(S, IP);
1946   addToLoopUseLists(S);
1947   return S;
1948 }
1949 
1950 const SCEV *
1951 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1952   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1953          "This is not an extending conversion!");
1954   assert(isSCEVable(Ty) &&
1955          "This is not a conversion to a SCEVable type!");
1956   Ty = getEffectiveSCEVType(Ty);
1957 
1958   // Fold if the operand is constant.
1959   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1960     return getConstant(
1961       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1962 
1963   // sext(sext(x)) --> sext(x)
1964   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1965     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1966 
1967   // sext(zext(x)) --> zext(x)
1968   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1969     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1970 
1971   // Before doing any expensive analysis, check to see if we've already
1972   // computed a SCEV for this Op and Ty.
1973   FoldingSetNodeID ID;
1974   ID.AddInteger(scSignExtend);
1975   ID.AddPointer(Op);
1976   ID.AddPointer(Ty);
1977   void *IP = nullptr;
1978   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1979   // Limit recursion depth.
1980   if (Depth > MaxCastDepth) {
1981     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1982                                                      Op, Ty);
1983     UniqueSCEVs.InsertNode(S, IP);
1984     addToLoopUseLists(S);
1985     return S;
1986   }
1987 
1988   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1989   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1990     // It's possible the bits taken off by the truncate were all sign bits. If
1991     // so, we should be able to simplify this further.
1992     const SCEV *X = ST->getOperand();
1993     ConstantRange CR = getSignedRange(X);
1994     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1995     unsigned NewBits = getTypeSizeInBits(Ty);
1996     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1997             CR.sextOrTrunc(NewBits)))
1998       return getTruncateOrSignExtend(X, Ty, Depth);
1999   }
2000 
2001   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
2002     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
2003     if (SA->hasNoSignedWrap()) {
2004       // If the addition does not sign overflow then we can, by definition,
2005       // commute the sign extension with the addition operation.
2006       SmallVector<const SCEV *, 4> Ops;
2007       for (const auto *Op : SA->operands())
2008         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2009       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2010     }
2011 
2012     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2013     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2014     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2015     //
2016     // For instance, this will bring two seemingly different expressions:
2017     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2018     //         sext(6 + 20 * %x + 24 * %y)
2019     // to the same form:
2020     //     2 + sext(4 + 20 * %x + 24 * %y)
2021     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2022       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2023       if (D != 0) {
2024         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2025         const SCEV *SResidual =
2026             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2027         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2028         return getAddExpr(SSExtD, SSExtR,
2029                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2030                           Depth + 1);
2031       }
2032     }
2033   }
2034   // If the input value is a chrec scev, and we can prove that the value
2035   // did not overflow the old, smaller, value, we can sign extend all of the
2036   // operands (often constants).  This allows analysis of something like
2037   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2038   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2039     if (AR->isAffine()) {
2040       const SCEV *Start = AR->getStart();
2041       const SCEV *Step = AR->getStepRecurrence(*this);
2042       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2043       const Loop *L = AR->getLoop();
2044 
2045       if (!AR->hasNoSignedWrap()) {
2046         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2047         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2048       }
2049 
2050       // If we have special knowledge that this addrec won't overflow,
2051       // we don't need to do any further analysis.
2052       if (AR->hasNoSignedWrap())
2053         return getAddRecExpr(
2054             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2055             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2056 
2057       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2058       // Note that this serves two purposes: It filters out loops that are
2059       // simply not analyzable, and it covers the case where this code is
2060       // being called from within backedge-taken count analysis, such that
2061       // attempting to ask for the backedge-taken count would likely result
2062       // in infinite recursion. In the later case, the analysis code will
2063       // cope with a conservative value, and it will take care to purge
2064       // that value once it has finished.
2065       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2066       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2067         // Manually compute the final value for AR, checking for
2068         // overflow.
2069 
2070         // Check whether the backedge-taken count can be losslessly casted to
2071         // the addrec's type. The count is always unsigned.
2072         const SCEV *CastedMaxBECount =
2073             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2074         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2075             CastedMaxBECount, MaxBECount->getType(), Depth);
2076         if (MaxBECount == RecastedMaxBECount) {
2077           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2078           // Check whether Start+Step*MaxBECount has no signed overflow.
2079           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2080                                         SCEV::FlagAnyWrap, Depth + 1);
2081           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2082                                                           SCEV::FlagAnyWrap,
2083                                                           Depth + 1),
2084                                                WideTy, Depth + 1);
2085           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2086           const SCEV *WideMaxBECount =
2087             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2088           const SCEV *OperandExtendedAdd =
2089             getAddExpr(WideStart,
2090                        getMulExpr(WideMaxBECount,
2091                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2092                                   SCEV::FlagAnyWrap, Depth + 1),
2093                        SCEV::FlagAnyWrap, Depth + 1);
2094           if (SAdd == OperandExtendedAdd) {
2095             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2096             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2097             // Return the expression with the addrec on the outside.
2098             return getAddRecExpr(
2099                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2100                                                          Depth + 1),
2101                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2102                 AR->getNoWrapFlags());
2103           }
2104           // Similar to above, only this time treat the step value as unsigned.
2105           // This covers loops that count up with an unsigned step.
2106           OperandExtendedAdd =
2107             getAddExpr(WideStart,
2108                        getMulExpr(WideMaxBECount,
2109                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2110                                   SCEV::FlagAnyWrap, Depth + 1),
2111                        SCEV::FlagAnyWrap, Depth + 1);
2112           if (SAdd == OperandExtendedAdd) {
2113             // If AR wraps around then
2114             //
2115             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2116             // => SAdd != OperandExtendedAdd
2117             //
2118             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2119             // (SAdd == OperandExtendedAdd => AR is NW)
2120 
2121             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2122 
2123             // Return the expression with the addrec on the outside.
2124             return getAddRecExpr(
2125                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2126                                                          Depth + 1),
2127                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2128                 AR->getNoWrapFlags());
2129           }
2130         }
2131       }
2132 
2133       // Normally, in the cases we can prove no-overflow via a
2134       // backedge guarding condition, we can also compute a backedge
2135       // taken count for the loop.  The exceptions are assumptions and
2136       // guards present in the loop -- SCEV is not great at exploiting
2137       // these to compute max backedge taken counts, but can still use
2138       // these to prove lack of overflow.  Use this fact to avoid
2139       // doing extra work that may not pay off.
2140 
2141       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2142           !AC.assumptions().empty()) {
2143         // If the backedge is guarded by a comparison with the pre-inc
2144         // value the addrec is safe. Also, if the entry is guarded by
2145         // a comparison with the start value and the backedge is
2146         // guarded by a comparison with the post-inc value, the addrec
2147         // is safe.
2148         ICmpInst::Predicate Pred;
2149         const SCEV *OverflowLimit =
2150             getSignedOverflowLimitForStep(Step, &Pred, this);
2151         if (OverflowLimit &&
2152             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2153              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2154           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2155           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2156           return getAddRecExpr(
2157               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2158               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2159         }
2160       }
2161 
2162       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2163       // if D + (C - D + Step * n) could be proven to not signed wrap
2164       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2165       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2166         const APInt &C = SC->getAPInt();
2167         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2168         if (D != 0) {
2169           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2170           const SCEV *SResidual =
2171               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2172           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2173           return getAddExpr(SSExtD, SSExtR,
2174                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2175                             Depth + 1);
2176         }
2177       }
2178 
2179       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2180         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2181         return getAddRecExpr(
2182             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2183             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2184       }
2185     }
2186 
2187   // If the input value is provably positive and we could not simplify
2188   // away the sext build a zext instead.
2189   if (isKnownNonNegative(Op))
2190     return getZeroExtendExpr(Op, Ty, Depth + 1);
2191 
2192   // The cast wasn't folded; create an explicit cast node.
2193   // Recompute the insert position, as it may have been invalidated.
2194   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2195   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2196                                                    Op, Ty);
2197   UniqueSCEVs.InsertNode(S, IP);
2198   addToLoopUseLists(S);
2199   return S;
2200 }
2201 
2202 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2203 /// unspecified bits out to the given type.
2204 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2205                                               Type *Ty) {
2206   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2207          "This is not an extending conversion!");
2208   assert(isSCEVable(Ty) &&
2209          "This is not a conversion to a SCEVable type!");
2210   Ty = getEffectiveSCEVType(Ty);
2211 
2212   // Sign-extend negative constants.
2213   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2214     if (SC->getAPInt().isNegative())
2215       return getSignExtendExpr(Op, Ty);
2216 
2217   // Peel off a truncate cast.
2218   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2219     const SCEV *NewOp = T->getOperand();
2220     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2221       return getAnyExtendExpr(NewOp, Ty);
2222     return getTruncateOrNoop(NewOp, Ty);
2223   }
2224 
2225   // Next try a zext cast. If the cast is folded, use it.
2226   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2227   if (!isa<SCEVZeroExtendExpr>(ZExt))
2228     return ZExt;
2229 
2230   // Next try a sext cast. If the cast is folded, use it.
2231   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2232   if (!isa<SCEVSignExtendExpr>(SExt))
2233     return SExt;
2234 
2235   // Force the cast to be folded into the operands of an addrec.
2236   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2237     SmallVector<const SCEV *, 4> Ops;
2238     for (const SCEV *Op : AR->operands())
2239       Ops.push_back(getAnyExtendExpr(Op, Ty));
2240     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2241   }
2242 
2243   // If the expression is obviously signed, use the sext cast value.
2244   if (isa<SCEVSMaxExpr>(Op))
2245     return SExt;
2246 
2247   // Absent any other information, use the zext cast value.
2248   return ZExt;
2249 }
2250 
2251 /// Process the given Ops list, which is a list of operands to be added under
2252 /// the given scale, update the given map. This is a helper function for
2253 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2254 /// that would form an add expression like this:
2255 ///
2256 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2257 ///
2258 /// where A and B are constants, update the map with these values:
2259 ///
2260 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2261 ///
2262 /// and add 13 + A*B*29 to AccumulatedConstant.
2263 /// This will allow getAddRecExpr to produce this:
2264 ///
2265 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2266 ///
2267 /// This form often exposes folding opportunities that are hidden in
2268 /// the original operand list.
2269 ///
2270 /// Return true iff it appears that any interesting folding opportunities
2271 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2272 /// the common case where no interesting opportunities are present, and
2273 /// is also used as a check to avoid infinite recursion.
2274 static bool
2275 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2276                              SmallVectorImpl<const SCEV *> &NewOps,
2277                              APInt &AccumulatedConstant,
2278                              const SCEV *const *Ops, size_t NumOperands,
2279                              const APInt &Scale,
2280                              ScalarEvolution &SE) {
2281   bool Interesting = false;
2282 
2283   // Iterate over the add operands. They are sorted, with constants first.
2284   unsigned i = 0;
2285   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2286     ++i;
2287     // Pull a buried constant out to the outside.
2288     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2289       Interesting = true;
2290     AccumulatedConstant += Scale * C->getAPInt();
2291   }
2292 
2293   // Next comes everything else. We're especially interested in multiplies
2294   // here, but they're in the middle, so just visit the rest with one loop.
2295   for (; i != NumOperands; ++i) {
2296     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2297     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2298       APInt NewScale =
2299           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2300       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2301         // A multiplication of a constant with another add; recurse.
2302         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2303         Interesting |=
2304           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2305                                        Add->op_begin(), Add->getNumOperands(),
2306                                        NewScale, SE);
2307       } else {
2308         // A multiplication of a constant with some other value. Update
2309         // the map.
2310         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2311         const SCEV *Key = SE.getMulExpr(MulOps);
2312         auto Pair = M.insert({Key, NewScale});
2313         if (Pair.second) {
2314           NewOps.push_back(Pair.first->first);
2315         } else {
2316           Pair.first->second += NewScale;
2317           // The map already had an entry for this value, which may indicate
2318           // a folding opportunity.
2319           Interesting = true;
2320         }
2321       }
2322     } else {
2323       // An ordinary operand. Update the map.
2324       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2325           M.insert({Ops[i], Scale});
2326       if (Pair.second) {
2327         NewOps.push_back(Pair.first->first);
2328       } else {
2329         Pair.first->second += Scale;
2330         // The map already had an entry for this value, which may indicate
2331         // a folding opportunity.
2332         Interesting = true;
2333       }
2334     }
2335   }
2336 
2337   return Interesting;
2338 }
2339 
2340 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2341 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2342 // can't-overflow flags for the operation if possible.
2343 static SCEV::NoWrapFlags
2344 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2345                       const ArrayRef<const SCEV *> Ops,
2346                       SCEV::NoWrapFlags Flags) {
2347   using namespace std::placeholders;
2348 
2349   using OBO = OverflowingBinaryOperator;
2350 
2351   bool CanAnalyze =
2352       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2353   (void)CanAnalyze;
2354   assert(CanAnalyze && "don't call from other places!");
2355 
2356   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2357   SCEV::NoWrapFlags SignOrUnsignWrap =
2358       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2359 
2360   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2361   auto IsKnownNonNegative = [&](const SCEV *S) {
2362     return SE->isKnownNonNegative(S);
2363   };
2364 
2365   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2366     Flags =
2367         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2368 
2369   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2370 
2371   if (SignOrUnsignWrap != SignOrUnsignMask &&
2372       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2373       isa<SCEVConstant>(Ops[0])) {
2374 
2375     auto Opcode = [&] {
2376       switch (Type) {
2377       case scAddExpr:
2378         return Instruction::Add;
2379       case scMulExpr:
2380         return Instruction::Mul;
2381       default:
2382         llvm_unreachable("Unexpected SCEV op.");
2383       }
2384     }();
2385 
2386     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2387 
2388     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2389     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2390       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2391           Opcode, C, OBO::NoSignedWrap);
2392       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2393         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2394     }
2395 
2396     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2397     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2398       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2399           Opcode, C, OBO::NoUnsignedWrap);
2400       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2401         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2402     }
2403   }
2404 
2405   return Flags;
2406 }
2407 
2408 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2409   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2410 }
2411 
2412 /// Get a canonical add expression, or something simpler if possible.
2413 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2414                                         SCEV::NoWrapFlags Flags,
2415                                         unsigned Depth) {
2416   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2417          "only nuw or nsw allowed");
2418   assert(!Ops.empty() && "Cannot get empty add!");
2419   if (Ops.size() == 1) return Ops[0];
2420 #ifndef NDEBUG
2421   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2422   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2423     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2424            "SCEVAddExpr operand types don't match!");
2425 #endif
2426 
2427   // Sort by complexity, this groups all similar expression types together.
2428   GroupByComplexity(Ops, &LI, DT);
2429 
2430   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2431 
2432   // If there are any constants, fold them together.
2433   unsigned Idx = 0;
2434   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2435     ++Idx;
2436     assert(Idx < Ops.size());
2437     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2438       // We found two constants, fold them together!
2439       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2440       if (Ops.size() == 2) return Ops[0];
2441       Ops.erase(Ops.begin()+1);  // Erase the folded element
2442       LHSC = cast<SCEVConstant>(Ops[0]);
2443     }
2444 
2445     // If we are left with a constant zero being added, strip it off.
2446     if (LHSC->getValue()->isZero()) {
2447       Ops.erase(Ops.begin());
2448       --Idx;
2449     }
2450 
2451     if (Ops.size() == 1) return Ops[0];
2452   }
2453 
2454   // Limit recursion calls depth.
2455   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2456     return getOrCreateAddExpr(Ops, Flags);
2457 
2458   // Okay, check to see if the same value occurs in the operand list more than
2459   // once.  If so, merge them together into an multiply expression.  Since we
2460   // sorted the list, these values are required to be adjacent.
2461   Type *Ty = Ops[0]->getType();
2462   bool FoundMatch = false;
2463   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2464     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2465       // Scan ahead to count how many equal operands there are.
2466       unsigned Count = 2;
2467       while (i+Count != e && Ops[i+Count] == Ops[i])
2468         ++Count;
2469       // Merge the values into a multiply.
2470       const SCEV *Scale = getConstant(Ty, Count);
2471       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2472       if (Ops.size() == Count)
2473         return Mul;
2474       Ops[i] = Mul;
2475       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2476       --i; e -= Count - 1;
2477       FoundMatch = true;
2478     }
2479   if (FoundMatch)
2480     return getAddExpr(Ops, Flags, Depth + 1);
2481 
2482   // Check for truncates. If all the operands are truncated from the same
2483   // type, see if factoring out the truncate would permit the result to be
2484   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2485   // if the contents of the resulting outer trunc fold to something simple.
2486   auto FindTruncSrcType = [&]() -> Type * {
2487     // We're ultimately looking to fold an addrec of truncs and muls of only
2488     // constants and truncs, so if we find any other types of SCEV
2489     // as operands of the addrec then we bail and return nullptr here.
2490     // Otherwise, we return the type of the operand of a trunc that we find.
2491     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2492       return T->getOperand()->getType();
2493     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2494       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2495       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2496         return T->getOperand()->getType();
2497     }
2498     return nullptr;
2499   };
2500   if (auto *SrcType = FindTruncSrcType()) {
2501     SmallVector<const SCEV *, 8> LargeOps;
2502     bool Ok = true;
2503     // Check all the operands to see if they can be represented in the
2504     // source type of the truncate.
2505     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2506       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2507         if (T->getOperand()->getType() != SrcType) {
2508           Ok = false;
2509           break;
2510         }
2511         LargeOps.push_back(T->getOperand());
2512       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2513         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2514       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2515         SmallVector<const SCEV *, 8> LargeMulOps;
2516         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2517           if (const SCEVTruncateExpr *T =
2518                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2519             if (T->getOperand()->getType() != SrcType) {
2520               Ok = false;
2521               break;
2522             }
2523             LargeMulOps.push_back(T->getOperand());
2524           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2525             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2526           } else {
2527             Ok = false;
2528             break;
2529           }
2530         }
2531         if (Ok)
2532           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2533       } else {
2534         Ok = false;
2535         break;
2536       }
2537     }
2538     if (Ok) {
2539       // Evaluate the expression in the larger type.
2540       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2541       // If it folds to something simple, use it. Otherwise, don't.
2542       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2543         return getTruncateExpr(Fold, Ty);
2544     }
2545   }
2546 
2547   // Skip past any other cast SCEVs.
2548   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2549     ++Idx;
2550 
2551   // If there are add operands they would be next.
2552   if (Idx < Ops.size()) {
2553     bool DeletedAdd = false;
2554     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2555       if (Ops.size() > AddOpsInlineThreshold ||
2556           Add->getNumOperands() > AddOpsInlineThreshold)
2557         break;
2558       // If we have an add, expand the add operands onto the end of the operands
2559       // list.
2560       Ops.erase(Ops.begin()+Idx);
2561       Ops.append(Add->op_begin(), Add->op_end());
2562       DeletedAdd = true;
2563     }
2564 
2565     // If we deleted at least one add, we added operands to the end of the list,
2566     // and they are not necessarily sorted.  Recurse to resort and resimplify
2567     // any operands we just acquired.
2568     if (DeletedAdd)
2569       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2570   }
2571 
2572   // Skip over the add expression until we get to a multiply.
2573   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2574     ++Idx;
2575 
2576   // Check to see if there are any folding opportunities present with
2577   // operands multiplied by constant values.
2578   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2579     uint64_t BitWidth = getTypeSizeInBits(Ty);
2580     DenseMap<const SCEV *, APInt> M;
2581     SmallVector<const SCEV *, 8> NewOps;
2582     APInt AccumulatedConstant(BitWidth, 0);
2583     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2584                                      Ops.data(), Ops.size(),
2585                                      APInt(BitWidth, 1), *this)) {
2586       struct APIntCompare {
2587         bool operator()(const APInt &LHS, const APInt &RHS) const {
2588           return LHS.ult(RHS);
2589         }
2590       };
2591 
2592       // Some interesting folding opportunity is present, so its worthwhile to
2593       // re-generate the operands list. Group the operands by constant scale,
2594       // to avoid multiplying by the same constant scale multiple times.
2595       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2596       for (const SCEV *NewOp : NewOps)
2597         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2598       // Re-generate the operands list.
2599       Ops.clear();
2600       if (AccumulatedConstant != 0)
2601         Ops.push_back(getConstant(AccumulatedConstant));
2602       for (auto &MulOp : MulOpLists)
2603         if (MulOp.first != 0)
2604           Ops.push_back(getMulExpr(
2605               getConstant(MulOp.first),
2606               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2607               SCEV::FlagAnyWrap, Depth + 1));
2608       if (Ops.empty())
2609         return getZero(Ty);
2610       if (Ops.size() == 1)
2611         return Ops[0];
2612       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2613     }
2614   }
2615 
2616   // If we are adding something to a multiply expression, make sure the
2617   // something is not already an operand of the multiply.  If so, merge it into
2618   // the multiply.
2619   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2620     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2621     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2622       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2623       if (isa<SCEVConstant>(MulOpSCEV))
2624         continue;
2625       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2626         if (MulOpSCEV == Ops[AddOp]) {
2627           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2628           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2629           if (Mul->getNumOperands() != 2) {
2630             // If the multiply has more than two operands, we must get the
2631             // Y*Z term.
2632             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2633                                                 Mul->op_begin()+MulOp);
2634             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2635             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2636           }
2637           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2638           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2639           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2640                                             SCEV::FlagAnyWrap, Depth + 1);
2641           if (Ops.size() == 2) return OuterMul;
2642           if (AddOp < Idx) {
2643             Ops.erase(Ops.begin()+AddOp);
2644             Ops.erase(Ops.begin()+Idx-1);
2645           } else {
2646             Ops.erase(Ops.begin()+Idx);
2647             Ops.erase(Ops.begin()+AddOp-1);
2648           }
2649           Ops.push_back(OuterMul);
2650           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2651         }
2652 
2653       // Check this multiply against other multiplies being added together.
2654       for (unsigned OtherMulIdx = Idx+1;
2655            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2656            ++OtherMulIdx) {
2657         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2658         // If MulOp occurs in OtherMul, we can fold the two multiplies
2659         // together.
2660         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2661              OMulOp != e; ++OMulOp)
2662           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2663             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2664             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2665             if (Mul->getNumOperands() != 2) {
2666               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2667                                                   Mul->op_begin()+MulOp);
2668               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2669               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2670             }
2671             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2672             if (OtherMul->getNumOperands() != 2) {
2673               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2674                                                   OtherMul->op_begin()+OMulOp);
2675               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2676               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2677             }
2678             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2679             const SCEV *InnerMulSum =
2680                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2681             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2682                                               SCEV::FlagAnyWrap, Depth + 1);
2683             if (Ops.size() == 2) return OuterMul;
2684             Ops.erase(Ops.begin()+Idx);
2685             Ops.erase(Ops.begin()+OtherMulIdx-1);
2686             Ops.push_back(OuterMul);
2687             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2688           }
2689       }
2690     }
2691   }
2692 
2693   // If there are any add recurrences in the operands list, see if any other
2694   // added values are loop invariant.  If so, we can fold them into the
2695   // recurrence.
2696   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2697     ++Idx;
2698 
2699   // Scan over all recurrences, trying to fold loop invariants into them.
2700   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2701     // Scan all of the other operands to this add and add them to the vector if
2702     // they are loop invariant w.r.t. the recurrence.
2703     SmallVector<const SCEV *, 8> LIOps;
2704     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2705     const Loop *AddRecLoop = AddRec->getLoop();
2706     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2707       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2708         LIOps.push_back(Ops[i]);
2709         Ops.erase(Ops.begin()+i);
2710         --i; --e;
2711       }
2712 
2713     // If we found some loop invariants, fold them into the recurrence.
2714     if (!LIOps.empty()) {
2715       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2716       LIOps.push_back(AddRec->getStart());
2717 
2718       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2719                                              AddRec->op_end());
2720       // This follows from the fact that the no-wrap flags on the outer add
2721       // expression are applicable on the 0th iteration, when the add recurrence
2722       // will be equal to its start value.
2723       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2724 
2725       // Build the new addrec. Propagate the NUW and NSW flags if both the
2726       // outer add and the inner addrec are guaranteed to have no overflow.
2727       // Always propagate NW.
2728       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2729       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2730 
2731       // If all of the other operands were loop invariant, we are done.
2732       if (Ops.size() == 1) return NewRec;
2733 
2734       // Otherwise, add the folded AddRec by the non-invariant parts.
2735       for (unsigned i = 0;; ++i)
2736         if (Ops[i] == AddRec) {
2737           Ops[i] = NewRec;
2738           break;
2739         }
2740       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2741     }
2742 
2743     // Okay, if there weren't any loop invariants to be folded, check to see if
2744     // there are multiple AddRec's with the same loop induction variable being
2745     // added together.  If so, we can fold them.
2746     for (unsigned OtherIdx = Idx+1;
2747          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2748          ++OtherIdx) {
2749       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2750       // so that the 1st found AddRecExpr is dominated by all others.
2751       assert(DT.dominates(
2752            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2753            AddRec->getLoop()->getHeader()) &&
2754         "AddRecExprs are not sorted in reverse dominance order?");
2755       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2756         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2757         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2758                                                AddRec->op_end());
2759         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2760              ++OtherIdx) {
2761           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2762           if (OtherAddRec->getLoop() == AddRecLoop) {
2763             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2764                  i != e; ++i) {
2765               if (i >= AddRecOps.size()) {
2766                 AddRecOps.append(OtherAddRec->op_begin()+i,
2767                                  OtherAddRec->op_end());
2768                 break;
2769               }
2770               SmallVector<const SCEV *, 2> TwoOps = {
2771                   AddRecOps[i], OtherAddRec->getOperand(i)};
2772               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2773             }
2774             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2775           }
2776         }
2777         // Step size has changed, so we cannot guarantee no self-wraparound.
2778         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2779         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2780       }
2781     }
2782 
2783     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2784     // next one.
2785   }
2786 
2787   // Okay, it looks like we really DO need an add expr.  Check to see if we
2788   // already have one, otherwise create a new one.
2789   return getOrCreateAddExpr(Ops, Flags);
2790 }
2791 
2792 const SCEV *
2793 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2794                                     SCEV::NoWrapFlags Flags) {
2795   FoldingSetNodeID ID;
2796   ID.AddInteger(scAddExpr);
2797   for (const SCEV *Op : Ops)
2798     ID.AddPointer(Op);
2799   void *IP = nullptr;
2800   SCEVAddExpr *S =
2801       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2802   if (!S) {
2803     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2804     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2805     S = new (SCEVAllocator)
2806         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2807     UniqueSCEVs.InsertNode(S, IP);
2808     addToLoopUseLists(S);
2809   }
2810   S->setNoWrapFlags(Flags);
2811   return S;
2812 }
2813 
2814 const SCEV *
2815 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2816                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2817   FoldingSetNodeID ID;
2818   ID.AddInteger(scAddRecExpr);
2819   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2820     ID.AddPointer(Ops[i]);
2821   ID.AddPointer(L);
2822   void *IP = nullptr;
2823   SCEVAddRecExpr *S =
2824       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2825   if (!S) {
2826     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2827     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2828     S = new (SCEVAllocator)
2829         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2830     UniqueSCEVs.InsertNode(S, IP);
2831     addToLoopUseLists(S);
2832   }
2833   S->setNoWrapFlags(Flags);
2834   return S;
2835 }
2836 
2837 const SCEV *
2838 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2839                                     SCEV::NoWrapFlags Flags) {
2840   FoldingSetNodeID ID;
2841   ID.AddInteger(scMulExpr);
2842   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2843     ID.AddPointer(Ops[i]);
2844   void *IP = nullptr;
2845   SCEVMulExpr *S =
2846     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2847   if (!S) {
2848     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2849     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2850     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2851                                         O, Ops.size());
2852     UniqueSCEVs.InsertNode(S, IP);
2853     addToLoopUseLists(S);
2854   }
2855   S->setNoWrapFlags(Flags);
2856   return S;
2857 }
2858 
2859 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2860   uint64_t k = i*j;
2861   if (j > 1 && k / j != i) Overflow = true;
2862   return k;
2863 }
2864 
2865 /// Compute the result of "n choose k", the binomial coefficient.  If an
2866 /// intermediate computation overflows, Overflow will be set and the return will
2867 /// be garbage. Overflow is not cleared on absence of overflow.
2868 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2869   // We use the multiplicative formula:
2870   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2871   // At each iteration, we take the n-th term of the numeral and divide by the
2872   // (k-n)th term of the denominator.  This division will always produce an
2873   // integral result, and helps reduce the chance of overflow in the
2874   // intermediate computations. However, we can still overflow even when the
2875   // final result would fit.
2876 
2877   if (n == 0 || n == k) return 1;
2878   if (k > n) return 0;
2879 
2880   if (k > n/2)
2881     k = n-k;
2882 
2883   uint64_t r = 1;
2884   for (uint64_t i = 1; i <= k; ++i) {
2885     r = umul_ov(r, n-(i-1), Overflow);
2886     r /= i;
2887   }
2888   return r;
2889 }
2890 
2891 /// Determine if any of the operands in this SCEV are a constant or if
2892 /// any of the add or multiply expressions in this SCEV contain a constant.
2893 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2894   struct FindConstantInAddMulChain {
2895     bool FoundConstant = false;
2896 
2897     bool follow(const SCEV *S) {
2898       FoundConstant |= isa<SCEVConstant>(S);
2899       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2900     }
2901 
2902     bool isDone() const {
2903       return FoundConstant;
2904     }
2905   };
2906 
2907   FindConstantInAddMulChain F;
2908   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2909   ST.visitAll(StartExpr);
2910   return F.FoundConstant;
2911 }
2912 
2913 /// Get a canonical multiply expression, or something simpler if possible.
2914 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2915                                         SCEV::NoWrapFlags Flags,
2916                                         unsigned Depth) {
2917   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2918          "only nuw or nsw allowed");
2919   assert(!Ops.empty() && "Cannot get empty mul!");
2920   if (Ops.size() == 1) return Ops[0];
2921 #ifndef NDEBUG
2922   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2923   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2924     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2925            "SCEVMulExpr operand types don't match!");
2926 #endif
2927 
2928   // Sort by complexity, this groups all similar expression types together.
2929   GroupByComplexity(Ops, &LI, DT);
2930 
2931   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2932 
2933   // Limit recursion calls depth.
2934   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2935     return getOrCreateMulExpr(Ops, Flags);
2936 
2937   // If there are any constants, fold them together.
2938   unsigned Idx = 0;
2939   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2940 
2941     if (Ops.size() == 2)
2942       // C1*(C2+V) -> C1*C2 + C1*V
2943       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2944         // If any of Add's ops are Adds or Muls with a constant, apply this
2945         // transformation as well.
2946         //
2947         // TODO: There are some cases where this transformation is not
2948         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2949         // this transformation should be narrowed down.
2950         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2951           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2952                                        SCEV::FlagAnyWrap, Depth + 1),
2953                             getMulExpr(LHSC, Add->getOperand(1),
2954                                        SCEV::FlagAnyWrap, Depth + 1),
2955                             SCEV::FlagAnyWrap, Depth + 1);
2956 
2957     ++Idx;
2958     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2959       // We found two constants, fold them together!
2960       ConstantInt *Fold =
2961           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2962       Ops[0] = getConstant(Fold);
2963       Ops.erase(Ops.begin()+1);  // Erase the folded element
2964       if (Ops.size() == 1) return Ops[0];
2965       LHSC = cast<SCEVConstant>(Ops[0]);
2966     }
2967 
2968     // If we are left with a constant one being multiplied, strip it off.
2969     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2970       Ops.erase(Ops.begin());
2971       --Idx;
2972     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2973       // If we have a multiply of zero, it will always be zero.
2974       return Ops[0];
2975     } else if (Ops[0]->isAllOnesValue()) {
2976       // If we have a mul by -1 of an add, try distributing the -1 among the
2977       // add operands.
2978       if (Ops.size() == 2) {
2979         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2980           SmallVector<const SCEV *, 4> NewOps;
2981           bool AnyFolded = false;
2982           for (const SCEV *AddOp : Add->operands()) {
2983             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2984                                          Depth + 1);
2985             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2986             NewOps.push_back(Mul);
2987           }
2988           if (AnyFolded)
2989             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2990         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2991           // Negation preserves a recurrence's no self-wrap property.
2992           SmallVector<const SCEV *, 4> Operands;
2993           for (const SCEV *AddRecOp : AddRec->operands())
2994             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2995                                           Depth + 1));
2996 
2997           return getAddRecExpr(Operands, AddRec->getLoop(),
2998                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2999         }
3000       }
3001     }
3002 
3003     if (Ops.size() == 1)
3004       return Ops[0];
3005   }
3006 
3007   // Skip over the add expression until we get to a multiply.
3008   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3009     ++Idx;
3010 
3011   // If there are mul operands inline them all into this expression.
3012   if (Idx < Ops.size()) {
3013     bool DeletedMul = false;
3014     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3015       if (Ops.size() > MulOpsInlineThreshold)
3016         break;
3017       // If we have an mul, expand the mul operands onto the end of the
3018       // operands list.
3019       Ops.erase(Ops.begin()+Idx);
3020       Ops.append(Mul->op_begin(), Mul->op_end());
3021       DeletedMul = true;
3022     }
3023 
3024     // If we deleted at least one mul, we added operands to the end of the
3025     // list, and they are not necessarily sorted.  Recurse to resort and
3026     // resimplify any operands we just acquired.
3027     if (DeletedMul)
3028       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3029   }
3030 
3031   // If there are any add recurrences in the operands list, see if any other
3032   // added values are loop invariant.  If so, we can fold them into the
3033   // recurrence.
3034   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3035     ++Idx;
3036 
3037   // Scan over all recurrences, trying to fold loop invariants into them.
3038   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3039     // Scan all of the other operands to this mul and add them to the vector
3040     // if they are loop invariant w.r.t. the recurrence.
3041     SmallVector<const SCEV *, 8> LIOps;
3042     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3043     const Loop *AddRecLoop = AddRec->getLoop();
3044     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3045       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3046         LIOps.push_back(Ops[i]);
3047         Ops.erase(Ops.begin()+i);
3048         --i; --e;
3049       }
3050 
3051     // If we found some loop invariants, fold them into the recurrence.
3052     if (!LIOps.empty()) {
3053       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3054       SmallVector<const SCEV *, 4> NewOps;
3055       NewOps.reserve(AddRec->getNumOperands());
3056       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3057       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3058         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3059                                     SCEV::FlagAnyWrap, Depth + 1));
3060 
3061       // Build the new addrec. Propagate the NUW and NSW flags if both the
3062       // outer mul and the inner addrec are guaranteed to have no overflow.
3063       //
3064       // No self-wrap cannot be guaranteed after changing the step size, but
3065       // will be inferred if either NUW or NSW is true.
3066       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3067       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3068 
3069       // If all of the other operands were loop invariant, we are done.
3070       if (Ops.size() == 1) return NewRec;
3071 
3072       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3073       for (unsigned i = 0;; ++i)
3074         if (Ops[i] == AddRec) {
3075           Ops[i] = NewRec;
3076           break;
3077         }
3078       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3079     }
3080 
3081     // Okay, if there weren't any loop invariants to be folded, check to see
3082     // if there are multiple AddRec's with the same loop induction variable
3083     // being multiplied together.  If so, we can fold them.
3084 
3085     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3086     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3087     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3088     //   ]]],+,...up to x=2n}.
3089     // Note that the arguments to choose() are always integers with values
3090     // known at compile time, never SCEV objects.
3091     //
3092     // The implementation avoids pointless extra computations when the two
3093     // addrec's are of different length (mathematically, it's equivalent to
3094     // an infinite stream of zeros on the right).
3095     bool OpsModified = false;
3096     for (unsigned OtherIdx = Idx+1;
3097          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3098          ++OtherIdx) {
3099       const SCEVAddRecExpr *OtherAddRec =
3100         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3101       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3102         continue;
3103 
3104       // Limit max number of arguments to avoid creation of unreasonably big
3105       // SCEVAddRecs with very complex operands.
3106       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3107           MaxAddRecSize || isHugeExpression(AddRec) ||
3108           isHugeExpression(OtherAddRec))
3109         continue;
3110 
3111       bool Overflow = false;
3112       Type *Ty = AddRec->getType();
3113       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3114       SmallVector<const SCEV*, 7> AddRecOps;
3115       for (int x = 0, xe = AddRec->getNumOperands() +
3116              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3117         SmallVector <const SCEV *, 7> SumOps;
3118         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3119           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3120           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3121                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3122                z < ze && !Overflow; ++z) {
3123             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3124             uint64_t Coeff;
3125             if (LargerThan64Bits)
3126               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3127             else
3128               Coeff = Coeff1*Coeff2;
3129             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3130             const SCEV *Term1 = AddRec->getOperand(y-z);
3131             const SCEV *Term2 = OtherAddRec->getOperand(z);
3132             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3133                                         SCEV::FlagAnyWrap, Depth + 1));
3134           }
3135         }
3136         if (SumOps.empty())
3137           SumOps.push_back(getZero(Ty));
3138         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3139       }
3140       if (!Overflow) {
3141         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3142                                               SCEV::FlagAnyWrap);
3143         if (Ops.size() == 2) return NewAddRec;
3144         Ops[Idx] = NewAddRec;
3145         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3146         OpsModified = true;
3147         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3148         if (!AddRec)
3149           break;
3150       }
3151     }
3152     if (OpsModified)
3153       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3154 
3155     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3156     // next one.
3157   }
3158 
3159   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3160   // already have one, otherwise create a new one.
3161   return getOrCreateMulExpr(Ops, Flags);
3162 }
3163 
3164 /// Represents an unsigned remainder expression based on unsigned division.
3165 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3166                                          const SCEV *RHS) {
3167   assert(getEffectiveSCEVType(LHS->getType()) ==
3168          getEffectiveSCEVType(RHS->getType()) &&
3169          "SCEVURemExpr operand types don't match!");
3170 
3171   // Short-circuit easy cases
3172   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3173     // If constant is one, the result is trivial
3174     if (RHSC->getValue()->isOne())
3175       return getZero(LHS->getType()); // X urem 1 --> 0
3176 
3177     // If constant is a power of two, fold into a zext(trunc(LHS)).
3178     if (RHSC->getAPInt().isPowerOf2()) {
3179       Type *FullTy = LHS->getType();
3180       Type *TruncTy =
3181           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3182       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3183     }
3184   }
3185 
3186   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3187   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3188   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3189   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3190 }
3191 
3192 /// Get a canonical unsigned division expression, or something simpler if
3193 /// possible.
3194 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3195                                          const SCEV *RHS) {
3196   assert(getEffectiveSCEVType(LHS->getType()) ==
3197          getEffectiveSCEVType(RHS->getType()) &&
3198          "SCEVUDivExpr operand types don't match!");
3199 
3200   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3201     if (RHSC->getValue()->isOne())
3202       return LHS;                               // X udiv 1 --> x
3203     // If the denominator is zero, the result of the udiv is undefined. Don't
3204     // try to analyze it, because the resolution chosen here may differ from
3205     // the resolution chosen in other parts of the compiler.
3206     if (!RHSC->getValue()->isZero()) {
3207       // Determine if the division can be folded into the operands of
3208       // its operands.
3209       // TODO: Generalize this to non-constants by using known-bits information.
3210       Type *Ty = LHS->getType();
3211       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3212       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3213       // For non-power-of-two values, effectively round the value up to the
3214       // nearest power of two.
3215       if (!RHSC->getAPInt().isPowerOf2())
3216         ++MaxShiftAmt;
3217       IntegerType *ExtTy =
3218         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3219       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3220         if (const SCEVConstant *Step =
3221             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3222           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3223           const APInt &StepInt = Step->getAPInt();
3224           const APInt &DivInt = RHSC->getAPInt();
3225           if (!StepInt.urem(DivInt) &&
3226               getZeroExtendExpr(AR, ExtTy) ==
3227               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3228                             getZeroExtendExpr(Step, ExtTy),
3229                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3230             SmallVector<const SCEV *, 4> Operands;
3231             for (const SCEV *Op : AR->operands())
3232               Operands.push_back(getUDivExpr(Op, RHS));
3233             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3234           }
3235           /// Get a canonical UDivExpr for a recurrence.
3236           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3237           // We can currently only fold X%N if X is constant.
3238           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3239           if (StartC && !DivInt.urem(StepInt) &&
3240               getZeroExtendExpr(AR, ExtTy) ==
3241               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3242                             getZeroExtendExpr(Step, ExtTy),
3243                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3244             const APInt &StartInt = StartC->getAPInt();
3245             const APInt &StartRem = StartInt.urem(StepInt);
3246             if (StartRem != 0)
3247               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3248                                   AR->getLoop(), SCEV::FlagNW);
3249           }
3250         }
3251       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3252       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3253         SmallVector<const SCEV *, 4> Operands;
3254         for (const SCEV *Op : M->operands())
3255           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3256         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3257           // Find an operand that's safely divisible.
3258           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3259             const SCEV *Op = M->getOperand(i);
3260             const SCEV *Div = getUDivExpr(Op, RHSC);
3261             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3262               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3263                                                       M->op_end());
3264               Operands[i] = Div;
3265               return getMulExpr(Operands);
3266             }
3267           }
3268       }
3269 
3270       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3271       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3272         if (auto *DivisorConstant =
3273                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3274           bool Overflow = false;
3275           APInt NewRHS =
3276               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3277           if (Overflow) {
3278             return getConstant(RHSC->getType(), 0, false);
3279           }
3280           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3281         }
3282       }
3283 
3284       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3285       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3286         SmallVector<const SCEV *, 4> Operands;
3287         for (const SCEV *Op : A->operands())
3288           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3289         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3290           Operands.clear();
3291           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3292             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3293             if (isa<SCEVUDivExpr>(Op) ||
3294                 getMulExpr(Op, RHS) != A->getOperand(i))
3295               break;
3296             Operands.push_back(Op);
3297           }
3298           if (Operands.size() == A->getNumOperands())
3299             return getAddExpr(Operands);
3300         }
3301       }
3302 
3303       // Fold if both operands are constant.
3304       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3305         Constant *LHSCV = LHSC->getValue();
3306         Constant *RHSCV = RHSC->getValue();
3307         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3308                                                                    RHSCV)));
3309       }
3310     }
3311   }
3312 
3313   FoldingSetNodeID ID;
3314   ID.AddInteger(scUDivExpr);
3315   ID.AddPointer(LHS);
3316   ID.AddPointer(RHS);
3317   void *IP = nullptr;
3318   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3319   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3320                                              LHS, RHS);
3321   UniqueSCEVs.InsertNode(S, IP);
3322   addToLoopUseLists(S);
3323   return S;
3324 }
3325 
3326 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3327   APInt A = C1->getAPInt().abs();
3328   APInt B = C2->getAPInt().abs();
3329   uint32_t ABW = A.getBitWidth();
3330   uint32_t BBW = B.getBitWidth();
3331 
3332   if (ABW > BBW)
3333     B = B.zext(ABW);
3334   else if (ABW < BBW)
3335     A = A.zext(BBW);
3336 
3337   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3338 }
3339 
3340 /// Get a canonical unsigned division expression, or something simpler if
3341 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3342 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3343 /// it's not exact because the udiv may be clearing bits.
3344 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3345                                               const SCEV *RHS) {
3346   // TODO: we could try to find factors in all sorts of things, but for now we
3347   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3348   // end of this file for inspiration.
3349 
3350   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3351   if (!Mul || !Mul->hasNoUnsignedWrap())
3352     return getUDivExpr(LHS, RHS);
3353 
3354   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3355     // If the mulexpr multiplies by a constant, then that constant must be the
3356     // first element of the mulexpr.
3357     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3358       if (LHSCst == RHSCst) {
3359         SmallVector<const SCEV *, 2> Operands;
3360         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3361         return getMulExpr(Operands);
3362       }
3363 
3364       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3365       // that there's a factor provided by one of the other terms. We need to
3366       // check.
3367       APInt Factor = gcd(LHSCst, RHSCst);
3368       if (!Factor.isIntN(1)) {
3369         LHSCst =
3370             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3371         RHSCst =
3372             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3373         SmallVector<const SCEV *, 2> Operands;
3374         Operands.push_back(LHSCst);
3375         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3376         LHS = getMulExpr(Operands);
3377         RHS = RHSCst;
3378         Mul = dyn_cast<SCEVMulExpr>(LHS);
3379         if (!Mul)
3380           return getUDivExactExpr(LHS, RHS);
3381       }
3382     }
3383   }
3384 
3385   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3386     if (Mul->getOperand(i) == RHS) {
3387       SmallVector<const SCEV *, 2> Operands;
3388       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3389       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3390       return getMulExpr(Operands);
3391     }
3392   }
3393 
3394   return getUDivExpr(LHS, RHS);
3395 }
3396 
3397 /// Get an add recurrence expression for the specified loop.  Simplify the
3398 /// expression as much as possible.
3399 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3400                                            const Loop *L,
3401                                            SCEV::NoWrapFlags Flags) {
3402   SmallVector<const SCEV *, 4> Operands;
3403   Operands.push_back(Start);
3404   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3405     if (StepChrec->getLoop() == L) {
3406       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3407       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3408     }
3409 
3410   Operands.push_back(Step);
3411   return getAddRecExpr(Operands, L, Flags);
3412 }
3413 
3414 /// Get an add recurrence expression for the specified loop.  Simplify the
3415 /// expression as much as possible.
3416 const SCEV *
3417 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3418                                const Loop *L, SCEV::NoWrapFlags Flags) {
3419   if (Operands.size() == 1) return Operands[0];
3420 #ifndef NDEBUG
3421   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3422   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3423     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3424            "SCEVAddRecExpr operand types don't match!");
3425   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3426     assert(isLoopInvariant(Operands[i], L) &&
3427            "SCEVAddRecExpr operand is not loop-invariant!");
3428 #endif
3429 
3430   if (Operands.back()->isZero()) {
3431     Operands.pop_back();
3432     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3433   }
3434 
3435   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3436   // use that information to infer NUW and NSW flags. However, computing a
3437   // BE count requires calling getAddRecExpr, so we may not yet have a
3438   // meaningful BE count at this point (and if we don't, we'd be stuck
3439   // with a SCEVCouldNotCompute as the cached BE count).
3440 
3441   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3442 
3443   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3444   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3445     const Loop *NestedLoop = NestedAR->getLoop();
3446     if (L->contains(NestedLoop)
3447             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3448             : (!NestedLoop->contains(L) &&
3449                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3450       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3451                                                   NestedAR->op_end());
3452       Operands[0] = NestedAR->getStart();
3453       // AddRecs require their operands be loop-invariant with respect to their
3454       // loops. Don't perform this transformation if it would break this
3455       // requirement.
3456       bool AllInvariant = all_of(
3457           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3458 
3459       if (AllInvariant) {
3460         // Create a recurrence for the outer loop with the same step size.
3461         //
3462         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3463         // inner recurrence has the same property.
3464         SCEV::NoWrapFlags OuterFlags =
3465           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3466 
3467         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3468         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3469           return isLoopInvariant(Op, NestedLoop);
3470         });
3471 
3472         if (AllInvariant) {
3473           // Ok, both add recurrences are valid after the transformation.
3474           //
3475           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3476           // the outer recurrence has the same property.
3477           SCEV::NoWrapFlags InnerFlags =
3478             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3479           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3480         }
3481       }
3482       // Reset Operands to its original state.
3483       Operands[0] = NestedAR;
3484     }
3485   }
3486 
3487   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3488   // already have one, otherwise create a new one.
3489   return getOrCreateAddRecExpr(Operands, L, Flags);
3490 }
3491 
3492 const SCEV *
3493 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3494                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3495   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3496   // getSCEV(Base)->getType() has the same address space as Base->getType()
3497   // because SCEV::getType() preserves the address space.
3498   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3499   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3500   // instruction to its SCEV, because the Instruction may be guarded by control
3501   // flow and the no-overflow bits may not be valid for the expression in any
3502   // context. This can be fixed similarly to how these flags are handled for
3503   // adds.
3504   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3505                                              : SCEV::FlagAnyWrap;
3506 
3507   const SCEV *TotalOffset = getZero(IntPtrTy);
3508   // The array size is unimportant. The first thing we do on CurTy is getting
3509   // its element type.
3510   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3511   for (const SCEV *IndexExpr : IndexExprs) {
3512     // Compute the (potentially symbolic) offset in bytes for this index.
3513     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3514       // For a struct, add the member offset.
3515       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3516       unsigned FieldNo = Index->getZExtValue();
3517       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3518 
3519       // Add the field offset to the running total offset.
3520       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3521 
3522       // Update CurTy to the type of the field at Index.
3523       CurTy = STy->getTypeAtIndex(Index);
3524     } else {
3525       // Update CurTy to its element type.
3526       CurTy = cast<SequentialType>(CurTy)->getElementType();
3527       // For an array, add the element offset, explicitly scaled.
3528       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3529       // Getelementptr indices are signed.
3530       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3531 
3532       // Multiply the index by the element size to compute the element offset.
3533       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3534 
3535       // Add the element offset to the running total offset.
3536       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3537     }
3538   }
3539 
3540   // Add the total offset from all the GEP indices to the base.
3541   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3542 }
3543 
3544 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3545 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3546                                          ArrayRef<const SCEV *> Ops) {
3547   FoldingSetNodeID ID;
3548   void *IP = nullptr;
3549   ID.AddInteger(SCEVType);
3550   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3551     ID.AddPointer(Ops[i]);
3552   return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3553       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3554 }
3555 
3556 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3557                                            SmallVectorImpl<const SCEV *> &Ops) {
3558   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3559   if (Ops.size() == 1) return Ops[0];
3560 #ifndef NDEBUG
3561   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3562   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3563     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3564            "Operand types don't match!");
3565 #endif
3566 
3567   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3568   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3569 
3570   // Sort by complexity, this groups all similar expression types together.
3571   GroupByComplexity(Ops, &LI, DT);
3572 
3573   // Check if we have created the same expression before.
3574   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3575     return S;
3576   }
3577 
3578   // If there are any constants, fold them together.
3579   unsigned Idx = 0;
3580   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3581     ++Idx;
3582     assert(Idx < Ops.size());
3583     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3584       if (Kind == scSMaxExpr)
3585         return APIntOps::smax(LHS, RHS);
3586       else if (Kind == scSMinExpr)
3587         return APIntOps::smin(LHS, RHS);
3588       else if (Kind == scUMaxExpr)
3589         return APIntOps::umax(LHS, RHS);
3590       else if (Kind == scUMinExpr)
3591         return APIntOps::umin(LHS, RHS);
3592       llvm_unreachable("Unknown SCEV min/max opcode");
3593     };
3594 
3595     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3596       // We found two constants, fold them together!
3597       ConstantInt *Fold = ConstantInt::get(
3598           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3599       Ops[0] = getConstant(Fold);
3600       Ops.erase(Ops.begin()+1);  // Erase the folded element
3601       if (Ops.size() == 1) return Ops[0];
3602       LHSC = cast<SCEVConstant>(Ops[0]);
3603     }
3604 
3605     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3606     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3607 
3608     if (IsMax ? IsMinV : IsMaxV) {
3609       // If we are left with a constant minimum(/maximum)-int, strip it off.
3610       Ops.erase(Ops.begin());
3611       --Idx;
3612     } else if (IsMax ? IsMaxV : IsMinV) {
3613       // If we have a max(/min) with a constant maximum(/minimum)-int,
3614       // it will always be the extremum.
3615       return LHSC;
3616     }
3617 
3618     if (Ops.size() == 1) return Ops[0];
3619   }
3620 
3621   // Find the first operation of the same kind
3622   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3623     ++Idx;
3624 
3625   // Check to see if one of the operands is of the same kind. If so, expand its
3626   // operands onto our operand list, and recurse to simplify.
3627   if (Idx < Ops.size()) {
3628     bool DeletedAny = false;
3629     while (Ops[Idx]->getSCEVType() == Kind) {
3630       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3631       Ops.erase(Ops.begin()+Idx);
3632       Ops.append(SMME->op_begin(), SMME->op_end());
3633       DeletedAny = true;
3634     }
3635 
3636     if (DeletedAny)
3637       return getMinMaxExpr(Kind, Ops);
3638   }
3639 
3640   // Okay, check to see if the same value occurs in the operand list twice.  If
3641   // so, delete one.  Since we sorted the list, these values are required to
3642   // be adjacent.
3643   llvm::CmpInst::Predicate GEPred =
3644       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3645   llvm::CmpInst::Predicate LEPred =
3646       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3647   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3648   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3649   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3650     if (Ops[i] == Ops[i + 1] ||
3651         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3652       //  X op Y op Y  -->  X op Y
3653       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3654       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3655       --i;
3656       --e;
3657     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3658                                                Ops[i + 1])) {
3659       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3660       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3661       --i;
3662       --e;
3663     }
3664   }
3665 
3666   if (Ops.size() == 1) return Ops[0];
3667 
3668   assert(!Ops.empty() && "Reduced smax down to nothing!");
3669 
3670   // Okay, it looks like we really DO need an expr.  Check to see if we
3671   // already have one, otherwise create a new one.
3672   const SCEV *ExistingSCEV;
3673   FoldingSetNodeID ID;
3674   void *IP;
3675   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3676   if (ExistingSCEV)
3677     return ExistingSCEV;
3678   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3679   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3680   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3681       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3682 
3683   UniqueSCEVs.InsertNode(S, IP);
3684   addToLoopUseLists(S);
3685   return S;
3686 }
3687 
3688 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3689   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3690   return getSMaxExpr(Ops);
3691 }
3692 
3693 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3694   return getMinMaxExpr(scSMaxExpr, Ops);
3695 }
3696 
3697 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3698   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3699   return getUMaxExpr(Ops);
3700 }
3701 
3702 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3703   return getMinMaxExpr(scUMaxExpr, Ops);
3704 }
3705 
3706 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3707                                          const SCEV *RHS) {
3708   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3709   return getSMinExpr(Ops);
3710 }
3711 
3712 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3713   return getMinMaxExpr(scSMinExpr, Ops);
3714 }
3715 
3716 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3717                                          const SCEV *RHS) {
3718   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3719   return getUMinExpr(Ops);
3720 }
3721 
3722 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3723   return getMinMaxExpr(scUMinExpr, Ops);
3724 }
3725 
3726 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3727   // We can bypass creating a target-independent
3728   // constant expression and then folding it back into a ConstantInt.
3729   // This is just a compile-time optimization.
3730   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3731 }
3732 
3733 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3734                                              StructType *STy,
3735                                              unsigned FieldNo) {
3736   // We can bypass creating a target-independent
3737   // constant expression and then folding it back into a ConstantInt.
3738   // This is just a compile-time optimization.
3739   return getConstant(
3740       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3741 }
3742 
3743 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3744   // Don't attempt to do anything other than create a SCEVUnknown object
3745   // here.  createSCEV only calls getUnknown after checking for all other
3746   // interesting possibilities, and any other code that calls getUnknown
3747   // is doing so in order to hide a value from SCEV canonicalization.
3748 
3749   FoldingSetNodeID ID;
3750   ID.AddInteger(scUnknown);
3751   ID.AddPointer(V);
3752   void *IP = nullptr;
3753   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3754     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3755            "Stale SCEVUnknown in uniquing map!");
3756     return S;
3757   }
3758   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3759                                             FirstUnknown);
3760   FirstUnknown = cast<SCEVUnknown>(S);
3761   UniqueSCEVs.InsertNode(S, IP);
3762   return S;
3763 }
3764 
3765 //===----------------------------------------------------------------------===//
3766 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3767 //
3768 
3769 /// Test if values of the given type are analyzable within the SCEV
3770 /// framework. This primarily includes integer types, and it can optionally
3771 /// include pointer types if the ScalarEvolution class has access to
3772 /// target-specific information.
3773 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3774   // Integers and pointers are always SCEVable.
3775   return Ty->isIntOrPtrTy();
3776 }
3777 
3778 /// Return the size in bits of the specified type, for which isSCEVable must
3779 /// return true.
3780 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3781   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3782   if (Ty->isPointerTy())
3783     return getDataLayout().getIndexTypeSizeInBits(Ty);
3784   return getDataLayout().getTypeSizeInBits(Ty);
3785 }
3786 
3787 /// Return a type with the same bitwidth as the given type and which represents
3788 /// how SCEV will treat the given type, for which isSCEVable must return
3789 /// true. For pointer types, this is the pointer-sized integer type.
3790 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3791   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3792 
3793   if (Ty->isIntegerTy())
3794     return Ty;
3795 
3796   // The only other support type is pointer.
3797   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3798   return getDataLayout().getIntPtrType(Ty);
3799 }
3800 
3801 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3802   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3803 }
3804 
3805 const SCEV *ScalarEvolution::getCouldNotCompute() {
3806   return CouldNotCompute.get();
3807 }
3808 
3809 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3810   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3811     auto *SU = dyn_cast<SCEVUnknown>(S);
3812     return SU && SU->getValue() == nullptr;
3813   });
3814 
3815   return !ContainsNulls;
3816 }
3817 
3818 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3819   HasRecMapType::iterator I = HasRecMap.find(S);
3820   if (I != HasRecMap.end())
3821     return I->second;
3822 
3823   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3824   HasRecMap.insert({S, FoundAddRec});
3825   return FoundAddRec;
3826 }
3827 
3828 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3829 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3830 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3831 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3832   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3833   if (!Add)
3834     return {S, nullptr};
3835 
3836   if (Add->getNumOperands() != 2)
3837     return {S, nullptr};
3838 
3839   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3840   if (!ConstOp)
3841     return {S, nullptr};
3842 
3843   return {Add->getOperand(1), ConstOp->getValue()};
3844 }
3845 
3846 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3847 /// by the value and offset from any ValueOffsetPair in the set.
3848 SetVector<ScalarEvolution::ValueOffsetPair> *
3849 ScalarEvolution::getSCEVValues(const SCEV *S) {
3850   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3851   if (SI == ExprValueMap.end())
3852     return nullptr;
3853 #ifndef NDEBUG
3854   if (VerifySCEVMap) {
3855     // Check there is no dangling Value in the set returned.
3856     for (const auto &VE : SI->second)
3857       assert(ValueExprMap.count(VE.first));
3858   }
3859 #endif
3860   return &SI->second;
3861 }
3862 
3863 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3864 /// cannot be used separately. eraseValueFromMap should be used to remove
3865 /// V from ValueExprMap and ExprValueMap at the same time.
3866 void ScalarEvolution::eraseValueFromMap(Value *V) {
3867   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3868   if (I != ValueExprMap.end()) {
3869     const SCEV *S = I->second;
3870     // Remove {V, 0} from the set of ExprValueMap[S]
3871     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3872       SV->remove({V, nullptr});
3873 
3874     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3875     const SCEV *Stripped;
3876     ConstantInt *Offset;
3877     std::tie(Stripped, Offset) = splitAddExpr(S);
3878     if (Offset != nullptr) {
3879       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3880         SV->remove({V, Offset});
3881     }
3882     ValueExprMap.erase(V);
3883   }
3884 }
3885 
3886 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3887 /// TODO: In reality it is better to check the poison recursively
3888 /// but this is better than nothing.
3889 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3890   if (auto *I = dyn_cast<Instruction>(V)) {
3891     if (isa<OverflowingBinaryOperator>(I)) {
3892       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3893         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3894           return true;
3895         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3896           return true;
3897       }
3898     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3899       return true;
3900   }
3901   return false;
3902 }
3903 
3904 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3905 /// create a new one.
3906 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3907   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3908 
3909   const SCEV *S = getExistingSCEV(V);
3910   if (S == nullptr) {
3911     S = createSCEV(V);
3912     // During PHI resolution, it is possible to create two SCEVs for the same
3913     // V, so it is needed to double check whether V->S is inserted into
3914     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3915     std::pair<ValueExprMapType::iterator, bool> Pair =
3916         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3917     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3918       ExprValueMap[S].insert({V, nullptr});
3919 
3920       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3921       // ExprValueMap.
3922       const SCEV *Stripped = S;
3923       ConstantInt *Offset = nullptr;
3924       std::tie(Stripped, Offset) = splitAddExpr(S);
3925       // If stripped is SCEVUnknown, don't bother to save
3926       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3927       // increase the complexity of the expansion code.
3928       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3929       // because it may generate add/sub instead of GEP in SCEV expansion.
3930       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3931           !isa<GetElementPtrInst>(V))
3932         ExprValueMap[Stripped].insert({V, Offset});
3933     }
3934   }
3935   return S;
3936 }
3937 
3938 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3939   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3940 
3941   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3942   if (I != ValueExprMap.end()) {
3943     const SCEV *S = I->second;
3944     if (checkValidity(S))
3945       return S;
3946     eraseValueFromMap(V);
3947     forgetMemoizedResults(S);
3948   }
3949   return nullptr;
3950 }
3951 
3952 /// Return a SCEV corresponding to -V = -1*V
3953 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3954                                              SCEV::NoWrapFlags Flags) {
3955   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3956     return getConstant(
3957                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3958 
3959   Type *Ty = V->getType();
3960   Ty = getEffectiveSCEVType(Ty);
3961   return getMulExpr(
3962       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3963 }
3964 
3965 /// If Expr computes ~A, return A else return nullptr
3966 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3967   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3968   if (!Add || Add->getNumOperands() != 2 ||
3969       !Add->getOperand(0)->isAllOnesValue())
3970     return nullptr;
3971 
3972   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3973   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3974       !AddRHS->getOperand(0)->isAllOnesValue())
3975     return nullptr;
3976 
3977   return AddRHS->getOperand(1);
3978 }
3979 
3980 /// Return a SCEV corresponding to ~V = -1-V
3981 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3982   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3983     return getConstant(
3984                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3985 
3986   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3987   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3988     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3989       SmallVector<const SCEV *, 2> MatchedOperands;
3990       for (const SCEV *Operand : MME->operands()) {
3991         const SCEV *Matched = MatchNotExpr(Operand);
3992         if (!Matched)
3993           return (const SCEV *)nullptr;
3994         MatchedOperands.push_back(Matched);
3995       }
3996       return getMinMaxExpr(
3997           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3998           MatchedOperands);
3999     };
4000     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4001       return Replaced;
4002   }
4003 
4004   Type *Ty = V->getType();
4005   Ty = getEffectiveSCEVType(Ty);
4006   const SCEV *AllOnes =
4007                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4008   return getMinusSCEV(AllOnes, V);
4009 }
4010 
4011 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4012                                           SCEV::NoWrapFlags Flags,
4013                                           unsigned Depth) {
4014   // Fast path: X - X --> 0.
4015   if (LHS == RHS)
4016     return getZero(LHS->getType());
4017 
4018   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4019   // makes it so that we cannot make much use of NUW.
4020   auto AddFlags = SCEV::FlagAnyWrap;
4021   const bool RHSIsNotMinSigned =
4022       !getSignedRangeMin(RHS).isMinSignedValue();
4023   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4024     // Let M be the minimum representable signed value. Then (-1)*RHS
4025     // signed-wraps if and only if RHS is M. That can happen even for
4026     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4027     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4028     // (-1)*RHS, we need to prove that RHS != M.
4029     //
4030     // If LHS is non-negative and we know that LHS - RHS does not
4031     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4032     // either by proving that RHS > M or that LHS >= 0.
4033     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4034       AddFlags = SCEV::FlagNSW;
4035     }
4036   }
4037 
4038   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4039   // RHS is NSW and LHS >= 0.
4040   //
4041   // The difficulty here is that the NSW flag may have been proven
4042   // relative to a loop that is to be found in a recurrence in LHS and
4043   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4044   // larger scope than intended.
4045   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4046 
4047   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4048 }
4049 
4050 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4051                                                      unsigned Depth) {
4052   Type *SrcTy = V->getType();
4053   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4054          "Cannot truncate or zero extend with non-integer arguments!");
4055   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4056     return V;  // No conversion
4057   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4058     return getTruncateExpr(V, Ty, Depth);
4059   return getZeroExtendExpr(V, Ty, Depth);
4060 }
4061 
4062 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4063                                                      unsigned Depth) {
4064   Type *SrcTy = V->getType();
4065   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4066          "Cannot truncate or zero extend with non-integer arguments!");
4067   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4068     return V;  // No conversion
4069   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4070     return getTruncateExpr(V, Ty, Depth);
4071   return getSignExtendExpr(V, Ty, Depth);
4072 }
4073 
4074 const SCEV *
4075 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4076   Type *SrcTy = V->getType();
4077   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4078          "Cannot noop or zero extend with non-integer arguments!");
4079   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4080          "getNoopOrZeroExtend cannot truncate!");
4081   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4082     return V;  // No conversion
4083   return getZeroExtendExpr(V, Ty);
4084 }
4085 
4086 const SCEV *
4087 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4088   Type *SrcTy = V->getType();
4089   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4090          "Cannot noop or sign extend with non-integer arguments!");
4091   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4092          "getNoopOrSignExtend cannot truncate!");
4093   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4094     return V;  // No conversion
4095   return getSignExtendExpr(V, Ty);
4096 }
4097 
4098 const SCEV *
4099 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4100   Type *SrcTy = V->getType();
4101   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4102          "Cannot noop or any extend with non-integer arguments!");
4103   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4104          "getNoopOrAnyExtend cannot truncate!");
4105   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4106     return V;  // No conversion
4107   return getAnyExtendExpr(V, Ty);
4108 }
4109 
4110 const SCEV *
4111 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4112   Type *SrcTy = V->getType();
4113   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4114          "Cannot truncate or noop with non-integer arguments!");
4115   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4116          "getTruncateOrNoop cannot extend!");
4117   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4118     return V;  // No conversion
4119   return getTruncateExpr(V, Ty);
4120 }
4121 
4122 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4123                                                         const SCEV *RHS) {
4124   const SCEV *PromotedLHS = LHS;
4125   const SCEV *PromotedRHS = RHS;
4126 
4127   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4128     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4129   else
4130     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4131 
4132   return getUMaxExpr(PromotedLHS, PromotedRHS);
4133 }
4134 
4135 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4136                                                         const SCEV *RHS) {
4137   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4138   return getUMinFromMismatchedTypes(Ops);
4139 }
4140 
4141 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4142     SmallVectorImpl<const SCEV *> &Ops) {
4143   assert(!Ops.empty() && "At least one operand must be!");
4144   // Trivial case.
4145   if (Ops.size() == 1)
4146     return Ops[0];
4147 
4148   // Find the max type first.
4149   Type *MaxType = nullptr;
4150   for (auto *S : Ops)
4151     if (MaxType)
4152       MaxType = getWiderType(MaxType, S->getType());
4153     else
4154       MaxType = S->getType();
4155 
4156   // Extend all ops to max type.
4157   SmallVector<const SCEV *, 2> PromotedOps;
4158   for (auto *S : Ops)
4159     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4160 
4161   // Generate umin.
4162   return getUMinExpr(PromotedOps);
4163 }
4164 
4165 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4166   // A pointer operand may evaluate to a nonpointer expression, such as null.
4167   if (!V->getType()->isPointerTy())
4168     return V;
4169 
4170   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4171     return getPointerBase(Cast->getOperand());
4172   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4173     const SCEV *PtrOp = nullptr;
4174     for (const SCEV *NAryOp : NAry->operands()) {
4175       if (NAryOp->getType()->isPointerTy()) {
4176         // Cannot find the base of an expression with multiple pointer operands.
4177         if (PtrOp)
4178           return V;
4179         PtrOp = NAryOp;
4180       }
4181     }
4182     if (!PtrOp)
4183       return V;
4184     return getPointerBase(PtrOp);
4185   }
4186   return V;
4187 }
4188 
4189 /// Push users of the given Instruction onto the given Worklist.
4190 static void
4191 PushDefUseChildren(Instruction *I,
4192                    SmallVectorImpl<Instruction *> &Worklist) {
4193   // Push the def-use children onto the Worklist stack.
4194   for (User *U : I->users())
4195     Worklist.push_back(cast<Instruction>(U));
4196 }
4197 
4198 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4199   SmallVector<Instruction *, 16> Worklist;
4200   PushDefUseChildren(PN, Worklist);
4201 
4202   SmallPtrSet<Instruction *, 8> Visited;
4203   Visited.insert(PN);
4204   while (!Worklist.empty()) {
4205     Instruction *I = Worklist.pop_back_val();
4206     if (!Visited.insert(I).second)
4207       continue;
4208 
4209     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4210     if (It != ValueExprMap.end()) {
4211       const SCEV *Old = It->second;
4212 
4213       // Short-circuit the def-use traversal if the symbolic name
4214       // ceases to appear in expressions.
4215       if (Old != SymName && !hasOperand(Old, SymName))
4216         continue;
4217 
4218       // SCEVUnknown for a PHI either means that it has an unrecognized
4219       // structure, it's a PHI that's in the progress of being computed
4220       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4221       // additional loop trip count information isn't going to change anything.
4222       // In the second case, createNodeForPHI will perform the necessary
4223       // updates on its own when it gets to that point. In the third, we do
4224       // want to forget the SCEVUnknown.
4225       if (!isa<PHINode>(I) ||
4226           !isa<SCEVUnknown>(Old) ||
4227           (I != PN && Old == SymName)) {
4228         eraseValueFromMap(It->first);
4229         forgetMemoizedResults(Old);
4230       }
4231     }
4232 
4233     PushDefUseChildren(I, Worklist);
4234   }
4235 }
4236 
4237 namespace {
4238 
4239 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4240 /// expression in case its Loop is L. If it is not L then
4241 /// if IgnoreOtherLoops is true then use AddRec itself
4242 /// otherwise rewrite cannot be done.
4243 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4244 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4245 public:
4246   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4247                              bool IgnoreOtherLoops = true) {
4248     SCEVInitRewriter Rewriter(L, SE);
4249     const SCEV *Result = Rewriter.visit(S);
4250     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4251       return SE.getCouldNotCompute();
4252     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4253                ? SE.getCouldNotCompute()
4254                : Result;
4255   }
4256 
4257   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4258     if (!SE.isLoopInvariant(Expr, L))
4259       SeenLoopVariantSCEVUnknown = true;
4260     return Expr;
4261   }
4262 
4263   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4264     // Only re-write AddRecExprs for this loop.
4265     if (Expr->getLoop() == L)
4266       return Expr->getStart();
4267     SeenOtherLoops = true;
4268     return Expr;
4269   }
4270 
4271   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4272 
4273   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4274 
4275 private:
4276   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4277       : SCEVRewriteVisitor(SE), L(L) {}
4278 
4279   const Loop *L;
4280   bool SeenLoopVariantSCEVUnknown = false;
4281   bool SeenOtherLoops = false;
4282 };
4283 
4284 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4285 /// increment expression in case its Loop is L. If it is not L then
4286 /// use AddRec itself.
4287 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4288 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4289 public:
4290   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4291     SCEVPostIncRewriter Rewriter(L, SE);
4292     const SCEV *Result = Rewriter.visit(S);
4293     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4294         ? SE.getCouldNotCompute()
4295         : Result;
4296   }
4297 
4298   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4299     if (!SE.isLoopInvariant(Expr, L))
4300       SeenLoopVariantSCEVUnknown = true;
4301     return Expr;
4302   }
4303 
4304   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4305     // Only re-write AddRecExprs for this loop.
4306     if (Expr->getLoop() == L)
4307       return Expr->getPostIncExpr(SE);
4308     SeenOtherLoops = true;
4309     return Expr;
4310   }
4311 
4312   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4313 
4314   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4315 
4316 private:
4317   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4318       : SCEVRewriteVisitor(SE), L(L) {}
4319 
4320   const Loop *L;
4321   bool SeenLoopVariantSCEVUnknown = false;
4322   bool SeenOtherLoops = false;
4323 };
4324 
4325 /// This class evaluates the compare condition by matching it against the
4326 /// condition of loop latch. If there is a match we assume a true value
4327 /// for the condition while building SCEV nodes.
4328 class SCEVBackedgeConditionFolder
4329     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4330 public:
4331   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4332                              ScalarEvolution &SE) {
4333     bool IsPosBECond = false;
4334     Value *BECond = nullptr;
4335     if (BasicBlock *Latch = L->getLoopLatch()) {
4336       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4337       if (BI && BI->isConditional()) {
4338         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4339                "Both outgoing branches should not target same header!");
4340         BECond = BI->getCondition();
4341         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4342       } else {
4343         return S;
4344       }
4345     }
4346     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4347     return Rewriter.visit(S);
4348   }
4349 
4350   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4351     const SCEV *Result = Expr;
4352     bool InvariantF = SE.isLoopInvariant(Expr, L);
4353 
4354     if (!InvariantF) {
4355       Instruction *I = cast<Instruction>(Expr->getValue());
4356       switch (I->getOpcode()) {
4357       case Instruction::Select: {
4358         SelectInst *SI = cast<SelectInst>(I);
4359         Optional<const SCEV *> Res =
4360             compareWithBackedgeCondition(SI->getCondition());
4361         if (Res.hasValue()) {
4362           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4363           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4364         }
4365         break;
4366       }
4367       default: {
4368         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4369         if (Res.hasValue())
4370           Result = Res.getValue();
4371         break;
4372       }
4373       }
4374     }
4375     return Result;
4376   }
4377 
4378 private:
4379   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4380                                        bool IsPosBECond, ScalarEvolution &SE)
4381       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4382         IsPositiveBECond(IsPosBECond) {}
4383 
4384   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4385 
4386   const Loop *L;
4387   /// Loop back condition.
4388   Value *BackedgeCond = nullptr;
4389   /// Set to true if loop back is on positive branch condition.
4390   bool IsPositiveBECond;
4391 };
4392 
4393 Optional<const SCEV *>
4394 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4395 
4396   // If value matches the backedge condition for loop latch,
4397   // then return a constant evolution node based on loopback
4398   // branch taken.
4399   if (BackedgeCond == IC)
4400     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4401                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4402   return None;
4403 }
4404 
4405 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4406 public:
4407   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4408                              ScalarEvolution &SE) {
4409     SCEVShiftRewriter Rewriter(L, SE);
4410     const SCEV *Result = Rewriter.visit(S);
4411     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4412   }
4413 
4414   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4415     // Only allow AddRecExprs for this loop.
4416     if (!SE.isLoopInvariant(Expr, L))
4417       Valid = false;
4418     return Expr;
4419   }
4420 
4421   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4422     if (Expr->getLoop() == L && Expr->isAffine())
4423       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4424     Valid = false;
4425     return Expr;
4426   }
4427 
4428   bool isValid() { return Valid; }
4429 
4430 private:
4431   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4432       : SCEVRewriteVisitor(SE), L(L) {}
4433 
4434   const Loop *L;
4435   bool Valid = true;
4436 };
4437 
4438 } // end anonymous namespace
4439 
4440 SCEV::NoWrapFlags
4441 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4442   if (!AR->isAffine())
4443     return SCEV::FlagAnyWrap;
4444 
4445   using OBO = OverflowingBinaryOperator;
4446 
4447   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4448 
4449   if (!AR->hasNoSignedWrap()) {
4450     ConstantRange AddRecRange = getSignedRange(AR);
4451     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4452 
4453     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4454         Instruction::Add, IncRange, OBO::NoSignedWrap);
4455     if (NSWRegion.contains(AddRecRange))
4456       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4457   }
4458 
4459   if (!AR->hasNoUnsignedWrap()) {
4460     ConstantRange AddRecRange = getUnsignedRange(AR);
4461     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4462 
4463     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4464         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4465     if (NUWRegion.contains(AddRecRange))
4466       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4467   }
4468 
4469   return Result;
4470 }
4471 
4472 namespace {
4473 
4474 /// Represents an abstract binary operation.  This may exist as a
4475 /// normal instruction or constant expression, or may have been
4476 /// derived from an expression tree.
4477 struct BinaryOp {
4478   unsigned Opcode;
4479   Value *LHS;
4480   Value *RHS;
4481   bool IsNSW = false;
4482   bool IsNUW = false;
4483 
4484   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4485   /// constant expression.
4486   Operator *Op = nullptr;
4487 
4488   explicit BinaryOp(Operator *Op)
4489       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4490         Op(Op) {
4491     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4492       IsNSW = OBO->hasNoSignedWrap();
4493       IsNUW = OBO->hasNoUnsignedWrap();
4494     }
4495   }
4496 
4497   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4498                     bool IsNUW = false)
4499       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4500 };
4501 
4502 } // end anonymous namespace
4503 
4504 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4505 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4506   auto *Op = dyn_cast<Operator>(V);
4507   if (!Op)
4508     return None;
4509 
4510   // Implementation detail: all the cleverness here should happen without
4511   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4512   // SCEV expressions when possible, and we should not break that.
4513 
4514   switch (Op->getOpcode()) {
4515   case Instruction::Add:
4516   case Instruction::Sub:
4517   case Instruction::Mul:
4518   case Instruction::UDiv:
4519   case Instruction::URem:
4520   case Instruction::And:
4521   case Instruction::Or:
4522   case Instruction::AShr:
4523   case Instruction::Shl:
4524     return BinaryOp(Op);
4525 
4526   case Instruction::Xor:
4527     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4528       // If the RHS of the xor is a signmask, then this is just an add.
4529       // Instcombine turns add of signmask into xor as a strength reduction step.
4530       if (RHSC->getValue().isSignMask())
4531         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4532     return BinaryOp(Op);
4533 
4534   case Instruction::LShr:
4535     // Turn logical shift right of a constant into a unsigned divide.
4536     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4537       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4538 
4539       // If the shift count is not less than the bitwidth, the result of
4540       // the shift is undefined. Don't try to analyze it, because the
4541       // resolution chosen here may differ from the resolution chosen in
4542       // other parts of the compiler.
4543       if (SA->getValue().ult(BitWidth)) {
4544         Constant *X =
4545             ConstantInt::get(SA->getContext(),
4546                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4547         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4548       }
4549     }
4550     return BinaryOp(Op);
4551 
4552   case Instruction::ExtractValue: {
4553     auto *EVI = cast<ExtractValueInst>(Op);
4554     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4555       break;
4556 
4557     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4558     if (!WO)
4559       break;
4560 
4561     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4562     bool Signed = WO->isSigned();
4563     // TODO: Should add nuw/nsw flags for mul as well.
4564     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4565       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4566 
4567     // Now that we know that all uses of the arithmetic-result component of
4568     // CI are guarded by the overflow check, we can go ahead and pretend
4569     // that the arithmetic is non-overflowing.
4570     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4571                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4572   }
4573 
4574   default:
4575     break;
4576   }
4577 
4578   return None;
4579 }
4580 
4581 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4582 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4583 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4584 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4585 /// follows one of the following patterns:
4586 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4587 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4588 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4589 /// we return the type of the truncation operation, and indicate whether the
4590 /// truncated type should be treated as signed/unsigned by setting
4591 /// \p Signed to true/false, respectively.
4592 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4593                                bool &Signed, ScalarEvolution &SE) {
4594   // The case where Op == SymbolicPHI (that is, with no type conversions on
4595   // the way) is handled by the regular add recurrence creating logic and
4596   // would have already been triggered in createAddRecForPHI. Reaching it here
4597   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4598   // because one of the other operands of the SCEVAddExpr updating this PHI is
4599   // not invariant).
4600   //
4601   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4602   // this case predicates that allow us to prove that Op == SymbolicPHI will
4603   // be added.
4604   if (Op == SymbolicPHI)
4605     return nullptr;
4606 
4607   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4608   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4609   if (SourceBits != NewBits)
4610     return nullptr;
4611 
4612   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4613   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4614   if (!SExt && !ZExt)
4615     return nullptr;
4616   const SCEVTruncateExpr *Trunc =
4617       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4618            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4619   if (!Trunc)
4620     return nullptr;
4621   const SCEV *X = Trunc->getOperand();
4622   if (X != SymbolicPHI)
4623     return nullptr;
4624   Signed = SExt != nullptr;
4625   return Trunc->getType();
4626 }
4627 
4628 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4629   if (!PN->getType()->isIntegerTy())
4630     return nullptr;
4631   const Loop *L = LI.getLoopFor(PN->getParent());
4632   if (!L || L->getHeader() != PN->getParent())
4633     return nullptr;
4634   return L;
4635 }
4636 
4637 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4638 // computation that updates the phi follows the following pattern:
4639 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4640 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4641 // If so, try to see if it can be rewritten as an AddRecExpr under some
4642 // Predicates. If successful, return them as a pair. Also cache the results
4643 // of the analysis.
4644 //
4645 // Example usage scenario:
4646 //    Say the Rewriter is called for the following SCEV:
4647 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4648 //    where:
4649 //         %X = phi i64 (%Start, %BEValue)
4650 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4651 //    and call this function with %SymbolicPHI = %X.
4652 //
4653 //    The analysis will find that the value coming around the backedge has
4654 //    the following SCEV:
4655 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4656 //    Upon concluding that this matches the desired pattern, the function
4657 //    will return the pair {NewAddRec, SmallPredsVec} where:
4658 //         NewAddRec = {%Start,+,%Step}
4659 //         SmallPredsVec = {P1, P2, P3} as follows:
4660 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4661 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4662 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4663 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4664 //    under the predicates {P1,P2,P3}.
4665 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4666 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4667 //
4668 // TODO's:
4669 //
4670 // 1) Extend the Induction descriptor to also support inductions that involve
4671 //    casts: When needed (namely, when we are called in the context of the
4672 //    vectorizer induction analysis), a Set of cast instructions will be
4673 //    populated by this method, and provided back to isInductionPHI. This is
4674 //    needed to allow the vectorizer to properly record them to be ignored by
4675 //    the cost model and to avoid vectorizing them (otherwise these casts,
4676 //    which are redundant under the runtime overflow checks, will be
4677 //    vectorized, which can be costly).
4678 //
4679 // 2) Support additional induction/PHISCEV patterns: We also want to support
4680 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4681 //    after the induction update operation (the induction increment):
4682 //
4683 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4684 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4685 //
4686 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4687 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4688 //
4689 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4690 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4691 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4692   SmallVector<const SCEVPredicate *, 3> Predicates;
4693 
4694   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4695   // return an AddRec expression under some predicate.
4696 
4697   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4698   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4699   assert(L && "Expecting an integer loop header phi");
4700 
4701   // The loop may have multiple entrances or multiple exits; we can analyze
4702   // this phi as an addrec if it has a unique entry value and a unique
4703   // backedge value.
4704   Value *BEValueV = nullptr, *StartValueV = nullptr;
4705   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4706     Value *V = PN->getIncomingValue(i);
4707     if (L->contains(PN->getIncomingBlock(i))) {
4708       if (!BEValueV) {
4709         BEValueV = V;
4710       } else if (BEValueV != V) {
4711         BEValueV = nullptr;
4712         break;
4713       }
4714     } else if (!StartValueV) {
4715       StartValueV = V;
4716     } else if (StartValueV != V) {
4717       StartValueV = nullptr;
4718       break;
4719     }
4720   }
4721   if (!BEValueV || !StartValueV)
4722     return None;
4723 
4724   const SCEV *BEValue = getSCEV(BEValueV);
4725 
4726   // If the value coming around the backedge is an add with the symbolic
4727   // value we just inserted, possibly with casts that we can ignore under
4728   // an appropriate runtime guard, then we found a simple induction variable!
4729   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4730   if (!Add)
4731     return None;
4732 
4733   // If there is a single occurrence of the symbolic value, possibly
4734   // casted, replace it with a recurrence.
4735   unsigned FoundIndex = Add->getNumOperands();
4736   Type *TruncTy = nullptr;
4737   bool Signed;
4738   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4739     if ((TruncTy =
4740              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4741       if (FoundIndex == e) {
4742         FoundIndex = i;
4743         break;
4744       }
4745 
4746   if (FoundIndex == Add->getNumOperands())
4747     return None;
4748 
4749   // Create an add with everything but the specified operand.
4750   SmallVector<const SCEV *, 8> Ops;
4751   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4752     if (i != FoundIndex)
4753       Ops.push_back(Add->getOperand(i));
4754   const SCEV *Accum = getAddExpr(Ops);
4755 
4756   // The runtime checks will not be valid if the step amount is
4757   // varying inside the loop.
4758   if (!isLoopInvariant(Accum, L))
4759     return None;
4760 
4761   // *** Part2: Create the predicates
4762 
4763   // Analysis was successful: we have a phi-with-cast pattern for which we
4764   // can return an AddRec expression under the following predicates:
4765   //
4766   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4767   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4768   // P2: An Equal predicate that guarantees that
4769   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4770   // P3: An Equal predicate that guarantees that
4771   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4772   //
4773   // As we next prove, the above predicates guarantee that:
4774   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4775   //
4776   //
4777   // More formally, we want to prove that:
4778   //     Expr(i+1) = Start + (i+1) * Accum
4779   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4780   //
4781   // Given that:
4782   // 1) Expr(0) = Start
4783   // 2) Expr(1) = Start + Accum
4784   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4785   // 3) Induction hypothesis (step i):
4786   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4787   //
4788   // Proof:
4789   //  Expr(i+1) =
4790   //   = Start + (i+1)*Accum
4791   //   = (Start + i*Accum) + Accum
4792   //   = Expr(i) + Accum
4793   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4794   //                                                             :: from step i
4795   //
4796   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4797   //
4798   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4799   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4800   //     + Accum                                                     :: from P3
4801   //
4802   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4803   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4804   //
4805   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4806   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4807   //
4808   // By induction, the same applies to all iterations 1<=i<n:
4809   //
4810 
4811   // Create a truncated addrec for which we will add a no overflow check (P1).
4812   const SCEV *StartVal = getSCEV(StartValueV);
4813   const SCEV *PHISCEV =
4814       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4815                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4816 
4817   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4818   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4819   // will be constant.
4820   //
4821   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4822   // add P1.
4823   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4824     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4825         Signed ? SCEVWrapPredicate::IncrementNSSW
4826                : SCEVWrapPredicate::IncrementNUSW;
4827     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4828     Predicates.push_back(AddRecPred);
4829   }
4830 
4831   // Create the Equal Predicates P2,P3:
4832 
4833   // It is possible that the predicates P2 and/or P3 are computable at
4834   // compile time due to StartVal and/or Accum being constants.
4835   // If either one is, then we can check that now and escape if either P2
4836   // or P3 is false.
4837 
4838   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4839   // for each of StartVal and Accum
4840   auto getExtendedExpr = [&](const SCEV *Expr,
4841                              bool CreateSignExtend) -> const SCEV * {
4842     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4843     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4844     const SCEV *ExtendedExpr =
4845         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4846                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4847     return ExtendedExpr;
4848   };
4849 
4850   // Given:
4851   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4852   //               = getExtendedExpr(Expr)
4853   // Determine whether the predicate P: Expr == ExtendedExpr
4854   // is known to be false at compile time
4855   auto PredIsKnownFalse = [&](const SCEV *Expr,
4856                               const SCEV *ExtendedExpr) -> bool {
4857     return Expr != ExtendedExpr &&
4858            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4859   };
4860 
4861   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4862   if (PredIsKnownFalse(StartVal, StartExtended)) {
4863     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4864     return None;
4865   }
4866 
4867   // The Step is always Signed (because the overflow checks are either
4868   // NSSW or NUSW)
4869   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4870   if (PredIsKnownFalse(Accum, AccumExtended)) {
4871     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4872     return None;
4873   }
4874 
4875   auto AppendPredicate = [&](const SCEV *Expr,
4876                              const SCEV *ExtendedExpr) -> void {
4877     if (Expr != ExtendedExpr &&
4878         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4879       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4880       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4881       Predicates.push_back(Pred);
4882     }
4883   };
4884 
4885   AppendPredicate(StartVal, StartExtended);
4886   AppendPredicate(Accum, AccumExtended);
4887 
4888   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4889   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4890   // into NewAR if it will also add the runtime overflow checks specified in
4891   // Predicates.
4892   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4893 
4894   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4895       std::make_pair(NewAR, Predicates);
4896   // Remember the result of the analysis for this SCEV at this locayyytion.
4897   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4898   return PredRewrite;
4899 }
4900 
4901 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4902 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4903   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4904   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4905   if (!L)
4906     return None;
4907 
4908   // Check to see if we already analyzed this PHI.
4909   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4910   if (I != PredicatedSCEVRewrites.end()) {
4911     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4912         I->second;
4913     // Analysis was done before and failed to create an AddRec:
4914     if (Rewrite.first == SymbolicPHI)
4915       return None;
4916     // Analysis was done before and succeeded to create an AddRec under
4917     // a predicate:
4918     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4919     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4920     return Rewrite;
4921   }
4922 
4923   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4924     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4925 
4926   // Record in the cache that the analysis failed
4927   if (!Rewrite) {
4928     SmallVector<const SCEVPredicate *, 3> Predicates;
4929     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4930     return None;
4931   }
4932 
4933   return Rewrite;
4934 }
4935 
4936 // FIXME: This utility is currently required because the Rewriter currently
4937 // does not rewrite this expression:
4938 // {0, +, (sext ix (trunc iy to ix) to iy)}
4939 // into {0, +, %step},
4940 // even when the following Equal predicate exists:
4941 // "%step == (sext ix (trunc iy to ix) to iy)".
4942 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4943     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4944   if (AR1 == AR2)
4945     return true;
4946 
4947   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4948     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4949         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4950       return false;
4951     return true;
4952   };
4953 
4954   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4955       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4956     return false;
4957   return true;
4958 }
4959 
4960 /// A helper function for createAddRecFromPHI to handle simple cases.
4961 ///
4962 /// This function tries to find an AddRec expression for the simplest (yet most
4963 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4964 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4965 /// technique for finding the AddRec expression.
4966 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4967                                                       Value *BEValueV,
4968                                                       Value *StartValueV) {
4969   const Loop *L = LI.getLoopFor(PN->getParent());
4970   assert(L && L->getHeader() == PN->getParent());
4971   assert(BEValueV && StartValueV);
4972 
4973   auto BO = MatchBinaryOp(BEValueV, DT);
4974   if (!BO)
4975     return nullptr;
4976 
4977   if (BO->Opcode != Instruction::Add)
4978     return nullptr;
4979 
4980   const SCEV *Accum = nullptr;
4981   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4982     Accum = getSCEV(BO->RHS);
4983   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4984     Accum = getSCEV(BO->LHS);
4985 
4986   if (!Accum)
4987     return nullptr;
4988 
4989   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4990   if (BO->IsNUW)
4991     Flags = setFlags(Flags, SCEV::FlagNUW);
4992   if (BO->IsNSW)
4993     Flags = setFlags(Flags, SCEV::FlagNSW);
4994 
4995   const SCEV *StartVal = getSCEV(StartValueV);
4996   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4997 
4998   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4999 
5000   // We can add Flags to the post-inc expression only if we
5001   // know that it is *undefined behavior* for BEValueV to
5002   // overflow.
5003   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5004     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5005       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5006 
5007   return PHISCEV;
5008 }
5009 
5010 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5011   const Loop *L = LI.getLoopFor(PN->getParent());
5012   if (!L || L->getHeader() != PN->getParent())
5013     return nullptr;
5014 
5015   // The loop may have multiple entrances or multiple exits; we can analyze
5016   // this phi as an addrec if it has a unique entry value and a unique
5017   // backedge value.
5018   Value *BEValueV = nullptr, *StartValueV = nullptr;
5019   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5020     Value *V = PN->getIncomingValue(i);
5021     if (L->contains(PN->getIncomingBlock(i))) {
5022       if (!BEValueV) {
5023         BEValueV = V;
5024       } else if (BEValueV != V) {
5025         BEValueV = nullptr;
5026         break;
5027       }
5028     } else if (!StartValueV) {
5029       StartValueV = V;
5030     } else if (StartValueV != V) {
5031       StartValueV = nullptr;
5032       break;
5033     }
5034   }
5035   if (!BEValueV || !StartValueV)
5036     return nullptr;
5037 
5038   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5039          "PHI node already processed?");
5040 
5041   // First, try to find AddRec expression without creating a fictituos symbolic
5042   // value for PN.
5043   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5044     return S;
5045 
5046   // Handle PHI node value symbolically.
5047   const SCEV *SymbolicName = getUnknown(PN);
5048   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5049 
5050   // Using this symbolic name for the PHI, analyze the value coming around
5051   // the back-edge.
5052   const SCEV *BEValue = getSCEV(BEValueV);
5053 
5054   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5055   // has a special value for the first iteration of the loop.
5056 
5057   // If the value coming around the backedge is an add with the symbolic
5058   // value we just inserted, then we found a simple induction variable!
5059   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5060     // If there is a single occurrence of the symbolic value, replace it
5061     // with a recurrence.
5062     unsigned FoundIndex = Add->getNumOperands();
5063     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5064       if (Add->getOperand(i) == SymbolicName)
5065         if (FoundIndex == e) {
5066           FoundIndex = i;
5067           break;
5068         }
5069 
5070     if (FoundIndex != Add->getNumOperands()) {
5071       // Create an add with everything but the specified operand.
5072       SmallVector<const SCEV *, 8> Ops;
5073       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5074         if (i != FoundIndex)
5075           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5076                                                              L, *this));
5077       const SCEV *Accum = getAddExpr(Ops);
5078 
5079       // This is not a valid addrec if the step amount is varying each
5080       // loop iteration, but is not itself an addrec in this loop.
5081       if (isLoopInvariant(Accum, L) ||
5082           (isa<SCEVAddRecExpr>(Accum) &&
5083            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5084         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5085 
5086         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5087           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5088             if (BO->IsNUW)
5089               Flags = setFlags(Flags, SCEV::FlagNUW);
5090             if (BO->IsNSW)
5091               Flags = setFlags(Flags, SCEV::FlagNSW);
5092           }
5093         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5094           // If the increment is an inbounds GEP, then we know the address
5095           // space cannot be wrapped around. We cannot make any guarantee
5096           // about signed or unsigned overflow because pointers are
5097           // unsigned but we may have a negative index from the base
5098           // pointer. We can guarantee that no unsigned wrap occurs if the
5099           // indices form a positive value.
5100           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5101             Flags = setFlags(Flags, SCEV::FlagNW);
5102 
5103             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5104             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5105               Flags = setFlags(Flags, SCEV::FlagNUW);
5106           }
5107 
5108           // We cannot transfer nuw and nsw flags from subtraction
5109           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5110           // for instance.
5111         }
5112 
5113         const SCEV *StartVal = getSCEV(StartValueV);
5114         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5115 
5116         // Okay, for the entire analysis of this edge we assumed the PHI
5117         // to be symbolic.  We now need to go back and purge all of the
5118         // entries for the scalars that use the symbolic expression.
5119         forgetSymbolicName(PN, SymbolicName);
5120         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5121 
5122         // We can add Flags to the post-inc expression only if we
5123         // know that it is *undefined behavior* for BEValueV to
5124         // overflow.
5125         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5126           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5127             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5128 
5129         return PHISCEV;
5130       }
5131     }
5132   } else {
5133     // Otherwise, this could be a loop like this:
5134     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5135     // In this case, j = {1,+,1}  and BEValue is j.
5136     // Because the other in-value of i (0) fits the evolution of BEValue
5137     // i really is an addrec evolution.
5138     //
5139     // We can generalize this saying that i is the shifted value of BEValue
5140     // by one iteration:
5141     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5142     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5143     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5144     if (Shifted != getCouldNotCompute() &&
5145         Start != getCouldNotCompute()) {
5146       const SCEV *StartVal = getSCEV(StartValueV);
5147       if (Start == StartVal) {
5148         // Okay, for the entire analysis of this edge we assumed the PHI
5149         // to be symbolic.  We now need to go back and purge all of the
5150         // entries for the scalars that use the symbolic expression.
5151         forgetSymbolicName(PN, SymbolicName);
5152         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5153         return Shifted;
5154       }
5155     }
5156   }
5157 
5158   // Remove the temporary PHI node SCEV that has been inserted while intending
5159   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5160   // as it will prevent later (possibly simpler) SCEV expressions to be added
5161   // to the ValueExprMap.
5162   eraseValueFromMap(PN);
5163 
5164   return nullptr;
5165 }
5166 
5167 // Checks if the SCEV S is available at BB.  S is considered available at BB
5168 // if S can be materialized at BB without introducing a fault.
5169 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5170                                BasicBlock *BB) {
5171   struct CheckAvailable {
5172     bool TraversalDone = false;
5173     bool Available = true;
5174 
5175     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5176     BasicBlock *BB = nullptr;
5177     DominatorTree &DT;
5178 
5179     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5180       : L(L), BB(BB), DT(DT) {}
5181 
5182     bool setUnavailable() {
5183       TraversalDone = true;
5184       Available = false;
5185       return false;
5186     }
5187 
5188     bool follow(const SCEV *S) {
5189       switch (S->getSCEVType()) {
5190       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5191       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5192       case scUMinExpr:
5193       case scSMinExpr:
5194         // These expressions are available if their operand(s) is/are.
5195         return true;
5196 
5197       case scAddRecExpr: {
5198         // We allow add recurrences that are on the loop BB is in, or some
5199         // outer loop.  This guarantees availability because the value of the
5200         // add recurrence at BB is simply the "current" value of the induction
5201         // variable.  We can relax this in the future; for instance an add
5202         // recurrence on a sibling dominating loop is also available at BB.
5203         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5204         if (L && (ARLoop == L || ARLoop->contains(L)))
5205           return true;
5206 
5207         return setUnavailable();
5208       }
5209 
5210       case scUnknown: {
5211         // For SCEVUnknown, we check for simple dominance.
5212         const auto *SU = cast<SCEVUnknown>(S);
5213         Value *V = SU->getValue();
5214 
5215         if (isa<Argument>(V))
5216           return false;
5217 
5218         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5219           return false;
5220 
5221         return setUnavailable();
5222       }
5223 
5224       case scUDivExpr:
5225       case scCouldNotCompute:
5226         // We do not try to smart about these at all.
5227         return setUnavailable();
5228       }
5229       llvm_unreachable("switch should be fully covered!");
5230     }
5231 
5232     bool isDone() { return TraversalDone; }
5233   };
5234 
5235   CheckAvailable CA(L, BB, DT);
5236   SCEVTraversal<CheckAvailable> ST(CA);
5237 
5238   ST.visitAll(S);
5239   return CA.Available;
5240 }
5241 
5242 // Try to match a control flow sequence that branches out at BI and merges back
5243 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5244 // match.
5245 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5246                           Value *&C, Value *&LHS, Value *&RHS) {
5247   C = BI->getCondition();
5248 
5249   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5250   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5251 
5252   if (!LeftEdge.isSingleEdge())
5253     return false;
5254 
5255   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5256 
5257   Use &LeftUse = Merge->getOperandUse(0);
5258   Use &RightUse = Merge->getOperandUse(1);
5259 
5260   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5261     LHS = LeftUse;
5262     RHS = RightUse;
5263     return true;
5264   }
5265 
5266   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5267     LHS = RightUse;
5268     RHS = LeftUse;
5269     return true;
5270   }
5271 
5272   return false;
5273 }
5274 
5275 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5276   auto IsReachable =
5277       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5278   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5279     const Loop *L = LI.getLoopFor(PN->getParent());
5280 
5281     // We don't want to break LCSSA, even in a SCEV expression tree.
5282     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5283       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5284         return nullptr;
5285 
5286     // Try to match
5287     //
5288     //  br %cond, label %left, label %right
5289     // left:
5290     //  br label %merge
5291     // right:
5292     //  br label %merge
5293     // merge:
5294     //  V = phi [ %x, %left ], [ %y, %right ]
5295     //
5296     // as "select %cond, %x, %y"
5297 
5298     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5299     assert(IDom && "At least the entry block should dominate PN");
5300 
5301     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5302     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5303 
5304     if (BI && BI->isConditional() &&
5305         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5306         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5307         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5308       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5309   }
5310 
5311   return nullptr;
5312 }
5313 
5314 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5315   if (const SCEV *S = createAddRecFromPHI(PN))
5316     return S;
5317 
5318   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5319     return S;
5320 
5321   // If the PHI has a single incoming value, follow that value, unless the
5322   // PHI's incoming blocks are in a different loop, in which case doing so
5323   // risks breaking LCSSA form. Instcombine would normally zap these, but
5324   // it doesn't have DominatorTree information, so it may miss cases.
5325   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5326     if (LI.replacementPreservesLCSSAForm(PN, V))
5327       return getSCEV(V);
5328 
5329   // If it's not a loop phi, we can't handle it yet.
5330   return getUnknown(PN);
5331 }
5332 
5333 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5334                                                       Value *Cond,
5335                                                       Value *TrueVal,
5336                                                       Value *FalseVal) {
5337   // Handle "constant" branch or select. This can occur for instance when a
5338   // loop pass transforms an inner loop and moves on to process the outer loop.
5339   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5340     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5341 
5342   // Try to match some simple smax or umax patterns.
5343   auto *ICI = dyn_cast<ICmpInst>(Cond);
5344   if (!ICI)
5345     return getUnknown(I);
5346 
5347   Value *LHS = ICI->getOperand(0);
5348   Value *RHS = ICI->getOperand(1);
5349 
5350   switch (ICI->getPredicate()) {
5351   case ICmpInst::ICMP_SLT:
5352   case ICmpInst::ICMP_SLE:
5353     std::swap(LHS, RHS);
5354     LLVM_FALLTHROUGH;
5355   case ICmpInst::ICMP_SGT:
5356   case ICmpInst::ICMP_SGE:
5357     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5358     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5359     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5360       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5361       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5362       const SCEV *LA = getSCEV(TrueVal);
5363       const SCEV *RA = getSCEV(FalseVal);
5364       const SCEV *LDiff = getMinusSCEV(LA, LS);
5365       const SCEV *RDiff = getMinusSCEV(RA, RS);
5366       if (LDiff == RDiff)
5367         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5368       LDiff = getMinusSCEV(LA, RS);
5369       RDiff = getMinusSCEV(RA, LS);
5370       if (LDiff == RDiff)
5371         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5372     }
5373     break;
5374   case ICmpInst::ICMP_ULT:
5375   case ICmpInst::ICMP_ULE:
5376     std::swap(LHS, RHS);
5377     LLVM_FALLTHROUGH;
5378   case ICmpInst::ICMP_UGT:
5379   case ICmpInst::ICMP_UGE:
5380     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5381     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5382     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5383       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5384       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5385       const SCEV *LA = getSCEV(TrueVal);
5386       const SCEV *RA = getSCEV(FalseVal);
5387       const SCEV *LDiff = getMinusSCEV(LA, LS);
5388       const SCEV *RDiff = getMinusSCEV(RA, RS);
5389       if (LDiff == RDiff)
5390         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5391       LDiff = getMinusSCEV(LA, RS);
5392       RDiff = getMinusSCEV(RA, LS);
5393       if (LDiff == RDiff)
5394         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5395     }
5396     break;
5397   case ICmpInst::ICMP_NE:
5398     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5399     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5400         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5401       const SCEV *One = getOne(I->getType());
5402       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5403       const SCEV *LA = getSCEV(TrueVal);
5404       const SCEV *RA = getSCEV(FalseVal);
5405       const SCEV *LDiff = getMinusSCEV(LA, LS);
5406       const SCEV *RDiff = getMinusSCEV(RA, One);
5407       if (LDiff == RDiff)
5408         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5409     }
5410     break;
5411   case ICmpInst::ICMP_EQ:
5412     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5413     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5414         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5415       const SCEV *One = getOne(I->getType());
5416       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5417       const SCEV *LA = getSCEV(TrueVal);
5418       const SCEV *RA = getSCEV(FalseVal);
5419       const SCEV *LDiff = getMinusSCEV(LA, One);
5420       const SCEV *RDiff = getMinusSCEV(RA, LS);
5421       if (LDiff == RDiff)
5422         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5423     }
5424     break;
5425   default:
5426     break;
5427   }
5428 
5429   return getUnknown(I);
5430 }
5431 
5432 /// Expand GEP instructions into add and multiply operations. This allows them
5433 /// to be analyzed by regular SCEV code.
5434 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5435   // Don't attempt to analyze GEPs over unsized objects.
5436   if (!GEP->getSourceElementType()->isSized())
5437     return getUnknown(GEP);
5438 
5439   SmallVector<const SCEV *, 4> IndexExprs;
5440   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5441     IndexExprs.push_back(getSCEV(*Index));
5442   return getGEPExpr(GEP, IndexExprs);
5443 }
5444 
5445 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5446   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5447     return C->getAPInt().countTrailingZeros();
5448 
5449   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5450     return std::min(GetMinTrailingZeros(T->getOperand()),
5451                     (uint32_t)getTypeSizeInBits(T->getType()));
5452 
5453   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5454     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5455     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5456                ? getTypeSizeInBits(E->getType())
5457                : OpRes;
5458   }
5459 
5460   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5461     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5462     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5463                ? getTypeSizeInBits(E->getType())
5464                : OpRes;
5465   }
5466 
5467   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5468     // The result is the min of all operands results.
5469     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5470     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5471       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5472     return MinOpRes;
5473   }
5474 
5475   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5476     // The result is the sum of all operands results.
5477     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5478     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5479     for (unsigned i = 1, e = M->getNumOperands();
5480          SumOpRes != BitWidth && i != e; ++i)
5481       SumOpRes =
5482           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5483     return SumOpRes;
5484   }
5485 
5486   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5487     // The result is the min of all operands results.
5488     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5489     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5490       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5491     return MinOpRes;
5492   }
5493 
5494   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5495     // The result is the min of all operands results.
5496     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5497     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5498       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5499     return MinOpRes;
5500   }
5501 
5502   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5503     // The result is the min of all operands results.
5504     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5505     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5506       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5507     return MinOpRes;
5508   }
5509 
5510   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5511     // For a SCEVUnknown, ask ValueTracking.
5512     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5513     return Known.countMinTrailingZeros();
5514   }
5515 
5516   // SCEVUDivExpr
5517   return 0;
5518 }
5519 
5520 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5521   auto I = MinTrailingZerosCache.find(S);
5522   if (I != MinTrailingZerosCache.end())
5523     return I->second;
5524 
5525   uint32_t Result = GetMinTrailingZerosImpl(S);
5526   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5527   assert(InsertPair.second && "Should insert a new key");
5528   return InsertPair.first->second;
5529 }
5530 
5531 /// Helper method to assign a range to V from metadata present in the IR.
5532 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5533   if (Instruction *I = dyn_cast<Instruction>(V))
5534     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5535       return getConstantRangeFromMetadata(*MD);
5536 
5537   return None;
5538 }
5539 
5540 /// Determine the range for a particular SCEV.  If SignHint is
5541 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5542 /// with a "cleaner" unsigned (resp. signed) representation.
5543 const ConstantRange &
5544 ScalarEvolution::getRangeRef(const SCEV *S,
5545                              ScalarEvolution::RangeSignHint SignHint) {
5546   DenseMap<const SCEV *, ConstantRange> &Cache =
5547       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5548                                                        : SignedRanges;
5549   ConstantRange::PreferredRangeType RangeType =
5550       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5551           ? ConstantRange::Unsigned : ConstantRange::Signed;
5552 
5553   // See if we've computed this range already.
5554   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5555   if (I != Cache.end())
5556     return I->second;
5557 
5558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5559     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5560 
5561   unsigned BitWidth = getTypeSizeInBits(S->getType());
5562   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5563 
5564   // If the value has known zeros, the maximum value will have those known zeros
5565   // as well.
5566   uint32_t TZ = GetMinTrailingZeros(S);
5567   if (TZ != 0) {
5568     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5569       ConservativeResult =
5570           ConstantRange(APInt::getMinValue(BitWidth),
5571                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5572     else
5573       ConservativeResult = ConstantRange(
5574           APInt::getSignedMinValue(BitWidth),
5575           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5576   }
5577 
5578   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5579     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5580     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5581       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5582     return setRange(Add, SignHint,
5583                     ConservativeResult.intersectWith(X, RangeType));
5584   }
5585 
5586   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5587     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5588     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5589       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5590     return setRange(Mul, SignHint,
5591                     ConservativeResult.intersectWith(X, RangeType));
5592   }
5593 
5594   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5595     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5596     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5597       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5598     return setRange(SMax, SignHint,
5599                     ConservativeResult.intersectWith(X, RangeType));
5600   }
5601 
5602   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5603     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5604     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5605       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5606     return setRange(UMax, SignHint,
5607                     ConservativeResult.intersectWith(X, RangeType));
5608   }
5609 
5610   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5611     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5612     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5613       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5614     return setRange(SMin, SignHint,
5615                     ConservativeResult.intersectWith(X, RangeType));
5616   }
5617 
5618   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5619     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5620     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5621       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5622     return setRange(UMin, SignHint,
5623                     ConservativeResult.intersectWith(X, RangeType));
5624   }
5625 
5626   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5627     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5628     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5629     return setRange(UDiv, SignHint,
5630                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5631   }
5632 
5633   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5634     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5635     return setRange(ZExt, SignHint,
5636                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5637                                                      RangeType));
5638   }
5639 
5640   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5641     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5642     return setRange(SExt, SignHint,
5643                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5644                                                      RangeType));
5645   }
5646 
5647   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5648     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5649     return setRange(Trunc, SignHint,
5650                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5651                                                      RangeType));
5652   }
5653 
5654   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5655     // If there's no unsigned wrap, the value will never be less than its
5656     // initial value.
5657     if (AddRec->hasNoUnsignedWrap())
5658       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5659         if (!C->getValue()->isZero())
5660           ConservativeResult = ConservativeResult.intersectWith(
5661               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType);
5662 
5663     // If there's no signed wrap, and all the operands have the same sign or
5664     // zero, the value won't ever change sign.
5665     if (AddRec->hasNoSignedWrap()) {
5666       bool AllNonNeg = true;
5667       bool AllNonPos = true;
5668       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5669         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5670         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5671       }
5672       if (AllNonNeg)
5673         ConservativeResult = ConservativeResult.intersectWith(
5674           ConstantRange(APInt(BitWidth, 0),
5675                         APInt::getSignedMinValue(BitWidth)), RangeType);
5676       else if (AllNonPos)
5677         ConservativeResult = ConservativeResult.intersectWith(
5678           ConstantRange(APInt::getSignedMinValue(BitWidth),
5679                         APInt(BitWidth, 1)), RangeType);
5680     }
5681 
5682     // TODO: non-affine addrec
5683     if (AddRec->isAffine()) {
5684       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5685       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5686           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5687         auto RangeFromAffine = getRangeForAffineAR(
5688             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5689             BitWidth);
5690         if (!RangeFromAffine.isFullSet())
5691           ConservativeResult =
5692               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5693 
5694         auto RangeFromFactoring = getRangeViaFactoring(
5695             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5696             BitWidth);
5697         if (!RangeFromFactoring.isFullSet())
5698           ConservativeResult =
5699               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5700       }
5701     }
5702 
5703     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5704   }
5705 
5706   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5707     // Check if the IR explicitly contains !range metadata.
5708     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5709     if (MDRange.hasValue())
5710       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5711                                                             RangeType);
5712 
5713     // Split here to avoid paying the compile-time cost of calling both
5714     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5715     // if needed.
5716     const DataLayout &DL = getDataLayout();
5717     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5718       // For a SCEVUnknown, ask ValueTracking.
5719       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5720       if (Known.One != ~Known.Zero + 1)
5721         ConservativeResult =
5722             ConservativeResult.intersectWith(
5723                 ConstantRange(Known.One, ~Known.Zero + 1), RangeType);
5724     } else {
5725       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5726              "generalize as needed!");
5727       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5728       if (NS > 1)
5729         ConservativeResult = ConservativeResult.intersectWith(
5730             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5731                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5732             RangeType);
5733     }
5734 
5735     // A range of Phi is a subset of union of all ranges of its input.
5736     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5737       // Make sure that we do not run over cycled Phis.
5738       if (PendingPhiRanges.insert(Phi).second) {
5739         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5740         for (auto &Op : Phi->operands()) {
5741           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5742           RangeFromOps = RangeFromOps.unionWith(OpRange);
5743           // No point to continue if we already have a full set.
5744           if (RangeFromOps.isFullSet())
5745             break;
5746         }
5747         ConservativeResult =
5748             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5749         bool Erased = PendingPhiRanges.erase(Phi);
5750         assert(Erased && "Failed to erase Phi properly?");
5751         (void) Erased;
5752       }
5753     }
5754 
5755     return setRange(U, SignHint, std::move(ConservativeResult));
5756   }
5757 
5758   return setRange(S, SignHint, std::move(ConservativeResult));
5759 }
5760 
5761 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5762 // values that the expression can take. Initially, the expression has a value
5763 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5764 // argument defines if we treat Step as signed or unsigned.
5765 static ConstantRange getRangeForAffineARHelper(APInt Step,
5766                                                const ConstantRange &StartRange,
5767                                                const APInt &MaxBECount,
5768                                                unsigned BitWidth, bool Signed) {
5769   // If either Step or MaxBECount is 0, then the expression won't change, and we
5770   // just need to return the initial range.
5771   if (Step == 0 || MaxBECount == 0)
5772     return StartRange;
5773 
5774   // If we don't know anything about the initial value (i.e. StartRange is
5775   // FullRange), then we don't know anything about the final range either.
5776   // Return FullRange.
5777   if (StartRange.isFullSet())
5778     return ConstantRange::getFull(BitWidth);
5779 
5780   // If Step is signed and negative, then we use its absolute value, but we also
5781   // note that we're moving in the opposite direction.
5782   bool Descending = Signed && Step.isNegative();
5783 
5784   if (Signed)
5785     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5786     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5787     // This equations hold true due to the well-defined wrap-around behavior of
5788     // APInt.
5789     Step = Step.abs();
5790 
5791   // Check if Offset is more than full span of BitWidth. If it is, the
5792   // expression is guaranteed to overflow.
5793   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5794     return ConstantRange::getFull(BitWidth);
5795 
5796   // Offset is by how much the expression can change. Checks above guarantee no
5797   // overflow here.
5798   APInt Offset = Step * MaxBECount;
5799 
5800   // Minimum value of the final range will match the minimal value of StartRange
5801   // if the expression is increasing and will be decreased by Offset otherwise.
5802   // Maximum value of the final range will match the maximal value of StartRange
5803   // if the expression is decreasing and will be increased by Offset otherwise.
5804   APInt StartLower = StartRange.getLower();
5805   APInt StartUpper = StartRange.getUpper() - 1;
5806   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5807                                    : (StartUpper + std::move(Offset));
5808 
5809   // It's possible that the new minimum/maximum value will fall into the initial
5810   // range (due to wrap around). This means that the expression can take any
5811   // value in this bitwidth, and we have to return full range.
5812   if (StartRange.contains(MovedBoundary))
5813     return ConstantRange::getFull(BitWidth);
5814 
5815   APInt NewLower =
5816       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5817   APInt NewUpper =
5818       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5819   NewUpper += 1;
5820 
5821   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5822   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5823 }
5824 
5825 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5826                                                    const SCEV *Step,
5827                                                    const SCEV *MaxBECount,
5828                                                    unsigned BitWidth) {
5829   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5830          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5831          "Precondition!");
5832 
5833   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5834   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5835 
5836   // First, consider step signed.
5837   ConstantRange StartSRange = getSignedRange(Start);
5838   ConstantRange StepSRange = getSignedRange(Step);
5839 
5840   // If Step can be both positive and negative, we need to find ranges for the
5841   // maximum absolute step values in both directions and union them.
5842   ConstantRange SR =
5843       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5844                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5845   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5846                                               StartSRange, MaxBECountValue,
5847                                               BitWidth, /* Signed = */ true));
5848 
5849   // Next, consider step unsigned.
5850   ConstantRange UR = getRangeForAffineARHelper(
5851       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5852       MaxBECountValue, BitWidth, /* Signed = */ false);
5853 
5854   // Finally, intersect signed and unsigned ranges.
5855   return SR.intersectWith(UR, ConstantRange::Smallest);
5856 }
5857 
5858 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5859                                                     const SCEV *Step,
5860                                                     const SCEV *MaxBECount,
5861                                                     unsigned BitWidth) {
5862   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5863   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5864 
5865   struct SelectPattern {
5866     Value *Condition = nullptr;
5867     APInt TrueValue;
5868     APInt FalseValue;
5869 
5870     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5871                            const SCEV *S) {
5872       Optional<unsigned> CastOp;
5873       APInt Offset(BitWidth, 0);
5874 
5875       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5876              "Should be!");
5877 
5878       // Peel off a constant offset:
5879       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5880         // In the future we could consider being smarter here and handle
5881         // {Start+Step,+,Step} too.
5882         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5883           return;
5884 
5885         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5886         S = SA->getOperand(1);
5887       }
5888 
5889       // Peel off a cast operation
5890       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5891         CastOp = SCast->getSCEVType();
5892         S = SCast->getOperand();
5893       }
5894 
5895       using namespace llvm::PatternMatch;
5896 
5897       auto *SU = dyn_cast<SCEVUnknown>(S);
5898       const APInt *TrueVal, *FalseVal;
5899       if (!SU ||
5900           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5901                                           m_APInt(FalseVal)))) {
5902         Condition = nullptr;
5903         return;
5904       }
5905 
5906       TrueValue = *TrueVal;
5907       FalseValue = *FalseVal;
5908 
5909       // Re-apply the cast we peeled off earlier
5910       if (CastOp.hasValue())
5911         switch (*CastOp) {
5912         default:
5913           llvm_unreachable("Unknown SCEV cast type!");
5914 
5915         case scTruncate:
5916           TrueValue = TrueValue.trunc(BitWidth);
5917           FalseValue = FalseValue.trunc(BitWidth);
5918           break;
5919         case scZeroExtend:
5920           TrueValue = TrueValue.zext(BitWidth);
5921           FalseValue = FalseValue.zext(BitWidth);
5922           break;
5923         case scSignExtend:
5924           TrueValue = TrueValue.sext(BitWidth);
5925           FalseValue = FalseValue.sext(BitWidth);
5926           break;
5927         }
5928 
5929       // Re-apply the constant offset we peeled off earlier
5930       TrueValue += Offset;
5931       FalseValue += Offset;
5932     }
5933 
5934     bool isRecognized() { return Condition != nullptr; }
5935   };
5936 
5937   SelectPattern StartPattern(*this, BitWidth, Start);
5938   if (!StartPattern.isRecognized())
5939     return ConstantRange::getFull(BitWidth);
5940 
5941   SelectPattern StepPattern(*this, BitWidth, Step);
5942   if (!StepPattern.isRecognized())
5943     return ConstantRange::getFull(BitWidth);
5944 
5945   if (StartPattern.Condition != StepPattern.Condition) {
5946     // We don't handle this case today; but we could, by considering four
5947     // possibilities below instead of two. I'm not sure if there are cases where
5948     // that will help over what getRange already does, though.
5949     return ConstantRange::getFull(BitWidth);
5950   }
5951 
5952   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5953   // construct arbitrary general SCEV expressions here.  This function is called
5954   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5955   // say) can end up caching a suboptimal value.
5956 
5957   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5958   // C2352 and C2512 (otherwise it isn't needed).
5959 
5960   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5961   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5962   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5963   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5964 
5965   ConstantRange TrueRange =
5966       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5967   ConstantRange FalseRange =
5968       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5969 
5970   return TrueRange.unionWith(FalseRange);
5971 }
5972 
5973 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5974   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5975   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5976 
5977   // Return early if there are no flags to propagate to the SCEV.
5978   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5979   if (BinOp->hasNoUnsignedWrap())
5980     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5981   if (BinOp->hasNoSignedWrap())
5982     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5983   if (Flags == SCEV::FlagAnyWrap)
5984     return SCEV::FlagAnyWrap;
5985 
5986   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5987 }
5988 
5989 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5990   // Here we check that I is in the header of the innermost loop containing I,
5991   // since we only deal with instructions in the loop header. The actual loop we
5992   // need to check later will come from an add recurrence, but getting that
5993   // requires computing the SCEV of the operands, which can be expensive. This
5994   // check we can do cheaply to rule out some cases early.
5995   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5996   if (InnermostContainingLoop == nullptr ||
5997       InnermostContainingLoop->getHeader() != I->getParent())
5998     return false;
5999 
6000   // Only proceed if we can prove that I does not yield poison.
6001   if (!programUndefinedIfFullPoison(I))
6002     return false;
6003 
6004   // At this point we know that if I is executed, then it does not wrap
6005   // according to at least one of NSW or NUW. If I is not executed, then we do
6006   // not know if the calculation that I represents would wrap. Multiple
6007   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6008   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6009   // derived from other instructions that map to the same SCEV. We cannot make
6010   // that guarantee for cases where I is not executed. So we need to find the
6011   // loop that I is considered in relation to and prove that I is executed for
6012   // every iteration of that loop. That implies that the value that I
6013   // calculates does not wrap anywhere in the loop, so then we can apply the
6014   // flags to the SCEV.
6015   //
6016   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6017   // from different loops, so that we know which loop to prove that I is
6018   // executed in.
6019   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6020     // I could be an extractvalue from a call to an overflow intrinsic.
6021     // TODO: We can do better here in some cases.
6022     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6023       return false;
6024     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6025     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6026       bool AllOtherOpsLoopInvariant = true;
6027       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6028            ++OtherOpIndex) {
6029         if (OtherOpIndex != OpIndex) {
6030           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6031           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6032             AllOtherOpsLoopInvariant = false;
6033             break;
6034           }
6035         }
6036       }
6037       if (AllOtherOpsLoopInvariant &&
6038           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6039         return true;
6040     }
6041   }
6042   return false;
6043 }
6044 
6045 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6046   // If we know that \c I can never be poison period, then that's enough.
6047   if (isSCEVExprNeverPoison(I))
6048     return true;
6049 
6050   // For an add recurrence specifically, we assume that infinite loops without
6051   // side effects are undefined behavior, and then reason as follows:
6052   //
6053   // If the add recurrence is poison in any iteration, it is poison on all
6054   // future iterations (since incrementing poison yields poison). If the result
6055   // of the add recurrence is fed into the loop latch condition and the loop
6056   // does not contain any throws or exiting blocks other than the latch, we now
6057   // have the ability to "choose" whether the backedge is taken or not (by
6058   // choosing a sufficiently evil value for the poison feeding into the branch)
6059   // for every iteration including and after the one in which \p I first became
6060   // poison.  There are two possibilities (let's call the iteration in which \p
6061   // I first became poison as K):
6062   //
6063   //  1. In the set of iterations including and after K, the loop body executes
6064   //     no side effects.  In this case executing the backege an infinte number
6065   //     of times will yield undefined behavior.
6066   //
6067   //  2. In the set of iterations including and after K, the loop body executes
6068   //     at least one side effect.  In this case, that specific instance of side
6069   //     effect is control dependent on poison, which also yields undefined
6070   //     behavior.
6071 
6072   auto *ExitingBB = L->getExitingBlock();
6073   auto *LatchBB = L->getLoopLatch();
6074   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6075     return false;
6076 
6077   SmallPtrSet<const Instruction *, 16> Pushed;
6078   SmallVector<const Instruction *, 8> PoisonStack;
6079 
6080   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6081   // things that are known to be fully poison under that assumption go on the
6082   // PoisonStack.
6083   Pushed.insert(I);
6084   PoisonStack.push_back(I);
6085 
6086   bool LatchControlDependentOnPoison = false;
6087   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6088     const Instruction *Poison = PoisonStack.pop_back_val();
6089 
6090     for (auto *PoisonUser : Poison->users()) {
6091       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6092         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6093           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6094       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6095         assert(BI->isConditional() && "Only possibility!");
6096         if (BI->getParent() == LatchBB) {
6097           LatchControlDependentOnPoison = true;
6098           break;
6099         }
6100       }
6101     }
6102   }
6103 
6104   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6105 }
6106 
6107 ScalarEvolution::LoopProperties
6108 ScalarEvolution::getLoopProperties(const Loop *L) {
6109   using LoopProperties = ScalarEvolution::LoopProperties;
6110 
6111   auto Itr = LoopPropertiesCache.find(L);
6112   if (Itr == LoopPropertiesCache.end()) {
6113     auto HasSideEffects = [](Instruction *I) {
6114       if (auto *SI = dyn_cast<StoreInst>(I))
6115         return !SI->isSimple();
6116 
6117       return I->mayHaveSideEffects();
6118     };
6119 
6120     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6121                          /*HasNoSideEffects*/ true};
6122 
6123     for (auto *BB : L->getBlocks())
6124       for (auto &I : *BB) {
6125         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6126           LP.HasNoAbnormalExits = false;
6127         if (HasSideEffects(&I))
6128           LP.HasNoSideEffects = false;
6129         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6130           break; // We're already as pessimistic as we can get.
6131       }
6132 
6133     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6134     assert(InsertPair.second && "We just checked!");
6135     Itr = InsertPair.first;
6136   }
6137 
6138   return Itr->second;
6139 }
6140 
6141 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6142   if (!isSCEVable(V->getType()))
6143     return getUnknown(V);
6144 
6145   if (Instruction *I = dyn_cast<Instruction>(V)) {
6146     // Don't attempt to analyze instructions in blocks that aren't
6147     // reachable. Such instructions don't matter, and they aren't required
6148     // to obey basic rules for definitions dominating uses which this
6149     // analysis depends on.
6150     if (!DT.isReachableFromEntry(I->getParent()))
6151       return getUnknown(UndefValue::get(V->getType()));
6152   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6153     return getConstant(CI);
6154   else if (isa<ConstantPointerNull>(V))
6155     return getZero(V->getType());
6156   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6157     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6158   else if (!isa<ConstantExpr>(V))
6159     return getUnknown(V);
6160 
6161   Operator *U = cast<Operator>(V);
6162   if (auto BO = MatchBinaryOp(U, DT)) {
6163     switch (BO->Opcode) {
6164     case Instruction::Add: {
6165       // The simple thing to do would be to just call getSCEV on both operands
6166       // and call getAddExpr with the result. However if we're looking at a
6167       // bunch of things all added together, this can be quite inefficient,
6168       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6169       // Instead, gather up all the operands and make a single getAddExpr call.
6170       // LLVM IR canonical form means we need only traverse the left operands.
6171       SmallVector<const SCEV *, 4> AddOps;
6172       do {
6173         if (BO->Op) {
6174           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6175             AddOps.push_back(OpSCEV);
6176             break;
6177           }
6178 
6179           // If a NUW or NSW flag can be applied to the SCEV for this
6180           // addition, then compute the SCEV for this addition by itself
6181           // with a separate call to getAddExpr. We need to do that
6182           // instead of pushing the operands of the addition onto AddOps,
6183           // since the flags are only known to apply to this particular
6184           // addition - they may not apply to other additions that can be
6185           // formed with operands from AddOps.
6186           const SCEV *RHS = getSCEV(BO->RHS);
6187           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6188           if (Flags != SCEV::FlagAnyWrap) {
6189             const SCEV *LHS = getSCEV(BO->LHS);
6190             if (BO->Opcode == Instruction::Sub)
6191               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6192             else
6193               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6194             break;
6195           }
6196         }
6197 
6198         if (BO->Opcode == Instruction::Sub)
6199           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6200         else
6201           AddOps.push_back(getSCEV(BO->RHS));
6202 
6203         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6204         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6205                        NewBO->Opcode != Instruction::Sub)) {
6206           AddOps.push_back(getSCEV(BO->LHS));
6207           break;
6208         }
6209         BO = NewBO;
6210       } while (true);
6211 
6212       return getAddExpr(AddOps);
6213     }
6214 
6215     case Instruction::Mul: {
6216       SmallVector<const SCEV *, 4> MulOps;
6217       do {
6218         if (BO->Op) {
6219           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6220             MulOps.push_back(OpSCEV);
6221             break;
6222           }
6223 
6224           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6225           if (Flags != SCEV::FlagAnyWrap) {
6226             MulOps.push_back(
6227                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6228             break;
6229           }
6230         }
6231 
6232         MulOps.push_back(getSCEV(BO->RHS));
6233         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6234         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6235           MulOps.push_back(getSCEV(BO->LHS));
6236           break;
6237         }
6238         BO = NewBO;
6239       } while (true);
6240 
6241       return getMulExpr(MulOps);
6242     }
6243     case Instruction::UDiv:
6244       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6245     case Instruction::URem:
6246       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6247     case Instruction::Sub: {
6248       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6249       if (BO->Op)
6250         Flags = getNoWrapFlagsFromUB(BO->Op);
6251       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6252     }
6253     case Instruction::And:
6254       // For an expression like x&255 that merely masks off the high bits,
6255       // use zext(trunc(x)) as the SCEV expression.
6256       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6257         if (CI->isZero())
6258           return getSCEV(BO->RHS);
6259         if (CI->isMinusOne())
6260           return getSCEV(BO->LHS);
6261         const APInt &A = CI->getValue();
6262 
6263         // Instcombine's ShrinkDemandedConstant may strip bits out of
6264         // constants, obscuring what would otherwise be a low-bits mask.
6265         // Use computeKnownBits to compute what ShrinkDemandedConstant
6266         // knew about to reconstruct a low-bits mask value.
6267         unsigned LZ = A.countLeadingZeros();
6268         unsigned TZ = A.countTrailingZeros();
6269         unsigned BitWidth = A.getBitWidth();
6270         KnownBits Known(BitWidth);
6271         computeKnownBits(BO->LHS, Known, getDataLayout(),
6272                          0, &AC, nullptr, &DT);
6273 
6274         APInt EffectiveMask =
6275             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6276         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6277           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6278           const SCEV *LHS = getSCEV(BO->LHS);
6279           const SCEV *ShiftedLHS = nullptr;
6280           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6281             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6282               // For an expression like (x * 8) & 8, simplify the multiply.
6283               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6284               unsigned GCD = std::min(MulZeros, TZ);
6285               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6286               SmallVector<const SCEV*, 4> MulOps;
6287               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6288               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6289               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6290               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6291             }
6292           }
6293           if (!ShiftedLHS)
6294             ShiftedLHS = getUDivExpr(LHS, MulCount);
6295           return getMulExpr(
6296               getZeroExtendExpr(
6297                   getTruncateExpr(ShiftedLHS,
6298                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6299                   BO->LHS->getType()),
6300               MulCount);
6301         }
6302       }
6303       break;
6304 
6305     case Instruction::Or:
6306       // If the RHS of the Or is a constant, we may have something like:
6307       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6308       // optimizations will transparently handle this case.
6309       //
6310       // In order for this transformation to be safe, the LHS must be of the
6311       // form X*(2^n) and the Or constant must be less than 2^n.
6312       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6313         const SCEV *LHS = getSCEV(BO->LHS);
6314         const APInt &CIVal = CI->getValue();
6315         if (GetMinTrailingZeros(LHS) >=
6316             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6317           // Build a plain add SCEV.
6318           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6319           // If the LHS of the add was an addrec and it has no-wrap flags,
6320           // transfer the no-wrap flags, since an or won't introduce a wrap.
6321           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6322             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6323             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6324                 OldAR->getNoWrapFlags());
6325           }
6326           return S;
6327         }
6328       }
6329       break;
6330 
6331     case Instruction::Xor:
6332       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6333         // If the RHS of xor is -1, then this is a not operation.
6334         if (CI->isMinusOne())
6335           return getNotSCEV(getSCEV(BO->LHS));
6336 
6337         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6338         // This is a variant of the check for xor with -1, and it handles
6339         // the case where instcombine has trimmed non-demanded bits out
6340         // of an xor with -1.
6341         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6342           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6343             if (LBO->getOpcode() == Instruction::And &&
6344                 LCI->getValue() == CI->getValue())
6345               if (const SCEVZeroExtendExpr *Z =
6346                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6347                 Type *UTy = BO->LHS->getType();
6348                 const SCEV *Z0 = Z->getOperand();
6349                 Type *Z0Ty = Z0->getType();
6350                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6351 
6352                 // If C is a low-bits mask, the zero extend is serving to
6353                 // mask off the high bits. Complement the operand and
6354                 // re-apply the zext.
6355                 if (CI->getValue().isMask(Z0TySize))
6356                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6357 
6358                 // If C is a single bit, it may be in the sign-bit position
6359                 // before the zero-extend. In this case, represent the xor
6360                 // using an add, which is equivalent, and re-apply the zext.
6361                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6362                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6363                     Trunc.isSignMask())
6364                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6365                                            UTy);
6366               }
6367       }
6368       break;
6369 
6370     case Instruction::Shl:
6371       // Turn shift left of a constant amount into a multiply.
6372       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6373         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6374 
6375         // If the shift count is not less than the bitwidth, the result of
6376         // the shift is undefined. Don't try to analyze it, because the
6377         // resolution chosen here may differ from the resolution chosen in
6378         // other parts of the compiler.
6379         if (SA->getValue().uge(BitWidth))
6380           break;
6381 
6382         // It is currently not resolved how to interpret NSW for left
6383         // shift by BitWidth - 1, so we avoid applying flags in that
6384         // case. Remove this check (or this comment) once the situation
6385         // is resolved. See
6386         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6387         // and http://reviews.llvm.org/D8890 .
6388         auto Flags = SCEV::FlagAnyWrap;
6389         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6390           Flags = getNoWrapFlagsFromUB(BO->Op);
6391 
6392         Constant *X = ConstantInt::get(
6393             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6394         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6395       }
6396       break;
6397 
6398     case Instruction::AShr: {
6399       // AShr X, C, where C is a constant.
6400       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6401       if (!CI)
6402         break;
6403 
6404       Type *OuterTy = BO->LHS->getType();
6405       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6406       // If the shift count is not less than the bitwidth, the result of
6407       // the shift is undefined. Don't try to analyze it, because the
6408       // resolution chosen here may differ from the resolution chosen in
6409       // other parts of the compiler.
6410       if (CI->getValue().uge(BitWidth))
6411         break;
6412 
6413       if (CI->isZero())
6414         return getSCEV(BO->LHS); // shift by zero --> noop
6415 
6416       uint64_t AShrAmt = CI->getZExtValue();
6417       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6418 
6419       Operator *L = dyn_cast<Operator>(BO->LHS);
6420       if (L && L->getOpcode() == Instruction::Shl) {
6421         // X = Shl A, n
6422         // Y = AShr X, m
6423         // Both n and m are constant.
6424 
6425         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6426         if (L->getOperand(1) == BO->RHS)
6427           // For a two-shift sext-inreg, i.e. n = m,
6428           // use sext(trunc(x)) as the SCEV expression.
6429           return getSignExtendExpr(
6430               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6431 
6432         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6433         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6434           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6435           if (ShlAmt > AShrAmt) {
6436             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6437             // expression. We already checked that ShlAmt < BitWidth, so
6438             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6439             // ShlAmt - AShrAmt < Amt.
6440             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6441                                             ShlAmt - AShrAmt);
6442             return getSignExtendExpr(
6443                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6444                 getConstant(Mul)), OuterTy);
6445           }
6446         }
6447       }
6448       break;
6449     }
6450     }
6451   }
6452 
6453   switch (U->getOpcode()) {
6454   case Instruction::Trunc:
6455     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6456 
6457   case Instruction::ZExt:
6458     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6459 
6460   case Instruction::SExt:
6461     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6462       // The NSW flag of a subtract does not always survive the conversion to
6463       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6464       // more likely to preserve NSW and allow later AddRec optimisations.
6465       //
6466       // NOTE: This is effectively duplicating this logic from getSignExtend:
6467       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6468       // but by that point the NSW information has potentially been lost.
6469       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6470         Type *Ty = U->getType();
6471         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6472         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6473         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6474       }
6475     }
6476     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6477 
6478   case Instruction::BitCast:
6479     // BitCasts are no-op casts so we just eliminate the cast.
6480     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6481       return getSCEV(U->getOperand(0));
6482     break;
6483 
6484   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6485   // lead to pointer expressions which cannot safely be expanded to GEPs,
6486   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6487   // simplifying integer expressions.
6488 
6489   case Instruction::GetElementPtr:
6490     return createNodeForGEP(cast<GEPOperator>(U));
6491 
6492   case Instruction::PHI:
6493     return createNodeForPHI(cast<PHINode>(U));
6494 
6495   case Instruction::Select:
6496     // U can also be a select constant expr, which let fall through.  Since
6497     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6498     // constant expressions cannot have instructions as operands, we'd have
6499     // returned getUnknown for a select constant expressions anyway.
6500     if (isa<Instruction>(U))
6501       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6502                                       U->getOperand(1), U->getOperand(2));
6503     break;
6504 
6505   case Instruction::Call:
6506   case Instruction::Invoke:
6507     if (Value *RV = CallSite(U).getReturnedArgOperand())
6508       return getSCEV(RV);
6509     break;
6510   }
6511 
6512   return getUnknown(V);
6513 }
6514 
6515 //===----------------------------------------------------------------------===//
6516 //                   Iteration Count Computation Code
6517 //
6518 
6519 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6520   if (!ExitCount)
6521     return 0;
6522 
6523   ConstantInt *ExitConst = ExitCount->getValue();
6524 
6525   // Guard against huge trip counts.
6526   if (ExitConst->getValue().getActiveBits() > 32)
6527     return 0;
6528 
6529   // In case of integer overflow, this returns 0, which is correct.
6530   return ((unsigned)ExitConst->getZExtValue()) + 1;
6531 }
6532 
6533 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6534   if (BasicBlock *ExitingBB = L->getExitingBlock())
6535     return getSmallConstantTripCount(L, ExitingBB);
6536 
6537   // No trip count information for multiple exits.
6538   return 0;
6539 }
6540 
6541 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6542                                                     BasicBlock *ExitingBlock) {
6543   assert(ExitingBlock && "Must pass a non-null exiting block!");
6544   assert(L->isLoopExiting(ExitingBlock) &&
6545          "Exiting block must actually branch out of the loop!");
6546   const SCEVConstant *ExitCount =
6547       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6548   return getConstantTripCount(ExitCount);
6549 }
6550 
6551 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6552   const auto *MaxExitCount =
6553       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6554   return getConstantTripCount(MaxExitCount);
6555 }
6556 
6557 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6558   if (BasicBlock *ExitingBB = L->getExitingBlock())
6559     return getSmallConstantTripMultiple(L, ExitingBB);
6560 
6561   // No trip multiple information for multiple exits.
6562   return 0;
6563 }
6564 
6565 /// Returns the largest constant divisor of the trip count of this loop as a
6566 /// normal unsigned value, if possible. This means that the actual trip count is
6567 /// always a multiple of the returned value (don't forget the trip count could
6568 /// very well be zero as well!).
6569 ///
6570 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6571 /// multiple of a constant (which is also the case if the trip count is simply
6572 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6573 /// if the trip count is very large (>= 2^32).
6574 ///
6575 /// As explained in the comments for getSmallConstantTripCount, this assumes
6576 /// that control exits the loop via ExitingBlock.
6577 unsigned
6578 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6579                                               BasicBlock *ExitingBlock) {
6580   assert(ExitingBlock && "Must pass a non-null exiting block!");
6581   assert(L->isLoopExiting(ExitingBlock) &&
6582          "Exiting block must actually branch out of the loop!");
6583   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6584   if (ExitCount == getCouldNotCompute())
6585     return 1;
6586 
6587   // Get the trip count from the BE count by adding 1.
6588   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6589 
6590   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6591   if (!TC)
6592     // Attempt to factor more general cases. Returns the greatest power of
6593     // two divisor. If overflow happens, the trip count expression is still
6594     // divisible by the greatest power of 2 divisor returned.
6595     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6596 
6597   ConstantInt *Result = TC->getValue();
6598 
6599   // Guard against huge trip counts (this requires checking
6600   // for zero to handle the case where the trip count == -1 and the
6601   // addition wraps).
6602   if (!Result || Result->getValue().getActiveBits() > 32 ||
6603       Result->getValue().getActiveBits() == 0)
6604     return 1;
6605 
6606   return (unsigned)Result->getZExtValue();
6607 }
6608 
6609 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6610                                           BasicBlock *ExitingBlock,
6611                                           ExitCountKind Kind) {
6612   switch (Kind) {
6613   case Exact:
6614     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6615   case ConstantMaximum:
6616     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6617   };
6618   llvm_unreachable("Invalid ExitCountKind!");
6619 }
6620 
6621 const SCEV *
6622 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6623                                                  SCEVUnionPredicate &Preds) {
6624   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6625 }
6626 
6627 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6628                                                    ExitCountKind Kind) {
6629   switch (Kind) {
6630   case Exact:
6631     return getBackedgeTakenInfo(L).getExact(L, this);
6632   case ConstantMaximum:
6633     return getBackedgeTakenInfo(L).getMax(this);
6634   };
6635   llvm_unreachable("Invalid ExitCountKind!");
6636 }
6637 
6638 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6639   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6640 }
6641 
6642 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6643 static void
6644 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6645   BasicBlock *Header = L->getHeader();
6646 
6647   // Push all Loop-header PHIs onto the Worklist stack.
6648   for (PHINode &PN : Header->phis())
6649     Worklist.push_back(&PN);
6650 }
6651 
6652 const ScalarEvolution::BackedgeTakenInfo &
6653 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6654   auto &BTI = getBackedgeTakenInfo(L);
6655   if (BTI.hasFullInfo())
6656     return BTI;
6657 
6658   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6659 
6660   if (!Pair.second)
6661     return Pair.first->second;
6662 
6663   BackedgeTakenInfo Result =
6664       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6665 
6666   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6667 }
6668 
6669 const ScalarEvolution::BackedgeTakenInfo &
6670 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6671   // Initially insert an invalid entry for this loop. If the insertion
6672   // succeeds, proceed to actually compute a backedge-taken count and
6673   // update the value. The temporary CouldNotCompute value tells SCEV
6674   // code elsewhere that it shouldn't attempt to request a new
6675   // backedge-taken count, which could result in infinite recursion.
6676   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6677       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6678   if (!Pair.second)
6679     return Pair.first->second;
6680 
6681   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6682   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6683   // must be cleared in this scope.
6684   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6685 
6686   // In product build, there are no usage of statistic.
6687   (void)NumTripCountsComputed;
6688   (void)NumTripCountsNotComputed;
6689 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6690   const SCEV *BEExact = Result.getExact(L, this);
6691   if (BEExact != getCouldNotCompute()) {
6692     assert(isLoopInvariant(BEExact, L) &&
6693            isLoopInvariant(Result.getMax(this), L) &&
6694            "Computed backedge-taken count isn't loop invariant for loop!");
6695     ++NumTripCountsComputed;
6696   }
6697   else if (Result.getMax(this) == getCouldNotCompute() &&
6698            isa<PHINode>(L->getHeader()->begin())) {
6699     // Only count loops that have phi nodes as not being computable.
6700     ++NumTripCountsNotComputed;
6701   }
6702 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6703 
6704   // Now that we know more about the trip count for this loop, forget any
6705   // existing SCEV values for PHI nodes in this loop since they are only
6706   // conservative estimates made without the benefit of trip count
6707   // information. This is similar to the code in forgetLoop, except that
6708   // it handles SCEVUnknown PHI nodes specially.
6709   if (Result.hasAnyInfo()) {
6710     SmallVector<Instruction *, 16> Worklist;
6711     PushLoopPHIs(L, Worklist);
6712 
6713     SmallPtrSet<Instruction *, 8> Discovered;
6714     while (!Worklist.empty()) {
6715       Instruction *I = Worklist.pop_back_val();
6716 
6717       ValueExprMapType::iterator It =
6718         ValueExprMap.find_as(static_cast<Value *>(I));
6719       if (It != ValueExprMap.end()) {
6720         const SCEV *Old = It->second;
6721 
6722         // SCEVUnknown for a PHI either means that it has an unrecognized
6723         // structure, or it's a PHI that's in the progress of being computed
6724         // by createNodeForPHI.  In the former case, additional loop trip
6725         // count information isn't going to change anything. In the later
6726         // case, createNodeForPHI will perform the necessary updates on its
6727         // own when it gets to that point.
6728         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6729           eraseValueFromMap(It->first);
6730           forgetMemoizedResults(Old);
6731         }
6732         if (PHINode *PN = dyn_cast<PHINode>(I))
6733           ConstantEvolutionLoopExitValue.erase(PN);
6734       }
6735 
6736       // Since we don't need to invalidate anything for correctness and we're
6737       // only invalidating to make SCEV's results more precise, we get to stop
6738       // early to avoid invalidating too much.  This is especially important in
6739       // cases like:
6740       //
6741       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6742       // loop0:
6743       //   %pn0 = phi
6744       //   ...
6745       // loop1:
6746       //   %pn1 = phi
6747       //   ...
6748       //
6749       // where both loop0 and loop1's backedge taken count uses the SCEV
6750       // expression for %v.  If we don't have the early stop below then in cases
6751       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6752       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6753       // count for loop1, effectively nullifying SCEV's trip count cache.
6754       for (auto *U : I->users())
6755         if (auto *I = dyn_cast<Instruction>(U)) {
6756           auto *LoopForUser = LI.getLoopFor(I->getParent());
6757           if (LoopForUser && L->contains(LoopForUser) &&
6758               Discovered.insert(I).second)
6759             Worklist.push_back(I);
6760         }
6761     }
6762   }
6763 
6764   // Re-lookup the insert position, since the call to
6765   // computeBackedgeTakenCount above could result in a
6766   // recusive call to getBackedgeTakenInfo (on a different
6767   // loop), which would invalidate the iterator computed
6768   // earlier.
6769   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6770 }
6771 
6772 void ScalarEvolution::forgetAllLoops() {
6773   // This method is intended to forget all info about loops. It should
6774   // invalidate caches as if the following happened:
6775   // - The trip counts of all loops have changed arbitrarily
6776   // - Every llvm::Value has been updated in place to produce a different
6777   // result.
6778   BackedgeTakenCounts.clear();
6779   PredicatedBackedgeTakenCounts.clear();
6780   LoopPropertiesCache.clear();
6781   ConstantEvolutionLoopExitValue.clear();
6782   ValueExprMap.clear();
6783   ValuesAtScopes.clear();
6784   LoopDispositions.clear();
6785   BlockDispositions.clear();
6786   UnsignedRanges.clear();
6787   SignedRanges.clear();
6788   ExprValueMap.clear();
6789   HasRecMap.clear();
6790   MinTrailingZerosCache.clear();
6791   PredicatedSCEVRewrites.clear();
6792 }
6793 
6794 void ScalarEvolution::forgetLoop(const Loop *L) {
6795   // Drop any stored trip count value.
6796   auto RemoveLoopFromBackedgeMap =
6797       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6798         auto BTCPos = Map.find(L);
6799         if (BTCPos != Map.end()) {
6800           BTCPos->second.clear();
6801           Map.erase(BTCPos);
6802         }
6803       };
6804 
6805   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6806   SmallVector<Instruction *, 32> Worklist;
6807   SmallPtrSet<Instruction *, 16> Visited;
6808 
6809   // Iterate over all the loops and sub-loops to drop SCEV information.
6810   while (!LoopWorklist.empty()) {
6811     auto *CurrL = LoopWorklist.pop_back_val();
6812 
6813     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6814     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6815 
6816     // Drop information about predicated SCEV rewrites for this loop.
6817     for (auto I = PredicatedSCEVRewrites.begin();
6818          I != PredicatedSCEVRewrites.end();) {
6819       std::pair<const SCEV *, const Loop *> Entry = I->first;
6820       if (Entry.second == CurrL)
6821         PredicatedSCEVRewrites.erase(I++);
6822       else
6823         ++I;
6824     }
6825 
6826     auto LoopUsersItr = LoopUsers.find(CurrL);
6827     if (LoopUsersItr != LoopUsers.end()) {
6828       for (auto *S : LoopUsersItr->second)
6829         forgetMemoizedResults(S);
6830       LoopUsers.erase(LoopUsersItr);
6831     }
6832 
6833     // Drop information about expressions based on loop-header PHIs.
6834     PushLoopPHIs(CurrL, Worklist);
6835 
6836     while (!Worklist.empty()) {
6837       Instruction *I = Worklist.pop_back_val();
6838       if (!Visited.insert(I).second)
6839         continue;
6840 
6841       ValueExprMapType::iterator It =
6842           ValueExprMap.find_as(static_cast<Value *>(I));
6843       if (It != ValueExprMap.end()) {
6844         eraseValueFromMap(It->first);
6845         forgetMemoizedResults(It->second);
6846         if (PHINode *PN = dyn_cast<PHINode>(I))
6847           ConstantEvolutionLoopExitValue.erase(PN);
6848       }
6849 
6850       PushDefUseChildren(I, Worklist);
6851     }
6852 
6853     LoopPropertiesCache.erase(CurrL);
6854     // Forget all contained loops too, to avoid dangling entries in the
6855     // ValuesAtScopes map.
6856     LoopWorklist.append(CurrL->begin(), CurrL->end());
6857   }
6858 }
6859 
6860 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6861   while (Loop *Parent = L->getParentLoop())
6862     L = Parent;
6863   forgetLoop(L);
6864 }
6865 
6866 void ScalarEvolution::forgetValue(Value *V) {
6867   Instruction *I = dyn_cast<Instruction>(V);
6868   if (!I) return;
6869 
6870   // Drop information about expressions based on loop-header PHIs.
6871   SmallVector<Instruction *, 16> Worklist;
6872   Worklist.push_back(I);
6873 
6874   SmallPtrSet<Instruction *, 8> Visited;
6875   while (!Worklist.empty()) {
6876     I = Worklist.pop_back_val();
6877     if (!Visited.insert(I).second)
6878       continue;
6879 
6880     ValueExprMapType::iterator It =
6881       ValueExprMap.find_as(static_cast<Value *>(I));
6882     if (It != ValueExprMap.end()) {
6883       eraseValueFromMap(It->first);
6884       forgetMemoizedResults(It->second);
6885       if (PHINode *PN = dyn_cast<PHINode>(I))
6886         ConstantEvolutionLoopExitValue.erase(PN);
6887     }
6888 
6889     PushDefUseChildren(I, Worklist);
6890   }
6891 }
6892 
6893 /// Get the exact loop backedge taken count considering all loop exits. A
6894 /// computable result can only be returned for loops with all exiting blocks
6895 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6896 /// is never skipped. This is a valid assumption as long as the loop exits via
6897 /// that test. For precise results, it is the caller's responsibility to specify
6898 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6899 const SCEV *
6900 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6901                                              SCEVUnionPredicate *Preds) const {
6902   // If any exits were not computable, the loop is not computable.
6903   if (!isComplete() || ExitNotTaken.empty())
6904     return SE->getCouldNotCompute();
6905 
6906   const BasicBlock *Latch = L->getLoopLatch();
6907   // All exiting blocks we have collected must dominate the only backedge.
6908   if (!Latch)
6909     return SE->getCouldNotCompute();
6910 
6911   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6912   // count is simply a minimum out of all these calculated exit counts.
6913   SmallVector<const SCEV *, 2> Ops;
6914   for (auto &ENT : ExitNotTaken) {
6915     const SCEV *BECount = ENT.ExactNotTaken;
6916     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6917     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6918            "We should only have known counts for exiting blocks that dominate "
6919            "latch!");
6920 
6921     Ops.push_back(BECount);
6922 
6923     if (Preds && !ENT.hasAlwaysTruePredicate())
6924       Preds->add(ENT.Predicate.get());
6925 
6926     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6927            "Predicate should be always true!");
6928   }
6929 
6930   return SE->getUMinFromMismatchedTypes(Ops);
6931 }
6932 
6933 /// Get the exact not taken count for this loop exit.
6934 const SCEV *
6935 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6936                                              ScalarEvolution *SE) const {
6937   for (auto &ENT : ExitNotTaken)
6938     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6939       return ENT.ExactNotTaken;
6940 
6941   return SE->getCouldNotCompute();
6942 }
6943 
6944 const SCEV *
6945 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
6946                                            ScalarEvolution *SE) const {
6947   for (auto &ENT : ExitNotTaken)
6948     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6949       return ENT.MaxNotTaken;
6950 
6951   return SE->getCouldNotCompute();
6952 }
6953 
6954 /// getMax - Get the max backedge taken count for the loop.
6955 const SCEV *
6956 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6957   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6958     return !ENT.hasAlwaysTruePredicate();
6959   };
6960 
6961   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6962     return SE->getCouldNotCompute();
6963 
6964   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6965          "No point in having a non-constant max backedge taken count!");
6966   return getMax();
6967 }
6968 
6969 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6970   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6971     return !ENT.hasAlwaysTruePredicate();
6972   };
6973   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6974 }
6975 
6976 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6977                                                     ScalarEvolution *SE) const {
6978   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6979       SE->hasOperand(getMax(), S))
6980     return true;
6981 
6982   for (auto &ENT : ExitNotTaken)
6983     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6984         SE->hasOperand(ENT.ExactNotTaken, S))
6985       return true;
6986 
6987   return false;
6988 }
6989 
6990 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6991     : ExactNotTaken(E), MaxNotTaken(E) {
6992   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6993           isa<SCEVConstant>(MaxNotTaken)) &&
6994          "No point in having a non-constant max backedge taken count!");
6995 }
6996 
6997 ScalarEvolution::ExitLimit::ExitLimit(
6998     const SCEV *E, const SCEV *M, bool MaxOrZero,
6999     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7000     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7001   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7002           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7003          "Exact is not allowed to be less precise than Max");
7004   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7005           isa<SCEVConstant>(MaxNotTaken)) &&
7006          "No point in having a non-constant max backedge taken count!");
7007   for (auto *PredSet : PredSetList)
7008     for (auto *P : *PredSet)
7009       addPredicate(P);
7010 }
7011 
7012 ScalarEvolution::ExitLimit::ExitLimit(
7013     const SCEV *E, const SCEV *M, bool MaxOrZero,
7014     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7015     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7016   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7017           isa<SCEVConstant>(MaxNotTaken)) &&
7018          "No point in having a non-constant max backedge taken count!");
7019 }
7020 
7021 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7022                                       bool MaxOrZero)
7023     : ExitLimit(E, M, MaxOrZero, None) {
7024   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7025           isa<SCEVConstant>(MaxNotTaken)) &&
7026          "No point in having a non-constant max backedge taken count!");
7027 }
7028 
7029 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7030 /// computable exit into a persistent ExitNotTakenInfo array.
7031 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7032     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7033         ExitCounts,
7034     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7035     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7036   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7037 
7038   ExitNotTaken.reserve(ExitCounts.size());
7039   std::transform(
7040       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7041       [&](const EdgeExitInfo &EEI) {
7042         BasicBlock *ExitBB = EEI.first;
7043         const ExitLimit &EL = EEI.second;
7044         if (EL.Predicates.empty())
7045           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7046                                   nullptr);
7047 
7048         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7049         for (auto *Pred : EL.Predicates)
7050           Predicate->add(Pred);
7051 
7052         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7053                                 std::move(Predicate));
7054       });
7055   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7056          "No point in having a non-constant max backedge taken count!");
7057 }
7058 
7059 /// Invalidate this result and free the ExitNotTakenInfo array.
7060 void ScalarEvolution::BackedgeTakenInfo::clear() {
7061   ExitNotTaken.clear();
7062 }
7063 
7064 /// Compute the number of times the backedge of the specified loop will execute.
7065 ScalarEvolution::BackedgeTakenInfo
7066 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7067                                            bool AllowPredicates) {
7068   SmallVector<BasicBlock *, 8> ExitingBlocks;
7069   L->getExitingBlocks(ExitingBlocks);
7070 
7071   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7072 
7073   SmallVector<EdgeExitInfo, 4> ExitCounts;
7074   bool CouldComputeBECount = true;
7075   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7076   const SCEV *MustExitMaxBECount = nullptr;
7077   const SCEV *MayExitMaxBECount = nullptr;
7078   bool MustExitMaxOrZero = false;
7079 
7080   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7081   // and compute maxBECount.
7082   // Do a union of all the predicates here.
7083   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7084     BasicBlock *ExitBB = ExitingBlocks[i];
7085 
7086     // We canonicalize untaken exits to br (constant), ignore them so that
7087     // proving an exit untaken doesn't negatively impact our ability to reason
7088     // about the loop as whole.
7089     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7090       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7091         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7092         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7093           continue;
7094       }
7095 
7096     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7097 
7098     assert((AllowPredicates || EL.Predicates.empty()) &&
7099            "Predicated exit limit when predicates are not allowed!");
7100 
7101     // 1. For each exit that can be computed, add an entry to ExitCounts.
7102     // CouldComputeBECount is true only if all exits can be computed.
7103     if (EL.ExactNotTaken == getCouldNotCompute())
7104       // We couldn't compute an exact value for this exit, so
7105       // we won't be able to compute an exact value for the loop.
7106       CouldComputeBECount = false;
7107     else
7108       ExitCounts.emplace_back(ExitBB, EL);
7109 
7110     // 2. Derive the loop's MaxBECount from each exit's max number of
7111     // non-exiting iterations. Partition the loop exits into two kinds:
7112     // LoopMustExits and LoopMayExits.
7113     //
7114     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7115     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7116     // MaxBECount is the minimum EL.MaxNotTaken of computable
7117     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7118     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7119     // computable EL.MaxNotTaken.
7120     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7121         DT.dominates(ExitBB, Latch)) {
7122       if (!MustExitMaxBECount) {
7123         MustExitMaxBECount = EL.MaxNotTaken;
7124         MustExitMaxOrZero = EL.MaxOrZero;
7125       } else {
7126         MustExitMaxBECount =
7127             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7128       }
7129     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7130       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7131         MayExitMaxBECount = EL.MaxNotTaken;
7132       else {
7133         MayExitMaxBECount =
7134             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7135       }
7136     }
7137   }
7138   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7139     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7140   // The loop backedge will be taken the maximum or zero times if there's
7141   // a single exit that must be taken the maximum or zero times.
7142   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7143   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7144                            MaxBECount, MaxOrZero);
7145 }
7146 
7147 ScalarEvolution::ExitLimit
7148 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7149                                       bool AllowPredicates) {
7150   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7151   // If our exiting block does not dominate the latch, then its connection with
7152   // loop's exit limit may be far from trivial.
7153   const BasicBlock *Latch = L->getLoopLatch();
7154   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7155     return getCouldNotCompute();
7156 
7157   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7158   Instruction *Term = ExitingBlock->getTerminator();
7159   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7160     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7161     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7162     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7163            "It should have one successor in loop and one exit block!");
7164     // Proceed to the next level to examine the exit condition expression.
7165     return computeExitLimitFromCond(
7166         L, BI->getCondition(), ExitIfTrue,
7167         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7168   }
7169 
7170   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7171     // For switch, make sure that there is a single exit from the loop.
7172     BasicBlock *Exit = nullptr;
7173     for (auto *SBB : successors(ExitingBlock))
7174       if (!L->contains(SBB)) {
7175         if (Exit) // Multiple exit successors.
7176           return getCouldNotCompute();
7177         Exit = SBB;
7178       }
7179     assert(Exit && "Exiting block must have at least one exit");
7180     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7181                                                 /*ControlsExit=*/IsOnlyExit);
7182   }
7183 
7184   return getCouldNotCompute();
7185 }
7186 
7187 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7188     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7189     bool ControlsExit, bool AllowPredicates) {
7190   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7191   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7192                                         ControlsExit, AllowPredicates);
7193 }
7194 
7195 Optional<ScalarEvolution::ExitLimit>
7196 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7197                                       bool ExitIfTrue, bool ControlsExit,
7198                                       bool AllowPredicates) {
7199   (void)this->L;
7200   (void)this->ExitIfTrue;
7201   (void)this->AllowPredicates;
7202 
7203   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7204          this->AllowPredicates == AllowPredicates &&
7205          "Variance in assumed invariant key components!");
7206   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7207   if (Itr == TripCountMap.end())
7208     return None;
7209   return Itr->second;
7210 }
7211 
7212 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7213                                              bool ExitIfTrue,
7214                                              bool ControlsExit,
7215                                              bool AllowPredicates,
7216                                              const ExitLimit &EL) {
7217   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7218          this->AllowPredicates == AllowPredicates &&
7219          "Variance in assumed invariant key components!");
7220 
7221   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7222   assert(InsertResult.second && "Expected successful insertion!");
7223   (void)InsertResult;
7224   (void)ExitIfTrue;
7225 }
7226 
7227 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7228     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7229     bool ControlsExit, bool AllowPredicates) {
7230 
7231   if (auto MaybeEL =
7232           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7233     return *MaybeEL;
7234 
7235   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7236                                               ControlsExit, AllowPredicates);
7237   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7238   return EL;
7239 }
7240 
7241 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7242     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7243     bool ControlsExit, bool AllowPredicates) {
7244   // Check if the controlling expression for this loop is an And or Or.
7245   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7246     if (BO->getOpcode() == Instruction::And) {
7247       // Recurse on the operands of the and.
7248       bool EitherMayExit = !ExitIfTrue;
7249       ExitLimit EL0 = computeExitLimitFromCondCached(
7250           Cache, L, BO->getOperand(0), ExitIfTrue,
7251           ControlsExit && !EitherMayExit, AllowPredicates);
7252       ExitLimit EL1 = computeExitLimitFromCondCached(
7253           Cache, L, BO->getOperand(1), ExitIfTrue,
7254           ControlsExit && !EitherMayExit, AllowPredicates);
7255       // Be robust against unsimplified IR for the form "and i1 X, true"
7256       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7257         return CI->isOne() ? EL0 : EL1;
7258       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7259         return CI->isOne() ? EL1 : EL0;
7260       const SCEV *BECount = getCouldNotCompute();
7261       const SCEV *MaxBECount = getCouldNotCompute();
7262       if (EitherMayExit) {
7263         // Both conditions must be true for the loop to continue executing.
7264         // Choose the less conservative count.
7265         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7266             EL1.ExactNotTaken == getCouldNotCompute())
7267           BECount = getCouldNotCompute();
7268         else
7269           BECount =
7270               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7271         if (EL0.MaxNotTaken == getCouldNotCompute())
7272           MaxBECount = EL1.MaxNotTaken;
7273         else if (EL1.MaxNotTaken == getCouldNotCompute())
7274           MaxBECount = EL0.MaxNotTaken;
7275         else
7276           MaxBECount =
7277               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7278       } else {
7279         // Both conditions must be true at the same time for the loop to exit.
7280         // For now, be conservative.
7281         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7282           MaxBECount = EL0.MaxNotTaken;
7283         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7284           BECount = EL0.ExactNotTaken;
7285       }
7286 
7287       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7288       // to be more aggressive when computing BECount than when computing
7289       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7290       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7291       // to not.
7292       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7293           !isa<SCEVCouldNotCompute>(BECount))
7294         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7295 
7296       return ExitLimit(BECount, MaxBECount, false,
7297                        {&EL0.Predicates, &EL1.Predicates});
7298     }
7299     if (BO->getOpcode() == Instruction::Or) {
7300       // Recurse on the operands of the or.
7301       bool EitherMayExit = ExitIfTrue;
7302       ExitLimit EL0 = computeExitLimitFromCondCached(
7303           Cache, L, BO->getOperand(0), ExitIfTrue,
7304           ControlsExit && !EitherMayExit, AllowPredicates);
7305       ExitLimit EL1 = computeExitLimitFromCondCached(
7306           Cache, L, BO->getOperand(1), ExitIfTrue,
7307           ControlsExit && !EitherMayExit, AllowPredicates);
7308       // Be robust against unsimplified IR for the form "or i1 X, true"
7309       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7310         return CI->isZero() ? EL0 : EL1;
7311       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7312         return CI->isZero() ? EL1 : EL0;
7313       const SCEV *BECount = getCouldNotCompute();
7314       const SCEV *MaxBECount = getCouldNotCompute();
7315       if (EitherMayExit) {
7316         // Both conditions must be false for the loop to continue executing.
7317         // Choose the less conservative count.
7318         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7319             EL1.ExactNotTaken == getCouldNotCompute())
7320           BECount = getCouldNotCompute();
7321         else
7322           BECount =
7323               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7324         if (EL0.MaxNotTaken == getCouldNotCompute())
7325           MaxBECount = EL1.MaxNotTaken;
7326         else if (EL1.MaxNotTaken == getCouldNotCompute())
7327           MaxBECount = EL0.MaxNotTaken;
7328         else
7329           MaxBECount =
7330               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7331       } else {
7332         // Both conditions must be false at the same time for the loop to exit.
7333         // For now, be conservative.
7334         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7335           MaxBECount = EL0.MaxNotTaken;
7336         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7337           BECount = EL0.ExactNotTaken;
7338       }
7339       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7340       // to be more aggressive when computing BECount than when computing
7341       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7342       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7343       // to not.
7344       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7345           !isa<SCEVCouldNotCompute>(BECount))
7346         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7347 
7348       return ExitLimit(BECount, MaxBECount, false,
7349                        {&EL0.Predicates, &EL1.Predicates});
7350     }
7351   }
7352 
7353   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7354   // Proceed to the next level to examine the icmp.
7355   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7356     ExitLimit EL =
7357         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7358     if (EL.hasFullInfo() || !AllowPredicates)
7359       return EL;
7360 
7361     // Try again, but use SCEV predicates this time.
7362     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7363                                     /*AllowPredicates=*/true);
7364   }
7365 
7366   // Check for a constant condition. These are normally stripped out by
7367   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7368   // preserve the CFG and is temporarily leaving constant conditions
7369   // in place.
7370   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7371     if (ExitIfTrue == !CI->getZExtValue())
7372       // The backedge is always taken.
7373       return getCouldNotCompute();
7374     else
7375       // The backedge is never taken.
7376       return getZero(CI->getType());
7377   }
7378 
7379   // If it's not an integer or pointer comparison then compute it the hard way.
7380   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7381 }
7382 
7383 ScalarEvolution::ExitLimit
7384 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7385                                           ICmpInst *ExitCond,
7386                                           bool ExitIfTrue,
7387                                           bool ControlsExit,
7388                                           bool AllowPredicates) {
7389   // If the condition was exit on true, convert the condition to exit on false
7390   ICmpInst::Predicate Pred;
7391   if (!ExitIfTrue)
7392     Pred = ExitCond->getPredicate();
7393   else
7394     Pred = ExitCond->getInversePredicate();
7395   const ICmpInst::Predicate OriginalPred = Pred;
7396 
7397   // Handle common loops like: for (X = "string"; *X; ++X)
7398   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7399     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7400       ExitLimit ItCnt =
7401         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7402       if (ItCnt.hasAnyInfo())
7403         return ItCnt;
7404     }
7405 
7406   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7407   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7408 
7409   // Try to evaluate any dependencies out of the loop.
7410   LHS = getSCEVAtScope(LHS, L);
7411   RHS = getSCEVAtScope(RHS, L);
7412 
7413   // At this point, we would like to compute how many iterations of the
7414   // loop the predicate will return true for these inputs.
7415   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7416     // If there is a loop-invariant, force it into the RHS.
7417     std::swap(LHS, RHS);
7418     Pred = ICmpInst::getSwappedPredicate(Pred);
7419   }
7420 
7421   // Simplify the operands before analyzing them.
7422   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7423 
7424   // If we have a comparison of a chrec against a constant, try to use value
7425   // ranges to answer this query.
7426   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7427     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7428       if (AddRec->getLoop() == L) {
7429         // Form the constant range.
7430         ConstantRange CompRange =
7431             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7432 
7433         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7434         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7435       }
7436 
7437   switch (Pred) {
7438   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7439     // Convert to: while (X-Y != 0)
7440     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7441                                 AllowPredicates);
7442     if (EL.hasAnyInfo()) return EL;
7443     break;
7444   }
7445   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7446     // Convert to: while (X-Y == 0)
7447     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7448     if (EL.hasAnyInfo()) return EL;
7449     break;
7450   }
7451   case ICmpInst::ICMP_SLT:
7452   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7453     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7454     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7455                                     AllowPredicates);
7456     if (EL.hasAnyInfo()) return EL;
7457     break;
7458   }
7459   case ICmpInst::ICMP_SGT:
7460   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7461     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7462     ExitLimit EL =
7463         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7464                             AllowPredicates);
7465     if (EL.hasAnyInfo()) return EL;
7466     break;
7467   }
7468   default:
7469     break;
7470   }
7471 
7472   auto *ExhaustiveCount =
7473       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7474 
7475   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7476     return ExhaustiveCount;
7477 
7478   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7479                                       ExitCond->getOperand(1), L, OriginalPred);
7480 }
7481 
7482 ScalarEvolution::ExitLimit
7483 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7484                                                       SwitchInst *Switch,
7485                                                       BasicBlock *ExitingBlock,
7486                                                       bool ControlsExit) {
7487   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7488 
7489   // Give up if the exit is the default dest of a switch.
7490   if (Switch->getDefaultDest() == ExitingBlock)
7491     return getCouldNotCompute();
7492 
7493   assert(L->contains(Switch->getDefaultDest()) &&
7494          "Default case must not exit the loop!");
7495   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7496   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7497 
7498   // while (X != Y) --> while (X-Y != 0)
7499   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7500   if (EL.hasAnyInfo())
7501     return EL;
7502 
7503   return getCouldNotCompute();
7504 }
7505 
7506 static ConstantInt *
7507 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7508                                 ScalarEvolution &SE) {
7509   const SCEV *InVal = SE.getConstant(C);
7510   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7511   assert(isa<SCEVConstant>(Val) &&
7512          "Evaluation of SCEV at constant didn't fold correctly?");
7513   return cast<SCEVConstant>(Val)->getValue();
7514 }
7515 
7516 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7517 /// compute the backedge execution count.
7518 ScalarEvolution::ExitLimit
7519 ScalarEvolution::computeLoadConstantCompareExitLimit(
7520   LoadInst *LI,
7521   Constant *RHS,
7522   const Loop *L,
7523   ICmpInst::Predicate predicate) {
7524   if (LI->isVolatile()) return getCouldNotCompute();
7525 
7526   // Check to see if the loaded pointer is a getelementptr of a global.
7527   // TODO: Use SCEV instead of manually grubbing with GEPs.
7528   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7529   if (!GEP) return getCouldNotCompute();
7530 
7531   // Make sure that it is really a constant global we are gepping, with an
7532   // initializer, and make sure the first IDX is really 0.
7533   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7534   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7535       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7536       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7537     return getCouldNotCompute();
7538 
7539   // Okay, we allow one non-constant index into the GEP instruction.
7540   Value *VarIdx = nullptr;
7541   std::vector<Constant*> Indexes;
7542   unsigned VarIdxNum = 0;
7543   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7544     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7545       Indexes.push_back(CI);
7546     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7547       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7548       VarIdx = GEP->getOperand(i);
7549       VarIdxNum = i-2;
7550       Indexes.push_back(nullptr);
7551     }
7552 
7553   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7554   if (!VarIdx)
7555     return getCouldNotCompute();
7556 
7557   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7558   // Check to see if X is a loop variant variable value now.
7559   const SCEV *Idx = getSCEV(VarIdx);
7560   Idx = getSCEVAtScope(Idx, L);
7561 
7562   // We can only recognize very limited forms of loop index expressions, in
7563   // particular, only affine AddRec's like {C1,+,C2}.
7564   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7565   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7566       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7567       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7568     return getCouldNotCompute();
7569 
7570   unsigned MaxSteps = MaxBruteForceIterations;
7571   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7572     ConstantInt *ItCst = ConstantInt::get(
7573                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7574     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7575 
7576     // Form the GEP offset.
7577     Indexes[VarIdxNum] = Val;
7578 
7579     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7580                                                          Indexes);
7581     if (!Result) break;  // Cannot compute!
7582 
7583     // Evaluate the condition for this iteration.
7584     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7585     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7586     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7587       ++NumArrayLenItCounts;
7588       return getConstant(ItCst);   // Found terminating iteration!
7589     }
7590   }
7591   return getCouldNotCompute();
7592 }
7593 
7594 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7595     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7596   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7597   if (!RHS)
7598     return getCouldNotCompute();
7599 
7600   const BasicBlock *Latch = L->getLoopLatch();
7601   if (!Latch)
7602     return getCouldNotCompute();
7603 
7604   const BasicBlock *Predecessor = L->getLoopPredecessor();
7605   if (!Predecessor)
7606     return getCouldNotCompute();
7607 
7608   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7609   // Return LHS in OutLHS and shift_opt in OutOpCode.
7610   auto MatchPositiveShift =
7611       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7612 
7613     using namespace PatternMatch;
7614 
7615     ConstantInt *ShiftAmt;
7616     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7617       OutOpCode = Instruction::LShr;
7618     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7619       OutOpCode = Instruction::AShr;
7620     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7621       OutOpCode = Instruction::Shl;
7622     else
7623       return false;
7624 
7625     return ShiftAmt->getValue().isStrictlyPositive();
7626   };
7627 
7628   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7629   //
7630   // loop:
7631   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7632   //   %iv.shifted = lshr i32 %iv, <positive constant>
7633   //
7634   // Return true on a successful match.  Return the corresponding PHI node (%iv
7635   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7636   auto MatchShiftRecurrence =
7637       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7638     Optional<Instruction::BinaryOps> PostShiftOpCode;
7639 
7640     {
7641       Instruction::BinaryOps OpC;
7642       Value *V;
7643 
7644       // If we encounter a shift instruction, "peel off" the shift operation,
7645       // and remember that we did so.  Later when we inspect %iv's backedge
7646       // value, we will make sure that the backedge value uses the same
7647       // operation.
7648       //
7649       // Note: the peeled shift operation does not have to be the same
7650       // instruction as the one feeding into the PHI's backedge value.  We only
7651       // really care about it being the same *kind* of shift instruction --
7652       // that's all that is required for our later inferences to hold.
7653       if (MatchPositiveShift(LHS, V, OpC)) {
7654         PostShiftOpCode = OpC;
7655         LHS = V;
7656       }
7657     }
7658 
7659     PNOut = dyn_cast<PHINode>(LHS);
7660     if (!PNOut || PNOut->getParent() != L->getHeader())
7661       return false;
7662 
7663     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7664     Value *OpLHS;
7665 
7666     return
7667         // The backedge value for the PHI node must be a shift by a positive
7668         // amount
7669         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7670 
7671         // of the PHI node itself
7672         OpLHS == PNOut &&
7673 
7674         // and the kind of shift should be match the kind of shift we peeled
7675         // off, if any.
7676         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7677   };
7678 
7679   PHINode *PN;
7680   Instruction::BinaryOps OpCode;
7681   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7682     return getCouldNotCompute();
7683 
7684   const DataLayout &DL = getDataLayout();
7685 
7686   // The key rationale for this optimization is that for some kinds of shift
7687   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7688   // within a finite number of iterations.  If the condition guarding the
7689   // backedge (in the sense that the backedge is taken if the condition is true)
7690   // is false for the value the shift recurrence stabilizes to, then we know
7691   // that the backedge is taken only a finite number of times.
7692 
7693   ConstantInt *StableValue = nullptr;
7694   switch (OpCode) {
7695   default:
7696     llvm_unreachable("Impossible case!");
7697 
7698   case Instruction::AShr: {
7699     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7700     // bitwidth(K) iterations.
7701     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7702     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7703                                        Predecessor->getTerminator(), &DT);
7704     auto *Ty = cast<IntegerType>(RHS->getType());
7705     if (Known.isNonNegative())
7706       StableValue = ConstantInt::get(Ty, 0);
7707     else if (Known.isNegative())
7708       StableValue = ConstantInt::get(Ty, -1, true);
7709     else
7710       return getCouldNotCompute();
7711 
7712     break;
7713   }
7714   case Instruction::LShr:
7715   case Instruction::Shl:
7716     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7717     // stabilize to 0 in at most bitwidth(K) iterations.
7718     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7719     break;
7720   }
7721 
7722   auto *Result =
7723       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7724   assert(Result->getType()->isIntegerTy(1) &&
7725          "Otherwise cannot be an operand to a branch instruction");
7726 
7727   if (Result->isZeroValue()) {
7728     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7729     const SCEV *UpperBound =
7730         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7731     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7732   }
7733 
7734   return getCouldNotCompute();
7735 }
7736 
7737 /// Return true if we can constant fold an instruction of the specified type,
7738 /// assuming that all operands were constants.
7739 static bool CanConstantFold(const Instruction *I) {
7740   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7741       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7742       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7743     return true;
7744 
7745   if (const CallInst *CI = dyn_cast<CallInst>(I))
7746     if (const Function *F = CI->getCalledFunction())
7747       return canConstantFoldCallTo(CI, F);
7748   return false;
7749 }
7750 
7751 /// Determine whether this instruction can constant evolve within this loop
7752 /// assuming its operands can all constant evolve.
7753 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7754   // An instruction outside of the loop can't be derived from a loop PHI.
7755   if (!L->contains(I)) return false;
7756 
7757   if (isa<PHINode>(I)) {
7758     // We don't currently keep track of the control flow needed to evaluate
7759     // PHIs, so we cannot handle PHIs inside of loops.
7760     return L->getHeader() == I->getParent();
7761   }
7762 
7763   // If we won't be able to constant fold this expression even if the operands
7764   // are constants, bail early.
7765   return CanConstantFold(I);
7766 }
7767 
7768 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7769 /// recursing through each instruction operand until reaching a loop header phi.
7770 static PHINode *
7771 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7772                                DenseMap<Instruction *, PHINode *> &PHIMap,
7773                                unsigned Depth) {
7774   if (Depth > MaxConstantEvolvingDepth)
7775     return nullptr;
7776 
7777   // Otherwise, we can evaluate this instruction if all of its operands are
7778   // constant or derived from a PHI node themselves.
7779   PHINode *PHI = nullptr;
7780   for (Value *Op : UseInst->operands()) {
7781     if (isa<Constant>(Op)) continue;
7782 
7783     Instruction *OpInst = dyn_cast<Instruction>(Op);
7784     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7785 
7786     PHINode *P = dyn_cast<PHINode>(OpInst);
7787     if (!P)
7788       // If this operand is already visited, reuse the prior result.
7789       // We may have P != PHI if this is the deepest point at which the
7790       // inconsistent paths meet.
7791       P = PHIMap.lookup(OpInst);
7792     if (!P) {
7793       // Recurse and memoize the results, whether a phi is found or not.
7794       // This recursive call invalidates pointers into PHIMap.
7795       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7796       PHIMap[OpInst] = P;
7797     }
7798     if (!P)
7799       return nullptr;  // Not evolving from PHI
7800     if (PHI && PHI != P)
7801       return nullptr;  // Evolving from multiple different PHIs.
7802     PHI = P;
7803   }
7804   // This is a expression evolving from a constant PHI!
7805   return PHI;
7806 }
7807 
7808 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7809 /// in the loop that V is derived from.  We allow arbitrary operations along the
7810 /// way, but the operands of an operation must either be constants or a value
7811 /// derived from a constant PHI.  If this expression does not fit with these
7812 /// constraints, return null.
7813 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7814   Instruction *I = dyn_cast<Instruction>(V);
7815   if (!I || !canConstantEvolve(I, L)) return nullptr;
7816 
7817   if (PHINode *PN = dyn_cast<PHINode>(I))
7818     return PN;
7819 
7820   // Record non-constant instructions contained by the loop.
7821   DenseMap<Instruction *, PHINode *> PHIMap;
7822   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7823 }
7824 
7825 /// EvaluateExpression - Given an expression that passes the
7826 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7827 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7828 /// reason, return null.
7829 static Constant *EvaluateExpression(Value *V, const Loop *L,
7830                                     DenseMap<Instruction *, Constant *> &Vals,
7831                                     const DataLayout &DL,
7832                                     const TargetLibraryInfo *TLI) {
7833   // Convenient constant check, but redundant for recursive calls.
7834   if (Constant *C = dyn_cast<Constant>(V)) return C;
7835   Instruction *I = dyn_cast<Instruction>(V);
7836   if (!I) return nullptr;
7837 
7838   if (Constant *C = Vals.lookup(I)) return C;
7839 
7840   // An instruction inside the loop depends on a value outside the loop that we
7841   // weren't given a mapping for, or a value such as a call inside the loop.
7842   if (!canConstantEvolve(I, L)) return nullptr;
7843 
7844   // An unmapped PHI can be due to a branch or another loop inside this loop,
7845   // or due to this not being the initial iteration through a loop where we
7846   // couldn't compute the evolution of this particular PHI last time.
7847   if (isa<PHINode>(I)) return nullptr;
7848 
7849   std::vector<Constant*> Operands(I->getNumOperands());
7850 
7851   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7852     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7853     if (!Operand) {
7854       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7855       if (!Operands[i]) return nullptr;
7856       continue;
7857     }
7858     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7859     Vals[Operand] = C;
7860     if (!C) return nullptr;
7861     Operands[i] = C;
7862   }
7863 
7864   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7865     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7866                                            Operands[1], DL, TLI);
7867   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7868     if (!LI->isVolatile())
7869       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7870   }
7871   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7872 }
7873 
7874 
7875 // If every incoming value to PN except the one for BB is a specific Constant,
7876 // return that, else return nullptr.
7877 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7878   Constant *IncomingVal = nullptr;
7879 
7880   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7881     if (PN->getIncomingBlock(i) == BB)
7882       continue;
7883 
7884     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7885     if (!CurrentVal)
7886       return nullptr;
7887 
7888     if (IncomingVal != CurrentVal) {
7889       if (IncomingVal)
7890         return nullptr;
7891       IncomingVal = CurrentVal;
7892     }
7893   }
7894 
7895   return IncomingVal;
7896 }
7897 
7898 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7899 /// in the header of its containing loop, we know the loop executes a
7900 /// constant number of times, and the PHI node is just a recurrence
7901 /// involving constants, fold it.
7902 Constant *
7903 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7904                                                    const APInt &BEs,
7905                                                    const Loop *L) {
7906   auto I = ConstantEvolutionLoopExitValue.find(PN);
7907   if (I != ConstantEvolutionLoopExitValue.end())
7908     return I->second;
7909 
7910   if (BEs.ugt(MaxBruteForceIterations))
7911     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7912 
7913   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7914 
7915   DenseMap<Instruction *, Constant *> CurrentIterVals;
7916   BasicBlock *Header = L->getHeader();
7917   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7918 
7919   BasicBlock *Latch = L->getLoopLatch();
7920   if (!Latch)
7921     return nullptr;
7922 
7923   for (PHINode &PHI : Header->phis()) {
7924     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7925       CurrentIterVals[&PHI] = StartCST;
7926   }
7927   if (!CurrentIterVals.count(PN))
7928     return RetVal = nullptr;
7929 
7930   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7931 
7932   // Execute the loop symbolically to determine the exit value.
7933   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7934          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7935 
7936   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7937   unsigned IterationNum = 0;
7938   const DataLayout &DL = getDataLayout();
7939   for (; ; ++IterationNum) {
7940     if (IterationNum == NumIterations)
7941       return RetVal = CurrentIterVals[PN];  // Got exit value!
7942 
7943     // Compute the value of the PHIs for the next iteration.
7944     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7945     DenseMap<Instruction *, Constant *> NextIterVals;
7946     Constant *NextPHI =
7947         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7948     if (!NextPHI)
7949       return nullptr;        // Couldn't evaluate!
7950     NextIterVals[PN] = NextPHI;
7951 
7952     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7953 
7954     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7955     // cease to be able to evaluate one of them or if they stop evolving,
7956     // because that doesn't necessarily prevent us from computing PN.
7957     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7958     for (const auto &I : CurrentIterVals) {
7959       PHINode *PHI = dyn_cast<PHINode>(I.first);
7960       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7961       PHIsToCompute.emplace_back(PHI, I.second);
7962     }
7963     // We use two distinct loops because EvaluateExpression may invalidate any
7964     // iterators into CurrentIterVals.
7965     for (const auto &I : PHIsToCompute) {
7966       PHINode *PHI = I.first;
7967       Constant *&NextPHI = NextIterVals[PHI];
7968       if (!NextPHI) {   // Not already computed.
7969         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7970         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7971       }
7972       if (NextPHI != I.second)
7973         StoppedEvolving = false;
7974     }
7975 
7976     // If all entries in CurrentIterVals == NextIterVals then we can stop
7977     // iterating, the loop can't continue to change.
7978     if (StoppedEvolving)
7979       return RetVal = CurrentIterVals[PN];
7980 
7981     CurrentIterVals.swap(NextIterVals);
7982   }
7983 }
7984 
7985 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7986                                                           Value *Cond,
7987                                                           bool ExitWhen) {
7988   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7989   if (!PN) return getCouldNotCompute();
7990 
7991   // If the loop is canonicalized, the PHI will have exactly two entries.
7992   // That's the only form we support here.
7993   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7994 
7995   DenseMap<Instruction *, Constant *> CurrentIterVals;
7996   BasicBlock *Header = L->getHeader();
7997   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7998 
7999   BasicBlock *Latch = L->getLoopLatch();
8000   assert(Latch && "Should follow from NumIncomingValues == 2!");
8001 
8002   for (PHINode &PHI : Header->phis()) {
8003     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8004       CurrentIterVals[&PHI] = StartCST;
8005   }
8006   if (!CurrentIterVals.count(PN))
8007     return getCouldNotCompute();
8008 
8009   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8010   // the loop symbolically to determine when the condition gets a value of
8011   // "ExitWhen".
8012   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8013   const DataLayout &DL = getDataLayout();
8014   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8015     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8016         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8017 
8018     // Couldn't symbolically evaluate.
8019     if (!CondVal) return getCouldNotCompute();
8020 
8021     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8022       ++NumBruteForceTripCountsComputed;
8023       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8024     }
8025 
8026     // Update all the PHI nodes for the next iteration.
8027     DenseMap<Instruction *, Constant *> NextIterVals;
8028 
8029     // Create a list of which PHIs we need to compute. We want to do this before
8030     // calling EvaluateExpression on them because that may invalidate iterators
8031     // into CurrentIterVals.
8032     SmallVector<PHINode *, 8> PHIsToCompute;
8033     for (const auto &I : CurrentIterVals) {
8034       PHINode *PHI = dyn_cast<PHINode>(I.first);
8035       if (!PHI || PHI->getParent() != Header) continue;
8036       PHIsToCompute.push_back(PHI);
8037     }
8038     for (PHINode *PHI : PHIsToCompute) {
8039       Constant *&NextPHI = NextIterVals[PHI];
8040       if (NextPHI) continue;    // Already computed!
8041 
8042       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8043       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8044     }
8045     CurrentIterVals.swap(NextIterVals);
8046   }
8047 
8048   // Too many iterations were needed to evaluate.
8049   return getCouldNotCompute();
8050 }
8051 
8052 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8053   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8054       ValuesAtScopes[V];
8055   // Check to see if we've folded this expression at this loop before.
8056   for (auto &LS : Values)
8057     if (LS.first == L)
8058       return LS.second ? LS.second : V;
8059 
8060   Values.emplace_back(L, nullptr);
8061 
8062   // Otherwise compute it.
8063   const SCEV *C = computeSCEVAtScope(V, L);
8064   for (auto &LS : reverse(ValuesAtScopes[V]))
8065     if (LS.first == L) {
8066       LS.second = C;
8067       break;
8068     }
8069   return C;
8070 }
8071 
8072 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8073 /// will return Constants for objects which aren't represented by a
8074 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8075 /// Returns NULL if the SCEV isn't representable as a Constant.
8076 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8077   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8078     case scCouldNotCompute:
8079     case scAddRecExpr:
8080       break;
8081     case scConstant:
8082       return cast<SCEVConstant>(V)->getValue();
8083     case scUnknown:
8084       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8085     case scSignExtend: {
8086       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8087       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8088         return ConstantExpr::getSExt(CastOp, SS->getType());
8089       break;
8090     }
8091     case scZeroExtend: {
8092       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8093       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8094         return ConstantExpr::getZExt(CastOp, SZ->getType());
8095       break;
8096     }
8097     case scTruncate: {
8098       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8099       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8100         return ConstantExpr::getTrunc(CastOp, ST->getType());
8101       break;
8102     }
8103     case scAddExpr: {
8104       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8105       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8106         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8107           unsigned AS = PTy->getAddressSpace();
8108           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8109           C = ConstantExpr::getBitCast(C, DestPtrTy);
8110         }
8111         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8112           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8113           if (!C2) return nullptr;
8114 
8115           // First pointer!
8116           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8117             unsigned AS = C2->getType()->getPointerAddressSpace();
8118             std::swap(C, C2);
8119             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8120             // The offsets have been converted to bytes.  We can add bytes to an
8121             // i8* by GEP with the byte count in the first index.
8122             C = ConstantExpr::getBitCast(C, DestPtrTy);
8123           }
8124 
8125           // Don't bother trying to sum two pointers. We probably can't
8126           // statically compute a load that results from it anyway.
8127           if (C2->getType()->isPointerTy())
8128             return nullptr;
8129 
8130           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8131             if (PTy->getElementType()->isStructTy())
8132               C2 = ConstantExpr::getIntegerCast(
8133                   C2, Type::getInt32Ty(C->getContext()), true);
8134             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8135           } else
8136             C = ConstantExpr::getAdd(C, C2);
8137         }
8138         return C;
8139       }
8140       break;
8141     }
8142     case scMulExpr: {
8143       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8144       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8145         // Don't bother with pointers at all.
8146         if (C->getType()->isPointerTy()) return nullptr;
8147         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8148           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8149           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8150           C = ConstantExpr::getMul(C, C2);
8151         }
8152         return C;
8153       }
8154       break;
8155     }
8156     case scUDivExpr: {
8157       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8158       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8159         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8160           if (LHS->getType() == RHS->getType())
8161             return ConstantExpr::getUDiv(LHS, RHS);
8162       break;
8163     }
8164     case scSMaxExpr:
8165     case scUMaxExpr:
8166     case scSMinExpr:
8167     case scUMinExpr:
8168       break; // TODO: smax, umax, smin, umax.
8169   }
8170   return nullptr;
8171 }
8172 
8173 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8174   if (isa<SCEVConstant>(V)) return V;
8175 
8176   // If this instruction is evolved from a constant-evolving PHI, compute the
8177   // exit value from the loop without using SCEVs.
8178   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8179     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8180       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8181         const Loop *LI = this->LI[I->getParent()];
8182         // Looking for loop exit value.
8183         if (LI && LI->getParentLoop() == L &&
8184             PN->getParent() == LI->getHeader()) {
8185           // Okay, there is no closed form solution for the PHI node.  Check
8186           // to see if the loop that contains it has a known backedge-taken
8187           // count.  If so, we may be able to force computation of the exit
8188           // value.
8189           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8190           // This trivial case can show up in some degenerate cases where
8191           // the incoming IR has not yet been fully simplified.
8192           if (BackedgeTakenCount->isZero()) {
8193             Value *InitValue = nullptr;
8194             bool MultipleInitValues = false;
8195             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8196               if (!LI->contains(PN->getIncomingBlock(i))) {
8197                 if (!InitValue)
8198                   InitValue = PN->getIncomingValue(i);
8199                 else if (InitValue != PN->getIncomingValue(i)) {
8200                   MultipleInitValues = true;
8201                   break;
8202                 }
8203               }
8204             }
8205             if (!MultipleInitValues && InitValue)
8206               return getSCEV(InitValue);
8207           }
8208           // Do we have a loop invariant value flowing around the backedge
8209           // for a loop which must execute the backedge?
8210           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8211               isKnownPositive(BackedgeTakenCount) &&
8212               PN->getNumIncomingValues() == 2) {
8213             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8214             const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8215             if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8216               return OnBackedge;
8217           }
8218           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8219             // Okay, we know how many times the containing loop executes.  If
8220             // this is a constant evolving PHI node, get the final value at
8221             // the specified iteration number.
8222             Constant *RV =
8223                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8224             if (RV) return getSCEV(RV);
8225           }
8226         }
8227 
8228         // If there is a single-input Phi, evaluate it at our scope. If we can
8229         // prove that this replacement does not break LCSSA form, use new value.
8230         if (PN->getNumOperands() == 1) {
8231           const SCEV *Input = getSCEV(PN->getOperand(0));
8232           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8233           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8234           // for the simplest case just support constants.
8235           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8236         }
8237       }
8238 
8239       // Okay, this is an expression that we cannot symbolically evaluate
8240       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8241       // the arguments into constants, and if so, try to constant propagate the
8242       // result.  This is particularly useful for computing loop exit values.
8243       if (CanConstantFold(I)) {
8244         SmallVector<Constant *, 4> Operands;
8245         bool MadeImprovement = false;
8246         for (Value *Op : I->operands()) {
8247           if (Constant *C = dyn_cast<Constant>(Op)) {
8248             Operands.push_back(C);
8249             continue;
8250           }
8251 
8252           // If any of the operands is non-constant and if they are
8253           // non-integer and non-pointer, don't even try to analyze them
8254           // with scev techniques.
8255           if (!isSCEVable(Op->getType()))
8256             return V;
8257 
8258           const SCEV *OrigV = getSCEV(Op);
8259           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8260           MadeImprovement |= OrigV != OpV;
8261 
8262           Constant *C = BuildConstantFromSCEV(OpV);
8263           if (!C) return V;
8264           if (C->getType() != Op->getType())
8265             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8266                                                               Op->getType(),
8267                                                               false),
8268                                       C, Op->getType());
8269           Operands.push_back(C);
8270         }
8271 
8272         // Check to see if getSCEVAtScope actually made an improvement.
8273         if (MadeImprovement) {
8274           Constant *C = nullptr;
8275           const DataLayout &DL = getDataLayout();
8276           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8277             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8278                                                 Operands[1], DL, &TLI);
8279           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8280             if (!LI->isVolatile())
8281               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8282           } else
8283             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8284           if (!C) return V;
8285           return getSCEV(C);
8286         }
8287       }
8288     }
8289 
8290     // This is some other type of SCEVUnknown, just return it.
8291     return V;
8292   }
8293 
8294   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8295     // Avoid performing the look-up in the common case where the specified
8296     // expression has no loop-variant portions.
8297     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8298       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8299       if (OpAtScope != Comm->getOperand(i)) {
8300         // Okay, at least one of these operands is loop variant but might be
8301         // foldable.  Build a new instance of the folded commutative expression.
8302         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8303                                             Comm->op_begin()+i);
8304         NewOps.push_back(OpAtScope);
8305 
8306         for (++i; i != e; ++i) {
8307           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8308           NewOps.push_back(OpAtScope);
8309         }
8310         if (isa<SCEVAddExpr>(Comm))
8311           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8312         if (isa<SCEVMulExpr>(Comm))
8313           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8314         if (isa<SCEVMinMaxExpr>(Comm))
8315           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8316         llvm_unreachable("Unknown commutative SCEV type!");
8317       }
8318     }
8319     // If we got here, all operands are loop invariant.
8320     return Comm;
8321   }
8322 
8323   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8324     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8325     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8326     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8327       return Div;   // must be loop invariant
8328     return getUDivExpr(LHS, RHS);
8329   }
8330 
8331   // If this is a loop recurrence for a loop that does not contain L, then we
8332   // are dealing with the final value computed by the loop.
8333   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8334     // First, attempt to evaluate each operand.
8335     // Avoid performing the look-up in the common case where the specified
8336     // expression has no loop-variant portions.
8337     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8338       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8339       if (OpAtScope == AddRec->getOperand(i))
8340         continue;
8341 
8342       // Okay, at least one of these operands is loop variant but might be
8343       // foldable.  Build a new instance of the folded commutative expression.
8344       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8345                                           AddRec->op_begin()+i);
8346       NewOps.push_back(OpAtScope);
8347       for (++i; i != e; ++i)
8348         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8349 
8350       const SCEV *FoldedRec =
8351         getAddRecExpr(NewOps, AddRec->getLoop(),
8352                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8353       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8354       // The addrec may be folded to a nonrecurrence, for example, if the
8355       // induction variable is multiplied by zero after constant folding. Go
8356       // ahead and return the folded value.
8357       if (!AddRec)
8358         return FoldedRec;
8359       break;
8360     }
8361 
8362     // If the scope is outside the addrec's loop, evaluate it by using the
8363     // loop exit value of the addrec.
8364     if (!AddRec->getLoop()->contains(L)) {
8365       // To evaluate this recurrence, we need to know how many times the AddRec
8366       // loop iterates.  Compute this now.
8367       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8368       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8369 
8370       // Then, evaluate the AddRec.
8371       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8372     }
8373 
8374     return AddRec;
8375   }
8376 
8377   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8378     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8379     if (Op == Cast->getOperand())
8380       return Cast;  // must be loop invariant
8381     return getZeroExtendExpr(Op, Cast->getType());
8382   }
8383 
8384   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8385     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8386     if (Op == Cast->getOperand())
8387       return Cast;  // must be loop invariant
8388     return getSignExtendExpr(Op, Cast->getType());
8389   }
8390 
8391   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8392     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8393     if (Op == Cast->getOperand())
8394       return Cast;  // must be loop invariant
8395     return getTruncateExpr(Op, Cast->getType());
8396   }
8397 
8398   llvm_unreachable("Unknown SCEV type!");
8399 }
8400 
8401 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8402   return getSCEVAtScope(getSCEV(V), L);
8403 }
8404 
8405 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8406   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8407     return stripInjectiveFunctions(ZExt->getOperand());
8408   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8409     return stripInjectiveFunctions(SExt->getOperand());
8410   return S;
8411 }
8412 
8413 /// Finds the minimum unsigned root of the following equation:
8414 ///
8415 ///     A * X = B (mod N)
8416 ///
8417 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8418 /// A and B isn't important.
8419 ///
8420 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8421 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8422                                                ScalarEvolution &SE) {
8423   uint32_t BW = A.getBitWidth();
8424   assert(BW == SE.getTypeSizeInBits(B->getType()));
8425   assert(A != 0 && "A must be non-zero.");
8426 
8427   // 1. D = gcd(A, N)
8428   //
8429   // The gcd of A and N may have only one prime factor: 2. The number of
8430   // trailing zeros in A is its multiplicity
8431   uint32_t Mult2 = A.countTrailingZeros();
8432   // D = 2^Mult2
8433 
8434   // 2. Check if B is divisible by D.
8435   //
8436   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8437   // is not less than multiplicity of this prime factor for D.
8438   if (SE.GetMinTrailingZeros(B) < Mult2)
8439     return SE.getCouldNotCompute();
8440 
8441   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8442   // modulo (N / D).
8443   //
8444   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8445   // (N / D) in general. The inverse itself always fits into BW bits, though,
8446   // so we immediately truncate it.
8447   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8448   APInt Mod(BW + 1, 0);
8449   Mod.setBit(BW - Mult2);  // Mod = N / D
8450   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8451 
8452   // 4. Compute the minimum unsigned root of the equation:
8453   // I * (B / D) mod (N / D)
8454   // To simplify the computation, we factor out the divide by D:
8455   // (I * B mod N) / D
8456   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8457   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8458 }
8459 
8460 /// For a given quadratic addrec, generate coefficients of the corresponding
8461 /// quadratic equation, multiplied by a common value to ensure that they are
8462 /// integers.
8463 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8464 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8465 /// were multiplied by, and BitWidth is the bit width of the original addrec
8466 /// coefficients.
8467 /// This function returns None if the addrec coefficients are not compile-
8468 /// time constants.
8469 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8470 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8471   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8472   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8473   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8474   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8475   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8476                     << *AddRec << '\n');
8477 
8478   // We currently can only solve this if the coefficients are constants.
8479   if (!LC || !MC || !NC) {
8480     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8481     return None;
8482   }
8483 
8484   APInt L = LC->getAPInt();
8485   APInt M = MC->getAPInt();
8486   APInt N = NC->getAPInt();
8487   assert(!N.isNullValue() && "This is not a quadratic addrec");
8488 
8489   unsigned BitWidth = LC->getAPInt().getBitWidth();
8490   unsigned NewWidth = BitWidth + 1;
8491   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8492                     << BitWidth << '\n');
8493   // The sign-extension (as opposed to a zero-extension) here matches the
8494   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8495   N = N.sext(NewWidth);
8496   M = M.sext(NewWidth);
8497   L = L.sext(NewWidth);
8498 
8499   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8500   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8501   //   L+M, L+2M+N, L+3M+3N, ...
8502   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8503   //
8504   // The equation Acc = 0 is then
8505   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8506   // In a quadratic form it becomes:
8507   //   N n^2 + (2M-N) n + 2L = 0.
8508 
8509   APInt A = N;
8510   APInt B = 2 * M - A;
8511   APInt C = 2 * L;
8512   APInt T = APInt(NewWidth, 2);
8513   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8514                     << "x + " << C << ", coeff bw: " << NewWidth
8515                     << ", multiplied by " << T << '\n');
8516   return std::make_tuple(A, B, C, T, BitWidth);
8517 }
8518 
8519 /// Helper function to compare optional APInts:
8520 /// (a) if X and Y both exist, return min(X, Y),
8521 /// (b) if neither X nor Y exist, return None,
8522 /// (c) if exactly one of X and Y exists, return that value.
8523 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8524   if (X.hasValue() && Y.hasValue()) {
8525     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8526     APInt XW = X->sextOrSelf(W);
8527     APInt YW = Y->sextOrSelf(W);
8528     return XW.slt(YW) ? *X : *Y;
8529   }
8530   if (!X.hasValue() && !Y.hasValue())
8531     return None;
8532   return X.hasValue() ? *X : *Y;
8533 }
8534 
8535 /// Helper function to truncate an optional APInt to a given BitWidth.
8536 /// When solving addrec-related equations, it is preferable to return a value
8537 /// that has the same bit width as the original addrec's coefficients. If the
8538 /// solution fits in the original bit width, truncate it (except for i1).
8539 /// Returning a value of a different bit width may inhibit some optimizations.
8540 ///
8541 /// In general, a solution to a quadratic equation generated from an addrec
8542 /// may require BW+1 bits, where BW is the bit width of the addrec's
8543 /// coefficients. The reason is that the coefficients of the quadratic
8544 /// equation are BW+1 bits wide (to avoid truncation when converting from
8545 /// the addrec to the equation).
8546 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8547   if (!X.hasValue())
8548     return None;
8549   unsigned W = X->getBitWidth();
8550   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8551     return X->trunc(BitWidth);
8552   return X;
8553 }
8554 
8555 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8556 /// iterations. The values L, M, N are assumed to be signed, and they
8557 /// should all have the same bit widths.
8558 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8559 /// where BW is the bit width of the addrec's coefficients.
8560 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8561 /// returned as such, otherwise the bit width of the returned value may
8562 /// be greater than BW.
8563 ///
8564 /// This function returns None if
8565 /// (a) the addrec coefficients are not constant, or
8566 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8567 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8568 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8569 static Optional<APInt>
8570 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8571   APInt A, B, C, M;
8572   unsigned BitWidth;
8573   auto T = GetQuadraticEquation(AddRec);
8574   if (!T.hasValue())
8575     return None;
8576 
8577   std::tie(A, B, C, M, BitWidth) = *T;
8578   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8579   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8580   if (!X.hasValue())
8581     return None;
8582 
8583   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8584   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8585   if (!V->isZero())
8586     return None;
8587 
8588   return TruncIfPossible(X, BitWidth);
8589 }
8590 
8591 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8592 /// iterations. The values M, N are assumed to be signed, and they
8593 /// should all have the same bit widths.
8594 /// Find the least n such that c(n) does not belong to the given range,
8595 /// while c(n-1) does.
8596 ///
8597 /// This function returns None if
8598 /// (a) the addrec coefficients are not constant, or
8599 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8600 ///     bounds of the range.
8601 static Optional<APInt>
8602 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8603                           const ConstantRange &Range, ScalarEvolution &SE) {
8604   assert(AddRec->getOperand(0)->isZero() &&
8605          "Starting value of addrec should be 0");
8606   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8607                     << Range << ", addrec " << *AddRec << '\n');
8608   // This case is handled in getNumIterationsInRange. Here we can assume that
8609   // we start in the range.
8610   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8611          "Addrec's initial value should be in range");
8612 
8613   APInt A, B, C, M;
8614   unsigned BitWidth;
8615   auto T = GetQuadraticEquation(AddRec);
8616   if (!T.hasValue())
8617     return None;
8618 
8619   // Be careful about the return value: there can be two reasons for not
8620   // returning an actual number. First, if no solutions to the equations
8621   // were found, and second, if the solutions don't leave the given range.
8622   // The first case means that the actual solution is "unknown", the second
8623   // means that it's known, but not valid. If the solution is unknown, we
8624   // cannot make any conclusions.
8625   // Return a pair: the optional solution and a flag indicating if the
8626   // solution was found.
8627   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8628     // Solve for signed overflow and unsigned overflow, pick the lower
8629     // solution.
8630     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8631                       << Bound << " (before multiplying by " << M << ")\n");
8632     Bound *= M; // The quadratic equation multiplier.
8633 
8634     Optional<APInt> SO = None;
8635     if (BitWidth > 1) {
8636       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8637                            "signed overflow\n");
8638       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8639     }
8640     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8641                          "unsigned overflow\n");
8642     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8643                                                               BitWidth+1);
8644 
8645     auto LeavesRange = [&] (const APInt &X) {
8646       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8647       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8648       if (Range.contains(V0->getValue()))
8649         return false;
8650       // X should be at least 1, so X-1 is non-negative.
8651       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8652       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8653       if (Range.contains(V1->getValue()))
8654         return true;
8655       return false;
8656     };
8657 
8658     // If SolveQuadraticEquationWrap returns None, it means that there can
8659     // be a solution, but the function failed to find it. We cannot treat it
8660     // as "no solution".
8661     if (!SO.hasValue() || !UO.hasValue())
8662       return { None, false };
8663 
8664     // Check the smaller value first to see if it leaves the range.
8665     // At this point, both SO and UO must have values.
8666     Optional<APInt> Min = MinOptional(SO, UO);
8667     if (LeavesRange(*Min))
8668       return { Min, true };
8669     Optional<APInt> Max = Min == SO ? UO : SO;
8670     if (LeavesRange(*Max))
8671       return { Max, true };
8672 
8673     // Solutions were found, but were eliminated, hence the "true".
8674     return { None, true };
8675   };
8676 
8677   std::tie(A, B, C, M, BitWidth) = *T;
8678   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8679   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8680   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8681   auto SL = SolveForBoundary(Lower);
8682   auto SU = SolveForBoundary(Upper);
8683   // If any of the solutions was unknown, no meaninigful conclusions can
8684   // be made.
8685   if (!SL.second || !SU.second)
8686     return None;
8687 
8688   // Claim: The correct solution is not some value between Min and Max.
8689   //
8690   // Justification: Assuming that Min and Max are different values, one of
8691   // them is when the first signed overflow happens, the other is when the
8692   // first unsigned overflow happens. Crossing the range boundary is only
8693   // possible via an overflow (treating 0 as a special case of it, modeling
8694   // an overflow as crossing k*2^W for some k).
8695   //
8696   // The interesting case here is when Min was eliminated as an invalid
8697   // solution, but Max was not. The argument is that if there was another
8698   // overflow between Min and Max, it would also have been eliminated if
8699   // it was considered.
8700   //
8701   // For a given boundary, it is possible to have two overflows of the same
8702   // type (signed/unsigned) without having the other type in between: this
8703   // can happen when the vertex of the parabola is between the iterations
8704   // corresponding to the overflows. This is only possible when the two
8705   // overflows cross k*2^W for the same k. In such case, if the second one
8706   // left the range (and was the first one to do so), the first overflow
8707   // would have to enter the range, which would mean that either we had left
8708   // the range before or that we started outside of it. Both of these cases
8709   // are contradictions.
8710   //
8711   // Claim: In the case where SolveForBoundary returns None, the correct
8712   // solution is not some value between the Max for this boundary and the
8713   // Min of the other boundary.
8714   //
8715   // Justification: Assume that we had such Max_A and Min_B corresponding
8716   // to range boundaries A and B and such that Max_A < Min_B. If there was
8717   // a solution between Max_A and Min_B, it would have to be caused by an
8718   // overflow corresponding to either A or B. It cannot correspond to B,
8719   // since Min_B is the first occurrence of such an overflow. If it
8720   // corresponded to A, it would have to be either a signed or an unsigned
8721   // overflow that is larger than both eliminated overflows for A. But
8722   // between the eliminated overflows and this overflow, the values would
8723   // cover the entire value space, thus crossing the other boundary, which
8724   // is a contradiction.
8725 
8726   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8727 }
8728 
8729 ScalarEvolution::ExitLimit
8730 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8731                               bool AllowPredicates) {
8732 
8733   // This is only used for loops with a "x != y" exit test. The exit condition
8734   // is now expressed as a single expression, V = x-y. So the exit test is
8735   // effectively V != 0.  We know and take advantage of the fact that this
8736   // expression only being used in a comparison by zero context.
8737 
8738   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8739   // If the value is a constant
8740   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8741     // If the value is already zero, the branch will execute zero times.
8742     if (C->getValue()->isZero()) return C;
8743     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8744   }
8745 
8746   const SCEVAddRecExpr *AddRec =
8747       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8748 
8749   if (!AddRec && AllowPredicates)
8750     // Try to make this an AddRec using runtime tests, in the first X
8751     // iterations of this loop, where X is the SCEV expression found by the
8752     // algorithm below.
8753     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8754 
8755   if (!AddRec || AddRec->getLoop() != L)
8756     return getCouldNotCompute();
8757 
8758   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8759   // the quadratic equation to solve it.
8760   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8761     // We can only use this value if the chrec ends up with an exact zero
8762     // value at this index.  When solving for "X*X != 5", for example, we
8763     // should not accept a root of 2.
8764     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8765       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8766       return ExitLimit(R, R, false, Predicates);
8767     }
8768     return getCouldNotCompute();
8769   }
8770 
8771   // Otherwise we can only handle this if it is affine.
8772   if (!AddRec->isAffine())
8773     return getCouldNotCompute();
8774 
8775   // If this is an affine expression, the execution count of this branch is
8776   // the minimum unsigned root of the following equation:
8777   //
8778   //     Start + Step*N = 0 (mod 2^BW)
8779   //
8780   // equivalent to:
8781   //
8782   //             Step*N = -Start (mod 2^BW)
8783   //
8784   // where BW is the common bit width of Start and Step.
8785 
8786   // Get the initial value for the loop.
8787   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8788   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8789 
8790   // For now we handle only constant steps.
8791   //
8792   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8793   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8794   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8795   // We have not yet seen any such cases.
8796   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8797   if (!StepC || StepC->getValue()->isZero())
8798     return getCouldNotCompute();
8799 
8800   // For positive steps (counting up until unsigned overflow):
8801   //   N = -Start/Step (as unsigned)
8802   // For negative steps (counting down to zero):
8803   //   N = Start/-Step
8804   // First compute the unsigned distance from zero in the direction of Step.
8805   bool CountDown = StepC->getAPInt().isNegative();
8806   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8807 
8808   // Handle unitary steps, which cannot wraparound.
8809   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8810   //   N = Distance (as unsigned)
8811   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8812     APInt MaxBECount = getUnsignedRangeMax(Distance);
8813 
8814     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8815     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8816     // case, and see if we can improve the bound.
8817     //
8818     // Explicitly handling this here is necessary because getUnsignedRange
8819     // isn't context-sensitive; it doesn't know that we only care about the
8820     // range inside the loop.
8821     const SCEV *Zero = getZero(Distance->getType());
8822     const SCEV *One = getOne(Distance->getType());
8823     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8824     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8825       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8826       // as "unsigned_max(Distance + 1) - 1".
8827       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8828       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8829     }
8830     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8831   }
8832 
8833   // If the condition controls loop exit (the loop exits only if the expression
8834   // is true) and the addition is no-wrap we can use unsigned divide to
8835   // compute the backedge count.  In this case, the step may not divide the
8836   // distance, but we don't care because if the condition is "missed" the loop
8837   // will have undefined behavior due to wrapping.
8838   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8839       loopHasNoAbnormalExits(AddRec->getLoop())) {
8840     const SCEV *Exact =
8841         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8842     const SCEV *Max =
8843         Exact == getCouldNotCompute()
8844             ? Exact
8845             : getConstant(getUnsignedRangeMax(Exact));
8846     return ExitLimit(Exact, Max, false, Predicates);
8847   }
8848 
8849   // Solve the general equation.
8850   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8851                                                getNegativeSCEV(Start), *this);
8852   const SCEV *M = E == getCouldNotCompute()
8853                       ? E
8854                       : getConstant(getUnsignedRangeMax(E));
8855   return ExitLimit(E, M, false, Predicates);
8856 }
8857 
8858 ScalarEvolution::ExitLimit
8859 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8860   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8861   // handle them yet except for the trivial case.  This could be expanded in the
8862   // future as needed.
8863 
8864   // If the value is a constant, check to see if it is known to be non-zero
8865   // already.  If so, the backedge will execute zero times.
8866   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8867     if (!C->getValue()->isZero())
8868       return getZero(C->getType());
8869     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8870   }
8871 
8872   // We could implement others, but I really doubt anyone writes loops like
8873   // this, and if they did, they would already be constant folded.
8874   return getCouldNotCompute();
8875 }
8876 
8877 std::pair<BasicBlock *, BasicBlock *>
8878 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8879   // If the block has a unique predecessor, then there is no path from the
8880   // predecessor to the block that does not go through the direct edge
8881   // from the predecessor to the block.
8882   if (BasicBlock *Pred = BB->getSinglePredecessor())
8883     return {Pred, BB};
8884 
8885   // A loop's header is defined to be a block that dominates the loop.
8886   // If the header has a unique predecessor outside the loop, it must be
8887   // a block that has exactly one successor that can reach the loop.
8888   if (Loop *L = LI.getLoopFor(BB))
8889     return {L->getLoopPredecessor(), L->getHeader()};
8890 
8891   return {nullptr, nullptr};
8892 }
8893 
8894 /// SCEV structural equivalence is usually sufficient for testing whether two
8895 /// expressions are equal, however for the purposes of looking for a condition
8896 /// guarding a loop, it can be useful to be a little more general, since a
8897 /// front-end may have replicated the controlling expression.
8898 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8899   // Quick check to see if they are the same SCEV.
8900   if (A == B) return true;
8901 
8902   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8903     // Not all instructions that are "identical" compute the same value.  For
8904     // instance, two distinct alloca instructions allocating the same type are
8905     // identical and do not read memory; but compute distinct values.
8906     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8907   };
8908 
8909   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8910   // two different instructions with the same value. Check for this case.
8911   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8912     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8913       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8914         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8915           if (ComputesEqualValues(AI, BI))
8916             return true;
8917 
8918   // Otherwise assume they may have a different value.
8919   return false;
8920 }
8921 
8922 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8923                                            const SCEV *&LHS, const SCEV *&RHS,
8924                                            unsigned Depth) {
8925   bool Changed = false;
8926   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8927   // '0 != 0'.
8928   auto TrivialCase = [&](bool TriviallyTrue) {
8929     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8930     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8931     return true;
8932   };
8933   // If we hit the max recursion limit bail out.
8934   if (Depth >= 3)
8935     return false;
8936 
8937   // Canonicalize a constant to the right side.
8938   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8939     // Check for both operands constant.
8940     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8941       if (ConstantExpr::getICmp(Pred,
8942                                 LHSC->getValue(),
8943                                 RHSC->getValue())->isNullValue())
8944         return TrivialCase(false);
8945       else
8946         return TrivialCase(true);
8947     }
8948     // Otherwise swap the operands to put the constant on the right.
8949     std::swap(LHS, RHS);
8950     Pred = ICmpInst::getSwappedPredicate(Pred);
8951     Changed = true;
8952   }
8953 
8954   // If we're comparing an addrec with a value which is loop-invariant in the
8955   // addrec's loop, put the addrec on the left. Also make a dominance check,
8956   // as both operands could be addrecs loop-invariant in each other's loop.
8957   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8958     const Loop *L = AR->getLoop();
8959     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8960       std::swap(LHS, RHS);
8961       Pred = ICmpInst::getSwappedPredicate(Pred);
8962       Changed = true;
8963     }
8964   }
8965 
8966   // If there's a constant operand, canonicalize comparisons with boundary
8967   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8968   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8969     const APInt &RA = RC->getAPInt();
8970 
8971     bool SimplifiedByConstantRange = false;
8972 
8973     if (!ICmpInst::isEquality(Pred)) {
8974       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8975       if (ExactCR.isFullSet())
8976         return TrivialCase(true);
8977       else if (ExactCR.isEmptySet())
8978         return TrivialCase(false);
8979 
8980       APInt NewRHS;
8981       CmpInst::Predicate NewPred;
8982       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8983           ICmpInst::isEquality(NewPred)) {
8984         // We were able to convert an inequality to an equality.
8985         Pred = NewPred;
8986         RHS = getConstant(NewRHS);
8987         Changed = SimplifiedByConstantRange = true;
8988       }
8989     }
8990 
8991     if (!SimplifiedByConstantRange) {
8992       switch (Pred) {
8993       default:
8994         break;
8995       case ICmpInst::ICMP_EQ:
8996       case ICmpInst::ICMP_NE:
8997         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8998         if (!RA)
8999           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9000             if (const SCEVMulExpr *ME =
9001                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9002               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9003                   ME->getOperand(0)->isAllOnesValue()) {
9004                 RHS = AE->getOperand(1);
9005                 LHS = ME->getOperand(1);
9006                 Changed = true;
9007               }
9008         break;
9009 
9010 
9011         // The "Should have been caught earlier!" messages refer to the fact
9012         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9013         // should have fired on the corresponding cases, and canonicalized the
9014         // check to trivial case.
9015 
9016       case ICmpInst::ICMP_UGE:
9017         assert(!RA.isMinValue() && "Should have been caught earlier!");
9018         Pred = ICmpInst::ICMP_UGT;
9019         RHS = getConstant(RA - 1);
9020         Changed = true;
9021         break;
9022       case ICmpInst::ICMP_ULE:
9023         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9024         Pred = ICmpInst::ICMP_ULT;
9025         RHS = getConstant(RA + 1);
9026         Changed = true;
9027         break;
9028       case ICmpInst::ICMP_SGE:
9029         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9030         Pred = ICmpInst::ICMP_SGT;
9031         RHS = getConstant(RA - 1);
9032         Changed = true;
9033         break;
9034       case ICmpInst::ICMP_SLE:
9035         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9036         Pred = ICmpInst::ICMP_SLT;
9037         RHS = getConstant(RA + 1);
9038         Changed = true;
9039         break;
9040       }
9041     }
9042   }
9043 
9044   // Check for obvious equality.
9045   if (HasSameValue(LHS, RHS)) {
9046     if (ICmpInst::isTrueWhenEqual(Pred))
9047       return TrivialCase(true);
9048     if (ICmpInst::isFalseWhenEqual(Pred))
9049       return TrivialCase(false);
9050   }
9051 
9052   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9053   // adding or subtracting 1 from one of the operands.
9054   switch (Pred) {
9055   case ICmpInst::ICMP_SLE:
9056     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9057       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9058                        SCEV::FlagNSW);
9059       Pred = ICmpInst::ICMP_SLT;
9060       Changed = true;
9061     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9062       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9063                        SCEV::FlagNSW);
9064       Pred = ICmpInst::ICMP_SLT;
9065       Changed = true;
9066     }
9067     break;
9068   case ICmpInst::ICMP_SGE:
9069     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9070       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9071                        SCEV::FlagNSW);
9072       Pred = ICmpInst::ICMP_SGT;
9073       Changed = true;
9074     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9075       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9076                        SCEV::FlagNSW);
9077       Pred = ICmpInst::ICMP_SGT;
9078       Changed = true;
9079     }
9080     break;
9081   case ICmpInst::ICMP_ULE:
9082     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9083       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9084                        SCEV::FlagNUW);
9085       Pred = ICmpInst::ICMP_ULT;
9086       Changed = true;
9087     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9088       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9089       Pred = ICmpInst::ICMP_ULT;
9090       Changed = true;
9091     }
9092     break;
9093   case ICmpInst::ICMP_UGE:
9094     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9095       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9096       Pred = ICmpInst::ICMP_UGT;
9097       Changed = true;
9098     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9099       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9100                        SCEV::FlagNUW);
9101       Pred = ICmpInst::ICMP_UGT;
9102       Changed = true;
9103     }
9104     break;
9105   default:
9106     break;
9107   }
9108 
9109   // TODO: More simplifications are possible here.
9110 
9111   // Recursively simplify until we either hit a recursion limit or nothing
9112   // changes.
9113   if (Changed)
9114     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9115 
9116   return Changed;
9117 }
9118 
9119 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9120   return getSignedRangeMax(S).isNegative();
9121 }
9122 
9123 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9124   return getSignedRangeMin(S).isStrictlyPositive();
9125 }
9126 
9127 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9128   return !getSignedRangeMin(S).isNegative();
9129 }
9130 
9131 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9132   return !getSignedRangeMax(S).isStrictlyPositive();
9133 }
9134 
9135 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9136   return isKnownNegative(S) || isKnownPositive(S);
9137 }
9138 
9139 std::pair<const SCEV *, const SCEV *>
9140 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9141   // Compute SCEV on entry of loop L.
9142   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9143   if (Start == getCouldNotCompute())
9144     return { Start, Start };
9145   // Compute post increment SCEV for loop L.
9146   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9147   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9148   return { Start, PostInc };
9149 }
9150 
9151 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9152                                           const SCEV *LHS, const SCEV *RHS) {
9153   // First collect all loops.
9154   SmallPtrSet<const Loop *, 8> LoopsUsed;
9155   getUsedLoops(LHS, LoopsUsed);
9156   getUsedLoops(RHS, LoopsUsed);
9157 
9158   if (LoopsUsed.empty())
9159     return false;
9160 
9161   // Domination relationship must be a linear order on collected loops.
9162 #ifndef NDEBUG
9163   for (auto *L1 : LoopsUsed)
9164     for (auto *L2 : LoopsUsed)
9165       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9166               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9167              "Domination relationship is not a linear order");
9168 #endif
9169 
9170   const Loop *MDL =
9171       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9172                         [&](const Loop *L1, const Loop *L2) {
9173          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9174        });
9175 
9176   // Get init and post increment value for LHS.
9177   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9178   // if LHS contains unknown non-invariant SCEV then bail out.
9179   if (SplitLHS.first == getCouldNotCompute())
9180     return false;
9181   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9182   // Get init and post increment value for RHS.
9183   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9184   // if RHS contains unknown non-invariant SCEV then bail out.
9185   if (SplitRHS.first == getCouldNotCompute())
9186     return false;
9187   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9188   // It is possible that init SCEV contains an invariant load but it does
9189   // not dominate MDL and is not available at MDL loop entry, so we should
9190   // check it here.
9191   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9192       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9193     return false;
9194 
9195   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9196          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9197                                      SplitRHS.second);
9198 }
9199 
9200 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9201                                        const SCEV *LHS, const SCEV *RHS) {
9202   // Canonicalize the inputs first.
9203   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9204 
9205   if (isKnownViaInduction(Pred, LHS, RHS))
9206     return true;
9207 
9208   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9209     return true;
9210 
9211   // Otherwise see what can be done with some simple reasoning.
9212   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9213 }
9214 
9215 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9216                                               const SCEVAddRecExpr *LHS,
9217                                               const SCEV *RHS) {
9218   const Loop *L = LHS->getLoop();
9219   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9220          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9221 }
9222 
9223 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9224                                            ICmpInst::Predicate Pred,
9225                                            bool &Increasing) {
9226   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9227 
9228 #ifndef NDEBUG
9229   // Verify an invariant: inverting the predicate should turn a monotonically
9230   // increasing change to a monotonically decreasing one, and vice versa.
9231   bool IncreasingSwapped;
9232   bool ResultSwapped = isMonotonicPredicateImpl(
9233       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9234 
9235   assert(Result == ResultSwapped && "should be able to analyze both!");
9236   if (ResultSwapped)
9237     assert(Increasing == !IncreasingSwapped &&
9238            "monotonicity should flip as we flip the predicate");
9239 #endif
9240 
9241   return Result;
9242 }
9243 
9244 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9245                                                ICmpInst::Predicate Pred,
9246                                                bool &Increasing) {
9247 
9248   // A zero step value for LHS means the induction variable is essentially a
9249   // loop invariant value. We don't really depend on the predicate actually
9250   // flipping from false to true (for increasing predicates, and the other way
9251   // around for decreasing predicates), all we care about is that *if* the
9252   // predicate changes then it only changes from false to true.
9253   //
9254   // A zero step value in itself is not very useful, but there may be places
9255   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9256   // as general as possible.
9257 
9258   switch (Pred) {
9259   default:
9260     return false; // Conservative answer
9261 
9262   case ICmpInst::ICMP_UGT:
9263   case ICmpInst::ICMP_UGE:
9264   case ICmpInst::ICMP_ULT:
9265   case ICmpInst::ICMP_ULE:
9266     if (!LHS->hasNoUnsignedWrap())
9267       return false;
9268 
9269     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9270     return true;
9271 
9272   case ICmpInst::ICMP_SGT:
9273   case ICmpInst::ICMP_SGE:
9274   case ICmpInst::ICMP_SLT:
9275   case ICmpInst::ICMP_SLE: {
9276     if (!LHS->hasNoSignedWrap())
9277       return false;
9278 
9279     const SCEV *Step = LHS->getStepRecurrence(*this);
9280 
9281     if (isKnownNonNegative(Step)) {
9282       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9283       return true;
9284     }
9285 
9286     if (isKnownNonPositive(Step)) {
9287       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9288       return true;
9289     }
9290 
9291     return false;
9292   }
9293 
9294   }
9295 
9296   llvm_unreachable("switch has default clause!");
9297 }
9298 
9299 bool ScalarEvolution::isLoopInvariantPredicate(
9300     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9301     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9302     const SCEV *&InvariantRHS) {
9303 
9304   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9305   if (!isLoopInvariant(RHS, L)) {
9306     if (!isLoopInvariant(LHS, L))
9307       return false;
9308 
9309     std::swap(LHS, RHS);
9310     Pred = ICmpInst::getSwappedPredicate(Pred);
9311   }
9312 
9313   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9314   if (!ArLHS || ArLHS->getLoop() != L)
9315     return false;
9316 
9317   bool Increasing;
9318   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9319     return false;
9320 
9321   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9322   // true as the loop iterates, and the backedge is control dependent on
9323   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9324   //
9325   //   * if the predicate was false in the first iteration then the predicate
9326   //     is never evaluated again, since the loop exits without taking the
9327   //     backedge.
9328   //   * if the predicate was true in the first iteration then it will
9329   //     continue to be true for all future iterations since it is
9330   //     monotonically increasing.
9331   //
9332   // For both the above possibilities, we can replace the loop varying
9333   // predicate with its value on the first iteration of the loop (which is
9334   // loop invariant).
9335   //
9336   // A similar reasoning applies for a monotonically decreasing predicate, by
9337   // replacing true with false and false with true in the above two bullets.
9338 
9339   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9340 
9341   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9342     return false;
9343 
9344   InvariantPred = Pred;
9345   InvariantLHS = ArLHS->getStart();
9346   InvariantRHS = RHS;
9347   return true;
9348 }
9349 
9350 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9351     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9352   if (HasSameValue(LHS, RHS))
9353     return ICmpInst::isTrueWhenEqual(Pred);
9354 
9355   // This code is split out from isKnownPredicate because it is called from
9356   // within isLoopEntryGuardedByCond.
9357 
9358   auto CheckRanges =
9359       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9360     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9361         .contains(RangeLHS);
9362   };
9363 
9364   // The check at the top of the function catches the case where the values are
9365   // known to be equal.
9366   if (Pred == CmpInst::ICMP_EQ)
9367     return false;
9368 
9369   if (Pred == CmpInst::ICMP_NE)
9370     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9371            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9372            isKnownNonZero(getMinusSCEV(LHS, RHS));
9373 
9374   if (CmpInst::isSigned(Pred))
9375     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9376 
9377   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9378 }
9379 
9380 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9381                                                     const SCEV *LHS,
9382                                                     const SCEV *RHS) {
9383   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9384   // Return Y via OutY.
9385   auto MatchBinaryAddToConst =
9386       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9387              SCEV::NoWrapFlags ExpectedFlags) {
9388     const SCEV *NonConstOp, *ConstOp;
9389     SCEV::NoWrapFlags FlagsPresent;
9390 
9391     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9392         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9393       return false;
9394 
9395     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9396     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9397   };
9398 
9399   APInt C;
9400 
9401   switch (Pred) {
9402   default:
9403     break;
9404 
9405   case ICmpInst::ICMP_SGE:
9406     std::swap(LHS, RHS);
9407     LLVM_FALLTHROUGH;
9408   case ICmpInst::ICMP_SLE:
9409     // X s<= (X + C)<nsw> if C >= 0
9410     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9411       return true;
9412 
9413     // (X + C)<nsw> s<= X if C <= 0
9414     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9415         !C.isStrictlyPositive())
9416       return true;
9417     break;
9418 
9419   case ICmpInst::ICMP_SGT:
9420     std::swap(LHS, RHS);
9421     LLVM_FALLTHROUGH;
9422   case ICmpInst::ICMP_SLT:
9423     // X s< (X + C)<nsw> if C > 0
9424     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9425         C.isStrictlyPositive())
9426       return true;
9427 
9428     // (X + C)<nsw> s< X if C < 0
9429     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9430       return true;
9431     break;
9432   }
9433 
9434   return false;
9435 }
9436 
9437 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9438                                                    const SCEV *LHS,
9439                                                    const SCEV *RHS) {
9440   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9441     return false;
9442 
9443   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9444   // the stack can result in exponential time complexity.
9445   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9446 
9447   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9448   //
9449   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9450   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9451   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9452   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9453   // use isKnownPredicate later if needed.
9454   return isKnownNonNegative(RHS) &&
9455          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9456          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9457 }
9458 
9459 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9460                                         ICmpInst::Predicate Pred,
9461                                         const SCEV *LHS, const SCEV *RHS) {
9462   // No need to even try if we know the module has no guards.
9463   if (!HasGuards)
9464     return false;
9465 
9466   return any_of(*BB, [&](Instruction &I) {
9467     using namespace llvm::PatternMatch;
9468 
9469     Value *Condition;
9470     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9471                          m_Value(Condition))) &&
9472            isImpliedCond(Pred, LHS, RHS, Condition, false);
9473   });
9474 }
9475 
9476 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9477 /// protected by a conditional between LHS and RHS.  This is used to
9478 /// to eliminate casts.
9479 bool
9480 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9481                                              ICmpInst::Predicate Pred,
9482                                              const SCEV *LHS, const SCEV *RHS) {
9483   // Interpret a null as meaning no loop, where there is obviously no guard
9484   // (interprocedural conditions notwithstanding).
9485   if (!L) return true;
9486 
9487   if (VerifyIR)
9488     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9489            "This cannot be done on broken IR!");
9490 
9491 
9492   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9493     return true;
9494 
9495   BasicBlock *Latch = L->getLoopLatch();
9496   if (!Latch)
9497     return false;
9498 
9499   BranchInst *LoopContinuePredicate =
9500     dyn_cast<BranchInst>(Latch->getTerminator());
9501   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9502       isImpliedCond(Pred, LHS, RHS,
9503                     LoopContinuePredicate->getCondition(),
9504                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9505     return true;
9506 
9507   // We don't want more than one activation of the following loops on the stack
9508   // -- that can lead to O(n!) time complexity.
9509   if (WalkingBEDominatingConds)
9510     return false;
9511 
9512   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9513 
9514   // See if we can exploit a trip count to prove the predicate.
9515   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9516   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9517   if (LatchBECount != getCouldNotCompute()) {
9518     // We know that Latch branches back to the loop header exactly
9519     // LatchBECount times.  This means the backdege condition at Latch is
9520     // equivalent to  "{0,+,1} u< LatchBECount".
9521     Type *Ty = LatchBECount->getType();
9522     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9523     const SCEV *LoopCounter =
9524       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9525     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9526                       LatchBECount))
9527       return true;
9528   }
9529 
9530   // Check conditions due to any @llvm.assume intrinsics.
9531   for (auto &AssumeVH : AC.assumptions()) {
9532     if (!AssumeVH)
9533       continue;
9534     auto *CI = cast<CallInst>(AssumeVH);
9535     if (!DT.dominates(CI, Latch->getTerminator()))
9536       continue;
9537 
9538     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9539       return true;
9540   }
9541 
9542   // If the loop is not reachable from the entry block, we risk running into an
9543   // infinite loop as we walk up into the dom tree.  These loops do not matter
9544   // anyway, so we just return a conservative answer when we see them.
9545   if (!DT.isReachableFromEntry(L->getHeader()))
9546     return false;
9547 
9548   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9549     return true;
9550 
9551   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9552        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9553     assert(DTN && "should reach the loop header before reaching the root!");
9554 
9555     BasicBlock *BB = DTN->getBlock();
9556     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9557       return true;
9558 
9559     BasicBlock *PBB = BB->getSinglePredecessor();
9560     if (!PBB)
9561       continue;
9562 
9563     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9564     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9565       continue;
9566 
9567     Value *Condition = ContinuePredicate->getCondition();
9568 
9569     // If we have an edge `E` within the loop body that dominates the only
9570     // latch, the condition guarding `E` also guards the backedge.  This
9571     // reasoning works only for loops with a single latch.
9572 
9573     BasicBlockEdge DominatingEdge(PBB, BB);
9574     if (DominatingEdge.isSingleEdge()) {
9575       // We're constructively (and conservatively) enumerating edges within the
9576       // loop body that dominate the latch.  The dominator tree better agree
9577       // with us on this:
9578       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9579 
9580       if (isImpliedCond(Pred, LHS, RHS, Condition,
9581                         BB != ContinuePredicate->getSuccessor(0)))
9582         return true;
9583     }
9584   }
9585 
9586   return false;
9587 }
9588 
9589 bool
9590 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9591                                           ICmpInst::Predicate Pred,
9592                                           const SCEV *LHS, const SCEV *RHS) {
9593   // Interpret a null as meaning no loop, where there is obviously no guard
9594   // (interprocedural conditions notwithstanding).
9595   if (!L) return false;
9596 
9597   if (VerifyIR)
9598     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9599            "This cannot be done on broken IR!");
9600 
9601   // Both LHS and RHS must be available at loop entry.
9602   assert(isAvailableAtLoopEntry(LHS, L) &&
9603          "LHS is not available at Loop Entry");
9604   assert(isAvailableAtLoopEntry(RHS, L) &&
9605          "RHS is not available at Loop Entry");
9606 
9607   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9608     return true;
9609 
9610   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9611   // the facts (a >= b && a != b) separately. A typical situation is when the
9612   // non-strict comparison is known from ranges and non-equality is known from
9613   // dominating predicates. If we are proving strict comparison, we always try
9614   // to prove non-equality and non-strict comparison separately.
9615   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9616   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9617   bool ProvedNonStrictComparison = false;
9618   bool ProvedNonEquality = false;
9619 
9620   if (ProvingStrictComparison) {
9621     ProvedNonStrictComparison =
9622         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9623     ProvedNonEquality =
9624         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9625     if (ProvedNonStrictComparison && ProvedNonEquality)
9626       return true;
9627   }
9628 
9629   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9630   auto ProveViaGuard = [&](BasicBlock *Block) {
9631     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9632       return true;
9633     if (ProvingStrictComparison) {
9634       if (!ProvedNonStrictComparison)
9635         ProvedNonStrictComparison =
9636             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9637       if (!ProvedNonEquality)
9638         ProvedNonEquality =
9639             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9640       if (ProvedNonStrictComparison && ProvedNonEquality)
9641         return true;
9642     }
9643     return false;
9644   };
9645 
9646   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9647   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9648     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9649       return true;
9650     if (ProvingStrictComparison) {
9651       if (!ProvedNonStrictComparison)
9652         ProvedNonStrictComparison =
9653             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9654       if (!ProvedNonEquality)
9655         ProvedNonEquality =
9656             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9657       if (ProvedNonStrictComparison && ProvedNonEquality)
9658         return true;
9659     }
9660     return false;
9661   };
9662 
9663   // Starting at the loop predecessor, climb up the predecessor chain, as long
9664   // as there are predecessors that can be found that have unique successors
9665   // leading to the original header.
9666   for (std::pair<BasicBlock *, BasicBlock *>
9667          Pair(L->getLoopPredecessor(), L->getHeader());
9668        Pair.first;
9669        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9670 
9671     if (ProveViaGuard(Pair.first))
9672       return true;
9673 
9674     BranchInst *LoopEntryPredicate =
9675       dyn_cast<BranchInst>(Pair.first->getTerminator());
9676     if (!LoopEntryPredicate ||
9677         LoopEntryPredicate->isUnconditional())
9678       continue;
9679 
9680     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9681                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9682       return true;
9683   }
9684 
9685   // Check conditions due to any @llvm.assume intrinsics.
9686   for (auto &AssumeVH : AC.assumptions()) {
9687     if (!AssumeVH)
9688       continue;
9689     auto *CI = cast<CallInst>(AssumeVH);
9690     if (!DT.dominates(CI, L->getHeader()))
9691       continue;
9692 
9693     if (ProveViaCond(CI->getArgOperand(0), false))
9694       return true;
9695   }
9696 
9697   return false;
9698 }
9699 
9700 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9701                                     const SCEV *LHS, const SCEV *RHS,
9702                                     Value *FoundCondValue,
9703                                     bool Inverse) {
9704   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9705     return false;
9706 
9707   auto ClearOnExit =
9708       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9709 
9710   // Recursively handle And and Or conditions.
9711   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9712     if (BO->getOpcode() == Instruction::And) {
9713       if (!Inverse)
9714         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9715                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9716     } else if (BO->getOpcode() == Instruction::Or) {
9717       if (Inverse)
9718         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9719                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9720     }
9721   }
9722 
9723   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9724   if (!ICI) return false;
9725 
9726   // Now that we found a conditional branch that dominates the loop or controls
9727   // the loop latch. Check to see if it is the comparison we are looking for.
9728   ICmpInst::Predicate FoundPred;
9729   if (Inverse)
9730     FoundPred = ICI->getInversePredicate();
9731   else
9732     FoundPred = ICI->getPredicate();
9733 
9734   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9735   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9736 
9737   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9738 }
9739 
9740 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9741                                     const SCEV *RHS,
9742                                     ICmpInst::Predicate FoundPred,
9743                                     const SCEV *FoundLHS,
9744                                     const SCEV *FoundRHS) {
9745   // Balance the types.
9746   if (getTypeSizeInBits(LHS->getType()) <
9747       getTypeSizeInBits(FoundLHS->getType())) {
9748     if (CmpInst::isSigned(Pred)) {
9749       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9750       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9751     } else {
9752       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9753       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9754     }
9755   } else if (getTypeSizeInBits(LHS->getType()) >
9756       getTypeSizeInBits(FoundLHS->getType())) {
9757     if (CmpInst::isSigned(FoundPred)) {
9758       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9759       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9760     } else {
9761       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9762       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9763     }
9764   }
9765 
9766   // Canonicalize the query to match the way instcombine will have
9767   // canonicalized the comparison.
9768   if (SimplifyICmpOperands(Pred, LHS, RHS))
9769     if (LHS == RHS)
9770       return CmpInst::isTrueWhenEqual(Pred);
9771   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9772     if (FoundLHS == FoundRHS)
9773       return CmpInst::isFalseWhenEqual(FoundPred);
9774 
9775   // Check to see if we can make the LHS or RHS match.
9776   if (LHS == FoundRHS || RHS == FoundLHS) {
9777     if (isa<SCEVConstant>(RHS)) {
9778       std::swap(FoundLHS, FoundRHS);
9779       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9780     } else {
9781       std::swap(LHS, RHS);
9782       Pred = ICmpInst::getSwappedPredicate(Pred);
9783     }
9784   }
9785 
9786   // Check whether the found predicate is the same as the desired predicate.
9787   if (FoundPred == Pred)
9788     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9789 
9790   // Check whether swapping the found predicate makes it the same as the
9791   // desired predicate.
9792   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9793     if (isa<SCEVConstant>(RHS))
9794       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9795     else
9796       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9797                                    RHS, LHS, FoundLHS, FoundRHS);
9798   }
9799 
9800   // Unsigned comparison is the same as signed comparison when both the operands
9801   // are non-negative.
9802   if (CmpInst::isUnsigned(FoundPred) &&
9803       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9804       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9805     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9806 
9807   // Check if we can make progress by sharpening ranges.
9808   if (FoundPred == ICmpInst::ICMP_NE &&
9809       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9810 
9811     const SCEVConstant *C = nullptr;
9812     const SCEV *V = nullptr;
9813 
9814     if (isa<SCEVConstant>(FoundLHS)) {
9815       C = cast<SCEVConstant>(FoundLHS);
9816       V = FoundRHS;
9817     } else {
9818       C = cast<SCEVConstant>(FoundRHS);
9819       V = FoundLHS;
9820     }
9821 
9822     // The guarding predicate tells us that C != V. If the known range
9823     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9824     // range we consider has to correspond to same signedness as the
9825     // predicate we're interested in folding.
9826 
9827     APInt Min = ICmpInst::isSigned(Pred) ?
9828         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9829 
9830     if (Min == C->getAPInt()) {
9831       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9832       // This is true even if (Min + 1) wraps around -- in case of
9833       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9834 
9835       APInt SharperMin = Min + 1;
9836 
9837       switch (Pred) {
9838         case ICmpInst::ICMP_SGE:
9839         case ICmpInst::ICMP_UGE:
9840           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9841           // RHS, we're done.
9842           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9843                                     getConstant(SharperMin)))
9844             return true;
9845           LLVM_FALLTHROUGH;
9846 
9847         case ICmpInst::ICMP_SGT:
9848         case ICmpInst::ICMP_UGT:
9849           // We know from the range information that (V `Pred` Min ||
9850           // V == Min).  We know from the guarding condition that !(V
9851           // == Min).  This gives us
9852           //
9853           //       V `Pred` Min || V == Min && !(V == Min)
9854           //   =>  V `Pred` Min
9855           //
9856           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9857 
9858           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9859             return true;
9860           LLVM_FALLTHROUGH;
9861 
9862         default:
9863           // No change
9864           break;
9865       }
9866     }
9867   }
9868 
9869   // Check whether the actual condition is beyond sufficient.
9870   if (FoundPred == ICmpInst::ICMP_EQ)
9871     if (ICmpInst::isTrueWhenEqual(Pred))
9872       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9873         return true;
9874   if (Pred == ICmpInst::ICMP_NE)
9875     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9876       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9877         return true;
9878 
9879   // Otherwise assume the worst.
9880   return false;
9881 }
9882 
9883 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9884                                      const SCEV *&L, const SCEV *&R,
9885                                      SCEV::NoWrapFlags &Flags) {
9886   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9887   if (!AE || AE->getNumOperands() != 2)
9888     return false;
9889 
9890   L = AE->getOperand(0);
9891   R = AE->getOperand(1);
9892   Flags = AE->getNoWrapFlags();
9893   return true;
9894 }
9895 
9896 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9897                                                            const SCEV *Less) {
9898   // We avoid subtracting expressions here because this function is usually
9899   // fairly deep in the call stack (i.e. is called many times).
9900 
9901   // X - X = 0.
9902   if (More == Less)
9903     return APInt(getTypeSizeInBits(More->getType()), 0);
9904 
9905   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9906     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9907     const auto *MAR = cast<SCEVAddRecExpr>(More);
9908 
9909     if (LAR->getLoop() != MAR->getLoop())
9910       return None;
9911 
9912     // We look at affine expressions only; not for correctness but to keep
9913     // getStepRecurrence cheap.
9914     if (!LAR->isAffine() || !MAR->isAffine())
9915       return None;
9916 
9917     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9918       return None;
9919 
9920     Less = LAR->getStart();
9921     More = MAR->getStart();
9922 
9923     // fall through
9924   }
9925 
9926   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9927     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9928     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9929     return M - L;
9930   }
9931 
9932   SCEV::NoWrapFlags Flags;
9933   const SCEV *LLess = nullptr, *RLess = nullptr;
9934   const SCEV *LMore = nullptr, *RMore = nullptr;
9935   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9936   // Compare (X + C1) vs X.
9937   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9938     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9939       if (RLess == More)
9940         return -(C1->getAPInt());
9941 
9942   // Compare X vs (X + C2).
9943   if (splitBinaryAdd(More, LMore, RMore, Flags))
9944     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9945       if (RMore == Less)
9946         return C2->getAPInt();
9947 
9948   // Compare (X + C1) vs (X + C2).
9949   if (C1 && C2 && RLess == RMore)
9950     return C2->getAPInt() - C1->getAPInt();
9951 
9952   return None;
9953 }
9954 
9955 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9956     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9957     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9958   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9959     return false;
9960 
9961   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9962   if (!AddRecLHS)
9963     return false;
9964 
9965   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9966   if (!AddRecFoundLHS)
9967     return false;
9968 
9969   // We'd like to let SCEV reason about control dependencies, so we constrain
9970   // both the inequalities to be about add recurrences on the same loop.  This
9971   // way we can use isLoopEntryGuardedByCond later.
9972 
9973   const Loop *L = AddRecFoundLHS->getLoop();
9974   if (L != AddRecLHS->getLoop())
9975     return false;
9976 
9977   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9978   //
9979   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9980   //                                                                  ... (2)
9981   //
9982   // Informal proof for (2), assuming (1) [*]:
9983   //
9984   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9985   //
9986   // Then
9987   //
9988   //       FoundLHS s< FoundRHS s< INT_MIN - C
9989   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9990   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9991   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9992   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9993   // <=>  FoundLHS + C s< FoundRHS + C
9994   //
9995   // [*]: (1) can be proved by ruling out overflow.
9996   //
9997   // [**]: This can be proved by analyzing all the four possibilities:
9998   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9999   //    (A s>= 0, B s>= 0).
10000   //
10001   // Note:
10002   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10003   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10004   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10005   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10006   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10007   // C)".
10008 
10009   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10010   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10011   if (!LDiff || !RDiff || *LDiff != *RDiff)
10012     return false;
10013 
10014   if (LDiff->isMinValue())
10015     return true;
10016 
10017   APInt FoundRHSLimit;
10018 
10019   if (Pred == CmpInst::ICMP_ULT) {
10020     FoundRHSLimit = -(*RDiff);
10021   } else {
10022     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10023     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10024   }
10025 
10026   // Try to prove (1) or (2), as needed.
10027   return isAvailableAtLoopEntry(FoundRHS, L) &&
10028          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10029                                   getConstant(FoundRHSLimit));
10030 }
10031 
10032 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10033                                         const SCEV *LHS, const SCEV *RHS,
10034                                         const SCEV *FoundLHS,
10035                                         const SCEV *FoundRHS, unsigned Depth) {
10036   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10037 
10038   auto ClearOnExit = make_scope_exit([&]() {
10039     if (LPhi) {
10040       bool Erased = PendingMerges.erase(LPhi);
10041       assert(Erased && "Failed to erase LPhi!");
10042       (void)Erased;
10043     }
10044     if (RPhi) {
10045       bool Erased = PendingMerges.erase(RPhi);
10046       assert(Erased && "Failed to erase RPhi!");
10047       (void)Erased;
10048     }
10049   });
10050 
10051   // Find respective Phis and check that they are not being pending.
10052   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10053     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10054       if (!PendingMerges.insert(Phi).second)
10055         return false;
10056       LPhi = Phi;
10057     }
10058   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10059     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10060       // If we detect a loop of Phi nodes being processed by this method, for
10061       // example:
10062       //
10063       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10064       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10065       //
10066       // we don't want to deal with a case that complex, so return conservative
10067       // answer false.
10068       if (!PendingMerges.insert(Phi).second)
10069         return false;
10070       RPhi = Phi;
10071     }
10072 
10073   // If none of LHS, RHS is a Phi, nothing to do here.
10074   if (!LPhi && !RPhi)
10075     return false;
10076 
10077   // If there is a SCEVUnknown Phi we are interested in, make it left.
10078   if (!LPhi) {
10079     std::swap(LHS, RHS);
10080     std::swap(FoundLHS, FoundRHS);
10081     std::swap(LPhi, RPhi);
10082     Pred = ICmpInst::getSwappedPredicate(Pred);
10083   }
10084 
10085   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10086   const BasicBlock *LBB = LPhi->getParent();
10087   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10088 
10089   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10090     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10091            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10092            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10093   };
10094 
10095   if (RPhi && RPhi->getParent() == LBB) {
10096     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10097     // If we compare two Phis from the same block, and for each entry block
10098     // the predicate is true for incoming values from this block, then the
10099     // predicate is also true for the Phis.
10100     for (const BasicBlock *IncBB : predecessors(LBB)) {
10101       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10102       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10103       if (!ProvedEasily(L, R))
10104         return false;
10105     }
10106   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10107     // Case two: RHS is also a Phi from the same basic block, and it is an
10108     // AddRec. It means that there is a loop which has both AddRec and Unknown
10109     // PHIs, for it we can compare incoming values of AddRec from above the loop
10110     // and latch with their respective incoming values of LPhi.
10111     // TODO: Generalize to handle loops with many inputs in a header.
10112     if (LPhi->getNumIncomingValues() != 2) return false;
10113 
10114     auto *RLoop = RAR->getLoop();
10115     auto *Predecessor = RLoop->getLoopPredecessor();
10116     assert(Predecessor && "Loop with AddRec with no predecessor?");
10117     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10118     if (!ProvedEasily(L1, RAR->getStart()))
10119       return false;
10120     auto *Latch = RLoop->getLoopLatch();
10121     assert(Latch && "Loop with AddRec with no latch?");
10122     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10123     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10124       return false;
10125   } else {
10126     // In all other cases go over inputs of LHS and compare each of them to RHS,
10127     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10128     // At this point RHS is either a non-Phi, or it is a Phi from some block
10129     // different from LBB.
10130     for (const BasicBlock *IncBB : predecessors(LBB)) {
10131       // Check that RHS is available in this block.
10132       if (!dominates(RHS, IncBB))
10133         return false;
10134       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10135       if (!ProvedEasily(L, RHS))
10136         return false;
10137     }
10138   }
10139   return true;
10140 }
10141 
10142 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10143                                             const SCEV *LHS, const SCEV *RHS,
10144                                             const SCEV *FoundLHS,
10145                                             const SCEV *FoundRHS) {
10146   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10147     return true;
10148 
10149   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10150     return true;
10151 
10152   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10153                                      FoundLHS, FoundRHS) ||
10154          // ~x < ~y --> x > y
10155          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10156                                      getNotSCEV(FoundRHS),
10157                                      getNotSCEV(FoundLHS));
10158 }
10159 
10160 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10161 template <typename MinMaxExprType>
10162 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10163                                  const SCEV *Candidate) {
10164   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10165   if (!MinMaxExpr)
10166     return false;
10167 
10168   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10169 }
10170 
10171 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10172                                            ICmpInst::Predicate Pred,
10173                                            const SCEV *LHS, const SCEV *RHS) {
10174   // If both sides are affine addrecs for the same loop, with equal
10175   // steps, and we know the recurrences don't wrap, then we only
10176   // need to check the predicate on the starting values.
10177 
10178   if (!ICmpInst::isRelational(Pred))
10179     return false;
10180 
10181   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10182   if (!LAR)
10183     return false;
10184   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10185   if (!RAR)
10186     return false;
10187   if (LAR->getLoop() != RAR->getLoop())
10188     return false;
10189   if (!LAR->isAffine() || !RAR->isAffine())
10190     return false;
10191 
10192   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10193     return false;
10194 
10195   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10196                          SCEV::FlagNSW : SCEV::FlagNUW;
10197   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10198     return false;
10199 
10200   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10201 }
10202 
10203 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10204 /// expression?
10205 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10206                                         ICmpInst::Predicate Pred,
10207                                         const SCEV *LHS, const SCEV *RHS) {
10208   switch (Pred) {
10209   default:
10210     return false;
10211 
10212   case ICmpInst::ICMP_SGE:
10213     std::swap(LHS, RHS);
10214     LLVM_FALLTHROUGH;
10215   case ICmpInst::ICMP_SLE:
10216     return
10217         // min(A, ...) <= A
10218         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10219         // A <= max(A, ...)
10220         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10221 
10222   case ICmpInst::ICMP_UGE:
10223     std::swap(LHS, RHS);
10224     LLVM_FALLTHROUGH;
10225   case ICmpInst::ICMP_ULE:
10226     return
10227         // min(A, ...) <= A
10228         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10229         // A <= max(A, ...)
10230         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10231   }
10232 
10233   llvm_unreachable("covered switch fell through?!");
10234 }
10235 
10236 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10237                                              const SCEV *LHS, const SCEV *RHS,
10238                                              const SCEV *FoundLHS,
10239                                              const SCEV *FoundRHS,
10240                                              unsigned Depth) {
10241   assert(getTypeSizeInBits(LHS->getType()) ==
10242              getTypeSizeInBits(RHS->getType()) &&
10243          "LHS and RHS have different sizes?");
10244   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10245              getTypeSizeInBits(FoundRHS->getType()) &&
10246          "FoundLHS and FoundRHS have different sizes?");
10247   // We want to avoid hurting the compile time with analysis of too big trees.
10248   if (Depth > MaxSCEVOperationsImplicationDepth)
10249     return false;
10250   // We only want to work with ICMP_SGT comparison so far.
10251   // TODO: Extend to ICMP_UGT?
10252   if (Pred == ICmpInst::ICMP_SLT) {
10253     Pred = ICmpInst::ICMP_SGT;
10254     std::swap(LHS, RHS);
10255     std::swap(FoundLHS, FoundRHS);
10256   }
10257   if (Pred != ICmpInst::ICMP_SGT)
10258     return false;
10259 
10260   auto GetOpFromSExt = [&](const SCEV *S) {
10261     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10262       return Ext->getOperand();
10263     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10264     // the constant in some cases.
10265     return S;
10266   };
10267 
10268   // Acquire values from extensions.
10269   auto *OrigLHS = LHS;
10270   auto *OrigFoundLHS = FoundLHS;
10271   LHS = GetOpFromSExt(LHS);
10272   FoundLHS = GetOpFromSExt(FoundLHS);
10273 
10274   // Is the SGT predicate can be proved trivially or using the found context.
10275   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10276     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10277            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10278                                   FoundRHS, Depth + 1);
10279   };
10280 
10281   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10282     // We want to avoid creation of any new non-constant SCEV. Since we are
10283     // going to compare the operands to RHS, we should be certain that we don't
10284     // need any size extensions for this. So let's decline all cases when the
10285     // sizes of types of LHS and RHS do not match.
10286     // TODO: Maybe try to get RHS from sext to catch more cases?
10287     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10288       return false;
10289 
10290     // Should not overflow.
10291     if (!LHSAddExpr->hasNoSignedWrap())
10292       return false;
10293 
10294     auto *LL = LHSAddExpr->getOperand(0);
10295     auto *LR = LHSAddExpr->getOperand(1);
10296     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10297 
10298     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10299     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10300       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10301     };
10302     // Try to prove the following rule:
10303     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10304     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10305     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10306       return true;
10307   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10308     Value *LL, *LR;
10309     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10310 
10311     using namespace llvm::PatternMatch;
10312 
10313     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10314       // Rules for division.
10315       // We are going to perform some comparisons with Denominator and its
10316       // derivative expressions. In general case, creating a SCEV for it may
10317       // lead to a complex analysis of the entire graph, and in particular it
10318       // can request trip count recalculation for the same loop. This would
10319       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10320       // this, we only want to create SCEVs that are constants in this section.
10321       // So we bail if Denominator is not a constant.
10322       if (!isa<ConstantInt>(LR))
10323         return false;
10324 
10325       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10326 
10327       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10328       // then a SCEV for the numerator already exists and matches with FoundLHS.
10329       auto *Numerator = getExistingSCEV(LL);
10330       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10331         return false;
10332 
10333       // Make sure that the numerator matches with FoundLHS and the denominator
10334       // is positive.
10335       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10336         return false;
10337 
10338       auto *DTy = Denominator->getType();
10339       auto *FRHSTy = FoundRHS->getType();
10340       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10341         // One of types is a pointer and another one is not. We cannot extend
10342         // them properly to a wider type, so let us just reject this case.
10343         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10344         // to avoid this check.
10345         return false;
10346 
10347       // Given that:
10348       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10349       auto *WTy = getWiderType(DTy, FRHSTy);
10350       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10351       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10352 
10353       // Try to prove the following rule:
10354       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10355       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10356       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10357       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10358       if (isKnownNonPositive(RHS) &&
10359           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10360         return true;
10361 
10362       // Try to prove the following rule:
10363       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10364       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10365       // If we divide it by Denominator > 2, then:
10366       // 1. If FoundLHS is negative, then the result is 0.
10367       // 2. If FoundLHS is non-negative, then the result is non-negative.
10368       // Anyways, the result is non-negative.
10369       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10370       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10371       if (isKnownNegative(RHS) &&
10372           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10373         return true;
10374     }
10375   }
10376 
10377   // If our expression contained SCEVUnknown Phis, and we split it down and now
10378   // need to prove something for them, try to prove the predicate for every
10379   // possible incoming values of those Phis.
10380   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10381     return true;
10382 
10383   return false;
10384 }
10385 
10386 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10387                                         const SCEV *LHS, const SCEV *RHS) {
10388   // zext x u<= sext x, sext x s<= zext x
10389   switch (Pred) {
10390   case ICmpInst::ICMP_SGE:
10391     std::swap(LHS, RHS);
10392     LLVM_FALLTHROUGH;
10393   case ICmpInst::ICMP_SLE: {
10394     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10395     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10396     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10397     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10398       return true;
10399     break;
10400   }
10401   case ICmpInst::ICMP_UGE:
10402     std::swap(LHS, RHS);
10403     LLVM_FALLTHROUGH;
10404   case ICmpInst::ICMP_ULE: {
10405     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10406     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10407     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10408     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10409       return true;
10410     break;
10411   }
10412   default:
10413     break;
10414   };
10415   return false;
10416 }
10417 
10418 bool
10419 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10420                                            const SCEV *LHS, const SCEV *RHS) {
10421   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10422          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10423          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10424          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10425          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10426 }
10427 
10428 bool
10429 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10430                                              const SCEV *LHS, const SCEV *RHS,
10431                                              const SCEV *FoundLHS,
10432                                              const SCEV *FoundRHS) {
10433   switch (Pred) {
10434   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10435   case ICmpInst::ICMP_EQ:
10436   case ICmpInst::ICMP_NE:
10437     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10438       return true;
10439     break;
10440   case ICmpInst::ICMP_SLT:
10441   case ICmpInst::ICMP_SLE:
10442     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10443         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10444       return true;
10445     break;
10446   case ICmpInst::ICMP_SGT:
10447   case ICmpInst::ICMP_SGE:
10448     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10449         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10450       return true;
10451     break;
10452   case ICmpInst::ICMP_ULT:
10453   case ICmpInst::ICMP_ULE:
10454     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10455         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10456       return true;
10457     break;
10458   case ICmpInst::ICMP_UGT:
10459   case ICmpInst::ICMP_UGE:
10460     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10461         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10462       return true;
10463     break;
10464   }
10465 
10466   // Maybe it can be proved via operations?
10467   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10468     return true;
10469 
10470   return false;
10471 }
10472 
10473 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10474                                                      const SCEV *LHS,
10475                                                      const SCEV *RHS,
10476                                                      const SCEV *FoundLHS,
10477                                                      const SCEV *FoundRHS) {
10478   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10479     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10480     // reduce the compile time impact of this optimization.
10481     return false;
10482 
10483   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10484   if (!Addend)
10485     return false;
10486 
10487   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10488 
10489   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10490   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10491   ConstantRange FoundLHSRange =
10492       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10493 
10494   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10495   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10496 
10497   // We can also compute the range of values for `LHS` that satisfy the
10498   // consequent, "`LHS` `Pred` `RHS`":
10499   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10500   ConstantRange SatisfyingLHSRange =
10501       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10502 
10503   // The antecedent implies the consequent if every value of `LHS` that
10504   // satisfies the antecedent also satisfies the consequent.
10505   return SatisfyingLHSRange.contains(LHSRange);
10506 }
10507 
10508 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10509                                          bool IsSigned, bool NoWrap) {
10510   assert(isKnownPositive(Stride) && "Positive stride expected!");
10511 
10512   if (NoWrap) return false;
10513 
10514   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10515   const SCEV *One = getOne(Stride->getType());
10516 
10517   if (IsSigned) {
10518     APInt MaxRHS = getSignedRangeMax(RHS);
10519     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10520     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10521 
10522     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10523     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10524   }
10525 
10526   APInt MaxRHS = getUnsignedRangeMax(RHS);
10527   APInt MaxValue = APInt::getMaxValue(BitWidth);
10528   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10529 
10530   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10531   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10532 }
10533 
10534 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10535                                          bool IsSigned, bool NoWrap) {
10536   if (NoWrap) return false;
10537 
10538   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10539   const SCEV *One = getOne(Stride->getType());
10540 
10541   if (IsSigned) {
10542     APInt MinRHS = getSignedRangeMin(RHS);
10543     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10544     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10545 
10546     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10547     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10548   }
10549 
10550   APInt MinRHS = getUnsignedRangeMin(RHS);
10551   APInt MinValue = APInt::getMinValue(BitWidth);
10552   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10553 
10554   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10555   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10556 }
10557 
10558 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10559                                             bool Equality) {
10560   const SCEV *One = getOne(Step->getType());
10561   Delta = Equality ? getAddExpr(Delta, Step)
10562                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10563   return getUDivExpr(Delta, Step);
10564 }
10565 
10566 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10567                                                     const SCEV *Stride,
10568                                                     const SCEV *End,
10569                                                     unsigned BitWidth,
10570                                                     bool IsSigned) {
10571 
10572   assert(!isKnownNonPositive(Stride) &&
10573          "Stride is expected strictly positive!");
10574   // Calculate the maximum backedge count based on the range of values
10575   // permitted by Start, End, and Stride.
10576   const SCEV *MaxBECount;
10577   APInt MinStart =
10578       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10579 
10580   APInt StrideForMaxBECount =
10581       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10582 
10583   // We already know that the stride is positive, so we paper over conservatism
10584   // in our range computation by forcing StrideForMaxBECount to be at least one.
10585   // In theory this is unnecessary, but we expect MaxBECount to be a
10586   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10587   // is nothing to constant fold it to).
10588   APInt One(BitWidth, 1, IsSigned);
10589   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10590 
10591   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10592                             : APInt::getMaxValue(BitWidth);
10593   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10594 
10595   // Although End can be a MAX expression we estimate MaxEnd considering only
10596   // the case End = RHS of the loop termination condition. This is safe because
10597   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10598   // taken count.
10599   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10600                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10601 
10602   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10603                               getConstant(StrideForMaxBECount) /* Step */,
10604                               false /* Equality */);
10605 
10606   return MaxBECount;
10607 }
10608 
10609 ScalarEvolution::ExitLimit
10610 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10611                                   const Loop *L, bool IsSigned,
10612                                   bool ControlsExit, bool AllowPredicates) {
10613   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10614 
10615   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10616   bool PredicatedIV = false;
10617 
10618   if (!IV && AllowPredicates) {
10619     // Try to make this an AddRec using runtime tests, in the first X
10620     // iterations of this loop, where X is the SCEV expression found by the
10621     // algorithm below.
10622     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10623     PredicatedIV = true;
10624   }
10625 
10626   // Avoid weird loops
10627   if (!IV || IV->getLoop() != L || !IV->isAffine())
10628     return getCouldNotCompute();
10629 
10630   bool NoWrap = ControlsExit &&
10631                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10632 
10633   const SCEV *Stride = IV->getStepRecurrence(*this);
10634 
10635   bool PositiveStride = isKnownPositive(Stride);
10636 
10637   // Avoid negative or zero stride values.
10638   if (!PositiveStride) {
10639     // We can compute the correct backedge taken count for loops with unknown
10640     // strides if we can prove that the loop is not an infinite loop with side
10641     // effects. Here's the loop structure we are trying to handle -
10642     //
10643     // i = start
10644     // do {
10645     //   A[i] = i;
10646     //   i += s;
10647     // } while (i < end);
10648     //
10649     // The backedge taken count for such loops is evaluated as -
10650     // (max(end, start + stride) - start - 1) /u stride
10651     //
10652     // The additional preconditions that we need to check to prove correctness
10653     // of the above formula is as follows -
10654     //
10655     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10656     //    NoWrap flag).
10657     // b) loop is single exit with no side effects.
10658     //
10659     //
10660     // Precondition a) implies that if the stride is negative, this is a single
10661     // trip loop. The backedge taken count formula reduces to zero in this case.
10662     //
10663     // Precondition b) implies that the unknown stride cannot be zero otherwise
10664     // we have UB.
10665     //
10666     // The positive stride case is the same as isKnownPositive(Stride) returning
10667     // true (original behavior of the function).
10668     //
10669     // We want to make sure that the stride is truly unknown as there are edge
10670     // cases where ScalarEvolution propagates no wrap flags to the
10671     // post-increment/decrement IV even though the increment/decrement operation
10672     // itself is wrapping. The computed backedge taken count may be wrong in
10673     // such cases. This is prevented by checking that the stride is not known to
10674     // be either positive or non-positive. For example, no wrap flags are
10675     // propagated to the post-increment IV of this loop with a trip count of 2 -
10676     //
10677     // unsigned char i;
10678     // for(i=127; i<128; i+=129)
10679     //   A[i] = i;
10680     //
10681     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10682         !loopHasNoSideEffects(L))
10683       return getCouldNotCompute();
10684   } else if (!Stride->isOne() &&
10685              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10686     // Avoid proven overflow cases: this will ensure that the backedge taken
10687     // count will not generate any unsigned overflow. Relaxed no-overflow
10688     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10689     // undefined behaviors like the case of C language.
10690     return getCouldNotCompute();
10691 
10692   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10693                                       : ICmpInst::ICMP_ULT;
10694   const SCEV *Start = IV->getStart();
10695   const SCEV *End = RHS;
10696   // When the RHS is not invariant, we do not know the end bound of the loop and
10697   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10698   // calculate the MaxBECount, given the start, stride and max value for the end
10699   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10700   // checked above).
10701   if (!isLoopInvariant(RHS, L)) {
10702     const SCEV *MaxBECount = computeMaxBECountForLT(
10703         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10704     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10705                      false /*MaxOrZero*/, Predicates);
10706   }
10707   // If the backedge is taken at least once, then it will be taken
10708   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10709   // is the LHS value of the less-than comparison the first time it is evaluated
10710   // and End is the RHS.
10711   const SCEV *BECountIfBackedgeTaken =
10712     computeBECount(getMinusSCEV(End, Start), Stride, false);
10713   // If the loop entry is guarded by the result of the backedge test of the
10714   // first loop iteration, then we know the backedge will be taken at least
10715   // once and so the backedge taken count is as above. If not then we use the
10716   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10717   // as if the backedge is taken at least once max(End,Start) is End and so the
10718   // result is as above, and if not max(End,Start) is Start so we get a backedge
10719   // count of zero.
10720   const SCEV *BECount;
10721   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10722     BECount = BECountIfBackedgeTaken;
10723   else {
10724     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10725     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10726   }
10727 
10728   const SCEV *MaxBECount;
10729   bool MaxOrZero = false;
10730   if (isa<SCEVConstant>(BECount))
10731     MaxBECount = BECount;
10732   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10733     // If we know exactly how many times the backedge will be taken if it's
10734     // taken at least once, then the backedge count will either be that or
10735     // zero.
10736     MaxBECount = BECountIfBackedgeTaken;
10737     MaxOrZero = true;
10738   } else {
10739     MaxBECount = computeMaxBECountForLT(
10740         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10741   }
10742 
10743   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10744       !isa<SCEVCouldNotCompute>(BECount))
10745     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10746 
10747   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10748 }
10749 
10750 ScalarEvolution::ExitLimit
10751 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10752                                      const Loop *L, bool IsSigned,
10753                                      bool ControlsExit, bool AllowPredicates) {
10754   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10755   // We handle only IV > Invariant
10756   if (!isLoopInvariant(RHS, L))
10757     return getCouldNotCompute();
10758 
10759   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10760   if (!IV && AllowPredicates)
10761     // Try to make this an AddRec using runtime tests, in the first X
10762     // iterations of this loop, where X is the SCEV expression found by the
10763     // algorithm below.
10764     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10765 
10766   // Avoid weird loops
10767   if (!IV || IV->getLoop() != L || !IV->isAffine())
10768     return getCouldNotCompute();
10769 
10770   bool NoWrap = ControlsExit &&
10771                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10772 
10773   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10774 
10775   // Avoid negative or zero stride values
10776   if (!isKnownPositive(Stride))
10777     return getCouldNotCompute();
10778 
10779   // Avoid proven overflow cases: this will ensure that the backedge taken count
10780   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10781   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10782   // behaviors like the case of C language.
10783   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10784     return getCouldNotCompute();
10785 
10786   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10787                                       : ICmpInst::ICMP_UGT;
10788 
10789   const SCEV *Start = IV->getStart();
10790   const SCEV *End = RHS;
10791   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10792     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10793 
10794   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10795 
10796   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10797                             : getUnsignedRangeMax(Start);
10798 
10799   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10800                              : getUnsignedRangeMin(Stride);
10801 
10802   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10803   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10804                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10805 
10806   // Although End can be a MIN expression we estimate MinEnd considering only
10807   // the case End = RHS. This is safe because in the other case (Start - End)
10808   // is zero, leading to a zero maximum backedge taken count.
10809   APInt MinEnd =
10810     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10811              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10812 
10813   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10814                                ? BECount
10815                                : computeBECount(getConstant(MaxStart - MinEnd),
10816                                                 getConstant(MinStride), false);
10817 
10818   if (isa<SCEVCouldNotCompute>(MaxBECount))
10819     MaxBECount = BECount;
10820 
10821   return ExitLimit(BECount, MaxBECount, false, Predicates);
10822 }
10823 
10824 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10825                                                     ScalarEvolution &SE) const {
10826   if (Range.isFullSet())  // Infinite loop.
10827     return SE.getCouldNotCompute();
10828 
10829   // If the start is a non-zero constant, shift the range to simplify things.
10830   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10831     if (!SC->getValue()->isZero()) {
10832       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10833       Operands[0] = SE.getZero(SC->getType());
10834       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10835                                              getNoWrapFlags(FlagNW));
10836       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10837         return ShiftedAddRec->getNumIterationsInRange(
10838             Range.subtract(SC->getAPInt()), SE);
10839       // This is strange and shouldn't happen.
10840       return SE.getCouldNotCompute();
10841     }
10842 
10843   // The only time we can solve this is when we have all constant indices.
10844   // Otherwise, we cannot determine the overflow conditions.
10845   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10846     return SE.getCouldNotCompute();
10847 
10848   // Okay at this point we know that all elements of the chrec are constants and
10849   // that the start element is zero.
10850 
10851   // First check to see if the range contains zero.  If not, the first
10852   // iteration exits.
10853   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10854   if (!Range.contains(APInt(BitWidth, 0)))
10855     return SE.getZero(getType());
10856 
10857   if (isAffine()) {
10858     // If this is an affine expression then we have this situation:
10859     //   Solve {0,+,A} in Range  ===  Ax in Range
10860 
10861     // We know that zero is in the range.  If A is positive then we know that
10862     // the upper value of the range must be the first possible exit value.
10863     // If A is negative then the lower of the range is the last possible loop
10864     // value.  Also note that we already checked for a full range.
10865     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10866     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10867 
10868     // The exit value should be (End+A)/A.
10869     APInt ExitVal = (End + A).udiv(A);
10870     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10871 
10872     // Evaluate at the exit value.  If we really did fall out of the valid
10873     // range, then we computed our trip count, otherwise wrap around or other
10874     // things must have happened.
10875     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10876     if (Range.contains(Val->getValue()))
10877       return SE.getCouldNotCompute();  // Something strange happened
10878 
10879     // Ensure that the previous value is in the range.  This is a sanity check.
10880     assert(Range.contains(
10881            EvaluateConstantChrecAtConstant(this,
10882            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10883            "Linear scev computation is off in a bad way!");
10884     return SE.getConstant(ExitValue);
10885   }
10886 
10887   if (isQuadratic()) {
10888     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10889       return SE.getConstant(S.getValue());
10890   }
10891 
10892   return SE.getCouldNotCompute();
10893 }
10894 
10895 const SCEVAddRecExpr *
10896 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10897   assert(getNumOperands() > 1 && "AddRec with zero step?");
10898   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10899   // but in this case we cannot guarantee that the value returned will be an
10900   // AddRec because SCEV does not have a fixed point where it stops
10901   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10902   // may happen if we reach arithmetic depth limit while simplifying. So we
10903   // construct the returned value explicitly.
10904   SmallVector<const SCEV *, 3> Ops;
10905   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10906   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10907   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10908     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10909   // We know that the last operand is not a constant zero (otherwise it would
10910   // have been popped out earlier). This guarantees us that if the result has
10911   // the same last operand, then it will also not be popped out, meaning that
10912   // the returned value will be an AddRec.
10913   const SCEV *Last = getOperand(getNumOperands() - 1);
10914   assert(!Last->isZero() && "Recurrency with zero step?");
10915   Ops.push_back(Last);
10916   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10917                                                SCEV::FlagAnyWrap));
10918 }
10919 
10920 // Return true when S contains at least an undef value.
10921 static inline bool containsUndefs(const SCEV *S) {
10922   return SCEVExprContains(S, [](const SCEV *S) {
10923     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10924       return isa<UndefValue>(SU->getValue());
10925     return false;
10926   });
10927 }
10928 
10929 namespace {
10930 
10931 // Collect all steps of SCEV expressions.
10932 struct SCEVCollectStrides {
10933   ScalarEvolution &SE;
10934   SmallVectorImpl<const SCEV *> &Strides;
10935 
10936   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10937       : SE(SE), Strides(S) {}
10938 
10939   bool follow(const SCEV *S) {
10940     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10941       Strides.push_back(AR->getStepRecurrence(SE));
10942     return true;
10943   }
10944 
10945   bool isDone() const { return false; }
10946 };
10947 
10948 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10949 struct SCEVCollectTerms {
10950   SmallVectorImpl<const SCEV *> &Terms;
10951 
10952   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10953 
10954   bool follow(const SCEV *S) {
10955     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10956         isa<SCEVSignExtendExpr>(S)) {
10957       if (!containsUndefs(S))
10958         Terms.push_back(S);
10959 
10960       // Stop recursion: once we collected a term, do not walk its operands.
10961       return false;
10962     }
10963 
10964     // Keep looking.
10965     return true;
10966   }
10967 
10968   bool isDone() const { return false; }
10969 };
10970 
10971 // Check if a SCEV contains an AddRecExpr.
10972 struct SCEVHasAddRec {
10973   bool &ContainsAddRec;
10974 
10975   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10976     ContainsAddRec = false;
10977   }
10978 
10979   bool follow(const SCEV *S) {
10980     if (isa<SCEVAddRecExpr>(S)) {
10981       ContainsAddRec = true;
10982 
10983       // Stop recursion: once we collected a term, do not walk its operands.
10984       return false;
10985     }
10986 
10987     // Keep looking.
10988     return true;
10989   }
10990 
10991   bool isDone() const { return false; }
10992 };
10993 
10994 // Find factors that are multiplied with an expression that (possibly as a
10995 // subexpression) contains an AddRecExpr. In the expression:
10996 //
10997 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10998 //
10999 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11000 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11001 // parameters as they form a product with an induction variable.
11002 //
11003 // This collector expects all array size parameters to be in the same MulExpr.
11004 // It might be necessary to later add support for collecting parameters that are
11005 // spread over different nested MulExpr.
11006 struct SCEVCollectAddRecMultiplies {
11007   SmallVectorImpl<const SCEV *> &Terms;
11008   ScalarEvolution &SE;
11009 
11010   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11011       : Terms(T), SE(SE) {}
11012 
11013   bool follow(const SCEV *S) {
11014     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11015       bool HasAddRec = false;
11016       SmallVector<const SCEV *, 0> Operands;
11017       for (auto Op : Mul->operands()) {
11018         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11019         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11020           Operands.push_back(Op);
11021         } else if (Unknown) {
11022           HasAddRec = true;
11023         } else {
11024           bool ContainsAddRec = false;
11025           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11026           visitAll(Op, ContiansAddRec);
11027           HasAddRec |= ContainsAddRec;
11028         }
11029       }
11030       if (Operands.size() == 0)
11031         return true;
11032 
11033       if (!HasAddRec)
11034         return false;
11035 
11036       Terms.push_back(SE.getMulExpr(Operands));
11037       // Stop recursion: once we collected a term, do not walk its operands.
11038       return false;
11039     }
11040 
11041     // Keep looking.
11042     return true;
11043   }
11044 
11045   bool isDone() const { return false; }
11046 };
11047 
11048 } // end anonymous namespace
11049 
11050 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11051 /// two places:
11052 ///   1) The strides of AddRec expressions.
11053 ///   2) Unknowns that are multiplied with AddRec expressions.
11054 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11055     SmallVectorImpl<const SCEV *> &Terms) {
11056   SmallVector<const SCEV *, 4> Strides;
11057   SCEVCollectStrides StrideCollector(*this, Strides);
11058   visitAll(Expr, StrideCollector);
11059 
11060   LLVM_DEBUG({
11061     dbgs() << "Strides:\n";
11062     for (const SCEV *S : Strides)
11063       dbgs() << *S << "\n";
11064   });
11065 
11066   for (const SCEV *S : Strides) {
11067     SCEVCollectTerms TermCollector(Terms);
11068     visitAll(S, TermCollector);
11069   }
11070 
11071   LLVM_DEBUG({
11072     dbgs() << "Terms:\n";
11073     for (const SCEV *T : Terms)
11074       dbgs() << *T << "\n";
11075   });
11076 
11077   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11078   visitAll(Expr, MulCollector);
11079 }
11080 
11081 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11082                                    SmallVectorImpl<const SCEV *> &Terms,
11083                                    SmallVectorImpl<const SCEV *> &Sizes) {
11084   int Last = Terms.size() - 1;
11085   const SCEV *Step = Terms[Last];
11086 
11087   // End of recursion.
11088   if (Last == 0) {
11089     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11090       SmallVector<const SCEV *, 2> Qs;
11091       for (const SCEV *Op : M->operands())
11092         if (!isa<SCEVConstant>(Op))
11093           Qs.push_back(Op);
11094 
11095       Step = SE.getMulExpr(Qs);
11096     }
11097 
11098     Sizes.push_back(Step);
11099     return true;
11100   }
11101 
11102   for (const SCEV *&Term : Terms) {
11103     // Normalize the terms before the next call to findArrayDimensionsRec.
11104     const SCEV *Q, *R;
11105     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11106 
11107     // Bail out when GCD does not evenly divide one of the terms.
11108     if (!R->isZero())
11109       return false;
11110 
11111     Term = Q;
11112   }
11113 
11114   // Remove all SCEVConstants.
11115   Terms.erase(
11116       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11117       Terms.end());
11118 
11119   if (Terms.size() > 0)
11120     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11121       return false;
11122 
11123   Sizes.push_back(Step);
11124   return true;
11125 }
11126 
11127 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11128 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11129   for (const SCEV *T : Terms)
11130     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11131       return true;
11132   return false;
11133 }
11134 
11135 // Return the number of product terms in S.
11136 static inline int numberOfTerms(const SCEV *S) {
11137   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11138     return Expr->getNumOperands();
11139   return 1;
11140 }
11141 
11142 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11143   if (isa<SCEVConstant>(T))
11144     return nullptr;
11145 
11146   if (isa<SCEVUnknown>(T))
11147     return T;
11148 
11149   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11150     SmallVector<const SCEV *, 2> Factors;
11151     for (const SCEV *Op : M->operands())
11152       if (!isa<SCEVConstant>(Op))
11153         Factors.push_back(Op);
11154 
11155     return SE.getMulExpr(Factors);
11156   }
11157 
11158   return T;
11159 }
11160 
11161 /// Return the size of an element read or written by Inst.
11162 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11163   Type *Ty;
11164   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11165     Ty = Store->getValueOperand()->getType();
11166   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11167     Ty = Load->getType();
11168   else
11169     return nullptr;
11170 
11171   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11172   return getSizeOfExpr(ETy, Ty);
11173 }
11174 
11175 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11176                                           SmallVectorImpl<const SCEV *> &Sizes,
11177                                           const SCEV *ElementSize) {
11178   if (Terms.size() < 1 || !ElementSize)
11179     return;
11180 
11181   // Early return when Terms do not contain parameters: we do not delinearize
11182   // non parametric SCEVs.
11183   if (!containsParameters(Terms))
11184     return;
11185 
11186   LLVM_DEBUG({
11187     dbgs() << "Terms:\n";
11188     for (const SCEV *T : Terms)
11189       dbgs() << *T << "\n";
11190   });
11191 
11192   // Remove duplicates.
11193   array_pod_sort(Terms.begin(), Terms.end());
11194   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11195 
11196   // Put larger terms first.
11197   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11198     return numberOfTerms(LHS) > numberOfTerms(RHS);
11199   });
11200 
11201   // Try to divide all terms by the element size. If term is not divisible by
11202   // element size, proceed with the original term.
11203   for (const SCEV *&Term : Terms) {
11204     const SCEV *Q, *R;
11205     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11206     if (!Q->isZero())
11207       Term = Q;
11208   }
11209 
11210   SmallVector<const SCEV *, 4> NewTerms;
11211 
11212   // Remove constant factors.
11213   for (const SCEV *T : Terms)
11214     if (const SCEV *NewT = removeConstantFactors(*this, T))
11215       NewTerms.push_back(NewT);
11216 
11217   LLVM_DEBUG({
11218     dbgs() << "Terms after sorting:\n";
11219     for (const SCEV *T : NewTerms)
11220       dbgs() << *T << "\n";
11221   });
11222 
11223   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11224     Sizes.clear();
11225     return;
11226   }
11227 
11228   // The last element to be pushed into Sizes is the size of an element.
11229   Sizes.push_back(ElementSize);
11230 
11231   LLVM_DEBUG({
11232     dbgs() << "Sizes:\n";
11233     for (const SCEV *S : Sizes)
11234       dbgs() << *S << "\n";
11235   });
11236 }
11237 
11238 void ScalarEvolution::computeAccessFunctions(
11239     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11240     SmallVectorImpl<const SCEV *> &Sizes) {
11241   // Early exit in case this SCEV is not an affine multivariate function.
11242   if (Sizes.empty())
11243     return;
11244 
11245   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11246     if (!AR->isAffine())
11247       return;
11248 
11249   const SCEV *Res = Expr;
11250   int Last = Sizes.size() - 1;
11251   for (int i = Last; i >= 0; i--) {
11252     const SCEV *Q, *R;
11253     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11254 
11255     LLVM_DEBUG({
11256       dbgs() << "Res: " << *Res << "\n";
11257       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11258       dbgs() << "Res divided by Sizes[i]:\n";
11259       dbgs() << "Quotient: " << *Q << "\n";
11260       dbgs() << "Remainder: " << *R << "\n";
11261     });
11262 
11263     Res = Q;
11264 
11265     // Do not record the last subscript corresponding to the size of elements in
11266     // the array.
11267     if (i == Last) {
11268 
11269       // Bail out if the remainder is too complex.
11270       if (isa<SCEVAddRecExpr>(R)) {
11271         Subscripts.clear();
11272         Sizes.clear();
11273         return;
11274       }
11275 
11276       continue;
11277     }
11278 
11279     // Record the access function for the current subscript.
11280     Subscripts.push_back(R);
11281   }
11282 
11283   // Also push in last position the remainder of the last division: it will be
11284   // the access function of the innermost dimension.
11285   Subscripts.push_back(Res);
11286 
11287   std::reverse(Subscripts.begin(), Subscripts.end());
11288 
11289   LLVM_DEBUG({
11290     dbgs() << "Subscripts:\n";
11291     for (const SCEV *S : Subscripts)
11292       dbgs() << *S << "\n";
11293   });
11294 }
11295 
11296 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11297 /// sizes of an array access. Returns the remainder of the delinearization that
11298 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11299 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11300 /// expressions in the stride and base of a SCEV corresponding to the
11301 /// computation of a GCD (greatest common divisor) of base and stride.  When
11302 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11303 ///
11304 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11305 ///
11306 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11307 ///
11308 ///    for (long i = 0; i < n; i++)
11309 ///      for (long j = 0; j < m; j++)
11310 ///        for (long k = 0; k < o; k++)
11311 ///          A[i][j][k] = 1.0;
11312 ///  }
11313 ///
11314 /// the delinearization input is the following AddRec SCEV:
11315 ///
11316 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11317 ///
11318 /// From this SCEV, we are able to say that the base offset of the access is %A
11319 /// because it appears as an offset that does not divide any of the strides in
11320 /// the loops:
11321 ///
11322 ///  CHECK: Base offset: %A
11323 ///
11324 /// and then SCEV->delinearize determines the size of some of the dimensions of
11325 /// the array as these are the multiples by which the strides are happening:
11326 ///
11327 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11328 ///
11329 /// Note that the outermost dimension remains of UnknownSize because there are
11330 /// no strides that would help identifying the size of the last dimension: when
11331 /// the array has been statically allocated, one could compute the size of that
11332 /// dimension by dividing the overall size of the array by the size of the known
11333 /// dimensions: %m * %o * 8.
11334 ///
11335 /// Finally delinearize provides the access functions for the array reference
11336 /// that does correspond to A[i][j][k] of the above C testcase:
11337 ///
11338 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11339 ///
11340 /// The testcases are checking the output of a function pass:
11341 /// DelinearizationPass that walks through all loads and stores of a function
11342 /// asking for the SCEV of the memory access with respect to all enclosing
11343 /// loops, calling SCEV->delinearize on that and printing the results.
11344 void ScalarEvolution::delinearize(const SCEV *Expr,
11345                                  SmallVectorImpl<const SCEV *> &Subscripts,
11346                                  SmallVectorImpl<const SCEV *> &Sizes,
11347                                  const SCEV *ElementSize) {
11348   // First step: collect parametric terms.
11349   SmallVector<const SCEV *, 4> Terms;
11350   collectParametricTerms(Expr, Terms);
11351 
11352   if (Terms.empty())
11353     return;
11354 
11355   // Second step: find subscript sizes.
11356   findArrayDimensions(Terms, Sizes, ElementSize);
11357 
11358   if (Sizes.empty())
11359     return;
11360 
11361   // Third step: compute the access functions for each subscript.
11362   computeAccessFunctions(Expr, Subscripts, Sizes);
11363 
11364   if (Subscripts.empty())
11365     return;
11366 
11367   LLVM_DEBUG({
11368     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11369     dbgs() << "ArrayDecl[UnknownSize]";
11370     for (const SCEV *S : Sizes)
11371       dbgs() << "[" << *S << "]";
11372 
11373     dbgs() << "\nArrayRef";
11374     for (const SCEV *S : Subscripts)
11375       dbgs() << "[" << *S << "]";
11376     dbgs() << "\n";
11377   });
11378 }
11379 
11380 //===----------------------------------------------------------------------===//
11381 //                   SCEVCallbackVH Class Implementation
11382 //===----------------------------------------------------------------------===//
11383 
11384 void ScalarEvolution::SCEVCallbackVH::deleted() {
11385   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11386   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11387     SE->ConstantEvolutionLoopExitValue.erase(PN);
11388   SE->eraseValueFromMap(getValPtr());
11389   // this now dangles!
11390 }
11391 
11392 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11393   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11394 
11395   // Forget all the expressions associated with users of the old value,
11396   // so that future queries will recompute the expressions using the new
11397   // value.
11398   Value *Old = getValPtr();
11399   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11400   SmallPtrSet<User *, 8> Visited;
11401   while (!Worklist.empty()) {
11402     User *U = Worklist.pop_back_val();
11403     // Deleting the Old value will cause this to dangle. Postpone
11404     // that until everything else is done.
11405     if (U == Old)
11406       continue;
11407     if (!Visited.insert(U).second)
11408       continue;
11409     if (PHINode *PN = dyn_cast<PHINode>(U))
11410       SE->ConstantEvolutionLoopExitValue.erase(PN);
11411     SE->eraseValueFromMap(U);
11412     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11413   }
11414   // Delete the Old value.
11415   if (PHINode *PN = dyn_cast<PHINode>(Old))
11416     SE->ConstantEvolutionLoopExitValue.erase(PN);
11417   SE->eraseValueFromMap(Old);
11418   // this now dangles!
11419 }
11420 
11421 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11422   : CallbackVH(V), SE(se) {}
11423 
11424 //===----------------------------------------------------------------------===//
11425 //                   ScalarEvolution Class Implementation
11426 //===----------------------------------------------------------------------===//
11427 
11428 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11429                                  AssumptionCache &AC, DominatorTree &DT,
11430                                  LoopInfo &LI)
11431     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11432       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11433       LoopDispositions(64), BlockDispositions(64) {
11434   // To use guards for proving predicates, we need to scan every instruction in
11435   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11436   // time if the IR does not actually contain any calls to
11437   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11438   //
11439   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11440   // to _add_ guards to the module when there weren't any before, and wants
11441   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11442   // efficient in lieu of being smart in that rather obscure case.
11443 
11444   auto *GuardDecl = F.getParent()->getFunction(
11445       Intrinsic::getName(Intrinsic::experimental_guard));
11446   HasGuards = GuardDecl && !GuardDecl->use_empty();
11447 }
11448 
11449 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11450     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11451       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11452       ValueExprMap(std::move(Arg.ValueExprMap)),
11453       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11454       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11455       PendingMerges(std::move(Arg.PendingMerges)),
11456       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11457       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11458       PredicatedBackedgeTakenCounts(
11459           std::move(Arg.PredicatedBackedgeTakenCounts)),
11460       ConstantEvolutionLoopExitValue(
11461           std::move(Arg.ConstantEvolutionLoopExitValue)),
11462       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11463       LoopDispositions(std::move(Arg.LoopDispositions)),
11464       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11465       BlockDispositions(std::move(Arg.BlockDispositions)),
11466       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11467       SignedRanges(std::move(Arg.SignedRanges)),
11468       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11469       UniquePreds(std::move(Arg.UniquePreds)),
11470       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11471       LoopUsers(std::move(Arg.LoopUsers)),
11472       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11473       FirstUnknown(Arg.FirstUnknown) {
11474   Arg.FirstUnknown = nullptr;
11475 }
11476 
11477 ScalarEvolution::~ScalarEvolution() {
11478   // Iterate through all the SCEVUnknown instances and call their
11479   // destructors, so that they release their references to their values.
11480   for (SCEVUnknown *U = FirstUnknown; U;) {
11481     SCEVUnknown *Tmp = U;
11482     U = U->Next;
11483     Tmp->~SCEVUnknown();
11484   }
11485   FirstUnknown = nullptr;
11486 
11487   ExprValueMap.clear();
11488   ValueExprMap.clear();
11489   HasRecMap.clear();
11490 
11491   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11492   // that a loop had multiple computable exits.
11493   for (auto &BTCI : BackedgeTakenCounts)
11494     BTCI.second.clear();
11495   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11496     BTCI.second.clear();
11497 
11498   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11499   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11500   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11501   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11502   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11503 }
11504 
11505 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11506   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11507 }
11508 
11509 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11510                           const Loop *L) {
11511   // Print all inner loops first
11512   for (Loop *I : *L)
11513     PrintLoopInfo(OS, SE, I);
11514 
11515   OS << "Loop ";
11516   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11517   OS << ": ";
11518 
11519   SmallVector<BasicBlock *, 8> ExitingBlocks;
11520   L->getExitingBlocks(ExitingBlocks);
11521   if (ExitingBlocks.size() != 1)
11522     OS << "<multiple exits> ";
11523 
11524   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11525     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11526   else
11527     OS << "Unpredictable backedge-taken count.\n";
11528 
11529   if (ExitingBlocks.size() > 1)
11530     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11531       OS << "  exit count for " << ExitingBlock->getName() << ": "
11532          << *SE->getExitCount(L, ExitingBlock) << "\n";
11533     }
11534 
11535   OS << "Loop ";
11536   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11537   OS << ": ";
11538 
11539   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11540     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11541     if (SE->isBackedgeTakenCountMaxOrZero(L))
11542       OS << ", actual taken count either this or zero.";
11543   } else {
11544     OS << "Unpredictable max backedge-taken count. ";
11545   }
11546 
11547   OS << "\n"
11548         "Loop ";
11549   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11550   OS << ": ";
11551 
11552   SCEVUnionPredicate Pred;
11553   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11554   if (!isa<SCEVCouldNotCompute>(PBT)) {
11555     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11556     OS << " Predicates:\n";
11557     Pred.print(OS, 4);
11558   } else {
11559     OS << "Unpredictable predicated backedge-taken count. ";
11560   }
11561   OS << "\n";
11562 
11563   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11564     OS << "Loop ";
11565     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11566     OS << ": ";
11567     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11568   }
11569 }
11570 
11571 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11572   switch (LD) {
11573   case ScalarEvolution::LoopVariant:
11574     return "Variant";
11575   case ScalarEvolution::LoopInvariant:
11576     return "Invariant";
11577   case ScalarEvolution::LoopComputable:
11578     return "Computable";
11579   }
11580   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11581 }
11582 
11583 void ScalarEvolution::print(raw_ostream &OS) const {
11584   // ScalarEvolution's implementation of the print method is to print
11585   // out SCEV values of all instructions that are interesting. Doing
11586   // this potentially causes it to create new SCEV objects though,
11587   // which technically conflicts with the const qualifier. This isn't
11588   // observable from outside the class though, so casting away the
11589   // const isn't dangerous.
11590   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11591 
11592   if (ClassifyExpressions) {
11593     OS << "Classifying expressions for: ";
11594     F.printAsOperand(OS, /*PrintType=*/false);
11595     OS << "\n";
11596     for (Instruction &I : instructions(F))
11597       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11598         OS << I << '\n';
11599         OS << "  -->  ";
11600         const SCEV *SV = SE.getSCEV(&I);
11601         SV->print(OS);
11602         if (!isa<SCEVCouldNotCompute>(SV)) {
11603           OS << " U: ";
11604           SE.getUnsignedRange(SV).print(OS);
11605           OS << " S: ";
11606           SE.getSignedRange(SV).print(OS);
11607         }
11608 
11609         const Loop *L = LI.getLoopFor(I.getParent());
11610 
11611         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11612         if (AtUse != SV) {
11613           OS << "  -->  ";
11614           AtUse->print(OS);
11615           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11616             OS << " U: ";
11617             SE.getUnsignedRange(AtUse).print(OS);
11618             OS << " S: ";
11619             SE.getSignedRange(AtUse).print(OS);
11620           }
11621         }
11622 
11623         if (L) {
11624           OS << "\t\t" "Exits: ";
11625           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11626           if (!SE.isLoopInvariant(ExitValue, L)) {
11627             OS << "<<Unknown>>";
11628           } else {
11629             OS << *ExitValue;
11630           }
11631 
11632           bool First = true;
11633           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11634             if (First) {
11635               OS << "\t\t" "LoopDispositions: { ";
11636               First = false;
11637             } else {
11638               OS << ", ";
11639             }
11640 
11641             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11642             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11643           }
11644 
11645           for (auto *InnerL : depth_first(L)) {
11646             if (InnerL == L)
11647               continue;
11648             if (First) {
11649               OS << "\t\t" "LoopDispositions: { ";
11650               First = false;
11651             } else {
11652               OS << ", ";
11653             }
11654 
11655             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11656             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11657           }
11658 
11659           OS << " }";
11660         }
11661 
11662         OS << "\n";
11663       }
11664   }
11665 
11666   OS << "Determining loop execution counts for: ";
11667   F.printAsOperand(OS, /*PrintType=*/false);
11668   OS << "\n";
11669   for (Loop *I : LI)
11670     PrintLoopInfo(OS, &SE, I);
11671 }
11672 
11673 ScalarEvolution::LoopDisposition
11674 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11675   auto &Values = LoopDispositions[S];
11676   for (auto &V : Values) {
11677     if (V.getPointer() == L)
11678       return V.getInt();
11679   }
11680   Values.emplace_back(L, LoopVariant);
11681   LoopDisposition D = computeLoopDisposition(S, L);
11682   auto &Values2 = LoopDispositions[S];
11683   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11684     if (V.getPointer() == L) {
11685       V.setInt(D);
11686       break;
11687     }
11688   }
11689   return D;
11690 }
11691 
11692 ScalarEvolution::LoopDisposition
11693 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11694   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11695   case scConstant:
11696     return LoopInvariant;
11697   case scTruncate:
11698   case scZeroExtend:
11699   case scSignExtend:
11700     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11701   case scAddRecExpr: {
11702     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11703 
11704     // If L is the addrec's loop, it's computable.
11705     if (AR->getLoop() == L)
11706       return LoopComputable;
11707 
11708     // Add recurrences are never invariant in the function-body (null loop).
11709     if (!L)
11710       return LoopVariant;
11711 
11712     // Everything that is not defined at loop entry is variant.
11713     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11714       return LoopVariant;
11715     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11716            " dominate the contained loop's header?");
11717 
11718     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11719     if (AR->getLoop()->contains(L))
11720       return LoopInvariant;
11721 
11722     // This recurrence is variant w.r.t. L if any of its operands
11723     // are variant.
11724     for (auto *Op : AR->operands())
11725       if (!isLoopInvariant(Op, L))
11726         return LoopVariant;
11727 
11728     // Otherwise it's loop-invariant.
11729     return LoopInvariant;
11730   }
11731   case scAddExpr:
11732   case scMulExpr:
11733   case scUMaxExpr:
11734   case scSMaxExpr:
11735   case scUMinExpr:
11736   case scSMinExpr: {
11737     bool HasVarying = false;
11738     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11739       LoopDisposition D = getLoopDisposition(Op, L);
11740       if (D == LoopVariant)
11741         return LoopVariant;
11742       if (D == LoopComputable)
11743         HasVarying = true;
11744     }
11745     return HasVarying ? LoopComputable : LoopInvariant;
11746   }
11747   case scUDivExpr: {
11748     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11749     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11750     if (LD == LoopVariant)
11751       return LoopVariant;
11752     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11753     if (RD == LoopVariant)
11754       return LoopVariant;
11755     return (LD == LoopInvariant && RD == LoopInvariant) ?
11756            LoopInvariant : LoopComputable;
11757   }
11758   case scUnknown:
11759     // All non-instruction values are loop invariant.  All instructions are loop
11760     // invariant if they are not contained in the specified loop.
11761     // Instructions are never considered invariant in the function body
11762     // (null loop) because they are defined within the "loop".
11763     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11764       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11765     return LoopInvariant;
11766   case scCouldNotCompute:
11767     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11768   }
11769   llvm_unreachable("Unknown SCEV kind!");
11770 }
11771 
11772 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11773   return getLoopDisposition(S, L) == LoopInvariant;
11774 }
11775 
11776 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11777   return getLoopDisposition(S, L) == LoopComputable;
11778 }
11779 
11780 ScalarEvolution::BlockDisposition
11781 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11782   auto &Values = BlockDispositions[S];
11783   for (auto &V : Values) {
11784     if (V.getPointer() == BB)
11785       return V.getInt();
11786   }
11787   Values.emplace_back(BB, DoesNotDominateBlock);
11788   BlockDisposition D = computeBlockDisposition(S, BB);
11789   auto &Values2 = BlockDispositions[S];
11790   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11791     if (V.getPointer() == BB) {
11792       V.setInt(D);
11793       break;
11794     }
11795   }
11796   return D;
11797 }
11798 
11799 ScalarEvolution::BlockDisposition
11800 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11801   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11802   case scConstant:
11803     return ProperlyDominatesBlock;
11804   case scTruncate:
11805   case scZeroExtend:
11806   case scSignExtend:
11807     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11808   case scAddRecExpr: {
11809     // This uses a "dominates" query instead of "properly dominates" query
11810     // to test for proper dominance too, because the instruction which
11811     // produces the addrec's value is a PHI, and a PHI effectively properly
11812     // dominates its entire containing block.
11813     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11814     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11815       return DoesNotDominateBlock;
11816 
11817     // Fall through into SCEVNAryExpr handling.
11818     LLVM_FALLTHROUGH;
11819   }
11820   case scAddExpr:
11821   case scMulExpr:
11822   case scUMaxExpr:
11823   case scSMaxExpr:
11824   case scUMinExpr:
11825   case scSMinExpr: {
11826     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11827     bool Proper = true;
11828     for (const SCEV *NAryOp : NAry->operands()) {
11829       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11830       if (D == DoesNotDominateBlock)
11831         return DoesNotDominateBlock;
11832       if (D == DominatesBlock)
11833         Proper = false;
11834     }
11835     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11836   }
11837   case scUDivExpr: {
11838     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11839     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11840     BlockDisposition LD = getBlockDisposition(LHS, BB);
11841     if (LD == DoesNotDominateBlock)
11842       return DoesNotDominateBlock;
11843     BlockDisposition RD = getBlockDisposition(RHS, BB);
11844     if (RD == DoesNotDominateBlock)
11845       return DoesNotDominateBlock;
11846     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11847       ProperlyDominatesBlock : DominatesBlock;
11848   }
11849   case scUnknown:
11850     if (Instruction *I =
11851           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11852       if (I->getParent() == BB)
11853         return DominatesBlock;
11854       if (DT.properlyDominates(I->getParent(), BB))
11855         return ProperlyDominatesBlock;
11856       return DoesNotDominateBlock;
11857     }
11858     return ProperlyDominatesBlock;
11859   case scCouldNotCompute:
11860     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11861   }
11862   llvm_unreachable("Unknown SCEV kind!");
11863 }
11864 
11865 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11866   return getBlockDisposition(S, BB) >= DominatesBlock;
11867 }
11868 
11869 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11870   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11871 }
11872 
11873 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11874   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11875 }
11876 
11877 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11878   auto IsS = [&](const SCEV *X) { return S == X; };
11879   auto ContainsS = [&](const SCEV *X) {
11880     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11881   };
11882   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11883 }
11884 
11885 void
11886 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11887   ValuesAtScopes.erase(S);
11888   LoopDispositions.erase(S);
11889   BlockDispositions.erase(S);
11890   UnsignedRanges.erase(S);
11891   SignedRanges.erase(S);
11892   ExprValueMap.erase(S);
11893   HasRecMap.erase(S);
11894   MinTrailingZerosCache.erase(S);
11895 
11896   for (auto I = PredicatedSCEVRewrites.begin();
11897        I != PredicatedSCEVRewrites.end();) {
11898     std::pair<const SCEV *, const Loop *> Entry = I->first;
11899     if (Entry.first == S)
11900       PredicatedSCEVRewrites.erase(I++);
11901     else
11902       ++I;
11903   }
11904 
11905   auto RemoveSCEVFromBackedgeMap =
11906       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11907         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11908           BackedgeTakenInfo &BEInfo = I->second;
11909           if (BEInfo.hasOperand(S, this)) {
11910             BEInfo.clear();
11911             Map.erase(I++);
11912           } else
11913             ++I;
11914         }
11915       };
11916 
11917   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11918   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11919 }
11920 
11921 void
11922 ScalarEvolution::getUsedLoops(const SCEV *S,
11923                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11924   struct FindUsedLoops {
11925     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11926         : LoopsUsed(LoopsUsed) {}
11927     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11928     bool follow(const SCEV *S) {
11929       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11930         LoopsUsed.insert(AR->getLoop());
11931       return true;
11932     }
11933 
11934     bool isDone() const { return false; }
11935   };
11936 
11937   FindUsedLoops F(LoopsUsed);
11938   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11939 }
11940 
11941 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11942   SmallPtrSet<const Loop *, 8> LoopsUsed;
11943   getUsedLoops(S, LoopsUsed);
11944   for (auto *L : LoopsUsed)
11945     LoopUsers[L].push_back(S);
11946 }
11947 
11948 void ScalarEvolution::verify() const {
11949   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11950   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11951 
11952   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11953 
11954   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11955   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11956     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11957 
11958     const SCEV *visitConstant(const SCEVConstant *Constant) {
11959       return SE.getConstant(Constant->getAPInt());
11960     }
11961 
11962     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11963       return SE.getUnknown(Expr->getValue());
11964     }
11965 
11966     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11967       return SE.getCouldNotCompute();
11968     }
11969   };
11970 
11971   SCEVMapper SCM(SE2);
11972 
11973   while (!LoopStack.empty()) {
11974     auto *L = LoopStack.pop_back_val();
11975     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11976 
11977     auto *CurBECount = SCM.visit(
11978         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11979     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11980 
11981     if (CurBECount == SE2.getCouldNotCompute() ||
11982         NewBECount == SE2.getCouldNotCompute()) {
11983       // NB! This situation is legal, but is very suspicious -- whatever pass
11984       // change the loop to make a trip count go from could not compute to
11985       // computable or vice-versa *should have* invalidated SCEV.  However, we
11986       // choose not to assert here (for now) since we don't want false
11987       // positives.
11988       continue;
11989     }
11990 
11991     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11992       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11993       // not propagate undef aggressively).  This means we can (and do) fail
11994       // verification in cases where a transform makes the trip count of a loop
11995       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11996       // both cases the loop iterates "undef" times, but SCEV thinks we
11997       // increased the trip count of the loop by 1 incorrectly.
11998       continue;
11999     }
12000 
12001     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12002         SE.getTypeSizeInBits(NewBECount->getType()))
12003       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12004     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12005              SE.getTypeSizeInBits(NewBECount->getType()))
12006       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12007 
12008     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12009 
12010     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12011     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12012       dbgs() << "Trip Count for " << *L << " Changed!\n";
12013       dbgs() << "Old: " << *CurBECount << "\n";
12014       dbgs() << "New: " << *NewBECount << "\n";
12015       dbgs() << "Delta: " << *Delta << "\n";
12016       std::abort();
12017     }
12018   }
12019 }
12020 
12021 bool ScalarEvolution::invalidate(
12022     Function &F, const PreservedAnalyses &PA,
12023     FunctionAnalysisManager::Invalidator &Inv) {
12024   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12025   // of its dependencies is invalidated.
12026   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12027   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12028          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12029          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12030          Inv.invalidate<LoopAnalysis>(F, PA);
12031 }
12032 
12033 AnalysisKey ScalarEvolutionAnalysis::Key;
12034 
12035 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12036                                              FunctionAnalysisManager &AM) {
12037   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12038                          AM.getResult<AssumptionAnalysis>(F),
12039                          AM.getResult<DominatorTreeAnalysis>(F),
12040                          AM.getResult<LoopAnalysis>(F));
12041 }
12042 
12043 PreservedAnalyses
12044 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12045   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12046   return PreservedAnalyses::all();
12047 }
12048 
12049 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12050                       "Scalar Evolution Analysis", false, true)
12051 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12052 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12053 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12054 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12055 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12056                     "Scalar Evolution Analysis", false, true)
12057 
12058 char ScalarEvolutionWrapperPass::ID = 0;
12059 
12060 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12061   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12062 }
12063 
12064 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12065   SE.reset(new ScalarEvolution(
12066       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12067       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12068       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12069       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12070   return false;
12071 }
12072 
12073 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12074 
12075 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12076   SE->print(OS);
12077 }
12078 
12079 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12080   if (!VerifySCEV)
12081     return;
12082 
12083   SE->verify();
12084 }
12085 
12086 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12087   AU.setPreservesAll();
12088   AU.addRequiredTransitive<AssumptionCacheTracker>();
12089   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12090   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12091   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12092 }
12093 
12094 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12095                                                         const SCEV *RHS) {
12096   FoldingSetNodeID ID;
12097   assert(LHS->getType() == RHS->getType() &&
12098          "Type mismatch between LHS and RHS");
12099   // Unique this node based on the arguments
12100   ID.AddInteger(SCEVPredicate::P_Equal);
12101   ID.AddPointer(LHS);
12102   ID.AddPointer(RHS);
12103   void *IP = nullptr;
12104   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12105     return S;
12106   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12107       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12108   UniquePreds.InsertNode(Eq, IP);
12109   return Eq;
12110 }
12111 
12112 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12113     const SCEVAddRecExpr *AR,
12114     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12115   FoldingSetNodeID ID;
12116   // Unique this node based on the arguments
12117   ID.AddInteger(SCEVPredicate::P_Wrap);
12118   ID.AddPointer(AR);
12119   ID.AddInteger(AddedFlags);
12120   void *IP = nullptr;
12121   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12122     return S;
12123   auto *OF = new (SCEVAllocator)
12124       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12125   UniquePreds.InsertNode(OF, IP);
12126   return OF;
12127 }
12128 
12129 namespace {
12130 
12131 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12132 public:
12133 
12134   /// Rewrites \p S in the context of a loop L and the SCEV predication
12135   /// infrastructure.
12136   ///
12137   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12138   /// equivalences present in \p Pred.
12139   ///
12140   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12141   /// \p NewPreds such that the result will be an AddRecExpr.
12142   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12143                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12144                              SCEVUnionPredicate *Pred) {
12145     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12146     return Rewriter.visit(S);
12147   }
12148 
12149   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12150     if (Pred) {
12151       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12152       for (auto *Pred : ExprPreds)
12153         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12154           if (IPred->getLHS() == Expr)
12155             return IPred->getRHS();
12156     }
12157     return convertToAddRecWithPreds(Expr);
12158   }
12159 
12160   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12161     const SCEV *Operand = visit(Expr->getOperand());
12162     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12163     if (AR && AR->getLoop() == L && AR->isAffine()) {
12164       // This couldn't be folded because the operand didn't have the nuw
12165       // flag. Add the nusw flag as an assumption that we could make.
12166       const SCEV *Step = AR->getStepRecurrence(SE);
12167       Type *Ty = Expr->getType();
12168       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12169         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12170                                 SE.getSignExtendExpr(Step, Ty), L,
12171                                 AR->getNoWrapFlags());
12172     }
12173     return SE.getZeroExtendExpr(Operand, Expr->getType());
12174   }
12175 
12176   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12177     const SCEV *Operand = visit(Expr->getOperand());
12178     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12179     if (AR && AR->getLoop() == L && AR->isAffine()) {
12180       // This couldn't be folded because the operand didn't have the nsw
12181       // flag. Add the nssw flag as an assumption that we could make.
12182       const SCEV *Step = AR->getStepRecurrence(SE);
12183       Type *Ty = Expr->getType();
12184       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12185         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12186                                 SE.getSignExtendExpr(Step, Ty), L,
12187                                 AR->getNoWrapFlags());
12188     }
12189     return SE.getSignExtendExpr(Operand, Expr->getType());
12190   }
12191 
12192 private:
12193   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12194                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12195                         SCEVUnionPredicate *Pred)
12196       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12197 
12198   bool addOverflowAssumption(const SCEVPredicate *P) {
12199     if (!NewPreds) {
12200       // Check if we've already made this assumption.
12201       return Pred && Pred->implies(P);
12202     }
12203     NewPreds->insert(P);
12204     return true;
12205   }
12206 
12207   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12208                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12209     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12210     return addOverflowAssumption(A);
12211   }
12212 
12213   // If \p Expr represents a PHINode, we try to see if it can be represented
12214   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12215   // to add this predicate as a runtime overflow check, we return the AddRec.
12216   // If \p Expr does not meet these conditions (is not a PHI node, or we
12217   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12218   // return \p Expr.
12219   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12220     if (!isa<PHINode>(Expr->getValue()))
12221       return Expr;
12222     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12223     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12224     if (!PredicatedRewrite)
12225       return Expr;
12226     for (auto *P : PredicatedRewrite->second){
12227       // Wrap predicates from outer loops are not supported.
12228       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12229         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12230         if (L != AR->getLoop())
12231           return Expr;
12232       }
12233       if (!addOverflowAssumption(P))
12234         return Expr;
12235     }
12236     return PredicatedRewrite->first;
12237   }
12238 
12239   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12240   SCEVUnionPredicate *Pred;
12241   const Loop *L;
12242 };
12243 
12244 } // end anonymous namespace
12245 
12246 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12247                                                    SCEVUnionPredicate &Preds) {
12248   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12249 }
12250 
12251 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12252     const SCEV *S, const Loop *L,
12253     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12254   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12255   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12256   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12257 
12258   if (!AddRec)
12259     return nullptr;
12260 
12261   // Since the transformation was successful, we can now transfer the SCEV
12262   // predicates.
12263   for (auto *P : TransformPreds)
12264     Preds.insert(P);
12265 
12266   return AddRec;
12267 }
12268 
12269 /// SCEV predicates
12270 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12271                              SCEVPredicateKind Kind)
12272     : FastID(ID), Kind(Kind) {}
12273 
12274 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12275                                        const SCEV *LHS, const SCEV *RHS)
12276     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12277   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12278   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12279 }
12280 
12281 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12282   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12283 
12284   if (!Op)
12285     return false;
12286 
12287   return Op->LHS == LHS && Op->RHS == RHS;
12288 }
12289 
12290 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12291 
12292 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12293 
12294 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12295   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12296 }
12297 
12298 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12299                                      const SCEVAddRecExpr *AR,
12300                                      IncrementWrapFlags Flags)
12301     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12302 
12303 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12304 
12305 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12306   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12307 
12308   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12309 }
12310 
12311 bool SCEVWrapPredicate::isAlwaysTrue() const {
12312   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12313   IncrementWrapFlags IFlags = Flags;
12314 
12315   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12316     IFlags = clearFlags(IFlags, IncrementNSSW);
12317 
12318   return IFlags == IncrementAnyWrap;
12319 }
12320 
12321 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12322   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12323   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12324     OS << "<nusw>";
12325   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12326     OS << "<nssw>";
12327   OS << "\n";
12328 }
12329 
12330 SCEVWrapPredicate::IncrementWrapFlags
12331 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12332                                    ScalarEvolution &SE) {
12333   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12334   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12335 
12336   // We can safely transfer the NSW flag as NSSW.
12337   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12338     ImpliedFlags = IncrementNSSW;
12339 
12340   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12341     // If the increment is positive, the SCEV NUW flag will also imply the
12342     // WrapPredicate NUSW flag.
12343     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12344       if (Step->getValue()->getValue().isNonNegative())
12345         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12346   }
12347 
12348   return ImpliedFlags;
12349 }
12350 
12351 /// Union predicates don't get cached so create a dummy set ID for it.
12352 SCEVUnionPredicate::SCEVUnionPredicate()
12353     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12354 
12355 bool SCEVUnionPredicate::isAlwaysTrue() const {
12356   return all_of(Preds,
12357                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12358 }
12359 
12360 ArrayRef<const SCEVPredicate *>
12361 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12362   auto I = SCEVToPreds.find(Expr);
12363   if (I == SCEVToPreds.end())
12364     return ArrayRef<const SCEVPredicate *>();
12365   return I->second;
12366 }
12367 
12368 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12369   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12370     return all_of(Set->Preds,
12371                   [this](const SCEVPredicate *I) { return this->implies(I); });
12372 
12373   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12374   if (ScevPredsIt == SCEVToPreds.end())
12375     return false;
12376   auto &SCEVPreds = ScevPredsIt->second;
12377 
12378   return any_of(SCEVPreds,
12379                 [N](const SCEVPredicate *I) { return I->implies(N); });
12380 }
12381 
12382 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12383 
12384 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12385   for (auto Pred : Preds)
12386     Pred->print(OS, Depth);
12387 }
12388 
12389 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12390   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12391     for (auto Pred : Set->Preds)
12392       add(Pred);
12393     return;
12394   }
12395 
12396   if (implies(N))
12397     return;
12398 
12399   const SCEV *Key = N->getExpr();
12400   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12401                 " associated expression!");
12402 
12403   SCEVToPreds[Key].push_back(N);
12404   Preds.push_back(N);
12405 }
12406 
12407 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12408                                                      Loop &L)
12409     : SE(SE), L(L) {}
12410 
12411 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12412   const SCEV *Expr = SE.getSCEV(V);
12413   RewriteEntry &Entry = RewriteMap[Expr];
12414 
12415   // If we already have an entry and the version matches, return it.
12416   if (Entry.second && Generation == Entry.first)
12417     return Entry.second;
12418 
12419   // We found an entry but it's stale. Rewrite the stale entry
12420   // according to the current predicate.
12421   if (Entry.second)
12422     Expr = Entry.second;
12423 
12424   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12425   Entry = {Generation, NewSCEV};
12426 
12427   return NewSCEV;
12428 }
12429 
12430 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12431   if (!BackedgeCount) {
12432     SCEVUnionPredicate BackedgePred;
12433     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12434     addPredicate(BackedgePred);
12435   }
12436   return BackedgeCount;
12437 }
12438 
12439 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12440   if (Preds.implies(&Pred))
12441     return;
12442   Preds.add(&Pred);
12443   updateGeneration();
12444 }
12445 
12446 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12447   return Preds;
12448 }
12449 
12450 void PredicatedScalarEvolution::updateGeneration() {
12451   // If the generation number wrapped recompute everything.
12452   if (++Generation == 0) {
12453     for (auto &II : RewriteMap) {
12454       const SCEV *Rewritten = II.second.second;
12455       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12456     }
12457   }
12458 }
12459 
12460 void PredicatedScalarEvolution::setNoOverflow(
12461     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12462   const SCEV *Expr = getSCEV(V);
12463   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12464 
12465   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12466 
12467   // Clear the statically implied flags.
12468   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12469   addPredicate(*SE.getWrapPredicate(AR, Flags));
12470 
12471   auto II = FlagsMap.insert({V, Flags});
12472   if (!II.second)
12473     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12474 }
12475 
12476 bool PredicatedScalarEvolution::hasNoOverflow(
12477     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12478   const SCEV *Expr = getSCEV(V);
12479   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12480 
12481   Flags = SCEVWrapPredicate::clearFlags(
12482       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12483 
12484   auto II = FlagsMap.find(V);
12485 
12486   if (II != FlagsMap.end())
12487     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12488 
12489   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12490 }
12491 
12492 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12493   const SCEV *Expr = this->getSCEV(V);
12494   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12495   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12496 
12497   if (!New)
12498     return nullptr;
12499 
12500   for (auto *P : NewPreds)
12501     Preds.add(P);
12502 
12503   updateGeneration();
12504   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12505   return New;
12506 }
12507 
12508 PredicatedScalarEvolution::PredicatedScalarEvolution(
12509     const PredicatedScalarEvolution &Init)
12510     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12511       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12512   for (const auto &I : Init.FlagsMap)
12513     FlagsMap.insert(I);
12514 }
12515 
12516 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12517   // For each block.
12518   for (auto *BB : L.getBlocks())
12519     for (auto &I : *BB) {
12520       if (!SE.isSCEVable(I.getType()))
12521         continue;
12522 
12523       auto *Expr = SE.getSCEV(&I);
12524       auto II = RewriteMap.find(Expr);
12525 
12526       if (II == RewriteMap.end())
12527         continue;
12528 
12529       // Don't print things that are not interesting.
12530       if (II->second.second == Expr)
12531         continue;
12532 
12533       OS.indent(Depth) << "[PSE]" << I << ":\n";
12534       OS.indent(Depth + 2) << *Expr << "\n";
12535       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12536     }
12537 }
12538 
12539 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12540 // arbitrary expressions.
12541 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12542 // 4, A / B becomes X / 8).
12543 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12544                                 const SCEV *&RHS) {
12545   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12546   if (Add == nullptr || Add->getNumOperands() != 2)
12547     return false;
12548 
12549   const SCEV *A = Add->getOperand(1);
12550   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12551 
12552   if (Mul == nullptr)
12553     return false;
12554 
12555   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12556     // (SomeExpr + (-(SomeExpr / B) * B)).
12557     if (Expr == getURemExpr(A, B)) {
12558       LHS = A;
12559       RHS = B;
12560       return true;
12561     }
12562     return false;
12563   };
12564 
12565   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12566   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12567     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12568            MatchURemWithDivisor(Mul->getOperand(2));
12569 
12570   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12571   if (Mul->getNumOperands() == 2)
12572     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12573            MatchURemWithDivisor(Mul->getOperand(0)) ||
12574            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12575            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12576   return false;
12577 }
12578