1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 118 "Scalar Evolution Analysis", false, true) 119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 124 "Scalar Evolution Analysis", false, true) 125 char ScalarEvolution::ID = 0; 126 127 //===----------------------------------------------------------------------===// 128 // SCEV class definitions 129 //===----------------------------------------------------------------------===// 130 131 //===----------------------------------------------------------------------===// 132 // Implementation of the SCEV class. 133 // 134 135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 136 void SCEV::dump() const { 137 print(dbgs()); 138 dbgs() << '\n'; 139 } 140 #endif 141 142 void SCEV::print(raw_ostream &OS) const { 143 switch (static_cast<SCEVTypes>(getSCEVType())) { 144 case scConstant: 145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 146 return; 147 case scTruncate: { 148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 149 const SCEV *Op = Trunc->getOperand(); 150 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 151 << *Trunc->getType() << ")"; 152 return; 153 } 154 case scZeroExtend: { 155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 156 const SCEV *Op = ZExt->getOperand(); 157 OS << "(zext " << *Op->getType() << " " << *Op << " to " 158 << *ZExt->getType() << ")"; 159 return; 160 } 161 case scSignExtend: { 162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 163 const SCEV *Op = SExt->getOperand(); 164 OS << "(sext " << *Op->getType() << " " << *Op << " to " 165 << *SExt->getType() << ")"; 166 return; 167 } 168 case scAddRecExpr: { 169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 170 OS << "{" << *AR->getOperand(0); 171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 172 OS << ",+," << *AR->getOperand(i); 173 OS << "}<"; 174 if (AR->getNoWrapFlags(FlagNUW)) 175 OS << "nuw><"; 176 if (AR->getNoWrapFlags(FlagNSW)) 177 OS << "nsw><"; 178 if (AR->getNoWrapFlags(FlagNW) && 179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 180 OS << "nw><"; 181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 182 OS << ">"; 183 return; 184 } 185 case scAddExpr: 186 case scMulExpr: 187 case scUMaxExpr: 188 case scSMaxExpr: { 189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 190 const char *OpStr = nullptr; 191 switch (NAry->getSCEVType()) { 192 case scAddExpr: OpStr = " + "; break; 193 case scMulExpr: OpStr = " * "; break; 194 case scUMaxExpr: OpStr = " umax "; break; 195 case scSMaxExpr: OpStr = " smax "; break; 196 } 197 OS << "("; 198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 199 I != E; ++I) { 200 OS << **I; 201 if (std::next(I) != E) 202 OS << OpStr; 203 } 204 OS << ")"; 205 switch (NAry->getSCEVType()) { 206 case scAddExpr: 207 case scMulExpr: 208 if (NAry->getNoWrapFlags(FlagNUW)) 209 OS << "<nuw>"; 210 if (NAry->getNoWrapFlags(FlagNSW)) 211 OS << "<nsw>"; 212 } 213 return; 214 } 215 case scUDivExpr: { 216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 218 return; 219 } 220 case scUnknown: { 221 const SCEVUnknown *U = cast<SCEVUnknown>(this); 222 Type *AllocTy; 223 if (U->isSizeOf(AllocTy)) { 224 OS << "sizeof(" << *AllocTy << ")"; 225 return; 226 } 227 if (U->isAlignOf(AllocTy)) { 228 OS << "alignof(" << *AllocTy << ")"; 229 return; 230 } 231 232 Type *CTy; 233 Constant *FieldNo; 234 if (U->isOffsetOf(CTy, FieldNo)) { 235 OS << "offsetof(" << *CTy << ", "; 236 FieldNo->printAsOperand(OS, false); 237 OS << ")"; 238 return; 239 } 240 241 // Otherwise just print it normally. 242 U->getValue()->printAsOperand(OS, false); 243 return; 244 } 245 case scCouldNotCompute: 246 OS << "***COULDNOTCOMPUTE***"; 247 return; 248 } 249 llvm_unreachable("Unknown SCEV kind!"); 250 } 251 252 Type *SCEV::getType() const { 253 switch (static_cast<SCEVTypes>(getSCEVType())) { 254 case scConstant: 255 return cast<SCEVConstant>(this)->getType(); 256 case scTruncate: 257 case scZeroExtend: 258 case scSignExtend: 259 return cast<SCEVCastExpr>(this)->getType(); 260 case scAddRecExpr: 261 case scMulExpr: 262 case scUMaxExpr: 263 case scSMaxExpr: 264 return cast<SCEVNAryExpr>(this)->getType(); 265 case scAddExpr: 266 return cast<SCEVAddExpr>(this)->getType(); 267 case scUDivExpr: 268 return cast<SCEVUDivExpr>(this)->getType(); 269 case scUnknown: 270 return cast<SCEVUnknown>(this)->getType(); 271 case scCouldNotCompute: 272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 273 } 274 llvm_unreachable("Unknown SCEV kind!"); 275 } 276 277 bool SCEV::isZero() const { 278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 279 return SC->getValue()->isZero(); 280 return false; 281 } 282 283 bool SCEV::isOne() const { 284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 285 return SC->getValue()->isOne(); 286 return false; 287 } 288 289 bool SCEV::isAllOnesValue() const { 290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 291 return SC->getValue()->isAllOnesValue(); 292 return false; 293 } 294 295 /// isNonConstantNegative - Return true if the specified scev is negated, but 296 /// not a constant. 297 bool SCEV::isNonConstantNegative() const { 298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 299 if (!Mul) return false; 300 301 // If there is a constant factor, it will be first. 302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 303 if (!SC) return false; 304 305 // Return true if the value is negative, this matches things like (-42 * V). 306 return SC->getValue()->getValue().isNegative(); 307 } 308 309 SCEVCouldNotCompute::SCEVCouldNotCompute() : 310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 311 312 bool SCEVCouldNotCompute::classof(const SCEV *S) { 313 return S->getSCEVType() == scCouldNotCompute; 314 } 315 316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 317 FoldingSetNodeID ID; 318 ID.AddInteger(scConstant); 319 ID.AddPointer(V); 320 void *IP = nullptr; 321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 323 UniqueSCEVs.InsertNode(S, IP); 324 return S; 325 } 326 327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 328 return getConstant(ConstantInt::get(getContext(), Val)); 329 } 330 331 const SCEV * 332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 334 return getConstant(ConstantInt::get(ITy, V, isSigned)); 335 } 336 337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 338 unsigned SCEVTy, const SCEV *op, Type *ty) 339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 340 341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scTruncate, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot truncate non-integer value!"); 347 } 348 349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot zero extend non-integer value!"); 355 } 356 357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *op, Type *ty) 359 : SCEVCastExpr(ID, scSignExtend, op, ty) { 360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 361 (Ty->isIntegerTy() || Ty->isPointerTy()) && 362 "Cannot sign extend non-integer value!"); 363 } 364 365 void SCEVUnknown::deleted() { 366 // Clear this SCEVUnknown from various maps. 367 SE->forgetMemoizedResults(this); 368 369 // Remove this SCEVUnknown from the uniquing map. 370 SE->UniqueSCEVs.RemoveNode(this); 371 372 // Release the value. 373 setValPtr(nullptr); 374 } 375 376 void SCEVUnknown::allUsesReplacedWith(Value *New) { 377 // Clear this SCEVUnknown from various maps. 378 SE->forgetMemoizedResults(this); 379 380 // Remove this SCEVUnknown from the uniquing map. 381 SE->UniqueSCEVs.RemoveNode(this); 382 383 // Update this SCEVUnknown to point to the new value. This is needed 384 // because there may still be outstanding SCEVs which still point to 385 // this SCEVUnknown. 386 setValPtr(New); 387 } 388 389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr && 394 CE->getOperand(0)->isNullValue() && 395 CE->getNumOperands() == 2) 396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 397 if (CI->isOne()) { 398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 399 ->getElementType(); 400 return true; 401 } 402 403 return false; 404 } 405 406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 408 if (VCE->getOpcode() == Instruction::PtrToInt) 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 410 if (CE->getOpcode() == Instruction::GetElementPtr && 411 CE->getOperand(0)->isNullValue()) { 412 Type *Ty = 413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (!STy->isPacked() && 416 CE->getNumOperands() == 3 && 417 CE->getOperand(1)->isNullValue()) { 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 419 if (CI->isOne() && 420 STy->getNumElements() == 2 && 421 STy->getElementType(0)->isIntegerTy(1)) { 422 AllocTy = STy->getElementType(1); 423 return true; 424 } 425 } 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getNumOperands() == 3 && 437 CE->getOperand(0)->isNullValue() && 438 CE->getOperand(1)->isNullValue()) { 439 Type *Ty = 440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 441 // Ignore vector types here so that ScalarEvolutionExpander doesn't 442 // emit getelementptrs that index into vectors. 443 if (Ty->isStructTy() || Ty->isArrayTy()) { 444 CTy = Ty; 445 FieldNo = CE->getOperand(2); 446 return true; 447 } 448 } 449 450 return false; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 namespace { 458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 459 /// than the complexity of the RHS. This comparator is used to canonicalize 460 /// expressions. 461 class SCEVComplexityCompare { 462 const LoopInfo *const LI; 463 public: 464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 465 466 // Return true or false if LHS is less than, or at least RHS, respectively. 467 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 468 return compare(LHS, RHS) < 0; 469 } 470 471 // Return negative, zero, or positive, if LHS is less than, equal to, or 472 // greater than RHS, respectively. A three-way result allows recursive 473 // comparisons to be more efficient. 474 int compare(const SCEV *LHS, const SCEV *RHS) const { 475 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 476 if (LHS == RHS) 477 return 0; 478 479 // Primarily, sort the SCEVs by their getSCEVType(). 480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 481 if (LType != RType) 482 return (int)LType - (int)RType; 483 484 // Aside from the getSCEVType() ordering, the particular ordering 485 // isn't very important except that it's beneficial to be consistent, 486 // so that (a + b) and (b + a) don't end up as different expressions. 487 switch (static_cast<SCEVTypes>(LType)) { 488 case scUnknown: { 489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 491 492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 493 // not as complete as it could be. 494 const Value *LV = LU->getValue(), *RV = RU->getValue(); 495 496 // Order pointer values after integer values. This helps SCEVExpander 497 // form GEPs. 498 bool LIsPointer = LV->getType()->isPointerTy(), 499 RIsPointer = RV->getType()->isPointerTy(); 500 if (LIsPointer != RIsPointer) 501 return (int)LIsPointer - (int)RIsPointer; 502 503 // Compare getValueID values. 504 unsigned LID = LV->getValueID(), 505 RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const Argument *LA = dyn_cast<Argument>(LV)) { 511 const Argument *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 // For instructions, compare their loop depth, and their operand 517 // count. This is pretty loose. 518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 519 const Instruction *RInst = cast<Instruction>(RV); 520 521 // Compare loop depths. 522 const BasicBlock *LParent = LInst->getParent(), 523 *RParent = RInst->getParent(); 524 if (LParent != RParent) { 525 unsigned LDepth = LI->getLoopDepth(LParent), 526 RDepth = LI->getLoopDepth(RParent); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Compare the number of operands. 532 unsigned LNumOps = LInst->getNumOperands(), 533 RNumOps = RInst->getNumOperands(); 534 return (int)LNumOps - (int)RNumOps; 535 } 536 537 return 0; 538 } 539 540 case scConstant: { 541 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 542 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 543 544 // Compare constant values. 545 const APInt &LA = LC->getValue()->getValue(); 546 const APInt &RA = RC->getValue()->getValue(); 547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 548 if (LBitWidth != RBitWidth) 549 return (int)LBitWidth - (int)RBitWidth; 550 return LA.ult(RA) ? -1 : 1; 551 } 552 553 case scAddRecExpr: { 554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 556 557 // Compare addrec loop depths. 558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 559 if (LLoop != RLoop) { 560 unsigned LDepth = LLoop->getLoopDepth(), 561 RDepth = RLoop->getLoopDepth(); 562 if (LDepth != RDepth) 563 return (int)LDepth - (int)RDepth; 564 } 565 566 // Addrec complexity grows with operand count. 567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 568 if (LNumOps != RNumOps) 569 return (int)LNumOps - (int)RNumOps; 570 571 // Lexicographically compare. 572 for (unsigned i = 0; i != LNumOps; ++i) { 573 long X = compare(LA->getOperand(i), RA->getOperand(i)); 574 if (X != 0) 575 return X; 576 } 577 578 return 0; 579 } 580 581 case scAddExpr: 582 case scMulExpr: 583 case scSMaxExpr: 584 case scUMaxExpr: { 585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 587 588 // Lexicographically compare n-ary expressions. 589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 590 if (LNumOps != RNumOps) 591 return (int)LNumOps - (int)RNumOps; 592 593 for (unsigned i = 0; i != LNumOps; ++i) { 594 if (i >= RNumOps) 595 return 1; 596 long X = compare(LC->getOperand(i), RC->getOperand(i)); 597 if (X != 0) 598 return X; 599 } 600 return (int)LNumOps - (int)RNumOps; 601 } 602 603 case scUDivExpr: { 604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 606 607 // Lexicographically compare udiv expressions. 608 long X = compare(LC->getLHS(), RC->getLHS()); 609 if (X != 0) 610 return X; 611 return compare(LC->getRHS(), RC->getRHS()); 612 } 613 614 case scTruncate: 615 case scZeroExtend: 616 case scSignExtend: { 617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 619 620 // Compare cast expressions by operand. 621 return compare(LC->getOperand(), RC->getOperand()); 622 } 623 624 case scCouldNotCompute: 625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 626 } 627 llvm_unreachable("Unknown SCEV kind!"); 628 } 629 }; 630 } 631 632 /// GroupByComplexity - Given a list of SCEV objects, order them by their 633 /// complexity, and group objects of the same complexity together by value. 634 /// When this routine is finished, we know that any duplicates in the vector are 635 /// consecutive and that complexity is monotonically increasing. 636 /// 637 /// Note that we go take special precautions to ensure that we get deterministic 638 /// results from this routine. In other words, we don't want the results of 639 /// this to depend on where the addresses of various SCEV objects happened to 640 /// land in memory. 641 /// 642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 643 LoopInfo *LI) { 644 if (Ops.size() < 2) return; // Noop 645 if (Ops.size() == 2) { 646 // This is the common case, which also happens to be trivially simple. 647 // Special case it. 648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 649 if (SCEVComplexityCompare(LI)(RHS, LHS)) 650 std::swap(LHS, RHS); 651 return; 652 } 653 654 // Do the rough sort by complexity. 655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 656 657 // Now that we are sorted by complexity, group elements of the same 658 // complexity. Note that this is, at worst, N^2, but the vector is likely to 659 // be extremely short in practice. Note that we take this approach because we 660 // do not want to depend on the addresses of the objects we are grouping. 661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 662 const SCEV *S = Ops[i]; 663 unsigned Complexity = S->getSCEVType(); 664 665 // If there are any objects of the same complexity and same value as this 666 // one, group them. 667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 668 if (Ops[j] == S) { // Found a duplicate. 669 // Move it to immediately after i'th element. 670 std::swap(Ops[i+1], Ops[j]); 671 ++i; // no need to rescan it. 672 if (i == e-2) return; // Done! 673 } 674 } 675 } 676 } 677 678 namespace { 679 struct FindSCEVSize { 680 int Size; 681 FindSCEVSize() : Size(0) {} 682 683 bool follow(const SCEV *S) { 684 ++Size; 685 // Keep looking at all operands of S. 686 return true; 687 } 688 bool isDone() const { 689 return false; 690 } 691 }; 692 } 693 694 // Returns the size of the SCEV S. 695 static inline int sizeOfSCEV(const SCEV *S) { 696 FindSCEVSize F; 697 SCEVTraversal<FindSCEVSize> ST(F); 698 ST.visitAll(S); 699 return F.Size; 700 } 701 702 namespace { 703 704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 705 public: 706 // Computes the Quotient and Remainder of the division of Numerator by 707 // Denominator. 708 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 709 const SCEV *Denominator, const SCEV **Quotient, 710 const SCEV **Remainder) { 711 assert(Numerator && Denominator && "Uninitialized SCEV"); 712 713 SCEVDivision D(SE, Numerator, Denominator); 714 715 // Check for the trivial case here to avoid having to check for it in the 716 // rest of the code. 717 if (Numerator == Denominator) { 718 *Quotient = D.One; 719 *Remainder = D.Zero; 720 return; 721 } 722 723 if (Numerator->isZero()) { 724 *Quotient = D.Zero; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getValue()->getValue(); 768 APInt DenominatorVal = D->getValue()->getValue(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 assert(Numerator->isAffine() && "Numerator should be affine"); 789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 792 Numerator->getNoWrapFlags()); 793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 } 796 797 void visitAddExpr(const SCEVAddExpr *Numerator) { 798 SmallVector<const SCEV *, 2> Qs, Rs; 799 Type *Ty = Denominator->getType(); 800 801 for (const SCEV *Op : Numerator->operands()) { 802 const SCEV *Q, *R; 803 divide(SE, Op, Denominator, &Q, &R); 804 805 // Bail out if types do not match. 806 if (Ty != Q->getType() || Ty != R->getType()) { 807 Quotient = Zero; 808 Remainder = Numerator; 809 return; 810 } 811 812 Qs.push_back(Q); 813 Rs.push_back(R); 814 } 815 816 if (Qs.size() == 1) { 817 Quotient = Qs[0]; 818 Remainder = Rs[0]; 819 return; 820 } 821 822 Quotient = SE.getAddExpr(Qs); 823 Remainder = SE.getAddExpr(Rs); 824 } 825 826 void visitMulExpr(const SCEVMulExpr *Numerator) { 827 SmallVector<const SCEV *, 2> Qs; 828 Type *Ty = Denominator->getType(); 829 830 bool FoundDenominatorTerm = false; 831 for (const SCEV *Op : Numerator->operands()) { 832 // Bail out if types do not match. 833 if (Ty != Op->getType()) { 834 Quotient = Zero; 835 Remainder = Numerator; 836 return; 837 } 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) { 854 Quotient = Zero; 855 Remainder = Numerator; 856 return; 857 } 858 859 FoundDenominatorTerm = true; 860 Qs.push_back(Q); 861 } 862 863 if (FoundDenominatorTerm) { 864 Remainder = Zero; 865 if (Qs.size() == 1) 866 Quotient = Qs[0]; 867 else 868 Quotient = SE.getMulExpr(Qs); 869 return; 870 } 871 872 if (!isa<SCEVUnknown>(Denominator)) { 873 Quotient = Zero; 874 Remainder = Numerator; 875 return; 876 } 877 878 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 879 ValueToValueMap RewriteMap; 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(Zero)->getValue(); 882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 883 884 if (Remainder->isZero()) { 885 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 887 cast<SCEVConstant>(One)->getValue(); 888 Quotient = 889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 890 return; 891 } 892 893 // Quotient is (Numerator - Remainder) divided by Denominator. 894 const SCEV *Q, *R; 895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 897 // This SCEV does not seem to simplify: fail the division here. 898 Quotient = Zero; 899 Remainder = Numerator; 900 return; 901 } 902 divide(SE, Diff, Denominator, &Q, &R); 903 assert(R == Zero && 904 "(Numerator - Remainder) should evenly divide Denominator"); 905 Quotient = Q; 906 } 907 908 private: 909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 910 const SCEV *Denominator) 911 : SE(S), Denominator(Denominator) { 912 Zero = SE.getConstant(Denominator->getType(), 0); 913 One = SE.getConstant(Denominator->getType(), 1); 914 915 // By default, we don't know how to divide Expr by Denominator. 916 // Providing the default here simplifies the rest of the code. 917 Quotient = Zero; 918 Remainder = Numerator; 919 } 920 921 ScalarEvolution &SE; 922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 923 }; 924 925 } 926 927 //===----------------------------------------------------------------------===// 928 // Simple SCEV method implementations 929 //===----------------------------------------------------------------------===// 930 931 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 932 /// Assume, K > 0. 933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 934 ScalarEvolution &SE, 935 Type *ResultTy) { 936 // Handle the simplest case efficiently. 937 if (K == 1) 938 return SE.getTruncateOrZeroExtend(It, ResultTy); 939 940 // We are using the following formula for BC(It, K): 941 // 942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 943 // 944 // Suppose, W is the bitwidth of the return value. We must be prepared for 945 // overflow. Hence, we must assure that the result of our computation is 946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 947 // safe in modular arithmetic. 948 // 949 // However, this code doesn't use exactly that formula; the formula it uses 950 // is something like the following, where T is the number of factors of 2 in 951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 952 // exponentiation: 953 // 954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 955 // 956 // This formula is trivially equivalent to the previous formula. However, 957 // this formula can be implemented much more efficiently. The trick is that 958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 959 // arithmetic. To do exact division in modular arithmetic, all we have 960 // to do is multiply by the inverse. Therefore, this step can be done at 961 // width W. 962 // 963 // The next issue is how to safely do the division by 2^T. The way this 964 // is done is by doing the multiplication step at a width of at least W + T 965 // bits. This way, the bottom W+T bits of the product are accurate. Then, 966 // when we perform the division by 2^T (which is equivalent to a right shift 967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 968 // truncated out after the division by 2^T. 969 // 970 // In comparison to just directly using the first formula, this technique 971 // is much more efficient; using the first formula requires W * K bits, 972 // but this formula less than W + K bits. Also, the first formula requires 973 // a division step, whereas this formula only requires multiplies and shifts. 974 // 975 // It doesn't matter whether the subtraction step is done in the calculation 976 // width or the input iteration count's width; if the subtraction overflows, 977 // the result must be zero anyway. We prefer here to do it in the width of 978 // the induction variable because it helps a lot for certain cases; CodeGen 979 // isn't smart enough to ignore the overflow, which leads to much less 980 // efficient code if the width of the subtraction is wider than the native 981 // register width. 982 // 983 // (It's possible to not widen at all by pulling out factors of 2 before 984 // the multiplication; for example, K=2 can be calculated as 985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 986 // extra arithmetic, so it's not an obvious win, and it gets 987 // much more complicated for K > 3.) 988 989 // Protection from insane SCEVs; this bound is conservative, 990 // but it probably doesn't matter. 991 if (K > 1000) 992 return SE.getCouldNotCompute(); 993 994 unsigned W = SE.getTypeSizeInBits(ResultTy); 995 996 // Calculate K! / 2^T and T; we divide out the factors of two before 997 // multiplying for calculating K! / 2^T to avoid overflow. 998 // Other overflow doesn't matter because we only care about the bottom 999 // W bits of the result. 1000 APInt OddFactorial(W, 1); 1001 unsigned T = 1; 1002 for (unsigned i = 3; i <= K; ++i) { 1003 APInt Mult(W, i); 1004 unsigned TwoFactors = Mult.countTrailingZeros(); 1005 T += TwoFactors; 1006 Mult = Mult.lshr(TwoFactors); 1007 OddFactorial *= Mult; 1008 } 1009 1010 // We need at least W + T bits for the multiplication step 1011 unsigned CalculationBits = W + T; 1012 1013 // Calculate 2^T, at width T+W. 1014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1015 1016 // Calculate the multiplicative inverse of K! / 2^T; 1017 // this multiplication factor will perform the exact division by 1018 // K! / 2^T. 1019 APInt Mod = APInt::getSignedMinValue(W+1); 1020 APInt MultiplyFactor = OddFactorial.zext(W+1); 1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1022 MultiplyFactor = MultiplyFactor.trunc(W); 1023 1024 // Calculate the product, at width T+W 1025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1026 CalculationBits); 1027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1028 for (unsigned i = 1; i != K; ++i) { 1029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1030 Dividend = SE.getMulExpr(Dividend, 1031 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1032 } 1033 1034 // Divide by 2^T 1035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1036 1037 // Truncate the result, and divide by K! / 2^T. 1038 1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1041 } 1042 1043 /// evaluateAtIteration - Return the value of this chain of recurrences at 1044 /// the specified iteration number. We can evaluate this recurrence by 1045 /// multiplying each element in the chain by the binomial coefficient 1046 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1047 /// 1048 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1049 /// 1050 /// where BC(It, k) stands for binomial coefficient. 1051 /// 1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1053 ScalarEvolution &SE) const { 1054 const SCEV *Result = getStart(); 1055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1056 // The computation is correct in the face of overflow provided that the 1057 // multiplication is performed _after_ the evaluation of the binomial 1058 // coefficient. 1059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1060 if (isa<SCEVCouldNotCompute>(Coeff)) 1061 return Coeff; 1062 1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1064 } 1065 return Result; 1066 } 1067 1068 //===----------------------------------------------------------------------===// 1069 // SCEV Expression folder implementations 1070 //===----------------------------------------------------------------------===// 1071 1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1073 Type *Ty) { 1074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1075 "This is not a truncating conversion!"); 1076 assert(isSCEVable(Ty) && 1077 "This is not a conversion to a SCEVable type!"); 1078 Ty = getEffectiveSCEVType(Ty); 1079 1080 FoldingSetNodeID ID; 1081 ID.AddInteger(scTruncate); 1082 ID.AddPointer(Op); 1083 ID.AddPointer(Ty); 1084 void *IP = nullptr; 1085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1086 1087 // Fold if the operand is constant. 1088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1089 return getConstant( 1090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1091 1092 // trunc(trunc(x)) --> trunc(x) 1093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1094 return getTruncateExpr(ST->getOperand(), Ty); 1095 1096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1098 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1099 1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1103 1104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1105 // eliminate all the truncates. 1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1107 SmallVector<const SCEV *, 4> Operands; 1108 bool hasTrunc = false; 1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1111 hasTrunc = isa<SCEVTruncateExpr>(S); 1112 Operands.push_back(S); 1113 } 1114 if (!hasTrunc) 1115 return getAddExpr(Operands); 1116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1117 } 1118 1119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1120 // eliminate all the truncates. 1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1122 SmallVector<const SCEV *, 4> Operands; 1123 bool hasTrunc = false; 1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1309 return PreStart; 1310 } 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 // Give up if we don't already have the add recurrence we need because 1382 // actually constructing an add recurrence is relatively expensive. 1383 const SCEVAddRecExpr *PreAR = [&]() { 1384 FoldingSetNodeID ID; 1385 ID.AddInteger(scAddRecExpr); 1386 ID.AddPointer(PreStart); 1387 ID.AddPointer(Step); 1388 ID.AddPointer(L); 1389 void *IP = nullptr; 1390 return static_cast<SCEVAddRecExpr *>( 1391 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1392 }(); 1393 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 1520 // If the backedge is guarded by a comparison with the pre-inc value 1521 // the addrec is safe. Also, if the entry is guarded by a comparison 1522 // with the start value and the backedge is guarded by a comparison 1523 // with the post-inc value, the addrec is safe. 1524 if (isKnownPositive(Step)) { 1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1526 getUnsignedRange(Step).getUnsignedMax()); 1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1530 AR->getPostIncExpr(*this), N))) { 1531 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } else if (isKnownNegative(Step)) { 1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1540 getSignedRange(Step).getSignedMin()); 1541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1544 AR->getPostIncExpr(*this), N))) { 1545 // Cache knowledge of AR NW, which is propagated to this AddRec. 1546 // Negative step causes unsigned wrap, but it still can't self-wrap. 1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1548 // Return the expression with the addrec on the outside. 1549 return getAddRecExpr( 1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1552 } 1553 } 1554 } 1555 1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 1564 // The cast wasn't folded; create an explicit cast node. 1565 // Recompute the insert position, as it may have been invalidated. 1566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1567 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1568 Op, Ty); 1569 UniqueSCEVs.InsertNode(S, IP); 1570 return S; 1571 } 1572 1573 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1574 Type *Ty) { 1575 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1576 "This is not an extending conversion!"); 1577 assert(isSCEVable(Ty) && 1578 "This is not a conversion to a SCEVable type!"); 1579 Ty = getEffectiveSCEVType(Ty); 1580 1581 // Fold if the operand is constant. 1582 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1583 return getConstant( 1584 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1585 1586 // sext(sext(x)) --> sext(x) 1587 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1588 return getSignExtendExpr(SS->getOperand(), Ty); 1589 1590 // sext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scSignExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 1603 // If the input value is provably positive, build a zext instead. 1604 if (isKnownNonNegative(Op)) 1605 return getZeroExtendExpr(Op, Ty); 1606 1607 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1608 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1609 // It's possible the bits taken off by the truncate were all sign bits. If 1610 // so, we should be able to simplify this further. 1611 const SCEV *X = ST->getOperand(); 1612 ConstantRange CR = getSignedRange(X); 1613 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1614 unsigned NewBits = getTypeSizeInBits(Ty); 1615 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1616 CR.sextOrTrunc(NewBits))) 1617 return getTruncateOrSignExtend(X, Ty); 1618 } 1619 1620 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1621 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1622 if (SA->getNumOperands() == 2) { 1623 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1624 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1625 if (SMul && SC1) { 1626 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1627 const APInt &C1 = SC1->getValue()->getValue(); 1628 const APInt &C2 = SC2->getValue()->getValue(); 1629 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1630 C2.ugt(C1) && C2.isPowerOf2()) 1631 return getAddExpr(getSignExtendExpr(SC1, Ty), 1632 getSignExtendExpr(SMul, Ty)); 1633 } 1634 } 1635 } 1636 } 1637 // If the input value is a chrec scev, and we can prove that the value 1638 // did not overflow the old, smaller, value, we can sign extend all of the 1639 // operands (often constants). This allows analysis of something like 1640 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1642 if (AR->isAffine()) { 1643 const SCEV *Start = AR->getStart(); 1644 const SCEV *Step = AR->getStepRecurrence(*this); 1645 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1646 const Loop *L = AR->getLoop(); 1647 1648 // If we have special knowledge that this addrec won't overflow, 1649 // we don't need to do any further analysis. 1650 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1651 return getAddRecExpr( 1652 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1653 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1654 1655 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1656 // Note that this serves two purposes: It filters out loops that are 1657 // simply not analyzable, and it covers the case where this code is 1658 // being called from within backedge-taken count analysis, such that 1659 // attempting to ask for the backedge-taken count would likely result 1660 // in infinite recursion. In the later case, the analysis code will 1661 // cope with a conservative value, and it will take care to purge 1662 // that value once it has finished. 1663 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1664 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1665 // Manually compute the final value for AR, checking for 1666 // overflow. 1667 1668 // Check whether the backedge-taken count can be losslessly casted to 1669 // the addrec's type. The count is always unsigned. 1670 const SCEV *CastedMaxBECount = 1671 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1672 const SCEV *RecastedMaxBECount = 1673 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1674 if (MaxBECount == RecastedMaxBECount) { 1675 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1676 // Check whether Start+Step*MaxBECount has no signed overflow. 1677 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1678 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1679 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1680 const SCEV *WideMaxBECount = 1681 getZeroExtendExpr(CastedMaxBECount, WideTy); 1682 const SCEV *OperandExtendedAdd = 1683 getAddExpr(WideStart, 1684 getMulExpr(WideMaxBECount, 1685 getSignExtendExpr(Step, WideTy))); 1686 if (SAdd == OperandExtendedAdd) { 1687 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1688 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1689 // Return the expression with the addrec on the outside. 1690 return getAddRecExpr( 1691 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1692 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1693 } 1694 // Similar to above, only this time treat the step value as unsigned. 1695 // This covers loops that count up with an unsigned step. 1696 OperandExtendedAdd = 1697 getAddExpr(WideStart, 1698 getMulExpr(WideMaxBECount, 1699 getZeroExtendExpr(Step, WideTy))); 1700 if (SAdd == OperandExtendedAdd) { 1701 // If AR wraps around then 1702 // 1703 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1704 // => SAdd != OperandExtendedAdd 1705 // 1706 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1707 // (SAdd == OperandExtendedAdd => AR is NW) 1708 1709 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1710 1711 // Return the expression with the addrec on the outside. 1712 return getAddRecExpr( 1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1714 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1715 } 1716 } 1717 1718 // If the backedge is guarded by a comparison with the pre-inc value 1719 // the addrec is safe. Also, if the entry is guarded by a comparison 1720 // with the start value and the backedge is guarded by a comparison 1721 // with the post-inc value, the addrec is safe. 1722 ICmpInst::Predicate Pred; 1723 const SCEV *OverflowLimit = 1724 getSignedOverflowLimitForStep(Step, &Pred, this); 1725 if (OverflowLimit && 1726 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1727 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1728 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1729 OverflowLimit)))) { 1730 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 // If Start and Step are constants, check if we can apply this 1738 // transformation: 1739 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1740 auto SC1 = dyn_cast<SCEVConstant>(Start); 1741 auto SC2 = dyn_cast<SCEVConstant>(Step); 1742 if (SC1 && SC2) { 1743 const APInt &C1 = SC1->getValue()->getValue(); 1744 const APInt &C2 = SC2->getValue()->getValue(); 1745 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1746 C2.isPowerOf2()) { 1747 Start = getSignExtendExpr(Start, Ty); 1748 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1749 L, AR->getNoWrapFlags()); 1750 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1751 } 1752 } 1753 1754 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1755 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1756 return getAddRecExpr( 1757 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1758 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1759 } 1760 } 1761 1762 // The cast wasn't folded; create an explicit cast node. 1763 // Recompute the insert position, as it may have been invalidated. 1764 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1765 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1766 Op, Ty); 1767 UniqueSCEVs.InsertNode(S, IP); 1768 return S; 1769 } 1770 1771 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1772 /// unspecified bits out to the given type. 1773 /// 1774 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1775 Type *Ty) { 1776 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1777 "This is not an extending conversion!"); 1778 assert(isSCEVable(Ty) && 1779 "This is not a conversion to a SCEVable type!"); 1780 Ty = getEffectiveSCEVType(Ty); 1781 1782 // Sign-extend negative constants. 1783 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1784 if (SC->getValue()->getValue().isNegative()) 1785 return getSignExtendExpr(Op, Ty); 1786 1787 // Peel off a truncate cast. 1788 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1789 const SCEV *NewOp = T->getOperand(); 1790 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1791 return getAnyExtendExpr(NewOp, Ty); 1792 return getTruncateOrNoop(NewOp, Ty); 1793 } 1794 1795 // Next try a zext cast. If the cast is folded, use it. 1796 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1797 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1798 return ZExt; 1799 1800 // Next try a sext cast. If the cast is folded, use it. 1801 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1802 if (!isa<SCEVSignExtendExpr>(SExt)) 1803 return SExt; 1804 1805 // Force the cast to be folded into the operands of an addrec. 1806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1807 SmallVector<const SCEV *, 4> Ops; 1808 for (const SCEV *Op : AR->operands()) 1809 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1810 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1811 } 1812 1813 // If the expression is obviously signed, use the sext cast value. 1814 if (isa<SCEVSMaxExpr>(Op)) 1815 return SExt; 1816 1817 // Absent any other information, use the zext cast value. 1818 return ZExt; 1819 } 1820 1821 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1822 /// a list of operands to be added under the given scale, update the given 1823 /// map. This is a helper function for getAddRecExpr. As an example of 1824 /// what it does, given a sequence of operands that would form an add 1825 /// expression like this: 1826 /// 1827 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1828 /// 1829 /// where A and B are constants, update the map with these values: 1830 /// 1831 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1832 /// 1833 /// and add 13 + A*B*29 to AccumulatedConstant. 1834 /// This will allow getAddRecExpr to produce this: 1835 /// 1836 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1837 /// 1838 /// This form often exposes folding opportunities that are hidden in 1839 /// the original operand list. 1840 /// 1841 /// Return true iff it appears that any interesting folding opportunities 1842 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1843 /// the common case where no interesting opportunities are present, and 1844 /// is also used as a check to avoid infinite recursion. 1845 /// 1846 static bool 1847 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1848 SmallVectorImpl<const SCEV *> &NewOps, 1849 APInt &AccumulatedConstant, 1850 const SCEV *const *Ops, size_t NumOperands, 1851 const APInt &Scale, 1852 ScalarEvolution &SE) { 1853 bool Interesting = false; 1854 1855 // Iterate over the add operands. They are sorted, with constants first. 1856 unsigned i = 0; 1857 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1858 ++i; 1859 // Pull a buried constant out to the outside. 1860 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1861 Interesting = true; 1862 AccumulatedConstant += Scale * C->getValue()->getValue(); 1863 } 1864 1865 // Next comes everything else. We're especially interested in multiplies 1866 // here, but they're in the middle, so just visit the rest with one loop. 1867 for (; i != NumOperands; ++i) { 1868 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1869 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1870 APInt NewScale = 1871 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1872 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1873 // A multiplication of a constant with another add; recurse. 1874 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1875 Interesting |= 1876 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1877 Add->op_begin(), Add->getNumOperands(), 1878 NewScale, SE); 1879 } else { 1880 // A multiplication of a constant with some other value. Update 1881 // the map. 1882 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1883 const SCEV *Key = SE.getMulExpr(MulOps); 1884 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1885 M.insert(std::make_pair(Key, NewScale)); 1886 if (Pair.second) { 1887 NewOps.push_back(Pair.first->first); 1888 } else { 1889 Pair.first->second += NewScale; 1890 // The map already had an entry for this value, which may indicate 1891 // a folding opportunity. 1892 Interesting = true; 1893 } 1894 } 1895 } else { 1896 // An ordinary operand. Update the map. 1897 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1898 M.insert(std::make_pair(Ops[i], Scale)); 1899 if (Pair.second) { 1900 NewOps.push_back(Pair.first->first); 1901 } else { 1902 Pair.first->second += Scale; 1903 // The map already had an entry for this value, which may indicate 1904 // a folding opportunity. 1905 Interesting = true; 1906 } 1907 } 1908 } 1909 1910 return Interesting; 1911 } 1912 1913 namespace { 1914 struct APIntCompare { 1915 bool operator()(const APInt &LHS, const APInt &RHS) const { 1916 return LHS.ult(RHS); 1917 } 1918 }; 1919 } 1920 1921 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1922 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1923 // can't-overflow flags for the operation if possible. 1924 static SCEV::NoWrapFlags 1925 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1926 const SmallVectorImpl<const SCEV *> &Ops, 1927 SCEV::NoWrapFlags OldFlags) { 1928 using namespace std::placeholders; 1929 1930 bool CanAnalyze = 1931 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1932 (void)CanAnalyze; 1933 assert(CanAnalyze && "don't call from other places!"); 1934 1935 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1936 SCEV::NoWrapFlags SignOrUnsignWrap = 1937 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1938 1939 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1940 auto IsKnownNonNegative = 1941 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1942 1943 if (SignOrUnsignWrap == SCEV::FlagNSW && 1944 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1945 return ScalarEvolution::setFlags(OldFlags, 1946 (SCEV::NoWrapFlags)SignOrUnsignMask); 1947 1948 return OldFlags; 1949 } 1950 1951 /// getAddExpr - Get a canonical add expression, or something simpler if 1952 /// possible. 1953 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1954 SCEV::NoWrapFlags Flags) { 1955 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1956 "only nuw or nsw allowed"); 1957 assert(!Ops.empty() && "Cannot get empty add!"); 1958 if (Ops.size() == 1) return Ops[0]; 1959 #ifndef NDEBUG 1960 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1961 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1962 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1963 "SCEVAddExpr operand types don't match!"); 1964 #endif 1965 1966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1967 1968 // Sort by complexity, this groups all similar expression types together. 1969 GroupByComplexity(Ops, LI); 1970 1971 // If there are any constants, fold them together. 1972 unsigned Idx = 0; 1973 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1974 ++Idx; 1975 assert(Idx < Ops.size()); 1976 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1977 // We found two constants, fold them together! 1978 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1979 RHSC->getValue()->getValue()); 1980 if (Ops.size() == 2) return Ops[0]; 1981 Ops.erase(Ops.begin()+1); // Erase the folded element 1982 LHSC = cast<SCEVConstant>(Ops[0]); 1983 } 1984 1985 // If we are left with a constant zero being added, strip it off. 1986 if (LHSC->getValue()->isZero()) { 1987 Ops.erase(Ops.begin()); 1988 --Idx; 1989 } 1990 1991 if (Ops.size() == 1) return Ops[0]; 1992 } 1993 1994 // Okay, check to see if the same value occurs in the operand list more than 1995 // once. If so, merge them together into an multiply expression. Since we 1996 // sorted the list, these values are required to be adjacent. 1997 Type *Ty = Ops[0]->getType(); 1998 bool FoundMatch = false; 1999 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2000 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2001 // Scan ahead to count how many equal operands there are. 2002 unsigned Count = 2; 2003 while (i+Count != e && Ops[i+Count] == Ops[i]) 2004 ++Count; 2005 // Merge the values into a multiply. 2006 const SCEV *Scale = getConstant(Ty, Count); 2007 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2008 if (Ops.size() == Count) 2009 return Mul; 2010 Ops[i] = Mul; 2011 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2012 --i; e -= Count - 1; 2013 FoundMatch = true; 2014 } 2015 if (FoundMatch) 2016 return getAddExpr(Ops, Flags); 2017 2018 // Check for truncates. If all the operands are truncated from the same 2019 // type, see if factoring out the truncate would permit the result to be 2020 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2021 // if the contents of the resulting outer trunc fold to something simple. 2022 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2023 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2024 Type *DstType = Trunc->getType(); 2025 Type *SrcType = Trunc->getOperand()->getType(); 2026 SmallVector<const SCEV *, 8> LargeOps; 2027 bool Ok = true; 2028 // Check all the operands to see if they can be represented in the 2029 // source type of the truncate. 2030 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2031 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2032 if (T->getOperand()->getType() != SrcType) { 2033 Ok = false; 2034 break; 2035 } 2036 LargeOps.push_back(T->getOperand()); 2037 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2038 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2039 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2040 SmallVector<const SCEV *, 8> LargeMulOps; 2041 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2042 if (const SCEVTruncateExpr *T = 2043 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2044 if (T->getOperand()->getType() != SrcType) { 2045 Ok = false; 2046 break; 2047 } 2048 LargeMulOps.push_back(T->getOperand()); 2049 } else if (const SCEVConstant *C = 2050 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2051 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2052 } else { 2053 Ok = false; 2054 break; 2055 } 2056 } 2057 if (Ok) 2058 LargeOps.push_back(getMulExpr(LargeMulOps)); 2059 } else { 2060 Ok = false; 2061 break; 2062 } 2063 } 2064 if (Ok) { 2065 // Evaluate the expression in the larger type. 2066 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2067 // If it folds to something simple, use it. Otherwise, don't. 2068 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2069 return getTruncateExpr(Fold, DstType); 2070 } 2071 } 2072 2073 // Skip past any other cast SCEVs. 2074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2075 ++Idx; 2076 2077 // If there are add operands they would be next. 2078 if (Idx < Ops.size()) { 2079 bool DeletedAdd = false; 2080 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2081 // If we have an add, expand the add operands onto the end of the operands 2082 // list. 2083 Ops.erase(Ops.begin()+Idx); 2084 Ops.append(Add->op_begin(), Add->op_end()); 2085 DeletedAdd = true; 2086 } 2087 2088 // If we deleted at least one add, we added operands to the end of the list, 2089 // and they are not necessarily sorted. Recurse to resort and resimplify 2090 // any operands we just acquired. 2091 if (DeletedAdd) 2092 return getAddExpr(Ops); 2093 } 2094 2095 // Skip over the add expression until we get to a multiply. 2096 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2097 ++Idx; 2098 2099 // Check to see if there are any folding opportunities present with 2100 // operands multiplied by constant values. 2101 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2102 uint64_t BitWidth = getTypeSizeInBits(Ty); 2103 DenseMap<const SCEV *, APInt> M; 2104 SmallVector<const SCEV *, 8> NewOps; 2105 APInt AccumulatedConstant(BitWidth, 0); 2106 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2107 Ops.data(), Ops.size(), 2108 APInt(BitWidth, 1), *this)) { 2109 // Some interesting folding opportunity is present, so its worthwhile to 2110 // re-generate the operands list. Group the operands by constant scale, 2111 // to avoid multiplying by the same constant scale multiple times. 2112 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2113 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2114 E = NewOps.end(); I != E; ++I) 2115 MulOpLists[M.find(*I)->second].push_back(*I); 2116 // Re-generate the operands list. 2117 Ops.clear(); 2118 if (AccumulatedConstant != 0) 2119 Ops.push_back(getConstant(AccumulatedConstant)); 2120 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2121 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2122 if (I->first != 0) 2123 Ops.push_back(getMulExpr(getConstant(I->first), 2124 getAddExpr(I->second))); 2125 if (Ops.empty()) 2126 return getConstant(Ty, 0); 2127 if (Ops.size() == 1) 2128 return Ops[0]; 2129 return getAddExpr(Ops); 2130 } 2131 } 2132 2133 // If we are adding something to a multiply expression, make sure the 2134 // something is not already an operand of the multiply. If so, merge it into 2135 // the multiply. 2136 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2137 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2138 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2139 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2140 if (isa<SCEVConstant>(MulOpSCEV)) 2141 continue; 2142 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2143 if (MulOpSCEV == Ops[AddOp]) { 2144 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2145 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2146 if (Mul->getNumOperands() != 2) { 2147 // If the multiply has more than two operands, we must get the 2148 // Y*Z term. 2149 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2150 Mul->op_begin()+MulOp); 2151 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2152 InnerMul = getMulExpr(MulOps); 2153 } 2154 const SCEV *One = getConstant(Ty, 1); 2155 const SCEV *AddOne = getAddExpr(One, InnerMul); 2156 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2157 if (Ops.size() == 2) return OuterMul; 2158 if (AddOp < Idx) { 2159 Ops.erase(Ops.begin()+AddOp); 2160 Ops.erase(Ops.begin()+Idx-1); 2161 } else { 2162 Ops.erase(Ops.begin()+Idx); 2163 Ops.erase(Ops.begin()+AddOp-1); 2164 } 2165 Ops.push_back(OuterMul); 2166 return getAddExpr(Ops); 2167 } 2168 2169 // Check this multiply against other multiplies being added together. 2170 for (unsigned OtherMulIdx = Idx+1; 2171 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2172 ++OtherMulIdx) { 2173 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2174 // If MulOp occurs in OtherMul, we can fold the two multiplies 2175 // together. 2176 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2177 OMulOp != e; ++OMulOp) 2178 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2179 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2180 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2181 if (Mul->getNumOperands() != 2) { 2182 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2183 Mul->op_begin()+MulOp); 2184 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2185 InnerMul1 = getMulExpr(MulOps); 2186 } 2187 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2188 if (OtherMul->getNumOperands() != 2) { 2189 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2190 OtherMul->op_begin()+OMulOp); 2191 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2192 InnerMul2 = getMulExpr(MulOps); 2193 } 2194 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2195 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2196 if (Ops.size() == 2) return OuterMul; 2197 Ops.erase(Ops.begin()+Idx); 2198 Ops.erase(Ops.begin()+OtherMulIdx-1); 2199 Ops.push_back(OuterMul); 2200 return getAddExpr(Ops); 2201 } 2202 } 2203 } 2204 } 2205 2206 // If there are any add recurrences in the operands list, see if any other 2207 // added values are loop invariant. If so, we can fold them into the 2208 // recurrence. 2209 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2210 ++Idx; 2211 2212 // Scan over all recurrences, trying to fold loop invariants into them. 2213 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2214 // Scan all of the other operands to this add and add them to the vector if 2215 // they are loop invariant w.r.t. the recurrence. 2216 SmallVector<const SCEV *, 8> LIOps; 2217 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2218 const Loop *AddRecLoop = AddRec->getLoop(); 2219 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2220 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2221 LIOps.push_back(Ops[i]); 2222 Ops.erase(Ops.begin()+i); 2223 --i; --e; 2224 } 2225 2226 // If we found some loop invariants, fold them into the recurrence. 2227 if (!LIOps.empty()) { 2228 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2229 LIOps.push_back(AddRec->getStart()); 2230 2231 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2232 AddRec->op_end()); 2233 AddRecOps[0] = getAddExpr(LIOps); 2234 2235 // Build the new addrec. Propagate the NUW and NSW flags if both the 2236 // outer add and the inner addrec are guaranteed to have no overflow. 2237 // Always propagate NW. 2238 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2239 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2240 2241 // If all of the other operands were loop invariant, we are done. 2242 if (Ops.size() == 1) return NewRec; 2243 2244 // Otherwise, add the folded AddRec by the non-invariant parts. 2245 for (unsigned i = 0;; ++i) 2246 if (Ops[i] == AddRec) { 2247 Ops[i] = NewRec; 2248 break; 2249 } 2250 return getAddExpr(Ops); 2251 } 2252 2253 // Okay, if there weren't any loop invariants to be folded, check to see if 2254 // there are multiple AddRec's with the same loop induction variable being 2255 // added together. If so, we can fold them. 2256 for (unsigned OtherIdx = Idx+1; 2257 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2258 ++OtherIdx) 2259 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2260 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2261 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2262 AddRec->op_end()); 2263 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2264 ++OtherIdx) 2265 if (const SCEVAddRecExpr *OtherAddRec = 2266 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2267 if (OtherAddRec->getLoop() == AddRecLoop) { 2268 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2269 i != e; ++i) { 2270 if (i >= AddRecOps.size()) { 2271 AddRecOps.append(OtherAddRec->op_begin()+i, 2272 OtherAddRec->op_end()); 2273 break; 2274 } 2275 AddRecOps[i] = getAddExpr(AddRecOps[i], 2276 OtherAddRec->getOperand(i)); 2277 } 2278 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2279 } 2280 // Step size has changed, so we cannot guarantee no self-wraparound. 2281 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2282 return getAddExpr(Ops); 2283 } 2284 2285 // Otherwise couldn't fold anything into this recurrence. Move onto the 2286 // next one. 2287 } 2288 2289 // Okay, it looks like we really DO need an add expr. Check to see if we 2290 // already have one, otherwise create a new one. 2291 FoldingSetNodeID ID; 2292 ID.AddInteger(scAddExpr); 2293 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2294 ID.AddPointer(Ops[i]); 2295 void *IP = nullptr; 2296 SCEVAddExpr *S = 2297 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2298 if (!S) { 2299 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2300 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2301 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2302 O, Ops.size()); 2303 UniqueSCEVs.InsertNode(S, IP); 2304 } 2305 S->setNoWrapFlags(Flags); 2306 return S; 2307 } 2308 2309 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2310 uint64_t k = i*j; 2311 if (j > 1 && k / j != i) Overflow = true; 2312 return k; 2313 } 2314 2315 /// Compute the result of "n choose k", the binomial coefficient. If an 2316 /// intermediate computation overflows, Overflow will be set and the return will 2317 /// be garbage. Overflow is not cleared on absence of overflow. 2318 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2319 // We use the multiplicative formula: 2320 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2321 // At each iteration, we take the n-th term of the numeral and divide by the 2322 // (k-n)th term of the denominator. This division will always produce an 2323 // integral result, and helps reduce the chance of overflow in the 2324 // intermediate computations. However, we can still overflow even when the 2325 // final result would fit. 2326 2327 if (n == 0 || n == k) return 1; 2328 if (k > n) return 0; 2329 2330 if (k > n/2) 2331 k = n-k; 2332 2333 uint64_t r = 1; 2334 for (uint64_t i = 1; i <= k; ++i) { 2335 r = umul_ov(r, n-(i-1), Overflow); 2336 r /= i; 2337 } 2338 return r; 2339 } 2340 2341 /// Determine if any of the operands in this SCEV are a constant or if 2342 /// any of the add or multiply expressions in this SCEV contain a constant. 2343 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2344 SmallVector<const SCEV *, 4> Ops; 2345 Ops.push_back(StartExpr); 2346 while (!Ops.empty()) { 2347 const SCEV *CurrentExpr = Ops.pop_back_val(); 2348 if (isa<SCEVConstant>(*CurrentExpr)) 2349 return true; 2350 2351 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2352 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2353 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2354 } 2355 } 2356 return false; 2357 } 2358 2359 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2360 /// possible. 2361 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2362 SCEV::NoWrapFlags Flags) { 2363 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2364 "only nuw or nsw allowed"); 2365 assert(!Ops.empty() && "Cannot get empty mul!"); 2366 if (Ops.size() == 1) return Ops[0]; 2367 #ifndef NDEBUG 2368 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2369 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2370 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2371 "SCEVMulExpr operand types don't match!"); 2372 #endif 2373 2374 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2375 2376 // Sort by complexity, this groups all similar expression types together. 2377 GroupByComplexity(Ops, LI); 2378 2379 // If there are any constants, fold them together. 2380 unsigned Idx = 0; 2381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2382 2383 // C1*(C2+V) -> C1*C2 + C1*V 2384 if (Ops.size() == 2) 2385 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2386 // If any of Add's ops are Adds or Muls with a constant, 2387 // apply this transformation as well. 2388 if (Add->getNumOperands() == 2) 2389 if (containsConstantSomewhere(Add)) 2390 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2391 getMulExpr(LHSC, Add->getOperand(1))); 2392 2393 ++Idx; 2394 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2395 // We found two constants, fold them together! 2396 ConstantInt *Fold = ConstantInt::get(getContext(), 2397 LHSC->getValue()->getValue() * 2398 RHSC->getValue()->getValue()); 2399 Ops[0] = getConstant(Fold); 2400 Ops.erase(Ops.begin()+1); // Erase the folded element 2401 if (Ops.size() == 1) return Ops[0]; 2402 LHSC = cast<SCEVConstant>(Ops[0]); 2403 } 2404 2405 // If we are left with a constant one being multiplied, strip it off. 2406 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2407 Ops.erase(Ops.begin()); 2408 --Idx; 2409 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2410 // If we have a multiply of zero, it will always be zero. 2411 return Ops[0]; 2412 } else if (Ops[0]->isAllOnesValue()) { 2413 // If we have a mul by -1 of an add, try distributing the -1 among the 2414 // add operands. 2415 if (Ops.size() == 2) { 2416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2417 SmallVector<const SCEV *, 4> NewOps; 2418 bool AnyFolded = false; 2419 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2420 E = Add->op_end(); I != E; ++I) { 2421 const SCEV *Mul = getMulExpr(Ops[0], *I); 2422 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2423 NewOps.push_back(Mul); 2424 } 2425 if (AnyFolded) 2426 return getAddExpr(NewOps); 2427 } 2428 else if (const SCEVAddRecExpr * 2429 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2430 // Negation preserves a recurrence's no self-wrap property. 2431 SmallVector<const SCEV *, 4> Operands; 2432 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2433 E = AddRec->op_end(); I != E; ++I) { 2434 Operands.push_back(getMulExpr(Ops[0], *I)); 2435 } 2436 return getAddRecExpr(Operands, AddRec->getLoop(), 2437 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2438 } 2439 } 2440 } 2441 2442 if (Ops.size() == 1) 2443 return Ops[0]; 2444 } 2445 2446 // Skip over the add expression until we get to a multiply. 2447 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2448 ++Idx; 2449 2450 // If there are mul operands inline them all into this expression. 2451 if (Idx < Ops.size()) { 2452 bool DeletedMul = false; 2453 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2454 // If we have an mul, expand the mul operands onto the end of the operands 2455 // list. 2456 Ops.erase(Ops.begin()+Idx); 2457 Ops.append(Mul->op_begin(), Mul->op_end()); 2458 DeletedMul = true; 2459 } 2460 2461 // If we deleted at least one mul, we added operands to the end of the list, 2462 // and they are not necessarily sorted. Recurse to resort and resimplify 2463 // any operands we just acquired. 2464 if (DeletedMul) 2465 return getMulExpr(Ops); 2466 } 2467 2468 // If there are any add recurrences in the operands list, see if any other 2469 // added values are loop invariant. If so, we can fold them into the 2470 // recurrence. 2471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2472 ++Idx; 2473 2474 // Scan over all recurrences, trying to fold loop invariants into them. 2475 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2476 // Scan all of the other operands to this mul and add them to the vector if 2477 // they are loop invariant w.r.t. the recurrence. 2478 SmallVector<const SCEV *, 8> LIOps; 2479 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2480 const Loop *AddRecLoop = AddRec->getLoop(); 2481 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2482 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2483 LIOps.push_back(Ops[i]); 2484 Ops.erase(Ops.begin()+i); 2485 --i; --e; 2486 } 2487 2488 // If we found some loop invariants, fold them into the recurrence. 2489 if (!LIOps.empty()) { 2490 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2491 SmallVector<const SCEV *, 4> NewOps; 2492 NewOps.reserve(AddRec->getNumOperands()); 2493 const SCEV *Scale = getMulExpr(LIOps); 2494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2495 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2496 2497 // Build the new addrec. Propagate the NUW and NSW flags if both the 2498 // outer mul and the inner addrec are guaranteed to have no overflow. 2499 // 2500 // No self-wrap cannot be guaranteed after changing the step size, but 2501 // will be inferred if either NUW or NSW is true. 2502 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2503 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2504 2505 // If all of the other operands were loop invariant, we are done. 2506 if (Ops.size() == 1) return NewRec; 2507 2508 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2509 for (unsigned i = 0;; ++i) 2510 if (Ops[i] == AddRec) { 2511 Ops[i] = NewRec; 2512 break; 2513 } 2514 return getMulExpr(Ops); 2515 } 2516 2517 // Okay, if there weren't any loop invariants to be folded, check to see if 2518 // there are multiple AddRec's with the same loop induction variable being 2519 // multiplied together. If so, we can fold them. 2520 2521 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2522 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2523 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2524 // ]]],+,...up to x=2n}. 2525 // Note that the arguments to choose() are always integers with values 2526 // known at compile time, never SCEV objects. 2527 // 2528 // The implementation avoids pointless extra computations when the two 2529 // addrec's are of different length (mathematically, it's equivalent to 2530 // an infinite stream of zeros on the right). 2531 bool OpsModified = false; 2532 for (unsigned OtherIdx = Idx+1; 2533 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 ++OtherIdx) { 2535 const SCEVAddRecExpr *OtherAddRec = 2536 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2537 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2538 continue; 2539 2540 bool Overflow = false; 2541 Type *Ty = AddRec->getType(); 2542 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2543 SmallVector<const SCEV*, 7> AddRecOps; 2544 for (int x = 0, xe = AddRec->getNumOperands() + 2545 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2546 const SCEV *Term = getConstant(Ty, 0); 2547 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2548 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2549 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2550 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2551 z < ze && !Overflow; ++z) { 2552 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2553 uint64_t Coeff; 2554 if (LargerThan64Bits) 2555 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2556 else 2557 Coeff = Coeff1*Coeff2; 2558 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2559 const SCEV *Term1 = AddRec->getOperand(y-z); 2560 const SCEV *Term2 = OtherAddRec->getOperand(z); 2561 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2562 } 2563 } 2564 AddRecOps.push_back(Term); 2565 } 2566 if (!Overflow) { 2567 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2568 SCEV::FlagAnyWrap); 2569 if (Ops.size() == 2) return NewAddRec; 2570 Ops[Idx] = NewAddRec; 2571 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2572 OpsModified = true; 2573 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2574 if (!AddRec) 2575 break; 2576 } 2577 } 2578 if (OpsModified) 2579 return getMulExpr(Ops); 2580 2581 // Otherwise couldn't fold anything into this recurrence. Move onto the 2582 // next one. 2583 } 2584 2585 // Okay, it looks like we really DO need an mul expr. Check to see if we 2586 // already have one, otherwise create a new one. 2587 FoldingSetNodeID ID; 2588 ID.AddInteger(scMulExpr); 2589 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2590 ID.AddPointer(Ops[i]); 2591 void *IP = nullptr; 2592 SCEVMulExpr *S = 2593 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2594 if (!S) { 2595 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2596 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2597 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2598 O, Ops.size()); 2599 UniqueSCEVs.InsertNode(S, IP); 2600 } 2601 S->setNoWrapFlags(Flags); 2602 return S; 2603 } 2604 2605 /// getUDivExpr - Get a canonical unsigned division expression, or something 2606 /// simpler if possible. 2607 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2608 const SCEV *RHS) { 2609 assert(getEffectiveSCEVType(LHS->getType()) == 2610 getEffectiveSCEVType(RHS->getType()) && 2611 "SCEVUDivExpr operand types don't match!"); 2612 2613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2614 if (RHSC->getValue()->equalsInt(1)) 2615 return LHS; // X udiv 1 --> x 2616 // If the denominator is zero, the result of the udiv is undefined. Don't 2617 // try to analyze it, because the resolution chosen here may differ from 2618 // the resolution chosen in other parts of the compiler. 2619 if (!RHSC->getValue()->isZero()) { 2620 // Determine if the division can be folded into the operands of 2621 // its operands. 2622 // TODO: Generalize this to non-constants by using known-bits information. 2623 Type *Ty = LHS->getType(); 2624 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2625 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2626 // For non-power-of-two values, effectively round the value up to the 2627 // nearest power of two. 2628 if (!RHSC->getValue()->getValue().isPowerOf2()) 2629 ++MaxShiftAmt; 2630 IntegerType *ExtTy = 2631 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2633 if (const SCEVConstant *Step = 2634 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2635 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2636 const APInt &StepInt = Step->getValue()->getValue(); 2637 const APInt &DivInt = RHSC->getValue()->getValue(); 2638 if (!StepInt.urem(DivInt) && 2639 getZeroExtendExpr(AR, ExtTy) == 2640 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2641 getZeroExtendExpr(Step, ExtTy), 2642 AR->getLoop(), SCEV::FlagAnyWrap)) { 2643 SmallVector<const SCEV *, 4> Operands; 2644 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2645 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2646 return getAddRecExpr(Operands, AR->getLoop(), 2647 SCEV::FlagNW); 2648 } 2649 /// Get a canonical UDivExpr for a recurrence. 2650 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2651 // We can currently only fold X%N if X is constant. 2652 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2653 if (StartC && !DivInt.urem(StepInt) && 2654 getZeroExtendExpr(AR, ExtTy) == 2655 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2656 getZeroExtendExpr(Step, ExtTy), 2657 AR->getLoop(), SCEV::FlagAnyWrap)) { 2658 const APInt &StartInt = StartC->getValue()->getValue(); 2659 const APInt &StartRem = StartInt.urem(StepInt); 2660 if (StartRem != 0) 2661 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2662 AR->getLoop(), SCEV::FlagNW); 2663 } 2664 } 2665 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2667 SmallVector<const SCEV *, 4> Operands; 2668 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2669 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2670 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2671 // Find an operand that's safely divisible. 2672 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2673 const SCEV *Op = M->getOperand(i); 2674 const SCEV *Div = getUDivExpr(Op, RHSC); 2675 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2676 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2677 M->op_end()); 2678 Operands[i] = Div; 2679 return getMulExpr(Operands); 2680 } 2681 } 2682 } 2683 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2684 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2685 SmallVector<const SCEV *, 4> Operands; 2686 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2687 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2688 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2689 Operands.clear(); 2690 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2691 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2692 if (isa<SCEVUDivExpr>(Op) || 2693 getMulExpr(Op, RHS) != A->getOperand(i)) 2694 break; 2695 Operands.push_back(Op); 2696 } 2697 if (Operands.size() == A->getNumOperands()) 2698 return getAddExpr(Operands); 2699 } 2700 } 2701 2702 // Fold if both operands are constant. 2703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2704 Constant *LHSCV = LHSC->getValue(); 2705 Constant *RHSCV = RHSC->getValue(); 2706 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2707 RHSCV))); 2708 } 2709 } 2710 } 2711 2712 FoldingSetNodeID ID; 2713 ID.AddInteger(scUDivExpr); 2714 ID.AddPointer(LHS); 2715 ID.AddPointer(RHS); 2716 void *IP = nullptr; 2717 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2718 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2719 LHS, RHS); 2720 UniqueSCEVs.InsertNode(S, IP); 2721 return S; 2722 } 2723 2724 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2725 APInt A = C1->getValue()->getValue().abs(); 2726 APInt B = C2->getValue()->getValue().abs(); 2727 uint32_t ABW = A.getBitWidth(); 2728 uint32_t BBW = B.getBitWidth(); 2729 2730 if (ABW > BBW) 2731 B = B.zext(ABW); 2732 else if (ABW < BBW) 2733 A = A.zext(BBW); 2734 2735 return APIntOps::GreatestCommonDivisor(A, B); 2736 } 2737 2738 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2739 /// something simpler if possible. There is no representation for an exact udiv 2740 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2741 /// We can't do this when it's not exact because the udiv may be clearing bits. 2742 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2743 const SCEV *RHS) { 2744 // TODO: we could try to find factors in all sorts of things, but for now we 2745 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2746 // end of this file for inspiration. 2747 2748 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2749 if (!Mul) 2750 return getUDivExpr(LHS, RHS); 2751 2752 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2753 // If the mulexpr multiplies by a constant, then that constant must be the 2754 // first element of the mulexpr. 2755 if (const SCEVConstant *LHSCst = 2756 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2757 if (LHSCst == RHSCst) { 2758 SmallVector<const SCEV *, 2> Operands; 2759 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2760 return getMulExpr(Operands); 2761 } 2762 2763 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2764 // that there's a factor provided by one of the other terms. We need to 2765 // check. 2766 APInt Factor = gcd(LHSCst, RHSCst); 2767 if (!Factor.isIntN(1)) { 2768 LHSCst = cast<SCEVConstant>( 2769 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2770 RHSCst = cast<SCEVConstant>( 2771 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2772 SmallVector<const SCEV *, 2> Operands; 2773 Operands.push_back(LHSCst); 2774 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2775 LHS = getMulExpr(Operands); 2776 RHS = RHSCst; 2777 Mul = dyn_cast<SCEVMulExpr>(LHS); 2778 if (!Mul) 2779 return getUDivExactExpr(LHS, RHS); 2780 } 2781 } 2782 } 2783 2784 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2785 if (Mul->getOperand(i) == RHS) { 2786 SmallVector<const SCEV *, 2> Operands; 2787 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2788 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2789 return getMulExpr(Operands); 2790 } 2791 } 2792 2793 return getUDivExpr(LHS, RHS); 2794 } 2795 2796 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2797 /// Simplify the expression as much as possible. 2798 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2799 const Loop *L, 2800 SCEV::NoWrapFlags Flags) { 2801 SmallVector<const SCEV *, 4> Operands; 2802 Operands.push_back(Start); 2803 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2804 if (StepChrec->getLoop() == L) { 2805 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2806 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2807 } 2808 2809 Operands.push_back(Step); 2810 return getAddRecExpr(Operands, L, Flags); 2811 } 2812 2813 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2814 /// Simplify the expression as much as possible. 2815 const SCEV * 2816 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2817 const Loop *L, SCEV::NoWrapFlags Flags) { 2818 if (Operands.size() == 1) return Operands[0]; 2819 #ifndef NDEBUG 2820 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2821 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2822 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2823 "SCEVAddRecExpr operand types don't match!"); 2824 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2825 assert(isLoopInvariant(Operands[i], L) && 2826 "SCEVAddRecExpr operand is not loop-invariant!"); 2827 #endif 2828 2829 if (Operands.back()->isZero()) { 2830 Operands.pop_back(); 2831 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2832 } 2833 2834 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2835 // use that information to infer NUW and NSW flags. However, computing a 2836 // BE count requires calling getAddRecExpr, so we may not yet have a 2837 // meaningful BE count at this point (and if we don't, we'd be stuck 2838 // with a SCEVCouldNotCompute as the cached BE count). 2839 2840 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2841 2842 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2843 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2844 const Loop *NestedLoop = NestedAR->getLoop(); 2845 if (L->contains(NestedLoop) ? 2846 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2847 (!NestedLoop->contains(L) && 2848 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2849 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2850 NestedAR->op_end()); 2851 Operands[0] = NestedAR->getStart(); 2852 // AddRecs require their operands be loop-invariant with respect to their 2853 // loops. Don't perform this transformation if it would break this 2854 // requirement. 2855 bool AllInvariant = true; 2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2857 if (!isLoopInvariant(Operands[i], L)) { 2858 AllInvariant = false; 2859 break; 2860 } 2861 if (AllInvariant) { 2862 // Create a recurrence for the outer loop with the same step size. 2863 // 2864 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2865 // inner recurrence has the same property. 2866 SCEV::NoWrapFlags OuterFlags = 2867 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2868 2869 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2870 AllInvariant = true; 2871 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2872 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2873 AllInvariant = false; 2874 break; 2875 } 2876 if (AllInvariant) { 2877 // Ok, both add recurrences are valid after the transformation. 2878 // 2879 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2880 // the outer recurrence has the same property. 2881 SCEV::NoWrapFlags InnerFlags = 2882 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2883 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2884 } 2885 } 2886 // Reset Operands to its original state. 2887 Operands[0] = NestedAR; 2888 } 2889 } 2890 2891 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2892 // already have one, otherwise create a new one. 2893 FoldingSetNodeID ID; 2894 ID.AddInteger(scAddRecExpr); 2895 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2896 ID.AddPointer(Operands[i]); 2897 ID.AddPointer(L); 2898 void *IP = nullptr; 2899 SCEVAddRecExpr *S = 2900 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2901 if (!S) { 2902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2903 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2904 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2905 O, Operands.size(), L); 2906 UniqueSCEVs.InsertNode(S, IP); 2907 } 2908 S->setNoWrapFlags(Flags); 2909 return S; 2910 } 2911 2912 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2913 const SCEV *RHS) { 2914 SmallVector<const SCEV *, 2> Ops; 2915 Ops.push_back(LHS); 2916 Ops.push_back(RHS); 2917 return getSMaxExpr(Ops); 2918 } 2919 2920 const SCEV * 2921 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2922 assert(!Ops.empty() && "Cannot get empty smax!"); 2923 if (Ops.size() == 1) return Ops[0]; 2924 #ifndef NDEBUG 2925 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2926 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2927 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2928 "SCEVSMaxExpr operand types don't match!"); 2929 #endif 2930 2931 // Sort by complexity, this groups all similar expression types together. 2932 GroupByComplexity(Ops, LI); 2933 2934 // If there are any constants, fold them together. 2935 unsigned Idx = 0; 2936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2937 ++Idx; 2938 assert(Idx < Ops.size()); 2939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2940 // We found two constants, fold them together! 2941 ConstantInt *Fold = ConstantInt::get(getContext(), 2942 APIntOps::smax(LHSC->getValue()->getValue(), 2943 RHSC->getValue()->getValue())); 2944 Ops[0] = getConstant(Fold); 2945 Ops.erase(Ops.begin()+1); // Erase the folded element 2946 if (Ops.size() == 1) return Ops[0]; 2947 LHSC = cast<SCEVConstant>(Ops[0]); 2948 } 2949 2950 // If we are left with a constant minimum-int, strip it off. 2951 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2952 Ops.erase(Ops.begin()); 2953 --Idx; 2954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2955 // If we have an smax with a constant maximum-int, it will always be 2956 // maximum-int. 2957 return Ops[0]; 2958 } 2959 2960 if (Ops.size() == 1) return Ops[0]; 2961 } 2962 2963 // Find the first SMax 2964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2965 ++Idx; 2966 2967 // Check to see if one of the operands is an SMax. If so, expand its operands 2968 // onto our operand list, and recurse to simplify. 2969 if (Idx < Ops.size()) { 2970 bool DeletedSMax = false; 2971 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2972 Ops.erase(Ops.begin()+Idx); 2973 Ops.append(SMax->op_begin(), SMax->op_end()); 2974 DeletedSMax = true; 2975 } 2976 2977 if (DeletedSMax) 2978 return getSMaxExpr(Ops); 2979 } 2980 2981 // Okay, check to see if the same value occurs in the operand list twice. If 2982 // so, delete one. Since we sorted the list, these values are required to 2983 // be adjacent. 2984 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2985 // X smax Y smax Y --> X smax Y 2986 // X smax Y --> X, if X is always greater than Y 2987 if (Ops[i] == Ops[i+1] || 2988 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2989 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2990 --i; --e; 2991 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2992 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2993 --i; --e; 2994 } 2995 2996 if (Ops.size() == 1) return Ops[0]; 2997 2998 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2999 3000 // Okay, it looks like we really DO need an smax expr. Check to see if we 3001 // already have one, otherwise create a new one. 3002 FoldingSetNodeID ID; 3003 ID.AddInteger(scSMaxExpr); 3004 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3005 ID.AddPointer(Ops[i]); 3006 void *IP = nullptr; 3007 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3008 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3009 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3010 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3011 O, Ops.size()); 3012 UniqueSCEVs.InsertNode(S, IP); 3013 return S; 3014 } 3015 3016 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3017 const SCEV *RHS) { 3018 SmallVector<const SCEV *, 2> Ops; 3019 Ops.push_back(LHS); 3020 Ops.push_back(RHS); 3021 return getUMaxExpr(Ops); 3022 } 3023 3024 const SCEV * 3025 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3026 assert(!Ops.empty() && "Cannot get empty umax!"); 3027 if (Ops.size() == 1) return Ops[0]; 3028 #ifndef NDEBUG 3029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3030 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3032 "SCEVUMaxExpr operand types don't match!"); 3033 #endif 3034 3035 // Sort by complexity, this groups all similar expression types together. 3036 GroupByComplexity(Ops, LI); 3037 3038 // If there are any constants, fold them together. 3039 unsigned Idx = 0; 3040 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3041 ++Idx; 3042 assert(Idx < Ops.size()); 3043 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3044 // We found two constants, fold them together! 3045 ConstantInt *Fold = ConstantInt::get(getContext(), 3046 APIntOps::umax(LHSC->getValue()->getValue(), 3047 RHSC->getValue()->getValue())); 3048 Ops[0] = getConstant(Fold); 3049 Ops.erase(Ops.begin()+1); // Erase the folded element 3050 if (Ops.size() == 1) return Ops[0]; 3051 LHSC = cast<SCEVConstant>(Ops[0]); 3052 } 3053 3054 // If we are left with a constant minimum-int, strip it off. 3055 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3056 Ops.erase(Ops.begin()); 3057 --Idx; 3058 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3059 // If we have an umax with a constant maximum-int, it will always be 3060 // maximum-int. 3061 return Ops[0]; 3062 } 3063 3064 if (Ops.size() == 1) return Ops[0]; 3065 } 3066 3067 // Find the first UMax 3068 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3069 ++Idx; 3070 3071 // Check to see if one of the operands is a UMax. If so, expand its operands 3072 // onto our operand list, and recurse to simplify. 3073 if (Idx < Ops.size()) { 3074 bool DeletedUMax = false; 3075 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3076 Ops.erase(Ops.begin()+Idx); 3077 Ops.append(UMax->op_begin(), UMax->op_end()); 3078 DeletedUMax = true; 3079 } 3080 3081 if (DeletedUMax) 3082 return getUMaxExpr(Ops); 3083 } 3084 3085 // Okay, check to see if the same value occurs in the operand list twice. If 3086 // so, delete one. Since we sorted the list, these values are required to 3087 // be adjacent. 3088 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3089 // X umax Y umax Y --> X umax Y 3090 // X umax Y --> X, if X is always greater than Y 3091 if (Ops[i] == Ops[i+1] || 3092 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3093 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3094 --i; --e; 3095 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3096 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3097 --i; --e; 3098 } 3099 3100 if (Ops.size() == 1) return Ops[0]; 3101 3102 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3103 3104 // Okay, it looks like we really DO need a umax expr. Check to see if we 3105 // already have one, otherwise create a new one. 3106 FoldingSetNodeID ID; 3107 ID.AddInteger(scUMaxExpr); 3108 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3109 ID.AddPointer(Ops[i]); 3110 void *IP = nullptr; 3111 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3113 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3114 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3115 O, Ops.size()); 3116 UniqueSCEVs.InsertNode(S, IP); 3117 return S; 3118 } 3119 3120 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3121 const SCEV *RHS) { 3122 // ~smax(~x, ~y) == smin(x, y). 3123 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3124 } 3125 3126 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3127 const SCEV *RHS) { 3128 // ~umax(~x, ~y) == umin(x, y) 3129 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3130 } 3131 3132 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3133 // If we have DataLayout, we can bypass creating a target-independent 3134 // constant expression and then folding it back into a ConstantInt. 3135 // This is just a compile-time optimization. 3136 if (DL) 3137 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 3138 3139 Constant *C = ConstantExpr::getSizeOf(AllocTy); 3140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3141 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 3142 C = Folded; 3143 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 3144 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 3145 return getTruncateOrZeroExtend(getSCEV(C), Ty); 3146 } 3147 3148 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3149 StructType *STy, 3150 unsigned FieldNo) { 3151 // If we have DataLayout, we can bypass creating a target-independent 3152 // constant expression and then folding it back into a ConstantInt. 3153 // This is just a compile-time optimization. 3154 if (DL) { 3155 return getConstant(IntTy, 3156 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 3157 } 3158 3159 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 3160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3161 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 3162 C = Folded; 3163 3164 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 3165 return getTruncateOrZeroExtend(getSCEV(C), Ty); 3166 } 3167 3168 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3169 // Don't attempt to do anything other than create a SCEVUnknown object 3170 // here. createSCEV only calls getUnknown after checking for all other 3171 // interesting possibilities, and any other code that calls getUnknown 3172 // is doing so in order to hide a value from SCEV canonicalization. 3173 3174 FoldingSetNodeID ID; 3175 ID.AddInteger(scUnknown); 3176 ID.AddPointer(V); 3177 void *IP = nullptr; 3178 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3179 assert(cast<SCEVUnknown>(S)->getValue() == V && 3180 "Stale SCEVUnknown in uniquing map!"); 3181 return S; 3182 } 3183 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3184 FirstUnknown); 3185 FirstUnknown = cast<SCEVUnknown>(S); 3186 UniqueSCEVs.InsertNode(S, IP); 3187 return S; 3188 } 3189 3190 //===----------------------------------------------------------------------===// 3191 // Basic SCEV Analysis and PHI Idiom Recognition Code 3192 // 3193 3194 /// isSCEVable - Test if values of the given type are analyzable within 3195 /// the SCEV framework. This primarily includes integer types, and it 3196 /// can optionally include pointer types if the ScalarEvolution class 3197 /// has access to target-specific information. 3198 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3199 // Integers and pointers are always SCEVable. 3200 return Ty->isIntegerTy() || Ty->isPointerTy(); 3201 } 3202 3203 /// getTypeSizeInBits - Return the size in bits of the specified type, 3204 /// for which isSCEVable must return true. 3205 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3206 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3207 3208 // If we have a DataLayout, use it! 3209 if (DL) 3210 return DL->getTypeSizeInBits(Ty); 3211 3212 // Integer types have fixed sizes. 3213 if (Ty->isIntegerTy()) 3214 return Ty->getPrimitiveSizeInBits(); 3215 3216 // The only other support type is pointer. Without DataLayout, conservatively 3217 // assume pointers are 64-bit. 3218 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 3219 return 64; 3220 } 3221 3222 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3223 /// the given type and which represents how SCEV will treat the given 3224 /// type, for which isSCEVable must return true. For pointer types, 3225 /// this is the pointer-sized integer type. 3226 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3227 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3228 3229 if (Ty->isIntegerTy()) { 3230 return Ty; 3231 } 3232 3233 // The only other support type is pointer. 3234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3235 3236 if (DL) 3237 return DL->getIntPtrType(Ty); 3238 3239 // Without DataLayout, conservatively assume pointers are 64-bit. 3240 return Type::getInt64Ty(getContext()); 3241 } 3242 3243 const SCEV *ScalarEvolution::getCouldNotCompute() { 3244 return &CouldNotCompute; 3245 } 3246 3247 namespace { 3248 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3249 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3250 // is set iff if find such SCEVUnknown. 3251 // 3252 struct FindInvalidSCEVUnknown { 3253 bool FindOne; 3254 FindInvalidSCEVUnknown() { FindOne = false; } 3255 bool follow(const SCEV *S) { 3256 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3257 case scConstant: 3258 return false; 3259 case scUnknown: 3260 if (!cast<SCEVUnknown>(S)->getValue()) 3261 FindOne = true; 3262 return false; 3263 default: 3264 return true; 3265 } 3266 } 3267 bool isDone() const { return FindOne; } 3268 }; 3269 } 3270 3271 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3272 FindInvalidSCEVUnknown F; 3273 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3274 ST.visitAll(S); 3275 3276 return !F.FindOne; 3277 } 3278 3279 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3280 /// expression and create a new one. 3281 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3282 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3283 3284 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3285 if (I != ValueExprMap.end()) { 3286 const SCEV *S = I->second; 3287 if (checkValidity(S)) 3288 return S; 3289 else 3290 ValueExprMap.erase(I); 3291 } 3292 const SCEV *S = createSCEV(V); 3293 3294 // The process of creating a SCEV for V may have caused other SCEVs 3295 // to have been created, so it's necessary to insert the new entry 3296 // from scratch, rather than trying to remember the insert position 3297 // above. 3298 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3299 return S; 3300 } 3301 3302 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3303 /// 3304 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 3305 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3306 return getConstant( 3307 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3308 3309 Type *Ty = V->getType(); 3310 Ty = getEffectiveSCEVType(Ty); 3311 return getMulExpr(V, 3312 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 3313 } 3314 3315 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3316 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3317 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3318 return getConstant( 3319 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3320 3321 Type *Ty = V->getType(); 3322 Ty = getEffectiveSCEVType(Ty); 3323 const SCEV *AllOnes = 3324 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3325 return getMinusSCEV(AllOnes, V); 3326 } 3327 3328 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3329 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3330 SCEV::NoWrapFlags Flags) { 3331 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 3332 3333 // Fast path: X - X --> 0. 3334 if (LHS == RHS) 3335 return getConstant(LHS->getType(), 0); 3336 3337 // X - Y --> X + -Y. 3338 // X -(nsw || nuw) Y --> X + -Y. 3339 return getAddExpr(LHS, getNegativeSCEV(RHS)); 3340 } 3341 3342 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3343 /// input value to the specified type. If the type must be extended, it is zero 3344 /// extended. 3345 const SCEV * 3346 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3347 Type *SrcTy = V->getType(); 3348 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3349 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3350 "Cannot truncate or zero extend with non-integer arguments!"); 3351 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3352 return V; // No conversion 3353 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3354 return getTruncateExpr(V, Ty); 3355 return getZeroExtendExpr(V, Ty); 3356 } 3357 3358 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3359 /// input value to the specified type. If the type must be extended, it is sign 3360 /// extended. 3361 const SCEV * 3362 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3363 Type *Ty) { 3364 Type *SrcTy = V->getType(); 3365 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3366 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3367 "Cannot truncate or zero extend with non-integer arguments!"); 3368 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3369 return V; // No conversion 3370 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3371 return getTruncateExpr(V, Ty); 3372 return getSignExtendExpr(V, Ty); 3373 } 3374 3375 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3376 /// input value to the specified type. If the type must be extended, it is zero 3377 /// extended. The conversion must not be narrowing. 3378 const SCEV * 3379 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3380 Type *SrcTy = V->getType(); 3381 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3382 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3383 "Cannot noop or zero extend with non-integer arguments!"); 3384 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3385 "getNoopOrZeroExtend cannot truncate!"); 3386 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3387 return V; // No conversion 3388 return getZeroExtendExpr(V, Ty); 3389 } 3390 3391 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3392 /// input value to the specified type. If the type must be extended, it is sign 3393 /// extended. The conversion must not be narrowing. 3394 const SCEV * 3395 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3396 Type *SrcTy = V->getType(); 3397 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3398 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3399 "Cannot noop or sign extend with non-integer arguments!"); 3400 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3401 "getNoopOrSignExtend cannot truncate!"); 3402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3403 return V; // No conversion 3404 return getSignExtendExpr(V, Ty); 3405 } 3406 3407 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3408 /// the input value to the specified type. If the type must be extended, 3409 /// it is extended with unspecified bits. The conversion must not be 3410 /// narrowing. 3411 const SCEV * 3412 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3413 Type *SrcTy = V->getType(); 3414 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3415 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3416 "Cannot noop or any extend with non-integer arguments!"); 3417 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3418 "getNoopOrAnyExtend cannot truncate!"); 3419 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3420 return V; // No conversion 3421 return getAnyExtendExpr(V, Ty); 3422 } 3423 3424 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3425 /// input value to the specified type. The conversion must not be widening. 3426 const SCEV * 3427 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3428 Type *SrcTy = V->getType(); 3429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3430 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3431 "Cannot truncate or noop with non-integer arguments!"); 3432 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3433 "getTruncateOrNoop cannot extend!"); 3434 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3435 return V; // No conversion 3436 return getTruncateExpr(V, Ty); 3437 } 3438 3439 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3440 /// the types using zero-extension, and then perform a umax operation 3441 /// with them. 3442 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3443 const SCEV *RHS) { 3444 const SCEV *PromotedLHS = LHS; 3445 const SCEV *PromotedRHS = RHS; 3446 3447 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3448 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3449 else 3450 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3451 3452 return getUMaxExpr(PromotedLHS, PromotedRHS); 3453 } 3454 3455 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3456 /// the types using zero-extension, and then perform a umin operation 3457 /// with them. 3458 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3459 const SCEV *RHS) { 3460 const SCEV *PromotedLHS = LHS; 3461 const SCEV *PromotedRHS = RHS; 3462 3463 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3464 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3465 else 3466 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3467 3468 return getUMinExpr(PromotedLHS, PromotedRHS); 3469 } 3470 3471 /// getPointerBase - Transitively follow the chain of pointer-type operands 3472 /// until reaching a SCEV that does not have a single pointer operand. This 3473 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3474 /// but corner cases do exist. 3475 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3476 // A pointer operand may evaluate to a nonpointer expression, such as null. 3477 if (!V->getType()->isPointerTy()) 3478 return V; 3479 3480 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3481 return getPointerBase(Cast->getOperand()); 3482 } 3483 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3484 const SCEV *PtrOp = nullptr; 3485 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3486 I != E; ++I) { 3487 if ((*I)->getType()->isPointerTy()) { 3488 // Cannot find the base of an expression with multiple pointer operands. 3489 if (PtrOp) 3490 return V; 3491 PtrOp = *I; 3492 } 3493 } 3494 if (!PtrOp) 3495 return V; 3496 return getPointerBase(PtrOp); 3497 } 3498 return V; 3499 } 3500 3501 /// PushDefUseChildren - Push users of the given Instruction 3502 /// onto the given Worklist. 3503 static void 3504 PushDefUseChildren(Instruction *I, 3505 SmallVectorImpl<Instruction *> &Worklist) { 3506 // Push the def-use children onto the Worklist stack. 3507 for (User *U : I->users()) 3508 Worklist.push_back(cast<Instruction>(U)); 3509 } 3510 3511 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3512 /// instructions that depend on the given instruction and removes them from 3513 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3514 /// resolution. 3515 void 3516 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3517 SmallVector<Instruction *, 16> Worklist; 3518 PushDefUseChildren(PN, Worklist); 3519 3520 SmallPtrSet<Instruction *, 8> Visited; 3521 Visited.insert(PN); 3522 while (!Worklist.empty()) { 3523 Instruction *I = Worklist.pop_back_val(); 3524 if (!Visited.insert(I).second) 3525 continue; 3526 3527 ValueExprMapType::iterator It = 3528 ValueExprMap.find_as(static_cast<Value *>(I)); 3529 if (It != ValueExprMap.end()) { 3530 const SCEV *Old = It->second; 3531 3532 // Short-circuit the def-use traversal if the symbolic name 3533 // ceases to appear in expressions. 3534 if (Old != SymName && !hasOperand(Old, SymName)) 3535 continue; 3536 3537 // SCEVUnknown for a PHI either means that it has an unrecognized 3538 // structure, it's a PHI that's in the progress of being computed 3539 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3540 // additional loop trip count information isn't going to change anything. 3541 // In the second case, createNodeForPHI will perform the necessary 3542 // updates on its own when it gets to that point. In the third, we do 3543 // want to forget the SCEVUnknown. 3544 if (!isa<PHINode>(I) || 3545 !isa<SCEVUnknown>(Old) || 3546 (I != PN && Old == SymName)) { 3547 forgetMemoizedResults(Old); 3548 ValueExprMap.erase(It); 3549 } 3550 } 3551 3552 PushDefUseChildren(I, Worklist); 3553 } 3554 } 3555 3556 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3557 /// a loop header, making it a potential recurrence, or it doesn't. 3558 /// 3559 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3560 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3561 if (L->getHeader() == PN->getParent()) { 3562 // The loop may have multiple entrances or multiple exits; we can analyze 3563 // this phi as an addrec if it has a unique entry value and a unique 3564 // backedge value. 3565 Value *BEValueV = nullptr, *StartValueV = nullptr; 3566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3567 Value *V = PN->getIncomingValue(i); 3568 if (L->contains(PN->getIncomingBlock(i))) { 3569 if (!BEValueV) { 3570 BEValueV = V; 3571 } else if (BEValueV != V) { 3572 BEValueV = nullptr; 3573 break; 3574 } 3575 } else if (!StartValueV) { 3576 StartValueV = V; 3577 } else if (StartValueV != V) { 3578 StartValueV = nullptr; 3579 break; 3580 } 3581 } 3582 if (BEValueV && StartValueV) { 3583 // While we are analyzing this PHI node, handle its value symbolically. 3584 const SCEV *SymbolicName = getUnknown(PN); 3585 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3586 "PHI node already processed?"); 3587 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3588 3589 // Using this symbolic name for the PHI, analyze the value coming around 3590 // the back-edge. 3591 const SCEV *BEValue = getSCEV(BEValueV); 3592 3593 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3594 // has a special value for the first iteration of the loop. 3595 3596 // If the value coming around the backedge is an add with the symbolic 3597 // value we just inserted, then we found a simple induction variable! 3598 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3599 // If there is a single occurrence of the symbolic value, replace it 3600 // with a recurrence. 3601 unsigned FoundIndex = Add->getNumOperands(); 3602 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3603 if (Add->getOperand(i) == SymbolicName) 3604 if (FoundIndex == e) { 3605 FoundIndex = i; 3606 break; 3607 } 3608 3609 if (FoundIndex != Add->getNumOperands()) { 3610 // Create an add with everything but the specified operand. 3611 SmallVector<const SCEV *, 8> Ops; 3612 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3613 if (i != FoundIndex) 3614 Ops.push_back(Add->getOperand(i)); 3615 const SCEV *Accum = getAddExpr(Ops); 3616 3617 // This is not a valid addrec if the step amount is varying each 3618 // loop iteration, but is not itself an addrec in this loop. 3619 if (isLoopInvariant(Accum, L) || 3620 (isa<SCEVAddRecExpr>(Accum) && 3621 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3622 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3623 3624 // If the increment doesn't overflow, then neither the addrec nor 3625 // the post-increment will overflow. 3626 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3627 if (OBO->hasNoUnsignedWrap()) 3628 Flags = setFlags(Flags, SCEV::FlagNUW); 3629 if (OBO->hasNoSignedWrap()) 3630 Flags = setFlags(Flags, SCEV::FlagNSW); 3631 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3632 // If the increment is an inbounds GEP, then we know the address 3633 // space cannot be wrapped around. We cannot make any guarantee 3634 // about signed or unsigned overflow because pointers are 3635 // unsigned but we may have a negative index from the base 3636 // pointer. We can guarantee that no unsigned wrap occurs if the 3637 // indices form a positive value. 3638 if (GEP->isInBounds()) { 3639 Flags = setFlags(Flags, SCEV::FlagNW); 3640 3641 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3642 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3643 Flags = setFlags(Flags, SCEV::FlagNUW); 3644 } 3645 3646 // We cannot transfer nuw and nsw flags from subtraction 3647 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3648 // for instance. 3649 } 3650 3651 const SCEV *StartVal = getSCEV(StartValueV); 3652 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3653 3654 // Since the no-wrap flags are on the increment, they apply to the 3655 // post-incremented value as well. 3656 if (isLoopInvariant(Accum, L)) 3657 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3658 Accum, L, Flags); 3659 3660 // Okay, for the entire analysis of this edge we assumed the PHI 3661 // to be symbolic. We now need to go back and purge all of the 3662 // entries for the scalars that use the symbolic expression. 3663 ForgetSymbolicName(PN, SymbolicName); 3664 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3665 return PHISCEV; 3666 } 3667 } 3668 } else if (const SCEVAddRecExpr *AddRec = 3669 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3670 // Otherwise, this could be a loop like this: 3671 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3672 // In this case, j = {1,+,1} and BEValue is j. 3673 // Because the other in-value of i (0) fits the evolution of BEValue 3674 // i really is an addrec evolution. 3675 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3676 const SCEV *StartVal = getSCEV(StartValueV); 3677 3678 // If StartVal = j.start - j.stride, we can use StartVal as the 3679 // initial step of the addrec evolution. 3680 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3681 AddRec->getOperand(1))) { 3682 // FIXME: For constant StartVal, we should be able to infer 3683 // no-wrap flags. 3684 const SCEV *PHISCEV = 3685 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3686 SCEV::FlagAnyWrap); 3687 3688 // Okay, for the entire analysis of this edge we assumed the PHI 3689 // to be symbolic. We now need to go back and purge all of the 3690 // entries for the scalars that use the symbolic expression. 3691 ForgetSymbolicName(PN, SymbolicName); 3692 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3693 return PHISCEV; 3694 } 3695 } 3696 } 3697 } 3698 } 3699 3700 // If the PHI has a single incoming value, follow that value, unless the 3701 // PHI's incoming blocks are in a different loop, in which case doing so 3702 // risks breaking LCSSA form. Instcombine would normally zap these, but 3703 // it doesn't have DominatorTree information, so it may miss cases. 3704 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC)) 3705 if (LI->replacementPreservesLCSSAForm(PN, V)) 3706 return getSCEV(V); 3707 3708 // If it's not a loop phi, we can't handle it yet. 3709 return getUnknown(PN); 3710 } 3711 3712 /// createNodeForGEP - Expand GEP instructions into add and multiply 3713 /// operations. This allows them to be analyzed by regular SCEV code. 3714 /// 3715 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3716 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3717 Value *Base = GEP->getOperand(0); 3718 // Don't attempt to analyze GEPs over unsized objects. 3719 if (!Base->getType()->getPointerElementType()->isSized()) 3720 return getUnknown(GEP); 3721 3722 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3723 // Add expression, because the Instruction may be guarded by control flow 3724 // and the no-overflow bits may not be valid for the expression in any 3725 // context. 3726 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3727 3728 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3729 gep_type_iterator GTI = gep_type_begin(GEP); 3730 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3731 E = GEP->op_end(); 3732 I != E; ++I) { 3733 Value *Index = *I; 3734 // Compute the (potentially symbolic) offset in bytes for this index. 3735 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3736 // For a struct, add the member offset. 3737 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3738 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3739 3740 // Add the field offset to the running total offset. 3741 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3742 } else { 3743 // For an array, add the element offset, explicitly scaled. 3744 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3745 const SCEV *IndexS = getSCEV(Index); 3746 // Getelementptr indices are signed. 3747 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3748 3749 // Multiply the index by the element size to compute the element offset. 3750 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3751 3752 // Add the element offset to the running total offset. 3753 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3754 } 3755 } 3756 3757 // Get the SCEV for the GEP base. 3758 const SCEV *BaseS = getSCEV(Base); 3759 3760 // Add the total offset from all the GEP indices to the base. 3761 return getAddExpr(BaseS, TotalOffset, Wrap); 3762 } 3763 3764 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3765 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3766 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3767 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3768 uint32_t 3769 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3770 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3771 return C->getValue()->getValue().countTrailingZeros(); 3772 3773 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3774 return std::min(GetMinTrailingZeros(T->getOperand()), 3775 (uint32_t)getTypeSizeInBits(T->getType())); 3776 3777 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3778 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3779 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3780 getTypeSizeInBits(E->getType()) : OpRes; 3781 } 3782 3783 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3784 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3785 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3786 getTypeSizeInBits(E->getType()) : OpRes; 3787 } 3788 3789 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3790 // The result is the min of all operands results. 3791 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3792 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3793 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3794 return MinOpRes; 3795 } 3796 3797 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3798 // The result is the sum of all operands results. 3799 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3800 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3801 for (unsigned i = 1, e = M->getNumOperands(); 3802 SumOpRes != BitWidth && i != e; ++i) 3803 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3804 BitWidth); 3805 return SumOpRes; 3806 } 3807 3808 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3809 // The result is the min of all operands results. 3810 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3811 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3812 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3813 return MinOpRes; 3814 } 3815 3816 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3817 // The result is the min of all operands results. 3818 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3819 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3820 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3821 return MinOpRes; 3822 } 3823 3824 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3825 // The result is the min of all operands results. 3826 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3827 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3828 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3829 return MinOpRes; 3830 } 3831 3832 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3833 // For a SCEVUnknown, ask ValueTracking. 3834 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3835 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3836 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 3837 return Zeros.countTrailingOnes(); 3838 } 3839 3840 // SCEVUDivExpr 3841 return 0; 3842 } 3843 3844 /// GetRangeFromMetadata - Helper method to assign a range to V from 3845 /// metadata present in the IR. 3846 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3847 if (Instruction *I = dyn_cast<Instruction>(V)) { 3848 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3849 ConstantRange TotalRange( 3850 cast<IntegerType>(I->getType())->getBitWidth(), false); 3851 3852 unsigned NumRanges = MD->getNumOperands() / 2; 3853 assert(NumRanges >= 1); 3854 3855 for (unsigned i = 0; i < NumRanges; ++i) { 3856 ConstantInt *Lower = 3857 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3858 ConstantInt *Upper = 3859 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3860 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3861 TotalRange = TotalRange.unionWith(Range); 3862 } 3863 3864 return TotalRange; 3865 } 3866 } 3867 3868 return None; 3869 } 3870 3871 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3872 /// 3873 ConstantRange 3874 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3875 // See if we've computed this range already. 3876 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3877 if (I != UnsignedRanges.end()) 3878 return I->second; 3879 3880 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3881 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3882 3883 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3884 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3885 3886 // If the value has known zeros, the maximum unsigned value will have those 3887 // known zeros as well. 3888 uint32_t TZ = GetMinTrailingZeros(S); 3889 if (TZ != 0) 3890 ConservativeResult = 3891 ConstantRange(APInt::getMinValue(BitWidth), 3892 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3893 3894 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3895 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3896 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3897 X = X.add(getUnsignedRange(Add->getOperand(i))); 3898 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3899 } 3900 3901 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3902 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3903 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3904 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3905 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3906 } 3907 3908 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3909 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3910 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3911 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3912 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3913 } 3914 3915 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3916 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3917 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3918 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3919 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3920 } 3921 3922 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3923 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3924 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3925 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3926 } 3927 3928 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3929 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3930 return setUnsignedRange(ZExt, 3931 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3932 } 3933 3934 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3935 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3936 return setUnsignedRange(SExt, 3937 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3938 } 3939 3940 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3941 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3942 return setUnsignedRange(Trunc, 3943 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3944 } 3945 3946 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3947 // If there's no unsigned wrap, the value will never be less than its 3948 // initial value. 3949 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3950 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3951 if (!C->getValue()->isZero()) 3952 ConservativeResult = 3953 ConservativeResult.intersectWith( 3954 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3955 3956 // TODO: non-affine addrec 3957 if (AddRec->isAffine()) { 3958 Type *Ty = AddRec->getType(); 3959 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3960 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3961 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3962 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3963 3964 const SCEV *Start = AddRec->getStart(); 3965 const SCEV *Step = AddRec->getStepRecurrence(*this); 3966 3967 ConstantRange StartRange = getUnsignedRange(Start); 3968 ConstantRange StepRange = getSignedRange(Step); 3969 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3970 ConstantRange EndRange = 3971 StartRange.add(MaxBECountRange.multiply(StepRange)); 3972 3973 // Check for overflow. This must be done with ConstantRange arithmetic 3974 // because we could be called from within the ScalarEvolution overflow 3975 // checking code. 3976 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3977 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3978 ConstantRange ExtMaxBECountRange = 3979 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3980 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3981 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3982 ExtEndRange) 3983 return setUnsignedRange(AddRec, ConservativeResult); 3984 3985 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3986 EndRange.getUnsignedMin()); 3987 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3988 EndRange.getUnsignedMax()); 3989 if (Min.isMinValue() && Max.isMaxValue()) 3990 return setUnsignedRange(AddRec, ConservativeResult); 3991 return setUnsignedRange(AddRec, 3992 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3993 } 3994 } 3995 3996 return setUnsignedRange(AddRec, ConservativeResult); 3997 } 3998 3999 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4000 // Check if the IR explicitly contains !range metadata. 4001 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4002 if (MDRange.hasValue()) 4003 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4004 4005 // For a SCEVUnknown, ask ValueTracking. 4006 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4007 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 4008 if (Ones == ~Zeros + 1) 4009 return setUnsignedRange(U, ConservativeResult); 4010 return setUnsignedRange(U, 4011 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 4012 } 4013 4014 return setUnsignedRange(S, ConservativeResult); 4015 } 4016 4017 /// getSignedRange - Determine the signed range for a particular SCEV. 4018 /// 4019 ConstantRange 4020 ScalarEvolution::getSignedRange(const SCEV *S) { 4021 // See if we've computed this range already. 4022 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 4023 if (I != SignedRanges.end()) 4024 return I->second; 4025 4026 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4027 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 4028 4029 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4030 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4031 4032 // If the value has known zeros, the maximum signed value will have those 4033 // known zeros as well. 4034 uint32_t TZ = GetMinTrailingZeros(S); 4035 if (TZ != 0) 4036 ConservativeResult = 4037 ConstantRange(APInt::getSignedMinValue(BitWidth), 4038 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4039 4040 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4041 ConstantRange X = getSignedRange(Add->getOperand(0)); 4042 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4043 X = X.add(getSignedRange(Add->getOperand(i))); 4044 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 4045 } 4046 4047 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4048 ConstantRange X = getSignedRange(Mul->getOperand(0)); 4049 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4050 X = X.multiply(getSignedRange(Mul->getOperand(i))); 4051 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 4052 } 4053 4054 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4055 ConstantRange X = getSignedRange(SMax->getOperand(0)); 4056 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4057 X = X.smax(getSignedRange(SMax->getOperand(i))); 4058 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 4059 } 4060 4061 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4062 ConstantRange X = getSignedRange(UMax->getOperand(0)); 4063 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4064 X = X.umax(getSignedRange(UMax->getOperand(i))); 4065 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 4066 } 4067 4068 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4069 ConstantRange X = getSignedRange(UDiv->getLHS()); 4070 ConstantRange Y = getSignedRange(UDiv->getRHS()); 4071 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 4072 } 4073 4074 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4075 ConstantRange X = getSignedRange(ZExt->getOperand()); 4076 return setSignedRange(ZExt, 4077 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4078 } 4079 4080 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4081 ConstantRange X = getSignedRange(SExt->getOperand()); 4082 return setSignedRange(SExt, 4083 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4084 } 4085 4086 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4087 ConstantRange X = getSignedRange(Trunc->getOperand()); 4088 return setSignedRange(Trunc, 4089 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4090 } 4091 4092 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4093 // If there's no signed wrap, and all the operands have the same sign or 4094 // zero, the value won't ever change sign. 4095 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4096 bool AllNonNeg = true; 4097 bool AllNonPos = true; 4098 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4099 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4100 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4101 } 4102 if (AllNonNeg) 4103 ConservativeResult = ConservativeResult.intersectWith( 4104 ConstantRange(APInt(BitWidth, 0), 4105 APInt::getSignedMinValue(BitWidth))); 4106 else if (AllNonPos) 4107 ConservativeResult = ConservativeResult.intersectWith( 4108 ConstantRange(APInt::getSignedMinValue(BitWidth), 4109 APInt(BitWidth, 1))); 4110 } 4111 4112 // TODO: non-affine addrec 4113 if (AddRec->isAffine()) { 4114 Type *Ty = AddRec->getType(); 4115 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4116 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4117 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4118 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4119 4120 const SCEV *Start = AddRec->getStart(); 4121 const SCEV *Step = AddRec->getStepRecurrence(*this); 4122 4123 ConstantRange StartRange = getSignedRange(Start); 4124 ConstantRange StepRange = getSignedRange(Step); 4125 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4126 ConstantRange EndRange = 4127 StartRange.add(MaxBECountRange.multiply(StepRange)); 4128 4129 // Check for overflow. This must be done with ConstantRange arithmetic 4130 // because we could be called from within the ScalarEvolution overflow 4131 // checking code. 4132 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 4133 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 4134 ConstantRange ExtMaxBECountRange = 4135 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 4136 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 4137 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 4138 ExtEndRange) 4139 return setSignedRange(AddRec, ConservativeResult); 4140 4141 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 4142 EndRange.getSignedMin()); 4143 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 4144 EndRange.getSignedMax()); 4145 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 4146 return setSignedRange(AddRec, ConservativeResult); 4147 return setSignedRange(AddRec, 4148 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 4149 } 4150 } 4151 4152 return setSignedRange(AddRec, ConservativeResult); 4153 } 4154 4155 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4156 // Check if the IR explicitly contains !range metadata. 4157 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4158 if (MDRange.hasValue()) 4159 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4160 4161 // For a SCEVUnknown, ask ValueTracking. 4162 if (!U->getValue()->getType()->isIntegerTy() && !DL) 4163 return setSignedRange(U, ConservativeResult); 4164 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); 4165 if (NS <= 1) 4166 return setSignedRange(U, ConservativeResult); 4167 return setSignedRange(U, ConservativeResult.intersectWith( 4168 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4169 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 4170 } 4171 4172 return setSignedRange(S, ConservativeResult); 4173 } 4174 4175 /// createSCEV - We know that there is no SCEV for the specified value. 4176 /// Analyze the expression. 4177 /// 4178 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4179 if (!isSCEVable(V->getType())) 4180 return getUnknown(V); 4181 4182 unsigned Opcode = Instruction::UserOp1; 4183 if (Instruction *I = dyn_cast<Instruction>(V)) { 4184 Opcode = I->getOpcode(); 4185 4186 // Don't attempt to analyze instructions in blocks that aren't 4187 // reachable. Such instructions don't matter, and they aren't required 4188 // to obey basic rules for definitions dominating uses which this 4189 // analysis depends on. 4190 if (!DT->isReachableFromEntry(I->getParent())) 4191 return getUnknown(V); 4192 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4193 Opcode = CE->getOpcode(); 4194 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4195 return getConstant(CI); 4196 else if (isa<ConstantPointerNull>(V)) 4197 return getConstant(V->getType(), 0); 4198 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4199 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4200 else 4201 return getUnknown(V); 4202 4203 Operator *U = cast<Operator>(V); 4204 switch (Opcode) { 4205 case Instruction::Add: { 4206 // The simple thing to do would be to just call getSCEV on both operands 4207 // and call getAddExpr with the result. However if we're looking at a 4208 // bunch of things all added together, this can be quite inefficient, 4209 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4210 // Instead, gather up all the operands and make a single getAddExpr call. 4211 // LLVM IR canonical form means we need only traverse the left operands. 4212 // 4213 // Don't apply this instruction's NSW or NUW flags to the new 4214 // expression. The instruction may be guarded by control flow that the 4215 // no-wrap behavior depends on. Non-control-equivalent instructions can be 4216 // mapped to the same SCEV expression, and it would be incorrect to transfer 4217 // NSW/NUW semantics to those operations. 4218 SmallVector<const SCEV *, 4> AddOps; 4219 AddOps.push_back(getSCEV(U->getOperand(1))); 4220 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 4221 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 4222 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 4223 break; 4224 U = cast<Operator>(Op); 4225 const SCEV *Op1 = getSCEV(U->getOperand(1)); 4226 if (Opcode == Instruction::Sub) 4227 AddOps.push_back(getNegativeSCEV(Op1)); 4228 else 4229 AddOps.push_back(Op1); 4230 } 4231 AddOps.push_back(getSCEV(U->getOperand(0))); 4232 return getAddExpr(AddOps); 4233 } 4234 case Instruction::Mul: { 4235 // Don't transfer NSW/NUW for the same reason as AddExpr. 4236 SmallVector<const SCEV *, 4> MulOps; 4237 MulOps.push_back(getSCEV(U->getOperand(1))); 4238 for (Value *Op = U->getOperand(0); 4239 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 4240 Op = U->getOperand(0)) { 4241 U = cast<Operator>(Op); 4242 MulOps.push_back(getSCEV(U->getOperand(1))); 4243 } 4244 MulOps.push_back(getSCEV(U->getOperand(0))); 4245 return getMulExpr(MulOps); 4246 } 4247 case Instruction::UDiv: 4248 return getUDivExpr(getSCEV(U->getOperand(0)), 4249 getSCEV(U->getOperand(1))); 4250 case Instruction::Sub: 4251 return getMinusSCEV(getSCEV(U->getOperand(0)), 4252 getSCEV(U->getOperand(1))); 4253 case Instruction::And: 4254 // For an expression like x&255 that merely masks off the high bits, 4255 // use zext(trunc(x)) as the SCEV expression. 4256 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4257 if (CI->isNullValue()) 4258 return getSCEV(U->getOperand(1)); 4259 if (CI->isAllOnesValue()) 4260 return getSCEV(U->getOperand(0)); 4261 const APInt &A = CI->getValue(); 4262 4263 // Instcombine's ShrinkDemandedConstant may strip bits out of 4264 // constants, obscuring what would otherwise be a low-bits mask. 4265 // Use computeKnownBits to compute what ShrinkDemandedConstant 4266 // knew about to reconstruct a low-bits mask value. 4267 unsigned LZ = A.countLeadingZeros(); 4268 unsigned TZ = A.countTrailingZeros(); 4269 unsigned BitWidth = A.getBitWidth(); 4270 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4271 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC, 4272 nullptr, DT); 4273 4274 APInt EffectiveMask = 4275 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4276 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4277 const SCEV *MulCount = getConstant( 4278 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4279 return getMulExpr( 4280 getZeroExtendExpr( 4281 getTruncateExpr( 4282 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4283 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4284 U->getType()), 4285 MulCount); 4286 } 4287 } 4288 break; 4289 4290 case Instruction::Or: 4291 // If the RHS of the Or is a constant, we may have something like: 4292 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4293 // optimizations will transparently handle this case. 4294 // 4295 // In order for this transformation to be safe, the LHS must be of the 4296 // form X*(2^n) and the Or constant must be less than 2^n. 4297 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4298 const SCEV *LHS = getSCEV(U->getOperand(0)); 4299 const APInt &CIVal = CI->getValue(); 4300 if (GetMinTrailingZeros(LHS) >= 4301 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4302 // Build a plain add SCEV. 4303 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4304 // If the LHS of the add was an addrec and it has no-wrap flags, 4305 // transfer the no-wrap flags, since an or won't introduce a wrap. 4306 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4307 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4308 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4309 OldAR->getNoWrapFlags()); 4310 } 4311 return S; 4312 } 4313 } 4314 break; 4315 case Instruction::Xor: 4316 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4317 // If the RHS of the xor is a signbit, then this is just an add. 4318 // Instcombine turns add of signbit into xor as a strength reduction step. 4319 if (CI->getValue().isSignBit()) 4320 return getAddExpr(getSCEV(U->getOperand(0)), 4321 getSCEV(U->getOperand(1))); 4322 4323 // If the RHS of xor is -1, then this is a not operation. 4324 if (CI->isAllOnesValue()) 4325 return getNotSCEV(getSCEV(U->getOperand(0))); 4326 4327 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4328 // This is a variant of the check for xor with -1, and it handles 4329 // the case where instcombine has trimmed non-demanded bits out 4330 // of an xor with -1. 4331 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4332 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4333 if (BO->getOpcode() == Instruction::And && 4334 LCI->getValue() == CI->getValue()) 4335 if (const SCEVZeroExtendExpr *Z = 4336 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4337 Type *UTy = U->getType(); 4338 const SCEV *Z0 = Z->getOperand(); 4339 Type *Z0Ty = Z0->getType(); 4340 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4341 4342 // If C is a low-bits mask, the zero extend is serving to 4343 // mask off the high bits. Complement the operand and 4344 // re-apply the zext. 4345 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4346 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4347 4348 // If C is a single bit, it may be in the sign-bit position 4349 // before the zero-extend. In this case, represent the xor 4350 // using an add, which is equivalent, and re-apply the zext. 4351 APInt Trunc = CI->getValue().trunc(Z0TySize); 4352 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4353 Trunc.isSignBit()) 4354 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4355 UTy); 4356 } 4357 } 4358 break; 4359 4360 case Instruction::Shl: 4361 // Turn shift left of a constant amount into a multiply. 4362 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4363 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4364 4365 // If the shift count is not less than the bitwidth, the result of 4366 // the shift is undefined. Don't try to analyze it, because the 4367 // resolution chosen here may differ from the resolution chosen in 4368 // other parts of the compiler. 4369 if (SA->getValue().uge(BitWidth)) 4370 break; 4371 4372 Constant *X = ConstantInt::get(getContext(), 4373 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4374 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4375 } 4376 break; 4377 4378 case Instruction::LShr: 4379 // Turn logical shift right of a constant into a unsigned divide. 4380 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4381 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4382 4383 // If the shift count is not less than the bitwidth, the result of 4384 // the shift is undefined. Don't try to analyze it, because the 4385 // resolution chosen here may differ from the resolution chosen in 4386 // other parts of the compiler. 4387 if (SA->getValue().uge(BitWidth)) 4388 break; 4389 4390 Constant *X = ConstantInt::get(getContext(), 4391 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4392 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4393 } 4394 break; 4395 4396 case Instruction::AShr: 4397 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4398 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4399 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4400 if (L->getOpcode() == Instruction::Shl && 4401 L->getOperand(1) == U->getOperand(1)) { 4402 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4403 4404 // If the shift count is not less than the bitwidth, the result of 4405 // the shift is undefined. Don't try to analyze it, because the 4406 // resolution chosen here may differ from the resolution chosen in 4407 // other parts of the compiler. 4408 if (CI->getValue().uge(BitWidth)) 4409 break; 4410 4411 uint64_t Amt = BitWidth - CI->getZExtValue(); 4412 if (Amt == BitWidth) 4413 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4414 return 4415 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4416 IntegerType::get(getContext(), 4417 Amt)), 4418 U->getType()); 4419 } 4420 break; 4421 4422 case Instruction::Trunc: 4423 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4424 4425 case Instruction::ZExt: 4426 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4427 4428 case Instruction::SExt: 4429 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4430 4431 case Instruction::BitCast: 4432 // BitCasts are no-op casts so we just eliminate the cast. 4433 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4434 return getSCEV(U->getOperand(0)); 4435 break; 4436 4437 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4438 // lead to pointer expressions which cannot safely be expanded to GEPs, 4439 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4440 // simplifying integer expressions. 4441 4442 case Instruction::GetElementPtr: 4443 return createNodeForGEP(cast<GEPOperator>(U)); 4444 4445 case Instruction::PHI: 4446 return createNodeForPHI(cast<PHINode>(U)); 4447 4448 case Instruction::Select: 4449 // This could be a smax or umax that was lowered earlier. 4450 // Try to recover it. 4451 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4452 Value *LHS = ICI->getOperand(0); 4453 Value *RHS = ICI->getOperand(1); 4454 switch (ICI->getPredicate()) { 4455 case ICmpInst::ICMP_SLT: 4456 case ICmpInst::ICMP_SLE: 4457 std::swap(LHS, RHS); 4458 // fall through 4459 case ICmpInst::ICMP_SGT: 4460 case ICmpInst::ICMP_SGE: 4461 // a >s b ? a+x : b+x -> smax(a, b)+x 4462 // a >s b ? b+x : a+x -> smin(a, b)+x 4463 if (getTypeSizeInBits(LHS->getType()) <= 4464 getTypeSizeInBits(U->getType())) { 4465 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4466 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4467 const SCEV *LA = getSCEV(U->getOperand(1)); 4468 const SCEV *RA = getSCEV(U->getOperand(2)); 4469 const SCEV *LDiff = getMinusSCEV(LA, LS); 4470 const SCEV *RDiff = getMinusSCEV(RA, RS); 4471 if (LDiff == RDiff) 4472 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4473 LDiff = getMinusSCEV(LA, RS); 4474 RDiff = getMinusSCEV(RA, LS); 4475 if (LDiff == RDiff) 4476 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4477 } 4478 break; 4479 case ICmpInst::ICMP_ULT: 4480 case ICmpInst::ICMP_ULE: 4481 std::swap(LHS, RHS); 4482 // fall through 4483 case ICmpInst::ICMP_UGT: 4484 case ICmpInst::ICMP_UGE: 4485 // a >u b ? a+x : b+x -> umax(a, b)+x 4486 // a >u b ? b+x : a+x -> umin(a, b)+x 4487 if (getTypeSizeInBits(LHS->getType()) <= 4488 getTypeSizeInBits(U->getType())) { 4489 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4490 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4491 const SCEV *LA = getSCEV(U->getOperand(1)); 4492 const SCEV *RA = getSCEV(U->getOperand(2)); 4493 const SCEV *LDiff = getMinusSCEV(LA, LS); 4494 const SCEV *RDiff = getMinusSCEV(RA, RS); 4495 if (LDiff == RDiff) 4496 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4497 LDiff = getMinusSCEV(LA, RS); 4498 RDiff = getMinusSCEV(RA, LS); 4499 if (LDiff == RDiff) 4500 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4501 } 4502 break; 4503 case ICmpInst::ICMP_NE: 4504 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4505 if (getTypeSizeInBits(LHS->getType()) <= 4506 getTypeSizeInBits(U->getType()) && 4507 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4508 const SCEV *One = getConstant(U->getType(), 1); 4509 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4510 const SCEV *LA = getSCEV(U->getOperand(1)); 4511 const SCEV *RA = getSCEV(U->getOperand(2)); 4512 const SCEV *LDiff = getMinusSCEV(LA, LS); 4513 const SCEV *RDiff = getMinusSCEV(RA, One); 4514 if (LDiff == RDiff) 4515 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4516 } 4517 break; 4518 case ICmpInst::ICMP_EQ: 4519 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4520 if (getTypeSizeInBits(LHS->getType()) <= 4521 getTypeSizeInBits(U->getType()) && 4522 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4523 const SCEV *One = getConstant(U->getType(), 1); 4524 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4525 const SCEV *LA = getSCEV(U->getOperand(1)); 4526 const SCEV *RA = getSCEV(U->getOperand(2)); 4527 const SCEV *LDiff = getMinusSCEV(LA, One); 4528 const SCEV *RDiff = getMinusSCEV(RA, LS); 4529 if (LDiff == RDiff) 4530 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4531 } 4532 break; 4533 default: 4534 break; 4535 } 4536 } 4537 4538 default: // We cannot analyze this expression. 4539 break; 4540 } 4541 4542 return getUnknown(V); 4543 } 4544 4545 4546 4547 //===----------------------------------------------------------------------===// 4548 // Iteration Count Computation Code 4549 // 4550 4551 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4552 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4553 return getSmallConstantTripCount(L, ExitingBB); 4554 4555 // No trip count information for multiple exits. 4556 return 0; 4557 } 4558 4559 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4560 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4561 /// constant. Will also return 0 if the maximum trip count is very large (>= 4562 /// 2^32). 4563 /// 4564 /// This "trip count" assumes that control exits via ExitingBlock. More 4565 /// precisely, it is the number of times that control may reach ExitingBlock 4566 /// before taking the branch. For loops with multiple exits, it may not be the 4567 /// number times that the loop header executes because the loop may exit 4568 /// prematurely via another branch. 4569 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4570 BasicBlock *ExitingBlock) { 4571 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4572 assert(L->isLoopExiting(ExitingBlock) && 4573 "Exiting block must actually branch out of the loop!"); 4574 const SCEVConstant *ExitCount = 4575 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4576 if (!ExitCount) 4577 return 0; 4578 4579 ConstantInt *ExitConst = ExitCount->getValue(); 4580 4581 // Guard against huge trip counts. 4582 if (ExitConst->getValue().getActiveBits() > 32) 4583 return 0; 4584 4585 // In case of integer overflow, this returns 0, which is correct. 4586 return ((unsigned)ExitConst->getZExtValue()) + 1; 4587 } 4588 4589 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4590 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4591 return getSmallConstantTripMultiple(L, ExitingBB); 4592 4593 // No trip multiple information for multiple exits. 4594 return 0; 4595 } 4596 4597 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4598 /// trip count of this loop as a normal unsigned value, if possible. This 4599 /// means that the actual trip count is always a multiple of the returned 4600 /// value (don't forget the trip count could very well be zero as well!). 4601 /// 4602 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4603 /// multiple of a constant (which is also the case if the trip count is simply 4604 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4605 /// if the trip count is very large (>= 2^32). 4606 /// 4607 /// As explained in the comments for getSmallConstantTripCount, this assumes 4608 /// that control exits the loop via ExitingBlock. 4609 unsigned 4610 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4611 BasicBlock *ExitingBlock) { 4612 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4613 assert(L->isLoopExiting(ExitingBlock) && 4614 "Exiting block must actually branch out of the loop!"); 4615 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4616 if (ExitCount == getCouldNotCompute()) 4617 return 1; 4618 4619 // Get the trip count from the BE count by adding 1. 4620 const SCEV *TCMul = getAddExpr(ExitCount, 4621 getConstant(ExitCount->getType(), 1)); 4622 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4623 // to factor simple cases. 4624 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4625 TCMul = Mul->getOperand(0); 4626 4627 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4628 if (!MulC) 4629 return 1; 4630 4631 ConstantInt *Result = MulC->getValue(); 4632 4633 // Guard against huge trip counts (this requires checking 4634 // for zero to handle the case where the trip count == -1 and the 4635 // addition wraps). 4636 if (!Result || Result->getValue().getActiveBits() > 32 || 4637 Result->getValue().getActiveBits() == 0) 4638 return 1; 4639 4640 return (unsigned)Result->getZExtValue(); 4641 } 4642 4643 // getExitCount - Get the expression for the number of loop iterations for which 4644 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4645 // SCEVCouldNotCompute. 4646 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4647 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4648 } 4649 4650 /// getBackedgeTakenCount - If the specified loop has a predictable 4651 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4652 /// object. The backedge-taken count is the number of times the loop header 4653 /// will be branched to from within the loop. This is one less than the 4654 /// trip count of the loop, since it doesn't count the first iteration, 4655 /// when the header is branched to from outside the loop. 4656 /// 4657 /// Note that it is not valid to call this method on a loop without a 4658 /// loop-invariant backedge-taken count (see 4659 /// hasLoopInvariantBackedgeTakenCount). 4660 /// 4661 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4662 return getBackedgeTakenInfo(L).getExact(this); 4663 } 4664 4665 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4666 /// return the least SCEV value that is known never to be less than the 4667 /// actual backedge taken count. 4668 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4669 return getBackedgeTakenInfo(L).getMax(this); 4670 } 4671 4672 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4673 /// onto the given Worklist. 4674 static void 4675 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4676 BasicBlock *Header = L->getHeader(); 4677 4678 // Push all Loop-header PHIs onto the Worklist stack. 4679 for (BasicBlock::iterator I = Header->begin(); 4680 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4681 Worklist.push_back(PN); 4682 } 4683 4684 const ScalarEvolution::BackedgeTakenInfo & 4685 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4686 // Initially insert an invalid entry for this loop. If the insertion 4687 // succeeds, proceed to actually compute a backedge-taken count and 4688 // update the value. The temporary CouldNotCompute value tells SCEV 4689 // code elsewhere that it shouldn't attempt to request a new 4690 // backedge-taken count, which could result in infinite recursion. 4691 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4692 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4693 if (!Pair.second) 4694 return Pair.first->second; 4695 4696 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4697 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4698 // must be cleared in this scope. 4699 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4700 4701 if (Result.getExact(this) != getCouldNotCompute()) { 4702 assert(isLoopInvariant(Result.getExact(this), L) && 4703 isLoopInvariant(Result.getMax(this), L) && 4704 "Computed backedge-taken count isn't loop invariant for loop!"); 4705 ++NumTripCountsComputed; 4706 } 4707 else if (Result.getMax(this) == getCouldNotCompute() && 4708 isa<PHINode>(L->getHeader()->begin())) { 4709 // Only count loops that have phi nodes as not being computable. 4710 ++NumTripCountsNotComputed; 4711 } 4712 4713 // Now that we know more about the trip count for this loop, forget any 4714 // existing SCEV values for PHI nodes in this loop since they are only 4715 // conservative estimates made without the benefit of trip count 4716 // information. This is similar to the code in forgetLoop, except that 4717 // it handles SCEVUnknown PHI nodes specially. 4718 if (Result.hasAnyInfo()) { 4719 SmallVector<Instruction *, 16> Worklist; 4720 PushLoopPHIs(L, Worklist); 4721 4722 SmallPtrSet<Instruction *, 8> Visited; 4723 while (!Worklist.empty()) { 4724 Instruction *I = Worklist.pop_back_val(); 4725 if (!Visited.insert(I).second) 4726 continue; 4727 4728 ValueExprMapType::iterator It = 4729 ValueExprMap.find_as(static_cast<Value *>(I)); 4730 if (It != ValueExprMap.end()) { 4731 const SCEV *Old = It->second; 4732 4733 // SCEVUnknown for a PHI either means that it has an unrecognized 4734 // structure, or it's a PHI that's in the progress of being computed 4735 // by createNodeForPHI. In the former case, additional loop trip 4736 // count information isn't going to change anything. In the later 4737 // case, createNodeForPHI will perform the necessary updates on its 4738 // own when it gets to that point. 4739 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4740 forgetMemoizedResults(Old); 4741 ValueExprMap.erase(It); 4742 } 4743 if (PHINode *PN = dyn_cast<PHINode>(I)) 4744 ConstantEvolutionLoopExitValue.erase(PN); 4745 } 4746 4747 PushDefUseChildren(I, Worklist); 4748 } 4749 } 4750 4751 // Re-lookup the insert position, since the call to 4752 // ComputeBackedgeTakenCount above could result in a 4753 // recusive call to getBackedgeTakenInfo (on a different 4754 // loop), which would invalidate the iterator computed 4755 // earlier. 4756 return BackedgeTakenCounts.find(L)->second = Result; 4757 } 4758 4759 /// forgetLoop - This method should be called by the client when it has 4760 /// changed a loop in a way that may effect ScalarEvolution's ability to 4761 /// compute a trip count, or if the loop is deleted. 4762 void ScalarEvolution::forgetLoop(const Loop *L) { 4763 // Drop any stored trip count value. 4764 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4765 BackedgeTakenCounts.find(L); 4766 if (BTCPos != BackedgeTakenCounts.end()) { 4767 BTCPos->second.clear(); 4768 BackedgeTakenCounts.erase(BTCPos); 4769 } 4770 4771 // Drop information about expressions based on loop-header PHIs. 4772 SmallVector<Instruction *, 16> Worklist; 4773 PushLoopPHIs(L, Worklist); 4774 4775 SmallPtrSet<Instruction *, 8> Visited; 4776 while (!Worklist.empty()) { 4777 Instruction *I = Worklist.pop_back_val(); 4778 if (!Visited.insert(I).second) 4779 continue; 4780 4781 ValueExprMapType::iterator It = 4782 ValueExprMap.find_as(static_cast<Value *>(I)); 4783 if (It != ValueExprMap.end()) { 4784 forgetMemoizedResults(It->second); 4785 ValueExprMap.erase(It); 4786 if (PHINode *PN = dyn_cast<PHINode>(I)) 4787 ConstantEvolutionLoopExitValue.erase(PN); 4788 } 4789 4790 PushDefUseChildren(I, Worklist); 4791 } 4792 4793 // Forget all contained loops too, to avoid dangling entries in the 4794 // ValuesAtScopes map. 4795 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4796 forgetLoop(*I); 4797 } 4798 4799 /// forgetValue - This method should be called by the client when it has 4800 /// changed a value in a way that may effect its value, or which may 4801 /// disconnect it from a def-use chain linking it to a loop. 4802 void ScalarEvolution::forgetValue(Value *V) { 4803 Instruction *I = dyn_cast<Instruction>(V); 4804 if (!I) return; 4805 4806 // Drop information about expressions based on loop-header PHIs. 4807 SmallVector<Instruction *, 16> Worklist; 4808 Worklist.push_back(I); 4809 4810 SmallPtrSet<Instruction *, 8> Visited; 4811 while (!Worklist.empty()) { 4812 I = Worklist.pop_back_val(); 4813 if (!Visited.insert(I).second) 4814 continue; 4815 4816 ValueExprMapType::iterator It = 4817 ValueExprMap.find_as(static_cast<Value *>(I)); 4818 if (It != ValueExprMap.end()) { 4819 forgetMemoizedResults(It->second); 4820 ValueExprMap.erase(It); 4821 if (PHINode *PN = dyn_cast<PHINode>(I)) 4822 ConstantEvolutionLoopExitValue.erase(PN); 4823 } 4824 4825 PushDefUseChildren(I, Worklist); 4826 } 4827 } 4828 4829 /// getExact - Get the exact loop backedge taken count considering all loop 4830 /// exits. A computable result can only be return for loops with a single exit. 4831 /// Returning the minimum taken count among all exits is incorrect because one 4832 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4833 /// the limit of each loop test is never skipped. This is a valid assumption as 4834 /// long as the loop exits via that test. For precise results, it is the 4835 /// caller's responsibility to specify the relevant loop exit using 4836 /// getExact(ExitingBlock, SE). 4837 const SCEV * 4838 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4839 // If any exits were not computable, the loop is not computable. 4840 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4841 4842 // We need exactly one computable exit. 4843 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4844 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4845 4846 const SCEV *BECount = nullptr; 4847 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4848 ENT != nullptr; ENT = ENT->getNextExit()) { 4849 4850 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4851 4852 if (!BECount) 4853 BECount = ENT->ExactNotTaken; 4854 else if (BECount != ENT->ExactNotTaken) 4855 return SE->getCouldNotCompute(); 4856 } 4857 assert(BECount && "Invalid not taken count for loop exit"); 4858 return BECount; 4859 } 4860 4861 /// getExact - Get the exact not taken count for this loop exit. 4862 const SCEV * 4863 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4864 ScalarEvolution *SE) const { 4865 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4866 ENT != nullptr; ENT = ENT->getNextExit()) { 4867 4868 if (ENT->ExitingBlock == ExitingBlock) 4869 return ENT->ExactNotTaken; 4870 } 4871 return SE->getCouldNotCompute(); 4872 } 4873 4874 /// getMax - Get the max backedge taken count for the loop. 4875 const SCEV * 4876 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4877 return Max ? Max : SE->getCouldNotCompute(); 4878 } 4879 4880 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4881 ScalarEvolution *SE) const { 4882 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4883 return true; 4884 4885 if (!ExitNotTaken.ExitingBlock) 4886 return false; 4887 4888 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4889 ENT != nullptr; ENT = ENT->getNextExit()) { 4890 4891 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4892 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4893 return true; 4894 } 4895 } 4896 return false; 4897 } 4898 4899 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4900 /// computable exit into a persistent ExitNotTakenInfo array. 4901 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4902 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4903 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4904 4905 if (!Complete) 4906 ExitNotTaken.setIncomplete(); 4907 4908 unsigned NumExits = ExitCounts.size(); 4909 if (NumExits == 0) return; 4910 4911 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4912 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4913 if (NumExits == 1) return; 4914 4915 // Handle the rare case of multiple computable exits. 4916 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4917 4918 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4919 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4920 PrevENT->setNextExit(ENT); 4921 ENT->ExitingBlock = ExitCounts[i].first; 4922 ENT->ExactNotTaken = ExitCounts[i].second; 4923 } 4924 } 4925 4926 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4927 void ScalarEvolution::BackedgeTakenInfo::clear() { 4928 ExitNotTaken.ExitingBlock = nullptr; 4929 ExitNotTaken.ExactNotTaken = nullptr; 4930 delete[] ExitNotTaken.getNextExit(); 4931 } 4932 4933 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4934 /// of the specified loop will execute. 4935 ScalarEvolution::BackedgeTakenInfo 4936 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4937 SmallVector<BasicBlock *, 8> ExitingBlocks; 4938 L->getExitingBlocks(ExitingBlocks); 4939 4940 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4941 bool CouldComputeBECount = true; 4942 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4943 const SCEV *MustExitMaxBECount = nullptr; 4944 const SCEV *MayExitMaxBECount = nullptr; 4945 4946 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4947 // and compute maxBECount. 4948 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4949 BasicBlock *ExitBB = ExitingBlocks[i]; 4950 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4951 4952 // 1. For each exit that can be computed, add an entry to ExitCounts. 4953 // CouldComputeBECount is true only if all exits can be computed. 4954 if (EL.Exact == getCouldNotCompute()) 4955 // We couldn't compute an exact value for this exit, so 4956 // we won't be able to compute an exact value for the loop. 4957 CouldComputeBECount = false; 4958 else 4959 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4960 4961 // 2. Derive the loop's MaxBECount from each exit's max number of 4962 // non-exiting iterations. Partition the loop exits into two kinds: 4963 // LoopMustExits and LoopMayExits. 4964 // 4965 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4966 // is a LoopMayExit. If any computable LoopMustExit is found, then 4967 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4968 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4969 // considered greater than any computable EL.Max. 4970 if (EL.Max != getCouldNotCompute() && Latch && 4971 DT->dominates(ExitBB, Latch)) { 4972 if (!MustExitMaxBECount) 4973 MustExitMaxBECount = EL.Max; 4974 else { 4975 MustExitMaxBECount = 4976 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4977 } 4978 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4979 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4980 MayExitMaxBECount = EL.Max; 4981 else { 4982 MayExitMaxBECount = 4983 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4984 } 4985 } 4986 } 4987 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4988 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4989 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4990 } 4991 4992 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4993 /// loop will execute if it exits via the specified block. 4994 ScalarEvolution::ExitLimit 4995 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4996 4997 // Okay, we've chosen an exiting block. See what condition causes us to 4998 // exit at this block and remember the exit block and whether all other targets 4999 // lead to the loop header. 5000 bool MustExecuteLoopHeader = true; 5001 BasicBlock *Exit = nullptr; 5002 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5003 SI != SE; ++SI) 5004 if (!L->contains(*SI)) { 5005 if (Exit) // Multiple exit successors. 5006 return getCouldNotCompute(); 5007 Exit = *SI; 5008 } else if (*SI != L->getHeader()) { 5009 MustExecuteLoopHeader = false; 5010 } 5011 5012 // At this point, we know we have a conditional branch that determines whether 5013 // the loop is exited. However, we don't know if the branch is executed each 5014 // time through the loop. If not, then the execution count of the branch will 5015 // not be equal to the trip count of the loop. 5016 // 5017 // Currently we check for this by checking to see if the Exit branch goes to 5018 // the loop header. If so, we know it will always execute the same number of 5019 // times as the loop. We also handle the case where the exit block *is* the 5020 // loop header. This is common for un-rotated loops. 5021 // 5022 // If both of those tests fail, walk up the unique predecessor chain to the 5023 // header, stopping if there is an edge that doesn't exit the loop. If the 5024 // header is reached, the execution count of the branch will be equal to the 5025 // trip count of the loop. 5026 // 5027 // More extensive analysis could be done to handle more cases here. 5028 // 5029 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5030 // The simple checks failed, try climbing the unique predecessor chain 5031 // up to the header. 5032 bool Ok = false; 5033 for (BasicBlock *BB = ExitingBlock; BB; ) { 5034 BasicBlock *Pred = BB->getUniquePredecessor(); 5035 if (!Pred) 5036 return getCouldNotCompute(); 5037 TerminatorInst *PredTerm = Pred->getTerminator(); 5038 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 5039 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 5040 if (PredSucc == BB) 5041 continue; 5042 // If the predecessor has a successor that isn't BB and isn't 5043 // outside the loop, assume the worst. 5044 if (L->contains(PredSucc)) 5045 return getCouldNotCompute(); 5046 } 5047 if (Pred == L->getHeader()) { 5048 Ok = true; 5049 break; 5050 } 5051 BB = Pred; 5052 } 5053 if (!Ok) 5054 return getCouldNotCompute(); 5055 } 5056 5057 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5058 TerminatorInst *Term = ExitingBlock->getTerminator(); 5059 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5060 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5061 // Proceed to the next level to examine the exit condition expression. 5062 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5063 BI->getSuccessor(1), 5064 /*ControlsExit=*/IsOnlyExit); 5065 } 5066 5067 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5068 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5069 /*ControlsExit=*/IsOnlyExit); 5070 5071 return getCouldNotCompute(); 5072 } 5073 5074 /// ComputeExitLimitFromCond - Compute the number of times the 5075 /// backedge of the specified loop will execute if its exit condition 5076 /// were a conditional branch of ExitCond, TBB, and FBB. 5077 /// 5078 /// @param ControlsExit is true if ExitCond directly controls the exit 5079 /// branch. In this case, we can assume that the loop exits only if the 5080 /// condition is true and can infer that failing to meet the condition prior to 5081 /// integer wraparound results in undefined behavior. 5082 ScalarEvolution::ExitLimit 5083 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5084 Value *ExitCond, 5085 BasicBlock *TBB, 5086 BasicBlock *FBB, 5087 bool ControlsExit) { 5088 // Check if the controlling expression for this loop is an And or Or. 5089 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5090 if (BO->getOpcode() == Instruction::And) { 5091 // Recurse on the operands of the and. 5092 bool EitherMayExit = L->contains(TBB); 5093 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5094 ControlsExit && !EitherMayExit); 5095 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5096 ControlsExit && !EitherMayExit); 5097 const SCEV *BECount = getCouldNotCompute(); 5098 const SCEV *MaxBECount = getCouldNotCompute(); 5099 if (EitherMayExit) { 5100 // Both conditions must be true for the loop to continue executing. 5101 // Choose the less conservative count. 5102 if (EL0.Exact == getCouldNotCompute() || 5103 EL1.Exact == getCouldNotCompute()) 5104 BECount = getCouldNotCompute(); 5105 else 5106 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5107 if (EL0.Max == getCouldNotCompute()) 5108 MaxBECount = EL1.Max; 5109 else if (EL1.Max == getCouldNotCompute()) 5110 MaxBECount = EL0.Max; 5111 else 5112 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5113 } else { 5114 // Both conditions must be true at the same time for the loop to exit. 5115 // For now, be conservative. 5116 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5117 if (EL0.Max == EL1.Max) 5118 MaxBECount = EL0.Max; 5119 if (EL0.Exact == EL1.Exact) 5120 BECount = EL0.Exact; 5121 } 5122 5123 return ExitLimit(BECount, MaxBECount); 5124 } 5125 if (BO->getOpcode() == Instruction::Or) { 5126 // Recurse on the operands of the or. 5127 bool EitherMayExit = L->contains(FBB); 5128 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5129 ControlsExit && !EitherMayExit); 5130 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5131 ControlsExit && !EitherMayExit); 5132 const SCEV *BECount = getCouldNotCompute(); 5133 const SCEV *MaxBECount = getCouldNotCompute(); 5134 if (EitherMayExit) { 5135 // Both conditions must be false for the loop to continue executing. 5136 // Choose the less conservative count. 5137 if (EL0.Exact == getCouldNotCompute() || 5138 EL1.Exact == getCouldNotCompute()) 5139 BECount = getCouldNotCompute(); 5140 else 5141 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5142 if (EL0.Max == getCouldNotCompute()) 5143 MaxBECount = EL1.Max; 5144 else if (EL1.Max == getCouldNotCompute()) 5145 MaxBECount = EL0.Max; 5146 else 5147 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5148 } else { 5149 // Both conditions must be false at the same time for the loop to exit. 5150 // For now, be conservative. 5151 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5152 if (EL0.Max == EL1.Max) 5153 MaxBECount = EL0.Max; 5154 if (EL0.Exact == EL1.Exact) 5155 BECount = EL0.Exact; 5156 } 5157 5158 return ExitLimit(BECount, MaxBECount); 5159 } 5160 } 5161 5162 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5163 // Proceed to the next level to examine the icmp. 5164 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5165 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5166 5167 // Check for a constant condition. These are normally stripped out by 5168 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5169 // preserve the CFG and is temporarily leaving constant conditions 5170 // in place. 5171 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5172 if (L->contains(FBB) == !CI->getZExtValue()) 5173 // The backedge is always taken. 5174 return getCouldNotCompute(); 5175 else 5176 // The backedge is never taken. 5177 return getConstant(CI->getType(), 0); 5178 } 5179 5180 // If it's not an integer or pointer comparison then compute it the hard way. 5181 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5182 } 5183 5184 /// ComputeExitLimitFromICmp - Compute the number of times the 5185 /// backedge of the specified loop will execute if its exit condition 5186 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5187 ScalarEvolution::ExitLimit 5188 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5189 ICmpInst *ExitCond, 5190 BasicBlock *TBB, 5191 BasicBlock *FBB, 5192 bool ControlsExit) { 5193 5194 // If the condition was exit on true, convert the condition to exit on false 5195 ICmpInst::Predicate Cond; 5196 if (!L->contains(FBB)) 5197 Cond = ExitCond->getPredicate(); 5198 else 5199 Cond = ExitCond->getInversePredicate(); 5200 5201 // Handle common loops like: for (X = "string"; *X; ++X) 5202 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5203 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5204 ExitLimit ItCnt = 5205 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5206 if (ItCnt.hasAnyInfo()) 5207 return ItCnt; 5208 } 5209 5210 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5211 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5212 5213 // Try to evaluate any dependencies out of the loop. 5214 LHS = getSCEVAtScope(LHS, L); 5215 RHS = getSCEVAtScope(RHS, L); 5216 5217 // At this point, we would like to compute how many iterations of the 5218 // loop the predicate will return true for these inputs. 5219 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5220 // If there is a loop-invariant, force it into the RHS. 5221 std::swap(LHS, RHS); 5222 Cond = ICmpInst::getSwappedPredicate(Cond); 5223 } 5224 5225 // Simplify the operands before analyzing them. 5226 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5227 5228 // If we have a comparison of a chrec against a constant, try to use value 5229 // ranges to answer this query. 5230 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5231 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5232 if (AddRec->getLoop() == L) { 5233 // Form the constant range. 5234 ConstantRange CompRange( 5235 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5236 5237 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5238 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5239 } 5240 5241 switch (Cond) { 5242 case ICmpInst::ICMP_NE: { // while (X != Y) 5243 // Convert to: while (X-Y != 0) 5244 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5245 if (EL.hasAnyInfo()) return EL; 5246 break; 5247 } 5248 case ICmpInst::ICMP_EQ: { // while (X == Y) 5249 // Convert to: while (X-Y == 0) 5250 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5251 if (EL.hasAnyInfo()) return EL; 5252 break; 5253 } 5254 case ICmpInst::ICMP_SLT: 5255 case ICmpInst::ICMP_ULT: { // while (X < Y) 5256 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5257 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5258 if (EL.hasAnyInfo()) return EL; 5259 break; 5260 } 5261 case ICmpInst::ICMP_SGT: 5262 case ICmpInst::ICMP_UGT: { // while (X > Y) 5263 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5264 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5265 if (EL.hasAnyInfo()) return EL; 5266 break; 5267 } 5268 default: 5269 #if 0 5270 dbgs() << "ComputeBackedgeTakenCount "; 5271 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5272 dbgs() << "[unsigned] "; 5273 dbgs() << *LHS << " " 5274 << Instruction::getOpcodeName(Instruction::ICmp) 5275 << " " << *RHS << "\n"; 5276 #endif 5277 break; 5278 } 5279 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5280 } 5281 5282 ScalarEvolution::ExitLimit 5283 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5284 SwitchInst *Switch, 5285 BasicBlock *ExitingBlock, 5286 bool ControlsExit) { 5287 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5288 5289 // Give up if the exit is the default dest of a switch. 5290 if (Switch->getDefaultDest() == ExitingBlock) 5291 return getCouldNotCompute(); 5292 5293 assert(L->contains(Switch->getDefaultDest()) && 5294 "Default case must not exit the loop!"); 5295 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5296 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5297 5298 // while (X != Y) --> while (X-Y != 0) 5299 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5300 if (EL.hasAnyInfo()) 5301 return EL; 5302 5303 return getCouldNotCompute(); 5304 } 5305 5306 static ConstantInt * 5307 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5308 ScalarEvolution &SE) { 5309 const SCEV *InVal = SE.getConstant(C); 5310 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5311 assert(isa<SCEVConstant>(Val) && 5312 "Evaluation of SCEV at constant didn't fold correctly?"); 5313 return cast<SCEVConstant>(Val)->getValue(); 5314 } 5315 5316 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5317 /// 'icmp op load X, cst', try to see if we can compute the backedge 5318 /// execution count. 5319 ScalarEvolution::ExitLimit 5320 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5321 LoadInst *LI, 5322 Constant *RHS, 5323 const Loop *L, 5324 ICmpInst::Predicate predicate) { 5325 5326 if (LI->isVolatile()) return getCouldNotCompute(); 5327 5328 // Check to see if the loaded pointer is a getelementptr of a global. 5329 // TODO: Use SCEV instead of manually grubbing with GEPs. 5330 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5331 if (!GEP) return getCouldNotCompute(); 5332 5333 // Make sure that it is really a constant global we are gepping, with an 5334 // initializer, and make sure the first IDX is really 0. 5335 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5336 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5337 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5338 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5339 return getCouldNotCompute(); 5340 5341 // Okay, we allow one non-constant index into the GEP instruction. 5342 Value *VarIdx = nullptr; 5343 std::vector<Constant*> Indexes; 5344 unsigned VarIdxNum = 0; 5345 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5346 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5347 Indexes.push_back(CI); 5348 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5349 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5350 VarIdx = GEP->getOperand(i); 5351 VarIdxNum = i-2; 5352 Indexes.push_back(nullptr); 5353 } 5354 5355 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5356 if (!VarIdx) 5357 return getCouldNotCompute(); 5358 5359 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5360 // Check to see if X is a loop variant variable value now. 5361 const SCEV *Idx = getSCEV(VarIdx); 5362 Idx = getSCEVAtScope(Idx, L); 5363 5364 // We can only recognize very limited forms of loop index expressions, in 5365 // particular, only affine AddRec's like {C1,+,C2}. 5366 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5367 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5368 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5369 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5370 return getCouldNotCompute(); 5371 5372 unsigned MaxSteps = MaxBruteForceIterations; 5373 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5374 ConstantInt *ItCst = ConstantInt::get( 5375 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5376 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5377 5378 // Form the GEP offset. 5379 Indexes[VarIdxNum] = Val; 5380 5381 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5382 Indexes); 5383 if (!Result) break; // Cannot compute! 5384 5385 // Evaluate the condition for this iteration. 5386 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5387 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5388 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5389 #if 0 5390 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5391 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5392 << "***\n"; 5393 #endif 5394 ++NumArrayLenItCounts; 5395 return getConstant(ItCst); // Found terminating iteration! 5396 } 5397 } 5398 return getCouldNotCompute(); 5399 } 5400 5401 5402 /// CanConstantFold - Return true if we can constant fold an instruction of the 5403 /// specified type, assuming that all operands were constants. 5404 static bool CanConstantFold(const Instruction *I) { 5405 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5406 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5407 isa<LoadInst>(I)) 5408 return true; 5409 5410 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5411 if (const Function *F = CI->getCalledFunction()) 5412 return canConstantFoldCallTo(F); 5413 return false; 5414 } 5415 5416 /// Determine whether this instruction can constant evolve within this loop 5417 /// assuming its operands can all constant evolve. 5418 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5419 // An instruction outside of the loop can't be derived from a loop PHI. 5420 if (!L->contains(I)) return false; 5421 5422 if (isa<PHINode>(I)) { 5423 if (L->getHeader() == I->getParent()) 5424 return true; 5425 else 5426 // We don't currently keep track of the control flow needed to evaluate 5427 // PHIs, so we cannot handle PHIs inside of loops. 5428 return false; 5429 } 5430 5431 // If we won't be able to constant fold this expression even if the operands 5432 // are constants, bail early. 5433 return CanConstantFold(I); 5434 } 5435 5436 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5437 /// recursing through each instruction operand until reaching a loop header phi. 5438 static PHINode * 5439 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5440 DenseMap<Instruction *, PHINode *> &PHIMap) { 5441 5442 // Otherwise, we can evaluate this instruction if all of its operands are 5443 // constant or derived from a PHI node themselves. 5444 PHINode *PHI = nullptr; 5445 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5446 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5447 5448 if (isa<Constant>(*OpI)) continue; 5449 5450 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5451 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5452 5453 PHINode *P = dyn_cast<PHINode>(OpInst); 5454 if (!P) 5455 // If this operand is already visited, reuse the prior result. 5456 // We may have P != PHI if this is the deepest point at which the 5457 // inconsistent paths meet. 5458 P = PHIMap.lookup(OpInst); 5459 if (!P) { 5460 // Recurse and memoize the results, whether a phi is found or not. 5461 // This recursive call invalidates pointers into PHIMap. 5462 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5463 PHIMap[OpInst] = P; 5464 } 5465 if (!P) 5466 return nullptr; // Not evolving from PHI 5467 if (PHI && PHI != P) 5468 return nullptr; // Evolving from multiple different PHIs. 5469 PHI = P; 5470 } 5471 // This is a expression evolving from a constant PHI! 5472 return PHI; 5473 } 5474 5475 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5476 /// in the loop that V is derived from. We allow arbitrary operations along the 5477 /// way, but the operands of an operation must either be constants or a value 5478 /// derived from a constant PHI. If this expression does not fit with these 5479 /// constraints, return null. 5480 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5481 Instruction *I = dyn_cast<Instruction>(V); 5482 if (!I || !canConstantEvolve(I, L)) return nullptr; 5483 5484 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5485 return PN; 5486 } 5487 5488 // Record non-constant instructions contained by the loop. 5489 DenseMap<Instruction *, PHINode *> PHIMap; 5490 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5491 } 5492 5493 /// EvaluateExpression - Given an expression that passes the 5494 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5495 /// in the loop has the value PHIVal. If we can't fold this expression for some 5496 /// reason, return null. 5497 static Constant *EvaluateExpression(Value *V, const Loop *L, 5498 DenseMap<Instruction *, Constant *> &Vals, 5499 const DataLayout *DL, 5500 const TargetLibraryInfo *TLI) { 5501 // Convenient constant check, but redundant for recursive calls. 5502 if (Constant *C = dyn_cast<Constant>(V)) return C; 5503 Instruction *I = dyn_cast<Instruction>(V); 5504 if (!I) return nullptr; 5505 5506 if (Constant *C = Vals.lookup(I)) return C; 5507 5508 // An instruction inside the loop depends on a value outside the loop that we 5509 // weren't given a mapping for, or a value such as a call inside the loop. 5510 if (!canConstantEvolve(I, L)) return nullptr; 5511 5512 // An unmapped PHI can be due to a branch or another loop inside this loop, 5513 // or due to this not being the initial iteration through a loop where we 5514 // couldn't compute the evolution of this particular PHI last time. 5515 if (isa<PHINode>(I)) return nullptr; 5516 5517 std::vector<Constant*> Operands(I->getNumOperands()); 5518 5519 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5520 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5521 if (!Operand) { 5522 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5523 if (!Operands[i]) return nullptr; 5524 continue; 5525 } 5526 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5527 Vals[Operand] = C; 5528 if (!C) return nullptr; 5529 Operands[i] = C; 5530 } 5531 5532 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5533 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5534 Operands[1], DL, TLI); 5535 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5536 if (!LI->isVolatile()) 5537 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5538 } 5539 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5540 TLI); 5541 } 5542 5543 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5544 /// in the header of its containing loop, we know the loop executes a 5545 /// constant number of times, and the PHI node is just a recurrence 5546 /// involving constants, fold it. 5547 Constant * 5548 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5549 const APInt &BEs, 5550 const Loop *L) { 5551 DenseMap<PHINode*, Constant*>::const_iterator I = 5552 ConstantEvolutionLoopExitValue.find(PN); 5553 if (I != ConstantEvolutionLoopExitValue.end()) 5554 return I->second; 5555 5556 if (BEs.ugt(MaxBruteForceIterations)) 5557 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5558 5559 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5560 5561 DenseMap<Instruction *, Constant *> CurrentIterVals; 5562 BasicBlock *Header = L->getHeader(); 5563 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5564 5565 // Since the loop is canonicalized, the PHI node must have two entries. One 5566 // entry must be a constant (coming in from outside of the loop), and the 5567 // second must be derived from the same PHI. 5568 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5569 PHINode *PHI = nullptr; 5570 for (BasicBlock::iterator I = Header->begin(); 5571 (PHI = dyn_cast<PHINode>(I)); ++I) { 5572 Constant *StartCST = 5573 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5574 if (!StartCST) continue; 5575 CurrentIterVals[PHI] = StartCST; 5576 } 5577 if (!CurrentIterVals.count(PN)) 5578 return RetVal = nullptr; 5579 5580 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5581 5582 // Execute the loop symbolically to determine the exit value. 5583 if (BEs.getActiveBits() >= 32) 5584 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5585 5586 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5587 unsigned IterationNum = 0; 5588 for (; ; ++IterationNum) { 5589 if (IterationNum == NumIterations) 5590 return RetVal = CurrentIterVals[PN]; // Got exit value! 5591 5592 // Compute the value of the PHIs for the next iteration. 5593 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5594 DenseMap<Instruction *, Constant *> NextIterVals; 5595 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5596 TLI); 5597 if (!NextPHI) 5598 return nullptr; // Couldn't evaluate! 5599 NextIterVals[PN] = NextPHI; 5600 5601 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5602 5603 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5604 // cease to be able to evaluate one of them or if they stop evolving, 5605 // because that doesn't necessarily prevent us from computing PN. 5606 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5607 for (DenseMap<Instruction *, Constant *>::const_iterator 5608 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5609 PHINode *PHI = dyn_cast<PHINode>(I->first); 5610 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5611 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5612 } 5613 // We use two distinct loops because EvaluateExpression may invalidate any 5614 // iterators into CurrentIterVals. 5615 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5616 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5617 PHINode *PHI = I->first; 5618 Constant *&NextPHI = NextIterVals[PHI]; 5619 if (!NextPHI) { // Not already computed. 5620 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5621 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5622 } 5623 if (NextPHI != I->second) 5624 StoppedEvolving = false; 5625 } 5626 5627 // If all entries in CurrentIterVals == NextIterVals then we can stop 5628 // iterating, the loop can't continue to change. 5629 if (StoppedEvolving) 5630 return RetVal = CurrentIterVals[PN]; 5631 5632 CurrentIterVals.swap(NextIterVals); 5633 } 5634 } 5635 5636 /// ComputeExitCountExhaustively - If the loop is known to execute a 5637 /// constant number of times (the condition evolves only from constants), 5638 /// try to evaluate a few iterations of the loop until we get the exit 5639 /// condition gets a value of ExitWhen (true or false). If we cannot 5640 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5641 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5642 Value *Cond, 5643 bool ExitWhen) { 5644 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5645 if (!PN) return getCouldNotCompute(); 5646 5647 // If the loop is canonicalized, the PHI will have exactly two entries. 5648 // That's the only form we support here. 5649 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5650 5651 DenseMap<Instruction *, Constant *> CurrentIterVals; 5652 BasicBlock *Header = L->getHeader(); 5653 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5654 5655 // One entry must be a constant (coming in from outside of the loop), and the 5656 // second must be derived from the same PHI. 5657 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5658 PHINode *PHI = nullptr; 5659 for (BasicBlock::iterator I = Header->begin(); 5660 (PHI = dyn_cast<PHINode>(I)); ++I) { 5661 Constant *StartCST = 5662 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5663 if (!StartCST) continue; 5664 CurrentIterVals[PHI] = StartCST; 5665 } 5666 if (!CurrentIterVals.count(PN)) 5667 return getCouldNotCompute(); 5668 5669 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5670 // the loop symbolically to determine when the condition gets a value of 5671 // "ExitWhen". 5672 5673 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5674 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5675 ConstantInt *CondVal = 5676 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5677 DL, TLI)); 5678 5679 // Couldn't symbolically evaluate. 5680 if (!CondVal) return getCouldNotCompute(); 5681 5682 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5683 ++NumBruteForceTripCountsComputed; 5684 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5685 } 5686 5687 // Update all the PHI nodes for the next iteration. 5688 DenseMap<Instruction *, Constant *> NextIterVals; 5689 5690 // Create a list of which PHIs we need to compute. We want to do this before 5691 // calling EvaluateExpression on them because that may invalidate iterators 5692 // into CurrentIterVals. 5693 SmallVector<PHINode *, 8> PHIsToCompute; 5694 for (DenseMap<Instruction *, Constant *>::const_iterator 5695 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5696 PHINode *PHI = dyn_cast<PHINode>(I->first); 5697 if (!PHI || PHI->getParent() != Header) continue; 5698 PHIsToCompute.push_back(PHI); 5699 } 5700 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5701 E = PHIsToCompute.end(); I != E; ++I) { 5702 PHINode *PHI = *I; 5703 Constant *&NextPHI = NextIterVals[PHI]; 5704 if (NextPHI) continue; // Already computed! 5705 5706 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5707 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5708 } 5709 CurrentIterVals.swap(NextIterVals); 5710 } 5711 5712 // Too many iterations were needed to evaluate. 5713 return getCouldNotCompute(); 5714 } 5715 5716 /// getSCEVAtScope - Return a SCEV expression for the specified value 5717 /// at the specified scope in the program. The L value specifies a loop 5718 /// nest to evaluate the expression at, where null is the top-level or a 5719 /// specified loop is immediately inside of the loop. 5720 /// 5721 /// This method can be used to compute the exit value for a variable defined 5722 /// in a loop by querying what the value will hold in the parent loop. 5723 /// 5724 /// In the case that a relevant loop exit value cannot be computed, the 5725 /// original value V is returned. 5726 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5727 // Check to see if we've folded this expression at this loop before. 5728 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5729 for (unsigned u = 0; u < Values.size(); u++) { 5730 if (Values[u].first == L) 5731 return Values[u].second ? Values[u].second : V; 5732 } 5733 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5734 // Otherwise compute it. 5735 const SCEV *C = computeSCEVAtScope(V, L); 5736 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5737 for (unsigned u = Values2.size(); u > 0; u--) { 5738 if (Values2[u - 1].first == L) { 5739 Values2[u - 1].second = C; 5740 break; 5741 } 5742 } 5743 return C; 5744 } 5745 5746 /// This builds up a Constant using the ConstantExpr interface. That way, we 5747 /// will return Constants for objects which aren't represented by a 5748 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5749 /// Returns NULL if the SCEV isn't representable as a Constant. 5750 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5751 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5752 case scCouldNotCompute: 5753 case scAddRecExpr: 5754 break; 5755 case scConstant: 5756 return cast<SCEVConstant>(V)->getValue(); 5757 case scUnknown: 5758 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5759 case scSignExtend: { 5760 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5761 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5762 return ConstantExpr::getSExt(CastOp, SS->getType()); 5763 break; 5764 } 5765 case scZeroExtend: { 5766 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5767 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5768 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5769 break; 5770 } 5771 case scTruncate: { 5772 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5773 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5774 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5775 break; 5776 } 5777 case scAddExpr: { 5778 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5779 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5780 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5781 unsigned AS = PTy->getAddressSpace(); 5782 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5783 C = ConstantExpr::getBitCast(C, DestPtrTy); 5784 } 5785 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5786 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5787 if (!C2) return nullptr; 5788 5789 // First pointer! 5790 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5791 unsigned AS = C2->getType()->getPointerAddressSpace(); 5792 std::swap(C, C2); 5793 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5794 // The offsets have been converted to bytes. We can add bytes to an 5795 // i8* by GEP with the byte count in the first index. 5796 C = ConstantExpr::getBitCast(C, DestPtrTy); 5797 } 5798 5799 // Don't bother trying to sum two pointers. We probably can't 5800 // statically compute a load that results from it anyway. 5801 if (C2->getType()->isPointerTy()) 5802 return nullptr; 5803 5804 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5805 if (PTy->getElementType()->isStructTy()) 5806 C2 = ConstantExpr::getIntegerCast( 5807 C2, Type::getInt32Ty(C->getContext()), true); 5808 C = ConstantExpr::getGetElementPtr(C, C2); 5809 } else 5810 C = ConstantExpr::getAdd(C, C2); 5811 } 5812 return C; 5813 } 5814 break; 5815 } 5816 case scMulExpr: { 5817 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5818 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5819 // Don't bother with pointers at all. 5820 if (C->getType()->isPointerTy()) return nullptr; 5821 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5822 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5823 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5824 C = ConstantExpr::getMul(C, C2); 5825 } 5826 return C; 5827 } 5828 break; 5829 } 5830 case scUDivExpr: { 5831 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5832 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5833 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5834 if (LHS->getType() == RHS->getType()) 5835 return ConstantExpr::getUDiv(LHS, RHS); 5836 break; 5837 } 5838 case scSMaxExpr: 5839 case scUMaxExpr: 5840 break; // TODO: smax, umax. 5841 } 5842 return nullptr; 5843 } 5844 5845 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5846 if (isa<SCEVConstant>(V)) return V; 5847 5848 // If this instruction is evolved from a constant-evolving PHI, compute the 5849 // exit value from the loop without using SCEVs. 5850 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5851 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5852 const Loop *LI = (*this->LI)[I->getParent()]; 5853 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5854 if (PHINode *PN = dyn_cast<PHINode>(I)) 5855 if (PN->getParent() == LI->getHeader()) { 5856 // Okay, there is no closed form solution for the PHI node. Check 5857 // to see if the loop that contains it has a known backedge-taken 5858 // count. If so, we may be able to force computation of the exit 5859 // value. 5860 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5861 if (const SCEVConstant *BTCC = 5862 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5863 // Okay, we know how many times the containing loop executes. If 5864 // this is a constant evolving PHI node, get the final value at 5865 // the specified iteration number. 5866 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5867 BTCC->getValue()->getValue(), 5868 LI); 5869 if (RV) return getSCEV(RV); 5870 } 5871 } 5872 5873 // Okay, this is an expression that we cannot symbolically evaluate 5874 // into a SCEV. Check to see if it's possible to symbolically evaluate 5875 // the arguments into constants, and if so, try to constant propagate the 5876 // result. This is particularly useful for computing loop exit values. 5877 if (CanConstantFold(I)) { 5878 SmallVector<Constant *, 4> Operands; 5879 bool MadeImprovement = false; 5880 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5881 Value *Op = I->getOperand(i); 5882 if (Constant *C = dyn_cast<Constant>(Op)) { 5883 Operands.push_back(C); 5884 continue; 5885 } 5886 5887 // If any of the operands is non-constant and if they are 5888 // non-integer and non-pointer, don't even try to analyze them 5889 // with scev techniques. 5890 if (!isSCEVable(Op->getType())) 5891 return V; 5892 5893 const SCEV *OrigV = getSCEV(Op); 5894 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5895 MadeImprovement |= OrigV != OpV; 5896 5897 Constant *C = BuildConstantFromSCEV(OpV); 5898 if (!C) return V; 5899 if (C->getType() != Op->getType()) 5900 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5901 Op->getType(), 5902 false), 5903 C, Op->getType()); 5904 Operands.push_back(C); 5905 } 5906 5907 // Check to see if getSCEVAtScope actually made an improvement. 5908 if (MadeImprovement) { 5909 Constant *C = nullptr; 5910 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5911 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5912 Operands[0], Operands[1], DL, 5913 TLI); 5914 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5915 if (!LI->isVolatile()) 5916 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5917 } else 5918 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5919 Operands, DL, TLI); 5920 if (!C) return V; 5921 return getSCEV(C); 5922 } 5923 } 5924 } 5925 5926 // This is some other type of SCEVUnknown, just return it. 5927 return V; 5928 } 5929 5930 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5931 // Avoid performing the look-up in the common case where the specified 5932 // expression has no loop-variant portions. 5933 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5934 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5935 if (OpAtScope != Comm->getOperand(i)) { 5936 // Okay, at least one of these operands is loop variant but might be 5937 // foldable. Build a new instance of the folded commutative expression. 5938 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5939 Comm->op_begin()+i); 5940 NewOps.push_back(OpAtScope); 5941 5942 for (++i; i != e; ++i) { 5943 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5944 NewOps.push_back(OpAtScope); 5945 } 5946 if (isa<SCEVAddExpr>(Comm)) 5947 return getAddExpr(NewOps); 5948 if (isa<SCEVMulExpr>(Comm)) 5949 return getMulExpr(NewOps); 5950 if (isa<SCEVSMaxExpr>(Comm)) 5951 return getSMaxExpr(NewOps); 5952 if (isa<SCEVUMaxExpr>(Comm)) 5953 return getUMaxExpr(NewOps); 5954 llvm_unreachable("Unknown commutative SCEV type!"); 5955 } 5956 } 5957 // If we got here, all operands are loop invariant. 5958 return Comm; 5959 } 5960 5961 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5962 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5963 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5964 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5965 return Div; // must be loop invariant 5966 return getUDivExpr(LHS, RHS); 5967 } 5968 5969 // If this is a loop recurrence for a loop that does not contain L, then we 5970 // are dealing with the final value computed by the loop. 5971 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5972 // First, attempt to evaluate each operand. 5973 // Avoid performing the look-up in the common case where the specified 5974 // expression has no loop-variant portions. 5975 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5976 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5977 if (OpAtScope == AddRec->getOperand(i)) 5978 continue; 5979 5980 // Okay, at least one of these operands is loop variant but might be 5981 // foldable. Build a new instance of the folded commutative expression. 5982 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5983 AddRec->op_begin()+i); 5984 NewOps.push_back(OpAtScope); 5985 for (++i; i != e; ++i) 5986 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5987 5988 const SCEV *FoldedRec = 5989 getAddRecExpr(NewOps, AddRec->getLoop(), 5990 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5991 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5992 // The addrec may be folded to a nonrecurrence, for example, if the 5993 // induction variable is multiplied by zero after constant folding. Go 5994 // ahead and return the folded value. 5995 if (!AddRec) 5996 return FoldedRec; 5997 break; 5998 } 5999 6000 // If the scope is outside the addrec's loop, evaluate it by using the 6001 // loop exit value of the addrec. 6002 if (!AddRec->getLoop()->contains(L)) { 6003 // To evaluate this recurrence, we need to know how many times the AddRec 6004 // loop iterates. Compute this now. 6005 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6006 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6007 6008 // Then, evaluate the AddRec. 6009 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6010 } 6011 6012 return AddRec; 6013 } 6014 6015 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6016 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6017 if (Op == Cast->getOperand()) 6018 return Cast; // must be loop invariant 6019 return getZeroExtendExpr(Op, Cast->getType()); 6020 } 6021 6022 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6023 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6024 if (Op == Cast->getOperand()) 6025 return Cast; // must be loop invariant 6026 return getSignExtendExpr(Op, Cast->getType()); 6027 } 6028 6029 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6030 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6031 if (Op == Cast->getOperand()) 6032 return Cast; // must be loop invariant 6033 return getTruncateExpr(Op, Cast->getType()); 6034 } 6035 6036 llvm_unreachable("Unknown SCEV type!"); 6037 } 6038 6039 /// getSCEVAtScope - This is a convenience function which does 6040 /// getSCEVAtScope(getSCEV(V), L). 6041 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6042 return getSCEVAtScope(getSCEV(V), L); 6043 } 6044 6045 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6046 /// following equation: 6047 /// 6048 /// A * X = B (mod N) 6049 /// 6050 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6051 /// A and B isn't important. 6052 /// 6053 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6054 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6055 ScalarEvolution &SE) { 6056 uint32_t BW = A.getBitWidth(); 6057 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6058 assert(A != 0 && "A must be non-zero."); 6059 6060 // 1. D = gcd(A, N) 6061 // 6062 // The gcd of A and N may have only one prime factor: 2. The number of 6063 // trailing zeros in A is its multiplicity 6064 uint32_t Mult2 = A.countTrailingZeros(); 6065 // D = 2^Mult2 6066 6067 // 2. Check if B is divisible by D. 6068 // 6069 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6070 // is not less than multiplicity of this prime factor for D. 6071 if (B.countTrailingZeros() < Mult2) 6072 return SE.getCouldNotCompute(); 6073 6074 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6075 // modulo (N / D). 6076 // 6077 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6078 // bit width during computations. 6079 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6080 APInt Mod(BW + 1, 0); 6081 Mod.setBit(BW - Mult2); // Mod = N / D 6082 APInt I = AD.multiplicativeInverse(Mod); 6083 6084 // 4. Compute the minimum unsigned root of the equation: 6085 // I * (B / D) mod (N / D) 6086 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6087 6088 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6089 // bits. 6090 return SE.getConstant(Result.trunc(BW)); 6091 } 6092 6093 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6094 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6095 /// might be the same) or two SCEVCouldNotCompute objects. 6096 /// 6097 static std::pair<const SCEV *,const SCEV *> 6098 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6099 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6100 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6101 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6102 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6103 6104 // We currently can only solve this if the coefficients are constants. 6105 if (!LC || !MC || !NC) { 6106 const SCEV *CNC = SE.getCouldNotCompute(); 6107 return std::make_pair(CNC, CNC); 6108 } 6109 6110 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6111 const APInt &L = LC->getValue()->getValue(); 6112 const APInt &M = MC->getValue()->getValue(); 6113 const APInt &N = NC->getValue()->getValue(); 6114 APInt Two(BitWidth, 2); 6115 APInt Four(BitWidth, 4); 6116 6117 { 6118 using namespace APIntOps; 6119 const APInt& C = L; 6120 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6121 // The B coefficient is M-N/2 6122 APInt B(M); 6123 B -= sdiv(N,Two); 6124 6125 // The A coefficient is N/2 6126 APInt A(N.sdiv(Two)); 6127 6128 // Compute the B^2-4ac term. 6129 APInt SqrtTerm(B); 6130 SqrtTerm *= B; 6131 SqrtTerm -= Four * (A * C); 6132 6133 if (SqrtTerm.isNegative()) { 6134 // The loop is provably infinite. 6135 const SCEV *CNC = SE.getCouldNotCompute(); 6136 return std::make_pair(CNC, CNC); 6137 } 6138 6139 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6140 // integer value or else APInt::sqrt() will assert. 6141 APInt SqrtVal(SqrtTerm.sqrt()); 6142 6143 // Compute the two solutions for the quadratic formula. 6144 // The divisions must be performed as signed divisions. 6145 APInt NegB(-B); 6146 APInt TwoA(A << 1); 6147 if (TwoA.isMinValue()) { 6148 const SCEV *CNC = SE.getCouldNotCompute(); 6149 return std::make_pair(CNC, CNC); 6150 } 6151 6152 LLVMContext &Context = SE.getContext(); 6153 6154 ConstantInt *Solution1 = 6155 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6156 ConstantInt *Solution2 = 6157 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6158 6159 return std::make_pair(SE.getConstant(Solution1), 6160 SE.getConstant(Solution2)); 6161 } // end APIntOps namespace 6162 } 6163 6164 /// HowFarToZero - Return the number of times a backedge comparing the specified 6165 /// value to zero will execute. If not computable, return CouldNotCompute. 6166 /// 6167 /// This is only used for loops with a "x != y" exit test. The exit condition is 6168 /// now expressed as a single expression, V = x-y. So the exit test is 6169 /// effectively V != 0. We know and take advantage of the fact that this 6170 /// expression only being used in a comparison by zero context. 6171 ScalarEvolution::ExitLimit 6172 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6173 // If the value is a constant 6174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6175 // If the value is already zero, the branch will execute zero times. 6176 if (C->getValue()->isZero()) return C; 6177 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6178 } 6179 6180 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6181 if (!AddRec || AddRec->getLoop() != L) 6182 return getCouldNotCompute(); 6183 6184 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6185 // the quadratic equation to solve it. 6186 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6187 std::pair<const SCEV *,const SCEV *> Roots = 6188 SolveQuadraticEquation(AddRec, *this); 6189 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6190 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6191 if (R1 && R2) { 6192 #if 0 6193 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6194 << " sol#2: " << *R2 << "\n"; 6195 #endif 6196 // Pick the smallest positive root value. 6197 if (ConstantInt *CB = 6198 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6199 R1->getValue(), 6200 R2->getValue()))) { 6201 if (CB->getZExtValue() == false) 6202 std::swap(R1, R2); // R1 is the minimum root now. 6203 6204 // We can only use this value if the chrec ends up with an exact zero 6205 // value at this index. When solving for "X*X != 5", for example, we 6206 // should not accept a root of 2. 6207 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6208 if (Val->isZero()) 6209 return R1; // We found a quadratic root! 6210 } 6211 } 6212 return getCouldNotCompute(); 6213 } 6214 6215 // Otherwise we can only handle this if it is affine. 6216 if (!AddRec->isAffine()) 6217 return getCouldNotCompute(); 6218 6219 // If this is an affine expression, the execution count of this branch is 6220 // the minimum unsigned root of the following equation: 6221 // 6222 // Start + Step*N = 0 (mod 2^BW) 6223 // 6224 // equivalent to: 6225 // 6226 // Step*N = -Start (mod 2^BW) 6227 // 6228 // where BW is the common bit width of Start and Step. 6229 6230 // Get the initial value for the loop. 6231 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6232 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6233 6234 // For now we handle only constant steps. 6235 // 6236 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6237 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6238 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6239 // We have not yet seen any such cases. 6240 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6241 if (!StepC || StepC->getValue()->equalsInt(0)) 6242 return getCouldNotCompute(); 6243 6244 // For positive steps (counting up until unsigned overflow): 6245 // N = -Start/Step (as unsigned) 6246 // For negative steps (counting down to zero): 6247 // N = Start/-Step 6248 // First compute the unsigned distance from zero in the direction of Step. 6249 bool CountDown = StepC->getValue()->getValue().isNegative(); 6250 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6251 6252 // Handle unitary steps, which cannot wraparound. 6253 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6254 // N = Distance (as unsigned) 6255 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6256 ConstantRange CR = getUnsignedRange(Start); 6257 const SCEV *MaxBECount; 6258 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6259 // When counting up, the worst starting value is 1, not 0. 6260 MaxBECount = CR.getUnsignedMax().isMinValue() 6261 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6262 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6263 else 6264 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6265 : -CR.getUnsignedMin()); 6266 return ExitLimit(Distance, MaxBECount); 6267 } 6268 6269 // As a special case, handle the instance where Step is a positive power of 6270 // two. In this case, determining whether Step divides Distance evenly can be 6271 // done by counting and comparing the number of trailing zeros of Step and 6272 // Distance. 6273 if (!CountDown) { 6274 const APInt &StepV = StepC->getValue()->getValue(); 6275 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6276 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6277 // case is not handled as this code is guarded by !CountDown. 6278 if (StepV.isPowerOf2() && 6279 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6280 return getUDivExactExpr(Distance, Step); 6281 } 6282 6283 // If the condition controls loop exit (the loop exits only if the expression 6284 // is true) and the addition is no-wrap we can use unsigned divide to 6285 // compute the backedge count. In this case, the step may not divide the 6286 // distance, but we don't care because if the condition is "missed" the loop 6287 // will have undefined behavior due to wrapping. 6288 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6289 const SCEV *Exact = 6290 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6291 return ExitLimit(Exact, Exact); 6292 } 6293 6294 // Then, try to solve the above equation provided that Start is constant. 6295 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6296 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6297 -StartC->getValue()->getValue(), 6298 *this); 6299 return getCouldNotCompute(); 6300 } 6301 6302 /// HowFarToNonZero - Return the number of times a backedge checking the 6303 /// specified value for nonzero will execute. If not computable, return 6304 /// CouldNotCompute 6305 ScalarEvolution::ExitLimit 6306 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6307 // Loops that look like: while (X == 0) are very strange indeed. We don't 6308 // handle them yet except for the trivial case. This could be expanded in the 6309 // future as needed. 6310 6311 // If the value is a constant, check to see if it is known to be non-zero 6312 // already. If so, the backedge will execute zero times. 6313 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6314 if (!C->getValue()->isNullValue()) 6315 return getConstant(C->getType(), 0); 6316 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6317 } 6318 6319 // We could implement others, but I really doubt anyone writes loops like 6320 // this, and if they did, they would already be constant folded. 6321 return getCouldNotCompute(); 6322 } 6323 6324 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6325 /// (which may not be an immediate predecessor) which has exactly one 6326 /// successor from which BB is reachable, or null if no such block is 6327 /// found. 6328 /// 6329 std::pair<BasicBlock *, BasicBlock *> 6330 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6331 // If the block has a unique predecessor, then there is no path from the 6332 // predecessor to the block that does not go through the direct edge 6333 // from the predecessor to the block. 6334 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6335 return std::make_pair(Pred, BB); 6336 6337 // A loop's header is defined to be a block that dominates the loop. 6338 // If the header has a unique predecessor outside the loop, it must be 6339 // a block that has exactly one successor that can reach the loop. 6340 if (Loop *L = LI->getLoopFor(BB)) 6341 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6342 6343 return std::pair<BasicBlock *, BasicBlock *>(); 6344 } 6345 6346 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6347 /// testing whether two expressions are equal, however for the purposes of 6348 /// looking for a condition guarding a loop, it can be useful to be a little 6349 /// more general, since a front-end may have replicated the controlling 6350 /// expression. 6351 /// 6352 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6353 // Quick check to see if they are the same SCEV. 6354 if (A == B) return true; 6355 6356 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6357 // two different instructions with the same value. Check for this case. 6358 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6359 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6360 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6361 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6362 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6363 return true; 6364 6365 // Otherwise assume they may have a different value. 6366 return false; 6367 } 6368 6369 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6370 /// predicate Pred. Return true iff any changes were made. 6371 /// 6372 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6373 const SCEV *&LHS, const SCEV *&RHS, 6374 unsigned Depth) { 6375 bool Changed = false; 6376 6377 // If we hit the max recursion limit bail out. 6378 if (Depth >= 3) 6379 return false; 6380 6381 // Canonicalize a constant to the right side. 6382 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6383 // Check for both operands constant. 6384 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6385 if (ConstantExpr::getICmp(Pred, 6386 LHSC->getValue(), 6387 RHSC->getValue())->isNullValue()) 6388 goto trivially_false; 6389 else 6390 goto trivially_true; 6391 } 6392 // Otherwise swap the operands to put the constant on the right. 6393 std::swap(LHS, RHS); 6394 Pred = ICmpInst::getSwappedPredicate(Pred); 6395 Changed = true; 6396 } 6397 6398 // If we're comparing an addrec with a value which is loop-invariant in the 6399 // addrec's loop, put the addrec on the left. Also make a dominance check, 6400 // as both operands could be addrecs loop-invariant in each other's loop. 6401 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6402 const Loop *L = AR->getLoop(); 6403 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6404 std::swap(LHS, RHS); 6405 Pred = ICmpInst::getSwappedPredicate(Pred); 6406 Changed = true; 6407 } 6408 } 6409 6410 // If there's a constant operand, canonicalize comparisons with boundary 6411 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6412 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6413 const APInt &RA = RC->getValue()->getValue(); 6414 switch (Pred) { 6415 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6416 case ICmpInst::ICMP_EQ: 6417 case ICmpInst::ICMP_NE: 6418 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6419 if (!RA) 6420 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6421 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6422 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6423 ME->getOperand(0)->isAllOnesValue()) { 6424 RHS = AE->getOperand(1); 6425 LHS = ME->getOperand(1); 6426 Changed = true; 6427 } 6428 break; 6429 case ICmpInst::ICMP_UGE: 6430 if ((RA - 1).isMinValue()) { 6431 Pred = ICmpInst::ICMP_NE; 6432 RHS = getConstant(RA - 1); 6433 Changed = true; 6434 break; 6435 } 6436 if (RA.isMaxValue()) { 6437 Pred = ICmpInst::ICMP_EQ; 6438 Changed = true; 6439 break; 6440 } 6441 if (RA.isMinValue()) goto trivially_true; 6442 6443 Pred = ICmpInst::ICMP_UGT; 6444 RHS = getConstant(RA - 1); 6445 Changed = true; 6446 break; 6447 case ICmpInst::ICMP_ULE: 6448 if ((RA + 1).isMaxValue()) { 6449 Pred = ICmpInst::ICMP_NE; 6450 RHS = getConstant(RA + 1); 6451 Changed = true; 6452 break; 6453 } 6454 if (RA.isMinValue()) { 6455 Pred = ICmpInst::ICMP_EQ; 6456 Changed = true; 6457 break; 6458 } 6459 if (RA.isMaxValue()) goto trivially_true; 6460 6461 Pred = ICmpInst::ICMP_ULT; 6462 RHS = getConstant(RA + 1); 6463 Changed = true; 6464 break; 6465 case ICmpInst::ICMP_SGE: 6466 if ((RA - 1).isMinSignedValue()) { 6467 Pred = ICmpInst::ICMP_NE; 6468 RHS = getConstant(RA - 1); 6469 Changed = true; 6470 break; 6471 } 6472 if (RA.isMaxSignedValue()) { 6473 Pred = ICmpInst::ICMP_EQ; 6474 Changed = true; 6475 break; 6476 } 6477 if (RA.isMinSignedValue()) goto trivially_true; 6478 6479 Pred = ICmpInst::ICMP_SGT; 6480 RHS = getConstant(RA - 1); 6481 Changed = true; 6482 break; 6483 case ICmpInst::ICMP_SLE: 6484 if ((RA + 1).isMaxSignedValue()) { 6485 Pred = ICmpInst::ICMP_NE; 6486 RHS = getConstant(RA + 1); 6487 Changed = true; 6488 break; 6489 } 6490 if (RA.isMinSignedValue()) { 6491 Pred = ICmpInst::ICMP_EQ; 6492 Changed = true; 6493 break; 6494 } 6495 if (RA.isMaxSignedValue()) goto trivially_true; 6496 6497 Pred = ICmpInst::ICMP_SLT; 6498 RHS = getConstant(RA + 1); 6499 Changed = true; 6500 break; 6501 case ICmpInst::ICMP_UGT: 6502 if (RA.isMinValue()) { 6503 Pred = ICmpInst::ICMP_NE; 6504 Changed = true; 6505 break; 6506 } 6507 if ((RA + 1).isMaxValue()) { 6508 Pred = ICmpInst::ICMP_EQ; 6509 RHS = getConstant(RA + 1); 6510 Changed = true; 6511 break; 6512 } 6513 if (RA.isMaxValue()) goto trivially_false; 6514 break; 6515 case ICmpInst::ICMP_ULT: 6516 if (RA.isMaxValue()) { 6517 Pred = ICmpInst::ICMP_NE; 6518 Changed = true; 6519 break; 6520 } 6521 if ((RA - 1).isMinValue()) { 6522 Pred = ICmpInst::ICMP_EQ; 6523 RHS = getConstant(RA - 1); 6524 Changed = true; 6525 break; 6526 } 6527 if (RA.isMinValue()) goto trivially_false; 6528 break; 6529 case ICmpInst::ICMP_SGT: 6530 if (RA.isMinSignedValue()) { 6531 Pred = ICmpInst::ICMP_NE; 6532 Changed = true; 6533 break; 6534 } 6535 if ((RA + 1).isMaxSignedValue()) { 6536 Pred = ICmpInst::ICMP_EQ; 6537 RHS = getConstant(RA + 1); 6538 Changed = true; 6539 break; 6540 } 6541 if (RA.isMaxSignedValue()) goto trivially_false; 6542 break; 6543 case ICmpInst::ICMP_SLT: 6544 if (RA.isMaxSignedValue()) { 6545 Pred = ICmpInst::ICMP_NE; 6546 Changed = true; 6547 break; 6548 } 6549 if ((RA - 1).isMinSignedValue()) { 6550 Pred = ICmpInst::ICMP_EQ; 6551 RHS = getConstant(RA - 1); 6552 Changed = true; 6553 break; 6554 } 6555 if (RA.isMinSignedValue()) goto trivially_false; 6556 break; 6557 } 6558 } 6559 6560 // Check for obvious equality. 6561 if (HasSameValue(LHS, RHS)) { 6562 if (ICmpInst::isTrueWhenEqual(Pred)) 6563 goto trivially_true; 6564 if (ICmpInst::isFalseWhenEqual(Pred)) 6565 goto trivially_false; 6566 } 6567 6568 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6569 // adding or subtracting 1 from one of the operands. 6570 switch (Pred) { 6571 case ICmpInst::ICMP_SLE: 6572 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6573 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6574 SCEV::FlagNSW); 6575 Pred = ICmpInst::ICMP_SLT; 6576 Changed = true; 6577 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6578 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6579 SCEV::FlagNSW); 6580 Pred = ICmpInst::ICMP_SLT; 6581 Changed = true; 6582 } 6583 break; 6584 case ICmpInst::ICMP_SGE: 6585 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6586 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6587 SCEV::FlagNSW); 6588 Pred = ICmpInst::ICMP_SGT; 6589 Changed = true; 6590 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6591 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6592 SCEV::FlagNSW); 6593 Pred = ICmpInst::ICMP_SGT; 6594 Changed = true; 6595 } 6596 break; 6597 case ICmpInst::ICMP_ULE: 6598 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6599 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6600 SCEV::FlagNUW); 6601 Pred = ICmpInst::ICMP_ULT; 6602 Changed = true; 6603 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6604 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6605 SCEV::FlagNUW); 6606 Pred = ICmpInst::ICMP_ULT; 6607 Changed = true; 6608 } 6609 break; 6610 case ICmpInst::ICMP_UGE: 6611 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6612 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6613 SCEV::FlagNUW); 6614 Pred = ICmpInst::ICMP_UGT; 6615 Changed = true; 6616 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6617 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6618 SCEV::FlagNUW); 6619 Pred = ICmpInst::ICMP_UGT; 6620 Changed = true; 6621 } 6622 break; 6623 default: 6624 break; 6625 } 6626 6627 // TODO: More simplifications are possible here. 6628 6629 // Recursively simplify until we either hit a recursion limit or nothing 6630 // changes. 6631 if (Changed) 6632 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6633 6634 return Changed; 6635 6636 trivially_true: 6637 // Return 0 == 0. 6638 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6639 Pred = ICmpInst::ICMP_EQ; 6640 return true; 6641 6642 trivially_false: 6643 // Return 0 != 0. 6644 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6645 Pred = ICmpInst::ICMP_NE; 6646 return true; 6647 } 6648 6649 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6650 return getSignedRange(S).getSignedMax().isNegative(); 6651 } 6652 6653 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6654 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6655 } 6656 6657 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6658 return !getSignedRange(S).getSignedMin().isNegative(); 6659 } 6660 6661 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6662 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6663 } 6664 6665 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6666 return isKnownNegative(S) || isKnownPositive(S); 6667 } 6668 6669 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6670 const SCEV *LHS, const SCEV *RHS) { 6671 // Canonicalize the inputs first. 6672 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6673 6674 // If LHS or RHS is an addrec, check to see if the condition is true in 6675 // every iteration of the loop. 6676 // If LHS and RHS are both addrec, both conditions must be true in 6677 // every iteration of the loop. 6678 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6679 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6680 bool LeftGuarded = false; 6681 bool RightGuarded = false; 6682 if (LAR) { 6683 const Loop *L = LAR->getLoop(); 6684 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6685 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6686 if (!RAR) return true; 6687 LeftGuarded = true; 6688 } 6689 } 6690 if (RAR) { 6691 const Loop *L = RAR->getLoop(); 6692 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6693 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6694 if (!LAR) return true; 6695 RightGuarded = true; 6696 } 6697 } 6698 if (LeftGuarded && RightGuarded) 6699 return true; 6700 6701 // Otherwise see what can be done with known constant ranges. 6702 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6703 } 6704 6705 bool 6706 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6707 const SCEV *LHS, const SCEV *RHS) { 6708 if (HasSameValue(LHS, RHS)) 6709 return ICmpInst::isTrueWhenEqual(Pred); 6710 6711 // This code is split out from isKnownPredicate because it is called from 6712 // within isLoopEntryGuardedByCond. 6713 switch (Pred) { 6714 default: 6715 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6716 case ICmpInst::ICMP_SGT: 6717 std::swap(LHS, RHS); 6718 case ICmpInst::ICMP_SLT: { 6719 ConstantRange LHSRange = getSignedRange(LHS); 6720 ConstantRange RHSRange = getSignedRange(RHS); 6721 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6722 return true; 6723 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6724 return false; 6725 break; 6726 } 6727 case ICmpInst::ICMP_SGE: 6728 std::swap(LHS, RHS); 6729 case ICmpInst::ICMP_SLE: { 6730 ConstantRange LHSRange = getSignedRange(LHS); 6731 ConstantRange RHSRange = getSignedRange(RHS); 6732 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6733 return true; 6734 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6735 return false; 6736 break; 6737 } 6738 case ICmpInst::ICMP_UGT: 6739 std::swap(LHS, RHS); 6740 case ICmpInst::ICMP_ULT: { 6741 ConstantRange LHSRange = getUnsignedRange(LHS); 6742 ConstantRange RHSRange = getUnsignedRange(RHS); 6743 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6744 return true; 6745 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6746 return false; 6747 break; 6748 } 6749 case ICmpInst::ICMP_UGE: 6750 std::swap(LHS, RHS); 6751 case ICmpInst::ICMP_ULE: { 6752 ConstantRange LHSRange = getUnsignedRange(LHS); 6753 ConstantRange RHSRange = getUnsignedRange(RHS); 6754 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6755 return true; 6756 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6757 return false; 6758 break; 6759 } 6760 case ICmpInst::ICMP_NE: { 6761 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6762 return true; 6763 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6764 return true; 6765 6766 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6767 if (isKnownNonZero(Diff)) 6768 return true; 6769 break; 6770 } 6771 case ICmpInst::ICMP_EQ: 6772 // The check at the top of the function catches the case where 6773 // the values are known to be equal. 6774 break; 6775 } 6776 return false; 6777 } 6778 6779 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6780 /// protected by a conditional between LHS and RHS. This is used to 6781 /// to eliminate casts. 6782 bool 6783 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6784 ICmpInst::Predicate Pred, 6785 const SCEV *LHS, const SCEV *RHS) { 6786 // Interpret a null as meaning no loop, where there is obviously no guard 6787 // (interprocedural conditions notwithstanding). 6788 if (!L) return true; 6789 6790 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6791 6792 BasicBlock *Latch = L->getLoopLatch(); 6793 if (!Latch) 6794 return false; 6795 6796 BranchInst *LoopContinuePredicate = 6797 dyn_cast<BranchInst>(Latch->getTerminator()); 6798 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6799 isImpliedCond(Pred, LHS, RHS, 6800 LoopContinuePredicate->getCondition(), 6801 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6802 return true; 6803 6804 // Check conditions due to any @llvm.assume intrinsics. 6805 for (auto &AssumeVH : AC->assumptions()) { 6806 if (!AssumeVH) 6807 continue; 6808 auto *CI = cast<CallInst>(AssumeVH); 6809 if (!DT->dominates(CI, Latch->getTerminator())) 6810 continue; 6811 6812 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6813 return true; 6814 } 6815 6816 return false; 6817 } 6818 6819 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6820 /// by a conditional between LHS and RHS. This is used to help avoid max 6821 /// expressions in loop trip counts, and to eliminate casts. 6822 bool 6823 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6824 ICmpInst::Predicate Pred, 6825 const SCEV *LHS, const SCEV *RHS) { 6826 // Interpret a null as meaning no loop, where there is obviously no guard 6827 // (interprocedural conditions notwithstanding). 6828 if (!L) return false; 6829 6830 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6831 6832 // Starting at the loop predecessor, climb up the predecessor chain, as long 6833 // as there are predecessors that can be found that have unique successors 6834 // leading to the original header. 6835 for (std::pair<BasicBlock *, BasicBlock *> 6836 Pair(L->getLoopPredecessor(), L->getHeader()); 6837 Pair.first; 6838 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6839 6840 BranchInst *LoopEntryPredicate = 6841 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6842 if (!LoopEntryPredicate || 6843 LoopEntryPredicate->isUnconditional()) 6844 continue; 6845 6846 if (isImpliedCond(Pred, LHS, RHS, 6847 LoopEntryPredicate->getCondition(), 6848 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6849 return true; 6850 } 6851 6852 // Check conditions due to any @llvm.assume intrinsics. 6853 for (auto &AssumeVH : AC->assumptions()) { 6854 if (!AssumeVH) 6855 continue; 6856 auto *CI = cast<CallInst>(AssumeVH); 6857 if (!DT->dominates(CI, L->getHeader())) 6858 continue; 6859 6860 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6861 return true; 6862 } 6863 6864 return false; 6865 } 6866 6867 /// RAII wrapper to prevent recursive application of isImpliedCond. 6868 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6869 /// currently evaluating isImpliedCond. 6870 struct MarkPendingLoopPredicate { 6871 Value *Cond; 6872 DenseSet<Value*> &LoopPreds; 6873 bool Pending; 6874 6875 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6876 : Cond(C), LoopPreds(LP) { 6877 Pending = !LoopPreds.insert(Cond).second; 6878 } 6879 ~MarkPendingLoopPredicate() { 6880 if (!Pending) 6881 LoopPreds.erase(Cond); 6882 } 6883 }; 6884 6885 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6886 /// and RHS is true whenever the given Cond value evaluates to true. 6887 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6888 const SCEV *LHS, const SCEV *RHS, 6889 Value *FoundCondValue, 6890 bool Inverse) { 6891 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6892 if (Mark.Pending) 6893 return false; 6894 6895 // Recursively handle And and Or conditions. 6896 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6897 if (BO->getOpcode() == Instruction::And) { 6898 if (!Inverse) 6899 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6900 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6901 } else if (BO->getOpcode() == Instruction::Or) { 6902 if (Inverse) 6903 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6904 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6905 } 6906 } 6907 6908 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6909 if (!ICI) return false; 6910 6911 // Bail if the ICmp's operands' types are wider than the needed type 6912 // before attempting to call getSCEV on them. This avoids infinite 6913 // recursion, since the analysis of widening casts can require loop 6914 // exit condition information for overflow checking, which would 6915 // lead back here. 6916 if (getTypeSizeInBits(LHS->getType()) < 6917 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6918 return false; 6919 6920 // Now that we found a conditional branch that dominates the loop or controls 6921 // the loop latch. Check to see if it is the comparison we are looking for. 6922 ICmpInst::Predicate FoundPred; 6923 if (Inverse) 6924 FoundPred = ICI->getInversePredicate(); 6925 else 6926 FoundPred = ICI->getPredicate(); 6927 6928 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6929 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6930 6931 // Balance the types. The case where FoundLHS' type is wider than 6932 // LHS' type is checked for above. 6933 if (getTypeSizeInBits(LHS->getType()) > 6934 getTypeSizeInBits(FoundLHS->getType())) { 6935 if (CmpInst::isSigned(FoundPred)) { 6936 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6937 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6938 } else { 6939 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6940 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6941 } 6942 } 6943 6944 // Canonicalize the query to match the way instcombine will have 6945 // canonicalized the comparison. 6946 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6947 if (LHS == RHS) 6948 return CmpInst::isTrueWhenEqual(Pred); 6949 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6950 if (FoundLHS == FoundRHS) 6951 return CmpInst::isFalseWhenEqual(FoundPred); 6952 6953 // Check to see if we can make the LHS or RHS match. 6954 if (LHS == FoundRHS || RHS == FoundLHS) { 6955 if (isa<SCEVConstant>(RHS)) { 6956 std::swap(FoundLHS, FoundRHS); 6957 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6958 } else { 6959 std::swap(LHS, RHS); 6960 Pred = ICmpInst::getSwappedPredicate(Pred); 6961 } 6962 } 6963 6964 // Check whether the found predicate is the same as the desired predicate. 6965 if (FoundPred == Pred) 6966 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6967 6968 // Check whether swapping the found predicate makes it the same as the 6969 // desired predicate. 6970 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6971 if (isa<SCEVConstant>(RHS)) 6972 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6973 else 6974 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6975 RHS, LHS, FoundLHS, FoundRHS); 6976 } 6977 6978 // Check if we can make progress by sharpening ranges. 6979 if (FoundPred == ICmpInst::ICMP_NE && 6980 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 6981 6982 const SCEVConstant *C = nullptr; 6983 const SCEV *V = nullptr; 6984 6985 if (isa<SCEVConstant>(FoundLHS)) { 6986 C = cast<SCEVConstant>(FoundLHS); 6987 V = FoundRHS; 6988 } else { 6989 C = cast<SCEVConstant>(FoundRHS); 6990 V = FoundLHS; 6991 } 6992 6993 // The guarding predicate tells us that C != V. If the known range 6994 // of V is [C, t), we can sharpen the range to [C + 1, t). The 6995 // range we consider has to correspond to same signedness as the 6996 // predicate we're interested in folding. 6997 6998 APInt Min = ICmpInst::isSigned(Pred) ? 6999 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7000 7001 if (Min == C->getValue()->getValue()) { 7002 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7003 // This is true even if (Min + 1) wraps around -- in case of 7004 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7005 7006 APInt SharperMin = Min + 1; 7007 7008 switch (Pred) { 7009 case ICmpInst::ICMP_SGE: 7010 case ICmpInst::ICMP_UGE: 7011 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7012 // RHS, we're done. 7013 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7014 getConstant(SharperMin))) 7015 return true; 7016 7017 case ICmpInst::ICMP_SGT: 7018 case ICmpInst::ICMP_UGT: 7019 // We know from the range information that (V `Pred` Min || 7020 // V == Min). We know from the guarding condition that !(V 7021 // == Min). This gives us 7022 // 7023 // V `Pred` Min || V == Min && !(V == Min) 7024 // => V `Pred` Min 7025 // 7026 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7027 7028 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7029 return true; 7030 7031 default: 7032 // No change 7033 break; 7034 } 7035 } 7036 } 7037 7038 // Check whether the actual condition is beyond sufficient. 7039 if (FoundPred == ICmpInst::ICMP_EQ) 7040 if (ICmpInst::isTrueWhenEqual(Pred)) 7041 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7042 return true; 7043 if (Pred == ICmpInst::ICMP_NE) 7044 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7045 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7046 return true; 7047 7048 // Otherwise assume the worst. 7049 return false; 7050 } 7051 7052 /// isImpliedCondOperands - Test whether the condition described by Pred, 7053 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7054 /// and FoundRHS is true. 7055 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7056 const SCEV *LHS, const SCEV *RHS, 7057 const SCEV *FoundLHS, 7058 const SCEV *FoundRHS) { 7059 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7060 FoundLHS, FoundRHS) || 7061 // ~x < ~y --> x > y 7062 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7063 getNotSCEV(FoundRHS), 7064 getNotSCEV(FoundLHS)); 7065 } 7066 7067 7068 /// If Expr computes ~A, return A else return nullptr 7069 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7070 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7071 if (!Add || Add->getNumOperands() != 2) return nullptr; 7072 7073 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7074 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7075 return nullptr; 7076 7077 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7078 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7079 7080 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7081 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7082 return nullptr; 7083 7084 return AddRHS->getOperand(1); 7085 } 7086 7087 7088 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7089 template<typename MaxExprType> 7090 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7091 const SCEV *Candidate) { 7092 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7093 if (!MaxExpr) return false; 7094 7095 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7096 return It != MaxExpr->op_end(); 7097 } 7098 7099 7100 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7101 template<typename MaxExprType> 7102 static bool IsMinConsistingOf(ScalarEvolution &SE, 7103 const SCEV *MaybeMinExpr, 7104 const SCEV *Candidate) { 7105 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7106 if (!MaybeMaxExpr) 7107 return false; 7108 7109 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7110 } 7111 7112 7113 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7114 /// expression? 7115 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7116 ICmpInst::Predicate Pred, 7117 const SCEV *LHS, const SCEV *RHS) { 7118 switch (Pred) { 7119 default: 7120 return false; 7121 7122 case ICmpInst::ICMP_SGE: 7123 std::swap(LHS, RHS); 7124 // fall through 7125 case ICmpInst::ICMP_SLE: 7126 return 7127 // min(A, ...) <= A 7128 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7129 // A <= max(A, ...) 7130 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7131 7132 case ICmpInst::ICMP_UGE: 7133 std::swap(LHS, RHS); 7134 // fall through 7135 case ICmpInst::ICMP_ULE: 7136 return 7137 // min(A, ...) <= A 7138 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7139 // A <= max(A, ...) 7140 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7141 } 7142 7143 llvm_unreachable("covered switch fell through?!"); 7144 } 7145 7146 /// isImpliedCondOperandsHelper - Test whether the condition described by 7147 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7148 /// FoundLHS, and FoundRHS is true. 7149 bool 7150 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7151 const SCEV *LHS, const SCEV *RHS, 7152 const SCEV *FoundLHS, 7153 const SCEV *FoundRHS) { 7154 auto IsKnownPredicateFull = 7155 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7156 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7157 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); 7158 }; 7159 7160 switch (Pred) { 7161 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7162 case ICmpInst::ICMP_EQ: 7163 case ICmpInst::ICMP_NE: 7164 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7165 return true; 7166 break; 7167 case ICmpInst::ICMP_SLT: 7168 case ICmpInst::ICMP_SLE: 7169 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7170 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7171 return true; 7172 break; 7173 case ICmpInst::ICMP_SGT: 7174 case ICmpInst::ICMP_SGE: 7175 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7176 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7177 return true; 7178 break; 7179 case ICmpInst::ICMP_ULT: 7180 case ICmpInst::ICMP_ULE: 7181 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7182 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7183 return true; 7184 break; 7185 case ICmpInst::ICMP_UGT: 7186 case ICmpInst::ICMP_UGE: 7187 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7188 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7189 return true; 7190 break; 7191 } 7192 7193 return false; 7194 } 7195 7196 // Verify if an linear IV with positive stride can overflow when in a 7197 // less-than comparison, knowing the invariant term of the comparison, the 7198 // stride and the knowledge of NSW/NUW flags on the recurrence. 7199 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7200 bool IsSigned, bool NoWrap) { 7201 if (NoWrap) return false; 7202 7203 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7204 const SCEV *One = getConstant(Stride->getType(), 1); 7205 7206 if (IsSigned) { 7207 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7208 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7209 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7210 .getSignedMax(); 7211 7212 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7213 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7214 } 7215 7216 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7217 APInt MaxValue = APInt::getMaxValue(BitWidth); 7218 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7219 .getUnsignedMax(); 7220 7221 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7222 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7223 } 7224 7225 // Verify if an linear IV with negative stride can overflow when in a 7226 // greater-than comparison, knowing the invariant term of the comparison, 7227 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7228 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7229 bool IsSigned, bool NoWrap) { 7230 if (NoWrap) return false; 7231 7232 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7233 const SCEV *One = getConstant(Stride->getType(), 1); 7234 7235 if (IsSigned) { 7236 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7237 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7238 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7239 .getSignedMax(); 7240 7241 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7242 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7243 } 7244 7245 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7246 APInt MinValue = APInt::getMinValue(BitWidth); 7247 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7248 .getUnsignedMax(); 7249 7250 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7251 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7252 } 7253 7254 // Compute the backedge taken count knowing the interval difference, the 7255 // stride and presence of the equality in the comparison. 7256 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7257 bool Equality) { 7258 const SCEV *One = getConstant(Step->getType(), 1); 7259 Delta = Equality ? getAddExpr(Delta, Step) 7260 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7261 return getUDivExpr(Delta, Step); 7262 } 7263 7264 /// HowManyLessThans - Return the number of times a backedge containing the 7265 /// specified less-than comparison will execute. If not computable, return 7266 /// CouldNotCompute. 7267 /// 7268 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7269 /// the branch (loops exits only if condition is true). In this case, we can use 7270 /// NoWrapFlags to skip overflow checks. 7271 ScalarEvolution::ExitLimit 7272 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7273 const Loop *L, bool IsSigned, 7274 bool ControlsExit) { 7275 // We handle only IV < Invariant 7276 if (!isLoopInvariant(RHS, L)) 7277 return getCouldNotCompute(); 7278 7279 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7280 7281 // Avoid weird loops 7282 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7283 return getCouldNotCompute(); 7284 7285 bool NoWrap = ControlsExit && 7286 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7287 7288 const SCEV *Stride = IV->getStepRecurrence(*this); 7289 7290 // Avoid negative or zero stride values 7291 if (!isKnownPositive(Stride)) 7292 return getCouldNotCompute(); 7293 7294 // Avoid proven overflow cases: this will ensure that the backedge taken count 7295 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7296 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7297 // behaviors like the case of C language. 7298 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7299 return getCouldNotCompute(); 7300 7301 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7302 : ICmpInst::ICMP_ULT; 7303 const SCEV *Start = IV->getStart(); 7304 const SCEV *End = RHS; 7305 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7306 const SCEV *Diff = getMinusSCEV(RHS, Start); 7307 // If we have NoWrap set, then we can assume that the increment won't 7308 // overflow, in which case if RHS - Start is a constant, we don't need to 7309 // do a max operation since we can just figure it out statically 7310 if (NoWrap && isa<SCEVConstant>(Diff)) { 7311 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7312 if (D.isNegative()) 7313 End = Start; 7314 } else 7315 End = IsSigned ? getSMaxExpr(RHS, Start) 7316 : getUMaxExpr(RHS, Start); 7317 } 7318 7319 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7320 7321 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7322 : getUnsignedRange(Start).getUnsignedMin(); 7323 7324 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7325 : getUnsignedRange(Stride).getUnsignedMin(); 7326 7327 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7328 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7329 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7330 7331 // Although End can be a MAX expression we estimate MaxEnd considering only 7332 // the case End = RHS. This is safe because in the other case (End - Start) 7333 // is zero, leading to a zero maximum backedge taken count. 7334 APInt MaxEnd = 7335 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7336 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7337 7338 const SCEV *MaxBECount; 7339 if (isa<SCEVConstant>(BECount)) 7340 MaxBECount = BECount; 7341 else 7342 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7343 getConstant(MinStride), false); 7344 7345 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7346 MaxBECount = BECount; 7347 7348 return ExitLimit(BECount, MaxBECount); 7349 } 7350 7351 ScalarEvolution::ExitLimit 7352 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7353 const Loop *L, bool IsSigned, 7354 bool ControlsExit) { 7355 // We handle only IV > Invariant 7356 if (!isLoopInvariant(RHS, L)) 7357 return getCouldNotCompute(); 7358 7359 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7360 7361 // Avoid weird loops 7362 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7363 return getCouldNotCompute(); 7364 7365 bool NoWrap = ControlsExit && 7366 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7367 7368 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7369 7370 // Avoid negative or zero stride values 7371 if (!isKnownPositive(Stride)) 7372 return getCouldNotCompute(); 7373 7374 // Avoid proven overflow cases: this will ensure that the backedge taken count 7375 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7376 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7377 // behaviors like the case of C language. 7378 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7379 return getCouldNotCompute(); 7380 7381 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7382 : ICmpInst::ICMP_UGT; 7383 7384 const SCEV *Start = IV->getStart(); 7385 const SCEV *End = RHS; 7386 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7387 const SCEV *Diff = getMinusSCEV(RHS, Start); 7388 // If we have NoWrap set, then we can assume that the increment won't 7389 // overflow, in which case if RHS - Start is a constant, we don't need to 7390 // do a max operation since we can just figure it out statically 7391 if (NoWrap && isa<SCEVConstant>(Diff)) { 7392 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7393 if (!D.isNegative()) 7394 End = Start; 7395 } else 7396 End = IsSigned ? getSMinExpr(RHS, Start) 7397 : getUMinExpr(RHS, Start); 7398 } 7399 7400 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7401 7402 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7403 : getUnsignedRange(Start).getUnsignedMax(); 7404 7405 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7406 : getUnsignedRange(Stride).getUnsignedMin(); 7407 7408 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7409 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7410 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7411 7412 // Although End can be a MIN expression we estimate MinEnd considering only 7413 // the case End = RHS. This is safe because in the other case (Start - End) 7414 // is zero, leading to a zero maximum backedge taken count. 7415 APInt MinEnd = 7416 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7417 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7418 7419 7420 const SCEV *MaxBECount = getCouldNotCompute(); 7421 if (isa<SCEVConstant>(BECount)) 7422 MaxBECount = BECount; 7423 else 7424 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7425 getConstant(MinStride), false); 7426 7427 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7428 MaxBECount = BECount; 7429 7430 return ExitLimit(BECount, MaxBECount); 7431 } 7432 7433 /// getNumIterationsInRange - Return the number of iterations of this loop that 7434 /// produce values in the specified constant range. Another way of looking at 7435 /// this is that it returns the first iteration number where the value is not in 7436 /// the condition, thus computing the exit count. If the iteration count can't 7437 /// be computed, an instance of SCEVCouldNotCompute is returned. 7438 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7439 ScalarEvolution &SE) const { 7440 if (Range.isFullSet()) // Infinite loop. 7441 return SE.getCouldNotCompute(); 7442 7443 // If the start is a non-zero constant, shift the range to simplify things. 7444 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7445 if (!SC->getValue()->isZero()) { 7446 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7447 Operands[0] = SE.getConstant(SC->getType(), 0); 7448 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7449 getNoWrapFlags(FlagNW)); 7450 if (const SCEVAddRecExpr *ShiftedAddRec = 7451 dyn_cast<SCEVAddRecExpr>(Shifted)) 7452 return ShiftedAddRec->getNumIterationsInRange( 7453 Range.subtract(SC->getValue()->getValue()), SE); 7454 // This is strange and shouldn't happen. 7455 return SE.getCouldNotCompute(); 7456 } 7457 7458 // The only time we can solve this is when we have all constant indices. 7459 // Otherwise, we cannot determine the overflow conditions. 7460 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7461 if (!isa<SCEVConstant>(getOperand(i))) 7462 return SE.getCouldNotCompute(); 7463 7464 7465 // Okay at this point we know that all elements of the chrec are constants and 7466 // that the start element is zero. 7467 7468 // First check to see if the range contains zero. If not, the first 7469 // iteration exits. 7470 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7471 if (!Range.contains(APInt(BitWidth, 0))) 7472 return SE.getConstant(getType(), 0); 7473 7474 if (isAffine()) { 7475 // If this is an affine expression then we have this situation: 7476 // Solve {0,+,A} in Range === Ax in Range 7477 7478 // We know that zero is in the range. If A is positive then we know that 7479 // the upper value of the range must be the first possible exit value. 7480 // If A is negative then the lower of the range is the last possible loop 7481 // value. Also note that we already checked for a full range. 7482 APInt One(BitWidth,1); 7483 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7484 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7485 7486 // The exit value should be (End+A)/A. 7487 APInt ExitVal = (End + A).udiv(A); 7488 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7489 7490 // Evaluate at the exit value. If we really did fall out of the valid 7491 // range, then we computed our trip count, otherwise wrap around or other 7492 // things must have happened. 7493 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7494 if (Range.contains(Val->getValue())) 7495 return SE.getCouldNotCompute(); // Something strange happened 7496 7497 // Ensure that the previous value is in the range. This is a sanity check. 7498 assert(Range.contains( 7499 EvaluateConstantChrecAtConstant(this, 7500 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7501 "Linear scev computation is off in a bad way!"); 7502 return SE.getConstant(ExitValue); 7503 } else if (isQuadratic()) { 7504 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7505 // quadratic equation to solve it. To do this, we must frame our problem in 7506 // terms of figuring out when zero is crossed, instead of when 7507 // Range.getUpper() is crossed. 7508 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7509 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7510 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7511 // getNoWrapFlags(FlagNW) 7512 FlagAnyWrap); 7513 7514 // Next, solve the constructed addrec 7515 std::pair<const SCEV *,const SCEV *> Roots = 7516 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7517 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7518 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7519 if (R1) { 7520 // Pick the smallest positive root value. 7521 if (ConstantInt *CB = 7522 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7523 R1->getValue(), R2->getValue()))) { 7524 if (CB->getZExtValue() == false) 7525 std::swap(R1, R2); // R1 is the minimum root now. 7526 7527 // Make sure the root is not off by one. The returned iteration should 7528 // not be in the range, but the previous one should be. When solving 7529 // for "X*X < 5", for example, we should not return a root of 2. 7530 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7531 R1->getValue(), 7532 SE); 7533 if (Range.contains(R1Val->getValue())) { 7534 // The next iteration must be out of the range... 7535 ConstantInt *NextVal = 7536 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7537 7538 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7539 if (!Range.contains(R1Val->getValue())) 7540 return SE.getConstant(NextVal); 7541 return SE.getCouldNotCompute(); // Something strange happened 7542 } 7543 7544 // If R1 was not in the range, then it is a good return value. Make 7545 // sure that R1-1 WAS in the range though, just in case. 7546 ConstantInt *NextVal = 7547 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7548 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7549 if (Range.contains(R1Val->getValue())) 7550 return R1; 7551 return SE.getCouldNotCompute(); // Something strange happened 7552 } 7553 } 7554 } 7555 7556 return SE.getCouldNotCompute(); 7557 } 7558 7559 namespace { 7560 struct FindUndefs { 7561 bool Found; 7562 FindUndefs() : Found(false) {} 7563 7564 bool follow(const SCEV *S) { 7565 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7566 if (isa<UndefValue>(C->getValue())) 7567 Found = true; 7568 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7569 if (isa<UndefValue>(C->getValue())) 7570 Found = true; 7571 } 7572 7573 // Keep looking if we haven't found it yet. 7574 return !Found; 7575 } 7576 bool isDone() const { 7577 // Stop recursion if we have found an undef. 7578 return Found; 7579 } 7580 }; 7581 } 7582 7583 // Return true when S contains at least an undef value. 7584 static inline bool 7585 containsUndefs(const SCEV *S) { 7586 FindUndefs F; 7587 SCEVTraversal<FindUndefs> ST(F); 7588 ST.visitAll(S); 7589 7590 return F.Found; 7591 } 7592 7593 namespace { 7594 // Collect all steps of SCEV expressions. 7595 struct SCEVCollectStrides { 7596 ScalarEvolution &SE; 7597 SmallVectorImpl<const SCEV *> &Strides; 7598 7599 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7600 : SE(SE), Strides(S) {} 7601 7602 bool follow(const SCEV *S) { 7603 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7604 Strides.push_back(AR->getStepRecurrence(SE)); 7605 return true; 7606 } 7607 bool isDone() const { return false; } 7608 }; 7609 7610 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7611 struct SCEVCollectTerms { 7612 SmallVectorImpl<const SCEV *> &Terms; 7613 7614 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7615 : Terms(T) {} 7616 7617 bool follow(const SCEV *S) { 7618 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7619 if (!containsUndefs(S)) 7620 Terms.push_back(S); 7621 7622 // Stop recursion: once we collected a term, do not walk its operands. 7623 return false; 7624 } 7625 7626 // Keep looking. 7627 return true; 7628 } 7629 bool isDone() const { return false; } 7630 }; 7631 } 7632 7633 /// Find parametric terms in this SCEVAddRecExpr. 7634 void SCEVAddRecExpr::collectParametricTerms( 7635 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 7636 SmallVector<const SCEV *, 4> Strides; 7637 SCEVCollectStrides StrideCollector(SE, Strides); 7638 visitAll(this, StrideCollector); 7639 7640 DEBUG({ 7641 dbgs() << "Strides:\n"; 7642 for (const SCEV *S : Strides) 7643 dbgs() << *S << "\n"; 7644 }); 7645 7646 for (const SCEV *S : Strides) { 7647 SCEVCollectTerms TermCollector(Terms); 7648 visitAll(S, TermCollector); 7649 } 7650 7651 DEBUG({ 7652 dbgs() << "Terms:\n"; 7653 for (const SCEV *T : Terms) 7654 dbgs() << *T << "\n"; 7655 }); 7656 } 7657 7658 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7659 SmallVectorImpl<const SCEV *> &Terms, 7660 SmallVectorImpl<const SCEV *> &Sizes) { 7661 int Last = Terms.size() - 1; 7662 const SCEV *Step = Terms[Last]; 7663 7664 // End of recursion. 7665 if (Last == 0) { 7666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7667 SmallVector<const SCEV *, 2> Qs; 7668 for (const SCEV *Op : M->operands()) 7669 if (!isa<SCEVConstant>(Op)) 7670 Qs.push_back(Op); 7671 7672 Step = SE.getMulExpr(Qs); 7673 } 7674 7675 Sizes.push_back(Step); 7676 return true; 7677 } 7678 7679 for (const SCEV *&Term : Terms) { 7680 // Normalize the terms before the next call to findArrayDimensionsRec. 7681 const SCEV *Q, *R; 7682 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7683 7684 // Bail out when GCD does not evenly divide one of the terms. 7685 if (!R->isZero()) 7686 return false; 7687 7688 Term = Q; 7689 } 7690 7691 // Remove all SCEVConstants. 7692 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7693 return isa<SCEVConstant>(E); 7694 }), 7695 Terms.end()); 7696 7697 if (Terms.size() > 0) 7698 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7699 return false; 7700 7701 Sizes.push_back(Step); 7702 return true; 7703 } 7704 7705 namespace { 7706 struct FindParameter { 7707 bool FoundParameter; 7708 FindParameter() : FoundParameter(false) {} 7709 7710 bool follow(const SCEV *S) { 7711 if (isa<SCEVUnknown>(S)) { 7712 FoundParameter = true; 7713 // Stop recursion: we found a parameter. 7714 return false; 7715 } 7716 // Keep looking. 7717 return true; 7718 } 7719 bool isDone() const { 7720 // Stop recursion if we have found a parameter. 7721 return FoundParameter; 7722 } 7723 }; 7724 } 7725 7726 // Returns true when S contains at least a SCEVUnknown parameter. 7727 static inline bool 7728 containsParameters(const SCEV *S) { 7729 FindParameter F; 7730 SCEVTraversal<FindParameter> ST(F); 7731 ST.visitAll(S); 7732 7733 return F.FoundParameter; 7734 } 7735 7736 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7737 static inline bool 7738 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7739 for (const SCEV *T : Terms) 7740 if (containsParameters(T)) 7741 return true; 7742 return false; 7743 } 7744 7745 // Return the number of product terms in S. 7746 static inline int numberOfTerms(const SCEV *S) { 7747 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7748 return Expr->getNumOperands(); 7749 return 1; 7750 } 7751 7752 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7753 if (isa<SCEVConstant>(T)) 7754 return nullptr; 7755 7756 if (isa<SCEVUnknown>(T)) 7757 return T; 7758 7759 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7760 SmallVector<const SCEV *, 2> Factors; 7761 for (const SCEV *Op : M->operands()) 7762 if (!isa<SCEVConstant>(Op)) 7763 Factors.push_back(Op); 7764 7765 return SE.getMulExpr(Factors); 7766 } 7767 7768 return T; 7769 } 7770 7771 /// Return the size of an element read or written by Inst. 7772 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 7773 Type *Ty; 7774 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 7775 Ty = Store->getValueOperand()->getType(); 7776 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 7777 Ty = Load->getType(); 7778 else 7779 return nullptr; 7780 7781 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 7782 return getSizeOfExpr(ETy, Ty); 7783 } 7784 7785 /// Second step of delinearization: compute the array dimensions Sizes from the 7786 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7787 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 7788 SmallVectorImpl<const SCEV *> &Sizes, 7789 const SCEV *ElementSize) const { 7790 7791 if (Terms.size() < 1 || !ElementSize) 7792 return; 7793 7794 // Early return when Terms do not contain parameters: we do not delinearize 7795 // non parametric SCEVs. 7796 if (!containsParameters(Terms)) 7797 return; 7798 7799 DEBUG({ 7800 dbgs() << "Terms:\n"; 7801 for (const SCEV *T : Terms) 7802 dbgs() << *T << "\n"; 7803 }); 7804 7805 // Remove duplicates. 7806 std::sort(Terms.begin(), Terms.end()); 7807 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7808 7809 // Put larger terms first. 7810 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7811 return numberOfTerms(LHS) > numberOfTerms(RHS); 7812 }); 7813 7814 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7815 7816 // Divide all terms by the element size. 7817 for (const SCEV *&Term : Terms) { 7818 const SCEV *Q, *R; 7819 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 7820 Term = Q; 7821 } 7822 7823 SmallVector<const SCEV *, 4> NewTerms; 7824 7825 // Remove constant factors. 7826 for (const SCEV *T : Terms) 7827 if (const SCEV *NewT = removeConstantFactors(SE, T)) 7828 NewTerms.push_back(NewT); 7829 7830 DEBUG({ 7831 dbgs() << "Terms after sorting:\n"; 7832 for (const SCEV *T : NewTerms) 7833 dbgs() << *T << "\n"; 7834 }); 7835 7836 if (NewTerms.empty() || 7837 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 7838 Sizes.clear(); 7839 return; 7840 } 7841 7842 // The last element to be pushed into Sizes is the size of an element. 7843 Sizes.push_back(ElementSize); 7844 7845 DEBUG({ 7846 dbgs() << "Sizes:\n"; 7847 for (const SCEV *S : Sizes) 7848 dbgs() << *S << "\n"; 7849 }); 7850 } 7851 7852 /// Third step of delinearization: compute the access functions for the 7853 /// Subscripts based on the dimensions in Sizes. 7854 void SCEVAddRecExpr::computeAccessFunctions( 7855 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7856 SmallVectorImpl<const SCEV *> &Sizes) const { 7857 7858 // Early exit in case this SCEV is not an affine multivariate function. 7859 if (Sizes.empty() || !this->isAffine()) 7860 return; 7861 7862 const SCEV *Res = this; 7863 int Last = Sizes.size() - 1; 7864 for (int i = Last; i >= 0; i--) { 7865 const SCEV *Q, *R; 7866 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7867 7868 DEBUG({ 7869 dbgs() << "Res: " << *Res << "\n"; 7870 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7871 dbgs() << "Res divided by Sizes[i]:\n"; 7872 dbgs() << "Quotient: " << *Q << "\n"; 7873 dbgs() << "Remainder: " << *R << "\n"; 7874 }); 7875 7876 Res = Q; 7877 7878 // Do not record the last subscript corresponding to the size of elements in 7879 // the array. 7880 if (i == Last) { 7881 7882 // Bail out if the remainder is too complex. 7883 if (isa<SCEVAddRecExpr>(R)) { 7884 Subscripts.clear(); 7885 Sizes.clear(); 7886 return; 7887 } 7888 7889 continue; 7890 } 7891 7892 // Record the access function for the current subscript. 7893 Subscripts.push_back(R); 7894 } 7895 7896 // Also push in last position the remainder of the last division: it will be 7897 // the access function of the innermost dimension. 7898 Subscripts.push_back(Res); 7899 7900 std::reverse(Subscripts.begin(), Subscripts.end()); 7901 7902 DEBUG({ 7903 dbgs() << "Subscripts:\n"; 7904 for (const SCEV *S : Subscripts) 7905 dbgs() << *S << "\n"; 7906 }); 7907 } 7908 7909 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7910 /// sizes of an array access. Returns the remainder of the delinearization that 7911 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7912 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7913 /// expressions in the stride and base of a SCEV corresponding to the 7914 /// computation of a GCD (greatest common divisor) of base and stride. When 7915 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7916 /// 7917 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7918 /// 7919 /// void foo(long n, long m, long o, double A[n][m][o]) { 7920 /// 7921 /// for (long i = 0; i < n; i++) 7922 /// for (long j = 0; j < m; j++) 7923 /// for (long k = 0; k < o; k++) 7924 /// A[i][j][k] = 1.0; 7925 /// } 7926 /// 7927 /// the delinearization input is the following AddRec SCEV: 7928 /// 7929 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7930 /// 7931 /// From this SCEV, we are able to say that the base offset of the access is %A 7932 /// because it appears as an offset that does not divide any of the strides in 7933 /// the loops: 7934 /// 7935 /// CHECK: Base offset: %A 7936 /// 7937 /// and then SCEV->delinearize determines the size of some of the dimensions of 7938 /// the array as these are the multiples by which the strides are happening: 7939 /// 7940 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7941 /// 7942 /// Note that the outermost dimension remains of UnknownSize because there are 7943 /// no strides that would help identifying the size of the last dimension: when 7944 /// the array has been statically allocated, one could compute the size of that 7945 /// dimension by dividing the overall size of the array by the size of the known 7946 /// dimensions: %m * %o * 8. 7947 /// 7948 /// Finally delinearize provides the access functions for the array reference 7949 /// that does correspond to A[i][j][k] of the above C testcase: 7950 /// 7951 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7952 /// 7953 /// The testcases are checking the output of a function pass: 7954 /// DelinearizationPass that walks through all loads and stores of a function 7955 /// asking for the SCEV of the memory access with respect to all enclosing 7956 /// loops, calling SCEV->delinearize on that and printing the results. 7957 7958 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7959 SmallVectorImpl<const SCEV *> &Subscripts, 7960 SmallVectorImpl<const SCEV *> &Sizes, 7961 const SCEV *ElementSize) const { 7962 // First step: collect parametric terms. 7963 SmallVector<const SCEV *, 4> Terms; 7964 collectParametricTerms(SE, Terms); 7965 7966 if (Terms.empty()) 7967 return; 7968 7969 // Second step: find subscript sizes. 7970 SE.findArrayDimensions(Terms, Sizes, ElementSize); 7971 7972 if (Sizes.empty()) 7973 return; 7974 7975 // Third step: compute the access functions for each subscript. 7976 computeAccessFunctions(SE, Subscripts, Sizes); 7977 7978 if (Subscripts.empty()) 7979 return; 7980 7981 DEBUG({ 7982 dbgs() << "succeeded to delinearize " << *this << "\n"; 7983 dbgs() << "ArrayDecl[UnknownSize]"; 7984 for (const SCEV *S : Sizes) 7985 dbgs() << "[" << *S << "]"; 7986 7987 dbgs() << "\nArrayRef"; 7988 for (const SCEV *S : Subscripts) 7989 dbgs() << "[" << *S << "]"; 7990 dbgs() << "\n"; 7991 }); 7992 } 7993 7994 //===----------------------------------------------------------------------===// 7995 // SCEVCallbackVH Class Implementation 7996 //===----------------------------------------------------------------------===// 7997 7998 void ScalarEvolution::SCEVCallbackVH::deleted() { 7999 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8000 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8001 SE->ConstantEvolutionLoopExitValue.erase(PN); 8002 SE->ValueExprMap.erase(getValPtr()); 8003 // this now dangles! 8004 } 8005 8006 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8007 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8008 8009 // Forget all the expressions associated with users of the old value, 8010 // so that future queries will recompute the expressions using the new 8011 // value. 8012 Value *Old = getValPtr(); 8013 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8014 SmallPtrSet<User *, 8> Visited; 8015 while (!Worklist.empty()) { 8016 User *U = Worklist.pop_back_val(); 8017 // Deleting the Old value will cause this to dangle. Postpone 8018 // that until everything else is done. 8019 if (U == Old) 8020 continue; 8021 if (!Visited.insert(U).second) 8022 continue; 8023 if (PHINode *PN = dyn_cast<PHINode>(U)) 8024 SE->ConstantEvolutionLoopExitValue.erase(PN); 8025 SE->ValueExprMap.erase(U); 8026 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8027 } 8028 // Delete the Old value. 8029 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8030 SE->ConstantEvolutionLoopExitValue.erase(PN); 8031 SE->ValueExprMap.erase(Old); 8032 // this now dangles! 8033 } 8034 8035 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8036 : CallbackVH(V), SE(se) {} 8037 8038 //===----------------------------------------------------------------------===// 8039 // ScalarEvolution Class Implementation 8040 //===----------------------------------------------------------------------===// 8041 8042 ScalarEvolution::ScalarEvolution() 8043 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 8044 BlockDispositions(64), FirstUnknown(nullptr) { 8045 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 8046 } 8047 8048 bool ScalarEvolution::runOnFunction(Function &F) { 8049 this->F = &F; 8050 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8051 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8052 DL = &F.getParent()->getDataLayout(); 8053 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 8054 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8055 return false; 8056 } 8057 8058 void ScalarEvolution::releaseMemory() { 8059 // Iterate through all the SCEVUnknown instances and call their 8060 // destructors, so that they release their references to their values. 8061 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8062 U->~SCEVUnknown(); 8063 FirstUnknown = nullptr; 8064 8065 ValueExprMap.clear(); 8066 8067 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8068 // that a loop had multiple computable exits. 8069 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8070 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8071 I != E; ++I) { 8072 I->second.clear(); 8073 } 8074 8075 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8076 8077 BackedgeTakenCounts.clear(); 8078 ConstantEvolutionLoopExitValue.clear(); 8079 ValuesAtScopes.clear(); 8080 LoopDispositions.clear(); 8081 BlockDispositions.clear(); 8082 UnsignedRanges.clear(); 8083 SignedRanges.clear(); 8084 UniqueSCEVs.clear(); 8085 SCEVAllocator.Reset(); 8086 } 8087 8088 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 8089 AU.setPreservesAll(); 8090 AU.addRequired<AssumptionCacheTracker>(); 8091 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8092 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8093 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8094 } 8095 8096 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8097 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8098 } 8099 8100 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8101 const Loop *L) { 8102 // Print all inner loops first 8103 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8104 PrintLoopInfo(OS, SE, *I); 8105 8106 OS << "Loop "; 8107 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8108 OS << ": "; 8109 8110 SmallVector<BasicBlock *, 8> ExitBlocks; 8111 L->getExitBlocks(ExitBlocks); 8112 if (ExitBlocks.size() != 1) 8113 OS << "<multiple exits> "; 8114 8115 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8116 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8117 } else { 8118 OS << "Unpredictable backedge-taken count. "; 8119 } 8120 8121 OS << "\n" 8122 "Loop "; 8123 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8124 OS << ": "; 8125 8126 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8127 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8128 } else { 8129 OS << "Unpredictable max backedge-taken count. "; 8130 } 8131 8132 OS << "\n"; 8133 } 8134 8135 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 8136 // ScalarEvolution's implementation of the print method is to print 8137 // out SCEV values of all instructions that are interesting. Doing 8138 // this potentially causes it to create new SCEV objects though, 8139 // which technically conflicts with the const qualifier. This isn't 8140 // observable from outside the class though, so casting away the 8141 // const isn't dangerous. 8142 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8143 8144 OS << "Classifying expressions for: "; 8145 F->printAsOperand(OS, /*PrintType=*/false); 8146 OS << "\n"; 8147 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8148 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8149 OS << *I << '\n'; 8150 OS << " --> "; 8151 const SCEV *SV = SE.getSCEV(&*I); 8152 SV->print(OS); 8153 8154 const Loop *L = LI->getLoopFor((*I).getParent()); 8155 8156 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8157 if (AtUse != SV) { 8158 OS << " --> "; 8159 AtUse->print(OS); 8160 } 8161 8162 if (L) { 8163 OS << "\t\t" "Exits: "; 8164 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8165 if (!SE.isLoopInvariant(ExitValue, L)) { 8166 OS << "<<Unknown>>"; 8167 } else { 8168 OS << *ExitValue; 8169 } 8170 } 8171 8172 OS << "\n"; 8173 } 8174 8175 OS << "Determining loop execution counts for: "; 8176 F->printAsOperand(OS, /*PrintType=*/false); 8177 OS << "\n"; 8178 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 8179 PrintLoopInfo(OS, &SE, *I); 8180 } 8181 8182 ScalarEvolution::LoopDisposition 8183 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8184 auto &Values = LoopDispositions[S]; 8185 for (auto &V : Values) { 8186 if (V.getPointer() == L) 8187 return V.getInt(); 8188 } 8189 Values.emplace_back(L, LoopVariant); 8190 LoopDisposition D = computeLoopDisposition(S, L); 8191 auto &Values2 = LoopDispositions[S]; 8192 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8193 if (V.getPointer() == L) { 8194 V.setInt(D); 8195 break; 8196 } 8197 } 8198 return D; 8199 } 8200 8201 ScalarEvolution::LoopDisposition 8202 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8203 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8204 case scConstant: 8205 return LoopInvariant; 8206 case scTruncate: 8207 case scZeroExtend: 8208 case scSignExtend: 8209 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8210 case scAddRecExpr: { 8211 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8212 8213 // If L is the addrec's loop, it's computable. 8214 if (AR->getLoop() == L) 8215 return LoopComputable; 8216 8217 // Add recurrences are never invariant in the function-body (null loop). 8218 if (!L) 8219 return LoopVariant; 8220 8221 // This recurrence is variant w.r.t. L if L contains AR's loop. 8222 if (L->contains(AR->getLoop())) 8223 return LoopVariant; 8224 8225 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8226 if (AR->getLoop()->contains(L)) 8227 return LoopInvariant; 8228 8229 // This recurrence is variant w.r.t. L if any of its operands 8230 // are variant. 8231 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8232 I != E; ++I) 8233 if (!isLoopInvariant(*I, L)) 8234 return LoopVariant; 8235 8236 // Otherwise it's loop-invariant. 8237 return LoopInvariant; 8238 } 8239 case scAddExpr: 8240 case scMulExpr: 8241 case scUMaxExpr: 8242 case scSMaxExpr: { 8243 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8244 bool HasVarying = false; 8245 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8246 I != E; ++I) { 8247 LoopDisposition D = getLoopDisposition(*I, L); 8248 if (D == LoopVariant) 8249 return LoopVariant; 8250 if (D == LoopComputable) 8251 HasVarying = true; 8252 } 8253 return HasVarying ? LoopComputable : LoopInvariant; 8254 } 8255 case scUDivExpr: { 8256 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8257 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8258 if (LD == LoopVariant) 8259 return LoopVariant; 8260 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8261 if (RD == LoopVariant) 8262 return LoopVariant; 8263 return (LD == LoopInvariant && RD == LoopInvariant) ? 8264 LoopInvariant : LoopComputable; 8265 } 8266 case scUnknown: 8267 // All non-instruction values are loop invariant. All instructions are loop 8268 // invariant if they are not contained in the specified loop. 8269 // Instructions are never considered invariant in the function body 8270 // (null loop) because they are defined within the "loop". 8271 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8272 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8273 return LoopInvariant; 8274 case scCouldNotCompute: 8275 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8276 } 8277 llvm_unreachable("Unknown SCEV kind!"); 8278 } 8279 8280 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8281 return getLoopDisposition(S, L) == LoopInvariant; 8282 } 8283 8284 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8285 return getLoopDisposition(S, L) == LoopComputable; 8286 } 8287 8288 ScalarEvolution::BlockDisposition 8289 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8290 auto &Values = BlockDispositions[S]; 8291 for (auto &V : Values) { 8292 if (V.getPointer() == BB) 8293 return V.getInt(); 8294 } 8295 Values.emplace_back(BB, DoesNotDominateBlock); 8296 BlockDisposition D = computeBlockDisposition(S, BB); 8297 auto &Values2 = BlockDispositions[S]; 8298 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8299 if (V.getPointer() == BB) { 8300 V.setInt(D); 8301 break; 8302 } 8303 } 8304 return D; 8305 } 8306 8307 ScalarEvolution::BlockDisposition 8308 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8309 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8310 case scConstant: 8311 return ProperlyDominatesBlock; 8312 case scTruncate: 8313 case scZeroExtend: 8314 case scSignExtend: 8315 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8316 case scAddRecExpr: { 8317 // This uses a "dominates" query instead of "properly dominates" query 8318 // to test for proper dominance too, because the instruction which 8319 // produces the addrec's value is a PHI, and a PHI effectively properly 8320 // dominates its entire containing block. 8321 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8322 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 8323 return DoesNotDominateBlock; 8324 } 8325 // FALL THROUGH into SCEVNAryExpr handling. 8326 case scAddExpr: 8327 case scMulExpr: 8328 case scUMaxExpr: 8329 case scSMaxExpr: { 8330 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8331 bool Proper = true; 8332 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8333 I != E; ++I) { 8334 BlockDisposition D = getBlockDisposition(*I, BB); 8335 if (D == DoesNotDominateBlock) 8336 return DoesNotDominateBlock; 8337 if (D == DominatesBlock) 8338 Proper = false; 8339 } 8340 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8341 } 8342 case scUDivExpr: { 8343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8344 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8345 BlockDisposition LD = getBlockDisposition(LHS, BB); 8346 if (LD == DoesNotDominateBlock) 8347 return DoesNotDominateBlock; 8348 BlockDisposition RD = getBlockDisposition(RHS, BB); 8349 if (RD == DoesNotDominateBlock) 8350 return DoesNotDominateBlock; 8351 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8352 ProperlyDominatesBlock : DominatesBlock; 8353 } 8354 case scUnknown: 8355 if (Instruction *I = 8356 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8357 if (I->getParent() == BB) 8358 return DominatesBlock; 8359 if (DT->properlyDominates(I->getParent(), BB)) 8360 return ProperlyDominatesBlock; 8361 return DoesNotDominateBlock; 8362 } 8363 return ProperlyDominatesBlock; 8364 case scCouldNotCompute: 8365 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8366 } 8367 llvm_unreachable("Unknown SCEV kind!"); 8368 } 8369 8370 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8371 return getBlockDisposition(S, BB) >= DominatesBlock; 8372 } 8373 8374 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8375 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8376 } 8377 8378 namespace { 8379 // Search for a SCEV expression node within an expression tree. 8380 // Implements SCEVTraversal::Visitor. 8381 struct SCEVSearch { 8382 const SCEV *Node; 8383 bool IsFound; 8384 8385 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8386 8387 bool follow(const SCEV *S) { 8388 IsFound |= (S == Node); 8389 return !IsFound; 8390 } 8391 bool isDone() const { return IsFound; } 8392 }; 8393 } 8394 8395 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8396 SCEVSearch Search(Op); 8397 visitAll(S, Search); 8398 return Search.IsFound; 8399 } 8400 8401 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8402 ValuesAtScopes.erase(S); 8403 LoopDispositions.erase(S); 8404 BlockDispositions.erase(S); 8405 UnsignedRanges.erase(S); 8406 SignedRanges.erase(S); 8407 8408 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8409 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8410 BackedgeTakenInfo &BEInfo = I->second; 8411 if (BEInfo.hasOperand(S, this)) { 8412 BEInfo.clear(); 8413 BackedgeTakenCounts.erase(I++); 8414 } 8415 else 8416 ++I; 8417 } 8418 } 8419 8420 typedef DenseMap<const Loop *, std::string> VerifyMap; 8421 8422 /// replaceSubString - Replaces all occurrences of From in Str with To. 8423 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8424 size_t Pos = 0; 8425 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8426 Str.replace(Pos, From.size(), To.data(), To.size()); 8427 Pos += To.size(); 8428 } 8429 } 8430 8431 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8432 static void 8433 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8434 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8435 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8436 8437 std::string &S = Map[L]; 8438 if (S.empty()) { 8439 raw_string_ostream OS(S); 8440 SE.getBackedgeTakenCount(L)->print(OS); 8441 8442 // false and 0 are semantically equivalent. This can happen in dead loops. 8443 replaceSubString(OS.str(), "false", "0"); 8444 // Remove wrap flags, their use in SCEV is highly fragile. 8445 // FIXME: Remove this when SCEV gets smarter about them. 8446 replaceSubString(OS.str(), "<nw>", ""); 8447 replaceSubString(OS.str(), "<nsw>", ""); 8448 replaceSubString(OS.str(), "<nuw>", ""); 8449 } 8450 } 8451 } 8452 8453 void ScalarEvolution::verifyAnalysis() const { 8454 if (!VerifySCEV) 8455 return; 8456 8457 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8458 8459 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8460 // FIXME: It would be much better to store actual values instead of strings, 8461 // but SCEV pointers will change if we drop the caches. 8462 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8463 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8464 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8465 8466 // Gather stringified backedge taken counts for all loops without using 8467 // SCEV's caches. 8468 SE.releaseMemory(); 8469 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8470 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8471 8472 // Now compare whether they're the same with and without caches. This allows 8473 // verifying that no pass changed the cache. 8474 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8475 "New loops suddenly appeared!"); 8476 8477 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8478 OldE = BackedgeDumpsOld.end(), 8479 NewI = BackedgeDumpsNew.begin(); 8480 OldI != OldE; ++OldI, ++NewI) { 8481 assert(OldI->first == NewI->first && "Loop order changed!"); 8482 8483 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8484 // changes. 8485 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8486 // means that a pass is buggy or SCEV has to learn a new pattern but is 8487 // usually not harmful. 8488 if (OldI->second != NewI->second && 8489 OldI->second.find("undef") == std::string::npos && 8490 NewI->second.find("undef") == std::string::npos && 8491 OldI->second != "***COULDNOTCOMPUTE***" && 8492 NewI->second != "***COULDNOTCOMPUTE***") { 8493 dbgs() << "SCEVValidator: SCEV for loop '" 8494 << OldI->first->getHeader()->getName() 8495 << "' changed from '" << OldI->second 8496 << "' to '" << NewI->second << "'!\n"; 8497 std::abort(); 8498 } 8499 } 8500 8501 // TODO: Verify more things. 8502 } 8503