1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
451     Operands[0] = op;
452 }
453 
454 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
455                                    const SCEV *op, Type *ty)
456   : SCEVCastExpr(ID, scTruncate, op, ty) {
457   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
458          "Cannot truncate non-integer value!");
459 }
460 
461 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
462                                        const SCEV *op, Type *ty)
463   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
464   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
465          "Cannot zero extend non-integer value!");
466 }
467 
468 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
469                                        const SCEV *op, Type *ty)
470   : SCEVCastExpr(ID, scSignExtend, op, ty) {
471   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
472          "Cannot sign extend non-integer value!");
473 }
474 
475 void SCEVUnknown::deleted() {
476   // Clear this SCEVUnknown from various maps.
477   SE->forgetMemoizedResults(this);
478 
479   // Remove this SCEVUnknown from the uniquing map.
480   SE->UniqueSCEVs.RemoveNode(this);
481 
482   // Release the value.
483   setValPtr(nullptr);
484 }
485 
486 void SCEVUnknown::allUsesReplacedWith(Value *New) {
487   // Remove this SCEVUnknown from the uniquing map.
488   SE->UniqueSCEVs.RemoveNode(this);
489 
490   // Update this SCEVUnknown to point to the new value. This is needed
491   // because there may still be outstanding SCEVs which still point to
492   // this SCEVUnknown.
493   setValPtr(New);
494 }
495 
496 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
497   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
498     if (VCE->getOpcode() == Instruction::PtrToInt)
499       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
500         if (CE->getOpcode() == Instruction::GetElementPtr &&
501             CE->getOperand(0)->isNullValue() &&
502             CE->getNumOperands() == 2)
503           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
504             if (CI->isOne()) {
505               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
506                                  ->getElementType();
507               return true;
508             }
509 
510   return false;
511 }
512 
513 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
514   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
515     if (VCE->getOpcode() == Instruction::PtrToInt)
516       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
517         if (CE->getOpcode() == Instruction::GetElementPtr &&
518             CE->getOperand(0)->isNullValue()) {
519           Type *Ty =
520             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
521           if (StructType *STy = dyn_cast<StructType>(Ty))
522             if (!STy->isPacked() &&
523                 CE->getNumOperands() == 3 &&
524                 CE->getOperand(1)->isNullValue()) {
525               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
526                 if (CI->isOne() &&
527                     STy->getNumElements() == 2 &&
528                     STy->getElementType(0)->isIntegerTy(1)) {
529                   AllocTy = STy->getElementType(1);
530                   return true;
531                 }
532             }
533         }
534 
535   return false;
536 }
537 
538 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
539   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
540     if (VCE->getOpcode() == Instruction::PtrToInt)
541       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
542         if (CE->getOpcode() == Instruction::GetElementPtr &&
543             CE->getNumOperands() == 3 &&
544             CE->getOperand(0)->isNullValue() &&
545             CE->getOperand(1)->isNullValue()) {
546           Type *Ty =
547             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
548           // Ignore vector types here so that ScalarEvolutionExpander doesn't
549           // emit getelementptrs that index into vectors.
550           if (Ty->isStructTy() || Ty->isArrayTy()) {
551             CTy = Ty;
552             FieldNo = CE->getOperand(2);
553             return true;
554           }
555         }
556 
557   return false;
558 }
559 
560 //===----------------------------------------------------------------------===//
561 //                               SCEV Utilities
562 //===----------------------------------------------------------------------===//
563 
564 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
565 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
566 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
567 /// have been previously deemed to be "equally complex" by this routine.  It is
568 /// intended to avoid exponential time complexity in cases like:
569 ///
570 ///   %a = f(%x, %y)
571 ///   %b = f(%a, %a)
572 ///   %c = f(%b, %b)
573 ///
574 ///   %d = f(%x, %y)
575 ///   %e = f(%d, %d)
576 ///   %f = f(%e, %e)
577 ///
578 ///   CompareValueComplexity(%f, %c)
579 ///
580 /// Since we do not continue running this routine on expression trees once we
581 /// have seen unequal values, there is no need to track them in the cache.
582 static int
583 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
584                        const LoopInfo *const LI, Value *LV, Value *RV,
585                        unsigned Depth) {
586   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
587     return 0;
588 
589   // Order pointer values after integer values. This helps SCEVExpander form
590   // GEPs.
591   bool LIsPointer = LV->getType()->isPointerTy(),
592        RIsPointer = RV->getType()->isPointerTy();
593   if (LIsPointer != RIsPointer)
594     return (int)LIsPointer - (int)RIsPointer;
595 
596   // Compare getValueID values.
597   unsigned LID = LV->getValueID(), RID = RV->getValueID();
598   if (LID != RID)
599     return (int)LID - (int)RID;
600 
601   // Sort arguments by their position.
602   if (const auto *LA = dyn_cast<Argument>(LV)) {
603     const auto *RA = cast<Argument>(RV);
604     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
605     return (int)LArgNo - (int)RArgNo;
606   }
607 
608   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
609     const auto *RGV = cast<GlobalValue>(RV);
610 
611     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
612       auto LT = GV->getLinkage();
613       return !(GlobalValue::isPrivateLinkage(LT) ||
614                GlobalValue::isInternalLinkage(LT));
615     };
616 
617     // Use the names to distinguish the two values, but only if the
618     // names are semantically important.
619     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
620       return LGV->getName().compare(RGV->getName());
621   }
622 
623   // For instructions, compare their loop depth, and their operand count.  This
624   // is pretty loose.
625   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
626     const auto *RInst = cast<Instruction>(RV);
627 
628     // Compare loop depths.
629     const BasicBlock *LParent = LInst->getParent(),
630                      *RParent = RInst->getParent();
631     if (LParent != RParent) {
632       unsigned LDepth = LI->getLoopDepth(LParent),
633                RDepth = LI->getLoopDepth(RParent);
634       if (LDepth != RDepth)
635         return (int)LDepth - (int)RDepth;
636     }
637 
638     // Compare the number of operands.
639     unsigned LNumOps = LInst->getNumOperands(),
640              RNumOps = RInst->getNumOperands();
641     if (LNumOps != RNumOps)
642       return (int)LNumOps - (int)RNumOps;
643 
644     for (unsigned Idx : seq(0u, LNumOps)) {
645       int Result =
646           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
647                                  RInst->getOperand(Idx), Depth + 1);
648       if (Result != 0)
649         return Result;
650     }
651   }
652 
653   EqCacheValue.unionSets(LV, RV);
654   return 0;
655 }
656 
657 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
658 // than RHS, respectively. A three-way result allows recursive comparisons to be
659 // more efficient.
660 static int CompareSCEVComplexity(
661     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
662     EquivalenceClasses<const Value *> &EqCacheValue,
663     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
664     DominatorTree &DT, unsigned Depth = 0) {
665   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
666   if (LHS == RHS)
667     return 0;
668 
669   // Primarily, sort the SCEVs by their getSCEVType().
670   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
671   if (LType != RType)
672     return (int)LType - (int)RType;
673 
674   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
675     return 0;
676   // Aside from the getSCEVType() ordering, the particular ordering
677   // isn't very important except that it's beneficial to be consistent,
678   // so that (a + b) and (b + a) don't end up as different expressions.
679   switch (static_cast<SCEVTypes>(LType)) {
680   case scUnknown: {
681     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
682     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
683 
684     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
685                                    RU->getValue(), Depth + 1);
686     if (X == 0)
687       EqCacheSCEV.unionSets(LHS, RHS);
688     return X;
689   }
690 
691   case scConstant: {
692     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
693     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
694 
695     // Compare constant values.
696     const APInt &LA = LC->getAPInt();
697     const APInt &RA = RC->getAPInt();
698     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
699     if (LBitWidth != RBitWidth)
700       return (int)LBitWidth - (int)RBitWidth;
701     return LA.ult(RA) ? -1 : 1;
702   }
703 
704   case scAddRecExpr: {
705     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
706     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
707 
708     // There is always a dominance between two recs that are used by one SCEV,
709     // so we can safely sort recs by loop header dominance. We require such
710     // order in getAddExpr.
711     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
712     if (LLoop != RLoop) {
713       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
714       assert(LHead != RHead && "Two loops share the same header?");
715       if (DT.dominates(LHead, RHead))
716         return 1;
717       else
718         assert(DT.dominates(RHead, LHead) &&
719                "No dominance between recurrences used by one SCEV?");
720       return -1;
721     }
722 
723     // Addrec complexity grows with operand count.
724     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
725     if (LNumOps != RNumOps)
726       return (int)LNumOps - (int)RNumOps;
727 
728     // Lexicographically compare.
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LA->getOperand(i), RA->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scAddExpr:
741   case scMulExpr:
742   case scSMaxExpr:
743   case scUMaxExpr:
744   case scSMinExpr:
745   case scUMinExpr: {
746     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
747     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
748 
749     // Lexicographically compare n-ary expressions.
750     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
751     if (LNumOps != RNumOps)
752       return (int)LNumOps - (int)RNumOps;
753 
754     for (unsigned i = 0; i != LNumOps; ++i) {
755       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
756                                     LC->getOperand(i), RC->getOperand(i), DT,
757                                     Depth + 1);
758       if (X != 0)
759         return X;
760     }
761     EqCacheSCEV.unionSets(LHS, RHS);
762     return 0;
763   }
764 
765   case scUDivExpr: {
766     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
767     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
768 
769     // Lexicographically compare udiv expressions.
770     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
771                                   RC->getLHS(), DT, Depth + 1);
772     if (X != 0)
773       return X;
774     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
775                               RC->getRHS(), DT, Depth + 1);
776     if (X == 0)
777       EqCacheSCEV.unionSets(LHS, RHS);
778     return X;
779   }
780 
781   case scTruncate:
782   case scZeroExtend:
783   case scSignExtend: {
784     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
785     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
786 
787     // Compare cast expressions by operand.
788     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
789                                   LC->getOperand(), RC->getOperand(), DT,
790                                   Depth + 1);
791     if (X == 0)
792       EqCacheSCEV.unionSets(LHS, RHS);
793     return X;
794   }
795 
796   case scCouldNotCompute:
797     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
798   }
799   llvm_unreachable("Unknown SCEV kind!");
800 }
801 
802 /// Given a list of SCEV objects, order them by their complexity, and group
803 /// objects of the same complexity together by value.  When this routine is
804 /// finished, we know that any duplicates in the vector are consecutive and that
805 /// complexity is monotonically increasing.
806 ///
807 /// Note that we go take special precautions to ensure that we get deterministic
808 /// results from this routine.  In other words, we don't want the results of
809 /// this to depend on where the addresses of various SCEV objects happened to
810 /// land in memory.
811 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
812                               LoopInfo *LI, DominatorTree &DT) {
813   if (Ops.size() < 2) return;  // Noop
814 
815   EquivalenceClasses<const SCEV *> EqCacheSCEV;
816   EquivalenceClasses<const Value *> EqCacheValue;
817   if (Ops.size() == 2) {
818     // This is the common case, which also happens to be trivially simple.
819     // Special case it.
820     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
821     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
822       std::swap(LHS, RHS);
823     return;
824   }
825 
826   // Do the rough sort by complexity.
827   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
828     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
829            0;
830   });
831 
832   // Now that we are sorted by complexity, group elements of the same
833   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
834   // be extremely short in practice.  Note that we take this approach because we
835   // do not want to depend on the addresses of the objects we are grouping.
836   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
837     const SCEV *S = Ops[i];
838     unsigned Complexity = S->getSCEVType();
839 
840     // If there are any objects of the same complexity and same value as this
841     // one, group them.
842     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
843       if (Ops[j] == S) { // Found a duplicate.
844         // Move it to immediately after i'th element.
845         std::swap(Ops[i+1], Ops[j]);
846         ++i;   // no need to rescan it.
847         if (i == e-2) return;  // Done!
848       }
849     }
850   }
851 }
852 
853 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
854 /// least HugeExprThreshold nodes).
855 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
856   return any_of(Ops, [](const SCEV *S) {
857     return S->getExpressionSize() >= HugeExprThreshold;
858   });
859 }
860 
861 //===----------------------------------------------------------------------===//
862 //                      Simple SCEV method implementations
863 //===----------------------------------------------------------------------===//
864 
865 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
866 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
867                                        ScalarEvolution &SE,
868                                        Type *ResultTy) {
869   // Handle the simplest case efficiently.
870   if (K == 1)
871     return SE.getTruncateOrZeroExtend(It, ResultTy);
872 
873   // We are using the following formula for BC(It, K):
874   //
875   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
876   //
877   // Suppose, W is the bitwidth of the return value.  We must be prepared for
878   // overflow.  Hence, we must assure that the result of our computation is
879   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
880   // safe in modular arithmetic.
881   //
882   // However, this code doesn't use exactly that formula; the formula it uses
883   // is something like the following, where T is the number of factors of 2 in
884   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
885   // exponentiation:
886   //
887   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
888   //
889   // This formula is trivially equivalent to the previous formula.  However,
890   // this formula can be implemented much more efficiently.  The trick is that
891   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
892   // arithmetic.  To do exact division in modular arithmetic, all we have
893   // to do is multiply by the inverse.  Therefore, this step can be done at
894   // width W.
895   //
896   // The next issue is how to safely do the division by 2^T.  The way this
897   // is done is by doing the multiplication step at a width of at least W + T
898   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
899   // when we perform the division by 2^T (which is equivalent to a right shift
900   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
901   // truncated out after the division by 2^T.
902   //
903   // In comparison to just directly using the first formula, this technique
904   // is much more efficient; using the first formula requires W * K bits,
905   // but this formula less than W + K bits. Also, the first formula requires
906   // a division step, whereas this formula only requires multiplies and shifts.
907   //
908   // It doesn't matter whether the subtraction step is done in the calculation
909   // width or the input iteration count's width; if the subtraction overflows,
910   // the result must be zero anyway.  We prefer here to do it in the width of
911   // the induction variable because it helps a lot for certain cases; CodeGen
912   // isn't smart enough to ignore the overflow, which leads to much less
913   // efficient code if the width of the subtraction is wider than the native
914   // register width.
915   //
916   // (It's possible to not widen at all by pulling out factors of 2 before
917   // the multiplication; for example, K=2 can be calculated as
918   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
919   // extra arithmetic, so it's not an obvious win, and it gets
920   // much more complicated for K > 3.)
921 
922   // Protection from insane SCEVs; this bound is conservative,
923   // but it probably doesn't matter.
924   if (K > 1000)
925     return SE.getCouldNotCompute();
926 
927   unsigned W = SE.getTypeSizeInBits(ResultTy);
928 
929   // Calculate K! / 2^T and T; we divide out the factors of two before
930   // multiplying for calculating K! / 2^T to avoid overflow.
931   // Other overflow doesn't matter because we only care about the bottom
932   // W bits of the result.
933   APInt OddFactorial(W, 1);
934   unsigned T = 1;
935   for (unsigned i = 3; i <= K; ++i) {
936     APInt Mult(W, i);
937     unsigned TwoFactors = Mult.countTrailingZeros();
938     T += TwoFactors;
939     Mult.lshrInPlace(TwoFactors);
940     OddFactorial *= Mult;
941   }
942 
943   // We need at least W + T bits for the multiplication step
944   unsigned CalculationBits = W + T;
945 
946   // Calculate 2^T, at width T+W.
947   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
948 
949   // Calculate the multiplicative inverse of K! / 2^T;
950   // this multiplication factor will perform the exact division by
951   // K! / 2^T.
952   APInt Mod = APInt::getSignedMinValue(W+1);
953   APInt MultiplyFactor = OddFactorial.zext(W+1);
954   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
955   MultiplyFactor = MultiplyFactor.trunc(W);
956 
957   // Calculate the product, at width T+W
958   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
959                                                       CalculationBits);
960   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
961   for (unsigned i = 1; i != K; ++i) {
962     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
963     Dividend = SE.getMulExpr(Dividend,
964                              SE.getTruncateOrZeroExtend(S, CalculationTy));
965   }
966 
967   // Divide by 2^T
968   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
969 
970   // Truncate the result, and divide by K! / 2^T.
971 
972   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
973                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
974 }
975 
976 /// Return the value of this chain of recurrences at the specified iteration
977 /// number.  We can evaluate this recurrence by multiplying each element in the
978 /// chain by the binomial coefficient corresponding to it.  In other words, we
979 /// can evaluate {A,+,B,+,C,+,D} as:
980 ///
981 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
982 ///
983 /// where BC(It, k) stands for binomial coefficient.
984 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
985                                                 ScalarEvolution &SE) const {
986   const SCEV *Result = getStart();
987   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
988     // The computation is correct in the face of overflow provided that the
989     // multiplication is performed _after_ the evaluation of the binomial
990     // coefficient.
991     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
992     if (isa<SCEVCouldNotCompute>(Coeff))
993       return Coeff;
994 
995     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
996   }
997   return Result;
998 }
999 
1000 //===----------------------------------------------------------------------===//
1001 //                    SCEV Expression folder implementations
1002 //===----------------------------------------------------------------------===//
1003 
1004 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1005                                              unsigned Depth) {
1006   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1007          "This is not a truncating conversion!");
1008   assert(isSCEVable(Ty) &&
1009          "This is not a conversion to a SCEVable type!");
1010   Ty = getEffectiveSCEVType(Ty);
1011 
1012   FoldingSetNodeID ID;
1013   ID.AddInteger(scTruncate);
1014   ID.AddPointer(Op);
1015   ID.AddPointer(Ty);
1016   void *IP = nullptr;
1017   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1018 
1019   // Fold if the operand is constant.
1020   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1021     return getConstant(
1022       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1023 
1024   // trunc(trunc(x)) --> trunc(x)
1025   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1026     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1027 
1028   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1029   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1030     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1031 
1032   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1033   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1034     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1035 
1036   if (Depth > MaxCastDepth) {
1037     SCEV *S =
1038         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1039     UniqueSCEVs.InsertNode(S, IP);
1040     addToLoopUseLists(S);
1041     return S;
1042   }
1043 
1044   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1045   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1046   // if after transforming we have at most one truncate, not counting truncates
1047   // that replace other casts.
1048   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1049     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1050     SmallVector<const SCEV *, 4> Operands;
1051     unsigned numTruncs = 0;
1052     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1053          ++i) {
1054       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1055       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1056         numTruncs++;
1057       Operands.push_back(S);
1058     }
1059     if (numTruncs < 2) {
1060       if (isa<SCEVAddExpr>(Op))
1061         return getAddExpr(Operands);
1062       else if (isa<SCEVMulExpr>(Op))
1063         return getMulExpr(Operands);
1064       else
1065         llvm_unreachable("Unexpected SCEV type for Op.");
1066     }
1067     // Although we checked in the beginning that ID is not in the cache, it is
1068     // possible that during recursion and different modification ID was inserted
1069     // into the cache. So if we find it, just return it.
1070     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071       return S;
1072   }
1073 
1074   // If the input value is a chrec scev, truncate the chrec's operands.
1075   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1076     SmallVector<const SCEV *, 4> Operands;
1077     for (const SCEV *Op : AddRec->operands())
1078       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1079     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1080   }
1081 
1082   // The cast wasn't folded; create an explicit cast node. We can reuse
1083   // the existing insert position since if we get here, we won't have
1084   // made any changes which would invalidate it.
1085   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1086                                                  Op, Ty);
1087   UniqueSCEVs.InsertNode(S, IP);
1088   addToLoopUseLists(S);
1089   return S;
1090 }
1091 
1092 // Get the limit of a recurrence such that incrementing by Step cannot cause
1093 // signed overflow as long as the value of the recurrence within the
1094 // loop does not exceed this limit before incrementing.
1095 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1096                                                  ICmpInst::Predicate *Pred,
1097                                                  ScalarEvolution *SE) {
1098   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1099   if (SE->isKnownPositive(Step)) {
1100     *Pred = ICmpInst::ICMP_SLT;
1101     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1102                            SE->getSignedRangeMax(Step));
1103   }
1104   if (SE->isKnownNegative(Step)) {
1105     *Pred = ICmpInst::ICMP_SGT;
1106     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1107                            SE->getSignedRangeMin(Step));
1108   }
1109   return nullptr;
1110 }
1111 
1112 // Get the limit of a recurrence such that incrementing by Step cannot cause
1113 // unsigned overflow as long as the value of the recurrence within the loop does
1114 // not exceed this limit before incrementing.
1115 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1116                                                    ICmpInst::Predicate *Pred,
1117                                                    ScalarEvolution *SE) {
1118   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1119   *Pred = ICmpInst::ICMP_ULT;
1120 
1121   return SE->getConstant(APInt::getMinValue(BitWidth) -
1122                          SE->getUnsignedRangeMax(Step));
1123 }
1124 
1125 namespace {
1126 
1127 struct ExtendOpTraitsBase {
1128   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1129                                                           unsigned);
1130 };
1131 
1132 // Used to make code generic over signed and unsigned overflow.
1133 template <typename ExtendOp> struct ExtendOpTraits {
1134   // Members present:
1135   //
1136   // static const SCEV::NoWrapFlags WrapType;
1137   //
1138   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1139   //
1140   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1141   //                                           ICmpInst::Predicate *Pred,
1142   //                                           ScalarEvolution *SE);
1143 };
1144 
1145 template <>
1146 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1147   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1148 
1149   static const GetExtendExprTy GetExtendExpr;
1150 
1151   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1152                                              ICmpInst::Predicate *Pred,
1153                                              ScalarEvolution *SE) {
1154     return getSignedOverflowLimitForStep(Step, Pred, SE);
1155   }
1156 };
1157 
1158 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1159     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1160 
1161 template <>
1162 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1163   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1164 
1165   static const GetExtendExprTy GetExtendExpr;
1166 
1167   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1168                                              ICmpInst::Predicate *Pred,
1169                                              ScalarEvolution *SE) {
1170     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1171   }
1172 };
1173 
1174 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1175     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1176 
1177 } // end anonymous namespace
1178 
1179 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1180 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1181 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1182 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1183 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1184 // expression "Step + sext/zext(PreIncAR)" is congruent with
1185 // "sext/zext(PostIncAR)"
1186 template <typename ExtendOpTy>
1187 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1188                                         ScalarEvolution *SE, unsigned Depth) {
1189   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1190   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1191 
1192   const Loop *L = AR->getLoop();
1193   const SCEV *Start = AR->getStart();
1194   const SCEV *Step = AR->getStepRecurrence(*SE);
1195 
1196   // Check for a simple looking step prior to loop entry.
1197   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1198   if (!SA)
1199     return nullptr;
1200 
1201   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1202   // subtraction is expensive. For this purpose, perform a quick and dirty
1203   // difference, by checking for Step in the operand list.
1204   SmallVector<const SCEV *, 4> DiffOps;
1205   for (const SCEV *Op : SA->operands())
1206     if (Op != Step)
1207       DiffOps.push_back(Op);
1208 
1209   if (DiffOps.size() == SA->getNumOperands())
1210     return nullptr;
1211 
1212   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1213   // `Step`:
1214 
1215   // 1. NSW/NUW flags on the step increment.
1216   auto PreStartFlags =
1217     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1218   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1219   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1220       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1221 
1222   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1223   // "S+X does not sign/unsign-overflow".
1224   //
1225 
1226   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1227   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1228       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1229     return PreStart;
1230 
1231   // 2. Direct overflow check on the step operation's expression.
1232   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1233   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1234   const SCEV *OperandExtendedStart =
1235       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1236                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1237   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1238     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1239       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1240       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1241       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1242       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1243     }
1244     return PreStart;
1245   }
1246 
1247   // 3. Loop precondition.
1248   ICmpInst::Predicate Pred;
1249   const SCEV *OverflowLimit =
1250       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1251 
1252   if (OverflowLimit &&
1253       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1254     return PreStart;
1255 
1256   return nullptr;
1257 }
1258 
1259 // Get the normalized zero or sign extended expression for this AddRec's Start.
1260 template <typename ExtendOpTy>
1261 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1262                                         ScalarEvolution *SE,
1263                                         unsigned Depth) {
1264   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1265 
1266   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1267   if (!PreStart)
1268     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1269 
1270   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1271                                              Depth),
1272                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1273 }
1274 
1275 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1276 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1277 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1278 //
1279 // Formally:
1280 //
1281 //     {S,+,X} == {S-T,+,X} + T
1282 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1283 //
1284 // If ({S-T,+,X} + T) does not overflow  ... (1)
1285 //
1286 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1287 //
1288 // If {S-T,+,X} does not overflow  ... (2)
1289 //
1290 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1291 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1292 //
1293 // If (S-T)+T does not overflow  ... (3)
1294 //
1295 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1296 //      == {Ext(S),+,Ext(X)} == LHS
1297 //
1298 // Thus, if (1), (2) and (3) are true for some T, then
1299 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1300 //
1301 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1302 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1303 // to check for (1) and (2).
1304 //
1305 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1306 // is `Delta` (defined below).
1307 template <typename ExtendOpTy>
1308 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1309                                                 const SCEV *Step,
1310                                                 const Loop *L) {
1311   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1312 
1313   // We restrict `Start` to a constant to prevent SCEV from spending too much
1314   // time here.  It is correct (but more expensive) to continue with a
1315   // non-constant `Start` and do a general SCEV subtraction to compute
1316   // `PreStart` below.
1317   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1318   if (!StartC)
1319     return false;
1320 
1321   APInt StartAI = StartC->getAPInt();
1322 
1323   for (unsigned Delta : {-2, -1, 1, 2}) {
1324     const SCEV *PreStart = getConstant(StartAI - Delta);
1325 
1326     FoldingSetNodeID ID;
1327     ID.AddInteger(scAddRecExpr);
1328     ID.AddPointer(PreStart);
1329     ID.AddPointer(Step);
1330     ID.AddPointer(L);
1331     void *IP = nullptr;
1332     const auto *PreAR =
1333       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1334 
1335     // Give up if we don't already have the add recurrence we need because
1336     // actually constructing an add recurrence is relatively expensive.
1337     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1338       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1339       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1340       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1341           DeltaS, &Pred, this);
1342       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1343         return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 // Finds an integer D for an expression (C + x + y + ...) such that the top
1351 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1352 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1353 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1354 // the (C + x + y + ...) expression is \p WholeAddExpr.
1355 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1356                                             const SCEVConstant *ConstantTerm,
1357                                             const SCEVAddExpr *WholeAddExpr) {
1358   const APInt &C = ConstantTerm->getAPInt();
1359   const unsigned BitWidth = C.getBitWidth();
1360   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1361   uint32_t TZ = BitWidth;
1362   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1363     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1364   if (TZ) {
1365     // Set D to be as many least significant bits of C as possible while still
1366     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1367     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1368   }
1369   return APInt(BitWidth, 0);
1370 }
1371 
1372 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1373 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1374 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1375 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1376 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1377                                             const APInt &ConstantStart,
1378                                             const SCEV *Step) {
1379   const unsigned BitWidth = ConstantStart.getBitWidth();
1380   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1381   if (TZ)
1382     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1383                          : ConstantStart;
1384   return APInt(BitWidth, 0);
1385 }
1386 
1387 const SCEV *
1388 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1389   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1390          "This is not an extending conversion!");
1391   assert(isSCEVable(Ty) &&
1392          "This is not a conversion to a SCEVable type!");
1393   Ty = getEffectiveSCEVType(Ty);
1394 
1395   // Fold if the operand is constant.
1396   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1397     return getConstant(
1398       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1399 
1400   // zext(zext(x)) --> zext(x)
1401   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1402     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1403 
1404   // Before doing any expensive analysis, check to see if we've already
1405   // computed a SCEV for this Op and Ty.
1406   FoldingSetNodeID ID;
1407   ID.AddInteger(scZeroExtend);
1408   ID.AddPointer(Op);
1409   ID.AddPointer(Ty);
1410   void *IP = nullptr;
1411   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1412   if (Depth > MaxCastDepth) {
1413     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1414                                                      Op, Ty);
1415     UniqueSCEVs.InsertNode(S, IP);
1416     addToLoopUseLists(S);
1417     return S;
1418   }
1419 
1420   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1421   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1422     // It's possible the bits taken off by the truncate were all zero bits. If
1423     // so, we should be able to simplify this further.
1424     const SCEV *X = ST->getOperand();
1425     ConstantRange CR = getUnsignedRange(X);
1426     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1427     unsigned NewBits = getTypeSizeInBits(Ty);
1428     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1429             CR.zextOrTrunc(NewBits)))
1430       return getTruncateOrZeroExtend(X, Ty, Depth);
1431   }
1432 
1433   // If the input value is a chrec scev, and we can prove that the value
1434   // did not overflow the old, smaller, value, we can zero extend all of the
1435   // operands (often constants).  This allows analysis of something like
1436   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1437   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1438     if (AR->isAffine()) {
1439       const SCEV *Start = AR->getStart();
1440       const SCEV *Step = AR->getStepRecurrence(*this);
1441       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1442       const Loop *L = AR->getLoop();
1443 
1444       if (!AR->hasNoUnsignedWrap()) {
1445         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1446         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1447       }
1448 
1449       // If we have special knowledge that this addrec won't overflow,
1450       // we don't need to do any further analysis.
1451       if (AR->hasNoUnsignedWrap())
1452         return getAddRecExpr(
1453             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1454             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1455 
1456       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1457       // Note that this serves two purposes: It filters out loops that are
1458       // simply not analyzable, and it covers the case where this code is
1459       // being called from within backedge-taken count analysis, such that
1460       // attempting to ask for the backedge-taken count would likely result
1461       // in infinite recursion. In the later case, the analysis code will
1462       // cope with a conservative value, and it will take care to purge
1463       // that value once it has finished.
1464       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1465       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1466         // Manually compute the final value for AR, checking for
1467         // overflow.
1468 
1469         // Check whether the backedge-taken count can be losslessly casted to
1470         // the addrec's type. The count is always unsigned.
1471         const SCEV *CastedMaxBECount =
1472             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1473         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1474             CastedMaxBECount, MaxBECount->getType(), Depth);
1475         if (MaxBECount == RecastedMaxBECount) {
1476           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1477           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1478           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1479                                         SCEV::FlagAnyWrap, Depth + 1);
1480           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1481                                                           SCEV::FlagAnyWrap,
1482                                                           Depth + 1),
1483                                                WideTy, Depth + 1);
1484           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1485           const SCEV *WideMaxBECount =
1486             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1487           const SCEV *OperandExtendedAdd =
1488             getAddExpr(WideStart,
1489                        getMulExpr(WideMaxBECount,
1490                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1491                                   SCEV::FlagAnyWrap, Depth + 1),
1492                        SCEV::FlagAnyWrap, Depth + 1);
1493           if (ZAdd == OperandExtendedAdd) {
1494             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1496             // Return the expression with the addrec on the outside.
1497             return getAddRecExpr(
1498                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1499                                                          Depth + 1),
1500                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1501                 AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1509                                   SCEV::FlagAnyWrap, Depth + 1),
1510                        SCEV::FlagAnyWrap, Depth + 1);
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1518                                                          Depth + 1),
1519                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1520                 AR->getNoWrapFlags());
1521           }
1522         }
1523       }
1524 
1525       // Normally, in the cases we can prove no-overflow via a
1526       // backedge guarding condition, we can also compute a backedge
1527       // taken count for the loop.  The exceptions are assumptions and
1528       // guards present in the loop -- SCEV is not great at exploiting
1529       // these to compute max backedge taken counts, but can still use
1530       // these to prove lack of overflow.  Use this fact to avoid
1531       // doing extra work that may not pay off.
1532       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1533           !AC.assumptions().empty()) {
1534         // If the backedge is guarded by a comparison with the pre-inc
1535         // value the addrec is safe. Also, if the entry is guarded by
1536         // a comparison with the start value and the backedge is
1537         // guarded by a comparison with the post-inc value, the addrec
1538         // is safe.
1539         if (isKnownPositive(Step)) {
1540           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1541                                       getUnsignedRangeMax(Step));
1542           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1543               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1544             // Cache knowledge of AR NUW, which is propagated to this
1545             // AddRec.
1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547             // Return the expression with the addrec on the outside.
1548             return getAddRecExpr(
1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1550                                                          Depth + 1),
1551                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1552                 AR->getNoWrapFlags());
1553           }
1554         } else if (isKnownNegative(Step)) {
1555           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1556                                       getSignedRangeMin(Step));
1557           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1558               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1559             // Cache knowledge of AR NW, which is propagated to this
1560             // AddRec.  Negative step causes unsigned wrap, but it
1561             // still can't self-wrap.
1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563             // Return the expression with the addrec on the outside.
1564             return getAddRecExpr(
1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1566                                                          Depth + 1),
1567                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1568                 AR->getNoWrapFlags());
1569           }
1570         }
1571       }
1572 
1573       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1574       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1575       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1576       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1577         const APInt &C = SC->getAPInt();
1578         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1579         if (D != 0) {
1580           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1581           const SCEV *SResidual =
1582               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1583           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1584           return getAddExpr(SZExtD, SZExtR,
1585                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1586                             Depth + 1);
1587         }
1588       }
1589 
1590       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1591         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1592         return getAddRecExpr(
1593             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1594             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1595       }
1596     }
1597 
1598   // zext(A % B) --> zext(A) % zext(B)
1599   {
1600     const SCEV *LHS;
1601     const SCEV *RHS;
1602     if (matchURem(Op, LHS, RHS))
1603       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1604                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1605   }
1606 
1607   // zext(A / B) --> zext(A) / zext(B).
1608   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1609     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1610                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1611 
1612   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1613     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1614     if (SA->hasNoUnsignedWrap()) {
1615       // If the addition does not unsign overflow then we can, by definition,
1616       // commute the zero extension with the addition operation.
1617       SmallVector<const SCEV *, 4> Ops;
1618       for (const auto *Op : SA->operands())
1619         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1620       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1621     }
1622 
1623     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1624     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1625     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1626     //
1627     // Often address arithmetics contain expressions like
1628     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1629     // This transformation is useful while proving that such expressions are
1630     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1631     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1632       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1633       if (D != 0) {
1634         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1635         const SCEV *SResidual =
1636             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1637         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1638         return getAddExpr(SZExtD, SZExtR,
1639                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1640                           Depth + 1);
1641       }
1642     }
1643   }
1644 
1645   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1646     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1647     if (SM->hasNoUnsignedWrap()) {
1648       // If the multiply does not unsign overflow then we can, by definition,
1649       // commute the zero extension with the multiply operation.
1650       SmallVector<const SCEV *, 4> Ops;
1651       for (const auto *Op : SM->operands())
1652         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1653       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1654     }
1655 
1656     // zext(2^K * (trunc X to iN)) to iM ->
1657     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1658     //
1659     // Proof:
1660     //
1661     //     zext(2^K * (trunc X to iN)) to iM
1662     //   = zext((trunc X to iN) << K) to iM
1663     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1664     //     (because shl removes the top K bits)
1665     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1666     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1667     //
1668     if (SM->getNumOperands() == 2)
1669       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1670         if (MulLHS->getAPInt().isPowerOf2())
1671           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1672             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1673                                MulLHS->getAPInt().logBase2();
1674             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1675             return getMulExpr(
1676                 getZeroExtendExpr(MulLHS, Ty),
1677                 getZeroExtendExpr(
1678                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1679                 SCEV::FlagNUW, Depth + 1);
1680           }
1681   }
1682 
1683   // The cast wasn't folded; create an explicit cast node.
1684   // Recompute the insert position, as it may have been invalidated.
1685   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1686   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1687                                                    Op, Ty);
1688   UniqueSCEVs.InsertNode(S, IP);
1689   addToLoopUseLists(S);
1690   return S;
1691 }
1692 
1693 const SCEV *
1694 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1695   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1696          "This is not an extending conversion!");
1697   assert(isSCEVable(Ty) &&
1698          "This is not a conversion to a SCEVable type!");
1699   Ty = getEffectiveSCEVType(Ty);
1700 
1701   // Fold if the operand is constant.
1702   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1703     return getConstant(
1704       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1705 
1706   // sext(sext(x)) --> sext(x)
1707   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1708     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1709 
1710   // sext(zext(x)) --> zext(x)
1711   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1712     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1713 
1714   // Before doing any expensive analysis, check to see if we've already
1715   // computed a SCEV for this Op and Ty.
1716   FoldingSetNodeID ID;
1717   ID.AddInteger(scSignExtend);
1718   ID.AddPointer(Op);
1719   ID.AddPointer(Ty);
1720   void *IP = nullptr;
1721   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1722   // Limit recursion depth.
1723   if (Depth > MaxCastDepth) {
1724     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1725                                                      Op, Ty);
1726     UniqueSCEVs.InsertNode(S, IP);
1727     addToLoopUseLists(S);
1728     return S;
1729   }
1730 
1731   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1732   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1733     // It's possible the bits taken off by the truncate were all sign bits. If
1734     // so, we should be able to simplify this further.
1735     const SCEV *X = ST->getOperand();
1736     ConstantRange CR = getSignedRange(X);
1737     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1738     unsigned NewBits = getTypeSizeInBits(Ty);
1739     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1740             CR.sextOrTrunc(NewBits)))
1741       return getTruncateOrSignExtend(X, Ty, Depth);
1742   }
1743 
1744   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1745     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1746     if (SA->hasNoSignedWrap()) {
1747       // If the addition does not sign overflow then we can, by definition,
1748       // commute the sign extension with the addition operation.
1749       SmallVector<const SCEV *, 4> Ops;
1750       for (const auto *Op : SA->operands())
1751         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1752       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1753     }
1754 
1755     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1756     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1757     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1758     //
1759     // For instance, this will bring two seemingly different expressions:
1760     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1761     //         sext(6 + 20 * %x + 24 * %y)
1762     // to the same form:
1763     //     2 + sext(4 + 20 * %x + 24 * %y)
1764     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1765       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1766       if (D != 0) {
1767         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1768         const SCEV *SResidual =
1769             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1770         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1771         return getAddExpr(SSExtD, SSExtR,
1772                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1773                           Depth + 1);
1774       }
1775     }
1776   }
1777   // If the input value is a chrec scev, and we can prove that the value
1778   // did not overflow the old, smaller, value, we can sign extend all of the
1779   // operands (often constants).  This allows analysis of something like
1780   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1781   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1782     if (AR->isAffine()) {
1783       const SCEV *Start = AR->getStart();
1784       const SCEV *Step = AR->getStepRecurrence(*this);
1785       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1786       const Loop *L = AR->getLoop();
1787 
1788       if (!AR->hasNoSignedWrap()) {
1789         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1790         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1791       }
1792 
1793       // If we have special knowledge that this addrec won't overflow,
1794       // we don't need to do any further analysis.
1795       if (AR->hasNoSignedWrap())
1796         return getAddRecExpr(
1797             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1798             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1799 
1800       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1801       // Note that this serves two purposes: It filters out loops that are
1802       // simply not analyzable, and it covers the case where this code is
1803       // being called from within backedge-taken count analysis, such that
1804       // attempting to ask for the backedge-taken count would likely result
1805       // in infinite recursion. In the later case, the analysis code will
1806       // cope with a conservative value, and it will take care to purge
1807       // that value once it has finished.
1808       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1809       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1810         // Manually compute the final value for AR, checking for
1811         // overflow.
1812 
1813         // Check whether the backedge-taken count can be losslessly casted to
1814         // the addrec's type. The count is always unsigned.
1815         const SCEV *CastedMaxBECount =
1816             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1817         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1818             CastedMaxBECount, MaxBECount->getType(), Depth);
1819         if (MaxBECount == RecastedMaxBECount) {
1820           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1821           // Check whether Start+Step*MaxBECount has no signed overflow.
1822           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1823                                         SCEV::FlagAnyWrap, Depth + 1);
1824           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1825                                                           SCEV::FlagAnyWrap,
1826                                                           Depth + 1),
1827                                                WideTy, Depth + 1);
1828           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1829           const SCEV *WideMaxBECount =
1830             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1831           const SCEV *OperandExtendedAdd =
1832             getAddExpr(WideStart,
1833                        getMulExpr(WideMaxBECount,
1834                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1835                                   SCEV::FlagAnyWrap, Depth + 1),
1836                        SCEV::FlagAnyWrap, Depth + 1);
1837           if (SAdd == OperandExtendedAdd) {
1838             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1839             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1840             // Return the expression with the addrec on the outside.
1841             return getAddRecExpr(
1842                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1843                                                          Depth + 1),
1844                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1845                 AR->getNoWrapFlags());
1846           }
1847           // Similar to above, only this time treat the step value as unsigned.
1848           // This covers loops that count up with an unsigned step.
1849           OperandExtendedAdd =
1850             getAddExpr(WideStart,
1851                        getMulExpr(WideMaxBECount,
1852                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1853                                   SCEV::FlagAnyWrap, Depth + 1),
1854                        SCEV::FlagAnyWrap, Depth + 1);
1855           if (SAdd == OperandExtendedAdd) {
1856             // If AR wraps around then
1857             //
1858             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1859             // => SAdd != OperandExtendedAdd
1860             //
1861             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1862             // (SAdd == OperandExtendedAdd => AR is NW)
1863 
1864             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1865 
1866             // Return the expression with the addrec on the outside.
1867             return getAddRecExpr(
1868                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1869                                                          Depth + 1),
1870                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1871                 AR->getNoWrapFlags());
1872           }
1873         }
1874       }
1875 
1876       // Normally, in the cases we can prove no-overflow via a
1877       // backedge guarding condition, we can also compute a backedge
1878       // taken count for the loop.  The exceptions are assumptions and
1879       // guards present in the loop -- SCEV is not great at exploiting
1880       // these to compute max backedge taken counts, but can still use
1881       // these to prove lack of overflow.  Use this fact to avoid
1882       // doing extra work that may not pay off.
1883 
1884       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1885           !AC.assumptions().empty()) {
1886         // If the backedge is guarded by a comparison with the pre-inc
1887         // value the addrec is safe. Also, if the entry is guarded by
1888         // a comparison with the start value and the backedge is
1889         // guarded by a comparison with the post-inc value, the addrec
1890         // is safe.
1891         ICmpInst::Predicate Pred;
1892         const SCEV *OverflowLimit =
1893             getSignedOverflowLimitForStep(Step, &Pred, this);
1894         if (OverflowLimit &&
1895             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1896              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1897           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1898           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1899           return getAddRecExpr(
1900               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1901               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1902         }
1903       }
1904 
1905       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1906       // if D + (C - D + Step * n) could be proven to not signed wrap
1907       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1908       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1909         const APInt &C = SC->getAPInt();
1910         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1911         if (D != 0) {
1912           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1913           const SCEV *SResidual =
1914               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1915           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1916           return getAddExpr(SSExtD, SSExtR,
1917                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1918                             Depth + 1);
1919         }
1920       }
1921 
1922       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1923         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1924         return getAddRecExpr(
1925             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1926             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1927       }
1928     }
1929 
1930   // If the input value is provably positive and we could not simplify
1931   // away the sext build a zext instead.
1932   if (isKnownNonNegative(Op))
1933     return getZeroExtendExpr(Op, Ty, Depth + 1);
1934 
1935   // The cast wasn't folded; create an explicit cast node.
1936   // Recompute the insert position, as it may have been invalidated.
1937   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1938   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1939                                                    Op, Ty);
1940   UniqueSCEVs.InsertNode(S, IP);
1941   addToLoopUseLists(S);
1942   return S;
1943 }
1944 
1945 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1946 /// unspecified bits out to the given type.
1947 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1948                                               Type *Ty) {
1949   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1950          "This is not an extending conversion!");
1951   assert(isSCEVable(Ty) &&
1952          "This is not a conversion to a SCEVable type!");
1953   Ty = getEffectiveSCEVType(Ty);
1954 
1955   // Sign-extend negative constants.
1956   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1957     if (SC->getAPInt().isNegative())
1958       return getSignExtendExpr(Op, Ty);
1959 
1960   // Peel off a truncate cast.
1961   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1962     const SCEV *NewOp = T->getOperand();
1963     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1964       return getAnyExtendExpr(NewOp, Ty);
1965     return getTruncateOrNoop(NewOp, Ty);
1966   }
1967 
1968   // Next try a zext cast. If the cast is folded, use it.
1969   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1970   if (!isa<SCEVZeroExtendExpr>(ZExt))
1971     return ZExt;
1972 
1973   // Next try a sext cast. If the cast is folded, use it.
1974   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1975   if (!isa<SCEVSignExtendExpr>(SExt))
1976     return SExt;
1977 
1978   // Force the cast to be folded into the operands of an addrec.
1979   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1980     SmallVector<const SCEV *, 4> Ops;
1981     for (const SCEV *Op : AR->operands())
1982       Ops.push_back(getAnyExtendExpr(Op, Ty));
1983     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1984   }
1985 
1986   // If the expression is obviously signed, use the sext cast value.
1987   if (isa<SCEVSMaxExpr>(Op))
1988     return SExt;
1989 
1990   // Absent any other information, use the zext cast value.
1991   return ZExt;
1992 }
1993 
1994 /// Process the given Ops list, which is a list of operands to be added under
1995 /// the given scale, update the given map. This is a helper function for
1996 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1997 /// that would form an add expression like this:
1998 ///
1999 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2000 ///
2001 /// where A and B are constants, update the map with these values:
2002 ///
2003 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2004 ///
2005 /// and add 13 + A*B*29 to AccumulatedConstant.
2006 /// This will allow getAddRecExpr to produce this:
2007 ///
2008 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2009 ///
2010 /// This form often exposes folding opportunities that are hidden in
2011 /// the original operand list.
2012 ///
2013 /// Return true iff it appears that any interesting folding opportunities
2014 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2015 /// the common case where no interesting opportunities are present, and
2016 /// is also used as a check to avoid infinite recursion.
2017 static bool
2018 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2019                              SmallVectorImpl<const SCEV *> &NewOps,
2020                              APInt &AccumulatedConstant,
2021                              const SCEV *const *Ops, size_t NumOperands,
2022                              const APInt &Scale,
2023                              ScalarEvolution &SE) {
2024   bool Interesting = false;
2025 
2026   // Iterate over the add operands. They are sorted, with constants first.
2027   unsigned i = 0;
2028   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2029     ++i;
2030     // Pull a buried constant out to the outside.
2031     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2032       Interesting = true;
2033     AccumulatedConstant += Scale * C->getAPInt();
2034   }
2035 
2036   // Next comes everything else. We're especially interested in multiplies
2037   // here, but they're in the middle, so just visit the rest with one loop.
2038   for (; i != NumOperands; ++i) {
2039     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2040     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2041       APInt NewScale =
2042           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2043       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2044         // A multiplication of a constant with another add; recurse.
2045         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2046         Interesting |=
2047           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2048                                        Add->op_begin(), Add->getNumOperands(),
2049                                        NewScale, SE);
2050       } else {
2051         // A multiplication of a constant with some other value. Update
2052         // the map.
2053         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2054         const SCEV *Key = SE.getMulExpr(MulOps);
2055         auto Pair = M.insert({Key, NewScale});
2056         if (Pair.second) {
2057           NewOps.push_back(Pair.first->first);
2058         } else {
2059           Pair.first->second += NewScale;
2060           // The map already had an entry for this value, which may indicate
2061           // a folding opportunity.
2062           Interesting = true;
2063         }
2064       }
2065     } else {
2066       // An ordinary operand. Update the map.
2067       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2068           M.insert({Ops[i], Scale});
2069       if (Pair.second) {
2070         NewOps.push_back(Pair.first->first);
2071       } else {
2072         Pair.first->second += Scale;
2073         // The map already had an entry for this value, which may indicate
2074         // a folding opportunity.
2075         Interesting = true;
2076       }
2077     }
2078   }
2079 
2080   return Interesting;
2081 }
2082 
2083 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2084 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2085 // can't-overflow flags for the operation if possible.
2086 static SCEV::NoWrapFlags
2087 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2088                       const ArrayRef<const SCEV *> Ops,
2089                       SCEV::NoWrapFlags Flags) {
2090   using namespace std::placeholders;
2091 
2092   using OBO = OverflowingBinaryOperator;
2093 
2094   bool CanAnalyze =
2095       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2096   (void)CanAnalyze;
2097   assert(CanAnalyze && "don't call from other places!");
2098 
2099   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2100   SCEV::NoWrapFlags SignOrUnsignWrap =
2101       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2102 
2103   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2104   auto IsKnownNonNegative = [&](const SCEV *S) {
2105     return SE->isKnownNonNegative(S);
2106   };
2107 
2108   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2109     Flags =
2110         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2111 
2112   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2113 
2114   if (SignOrUnsignWrap != SignOrUnsignMask &&
2115       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2116       isa<SCEVConstant>(Ops[0])) {
2117 
2118     auto Opcode = [&] {
2119       switch (Type) {
2120       case scAddExpr:
2121         return Instruction::Add;
2122       case scMulExpr:
2123         return Instruction::Mul;
2124       default:
2125         llvm_unreachable("Unexpected SCEV op.");
2126       }
2127     }();
2128 
2129     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2130 
2131     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2132     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2133       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2134           Opcode, C, OBO::NoSignedWrap);
2135       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2136         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2137     }
2138 
2139     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2140     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2141       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2142           Opcode, C, OBO::NoUnsignedWrap);
2143       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2144         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2145     }
2146   }
2147 
2148   return Flags;
2149 }
2150 
2151 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2152   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2153 }
2154 
2155 /// Get a canonical add expression, or something simpler if possible.
2156 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2157                                         SCEV::NoWrapFlags Flags,
2158                                         unsigned Depth) {
2159   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2160          "only nuw or nsw allowed");
2161   assert(!Ops.empty() && "Cannot get empty add!");
2162   if (Ops.size() == 1) return Ops[0];
2163 #ifndef NDEBUG
2164   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2165   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2166     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2167            "SCEVAddExpr operand types don't match!");
2168 #endif
2169 
2170   // Sort by complexity, this groups all similar expression types together.
2171   GroupByComplexity(Ops, &LI, DT);
2172 
2173   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2174 
2175   // If there are any constants, fold them together.
2176   unsigned Idx = 0;
2177   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2178     ++Idx;
2179     assert(Idx < Ops.size());
2180     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2181       // We found two constants, fold them together!
2182       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2183       if (Ops.size() == 2) return Ops[0];
2184       Ops.erase(Ops.begin()+1);  // Erase the folded element
2185       LHSC = cast<SCEVConstant>(Ops[0]);
2186     }
2187 
2188     // If we are left with a constant zero being added, strip it off.
2189     if (LHSC->getValue()->isZero()) {
2190       Ops.erase(Ops.begin());
2191       --Idx;
2192     }
2193 
2194     if (Ops.size() == 1) return Ops[0];
2195   }
2196 
2197   // Limit recursion calls depth.
2198   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2199     return getOrCreateAddExpr(Ops, Flags);
2200 
2201   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2202     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2203     return S;
2204   }
2205 
2206   // Okay, check to see if the same value occurs in the operand list more than
2207   // once.  If so, merge them together into an multiply expression.  Since we
2208   // sorted the list, these values are required to be adjacent.
2209   Type *Ty = Ops[0]->getType();
2210   bool FoundMatch = false;
2211   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2212     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2213       // Scan ahead to count how many equal operands there are.
2214       unsigned Count = 2;
2215       while (i+Count != e && Ops[i+Count] == Ops[i])
2216         ++Count;
2217       // Merge the values into a multiply.
2218       const SCEV *Scale = getConstant(Ty, Count);
2219       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2220       if (Ops.size() == Count)
2221         return Mul;
2222       Ops[i] = Mul;
2223       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2224       --i; e -= Count - 1;
2225       FoundMatch = true;
2226     }
2227   if (FoundMatch)
2228     return getAddExpr(Ops, Flags, Depth + 1);
2229 
2230   // Check for truncates. If all the operands are truncated from the same
2231   // type, see if factoring out the truncate would permit the result to be
2232   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2233   // if the contents of the resulting outer trunc fold to something simple.
2234   auto FindTruncSrcType = [&]() -> Type * {
2235     // We're ultimately looking to fold an addrec of truncs and muls of only
2236     // constants and truncs, so if we find any other types of SCEV
2237     // as operands of the addrec then we bail and return nullptr here.
2238     // Otherwise, we return the type of the operand of a trunc that we find.
2239     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2240       return T->getOperand()->getType();
2241     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2242       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2243       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2244         return T->getOperand()->getType();
2245     }
2246     return nullptr;
2247   };
2248   if (auto *SrcType = FindTruncSrcType()) {
2249     SmallVector<const SCEV *, 8> LargeOps;
2250     bool Ok = true;
2251     // Check all the operands to see if they can be represented in the
2252     // source type of the truncate.
2253     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2254       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2255         if (T->getOperand()->getType() != SrcType) {
2256           Ok = false;
2257           break;
2258         }
2259         LargeOps.push_back(T->getOperand());
2260       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2261         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2262       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2263         SmallVector<const SCEV *, 8> LargeMulOps;
2264         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2265           if (const SCEVTruncateExpr *T =
2266                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2267             if (T->getOperand()->getType() != SrcType) {
2268               Ok = false;
2269               break;
2270             }
2271             LargeMulOps.push_back(T->getOperand());
2272           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2273             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2274           } else {
2275             Ok = false;
2276             break;
2277           }
2278         }
2279         if (Ok)
2280           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2281       } else {
2282         Ok = false;
2283         break;
2284       }
2285     }
2286     if (Ok) {
2287       // Evaluate the expression in the larger type.
2288       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2289       // If it folds to something simple, use it. Otherwise, don't.
2290       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2291         return getTruncateExpr(Fold, Ty);
2292     }
2293   }
2294 
2295   // Skip past any other cast SCEVs.
2296   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2297     ++Idx;
2298 
2299   // If there are add operands they would be next.
2300   if (Idx < Ops.size()) {
2301     bool DeletedAdd = false;
2302     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2303       if (Ops.size() > AddOpsInlineThreshold ||
2304           Add->getNumOperands() > AddOpsInlineThreshold)
2305         break;
2306       // If we have an add, expand the add operands onto the end of the operands
2307       // list.
2308       Ops.erase(Ops.begin()+Idx);
2309       Ops.append(Add->op_begin(), Add->op_end());
2310       DeletedAdd = true;
2311     }
2312 
2313     // If we deleted at least one add, we added operands to the end of the list,
2314     // and they are not necessarily sorted.  Recurse to resort and resimplify
2315     // any operands we just acquired.
2316     if (DeletedAdd)
2317       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2318   }
2319 
2320   // Skip over the add expression until we get to a multiply.
2321   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2322     ++Idx;
2323 
2324   // Check to see if there are any folding opportunities present with
2325   // operands multiplied by constant values.
2326   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2327     uint64_t BitWidth = getTypeSizeInBits(Ty);
2328     DenseMap<const SCEV *, APInt> M;
2329     SmallVector<const SCEV *, 8> NewOps;
2330     APInt AccumulatedConstant(BitWidth, 0);
2331     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2332                                      Ops.data(), Ops.size(),
2333                                      APInt(BitWidth, 1), *this)) {
2334       struct APIntCompare {
2335         bool operator()(const APInt &LHS, const APInt &RHS) const {
2336           return LHS.ult(RHS);
2337         }
2338       };
2339 
2340       // Some interesting folding opportunity is present, so its worthwhile to
2341       // re-generate the operands list. Group the operands by constant scale,
2342       // to avoid multiplying by the same constant scale multiple times.
2343       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2344       for (const SCEV *NewOp : NewOps)
2345         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2346       // Re-generate the operands list.
2347       Ops.clear();
2348       if (AccumulatedConstant != 0)
2349         Ops.push_back(getConstant(AccumulatedConstant));
2350       for (auto &MulOp : MulOpLists)
2351         if (MulOp.first != 0)
2352           Ops.push_back(getMulExpr(
2353               getConstant(MulOp.first),
2354               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2355               SCEV::FlagAnyWrap, Depth + 1));
2356       if (Ops.empty())
2357         return getZero(Ty);
2358       if (Ops.size() == 1)
2359         return Ops[0];
2360       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2361     }
2362   }
2363 
2364   // If we are adding something to a multiply expression, make sure the
2365   // something is not already an operand of the multiply.  If so, merge it into
2366   // the multiply.
2367   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2368     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2369     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2370       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2371       if (isa<SCEVConstant>(MulOpSCEV))
2372         continue;
2373       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2374         if (MulOpSCEV == Ops[AddOp]) {
2375           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2376           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2377           if (Mul->getNumOperands() != 2) {
2378             // If the multiply has more than two operands, we must get the
2379             // Y*Z term.
2380             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2381                                                 Mul->op_begin()+MulOp);
2382             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2383             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2384           }
2385           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2386           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2387           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2388                                             SCEV::FlagAnyWrap, Depth + 1);
2389           if (Ops.size() == 2) return OuterMul;
2390           if (AddOp < Idx) {
2391             Ops.erase(Ops.begin()+AddOp);
2392             Ops.erase(Ops.begin()+Idx-1);
2393           } else {
2394             Ops.erase(Ops.begin()+Idx);
2395             Ops.erase(Ops.begin()+AddOp-1);
2396           }
2397           Ops.push_back(OuterMul);
2398           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2399         }
2400 
2401       // Check this multiply against other multiplies being added together.
2402       for (unsigned OtherMulIdx = Idx+1;
2403            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2404            ++OtherMulIdx) {
2405         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2406         // If MulOp occurs in OtherMul, we can fold the two multiplies
2407         // together.
2408         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2409              OMulOp != e; ++OMulOp)
2410           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2411             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2412             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2413             if (Mul->getNumOperands() != 2) {
2414               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2415                                                   Mul->op_begin()+MulOp);
2416               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2417               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2418             }
2419             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2420             if (OtherMul->getNumOperands() != 2) {
2421               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2422                                                   OtherMul->op_begin()+OMulOp);
2423               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2424               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2425             }
2426             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2427             const SCEV *InnerMulSum =
2428                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2429             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2430                                               SCEV::FlagAnyWrap, Depth + 1);
2431             if (Ops.size() == 2) return OuterMul;
2432             Ops.erase(Ops.begin()+Idx);
2433             Ops.erase(Ops.begin()+OtherMulIdx-1);
2434             Ops.push_back(OuterMul);
2435             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2436           }
2437       }
2438     }
2439   }
2440 
2441   // If there are any add recurrences in the operands list, see if any other
2442   // added values are loop invariant.  If so, we can fold them into the
2443   // recurrence.
2444   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2445     ++Idx;
2446 
2447   // Scan over all recurrences, trying to fold loop invariants into them.
2448   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2449     // Scan all of the other operands to this add and add them to the vector if
2450     // they are loop invariant w.r.t. the recurrence.
2451     SmallVector<const SCEV *, 8> LIOps;
2452     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2453     const Loop *AddRecLoop = AddRec->getLoop();
2454     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2455       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2456         LIOps.push_back(Ops[i]);
2457         Ops.erase(Ops.begin()+i);
2458         --i; --e;
2459       }
2460 
2461     // If we found some loop invariants, fold them into the recurrence.
2462     if (!LIOps.empty()) {
2463       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2464       LIOps.push_back(AddRec->getStart());
2465 
2466       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2467                                              AddRec->op_end());
2468       // This follows from the fact that the no-wrap flags on the outer add
2469       // expression are applicable on the 0th iteration, when the add recurrence
2470       // will be equal to its start value.
2471       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2472 
2473       // Build the new addrec. Propagate the NUW and NSW flags if both the
2474       // outer add and the inner addrec are guaranteed to have no overflow.
2475       // Always propagate NW.
2476       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2477       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2478 
2479       // If all of the other operands were loop invariant, we are done.
2480       if (Ops.size() == 1) return NewRec;
2481 
2482       // Otherwise, add the folded AddRec by the non-invariant parts.
2483       for (unsigned i = 0;; ++i)
2484         if (Ops[i] == AddRec) {
2485           Ops[i] = NewRec;
2486           break;
2487         }
2488       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2489     }
2490 
2491     // Okay, if there weren't any loop invariants to be folded, check to see if
2492     // there are multiple AddRec's with the same loop induction variable being
2493     // added together.  If so, we can fold them.
2494     for (unsigned OtherIdx = Idx+1;
2495          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2496          ++OtherIdx) {
2497       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2498       // so that the 1st found AddRecExpr is dominated by all others.
2499       assert(DT.dominates(
2500            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2501            AddRec->getLoop()->getHeader()) &&
2502         "AddRecExprs are not sorted in reverse dominance order?");
2503       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2504         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2505         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2506                                                AddRec->op_end());
2507         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2508              ++OtherIdx) {
2509           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2510           if (OtherAddRec->getLoop() == AddRecLoop) {
2511             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2512                  i != e; ++i) {
2513               if (i >= AddRecOps.size()) {
2514                 AddRecOps.append(OtherAddRec->op_begin()+i,
2515                                  OtherAddRec->op_end());
2516                 break;
2517               }
2518               SmallVector<const SCEV *, 2> TwoOps = {
2519                   AddRecOps[i], OtherAddRec->getOperand(i)};
2520               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2521             }
2522             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2523           }
2524         }
2525         // Step size has changed, so we cannot guarantee no self-wraparound.
2526         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2527         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2528       }
2529     }
2530 
2531     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2532     // next one.
2533   }
2534 
2535   // Okay, it looks like we really DO need an add expr.  Check to see if we
2536   // already have one, otherwise create a new one.
2537   return getOrCreateAddExpr(Ops, Flags);
2538 }
2539 
2540 const SCEV *
2541 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2542                                     SCEV::NoWrapFlags Flags) {
2543   FoldingSetNodeID ID;
2544   ID.AddInteger(scAddExpr);
2545   for (const SCEV *Op : Ops)
2546     ID.AddPointer(Op);
2547   void *IP = nullptr;
2548   SCEVAddExpr *S =
2549       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2550   if (!S) {
2551     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2552     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2553     S = new (SCEVAllocator)
2554         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2555     UniqueSCEVs.InsertNode(S, IP);
2556     addToLoopUseLists(S);
2557   }
2558   S->setNoWrapFlags(Flags);
2559   return S;
2560 }
2561 
2562 const SCEV *
2563 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2564                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2565   FoldingSetNodeID ID;
2566   ID.AddInteger(scAddRecExpr);
2567   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2568     ID.AddPointer(Ops[i]);
2569   ID.AddPointer(L);
2570   void *IP = nullptr;
2571   SCEVAddRecExpr *S =
2572       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2573   if (!S) {
2574     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2575     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2576     S = new (SCEVAllocator)
2577         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2578     UniqueSCEVs.InsertNode(S, IP);
2579     addToLoopUseLists(S);
2580   }
2581   S->setNoWrapFlags(Flags);
2582   return S;
2583 }
2584 
2585 const SCEV *
2586 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2587                                     SCEV::NoWrapFlags Flags) {
2588   FoldingSetNodeID ID;
2589   ID.AddInteger(scMulExpr);
2590   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2591     ID.AddPointer(Ops[i]);
2592   void *IP = nullptr;
2593   SCEVMulExpr *S =
2594     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2595   if (!S) {
2596     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2597     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2598     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2599                                         O, Ops.size());
2600     UniqueSCEVs.InsertNode(S, IP);
2601     addToLoopUseLists(S);
2602   }
2603   S->setNoWrapFlags(Flags);
2604   return S;
2605 }
2606 
2607 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2608   uint64_t k = i*j;
2609   if (j > 1 && k / j != i) Overflow = true;
2610   return k;
2611 }
2612 
2613 /// Compute the result of "n choose k", the binomial coefficient.  If an
2614 /// intermediate computation overflows, Overflow will be set and the return will
2615 /// be garbage. Overflow is not cleared on absence of overflow.
2616 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2617   // We use the multiplicative formula:
2618   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2619   // At each iteration, we take the n-th term of the numeral and divide by the
2620   // (k-n)th term of the denominator.  This division will always produce an
2621   // integral result, and helps reduce the chance of overflow in the
2622   // intermediate computations. However, we can still overflow even when the
2623   // final result would fit.
2624 
2625   if (n == 0 || n == k) return 1;
2626   if (k > n) return 0;
2627 
2628   if (k > n/2)
2629     k = n-k;
2630 
2631   uint64_t r = 1;
2632   for (uint64_t i = 1; i <= k; ++i) {
2633     r = umul_ov(r, n-(i-1), Overflow);
2634     r /= i;
2635   }
2636   return r;
2637 }
2638 
2639 /// Determine if any of the operands in this SCEV are a constant or if
2640 /// any of the add or multiply expressions in this SCEV contain a constant.
2641 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2642   struct FindConstantInAddMulChain {
2643     bool FoundConstant = false;
2644 
2645     bool follow(const SCEV *S) {
2646       FoundConstant |= isa<SCEVConstant>(S);
2647       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2648     }
2649 
2650     bool isDone() const {
2651       return FoundConstant;
2652     }
2653   };
2654 
2655   FindConstantInAddMulChain F;
2656   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2657   ST.visitAll(StartExpr);
2658   return F.FoundConstant;
2659 }
2660 
2661 /// Get a canonical multiply expression, or something simpler if possible.
2662 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2663                                         SCEV::NoWrapFlags Flags,
2664                                         unsigned Depth) {
2665   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2666          "only nuw or nsw allowed");
2667   assert(!Ops.empty() && "Cannot get empty mul!");
2668   if (Ops.size() == 1) return Ops[0];
2669 #ifndef NDEBUG
2670   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2671   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2672     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2673            "SCEVMulExpr operand types don't match!");
2674 #endif
2675 
2676   // Sort by complexity, this groups all similar expression types together.
2677   GroupByComplexity(Ops, &LI, DT);
2678 
2679   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2680 
2681   // Limit recursion calls depth, but fold all-constant expressions.
2682   // `Ops` is sorted, so it's enough to check just last one.
2683   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2684       !isa<SCEVConstant>(Ops.back()))
2685     return getOrCreateMulExpr(Ops, Flags);
2686 
2687   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2688     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2689     return S;
2690   }
2691 
2692   // If there are any constants, fold them together.
2693   unsigned Idx = 0;
2694   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2695 
2696     if (Ops.size() == 2)
2697       // C1*(C2+V) -> C1*C2 + C1*V
2698       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2699         // If any of Add's ops are Adds or Muls with a constant, apply this
2700         // transformation as well.
2701         //
2702         // TODO: There are some cases where this transformation is not
2703         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2704         // this transformation should be narrowed down.
2705         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2706           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2707                                        SCEV::FlagAnyWrap, Depth + 1),
2708                             getMulExpr(LHSC, Add->getOperand(1),
2709                                        SCEV::FlagAnyWrap, Depth + 1),
2710                             SCEV::FlagAnyWrap, Depth + 1);
2711 
2712     ++Idx;
2713     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2714       // We found two constants, fold them together!
2715       ConstantInt *Fold =
2716           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2717       Ops[0] = getConstant(Fold);
2718       Ops.erase(Ops.begin()+1);  // Erase the folded element
2719       if (Ops.size() == 1) return Ops[0];
2720       LHSC = cast<SCEVConstant>(Ops[0]);
2721     }
2722 
2723     // If we are left with a constant one being multiplied, strip it off.
2724     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2725       Ops.erase(Ops.begin());
2726       --Idx;
2727     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2728       // If we have a multiply of zero, it will always be zero.
2729       return Ops[0];
2730     } else if (Ops[0]->isAllOnesValue()) {
2731       // If we have a mul by -1 of an add, try distributing the -1 among the
2732       // add operands.
2733       if (Ops.size() == 2) {
2734         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2735           SmallVector<const SCEV *, 4> NewOps;
2736           bool AnyFolded = false;
2737           for (const SCEV *AddOp : Add->operands()) {
2738             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2739                                          Depth + 1);
2740             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2741             NewOps.push_back(Mul);
2742           }
2743           if (AnyFolded)
2744             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2745         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2746           // Negation preserves a recurrence's no self-wrap property.
2747           SmallVector<const SCEV *, 4> Operands;
2748           for (const SCEV *AddRecOp : AddRec->operands())
2749             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2750                                           Depth + 1));
2751 
2752           return getAddRecExpr(Operands, AddRec->getLoop(),
2753                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2754         }
2755       }
2756     }
2757 
2758     if (Ops.size() == 1)
2759       return Ops[0];
2760   }
2761 
2762   // Skip over the add expression until we get to a multiply.
2763   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2764     ++Idx;
2765 
2766   // If there are mul operands inline them all into this expression.
2767   if (Idx < Ops.size()) {
2768     bool DeletedMul = false;
2769     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2770       if (Ops.size() > MulOpsInlineThreshold)
2771         break;
2772       // If we have an mul, expand the mul operands onto the end of the
2773       // operands list.
2774       Ops.erase(Ops.begin()+Idx);
2775       Ops.append(Mul->op_begin(), Mul->op_end());
2776       DeletedMul = true;
2777     }
2778 
2779     // If we deleted at least one mul, we added operands to the end of the
2780     // list, and they are not necessarily sorted.  Recurse to resort and
2781     // resimplify any operands we just acquired.
2782     if (DeletedMul)
2783       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2784   }
2785 
2786   // If there are any add recurrences in the operands list, see if any other
2787   // added values are loop invariant.  If so, we can fold them into the
2788   // recurrence.
2789   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2790     ++Idx;
2791 
2792   // Scan over all recurrences, trying to fold loop invariants into them.
2793   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2794     // Scan all of the other operands to this mul and add them to the vector
2795     // if they are loop invariant w.r.t. the recurrence.
2796     SmallVector<const SCEV *, 8> LIOps;
2797     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2798     const Loop *AddRecLoop = AddRec->getLoop();
2799     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2800       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2801         LIOps.push_back(Ops[i]);
2802         Ops.erase(Ops.begin()+i);
2803         --i; --e;
2804       }
2805 
2806     // If we found some loop invariants, fold them into the recurrence.
2807     if (!LIOps.empty()) {
2808       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2809       SmallVector<const SCEV *, 4> NewOps;
2810       NewOps.reserve(AddRec->getNumOperands());
2811       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2812       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2813         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2814                                     SCEV::FlagAnyWrap, Depth + 1));
2815 
2816       // Build the new addrec. Propagate the NUW and NSW flags if both the
2817       // outer mul and the inner addrec are guaranteed to have no overflow.
2818       //
2819       // No self-wrap cannot be guaranteed after changing the step size, but
2820       // will be inferred if either NUW or NSW is true.
2821       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2822       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2823 
2824       // If all of the other operands were loop invariant, we are done.
2825       if (Ops.size() == 1) return NewRec;
2826 
2827       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2828       for (unsigned i = 0;; ++i)
2829         if (Ops[i] == AddRec) {
2830           Ops[i] = NewRec;
2831           break;
2832         }
2833       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2834     }
2835 
2836     // Okay, if there weren't any loop invariants to be folded, check to see
2837     // if there are multiple AddRec's with the same loop induction variable
2838     // being multiplied together.  If so, we can fold them.
2839 
2840     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2841     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2842     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2843     //   ]]],+,...up to x=2n}.
2844     // Note that the arguments to choose() are always integers with values
2845     // known at compile time, never SCEV objects.
2846     //
2847     // The implementation avoids pointless extra computations when the two
2848     // addrec's are of different length (mathematically, it's equivalent to
2849     // an infinite stream of zeros on the right).
2850     bool OpsModified = false;
2851     for (unsigned OtherIdx = Idx+1;
2852          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2853          ++OtherIdx) {
2854       const SCEVAddRecExpr *OtherAddRec =
2855         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2856       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2857         continue;
2858 
2859       // Limit max number of arguments to avoid creation of unreasonably big
2860       // SCEVAddRecs with very complex operands.
2861       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2862           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2863         continue;
2864 
2865       bool Overflow = false;
2866       Type *Ty = AddRec->getType();
2867       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2868       SmallVector<const SCEV*, 7> AddRecOps;
2869       for (int x = 0, xe = AddRec->getNumOperands() +
2870              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2871         SmallVector <const SCEV *, 7> SumOps;
2872         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2873           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2874           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2875                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2876                z < ze && !Overflow; ++z) {
2877             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2878             uint64_t Coeff;
2879             if (LargerThan64Bits)
2880               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2881             else
2882               Coeff = Coeff1*Coeff2;
2883             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2884             const SCEV *Term1 = AddRec->getOperand(y-z);
2885             const SCEV *Term2 = OtherAddRec->getOperand(z);
2886             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2887                                         SCEV::FlagAnyWrap, Depth + 1));
2888           }
2889         }
2890         if (SumOps.empty())
2891           SumOps.push_back(getZero(Ty));
2892         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2893       }
2894       if (!Overflow) {
2895         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2896                                               SCEV::FlagAnyWrap);
2897         if (Ops.size() == 2) return NewAddRec;
2898         Ops[Idx] = NewAddRec;
2899         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2900         OpsModified = true;
2901         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2902         if (!AddRec)
2903           break;
2904       }
2905     }
2906     if (OpsModified)
2907       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2908 
2909     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2910     // next one.
2911   }
2912 
2913   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2914   // already have one, otherwise create a new one.
2915   return getOrCreateMulExpr(Ops, Flags);
2916 }
2917 
2918 /// Represents an unsigned remainder expression based on unsigned division.
2919 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2920                                          const SCEV *RHS) {
2921   assert(getEffectiveSCEVType(LHS->getType()) ==
2922          getEffectiveSCEVType(RHS->getType()) &&
2923          "SCEVURemExpr operand types don't match!");
2924 
2925   // Short-circuit easy cases
2926   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2927     // If constant is one, the result is trivial
2928     if (RHSC->getValue()->isOne())
2929       return getZero(LHS->getType()); // X urem 1 --> 0
2930 
2931     // If constant is a power of two, fold into a zext(trunc(LHS)).
2932     if (RHSC->getAPInt().isPowerOf2()) {
2933       Type *FullTy = LHS->getType();
2934       Type *TruncTy =
2935           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2936       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2937     }
2938   }
2939 
2940   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2941   const SCEV *UDiv = getUDivExpr(LHS, RHS);
2942   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2943   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2944 }
2945 
2946 /// Get a canonical unsigned division expression, or something simpler if
2947 /// possible.
2948 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2949                                          const SCEV *RHS) {
2950   assert(getEffectiveSCEVType(LHS->getType()) ==
2951          getEffectiveSCEVType(RHS->getType()) &&
2952          "SCEVUDivExpr operand types don't match!");
2953 
2954   FoldingSetNodeID ID;
2955   ID.AddInteger(scUDivExpr);
2956   ID.AddPointer(LHS);
2957   ID.AddPointer(RHS);
2958   void *IP = nullptr;
2959   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2960     return S;
2961 
2962   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2963     if (RHSC->getValue()->isOne())
2964       return LHS;                               // X udiv 1 --> x
2965     // If the denominator is zero, the result of the udiv is undefined. Don't
2966     // try to analyze it, because the resolution chosen here may differ from
2967     // the resolution chosen in other parts of the compiler.
2968     if (!RHSC->getValue()->isZero()) {
2969       // Determine if the division can be folded into the operands of
2970       // its operands.
2971       // TODO: Generalize this to non-constants by using known-bits information.
2972       Type *Ty = LHS->getType();
2973       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2974       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2975       // For non-power-of-two values, effectively round the value up to the
2976       // nearest power of two.
2977       if (!RHSC->getAPInt().isPowerOf2())
2978         ++MaxShiftAmt;
2979       IntegerType *ExtTy =
2980         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2981       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2982         if (const SCEVConstant *Step =
2983             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2984           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2985           const APInt &StepInt = Step->getAPInt();
2986           const APInt &DivInt = RHSC->getAPInt();
2987           if (!StepInt.urem(DivInt) &&
2988               getZeroExtendExpr(AR, ExtTy) ==
2989               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2990                             getZeroExtendExpr(Step, ExtTy),
2991                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2992             SmallVector<const SCEV *, 4> Operands;
2993             for (const SCEV *Op : AR->operands())
2994               Operands.push_back(getUDivExpr(Op, RHS));
2995             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2996           }
2997           /// Get a canonical UDivExpr for a recurrence.
2998           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2999           // We can currently only fold X%N if X is constant.
3000           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3001           if (StartC && !DivInt.urem(StepInt) &&
3002               getZeroExtendExpr(AR, ExtTy) ==
3003               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3004                             getZeroExtendExpr(Step, ExtTy),
3005                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3006             const APInt &StartInt = StartC->getAPInt();
3007             const APInt &StartRem = StartInt.urem(StepInt);
3008             if (StartRem != 0) {
3009               const SCEV *NewLHS =
3010                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3011                                 AR->getLoop(), SCEV::FlagNW);
3012               if (LHS != NewLHS) {
3013                 LHS = NewLHS;
3014 
3015                 // Reset the ID to include the new LHS, and check if it is
3016                 // already cached.
3017                 ID.clear();
3018                 ID.AddInteger(scUDivExpr);
3019                 ID.AddPointer(LHS);
3020                 ID.AddPointer(RHS);
3021                 IP = nullptr;
3022                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3023                   return S;
3024               }
3025             }
3026           }
3027         }
3028       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3029       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3030         SmallVector<const SCEV *, 4> Operands;
3031         for (const SCEV *Op : M->operands())
3032           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3033         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3034           // Find an operand that's safely divisible.
3035           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3036             const SCEV *Op = M->getOperand(i);
3037             const SCEV *Div = getUDivExpr(Op, RHSC);
3038             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3039               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3040                                                       M->op_end());
3041               Operands[i] = Div;
3042               return getMulExpr(Operands);
3043             }
3044           }
3045       }
3046 
3047       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3048       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3049         if (auto *DivisorConstant =
3050                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3051           bool Overflow = false;
3052           APInt NewRHS =
3053               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3054           if (Overflow) {
3055             return getConstant(RHSC->getType(), 0, false);
3056           }
3057           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3058         }
3059       }
3060 
3061       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3062       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3063         SmallVector<const SCEV *, 4> Operands;
3064         for (const SCEV *Op : A->operands())
3065           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3066         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3067           Operands.clear();
3068           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3069             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3070             if (isa<SCEVUDivExpr>(Op) ||
3071                 getMulExpr(Op, RHS) != A->getOperand(i))
3072               break;
3073             Operands.push_back(Op);
3074           }
3075           if (Operands.size() == A->getNumOperands())
3076             return getAddExpr(Operands);
3077         }
3078       }
3079 
3080       // Fold if both operands are constant.
3081       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3082         Constant *LHSCV = LHSC->getValue();
3083         Constant *RHSCV = RHSC->getValue();
3084         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3085                                                                    RHSCV)));
3086       }
3087     }
3088   }
3089 
3090   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3091   // changes). Make sure we get a new one.
3092   IP = nullptr;
3093   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3094   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3095                                              LHS, RHS);
3096   UniqueSCEVs.InsertNode(S, IP);
3097   addToLoopUseLists(S);
3098   return S;
3099 }
3100 
3101 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3102   APInt A = C1->getAPInt().abs();
3103   APInt B = C2->getAPInt().abs();
3104   uint32_t ABW = A.getBitWidth();
3105   uint32_t BBW = B.getBitWidth();
3106 
3107   if (ABW > BBW)
3108     B = B.zext(ABW);
3109   else if (ABW < BBW)
3110     A = A.zext(BBW);
3111 
3112   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3113 }
3114 
3115 /// Get a canonical unsigned division expression, or something simpler if
3116 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3117 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3118 /// it's not exact because the udiv may be clearing bits.
3119 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3120                                               const SCEV *RHS) {
3121   // TODO: we could try to find factors in all sorts of things, but for now we
3122   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3123   // end of this file for inspiration.
3124 
3125   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3126   if (!Mul || !Mul->hasNoUnsignedWrap())
3127     return getUDivExpr(LHS, RHS);
3128 
3129   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3130     // If the mulexpr multiplies by a constant, then that constant must be the
3131     // first element of the mulexpr.
3132     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3133       if (LHSCst == RHSCst) {
3134         SmallVector<const SCEV *, 2> Operands;
3135         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3136         return getMulExpr(Operands);
3137       }
3138 
3139       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3140       // that there's a factor provided by one of the other terms. We need to
3141       // check.
3142       APInt Factor = gcd(LHSCst, RHSCst);
3143       if (!Factor.isIntN(1)) {
3144         LHSCst =
3145             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3146         RHSCst =
3147             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3148         SmallVector<const SCEV *, 2> Operands;
3149         Operands.push_back(LHSCst);
3150         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3151         LHS = getMulExpr(Operands);
3152         RHS = RHSCst;
3153         Mul = dyn_cast<SCEVMulExpr>(LHS);
3154         if (!Mul)
3155           return getUDivExactExpr(LHS, RHS);
3156       }
3157     }
3158   }
3159 
3160   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3161     if (Mul->getOperand(i) == RHS) {
3162       SmallVector<const SCEV *, 2> Operands;
3163       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3164       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3165       return getMulExpr(Operands);
3166     }
3167   }
3168 
3169   return getUDivExpr(LHS, RHS);
3170 }
3171 
3172 /// Get an add recurrence expression for the specified loop.  Simplify the
3173 /// expression as much as possible.
3174 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3175                                            const Loop *L,
3176                                            SCEV::NoWrapFlags Flags) {
3177   SmallVector<const SCEV *, 4> Operands;
3178   Operands.push_back(Start);
3179   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3180     if (StepChrec->getLoop() == L) {
3181       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3182       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3183     }
3184 
3185   Operands.push_back(Step);
3186   return getAddRecExpr(Operands, L, Flags);
3187 }
3188 
3189 /// Get an add recurrence expression for the specified loop.  Simplify the
3190 /// expression as much as possible.
3191 const SCEV *
3192 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3193                                const Loop *L, SCEV::NoWrapFlags Flags) {
3194   if (Operands.size() == 1) return Operands[0];
3195 #ifndef NDEBUG
3196   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3197   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3198     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3199            "SCEVAddRecExpr operand types don't match!");
3200   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3201     assert(isLoopInvariant(Operands[i], L) &&
3202            "SCEVAddRecExpr operand is not loop-invariant!");
3203 #endif
3204 
3205   if (Operands.back()->isZero()) {
3206     Operands.pop_back();
3207     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3208   }
3209 
3210   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3211   // use that information to infer NUW and NSW flags. However, computing a
3212   // BE count requires calling getAddRecExpr, so we may not yet have a
3213   // meaningful BE count at this point (and if we don't, we'd be stuck
3214   // with a SCEVCouldNotCompute as the cached BE count).
3215 
3216   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3217 
3218   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3219   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3220     const Loop *NestedLoop = NestedAR->getLoop();
3221     if (L->contains(NestedLoop)
3222             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3223             : (!NestedLoop->contains(L) &&
3224                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3225       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3226                                                   NestedAR->op_end());
3227       Operands[0] = NestedAR->getStart();
3228       // AddRecs require their operands be loop-invariant with respect to their
3229       // loops. Don't perform this transformation if it would break this
3230       // requirement.
3231       bool AllInvariant = all_of(
3232           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3233 
3234       if (AllInvariant) {
3235         // Create a recurrence for the outer loop with the same step size.
3236         //
3237         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3238         // inner recurrence has the same property.
3239         SCEV::NoWrapFlags OuterFlags =
3240           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3241 
3242         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3243         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3244           return isLoopInvariant(Op, NestedLoop);
3245         });
3246 
3247         if (AllInvariant) {
3248           // Ok, both add recurrences are valid after the transformation.
3249           //
3250           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3251           // the outer recurrence has the same property.
3252           SCEV::NoWrapFlags InnerFlags =
3253             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3254           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3255         }
3256       }
3257       // Reset Operands to its original state.
3258       Operands[0] = NestedAR;
3259     }
3260   }
3261 
3262   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3263   // already have one, otherwise create a new one.
3264   return getOrCreateAddRecExpr(Operands, L, Flags);
3265 }
3266 
3267 const SCEV *
3268 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3269                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3270   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3271   // getSCEV(Base)->getType() has the same address space as Base->getType()
3272   // because SCEV::getType() preserves the address space.
3273   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3274   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3275   // instruction to its SCEV, because the Instruction may be guarded by control
3276   // flow and the no-overflow bits may not be valid for the expression in any
3277   // context. This can be fixed similarly to how these flags are handled for
3278   // adds.
3279   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3280                                              : SCEV::FlagAnyWrap;
3281 
3282   const SCEV *TotalOffset = getZero(IntIdxTy);
3283   Type *CurTy = GEP->getType();
3284   bool FirstIter = true;
3285   for (const SCEV *IndexExpr : IndexExprs) {
3286     // Compute the (potentially symbolic) offset in bytes for this index.
3287     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3288       // For a struct, add the member offset.
3289       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3290       unsigned FieldNo = Index->getZExtValue();
3291       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3292 
3293       // Add the field offset to the running total offset.
3294       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3295 
3296       // Update CurTy to the type of the field at Index.
3297       CurTy = STy->getTypeAtIndex(Index);
3298     } else {
3299       // Update CurTy to its element type.
3300       if (FirstIter) {
3301         assert(isa<PointerType>(CurTy) &&
3302                "The first index of a GEP indexes a pointer");
3303         CurTy = GEP->getSourceElementType();
3304         FirstIter = false;
3305       } else {
3306         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3307       }
3308       // For an array, add the element offset, explicitly scaled.
3309       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3310       // Getelementptr indices are signed.
3311       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3312 
3313       // Multiply the index by the element size to compute the element offset.
3314       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3315 
3316       // Add the element offset to the running total offset.
3317       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3318     }
3319   }
3320 
3321   // Add the total offset from all the GEP indices to the base.
3322   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3323 }
3324 
3325 std::tuple<SCEV *, FoldingSetNodeID, void *>
3326 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3327                                          ArrayRef<const SCEV *> Ops) {
3328   FoldingSetNodeID ID;
3329   void *IP = nullptr;
3330   ID.AddInteger(SCEVType);
3331   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3332     ID.AddPointer(Ops[i]);
3333   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3334       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3335 }
3336 
3337 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3338                                            SmallVectorImpl<const SCEV *> &Ops) {
3339   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3340   if (Ops.size() == 1) return Ops[0];
3341 #ifndef NDEBUG
3342   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3343   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3344     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3345            "Operand types don't match!");
3346 #endif
3347 
3348   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3349   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3350 
3351   // Sort by complexity, this groups all similar expression types together.
3352   GroupByComplexity(Ops, &LI, DT);
3353 
3354   // Check if we have created the same expression before.
3355   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3356     return S;
3357   }
3358 
3359   // If there are any constants, fold them together.
3360   unsigned Idx = 0;
3361   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3362     ++Idx;
3363     assert(Idx < Ops.size());
3364     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3365       if (Kind == scSMaxExpr)
3366         return APIntOps::smax(LHS, RHS);
3367       else if (Kind == scSMinExpr)
3368         return APIntOps::smin(LHS, RHS);
3369       else if (Kind == scUMaxExpr)
3370         return APIntOps::umax(LHS, RHS);
3371       else if (Kind == scUMinExpr)
3372         return APIntOps::umin(LHS, RHS);
3373       llvm_unreachable("Unknown SCEV min/max opcode");
3374     };
3375 
3376     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3377       // We found two constants, fold them together!
3378       ConstantInt *Fold = ConstantInt::get(
3379           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3380       Ops[0] = getConstant(Fold);
3381       Ops.erase(Ops.begin()+1);  // Erase the folded element
3382       if (Ops.size() == 1) return Ops[0];
3383       LHSC = cast<SCEVConstant>(Ops[0]);
3384     }
3385 
3386     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3387     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3388 
3389     if (IsMax ? IsMinV : IsMaxV) {
3390       // If we are left with a constant minimum(/maximum)-int, strip it off.
3391       Ops.erase(Ops.begin());
3392       --Idx;
3393     } else if (IsMax ? IsMaxV : IsMinV) {
3394       // If we have a max(/min) with a constant maximum(/minimum)-int,
3395       // it will always be the extremum.
3396       return LHSC;
3397     }
3398 
3399     if (Ops.size() == 1) return Ops[0];
3400   }
3401 
3402   // Find the first operation of the same kind
3403   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3404     ++Idx;
3405 
3406   // Check to see if one of the operands is of the same kind. If so, expand its
3407   // operands onto our operand list, and recurse to simplify.
3408   if (Idx < Ops.size()) {
3409     bool DeletedAny = false;
3410     while (Ops[Idx]->getSCEVType() == Kind) {
3411       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3412       Ops.erase(Ops.begin()+Idx);
3413       Ops.append(SMME->op_begin(), SMME->op_end());
3414       DeletedAny = true;
3415     }
3416 
3417     if (DeletedAny)
3418       return getMinMaxExpr(Kind, Ops);
3419   }
3420 
3421   // Okay, check to see if the same value occurs in the operand list twice.  If
3422   // so, delete one.  Since we sorted the list, these values are required to
3423   // be adjacent.
3424   llvm::CmpInst::Predicate GEPred =
3425       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3426   llvm::CmpInst::Predicate LEPred =
3427       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3428   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3429   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3430   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3431     if (Ops[i] == Ops[i + 1] ||
3432         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3433       //  X op Y op Y  -->  X op Y
3434       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3435       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3436       --i;
3437       --e;
3438     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3439                                                Ops[i + 1])) {
3440       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3441       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3442       --i;
3443       --e;
3444     }
3445   }
3446 
3447   if (Ops.size() == 1) return Ops[0];
3448 
3449   assert(!Ops.empty() && "Reduced smax down to nothing!");
3450 
3451   // Okay, it looks like we really DO need an expr.  Check to see if we
3452   // already have one, otherwise create a new one.
3453   const SCEV *ExistingSCEV;
3454   FoldingSetNodeID ID;
3455   void *IP;
3456   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3457   if (ExistingSCEV)
3458     return ExistingSCEV;
3459   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3460   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3461   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3462       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3463 
3464   UniqueSCEVs.InsertNode(S, IP);
3465   addToLoopUseLists(S);
3466   return S;
3467 }
3468 
3469 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3470   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3471   return getSMaxExpr(Ops);
3472 }
3473 
3474 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3475   return getMinMaxExpr(scSMaxExpr, Ops);
3476 }
3477 
3478 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3479   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3480   return getUMaxExpr(Ops);
3481 }
3482 
3483 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3484   return getMinMaxExpr(scUMaxExpr, Ops);
3485 }
3486 
3487 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3488                                          const SCEV *RHS) {
3489   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3490   return getSMinExpr(Ops);
3491 }
3492 
3493 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3494   return getMinMaxExpr(scSMinExpr, Ops);
3495 }
3496 
3497 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3498                                          const SCEV *RHS) {
3499   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3500   return getUMinExpr(Ops);
3501 }
3502 
3503 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3504   return getMinMaxExpr(scUMinExpr, Ops);
3505 }
3506 
3507 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3508   if (isa<ScalableVectorType>(AllocTy)) {
3509     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3510     Constant *One = ConstantInt::get(IntTy, 1);
3511     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3512     return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3513   }
3514   // We can bypass creating a target-independent
3515   // constant expression and then folding it back into a ConstantInt.
3516   // This is just a compile-time optimization.
3517   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3518 }
3519 
3520 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3521                                              StructType *STy,
3522                                              unsigned FieldNo) {
3523   // We can bypass creating a target-independent
3524   // constant expression and then folding it back into a ConstantInt.
3525   // This is just a compile-time optimization.
3526   return getConstant(
3527       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3528 }
3529 
3530 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3531   // Don't attempt to do anything other than create a SCEVUnknown object
3532   // here.  createSCEV only calls getUnknown after checking for all other
3533   // interesting possibilities, and any other code that calls getUnknown
3534   // is doing so in order to hide a value from SCEV canonicalization.
3535 
3536   FoldingSetNodeID ID;
3537   ID.AddInteger(scUnknown);
3538   ID.AddPointer(V);
3539   void *IP = nullptr;
3540   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3541     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3542            "Stale SCEVUnknown in uniquing map!");
3543     return S;
3544   }
3545   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3546                                             FirstUnknown);
3547   FirstUnknown = cast<SCEVUnknown>(S);
3548   UniqueSCEVs.InsertNode(S, IP);
3549   return S;
3550 }
3551 
3552 //===----------------------------------------------------------------------===//
3553 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3554 //
3555 
3556 /// Test if values of the given type are analyzable within the SCEV
3557 /// framework. This primarily includes integer types, and it can optionally
3558 /// include pointer types if the ScalarEvolution class has access to
3559 /// target-specific information.
3560 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3561   // Integers and pointers are always SCEVable.
3562   return Ty->isIntOrPtrTy();
3563 }
3564 
3565 /// Return the size in bits of the specified type, for which isSCEVable must
3566 /// return true.
3567 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3568   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3569   if (Ty->isPointerTy())
3570     return getDataLayout().getIndexTypeSizeInBits(Ty);
3571   return getDataLayout().getTypeSizeInBits(Ty);
3572 }
3573 
3574 /// Return a type with the same bitwidth as the given type and which represents
3575 /// how SCEV will treat the given type, for which isSCEVable must return
3576 /// true. For pointer types, this is the pointer index sized integer type.
3577 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3578   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3579 
3580   if (Ty->isIntegerTy())
3581     return Ty;
3582 
3583   // The only other support type is pointer.
3584   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3585   return getDataLayout().getIndexType(Ty);
3586 }
3587 
3588 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3589   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3590 }
3591 
3592 const SCEV *ScalarEvolution::getCouldNotCompute() {
3593   return CouldNotCompute.get();
3594 }
3595 
3596 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3597   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3598     auto *SU = dyn_cast<SCEVUnknown>(S);
3599     return SU && SU->getValue() == nullptr;
3600   });
3601 
3602   return !ContainsNulls;
3603 }
3604 
3605 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3606   HasRecMapType::iterator I = HasRecMap.find(S);
3607   if (I != HasRecMap.end())
3608     return I->second;
3609 
3610   bool FoundAddRec =
3611       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3612   HasRecMap.insert({S, FoundAddRec});
3613   return FoundAddRec;
3614 }
3615 
3616 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3617 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3618 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3619 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3620   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3621   if (!Add)
3622     return {S, nullptr};
3623 
3624   if (Add->getNumOperands() != 2)
3625     return {S, nullptr};
3626 
3627   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3628   if (!ConstOp)
3629     return {S, nullptr};
3630 
3631   return {Add->getOperand(1), ConstOp->getValue()};
3632 }
3633 
3634 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3635 /// by the value and offset from any ValueOffsetPair in the set.
3636 SetVector<ScalarEvolution::ValueOffsetPair> *
3637 ScalarEvolution::getSCEVValues(const SCEV *S) {
3638   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3639   if (SI == ExprValueMap.end())
3640     return nullptr;
3641 #ifndef NDEBUG
3642   if (VerifySCEVMap) {
3643     // Check there is no dangling Value in the set returned.
3644     for (const auto &VE : SI->second)
3645       assert(ValueExprMap.count(VE.first));
3646   }
3647 #endif
3648   return &SI->second;
3649 }
3650 
3651 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3652 /// cannot be used separately. eraseValueFromMap should be used to remove
3653 /// V from ValueExprMap and ExprValueMap at the same time.
3654 void ScalarEvolution::eraseValueFromMap(Value *V) {
3655   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3656   if (I != ValueExprMap.end()) {
3657     const SCEV *S = I->second;
3658     // Remove {V, 0} from the set of ExprValueMap[S]
3659     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3660       SV->remove({V, nullptr});
3661 
3662     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3663     const SCEV *Stripped;
3664     ConstantInt *Offset;
3665     std::tie(Stripped, Offset) = splitAddExpr(S);
3666     if (Offset != nullptr) {
3667       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3668         SV->remove({V, Offset});
3669     }
3670     ValueExprMap.erase(V);
3671   }
3672 }
3673 
3674 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3675 /// TODO: In reality it is better to check the poison recursively
3676 /// but this is better than nothing.
3677 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3678   if (auto *I = dyn_cast<Instruction>(V)) {
3679     if (isa<OverflowingBinaryOperator>(I)) {
3680       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3681         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3682           return true;
3683         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3684           return true;
3685       }
3686     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3687       return true;
3688   }
3689   return false;
3690 }
3691 
3692 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3693 /// create a new one.
3694 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3695   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3696 
3697   const SCEV *S = getExistingSCEV(V);
3698   if (S == nullptr) {
3699     S = createSCEV(V);
3700     // During PHI resolution, it is possible to create two SCEVs for the same
3701     // V, so it is needed to double check whether V->S is inserted into
3702     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3703     std::pair<ValueExprMapType::iterator, bool> Pair =
3704         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3705     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3706       ExprValueMap[S].insert({V, nullptr});
3707 
3708       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3709       // ExprValueMap.
3710       const SCEV *Stripped = S;
3711       ConstantInt *Offset = nullptr;
3712       std::tie(Stripped, Offset) = splitAddExpr(S);
3713       // If stripped is SCEVUnknown, don't bother to save
3714       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3715       // increase the complexity of the expansion code.
3716       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3717       // because it may generate add/sub instead of GEP in SCEV expansion.
3718       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3719           !isa<GetElementPtrInst>(V))
3720         ExprValueMap[Stripped].insert({V, Offset});
3721     }
3722   }
3723   return S;
3724 }
3725 
3726 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3727   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3728 
3729   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3730   if (I != ValueExprMap.end()) {
3731     const SCEV *S = I->second;
3732     if (checkValidity(S))
3733       return S;
3734     eraseValueFromMap(V);
3735     forgetMemoizedResults(S);
3736   }
3737   return nullptr;
3738 }
3739 
3740 /// Return a SCEV corresponding to -V = -1*V
3741 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3742                                              SCEV::NoWrapFlags Flags) {
3743   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3744     return getConstant(
3745                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3746 
3747   Type *Ty = V->getType();
3748   Ty = getEffectiveSCEVType(Ty);
3749   return getMulExpr(
3750       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3751 }
3752 
3753 /// If Expr computes ~A, return A else return nullptr
3754 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3755   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3756   if (!Add || Add->getNumOperands() != 2 ||
3757       !Add->getOperand(0)->isAllOnesValue())
3758     return nullptr;
3759 
3760   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3761   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3762       !AddRHS->getOperand(0)->isAllOnesValue())
3763     return nullptr;
3764 
3765   return AddRHS->getOperand(1);
3766 }
3767 
3768 /// Return a SCEV corresponding to ~V = -1-V
3769 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3770   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3771     return getConstant(
3772                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3773 
3774   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3775   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3776     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3777       SmallVector<const SCEV *, 2> MatchedOperands;
3778       for (const SCEV *Operand : MME->operands()) {
3779         const SCEV *Matched = MatchNotExpr(Operand);
3780         if (!Matched)
3781           return (const SCEV *)nullptr;
3782         MatchedOperands.push_back(Matched);
3783       }
3784       return getMinMaxExpr(
3785           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3786           MatchedOperands);
3787     };
3788     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3789       return Replaced;
3790   }
3791 
3792   Type *Ty = V->getType();
3793   Ty = getEffectiveSCEVType(Ty);
3794   const SCEV *AllOnes =
3795                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3796   return getMinusSCEV(AllOnes, V);
3797 }
3798 
3799 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3800                                           SCEV::NoWrapFlags Flags,
3801                                           unsigned Depth) {
3802   // Fast path: X - X --> 0.
3803   if (LHS == RHS)
3804     return getZero(LHS->getType());
3805 
3806   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3807   // makes it so that we cannot make much use of NUW.
3808   auto AddFlags = SCEV::FlagAnyWrap;
3809   const bool RHSIsNotMinSigned =
3810       !getSignedRangeMin(RHS).isMinSignedValue();
3811   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3812     // Let M be the minimum representable signed value. Then (-1)*RHS
3813     // signed-wraps if and only if RHS is M. That can happen even for
3814     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3815     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3816     // (-1)*RHS, we need to prove that RHS != M.
3817     //
3818     // If LHS is non-negative and we know that LHS - RHS does not
3819     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3820     // either by proving that RHS > M or that LHS >= 0.
3821     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3822       AddFlags = SCEV::FlagNSW;
3823     }
3824   }
3825 
3826   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3827   // RHS is NSW and LHS >= 0.
3828   //
3829   // The difficulty here is that the NSW flag may have been proven
3830   // relative to a loop that is to be found in a recurrence in LHS and
3831   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3832   // larger scope than intended.
3833   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3834 
3835   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3836 }
3837 
3838 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3839                                                      unsigned Depth) {
3840   Type *SrcTy = V->getType();
3841   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3842          "Cannot truncate or zero extend with non-integer arguments!");
3843   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3844     return V;  // No conversion
3845   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3846     return getTruncateExpr(V, Ty, Depth);
3847   return getZeroExtendExpr(V, Ty, Depth);
3848 }
3849 
3850 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3851                                                      unsigned Depth) {
3852   Type *SrcTy = V->getType();
3853   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3854          "Cannot truncate or zero extend with non-integer arguments!");
3855   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3856     return V;  // No conversion
3857   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3858     return getTruncateExpr(V, Ty, Depth);
3859   return getSignExtendExpr(V, Ty, Depth);
3860 }
3861 
3862 const SCEV *
3863 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3864   Type *SrcTy = V->getType();
3865   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3866          "Cannot noop or zero extend with non-integer arguments!");
3867   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3868          "getNoopOrZeroExtend cannot truncate!");
3869   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3870     return V;  // No conversion
3871   return getZeroExtendExpr(V, Ty);
3872 }
3873 
3874 const SCEV *
3875 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3876   Type *SrcTy = V->getType();
3877   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3878          "Cannot noop or sign extend with non-integer arguments!");
3879   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3880          "getNoopOrSignExtend cannot truncate!");
3881   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3882     return V;  // No conversion
3883   return getSignExtendExpr(V, Ty);
3884 }
3885 
3886 const SCEV *
3887 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3888   Type *SrcTy = V->getType();
3889   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3890          "Cannot noop or any extend with non-integer arguments!");
3891   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3892          "getNoopOrAnyExtend cannot truncate!");
3893   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3894     return V;  // No conversion
3895   return getAnyExtendExpr(V, Ty);
3896 }
3897 
3898 const SCEV *
3899 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3900   Type *SrcTy = V->getType();
3901   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3902          "Cannot truncate or noop with non-integer arguments!");
3903   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3904          "getTruncateOrNoop cannot extend!");
3905   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3906     return V;  // No conversion
3907   return getTruncateExpr(V, Ty);
3908 }
3909 
3910 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3911                                                         const SCEV *RHS) {
3912   const SCEV *PromotedLHS = LHS;
3913   const SCEV *PromotedRHS = RHS;
3914 
3915   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3916     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3917   else
3918     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3919 
3920   return getUMaxExpr(PromotedLHS, PromotedRHS);
3921 }
3922 
3923 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3924                                                         const SCEV *RHS) {
3925   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3926   return getUMinFromMismatchedTypes(Ops);
3927 }
3928 
3929 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3930     SmallVectorImpl<const SCEV *> &Ops) {
3931   assert(!Ops.empty() && "At least one operand must be!");
3932   // Trivial case.
3933   if (Ops.size() == 1)
3934     return Ops[0];
3935 
3936   // Find the max type first.
3937   Type *MaxType = nullptr;
3938   for (auto *S : Ops)
3939     if (MaxType)
3940       MaxType = getWiderType(MaxType, S->getType());
3941     else
3942       MaxType = S->getType();
3943   assert(MaxType && "Failed to find maximum type!");
3944 
3945   // Extend all ops to max type.
3946   SmallVector<const SCEV *, 2> PromotedOps;
3947   for (auto *S : Ops)
3948     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3949 
3950   // Generate umin.
3951   return getUMinExpr(PromotedOps);
3952 }
3953 
3954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3955   // A pointer operand may evaluate to a nonpointer expression, such as null.
3956   if (!V->getType()->isPointerTy())
3957     return V;
3958 
3959   while (true) {
3960     if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3961       V = Cast->getOperand();
3962     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3963       const SCEV *PtrOp = nullptr;
3964       for (const SCEV *NAryOp : NAry->operands()) {
3965         if (NAryOp->getType()->isPointerTy()) {
3966           // Cannot find the base of an expression with multiple pointer ops.
3967           if (PtrOp)
3968             return V;
3969           PtrOp = NAryOp;
3970         }
3971       }
3972       if (!PtrOp) // All operands were non-pointer.
3973         return V;
3974       V = PtrOp;
3975     } else // Not something we can look further into.
3976       return V;
3977   }
3978 }
3979 
3980 /// Push users of the given Instruction onto the given Worklist.
3981 static void
3982 PushDefUseChildren(Instruction *I,
3983                    SmallVectorImpl<Instruction *> &Worklist) {
3984   // Push the def-use children onto the Worklist stack.
3985   for (User *U : I->users())
3986     Worklist.push_back(cast<Instruction>(U));
3987 }
3988 
3989 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3990   SmallVector<Instruction *, 16> Worklist;
3991   PushDefUseChildren(PN, Worklist);
3992 
3993   SmallPtrSet<Instruction *, 8> Visited;
3994   Visited.insert(PN);
3995   while (!Worklist.empty()) {
3996     Instruction *I = Worklist.pop_back_val();
3997     if (!Visited.insert(I).second)
3998       continue;
3999 
4000     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4001     if (It != ValueExprMap.end()) {
4002       const SCEV *Old = It->second;
4003 
4004       // Short-circuit the def-use traversal if the symbolic name
4005       // ceases to appear in expressions.
4006       if (Old != SymName && !hasOperand(Old, SymName))
4007         continue;
4008 
4009       // SCEVUnknown for a PHI either means that it has an unrecognized
4010       // structure, it's a PHI that's in the progress of being computed
4011       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4012       // additional loop trip count information isn't going to change anything.
4013       // In the second case, createNodeForPHI will perform the necessary
4014       // updates on its own when it gets to that point. In the third, we do
4015       // want to forget the SCEVUnknown.
4016       if (!isa<PHINode>(I) ||
4017           !isa<SCEVUnknown>(Old) ||
4018           (I != PN && Old == SymName)) {
4019         eraseValueFromMap(It->first);
4020         forgetMemoizedResults(Old);
4021       }
4022     }
4023 
4024     PushDefUseChildren(I, Worklist);
4025   }
4026 }
4027 
4028 namespace {
4029 
4030 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4031 /// expression in case its Loop is L. If it is not L then
4032 /// if IgnoreOtherLoops is true then use AddRec itself
4033 /// otherwise rewrite cannot be done.
4034 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4035 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4036 public:
4037   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4038                              bool IgnoreOtherLoops = true) {
4039     SCEVInitRewriter Rewriter(L, SE);
4040     const SCEV *Result = Rewriter.visit(S);
4041     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4042       return SE.getCouldNotCompute();
4043     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4044                ? SE.getCouldNotCompute()
4045                : Result;
4046   }
4047 
4048   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4049     if (!SE.isLoopInvariant(Expr, L))
4050       SeenLoopVariantSCEVUnknown = true;
4051     return Expr;
4052   }
4053 
4054   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4055     // Only re-write AddRecExprs for this loop.
4056     if (Expr->getLoop() == L)
4057       return Expr->getStart();
4058     SeenOtherLoops = true;
4059     return Expr;
4060   }
4061 
4062   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4063 
4064   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4065 
4066 private:
4067   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4068       : SCEVRewriteVisitor(SE), L(L) {}
4069 
4070   const Loop *L;
4071   bool SeenLoopVariantSCEVUnknown = false;
4072   bool SeenOtherLoops = false;
4073 };
4074 
4075 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4076 /// increment expression in case its Loop is L. If it is not L then
4077 /// use AddRec itself.
4078 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4079 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4080 public:
4081   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4082     SCEVPostIncRewriter Rewriter(L, SE);
4083     const SCEV *Result = Rewriter.visit(S);
4084     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4085         ? SE.getCouldNotCompute()
4086         : Result;
4087   }
4088 
4089   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4090     if (!SE.isLoopInvariant(Expr, L))
4091       SeenLoopVariantSCEVUnknown = true;
4092     return Expr;
4093   }
4094 
4095   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4096     // Only re-write AddRecExprs for this loop.
4097     if (Expr->getLoop() == L)
4098       return Expr->getPostIncExpr(SE);
4099     SeenOtherLoops = true;
4100     return Expr;
4101   }
4102 
4103   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4104 
4105   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4106 
4107 private:
4108   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4109       : SCEVRewriteVisitor(SE), L(L) {}
4110 
4111   const Loop *L;
4112   bool SeenLoopVariantSCEVUnknown = false;
4113   bool SeenOtherLoops = false;
4114 };
4115 
4116 /// This class evaluates the compare condition by matching it against the
4117 /// condition of loop latch. If there is a match we assume a true value
4118 /// for the condition while building SCEV nodes.
4119 class SCEVBackedgeConditionFolder
4120     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4121 public:
4122   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4123                              ScalarEvolution &SE) {
4124     bool IsPosBECond = false;
4125     Value *BECond = nullptr;
4126     if (BasicBlock *Latch = L->getLoopLatch()) {
4127       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4128       if (BI && BI->isConditional()) {
4129         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4130                "Both outgoing branches should not target same header!");
4131         BECond = BI->getCondition();
4132         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4133       } else {
4134         return S;
4135       }
4136     }
4137     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4138     return Rewriter.visit(S);
4139   }
4140 
4141   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4142     const SCEV *Result = Expr;
4143     bool InvariantF = SE.isLoopInvariant(Expr, L);
4144 
4145     if (!InvariantF) {
4146       Instruction *I = cast<Instruction>(Expr->getValue());
4147       switch (I->getOpcode()) {
4148       case Instruction::Select: {
4149         SelectInst *SI = cast<SelectInst>(I);
4150         Optional<const SCEV *> Res =
4151             compareWithBackedgeCondition(SI->getCondition());
4152         if (Res.hasValue()) {
4153           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4154           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4155         }
4156         break;
4157       }
4158       default: {
4159         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4160         if (Res.hasValue())
4161           Result = Res.getValue();
4162         break;
4163       }
4164       }
4165     }
4166     return Result;
4167   }
4168 
4169 private:
4170   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4171                                        bool IsPosBECond, ScalarEvolution &SE)
4172       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4173         IsPositiveBECond(IsPosBECond) {}
4174 
4175   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4176 
4177   const Loop *L;
4178   /// Loop back condition.
4179   Value *BackedgeCond = nullptr;
4180   /// Set to true if loop back is on positive branch condition.
4181   bool IsPositiveBECond;
4182 };
4183 
4184 Optional<const SCEV *>
4185 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4186 
4187   // If value matches the backedge condition for loop latch,
4188   // then return a constant evolution node based on loopback
4189   // branch taken.
4190   if (BackedgeCond == IC)
4191     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4192                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4193   return None;
4194 }
4195 
4196 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4197 public:
4198   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4199                              ScalarEvolution &SE) {
4200     SCEVShiftRewriter Rewriter(L, SE);
4201     const SCEV *Result = Rewriter.visit(S);
4202     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4203   }
4204 
4205   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4206     // Only allow AddRecExprs for this loop.
4207     if (!SE.isLoopInvariant(Expr, L))
4208       Valid = false;
4209     return Expr;
4210   }
4211 
4212   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4213     if (Expr->getLoop() == L && Expr->isAffine())
4214       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4215     Valid = false;
4216     return Expr;
4217   }
4218 
4219   bool isValid() { return Valid; }
4220 
4221 private:
4222   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4223       : SCEVRewriteVisitor(SE), L(L) {}
4224 
4225   const Loop *L;
4226   bool Valid = true;
4227 };
4228 
4229 } // end anonymous namespace
4230 
4231 SCEV::NoWrapFlags
4232 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4233   if (!AR->isAffine())
4234     return SCEV::FlagAnyWrap;
4235 
4236   using OBO = OverflowingBinaryOperator;
4237 
4238   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4239 
4240   if (!AR->hasNoSignedWrap()) {
4241     ConstantRange AddRecRange = getSignedRange(AR);
4242     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4243 
4244     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4245         Instruction::Add, IncRange, OBO::NoSignedWrap);
4246     if (NSWRegion.contains(AddRecRange))
4247       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4248   }
4249 
4250   if (!AR->hasNoUnsignedWrap()) {
4251     ConstantRange AddRecRange = getUnsignedRange(AR);
4252     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4253 
4254     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4255         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4256     if (NUWRegion.contains(AddRecRange))
4257       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4258   }
4259 
4260   return Result;
4261 }
4262 
4263 namespace {
4264 
4265 /// Represents an abstract binary operation.  This may exist as a
4266 /// normal instruction or constant expression, or may have been
4267 /// derived from an expression tree.
4268 struct BinaryOp {
4269   unsigned Opcode;
4270   Value *LHS;
4271   Value *RHS;
4272   bool IsNSW = false;
4273   bool IsNUW = false;
4274 
4275   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4276   /// constant expression.
4277   Operator *Op = nullptr;
4278 
4279   explicit BinaryOp(Operator *Op)
4280       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4281         Op(Op) {
4282     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4283       IsNSW = OBO->hasNoSignedWrap();
4284       IsNUW = OBO->hasNoUnsignedWrap();
4285     }
4286   }
4287 
4288   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4289                     bool IsNUW = false)
4290       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4291 };
4292 
4293 } // end anonymous namespace
4294 
4295 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4296 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4297   auto *Op = dyn_cast<Operator>(V);
4298   if (!Op)
4299     return None;
4300 
4301   // Implementation detail: all the cleverness here should happen without
4302   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4303   // SCEV expressions when possible, and we should not break that.
4304 
4305   switch (Op->getOpcode()) {
4306   case Instruction::Add:
4307   case Instruction::Sub:
4308   case Instruction::Mul:
4309   case Instruction::UDiv:
4310   case Instruction::URem:
4311   case Instruction::And:
4312   case Instruction::Or:
4313   case Instruction::AShr:
4314   case Instruction::Shl:
4315     return BinaryOp(Op);
4316 
4317   case Instruction::Xor:
4318     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4319       // If the RHS of the xor is a signmask, then this is just an add.
4320       // Instcombine turns add of signmask into xor as a strength reduction step.
4321       if (RHSC->getValue().isSignMask())
4322         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4323     return BinaryOp(Op);
4324 
4325   case Instruction::LShr:
4326     // Turn logical shift right of a constant into a unsigned divide.
4327     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4328       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4329 
4330       // If the shift count is not less than the bitwidth, the result of
4331       // the shift is undefined. Don't try to analyze it, because the
4332       // resolution chosen here may differ from the resolution chosen in
4333       // other parts of the compiler.
4334       if (SA->getValue().ult(BitWidth)) {
4335         Constant *X =
4336             ConstantInt::get(SA->getContext(),
4337                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4338         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4339       }
4340     }
4341     return BinaryOp(Op);
4342 
4343   case Instruction::ExtractValue: {
4344     auto *EVI = cast<ExtractValueInst>(Op);
4345     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4346       break;
4347 
4348     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4349     if (!WO)
4350       break;
4351 
4352     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4353     bool Signed = WO->isSigned();
4354     // TODO: Should add nuw/nsw flags for mul as well.
4355     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4356       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4357 
4358     // Now that we know that all uses of the arithmetic-result component of
4359     // CI are guarded by the overflow check, we can go ahead and pretend
4360     // that the arithmetic is non-overflowing.
4361     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4362                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4363   }
4364 
4365   default:
4366     break;
4367   }
4368 
4369   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4370   // semantics as a Sub, return a binary sub expression.
4371   if (auto *II = dyn_cast<IntrinsicInst>(V))
4372     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4373       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4374 
4375   return None;
4376 }
4377 
4378 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4379 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4380 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4381 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4382 /// follows one of the following patterns:
4383 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4384 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4385 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4386 /// we return the type of the truncation operation, and indicate whether the
4387 /// truncated type should be treated as signed/unsigned by setting
4388 /// \p Signed to true/false, respectively.
4389 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4390                                bool &Signed, ScalarEvolution &SE) {
4391   // The case where Op == SymbolicPHI (that is, with no type conversions on
4392   // the way) is handled by the regular add recurrence creating logic and
4393   // would have already been triggered in createAddRecForPHI. Reaching it here
4394   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4395   // because one of the other operands of the SCEVAddExpr updating this PHI is
4396   // not invariant).
4397   //
4398   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4399   // this case predicates that allow us to prove that Op == SymbolicPHI will
4400   // be added.
4401   if (Op == SymbolicPHI)
4402     return nullptr;
4403 
4404   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4405   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4406   if (SourceBits != NewBits)
4407     return nullptr;
4408 
4409   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4410   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4411   if (!SExt && !ZExt)
4412     return nullptr;
4413   const SCEVTruncateExpr *Trunc =
4414       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4415            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4416   if (!Trunc)
4417     return nullptr;
4418   const SCEV *X = Trunc->getOperand();
4419   if (X != SymbolicPHI)
4420     return nullptr;
4421   Signed = SExt != nullptr;
4422   return Trunc->getType();
4423 }
4424 
4425 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4426   if (!PN->getType()->isIntegerTy())
4427     return nullptr;
4428   const Loop *L = LI.getLoopFor(PN->getParent());
4429   if (!L || L->getHeader() != PN->getParent())
4430     return nullptr;
4431   return L;
4432 }
4433 
4434 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4435 // computation that updates the phi follows the following pattern:
4436 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4437 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4438 // If so, try to see if it can be rewritten as an AddRecExpr under some
4439 // Predicates. If successful, return them as a pair. Also cache the results
4440 // of the analysis.
4441 //
4442 // Example usage scenario:
4443 //    Say the Rewriter is called for the following SCEV:
4444 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4445 //    where:
4446 //         %X = phi i64 (%Start, %BEValue)
4447 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4448 //    and call this function with %SymbolicPHI = %X.
4449 //
4450 //    The analysis will find that the value coming around the backedge has
4451 //    the following SCEV:
4452 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4453 //    Upon concluding that this matches the desired pattern, the function
4454 //    will return the pair {NewAddRec, SmallPredsVec} where:
4455 //         NewAddRec = {%Start,+,%Step}
4456 //         SmallPredsVec = {P1, P2, P3} as follows:
4457 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4458 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4459 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4460 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4461 //    under the predicates {P1,P2,P3}.
4462 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4463 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4464 //
4465 // TODO's:
4466 //
4467 // 1) Extend the Induction descriptor to also support inductions that involve
4468 //    casts: When needed (namely, when we are called in the context of the
4469 //    vectorizer induction analysis), a Set of cast instructions will be
4470 //    populated by this method, and provided back to isInductionPHI. This is
4471 //    needed to allow the vectorizer to properly record them to be ignored by
4472 //    the cost model and to avoid vectorizing them (otherwise these casts,
4473 //    which are redundant under the runtime overflow checks, will be
4474 //    vectorized, which can be costly).
4475 //
4476 // 2) Support additional induction/PHISCEV patterns: We also want to support
4477 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4478 //    after the induction update operation (the induction increment):
4479 //
4480 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4481 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4482 //
4483 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4484 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4485 //
4486 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4488 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4489   SmallVector<const SCEVPredicate *, 3> Predicates;
4490 
4491   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4492   // return an AddRec expression under some predicate.
4493 
4494   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4495   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4496   assert(L && "Expecting an integer loop header phi");
4497 
4498   // The loop may have multiple entrances or multiple exits; we can analyze
4499   // this phi as an addrec if it has a unique entry value and a unique
4500   // backedge value.
4501   Value *BEValueV = nullptr, *StartValueV = nullptr;
4502   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4503     Value *V = PN->getIncomingValue(i);
4504     if (L->contains(PN->getIncomingBlock(i))) {
4505       if (!BEValueV) {
4506         BEValueV = V;
4507       } else if (BEValueV != V) {
4508         BEValueV = nullptr;
4509         break;
4510       }
4511     } else if (!StartValueV) {
4512       StartValueV = V;
4513     } else if (StartValueV != V) {
4514       StartValueV = nullptr;
4515       break;
4516     }
4517   }
4518   if (!BEValueV || !StartValueV)
4519     return None;
4520 
4521   const SCEV *BEValue = getSCEV(BEValueV);
4522 
4523   // If the value coming around the backedge is an add with the symbolic
4524   // value we just inserted, possibly with casts that we can ignore under
4525   // an appropriate runtime guard, then we found a simple induction variable!
4526   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4527   if (!Add)
4528     return None;
4529 
4530   // If there is a single occurrence of the symbolic value, possibly
4531   // casted, replace it with a recurrence.
4532   unsigned FoundIndex = Add->getNumOperands();
4533   Type *TruncTy = nullptr;
4534   bool Signed;
4535   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4536     if ((TruncTy =
4537              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4538       if (FoundIndex == e) {
4539         FoundIndex = i;
4540         break;
4541       }
4542 
4543   if (FoundIndex == Add->getNumOperands())
4544     return None;
4545 
4546   // Create an add with everything but the specified operand.
4547   SmallVector<const SCEV *, 8> Ops;
4548   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4549     if (i != FoundIndex)
4550       Ops.push_back(Add->getOperand(i));
4551   const SCEV *Accum = getAddExpr(Ops);
4552 
4553   // The runtime checks will not be valid if the step amount is
4554   // varying inside the loop.
4555   if (!isLoopInvariant(Accum, L))
4556     return None;
4557 
4558   // *** Part2: Create the predicates
4559 
4560   // Analysis was successful: we have a phi-with-cast pattern for which we
4561   // can return an AddRec expression under the following predicates:
4562   //
4563   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4564   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4565   // P2: An Equal predicate that guarantees that
4566   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4567   // P3: An Equal predicate that guarantees that
4568   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4569   //
4570   // As we next prove, the above predicates guarantee that:
4571   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4572   //
4573   //
4574   // More formally, we want to prove that:
4575   //     Expr(i+1) = Start + (i+1) * Accum
4576   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4577   //
4578   // Given that:
4579   // 1) Expr(0) = Start
4580   // 2) Expr(1) = Start + Accum
4581   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4582   // 3) Induction hypothesis (step i):
4583   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4584   //
4585   // Proof:
4586   //  Expr(i+1) =
4587   //   = Start + (i+1)*Accum
4588   //   = (Start + i*Accum) + Accum
4589   //   = Expr(i) + Accum
4590   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4591   //                                                             :: from step i
4592   //
4593   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4594   //
4595   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4596   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4597   //     + Accum                                                     :: from P3
4598   //
4599   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4600   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4601   //
4602   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4603   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4604   //
4605   // By induction, the same applies to all iterations 1<=i<n:
4606   //
4607 
4608   // Create a truncated addrec for which we will add a no overflow check (P1).
4609   const SCEV *StartVal = getSCEV(StartValueV);
4610   const SCEV *PHISCEV =
4611       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4612                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4613 
4614   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4615   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4616   // will be constant.
4617   //
4618   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4619   // add P1.
4620   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4621     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4622         Signed ? SCEVWrapPredicate::IncrementNSSW
4623                : SCEVWrapPredicate::IncrementNUSW;
4624     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4625     Predicates.push_back(AddRecPred);
4626   }
4627 
4628   // Create the Equal Predicates P2,P3:
4629 
4630   // It is possible that the predicates P2 and/or P3 are computable at
4631   // compile time due to StartVal and/or Accum being constants.
4632   // If either one is, then we can check that now and escape if either P2
4633   // or P3 is false.
4634 
4635   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4636   // for each of StartVal and Accum
4637   auto getExtendedExpr = [&](const SCEV *Expr,
4638                              bool CreateSignExtend) -> const SCEV * {
4639     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4640     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4641     const SCEV *ExtendedExpr =
4642         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4643                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4644     return ExtendedExpr;
4645   };
4646 
4647   // Given:
4648   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4649   //               = getExtendedExpr(Expr)
4650   // Determine whether the predicate P: Expr == ExtendedExpr
4651   // is known to be false at compile time
4652   auto PredIsKnownFalse = [&](const SCEV *Expr,
4653                               const SCEV *ExtendedExpr) -> bool {
4654     return Expr != ExtendedExpr &&
4655            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4656   };
4657 
4658   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4659   if (PredIsKnownFalse(StartVal, StartExtended)) {
4660     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4661     return None;
4662   }
4663 
4664   // The Step is always Signed (because the overflow checks are either
4665   // NSSW or NUSW)
4666   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4667   if (PredIsKnownFalse(Accum, AccumExtended)) {
4668     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4669     return None;
4670   }
4671 
4672   auto AppendPredicate = [&](const SCEV *Expr,
4673                              const SCEV *ExtendedExpr) -> void {
4674     if (Expr != ExtendedExpr &&
4675         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4676       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4677       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4678       Predicates.push_back(Pred);
4679     }
4680   };
4681 
4682   AppendPredicate(StartVal, StartExtended);
4683   AppendPredicate(Accum, AccumExtended);
4684 
4685   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4686   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4687   // into NewAR if it will also add the runtime overflow checks specified in
4688   // Predicates.
4689   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4690 
4691   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4692       std::make_pair(NewAR, Predicates);
4693   // Remember the result of the analysis for this SCEV at this locayyytion.
4694   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4695   return PredRewrite;
4696 }
4697 
4698 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4699 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4700   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4701   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4702   if (!L)
4703     return None;
4704 
4705   // Check to see if we already analyzed this PHI.
4706   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4707   if (I != PredicatedSCEVRewrites.end()) {
4708     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4709         I->second;
4710     // Analysis was done before and failed to create an AddRec:
4711     if (Rewrite.first == SymbolicPHI)
4712       return None;
4713     // Analysis was done before and succeeded to create an AddRec under
4714     // a predicate:
4715     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4716     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4717     return Rewrite;
4718   }
4719 
4720   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4721     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4722 
4723   // Record in the cache that the analysis failed
4724   if (!Rewrite) {
4725     SmallVector<const SCEVPredicate *, 3> Predicates;
4726     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4727     return None;
4728   }
4729 
4730   return Rewrite;
4731 }
4732 
4733 // FIXME: This utility is currently required because the Rewriter currently
4734 // does not rewrite this expression:
4735 // {0, +, (sext ix (trunc iy to ix) to iy)}
4736 // into {0, +, %step},
4737 // even when the following Equal predicate exists:
4738 // "%step == (sext ix (trunc iy to ix) to iy)".
4739 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4740     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4741   if (AR1 == AR2)
4742     return true;
4743 
4744   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4745     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4746         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4747       return false;
4748     return true;
4749   };
4750 
4751   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4752       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4753     return false;
4754   return true;
4755 }
4756 
4757 /// A helper function for createAddRecFromPHI to handle simple cases.
4758 ///
4759 /// This function tries to find an AddRec expression for the simplest (yet most
4760 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4761 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4762 /// technique for finding the AddRec expression.
4763 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4764                                                       Value *BEValueV,
4765                                                       Value *StartValueV) {
4766   const Loop *L = LI.getLoopFor(PN->getParent());
4767   assert(L && L->getHeader() == PN->getParent());
4768   assert(BEValueV && StartValueV);
4769 
4770   auto BO = MatchBinaryOp(BEValueV, DT);
4771   if (!BO)
4772     return nullptr;
4773 
4774   if (BO->Opcode != Instruction::Add)
4775     return nullptr;
4776 
4777   const SCEV *Accum = nullptr;
4778   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4779     Accum = getSCEV(BO->RHS);
4780   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4781     Accum = getSCEV(BO->LHS);
4782 
4783   if (!Accum)
4784     return nullptr;
4785 
4786   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4787   if (BO->IsNUW)
4788     Flags = setFlags(Flags, SCEV::FlagNUW);
4789   if (BO->IsNSW)
4790     Flags = setFlags(Flags, SCEV::FlagNSW);
4791 
4792   const SCEV *StartVal = getSCEV(StartValueV);
4793   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4794 
4795   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4796 
4797   // We can add Flags to the post-inc expression only if we
4798   // know that it is *undefined behavior* for BEValueV to
4799   // overflow.
4800   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4801     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4802       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4803 
4804   return PHISCEV;
4805 }
4806 
4807 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4808   const Loop *L = LI.getLoopFor(PN->getParent());
4809   if (!L || L->getHeader() != PN->getParent())
4810     return nullptr;
4811 
4812   // The loop may have multiple entrances or multiple exits; we can analyze
4813   // this phi as an addrec if it has a unique entry value and a unique
4814   // backedge value.
4815   Value *BEValueV = nullptr, *StartValueV = nullptr;
4816   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4817     Value *V = PN->getIncomingValue(i);
4818     if (L->contains(PN->getIncomingBlock(i))) {
4819       if (!BEValueV) {
4820         BEValueV = V;
4821       } else if (BEValueV != V) {
4822         BEValueV = nullptr;
4823         break;
4824       }
4825     } else if (!StartValueV) {
4826       StartValueV = V;
4827     } else if (StartValueV != V) {
4828       StartValueV = nullptr;
4829       break;
4830     }
4831   }
4832   if (!BEValueV || !StartValueV)
4833     return nullptr;
4834 
4835   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4836          "PHI node already processed?");
4837 
4838   // First, try to find AddRec expression without creating a fictituos symbolic
4839   // value for PN.
4840   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4841     return S;
4842 
4843   // Handle PHI node value symbolically.
4844   const SCEV *SymbolicName = getUnknown(PN);
4845   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4846 
4847   // Using this symbolic name for the PHI, analyze the value coming around
4848   // the back-edge.
4849   const SCEV *BEValue = getSCEV(BEValueV);
4850 
4851   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4852   // has a special value for the first iteration of the loop.
4853 
4854   // If the value coming around the backedge is an add with the symbolic
4855   // value we just inserted, then we found a simple induction variable!
4856   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4857     // If there is a single occurrence of the symbolic value, replace it
4858     // with a recurrence.
4859     unsigned FoundIndex = Add->getNumOperands();
4860     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4861       if (Add->getOperand(i) == SymbolicName)
4862         if (FoundIndex == e) {
4863           FoundIndex = i;
4864           break;
4865         }
4866 
4867     if (FoundIndex != Add->getNumOperands()) {
4868       // Create an add with everything but the specified operand.
4869       SmallVector<const SCEV *, 8> Ops;
4870       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4871         if (i != FoundIndex)
4872           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4873                                                              L, *this));
4874       const SCEV *Accum = getAddExpr(Ops);
4875 
4876       // This is not a valid addrec if the step amount is varying each
4877       // loop iteration, but is not itself an addrec in this loop.
4878       if (isLoopInvariant(Accum, L) ||
4879           (isa<SCEVAddRecExpr>(Accum) &&
4880            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4881         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4882 
4883         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4884           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4885             if (BO->IsNUW)
4886               Flags = setFlags(Flags, SCEV::FlagNUW);
4887             if (BO->IsNSW)
4888               Flags = setFlags(Flags, SCEV::FlagNSW);
4889           }
4890         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4891           // If the increment is an inbounds GEP, then we know the address
4892           // space cannot be wrapped around. We cannot make any guarantee
4893           // about signed or unsigned overflow because pointers are
4894           // unsigned but we may have a negative index from the base
4895           // pointer. We can guarantee that no unsigned wrap occurs if the
4896           // indices form a positive value.
4897           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4898             Flags = setFlags(Flags, SCEV::FlagNW);
4899 
4900             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4901             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4902               Flags = setFlags(Flags, SCEV::FlagNUW);
4903           }
4904 
4905           // We cannot transfer nuw and nsw flags from subtraction
4906           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4907           // for instance.
4908         }
4909 
4910         const SCEV *StartVal = getSCEV(StartValueV);
4911         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4912 
4913         // Okay, for the entire analysis of this edge we assumed the PHI
4914         // to be symbolic.  We now need to go back and purge all of the
4915         // entries for the scalars that use the symbolic expression.
4916         forgetSymbolicName(PN, SymbolicName);
4917         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4918 
4919         // We can add Flags to the post-inc expression only if we
4920         // know that it is *undefined behavior* for BEValueV to
4921         // overflow.
4922         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4923           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4924             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4925 
4926         return PHISCEV;
4927       }
4928     }
4929   } else {
4930     // Otherwise, this could be a loop like this:
4931     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4932     // In this case, j = {1,+,1}  and BEValue is j.
4933     // Because the other in-value of i (0) fits the evolution of BEValue
4934     // i really is an addrec evolution.
4935     //
4936     // We can generalize this saying that i is the shifted value of BEValue
4937     // by one iteration:
4938     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4939     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4940     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4941     if (Shifted != getCouldNotCompute() &&
4942         Start != getCouldNotCompute()) {
4943       const SCEV *StartVal = getSCEV(StartValueV);
4944       if (Start == StartVal) {
4945         // Okay, for the entire analysis of this edge we assumed the PHI
4946         // to be symbolic.  We now need to go back and purge all of the
4947         // entries for the scalars that use the symbolic expression.
4948         forgetSymbolicName(PN, SymbolicName);
4949         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4950         return Shifted;
4951       }
4952     }
4953   }
4954 
4955   // Remove the temporary PHI node SCEV that has been inserted while intending
4956   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4957   // as it will prevent later (possibly simpler) SCEV expressions to be added
4958   // to the ValueExprMap.
4959   eraseValueFromMap(PN);
4960 
4961   return nullptr;
4962 }
4963 
4964 // Checks if the SCEV S is available at BB.  S is considered available at BB
4965 // if S can be materialized at BB without introducing a fault.
4966 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4967                                BasicBlock *BB) {
4968   struct CheckAvailable {
4969     bool TraversalDone = false;
4970     bool Available = true;
4971 
4972     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4973     BasicBlock *BB = nullptr;
4974     DominatorTree &DT;
4975 
4976     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4977       : L(L), BB(BB), DT(DT) {}
4978 
4979     bool setUnavailable() {
4980       TraversalDone = true;
4981       Available = false;
4982       return false;
4983     }
4984 
4985     bool follow(const SCEV *S) {
4986       switch (S->getSCEVType()) {
4987       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4988       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4989       case scUMinExpr:
4990       case scSMinExpr:
4991         // These expressions are available if their operand(s) is/are.
4992         return true;
4993 
4994       case scAddRecExpr: {
4995         // We allow add recurrences that are on the loop BB is in, or some
4996         // outer loop.  This guarantees availability because the value of the
4997         // add recurrence at BB is simply the "current" value of the induction
4998         // variable.  We can relax this in the future; for instance an add
4999         // recurrence on a sibling dominating loop is also available at BB.
5000         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5001         if (L && (ARLoop == L || ARLoop->contains(L)))
5002           return true;
5003 
5004         return setUnavailable();
5005       }
5006 
5007       case scUnknown: {
5008         // For SCEVUnknown, we check for simple dominance.
5009         const auto *SU = cast<SCEVUnknown>(S);
5010         Value *V = SU->getValue();
5011 
5012         if (isa<Argument>(V))
5013           return false;
5014 
5015         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5016           return false;
5017 
5018         return setUnavailable();
5019       }
5020 
5021       case scUDivExpr:
5022       case scCouldNotCompute:
5023         // We do not try to smart about these at all.
5024         return setUnavailable();
5025       }
5026       llvm_unreachable("switch should be fully covered!");
5027     }
5028 
5029     bool isDone() { return TraversalDone; }
5030   };
5031 
5032   CheckAvailable CA(L, BB, DT);
5033   SCEVTraversal<CheckAvailable> ST(CA);
5034 
5035   ST.visitAll(S);
5036   return CA.Available;
5037 }
5038 
5039 // Try to match a control flow sequence that branches out at BI and merges back
5040 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5041 // match.
5042 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5043                           Value *&C, Value *&LHS, Value *&RHS) {
5044   C = BI->getCondition();
5045 
5046   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5047   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5048 
5049   if (!LeftEdge.isSingleEdge())
5050     return false;
5051 
5052   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5053 
5054   Use &LeftUse = Merge->getOperandUse(0);
5055   Use &RightUse = Merge->getOperandUse(1);
5056 
5057   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5058     LHS = LeftUse;
5059     RHS = RightUse;
5060     return true;
5061   }
5062 
5063   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5064     LHS = RightUse;
5065     RHS = LeftUse;
5066     return true;
5067   }
5068 
5069   return false;
5070 }
5071 
5072 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5073   auto IsReachable =
5074       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5075   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5076     const Loop *L = LI.getLoopFor(PN->getParent());
5077 
5078     // We don't want to break LCSSA, even in a SCEV expression tree.
5079     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5080       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5081         return nullptr;
5082 
5083     // Try to match
5084     //
5085     //  br %cond, label %left, label %right
5086     // left:
5087     //  br label %merge
5088     // right:
5089     //  br label %merge
5090     // merge:
5091     //  V = phi [ %x, %left ], [ %y, %right ]
5092     //
5093     // as "select %cond, %x, %y"
5094 
5095     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5096     assert(IDom && "At least the entry block should dominate PN");
5097 
5098     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5099     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5100 
5101     if (BI && BI->isConditional() &&
5102         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5103         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5104         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5105       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5106   }
5107 
5108   return nullptr;
5109 }
5110 
5111 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5112   if (const SCEV *S = createAddRecFromPHI(PN))
5113     return S;
5114 
5115   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5116     return S;
5117 
5118   // If the PHI has a single incoming value, follow that value, unless the
5119   // PHI's incoming blocks are in a different loop, in which case doing so
5120   // risks breaking LCSSA form. Instcombine would normally zap these, but
5121   // it doesn't have DominatorTree information, so it may miss cases.
5122   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5123     if (LI.replacementPreservesLCSSAForm(PN, V))
5124       return getSCEV(V);
5125 
5126   // If it's not a loop phi, we can't handle it yet.
5127   return getUnknown(PN);
5128 }
5129 
5130 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5131                                                       Value *Cond,
5132                                                       Value *TrueVal,
5133                                                       Value *FalseVal) {
5134   // Handle "constant" branch or select. This can occur for instance when a
5135   // loop pass transforms an inner loop and moves on to process the outer loop.
5136   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5137     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5138 
5139   // Try to match some simple smax or umax patterns.
5140   auto *ICI = dyn_cast<ICmpInst>(Cond);
5141   if (!ICI)
5142     return getUnknown(I);
5143 
5144   Value *LHS = ICI->getOperand(0);
5145   Value *RHS = ICI->getOperand(1);
5146 
5147   switch (ICI->getPredicate()) {
5148   case ICmpInst::ICMP_SLT:
5149   case ICmpInst::ICMP_SLE:
5150     std::swap(LHS, RHS);
5151     LLVM_FALLTHROUGH;
5152   case ICmpInst::ICMP_SGT:
5153   case ICmpInst::ICMP_SGE:
5154     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5155     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5156     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5157       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5158       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5159       const SCEV *LA = getSCEV(TrueVal);
5160       const SCEV *RA = getSCEV(FalseVal);
5161       const SCEV *LDiff = getMinusSCEV(LA, LS);
5162       const SCEV *RDiff = getMinusSCEV(RA, RS);
5163       if (LDiff == RDiff)
5164         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5165       LDiff = getMinusSCEV(LA, RS);
5166       RDiff = getMinusSCEV(RA, LS);
5167       if (LDiff == RDiff)
5168         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5169     }
5170     break;
5171   case ICmpInst::ICMP_ULT:
5172   case ICmpInst::ICMP_ULE:
5173     std::swap(LHS, RHS);
5174     LLVM_FALLTHROUGH;
5175   case ICmpInst::ICMP_UGT:
5176   case ICmpInst::ICMP_UGE:
5177     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5178     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5179     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5180       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5181       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5182       const SCEV *LA = getSCEV(TrueVal);
5183       const SCEV *RA = getSCEV(FalseVal);
5184       const SCEV *LDiff = getMinusSCEV(LA, LS);
5185       const SCEV *RDiff = getMinusSCEV(RA, RS);
5186       if (LDiff == RDiff)
5187         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5188       LDiff = getMinusSCEV(LA, RS);
5189       RDiff = getMinusSCEV(RA, LS);
5190       if (LDiff == RDiff)
5191         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5192     }
5193     break;
5194   case ICmpInst::ICMP_NE:
5195     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5196     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5197         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5198       const SCEV *One = getOne(I->getType());
5199       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5200       const SCEV *LA = getSCEV(TrueVal);
5201       const SCEV *RA = getSCEV(FalseVal);
5202       const SCEV *LDiff = getMinusSCEV(LA, LS);
5203       const SCEV *RDiff = getMinusSCEV(RA, One);
5204       if (LDiff == RDiff)
5205         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5206     }
5207     break;
5208   case ICmpInst::ICMP_EQ:
5209     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5210     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5211         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5212       const SCEV *One = getOne(I->getType());
5213       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5214       const SCEV *LA = getSCEV(TrueVal);
5215       const SCEV *RA = getSCEV(FalseVal);
5216       const SCEV *LDiff = getMinusSCEV(LA, One);
5217       const SCEV *RDiff = getMinusSCEV(RA, LS);
5218       if (LDiff == RDiff)
5219         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5220     }
5221     break;
5222   default:
5223     break;
5224   }
5225 
5226   return getUnknown(I);
5227 }
5228 
5229 /// Expand GEP instructions into add and multiply operations. This allows them
5230 /// to be analyzed by regular SCEV code.
5231 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5232   // Don't attempt to analyze GEPs over unsized objects.
5233   if (!GEP->getSourceElementType()->isSized())
5234     return getUnknown(GEP);
5235 
5236   SmallVector<const SCEV *, 4> IndexExprs;
5237   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5238     IndexExprs.push_back(getSCEV(*Index));
5239   return getGEPExpr(GEP, IndexExprs);
5240 }
5241 
5242 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5243   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5244     return C->getAPInt().countTrailingZeros();
5245 
5246   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5247     return std::min(GetMinTrailingZeros(T->getOperand()),
5248                     (uint32_t)getTypeSizeInBits(T->getType()));
5249 
5250   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5251     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5252     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5253                ? getTypeSizeInBits(E->getType())
5254                : OpRes;
5255   }
5256 
5257   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5258     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5259     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5260                ? getTypeSizeInBits(E->getType())
5261                : OpRes;
5262   }
5263 
5264   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5265     // The result is the min of all operands results.
5266     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5267     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5268       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5269     return MinOpRes;
5270   }
5271 
5272   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5273     // The result is the sum of all operands results.
5274     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5275     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5276     for (unsigned i = 1, e = M->getNumOperands();
5277          SumOpRes != BitWidth && i != e; ++i)
5278       SumOpRes =
5279           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5280     return SumOpRes;
5281   }
5282 
5283   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5284     // The result is the min of all operands results.
5285     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5286     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5287       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5288     return MinOpRes;
5289   }
5290 
5291   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5292     // The result is the min of all operands results.
5293     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5294     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5295       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5296     return MinOpRes;
5297   }
5298 
5299   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5300     // The result is the min of all operands results.
5301     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5302     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5303       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5304     return MinOpRes;
5305   }
5306 
5307   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5308     // For a SCEVUnknown, ask ValueTracking.
5309     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5310     return Known.countMinTrailingZeros();
5311   }
5312 
5313   // SCEVUDivExpr
5314   return 0;
5315 }
5316 
5317 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5318   auto I = MinTrailingZerosCache.find(S);
5319   if (I != MinTrailingZerosCache.end())
5320     return I->second;
5321 
5322   uint32_t Result = GetMinTrailingZerosImpl(S);
5323   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5324   assert(InsertPair.second && "Should insert a new key");
5325   return InsertPair.first->second;
5326 }
5327 
5328 /// Helper method to assign a range to V from metadata present in the IR.
5329 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5330   if (Instruction *I = dyn_cast<Instruction>(V))
5331     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5332       return getConstantRangeFromMetadata(*MD);
5333 
5334   return None;
5335 }
5336 
5337 /// Determine the range for a particular SCEV.  If SignHint is
5338 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5339 /// with a "cleaner" unsigned (resp. signed) representation.
5340 const ConstantRange &
5341 ScalarEvolution::getRangeRef(const SCEV *S,
5342                              ScalarEvolution::RangeSignHint SignHint) {
5343   DenseMap<const SCEV *, ConstantRange> &Cache =
5344       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5345                                                        : SignedRanges;
5346   ConstantRange::PreferredRangeType RangeType =
5347       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5348           ? ConstantRange::Unsigned : ConstantRange::Signed;
5349 
5350   // See if we've computed this range already.
5351   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5352   if (I != Cache.end())
5353     return I->second;
5354 
5355   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5356     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5357 
5358   unsigned BitWidth = getTypeSizeInBits(S->getType());
5359   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5360   using OBO = OverflowingBinaryOperator;
5361 
5362   // If the value has known zeros, the maximum value will have those known zeros
5363   // as well.
5364   uint32_t TZ = GetMinTrailingZeros(S);
5365   if (TZ != 0) {
5366     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5367       ConservativeResult =
5368           ConstantRange(APInt::getMinValue(BitWidth),
5369                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5370     else
5371       ConservativeResult = ConstantRange(
5372           APInt::getSignedMinValue(BitWidth),
5373           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5374   }
5375 
5376   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5377     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5378     unsigned WrapType = OBO::AnyWrap;
5379     if (Add->hasNoSignedWrap())
5380       WrapType |= OBO::NoSignedWrap;
5381     if (Add->hasNoUnsignedWrap())
5382       WrapType |= OBO::NoUnsignedWrap;
5383     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5384       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5385                           WrapType, RangeType);
5386     return setRange(Add, SignHint,
5387                     ConservativeResult.intersectWith(X, RangeType));
5388   }
5389 
5390   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5391     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5392     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5393       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5394     return setRange(Mul, SignHint,
5395                     ConservativeResult.intersectWith(X, RangeType));
5396   }
5397 
5398   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5399     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5400     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5401       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5402     return setRange(SMax, SignHint,
5403                     ConservativeResult.intersectWith(X, RangeType));
5404   }
5405 
5406   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5407     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5408     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5409       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5410     return setRange(UMax, SignHint,
5411                     ConservativeResult.intersectWith(X, RangeType));
5412   }
5413 
5414   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5415     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5416     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5417       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5418     return setRange(SMin, SignHint,
5419                     ConservativeResult.intersectWith(X, RangeType));
5420   }
5421 
5422   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5423     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5424     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5425       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5426     return setRange(UMin, SignHint,
5427                     ConservativeResult.intersectWith(X, RangeType));
5428   }
5429 
5430   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5431     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5432     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5433     return setRange(UDiv, SignHint,
5434                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5435   }
5436 
5437   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5438     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5439     return setRange(ZExt, SignHint,
5440                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5441                                                      RangeType));
5442   }
5443 
5444   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5445     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5446     return setRange(SExt, SignHint,
5447                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5448                                                      RangeType));
5449   }
5450 
5451   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5452     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5453     return setRange(Trunc, SignHint,
5454                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5455                                                      RangeType));
5456   }
5457 
5458   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5459     // If there's no unsigned wrap, the value will never be less than its
5460     // initial value.
5461     if (AddRec->hasNoUnsignedWrap()) {
5462       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5463       if (!UnsignedMinValue.isNullValue())
5464         ConservativeResult = ConservativeResult.intersectWith(
5465             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5466     }
5467 
5468     // If there's no signed wrap, and all the operands except initial value have
5469     // the same sign or zero, the value won't ever be:
5470     // 1: smaller than initial value if operands are non negative,
5471     // 2: bigger than initial value if operands are non positive.
5472     // For both cases, value can not cross signed min/max boundary.
5473     if (AddRec->hasNoSignedWrap()) {
5474       bool AllNonNeg = true;
5475       bool AllNonPos = true;
5476       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5477         if (!isKnownNonNegative(AddRec->getOperand(i)))
5478           AllNonNeg = false;
5479         if (!isKnownNonPositive(AddRec->getOperand(i)))
5480           AllNonPos = false;
5481       }
5482       if (AllNonNeg)
5483         ConservativeResult = ConservativeResult.intersectWith(
5484             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5485                                        APInt::getSignedMinValue(BitWidth)),
5486             RangeType);
5487       else if (AllNonPos)
5488         ConservativeResult = ConservativeResult.intersectWith(
5489             ConstantRange::getNonEmpty(
5490                 APInt::getSignedMinValue(BitWidth),
5491                 getSignedRangeMax(AddRec->getStart()) + 1),
5492             RangeType);
5493     }
5494 
5495     // TODO: non-affine addrec
5496     if (AddRec->isAffine()) {
5497       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5498       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5499           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5500         auto RangeFromAffine = getRangeForAffineAR(
5501             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5502             BitWidth);
5503         ConservativeResult =
5504             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5505 
5506         auto RangeFromFactoring = getRangeViaFactoring(
5507             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5508             BitWidth);
5509         ConservativeResult =
5510             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5511       }
5512     }
5513 
5514     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5515   }
5516 
5517   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5518     // Check if the IR explicitly contains !range metadata.
5519     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5520     if (MDRange.hasValue())
5521       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5522                                                             RangeType);
5523 
5524     // Split here to avoid paying the compile-time cost of calling both
5525     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5526     // if needed.
5527     const DataLayout &DL = getDataLayout();
5528     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5529       // For a SCEVUnknown, ask ValueTracking.
5530       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5531       if (Known.getBitWidth() != BitWidth)
5532         Known = Known.zextOrTrunc(BitWidth);
5533       // If Known does not result in full-set, intersect with it.
5534       if (Known.getMinValue() != Known.getMaxValue() + 1)
5535         ConservativeResult = ConservativeResult.intersectWith(
5536             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5537             RangeType);
5538     } else {
5539       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5540              "generalize as needed!");
5541       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5542       // If the pointer size is larger than the index size type, this can cause
5543       // NS to be larger than BitWidth. So compensate for this.
5544       if (U->getType()->isPointerTy()) {
5545         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5546         int ptrIdxDiff = ptrSize - BitWidth;
5547         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5548           NS -= ptrIdxDiff;
5549       }
5550 
5551       if (NS > 1)
5552         ConservativeResult = ConservativeResult.intersectWith(
5553             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5554                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5555             RangeType);
5556     }
5557 
5558     // A range of Phi is a subset of union of all ranges of its input.
5559     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5560       // Make sure that we do not run over cycled Phis.
5561       if (PendingPhiRanges.insert(Phi).second) {
5562         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5563         for (auto &Op : Phi->operands()) {
5564           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5565           RangeFromOps = RangeFromOps.unionWith(OpRange);
5566           // No point to continue if we already have a full set.
5567           if (RangeFromOps.isFullSet())
5568             break;
5569         }
5570         ConservativeResult =
5571             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5572         bool Erased = PendingPhiRanges.erase(Phi);
5573         assert(Erased && "Failed to erase Phi properly?");
5574         (void) Erased;
5575       }
5576     }
5577 
5578     return setRange(U, SignHint, std::move(ConservativeResult));
5579   }
5580 
5581   return setRange(S, SignHint, std::move(ConservativeResult));
5582 }
5583 
5584 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5585 // values that the expression can take. Initially, the expression has a value
5586 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5587 // argument defines if we treat Step as signed or unsigned.
5588 static ConstantRange getRangeForAffineARHelper(APInt Step,
5589                                                const ConstantRange &StartRange,
5590                                                const APInt &MaxBECount,
5591                                                unsigned BitWidth, bool Signed) {
5592   // If either Step or MaxBECount is 0, then the expression won't change, and we
5593   // just need to return the initial range.
5594   if (Step == 0 || MaxBECount == 0)
5595     return StartRange;
5596 
5597   // If we don't know anything about the initial value (i.e. StartRange is
5598   // FullRange), then we don't know anything about the final range either.
5599   // Return FullRange.
5600   if (StartRange.isFullSet())
5601     return ConstantRange::getFull(BitWidth);
5602 
5603   // If Step is signed and negative, then we use its absolute value, but we also
5604   // note that we're moving in the opposite direction.
5605   bool Descending = Signed && Step.isNegative();
5606 
5607   if (Signed)
5608     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5609     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5610     // This equations hold true due to the well-defined wrap-around behavior of
5611     // APInt.
5612     Step = Step.abs();
5613 
5614   // Check if Offset is more than full span of BitWidth. If it is, the
5615   // expression is guaranteed to overflow.
5616   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5617     return ConstantRange::getFull(BitWidth);
5618 
5619   // Offset is by how much the expression can change. Checks above guarantee no
5620   // overflow here.
5621   APInt Offset = Step * MaxBECount;
5622 
5623   // Minimum value of the final range will match the minimal value of StartRange
5624   // if the expression is increasing and will be decreased by Offset otherwise.
5625   // Maximum value of the final range will match the maximal value of StartRange
5626   // if the expression is decreasing and will be increased by Offset otherwise.
5627   APInt StartLower = StartRange.getLower();
5628   APInt StartUpper = StartRange.getUpper() - 1;
5629   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5630                                    : (StartUpper + std::move(Offset));
5631 
5632   // It's possible that the new minimum/maximum value will fall into the initial
5633   // range (due to wrap around). This means that the expression can take any
5634   // value in this bitwidth, and we have to return full range.
5635   if (StartRange.contains(MovedBoundary))
5636     return ConstantRange::getFull(BitWidth);
5637 
5638   APInt NewLower =
5639       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5640   APInt NewUpper =
5641       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5642   NewUpper += 1;
5643 
5644   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5645   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5646 }
5647 
5648 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5649                                                    const SCEV *Step,
5650                                                    const SCEV *MaxBECount,
5651                                                    unsigned BitWidth) {
5652   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5653          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5654          "Precondition!");
5655 
5656   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5657   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5658 
5659   // First, consider step signed.
5660   ConstantRange StartSRange = getSignedRange(Start);
5661   ConstantRange StepSRange = getSignedRange(Step);
5662 
5663   // If Step can be both positive and negative, we need to find ranges for the
5664   // maximum absolute step values in both directions and union them.
5665   ConstantRange SR =
5666       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5667                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5668   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5669                                               StartSRange, MaxBECountValue,
5670                                               BitWidth, /* Signed = */ true));
5671 
5672   // Next, consider step unsigned.
5673   ConstantRange UR = getRangeForAffineARHelper(
5674       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5675       MaxBECountValue, BitWidth, /* Signed = */ false);
5676 
5677   // Finally, intersect signed and unsigned ranges.
5678   return SR.intersectWith(UR, ConstantRange::Smallest);
5679 }
5680 
5681 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5682                                                     const SCEV *Step,
5683                                                     const SCEV *MaxBECount,
5684                                                     unsigned BitWidth) {
5685   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5686   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5687 
5688   struct SelectPattern {
5689     Value *Condition = nullptr;
5690     APInt TrueValue;
5691     APInt FalseValue;
5692 
5693     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5694                            const SCEV *S) {
5695       Optional<unsigned> CastOp;
5696       APInt Offset(BitWidth, 0);
5697 
5698       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5699              "Should be!");
5700 
5701       // Peel off a constant offset:
5702       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5703         // In the future we could consider being smarter here and handle
5704         // {Start+Step,+,Step} too.
5705         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5706           return;
5707 
5708         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5709         S = SA->getOperand(1);
5710       }
5711 
5712       // Peel off a cast operation
5713       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5714         CastOp = SCast->getSCEVType();
5715         S = SCast->getOperand();
5716       }
5717 
5718       using namespace llvm::PatternMatch;
5719 
5720       auto *SU = dyn_cast<SCEVUnknown>(S);
5721       const APInt *TrueVal, *FalseVal;
5722       if (!SU ||
5723           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5724                                           m_APInt(FalseVal)))) {
5725         Condition = nullptr;
5726         return;
5727       }
5728 
5729       TrueValue = *TrueVal;
5730       FalseValue = *FalseVal;
5731 
5732       // Re-apply the cast we peeled off earlier
5733       if (CastOp.hasValue())
5734         switch (*CastOp) {
5735         default:
5736           llvm_unreachable("Unknown SCEV cast type!");
5737 
5738         case scTruncate:
5739           TrueValue = TrueValue.trunc(BitWidth);
5740           FalseValue = FalseValue.trunc(BitWidth);
5741           break;
5742         case scZeroExtend:
5743           TrueValue = TrueValue.zext(BitWidth);
5744           FalseValue = FalseValue.zext(BitWidth);
5745           break;
5746         case scSignExtend:
5747           TrueValue = TrueValue.sext(BitWidth);
5748           FalseValue = FalseValue.sext(BitWidth);
5749           break;
5750         }
5751 
5752       // Re-apply the constant offset we peeled off earlier
5753       TrueValue += Offset;
5754       FalseValue += Offset;
5755     }
5756 
5757     bool isRecognized() { return Condition != nullptr; }
5758   };
5759 
5760   SelectPattern StartPattern(*this, BitWidth, Start);
5761   if (!StartPattern.isRecognized())
5762     return ConstantRange::getFull(BitWidth);
5763 
5764   SelectPattern StepPattern(*this, BitWidth, Step);
5765   if (!StepPattern.isRecognized())
5766     return ConstantRange::getFull(BitWidth);
5767 
5768   if (StartPattern.Condition != StepPattern.Condition) {
5769     // We don't handle this case today; but we could, by considering four
5770     // possibilities below instead of two. I'm not sure if there are cases where
5771     // that will help over what getRange already does, though.
5772     return ConstantRange::getFull(BitWidth);
5773   }
5774 
5775   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5776   // construct arbitrary general SCEV expressions here.  This function is called
5777   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5778   // say) can end up caching a suboptimal value.
5779 
5780   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5781   // C2352 and C2512 (otherwise it isn't needed).
5782 
5783   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5784   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5785   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5786   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5787 
5788   ConstantRange TrueRange =
5789       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5790   ConstantRange FalseRange =
5791       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5792 
5793   return TrueRange.unionWith(FalseRange);
5794 }
5795 
5796 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5797   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5798   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5799 
5800   // Return early if there are no flags to propagate to the SCEV.
5801   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5802   if (BinOp->hasNoUnsignedWrap())
5803     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5804   if (BinOp->hasNoSignedWrap())
5805     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5806   if (Flags == SCEV::FlagAnyWrap)
5807     return SCEV::FlagAnyWrap;
5808 
5809   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5810 }
5811 
5812 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5813   // Here we check that I is in the header of the innermost loop containing I,
5814   // since we only deal with instructions in the loop header. The actual loop we
5815   // need to check later will come from an add recurrence, but getting that
5816   // requires computing the SCEV of the operands, which can be expensive. This
5817   // check we can do cheaply to rule out some cases early.
5818   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5819   if (InnermostContainingLoop == nullptr ||
5820       InnermostContainingLoop->getHeader() != I->getParent())
5821     return false;
5822 
5823   // Only proceed if we can prove that I does not yield poison.
5824   if (!programUndefinedIfPoison(I))
5825     return false;
5826 
5827   // At this point we know that if I is executed, then it does not wrap
5828   // according to at least one of NSW or NUW. If I is not executed, then we do
5829   // not know if the calculation that I represents would wrap. Multiple
5830   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5831   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5832   // derived from other instructions that map to the same SCEV. We cannot make
5833   // that guarantee for cases where I is not executed. So we need to find the
5834   // loop that I is considered in relation to and prove that I is executed for
5835   // every iteration of that loop. That implies that the value that I
5836   // calculates does not wrap anywhere in the loop, so then we can apply the
5837   // flags to the SCEV.
5838   //
5839   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5840   // from different loops, so that we know which loop to prove that I is
5841   // executed in.
5842   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5843     // I could be an extractvalue from a call to an overflow intrinsic.
5844     // TODO: We can do better here in some cases.
5845     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5846       return false;
5847     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5848     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5849       bool AllOtherOpsLoopInvariant = true;
5850       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5851            ++OtherOpIndex) {
5852         if (OtherOpIndex != OpIndex) {
5853           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5854           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5855             AllOtherOpsLoopInvariant = false;
5856             break;
5857           }
5858         }
5859       }
5860       if (AllOtherOpsLoopInvariant &&
5861           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5862         return true;
5863     }
5864   }
5865   return false;
5866 }
5867 
5868 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5869   // If we know that \c I can never be poison period, then that's enough.
5870   if (isSCEVExprNeverPoison(I))
5871     return true;
5872 
5873   // For an add recurrence specifically, we assume that infinite loops without
5874   // side effects are undefined behavior, and then reason as follows:
5875   //
5876   // If the add recurrence is poison in any iteration, it is poison on all
5877   // future iterations (since incrementing poison yields poison). If the result
5878   // of the add recurrence is fed into the loop latch condition and the loop
5879   // does not contain any throws or exiting blocks other than the latch, we now
5880   // have the ability to "choose" whether the backedge is taken or not (by
5881   // choosing a sufficiently evil value for the poison feeding into the branch)
5882   // for every iteration including and after the one in which \p I first became
5883   // poison.  There are two possibilities (let's call the iteration in which \p
5884   // I first became poison as K):
5885   //
5886   //  1. In the set of iterations including and after K, the loop body executes
5887   //     no side effects.  In this case executing the backege an infinte number
5888   //     of times will yield undefined behavior.
5889   //
5890   //  2. In the set of iterations including and after K, the loop body executes
5891   //     at least one side effect.  In this case, that specific instance of side
5892   //     effect is control dependent on poison, which also yields undefined
5893   //     behavior.
5894 
5895   auto *ExitingBB = L->getExitingBlock();
5896   auto *LatchBB = L->getLoopLatch();
5897   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5898     return false;
5899 
5900   SmallPtrSet<const Instruction *, 16> Pushed;
5901   SmallVector<const Instruction *, 8> PoisonStack;
5902 
5903   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5904   // things that are known to be poison under that assumption go on the
5905   // PoisonStack.
5906   Pushed.insert(I);
5907   PoisonStack.push_back(I);
5908 
5909   bool LatchControlDependentOnPoison = false;
5910   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5911     const Instruction *Poison = PoisonStack.pop_back_val();
5912 
5913     for (auto *PoisonUser : Poison->users()) {
5914       if (propagatesPoison(cast<Operator>(PoisonUser))) {
5915         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5916           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5917       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5918         assert(BI->isConditional() && "Only possibility!");
5919         if (BI->getParent() == LatchBB) {
5920           LatchControlDependentOnPoison = true;
5921           break;
5922         }
5923       }
5924     }
5925   }
5926 
5927   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5928 }
5929 
5930 ScalarEvolution::LoopProperties
5931 ScalarEvolution::getLoopProperties(const Loop *L) {
5932   using LoopProperties = ScalarEvolution::LoopProperties;
5933 
5934   auto Itr = LoopPropertiesCache.find(L);
5935   if (Itr == LoopPropertiesCache.end()) {
5936     auto HasSideEffects = [](Instruction *I) {
5937       if (auto *SI = dyn_cast<StoreInst>(I))
5938         return !SI->isSimple();
5939 
5940       return I->mayHaveSideEffects();
5941     };
5942 
5943     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5944                          /*HasNoSideEffects*/ true};
5945 
5946     for (auto *BB : L->getBlocks())
5947       for (auto &I : *BB) {
5948         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5949           LP.HasNoAbnormalExits = false;
5950         if (HasSideEffects(&I))
5951           LP.HasNoSideEffects = false;
5952         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5953           break; // We're already as pessimistic as we can get.
5954       }
5955 
5956     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5957     assert(InsertPair.second && "We just checked!");
5958     Itr = InsertPair.first;
5959   }
5960 
5961   return Itr->second;
5962 }
5963 
5964 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5965   if (!isSCEVable(V->getType()))
5966     return getUnknown(V);
5967 
5968   if (Instruction *I = dyn_cast<Instruction>(V)) {
5969     // Don't attempt to analyze instructions in blocks that aren't
5970     // reachable. Such instructions don't matter, and they aren't required
5971     // to obey basic rules for definitions dominating uses which this
5972     // analysis depends on.
5973     if (!DT.isReachableFromEntry(I->getParent()))
5974       return getUnknown(UndefValue::get(V->getType()));
5975   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5976     return getConstant(CI);
5977   else if (isa<ConstantPointerNull>(V))
5978     return getZero(V->getType());
5979   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5980     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5981   else if (!isa<ConstantExpr>(V))
5982     return getUnknown(V);
5983 
5984   Operator *U = cast<Operator>(V);
5985   if (auto BO = MatchBinaryOp(U, DT)) {
5986     switch (BO->Opcode) {
5987     case Instruction::Add: {
5988       // The simple thing to do would be to just call getSCEV on both operands
5989       // and call getAddExpr with the result. However if we're looking at a
5990       // bunch of things all added together, this can be quite inefficient,
5991       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5992       // Instead, gather up all the operands and make a single getAddExpr call.
5993       // LLVM IR canonical form means we need only traverse the left operands.
5994       SmallVector<const SCEV *, 4> AddOps;
5995       do {
5996         if (BO->Op) {
5997           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5998             AddOps.push_back(OpSCEV);
5999             break;
6000           }
6001 
6002           // If a NUW or NSW flag can be applied to the SCEV for this
6003           // addition, then compute the SCEV for this addition by itself
6004           // with a separate call to getAddExpr. We need to do that
6005           // instead of pushing the operands of the addition onto AddOps,
6006           // since the flags are only known to apply to this particular
6007           // addition - they may not apply to other additions that can be
6008           // formed with operands from AddOps.
6009           const SCEV *RHS = getSCEV(BO->RHS);
6010           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6011           if (Flags != SCEV::FlagAnyWrap) {
6012             const SCEV *LHS = getSCEV(BO->LHS);
6013             if (BO->Opcode == Instruction::Sub)
6014               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6015             else
6016               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6017             break;
6018           }
6019         }
6020 
6021         if (BO->Opcode == Instruction::Sub)
6022           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6023         else
6024           AddOps.push_back(getSCEV(BO->RHS));
6025 
6026         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6027         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6028                        NewBO->Opcode != Instruction::Sub)) {
6029           AddOps.push_back(getSCEV(BO->LHS));
6030           break;
6031         }
6032         BO = NewBO;
6033       } while (true);
6034 
6035       return getAddExpr(AddOps);
6036     }
6037 
6038     case Instruction::Mul: {
6039       SmallVector<const SCEV *, 4> MulOps;
6040       do {
6041         if (BO->Op) {
6042           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6043             MulOps.push_back(OpSCEV);
6044             break;
6045           }
6046 
6047           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6048           if (Flags != SCEV::FlagAnyWrap) {
6049             MulOps.push_back(
6050                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6051             break;
6052           }
6053         }
6054 
6055         MulOps.push_back(getSCEV(BO->RHS));
6056         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6057         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6058           MulOps.push_back(getSCEV(BO->LHS));
6059           break;
6060         }
6061         BO = NewBO;
6062       } while (true);
6063 
6064       return getMulExpr(MulOps);
6065     }
6066     case Instruction::UDiv:
6067       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6068     case Instruction::URem:
6069       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6070     case Instruction::Sub: {
6071       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6072       if (BO->Op)
6073         Flags = getNoWrapFlagsFromUB(BO->Op);
6074       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6075     }
6076     case Instruction::And:
6077       // For an expression like x&255 that merely masks off the high bits,
6078       // use zext(trunc(x)) as the SCEV expression.
6079       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6080         if (CI->isZero())
6081           return getSCEV(BO->RHS);
6082         if (CI->isMinusOne())
6083           return getSCEV(BO->LHS);
6084         const APInt &A = CI->getValue();
6085 
6086         // Instcombine's ShrinkDemandedConstant may strip bits out of
6087         // constants, obscuring what would otherwise be a low-bits mask.
6088         // Use computeKnownBits to compute what ShrinkDemandedConstant
6089         // knew about to reconstruct a low-bits mask value.
6090         unsigned LZ = A.countLeadingZeros();
6091         unsigned TZ = A.countTrailingZeros();
6092         unsigned BitWidth = A.getBitWidth();
6093         KnownBits Known(BitWidth);
6094         computeKnownBits(BO->LHS, Known, getDataLayout(),
6095                          0, &AC, nullptr, &DT);
6096 
6097         APInt EffectiveMask =
6098             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6099         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6100           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6101           const SCEV *LHS = getSCEV(BO->LHS);
6102           const SCEV *ShiftedLHS = nullptr;
6103           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6104             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6105               // For an expression like (x * 8) & 8, simplify the multiply.
6106               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6107               unsigned GCD = std::min(MulZeros, TZ);
6108               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6109               SmallVector<const SCEV*, 4> MulOps;
6110               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6111               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6112               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6113               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6114             }
6115           }
6116           if (!ShiftedLHS)
6117             ShiftedLHS = getUDivExpr(LHS, MulCount);
6118           return getMulExpr(
6119               getZeroExtendExpr(
6120                   getTruncateExpr(ShiftedLHS,
6121                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6122                   BO->LHS->getType()),
6123               MulCount);
6124         }
6125       }
6126       break;
6127 
6128     case Instruction::Or:
6129       // If the RHS of the Or is a constant, we may have something like:
6130       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6131       // optimizations will transparently handle this case.
6132       //
6133       // In order for this transformation to be safe, the LHS must be of the
6134       // form X*(2^n) and the Or constant must be less than 2^n.
6135       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6136         const SCEV *LHS = getSCEV(BO->LHS);
6137         const APInt &CIVal = CI->getValue();
6138         if (GetMinTrailingZeros(LHS) >=
6139             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6140           // Build a plain add SCEV.
6141           return getAddExpr(LHS, getSCEV(CI),
6142                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6143         }
6144       }
6145       break;
6146 
6147     case Instruction::Xor:
6148       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6149         // If the RHS of xor is -1, then this is a not operation.
6150         if (CI->isMinusOne())
6151           return getNotSCEV(getSCEV(BO->LHS));
6152 
6153         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6154         // This is a variant of the check for xor with -1, and it handles
6155         // the case where instcombine has trimmed non-demanded bits out
6156         // of an xor with -1.
6157         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6158           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6159             if (LBO->getOpcode() == Instruction::And &&
6160                 LCI->getValue() == CI->getValue())
6161               if (const SCEVZeroExtendExpr *Z =
6162                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6163                 Type *UTy = BO->LHS->getType();
6164                 const SCEV *Z0 = Z->getOperand();
6165                 Type *Z0Ty = Z0->getType();
6166                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6167 
6168                 // If C is a low-bits mask, the zero extend is serving to
6169                 // mask off the high bits. Complement the operand and
6170                 // re-apply the zext.
6171                 if (CI->getValue().isMask(Z0TySize))
6172                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6173 
6174                 // If C is a single bit, it may be in the sign-bit position
6175                 // before the zero-extend. In this case, represent the xor
6176                 // using an add, which is equivalent, and re-apply the zext.
6177                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6178                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6179                     Trunc.isSignMask())
6180                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6181                                            UTy);
6182               }
6183       }
6184       break;
6185 
6186     case Instruction::Shl:
6187       // Turn shift left of a constant amount into a multiply.
6188       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6189         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6190 
6191         // If the shift count is not less than the bitwidth, the result of
6192         // the shift is undefined. Don't try to analyze it, because the
6193         // resolution chosen here may differ from the resolution chosen in
6194         // other parts of the compiler.
6195         if (SA->getValue().uge(BitWidth))
6196           break;
6197 
6198         // We can safely preserve the nuw flag in all cases. It's also safe to
6199         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6200         // requires special handling. It can be preserved as long as we're not
6201         // left shifting by bitwidth - 1.
6202         auto Flags = SCEV::FlagAnyWrap;
6203         if (BO->Op) {
6204           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6205           if ((MulFlags & SCEV::FlagNSW) &&
6206               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6207             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6208           if (MulFlags & SCEV::FlagNUW)
6209             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6210         }
6211 
6212         Constant *X = ConstantInt::get(
6213             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6214         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6215       }
6216       break;
6217 
6218     case Instruction::AShr: {
6219       // AShr X, C, where C is a constant.
6220       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6221       if (!CI)
6222         break;
6223 
6224       Type *OuterTy = BO->LHS->getType();
6225       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6226       // If the shift count is not less than the bitwidth, the result of
6227       // the shift is undefined. Don't try to analyze it, because the
6228       // resolution chosen here may differ from the resolution chosen in
6229       // other parts of the compiler.
6230       if (CI->getValue().uge(BitWidth))
6231         break;
6232 
6233       if (CI->isZero())
6234         return getSCEV(BO->LHS); // shift by zero --> noop
6235 
6236       uint64_t AShrAmt = CI->getZExtValue();
6237       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6238 
6239       Operator *L = dyn_cast<Operator>(BO->LHS);
6240       if (L && L->getOpcode() == Instruction::Shl) {
6241         // X = Shl A, n
6242         // Y = AShr X, m
6243         // Both n and m are constant.
6244 
6245         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6246         if (L->getOperand(1) == BO->RHS)
6247           // For a two-shift sext-inreg, i.e. n = m,
6248           // use sext(trunc(x)) as the SCEV expression.
6249           return getSignExtendExpr(
6250               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6251 
6252         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6253         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6254           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6255           if (ShlAmt > AShrAmt) {
6256             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6257             // expression. We already checked that ShlAmt < BitWidth, so
6258             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6259             // ShlAmt - AShrAmt < Amt.
6260             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6261                                             ShlAmt - AShrAmt);
6262             return getSignExtendExpr(
6263                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6264                 getConstant(Mul)), OuterTy);
6265           }
6266         }
6267       }
6268       break;
6269     }
6270     }
6271   }
6272 
6273   switch (U->getOpcode()) {
6274   case Instruction::Trunc:
6275     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6276 
6277   case Instruction::ZExt:
6278     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6279 
6280   case Instruction::SExt:
6281     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6282       // The NSW flag of a subtract does not always survive the conversion to
6283       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6284       // more likely to preserve NSW and allow later AddRec optimisations.
6285       //
6286       // NOTE: This is effectively duplicating this logic from getSignExtend:
6287       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6288       // but by that point the NSW information has potentially been lost.
6289       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6290         Type *Ty = U->getType();
6291         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6292         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6293         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6294       }
6295     }
6296     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6297 
6298   case Instruction::BitCast:
6299     // BitCasts are no-op casts so we just eliminate the cast.
6300     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6301       return getSCEV(U->getOperand(0));
6302     break;
6303 
6304   case Instruction::PtrToInt: {
6305     // It's tempting to handle inttoptr and ptrtoint as no-ops,
6306     // however this can lead to pointer expressions which cannot safely be
6307     // expanded to GEPs because ScalarEvolution doesn't respect
6308     // the GEP aliasing rules when simplifying integer expressions.
6309     //
6310     // However, given
6311     //   %x = ???
6312     //   %y = ptrtoint %x
6313     //   %z = ptrtoint %x
6314     // it is safe to say that %y and %z are the same thing.
6315     //
6316     // So instead of modelling the cast itself as unknown,
6317     // since the casts are transparent within SCEV,
6318     // we can at least model the casts original value as unknow instead.
6319 
6320     // BUT, there's caveat. If we simply model %x as unknown, unrelated uses
6321     // of %x will also see it as unknown, which is obviously bad.
6322     // So we can only do this iff %x would be modelled as unknown anyways.
6323     auto *OpSCEV = getSCEV(U->getOperand(0));
6324     if (isa<SCEVUnknown>(OpSCEV))
6325       return getTruncateOrZeroExtend(OpSCEV, U->getType());
6326     // If we can model the operand, however, we must fallback to modelling
6327     // the whole cast as unknown instead.
6328     LLVM_FALLTHROUGH;
6329   }
6330   case Instruction::IntToPtr:
6331     // We can't do this for inttoptr at all, however.
6332     return getUnknown(V);
6333 
6334   case Instruction::SDiv:
6335     // If both operands are non-negative, this is just an udiv.
6336     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6337         isKnownNonNegative(getSCEV(U->getOperand(1))))
6338       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6339     break;
6340 
6341   case Instruction::SRem:
6342     // If both operands are non-negative, this is just an urem.
6343     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6344         isKnownNonNegative(getSCEV(U->getOperand(1))))
6345       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6346     break;
6347 
6348   case Instruction::GetElementPtr:
6349     return createNodeForGEP(cast<GEPOperator>(U));
6350 
6351   case Instruction::PHI:
6352     return createNodeForPHI(cast<PHINode>(U));
6353 
6354   case Instruction::Select:
6355     // U can also be a select constant expr, which let fall through.  Since
6356     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6357     // constant expressions cannot have instructions as operands, we'd have
6358     // returned getUnknown for a select constant expressions anyway.
6359     if (isa<Instruction>(U))
6360       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6361                                       U->getOperand(1), U->getOperand(2));
6362     break;
6363 
6364   case Instruction::Call:
6365   case Instruction::Invoke:
6366     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6367       return getSCEV(RV);
6368 
6369     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6370       switch (II->getIntrinsicID()) {
6371       case Intrinsic::abs: {
6372         const SCEV *Op = getSCEV(II->getArgOperand(0));
6373         SCEV::NoWrapFlags Flags =
6374             cast<ConstantInt>(II->getArgOperand(1))->isOne()
6375                 ? SCEV::FlagNSW
6376                 : SCEV::FlagAnyWrap;
6377         return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
6378       }
6379       case Intrinsic::umax:
6380         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6381                            getSCEV(II->getArgOperand(1)));
6382       case Intrinsic::umin:
6383         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6384                            getSCEV(II->getArgOperand(1)));
6385       case Intrinsic::smax:
6386         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6387                            getSCEV(II->getArgOperand(1)));
6388       case Intrinsic::smin:
6389         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6390                            getSCEV(II->getArgOperand(1)));
6391       case Intrinsic::usub_sat: {
6392         const SCEV *X = getSCEV(II->getArgOperand(0));
6393         const SCEV *Y = getSCEV(II->getArgOperand(1));
6394         const SCEV *ClampedY = getUMinExpr(X, Y);
6395         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6396       }
6397       case Intrinsic::uadd_sat: {
6398         const SCEV *X = getSCEV(II->getArgOperand(0));
6399         const SCEV *Y = getSCEV(II->getArgOperand(1));
6400         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6401         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6402       }
6403       default:
6404         break;
6405       }
6406     }
6407     break;
6408   }
6409 
6410   return getUnknown(V);
6411 }
6412 
6413 //===----------------------------------------------------------------------===//
6414 //                   Iteration Count Computation Code
6415 //
6416 
6417 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6418   if (!ExitCount)
6419     return 0;
6420 
6421   ConstantInt *ExitConst = ExitCount->getValue();
6422 
6423   // Guard against huge trip counts.
6424   if (ExitConst->getValue().getActiveBits() > 32)
6425     return 0;
6426 
6427   // In case of integer overflow, this returns 0, which is correct.
6428   return ((unsigned)ExitConst->getZExtValue()) + 1;
6429 }
6430 
6431 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6432   if (BasicBlock *ExitingBB = L->getExitingBlock())
6433     return getSmallConstantTripCount(L, ExitingBB);
6434 
6435   // No trip count information for multiple exits.
6436   return 0;
6437 }
6438 
6439 unsigned
6440 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6441                                            const BasicBlock *ExitingBlock) {
6442   assert(ExitingBlock && "Must pass a non-null exiting block!");
6443   assert(L->isLoopExiting(ExitingBlock) &&
6444          "Exiting block must actually branch out of the loop!");
6445   const SCEVConstant *ExitCount =
6446       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6447   return getConstantTripCount(ExitCount);
6448 }
6449 
6450 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6451   const auto *MaxExitCount =
6452       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6453   return getConstantTripCount(MaxExitCount);
6454 }
6455 
6456 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6457   if (BasicBlock *ExitingBB = L->getExitingBlock())
6458     return getSmallConstantTripMultiple(L, ExitingBB);
6459 
6460   // No trip multiple information for multiple exits.
6461   return 0;
6462 }
6463 
6464 /// Returns the largest constant divisor of the trip count of this loop as a
6465 /// normal unsigned value, if possible. This means that the actual trip count is
6466 /// always a multiple of the returned value (don't forget the trip count could
6467 /// very well be zero as well!).
6468 ///
6469 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6470 /// multiple of a constant (which is also the case if the trip count is simply
6471 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6472 /// if the trip count is very large (>= 2^32).
6473 ///
6474 /// As explained in the comments for getSmallConstantTripCount, this assumes
6475 /// that control exits the loop via ExitingBlock.
6476 unsigned
6477 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6478                                               const BasicBlock *ExitingBlock) {
6479   assert(ExitingBlock && "Must pass a non-null exiting block!");
6480   assert(L->isLoopExiting(ExitingBlock) &&
6481          "Exiting block must actually branch out of the loop!");
6482   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6483   if (ExitCount == getCouldNotCompute())
6484     return 1;
6485 
6486   // Get the trip count from the BE count by adding 1.
6487   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6488 
6489   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6490   if (!TC)
6491     // Attempt to factor more general cases. Returns the greatest power of
6492     // two divisor. If overflow happens, the trip count expression is still
6493     // divisible by the greatest power of 2 divisor returned.
6494     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6495 
6496   ConstantInt *Result = TC->getValue();
6497 
6498   // Guard against huge trip counts (this requires checking
6499   // for zero to handle the case where the trip count == -1 and the
6500   // addition wraps).
6501   if (!Result || Result->getValue().getActiveBits() > 32 ||
6502       Result->getValue().getActiveBits() == 0)
6503     return 1;
6504 
6505   return (unsigned)Result->getZExtValue();
6506 }
6507 
6508 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6509                                           const BasicBlock *ExitingBlock,
6510                                           ExitCountKind Kind) {
6511   switch (Kind) {
6512   case Exact:
6513     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6514   case ConstantMaximum:
6515     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6516   };
6517   llvm_unreachable("Invalid ExitCountKind!");
6518 }
6519 
6520 const SCEV *
6521 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6522                                                  SCEVUnionPredicate &Preds) {
6523   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6524 }
6525 
6526 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6527                                                    ExitCountKind Kind) {
6528   switch (Kind) {
6529   case Exact:
6530     return getBackedgeTakenInfo(L).getExact(L, this);
6531   case ConstantMaximum:
6532     return getBackedgeTakenInfo(L).getMax(this);
6533   };
6534   llvm_unreachable("Invalid ExitCountKind!");
6535 }
6536 
6537 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6538   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6539 }
6540 
6541 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6542 static void
6543 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6544   BasicBlock *Header = L->getHeader();
6545 
6546   // Push all Loop-header PHIs onto the Worklist stack.
6547   for (PHINode &PN : Header->phis())
6548     Worklist.push_back(&PN);
6549 }
6550 
6551 const ScalarEvolution::BackedgeTakenInfo &
6552 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6553   auto &BTI = getBackedgeTakenInfo(L);
6554   if (BTI.hasFullInfo())
6555     return BTI;
6556 
6557   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6558 
6559   if (!Pair.second)
6560     return Pair.first->second;
6561 
6562   BackedgeTakenInfo Result =
6563       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6564 
6565   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6566 }
6567 
6568 const ScalarEvolution::BackedgeTakenInfo &
6569 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6570   // Initially insert an invalid entry for this loop. If the insertion
6571   // succeeds, proceed to actually compute a backedge-taken count and
6572   // update the value. The temporary CouldNotCompute value tells SCEV
6573   // code elsewhere that it shouldn't attempt to request a new
6574   // backedge-taken count, which could result in infinite recursion.
6575   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6576       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6577   if (!Pair.second)
6578     return Pair.first->second;
6579 
6580   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6581   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6582   // must be cleared in this scope.
6583   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6584 
6585   // In product build, there are no usage of statistic.
6586   (void)NumTripCountsComputed;
6587   (void)NumTripCountsNotComputed;
6588 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6589   const SCEV *BEExact = Result.getExact(L, this);
6590   if (BEExact != getCouldNotCompute()) {
6591     assert(isLoopInvariant(BEExact, L) &&
6592            isLoopInvariant(Result.getMax(this), L) &&
6593            "Computed backedge-taken count isn't loop invariant for loop!");
6594     ++NumTripCountsComputed;
6595   }
6596   else if (Result.getMax(this) == getCouldNotCompute() &&
6597            isa<PHINode>(L->getHeader()->begin())) {
6598     // Only count loops that have phi nodes as not being computable.
6599     ++NumTripCountsNotComputed;
6600   }
6601 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6602 
6603   // Now that we know more about the trip count for this loop, forget any
6604   // existing SCEV values for PHI nodes in this loop since they are only
6605   // conservative estimates made without the benefit of trip count
6606   // information. This is similar to the code in forgetLoop, except that
6607   // it handles SCEVUnknown PHI nodes specially.
6608   if (Result.hasAnyInfo()) {
6609     SmallVector<Instruction *, 16> Worklist;
6610     PushLoopPHIs(L, Worklist);
6611 
6612     SmallPtrSet<Instruction *, 8> Discovered;
6613     while (!Worklist.empty()) {
6614       Instruction *I = Worklist.pop_back_val();
6615 
6616       ValueExprMapType::iterator It =
6617         ValueExprMap.find_as(static_cast<Value *>(I));
6618       if (It != ValueExprMap.end()) {
6619         const SCEV *Old = It->second;
6620 
6621         // SCEVUnknown for a PHI either means that it has an unrecognized
6622         // structure, or it's a PHI that's in the progress of being computed
6623         // by createNodeForPHI.  In the former case, additional loop trip
6624         // count information isn't going to change anything. In the later
6625         // case, createNodeForPHI will perform the necessary updates on its
6626         // own when it gets to that point.
6627         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6628           eraseValueFromMap(It->first);
6629           forgetMemoizedResults(Old);
6630         }
6631         if (PHINode *PN = dyn_cast<PHINode>(I))
6632           ConstantEvolutionLoopExitValue.erase(PN);
6633       }
6634 
6635       // Since we don't need to invalidate anything for correctness and we're
6636       // only invalidating to make SCEV's results more precise, we get to stop
6637       // early to avoid invalidating too much.  This is especially important in
6638       // cases like:
6639       //
6640       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6641       // loop0:
6642       //   %pn0 = phi
6643       //   ...
6644       // loop1:
6645       //   %pn1 = phi
6646       //   ...
6647       //
6648       // where both loop0 and loop1's backedge taken count uses the SCEV
6649       // expression for %v.  If we don't have the early stop below then in cases
6650       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6651       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6652       // count for loop1, effectively nullifying SCEV's trip count cache.
6653       for (auto *U : I->users())
6654         if (auto *I = dyn_cast<Instruction>(U)) {
6655           auto *LoopForUser = LI.getLoopFor(I->getParent());
6656           if (LoopForUser && L->contains(LoopForUser) &&
6657               Discovered.insert(I).second)
6658             Worklist.push_back(I);
6659         }
6660     }
6661   }
6662 
6663   // Re-lookup the insert position, since the call to
6664   // computeBackedgeTakenCount above could result in a
6665   // recusive call to getBackedgeTakenInfo (on a different
6666   // loop), which would invalidate the iterator computed
6667   // earlier.
6668   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6669 }
6670 
6671 void ScalarEvolution::forgetAllLoops() {
6672   // This method is intended to forget all info about loops. It should
6673   // invalidate caches as if the following happened:
6674   // - The trip counts of all loops have changed arbitrarily
6675   // - Every llvm::Value has been updated in place to produce a different
6676   // result.
6677   BackedgeTakenCounts.clear();
6678   PredicatedBackedgeTakenCounts.clear();
6679   LoopPropertiesCache.clear();
6680   ConstantEvolutionLoopExitValue.clear();
6681   ValueExprMap.clear();
6682   ValuesAtScopes.clear();
6683   LoopDispositions.clear();
6684   BlockDispositions.clear();
6685   UnsignedRanges.clear();
6686   SignedRanges.clear();
6687   ExprValueMap.clear();
6688   HasRecMap.clear();
6689   MinTrailingZerosCache.clear();
6690   PredicatedSCEVRewrites.clear();
6691 }
6692 
6693 void ScalarEvolution::forgetLoop(const Loop *L) {
6694   // Drop any stored trip count value.
6695   auto RemoveLoopFromBackedgeMap =
6696       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6697         auto BTCPos = Map.find(L);
6698         if (BTCPos != Map.end()) {
6699           BTCPos->second.clear();
6700           Map.erase(BTCPos);
6701         }
6702       };
6703 
6704   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6705   SmallVector<Instruction *, 32> Worklist;
6706   SmallPtrSet<Instruction *, 16> Visited;
6707 
6708   // Iterate over all the loops and sub-loops to drop SCEV information.
6709   while (!LoopWorklist.empty()) {
6710     auto *CurrL = LoopWorklist.pop_back_val();
6711 
6712     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6713     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6714 
6715     // Drop information about predicated SCEV rewrites for this loop.
6716     for (auto I = PredicatedSCEVRewrites.begin();
6717          I != PredicatedSCEVRewrites.end();) {
6718       std::pair<const SCEV *, const Loop *> Entry = I->first;
6719       if (Entry.second == CurrL)
6720         PredicatedSCEVRewrites.erase(I++);
6721       else
6722         ++I;
6723     }
6724 
6725     auto LoopUsersItr = LoopUsers.find(CurrL);
6726     if (LoopUsersItr != LoopUsers.end()) {
6727       for (auto *S : LoopUsersItr->second)
6728         forgetMemoizedResults(S);
6729       LoopUsers.erase(LoopUsersItr);
6730     }
6731 
6732     // Drop information about expressions based on loop-header PHIs.
6733     PushLoopPHIs(CurrL, Worklist);
6734 
6735     while (!Worklist.empty()) {
6736       Instruction *I = Worklist.pop_back_val();
6737       if (!Visited.insert(I).second)
6738         continue;
6739 
6740       ValueExprMapType::iterator It =
6741           ValueExprMap.find_as(static_cast<Value *>(I));
6742       if (It != ValueExprMap.end()) {
6743         eraseValueFromMap(It->first);
6744         forgetMemoizedResults(It->second);
6745         if (PHINode *PN = dyn_cast<PHINode>(I))
6746           ConstantEvolutionLoopExitValue.erase(PN);
6747       }
6748 
6749       PushDefUseChildren(I, Worklist);
6750     }
6751 
6752     LoopPropertiesCache.erase(CurrL);
6753     // Forget all contained loops too, to avoid dangling entries in the
6754     // ValuesAtScopes map.
6755     LoopWorklist.append(CurrL->begin(), CurrL->end());
6756   }
6757 }
6758 
6759 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6760   while (Loop *Parent = L->getParentLoop())
6761     L = Parent;
6762   forgetLoop(L);
6763 }
6764 
6765 void ScalarEvolution::forgetValue(Value *V) {
6766   Instruction *I = dyn_cast<Instruction>(V);
6767   if (!I) return;
6768 
6769   // Drop information about expressions based on loop-header PHIs.
6770   SmallVector<Instruction *, 16> Worklist;
6771   Worklist.push_back(I);
6772 
6773   SmallPtrSet<Instruction *, 8> Visited;
6774   while (!Worklist.empty()) {
6775     I = Worklist.pop_back_val();
6776     if (!Visited.insert(I).second)
6777       continue;
6778 
6779     ValueExprMapType::iterator It =
6780       ValueExprMap.find_as(static_cast<Value *>(I));
6781     if (It != ValueExprMap.end()) {
6782       eraseValueFromMap(It->first);
6783       forgetMemoizedResults(It->second);
6784       if (PHINode *PN = dyn_cast<PHINode>(I))
6785         ConstantEvolutionLoopExitValue.erase(PN);
6786     }
6787 
6788     PushDefUseChildren(I, Worklist);
6789   }
6790 }
6791 
6792 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6793   LoopDispositions.clear();
6794 }
6795 
6796 /// Get the exact loop backedge taken count considering all loop exits. A
6797 /// computable result can only be returned for loops with all exiting blocks
6798 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6799 /// is never skipped. This is a valid assumption as long as the loop exits via
6800 /// that test. For precise results, it is the caller's responsibility to specify
6801 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6802 const SCEV *
6803 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6804                                              SCEVUnionPredicate *Preds) const {
6805   // If any exits were not computable, the loop is not computable.
6806   if (!isComplete() || ExitNotTaken.empty())
6807     return SE->getCouldNotCompute();
6808 
6809   const BasicBlock *Latch = L->getLoopLatch();
6810   // All exiting blocks we have collected must dominate the only backedge.
6811   if (!Latch)
6812     return SE->getCouldNotCompute();
6813 
6814   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6815   // count is simply a minimum out of all these calculated exit counts.
6816   SmallVector<const SCEV *, 2> Ops;
6817   for (auto &ENT : ExitNotTaken) {
6818     const SCEV *BECount = ENT.ExactNotTaken;
6819     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6820     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6821            "We should only have known counts for exiting blocks that dominate "
6822            "latch!");
6823 
6824     Ops.push_back(BECount);
6825 
6826     if (Preds && !ENT.hasAlwaysTruePredicate())
6827       Preds->add(ENT.Predicate.get());
6828 
6829     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6830            "Predicate should be always true!");
6831   }
6832 
6833   return SE->getUMinFromMismatchedTypes(Ops);
6834 }
6835 
6836 /// Get the exact not taken count for this loop exit.
6837 const SCEV *
6838 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
6839                                              ScalarEvolution *SE) const {
6840   for (auto &ENT : ExitNotTaken)
6841     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6842       return ENT.ExactNotTaken;
6843 
6844   return SE->getCouldNotCompute();
6845 }
6846 
6847 const SCEV *
6848 ScalarEvolution::BackedgeTakenInfo::getMax(const BasicBlock *ExitingBlock,
6849                                            ScalarEvolution *SE) const {
6850   for (auto &ENT : ExitNotTaken)
6851     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6852       return ENT.MaxNotTaken;
6853 
6854   return SE->getCouldNotCompute();
6855 }
6856 
6857 /// getMax - Get the max backedge taken count for the loop.
6858 const SCEV *
6859 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6860   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6861     return !ENT.hasAlwaysTruePredicate();
6862   };
6863 
6864   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6865     return SE->getCouldNotCompute();
6866 
6867   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6868          "No point in having a non-constant max backedge taken count!");
6869   return getMax();
6870 }
6871 
6872 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6873   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6874     return !ENT.hasAlwaysTruePredicate();
6875   };
6876   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6877 }
6878 
6879 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6880                                                     ScalarEvolution *SE) const {
6881   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6882       SE->hasOperand(getMax(), S))
6883     return true;
6884 
6885   for (auto &ENT : ExitNotTaken)
6886     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6887         SE->hasOperand(ENT.ExactNotTaken, S))
6888       return true;
6889 
6890   return false;
6891 }
6892 
6893 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6894     : ExactNotTaken(E), MaxNotTaken(E) {
6895   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6896           isa<SCEVConstant>(MaxNotTaken)) &&
6897          "No point in having a non-constant max backedge taken count!");
6898 }
6899 
6900 ScalarEvolution::ExitLimit::ExitLimit(
6901     const SCEV *E, const SCEV *M, bool MaxOrZero,
6902     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6903     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6904   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6905           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6906          "Exact is not allowed to be less precise than Max");
6907   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6908           isa<SCEVConstant>(MaxNotTaken)) &&
6909          "No point in having a non-constant max backedge taken count!");
6910   for (auto *PredSet : PredSetList)
6911     for (auto *P : *PredSet)
6912       addPredicate(P);
6913 }
6914 
6915 ScalarEvolution::ExitLimit::ExitLimit(
6916     const SCEV *E, const SCEV *M, bool MaxOrZero,
6917     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6918     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6919   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6920           isa<SCEVConstant>(MaxNotTaken)) &&
6921          "No point in having a non-constant max backedge taken count!");
6922 }
6923 
6924 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6925                                       bool MaxOrZero)
6926     : ExitLimit(E, M, MaxOrZero, None) {
6927   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6928           isa<SCEVConstant>(MaxNotTaken)) &&
6929          "No point in having a non-constant max backedge taken count!");
6930 }
6931 
6932 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6933 /// computable exit into a persistent ExitNotTakenInfo array.
6934 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6935     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6936         ExitCounts,
6937     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6938     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6939   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6940 
6941   ExitNotTaken.reserve(ExitCounts.size());
6942   std::transform(
6943       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6944       [&](const EdgeExitInfo &EEI) {
6945         BasicBlock *ExitBB = EEI.first;
6946         const ExitLimit &EL = EEI.second;
6947         if (EL.Predicates.empty())
6948           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6949                                   nullptr);
6950 
6951         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6952         for (auto *Pred : EL.Predicates)
6953           Predicate->add(Pred);
6954 
6955         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6956                                 std::move(Predicate));
6957       });
6958   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6959          "No point in having a non-constant max backedge taken count!");
6960 }
6961 
6962 /// Invalidate this result and free the ExitNotTakenInfo array.
6963 void ScalarEvolution::BackedgeTakenInfo::clear() {
6964   ExitNotTaken.clear();
6965 }
6966 
6967 /// Compute the number of times the backedge of the specified loop will execute.
6968 ScalarEvolution::BackedgeTakenInfo
6969 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6970                                            bool AllowPredicates) {
6971   SmallVector<BasicBlock *, 8> ExitingBlocks;
6972   L->getExitingBlocks(ExitingBlocks);
6973 
6974   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6975 
6976   SmallVector<EdgeExitInfo, 4> ExitCounts;
6977   bool CouldComputeBECount = true;
6978   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6979   const SCEV *MustExitMaxBECount = nullptr;
6980   const SCEV *MayExitMaxBECount = nullptr;
6981   bool MustExitMaxOrZero = false;
6982 
6983   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6984   // and compute maxBECount.
6985   // Do a union of all the predicates here.
6986   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6987     BasicBlock *ExitBB = ExitingBlocks[i];
6988 
6989     // We canonicalize untaken exits to br (constant), ignore them so that
6990     // proving an exit untaken doesn't negatively impact our ability to reason
6991     // about the loop as whole.
6992     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6993       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6994         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6995         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6996           continue;
6997       }
6998 
6999     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7000 
7001     assert((AllowPredicates || EL.Predicates.empty()) &&
7002            "Predicated exit limit when predicates are not allowed!");
7003 
7004     // 1. For each exit that can be computed, add an entry to ExitCounts.
7005     // CouldComputeBECount is true only if all exits can be computed.
7006     if (EL.ExactNotTaken == getCouldNotCompute())
7007       // We couldn't compute an exact value for this exit, so
7008       // we won't be able to compute an exact value for the loop.
7009       CouldComputeBECount = false;
7010     else
7011       ExitCounts.emplace_back(ExitBB, EL);
7012 
7013     // 2. Derive the loop's MaxBECount from each exit's max number of
7014     // non-exiting iterations. Partition the loop exits into two kinds:
7015     // LoopMustExits and LoopMayExits.
7016     //
7017     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7018     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7019     // MaxBECount is the minimum EL.MaxNotTaken of computable
7020     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7021     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7022     // computable EL.MaxNotTaken.
7023     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7024         DT.dominates(ExitBB, Latch)) {
7025       if (!MustExitMaxBECount) {
7026         MustExitMaxBECount = EL.MaxNotTaken;
7027         MustExitMaxOrZero = EL.MaxOrZero;
7028       } else {
7029         MustExitMaxBECount =
7030             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7031       }
7032     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7033       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7034         MayExitMaxBECount = EL.MaxNotTaken;
7035       else {
7036         MayExitMaxBECount =
7037             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7038       }
7039     }
7040   }
7041   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7042     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7043   // The loop backedge will be taken the maximum or zero times if there's
7044   // a single exit that must be taken the maximum or zero times.
7045   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7046   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7047                            MaxBECount, MaxOrZero);
7048 }
7049 
7050 ScalarEvolution::ExitLimit
7051 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7052                                       bool AllowPredicates) {
7053   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7054   // If our exiting block does not dominate the latch, then its connection with
7055   // loop's exit limit may be far from trivial.
7056   const BasicBlock *Latch = L->getLoopLatch();
7057   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7058     return getCouldNotCompute();
7059 
7060   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7061   Instruction *Term = ExitingBlock->getTerminator();
7062   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7063     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7064     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7065     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7066            "It should have one successor in loop and one exit block!");
7067     // Proceed to the next level to examine the exit condition expression.
7068     return computeExitLimitFromCond(
7069         L, BI->getCondition(), ExitIfTrue,
7070         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7071   }
7072 
7073   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7074     // For switch, make sure that there is a single exit from the loop.
7075     BasicBlock *Exit = nullptr;
7076     for (auto *SBB : successors(ExitingBlock))
7077       if (!L->contains(SBB)) {
7078         if (Exit) // Multiple exit successors.
7079           return getCouldNotCompute();
7080         Exit = SBB;
7081       }
7082     assert(Exit && "Exiting block must have at least one exit");
7083     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7084                                                 /*ControlsExit=*/IsOnlyExit);
7085   }
7086 
7087   return getCouldNotCompute();
7088 }
7089 
7090 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7091     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7092     bool ControlsExit, bool AllowPredicates) {
7093   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7094   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7095                                         ControlsExit, AllowPredicates);
7096 }
7097 
7098 Optional<ScalarEvolution::ExitLimit>
7099 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7100                                       bool ExitIfTrue, bool ControlsExit,
7101                                       bool AllowPredicates) {
7102   (void)this->L;
7103   (void)this->ExitIfTrue;
7104   (void)this->AllowPredicates;
7105 
7106   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7107          this->AllowPredicates == AllowPredicates &&
7108          "Variance in assumed invariant key components!");
7109   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7110   if (Itr == TripCountMap.end())
7111     return None;
7112   return Itr->second;
7113 }
7114 
7115 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7116                                              bool ExitIfTrue,
7117                                              bool ControlsExit,
7118                                              bool AllowPredicates,
7119                                              const ExitLimit &EL) {
7120   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7121          this->AllowPredicates == AllowPredicates &&
7122          "Variance in assumed invariant key components!");
7123 
7124   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7125   assert(InsertResult.second && "Expected successful insertion!");
7126   (void)InsertResult;
7127   (void)ExitIfTrue;
7128 }
7129 
7130 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7131     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7132     bool ControlsExit, bool AllowPredicates) {
7133 
7134   if (auto MaybeEL =
7135           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7136     return *MaybeEL;
7137 
7138   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7139                                               ControlsExit, AllowPredicates);
7140   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7141   return EL;
7142 }
7143 
7144 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7145     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7146     bool ControlsExit, bool AllowPredicates) {
7147   // Check if the controlling expression for this loop is an And or Or.
7148   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7149     if (BO->getOpcode() == Instruction::And) {
7150       // Recurse on the operands of the and.
7151       bool EitherMayExit = !ExitIfTrue;
7152       ExitLimit EL0 = computeExitLimitFromCondCached(
7153           Cache, L, BO->getOperand(0), ExitIfTrue,
7154           ControlsExit && !EitherMayExit, AllowPredicates);
7155       ExitLimit EL1 = computeExitLimitFromCondCached(
7156           Cache, L, BO->getOperand(1), ExitIfTrue,
7157           ControlsExit && !EitherMayExit, AllowPredicates);
7158       // Be robust against unsimplified IR for the form "and i1 X, true"
7159       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7160         return CI->isOne() ? EL0 : EL1;
7161       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7162         return CI->isOne() ? EL1 : EL0;
7163       const SCEV *BECount = getCouldNotCompute();
7164       const SCEV *MaxBECount = getCouldNotCompute();
7165       if (EitherMayExit) {
7166         // Both conditions must be true for the loop to continue executing.
7167         // Choose the less conservative count.
7168         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7169             EL1.ExactNotTaken == getCouldNotCompute())
7170           BECount = getCouldNotCompute();
7171         else
7172           BECount =
7173               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7174         if (EL0.MaxNotTaken == getCouldNotCompute())
7175           MaxBECount = EL1.MaxNotTaken;
7176         else if (EL1.MaxNotTaken == getCouldNotCompute())
7177           MaxBECount = EL0.MaxNotTaken;
7178         else
7179           MaxBECount =
7180               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7181       } else {
7182         // Both conditions must be true at the same time for the loop to exit.
7183         // For now, be conservative.
7184         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7185           MaxBECount = EL0.MaxNotTaken;
7186         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7187           BECount = EL0.ExactNotTaken;
7188       }
7189 
7190       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7191       // to be more aggressive when computing BECount than when computing
7192       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7193       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7194       // to not.
7195       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7196           !isa<SCEVCouldNotCompute>(BECount))
7197         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7198 
7199       return ExitLimit(BECount, MaxBECount, false,
7200                        {&EL0.Predicates, &EL1.Predicates});
7201     }
7202     if (BO->getOpcode() == Instruction::Or) {
7203       // Recurse on the operands of the or.
7204       bool EitherMayExit = ExitIfTrue;
7205       ExitLimit EL0 = computeExitLimitFromCondCached(
7206           Cache, L, BO->getOperand(0), ExitIfTrue,
7207           ControlsExit && !EitherMayExit, AllowPredicates);
7208       ExitLimit EL1 = computeExitLimitFromCondCached(
7209           Cache, L, BO->getOperand(1), ExitIfTrue,
7210           ControlsExit && !EitherMayExit, AllowPredicates);
7211       // Be robust against unsimplified IR for the form "or i1 X, true"
7212       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7213         return CI->isZero() ? EL0 : EL1;
7214       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7215         return CI->isZero() ? EL1 : EL0;
7216       const SCEV *BECount = getCouldNotCompute();
7217       const SCEV *MaxBECount = getCouldNotCompute();
7218       if (EitherMayExit) {
7219         // Both conditions must be false for the loop to continue executing.
7220         // Choose the less conservative count.
7221         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7222             EL1.ExactNotTaken == getCouldNotCompute())
7223           BECount = getCouldNotCompute();
7224         else
7225           BECount =
7226               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7227         if (EL0.MaxNotTaken == getCouldNotCompute())
7228           MaxBECount = EL1.MaxNotTaken;
7229         else if (EL1.MaxNotTaken == getCouldNotCompute())
7230           MaxBECount = EL0.MaxNotTaken;
7231         else
7232           MaxBECount =
7233               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7234       } else {
7235         // Both conditions must be false at the same time for the loop to exit.
7236         // For now, be conservative.
7237         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7238           MaxBECount = EL0.MaxNotTaken;
7239         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7240           BECount = EL0.ExactNotTaken;
7241       }
7242       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7243       // to be more aggressive when computing BECount than when computing
7244       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7245       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7246       // to not.
7247       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7248           !isa<SCEVCouldNotCompute>(BECount))
7249         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7250 
7251       return ExitLimit(BECount, MaxBECount, false,
7252                        {&EL0.Predicates, &EL1.Predicates});
7253     }
7254   }
7255 
7256   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7257   // Proceed to the next level to examine the icmp.
7258   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7259     ExitLimit EL =
7260         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7261     if (EL.hasFullInfo() || !AllowPredicates)
7262       return EL;
7263 
7264     // Try again, but use SCEV predicates this time.
7265     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7266                                     /*AllowPredicates=*/true);
7267   }
7268 
7269   // Check for a constant condition. These are normally stripped out by
7270   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7271   // preserve the CFG and is temporarily leaving constant conditions
7272   // in place.
7273   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7274     if (ExitIfTrue == !CI->getZExtValue())
7275       // The backedge is always taken.
7276       return getCouldNotCompute();
7277     else
7278       // The backedge is never taken.
7279       return getZero(CI->getType());
7280   }
7281 
7282   // If it's not an integer or pointer comparison then compute it the hard way.
7283   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7284 }
7285 
7286 ScalarEvolution::ExitLimit
7287 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7288                                           ICmpInst *ExitCond,
7289                                           bool ExitIfTrue,
7290                                           bool ControlsExit,
7291                                           bool AllowPredicates) {
7292   // If the condition was exit on true, convert the condition to exit on false
7293   ICmpInst::Predicate Pred;
7294   if (!ExitIfTrue)
7295     Pred = ExitCond->getPredicate();
7296   else
7297     Pred = ExitCond->getInversePredicate();
7298   const ICmpInst::Predicate OriginalPred = Pred;
7299 
7300   // Handle common loops like: for (X = "string"; *X; ++X)
7301   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7302     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7303       ExitLimit ItCnt =
7304         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7305       if (ItCnt.hasAnyInfo())
7306         return ItCnt;
7307     }
7308 
7309   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7310   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7311 
7312   // Try to evaluate any dependencies out of the loop.
7313   LHS = getSCEVAtScope(LHS, L);
7314   RHS = getSCEVAtScope(RHS, L);
7315 
7316   // At this point, we would like to compute how many iterations of the
7317   // loop the predicate will return true for these inputs.
7318   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7319     // If there is a loop-invariant, force it into the RHS.
7320     std::swap(LHS, RHS);
7321     Pred = ICmpInst::getSwappedPredicate(Pred);
7322   }
7323 
7324   // Simplify the operands before analyzing them.
7325   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7326 
7327   // If we have a comparison of a chrec against a constant, try to use value
7328   // ranges to answer this query.
7329   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7330     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7331       if (AddRec->getLoop() == L) {
7332         // Form the constant range.
7333         ConstantRange CompRange =
7334             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7335 
7336         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7337         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7338       }
7339 
7340   switch (Pred) {
7341   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7342     // Convert to: while (X-Y != 0)
7343     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7344                                 AllowPredicates);
7345     if (EL.hasAnyInfo()) return EL;
7346     break;
7347   }
7348   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7349     // Convert to: while (X-Y == 0)
7350     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7351     if (EL.hasAnyInfo()) return EL;
7352     break;
7353   }
7354   case ICmpInst::ICMP_SLT:
7355   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7356     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7357     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7358                                     AllowPredicates);
7359     if (EL.hasAnyInfo()) return EL;
7360     break;
7361   }
7362   case ICmpInst::ICMP_SGT:
7363   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7364     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7365     ExitLimit EL =
7366         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7367                             AllowPredicates);
7368     if (EL.hasAnyInfo()) return EL;
7369     break;
7370   }
7371   default:
7372     break;
7373   }
7374 
7375   auto *ExhaustiveCount =
7376       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7377 
7378   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7379     return ExhaustiveCount;
7380 
7381   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7382                                       ExitCond->getOperand(1), L, OriginalPred);
7383 }
7384 
7385 ScalarEvolution::ExitLimit
7386 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7387                                                       SwitchInst *Switch,
7388                                                       BasicBlock *ExitingBlock,
7389                                                       bool ControlsExit) {
7390   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7391 
7392   // Give up if the exit is the default dest of a switch.
7393   if (Switch->getDefaultDest() == ExitingBlock)
7394     return getCouldNotCompute();
7395 
7396   assert(L->contains(Switch->getDefaultDest()) &&
7397          "Default case must not exit the loop!");
7398   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7399   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7400 
7401   // while (X != Y) --> while (X-Y != 0)
7402   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7403   if (EL.hasAnyInfo())
7404     return EL;
7405 
7406   return getCouldNotCompute();
7407 }
7408 
7409 static ConstantInt *
7410 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7411                                 ScalarEvolution &SE) {
7412   const SCEV *InVal = SE.getConstant(C);
7413   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7414   assert(isa<SCEVConstant>(Val) &&
7415          "Evaluation of SCEV at constant didn't fold correctly?");
7416   return cast<SCEVConstant>(Val)->getValue();
7417 }
7418 
7419 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7420 /// compute the backedge execution count.
7421 ScalarEvolution::ExitLimit
7422 ScalarEvolution::computeLoadConstantCompareExitLimit(
7423   LoadInst *LI,
7424   Constant *RHS,
7425   const Loop *L,
7426   ICmpInst::Predicate predicate) {
7427   if (LI->isVolatile()) return getCouldNotCompute();
7428 
7429   // Check to see if the loaded pointer is a getelementptr of a global.
7430   // TODO: Use SCEV instead of manually grubbing with GEPs.
7431   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7432   if (!GEP) return getCouldNotCompute();
7433 
7434   // Make sure that it is really a constant global we are gepping, with an
7435   // initializer, and make sure the first IDX is really 0.
7436   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7437   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7438       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7439       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7440     return getCouldNotCompute();
7441 
7442   // Okay, we allow one non-constant index into the GEP instruction.
7443   Value *VarIdx = nullptr;
7444   std::vector<Constant*> Indexes;
7445   unsigned VarIdxNum = 0;
7446   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7447     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7448       Indexes.push_back(CI);
7449     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7450       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7451       VarIdx = GEP->getOperand(i);
7452       VarIdxNum = i-2;
7453       Indexes.push_back(nullptr);
7454     }
7455 
7456   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7457   if (!VarIdx)
7458     return getCouldNotCompute();
7459 
7460   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7461   // Check to see if X is a loop variant variable value now.
7462   const SCEV *Idx = getSCEV(VarIdx);
7463   Idx = getSCEVAtScope(Idx, L);
7464 
7465   // We can only recognize very limited forms of loop index expressions, in
7466   // particular, only affine AddRec's like {C1,+,C2}.
7467   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7468   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7469       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7470       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7471     return getCouldNotCompute();
7472 
7473   unsigned MaxSteps = MaxBruteForceIterations;
7474   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7475     ConstantInt *ItCst = ConstantInt::get(
7476                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7477     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7478 
7479     // Form the GEP offset.
7480     Indexes[VarIdxNum] = Val;
7481 
7482     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7483                                                          Indexes);
7484     if (!Result) break;  // Cannot compute!
7485 
7486     // Evaluate the condition for this iteration.
7487     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7488     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7489     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7490       ++NumArrayLenItCounts;
7491       return getConstant(ItCst);   // Found terminating iteration!
7492     }
7493   }
7494   return getCouldNotCompute();
7495 }
7496 
7497 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7498     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7499   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7500   if (!RHS)
7501     return getCouldNotCompute();
7502 
7503   const BasicBlock *Latch = L->getLoopLatch();
7504   if (!Latch)
7505     return getCouldNotCompute();
7506 
7507   const BasicBlock *Predecessor = L->getLoopPredecessor();
7508   if (!Predecessor)
7509     return getCouldNotCompute();
7510 
7511   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7512   // Return LHS in OutLHS and shift_opt in OutOpCode.
7513   auto MatchPositiveShift =
7514       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7515 
7516     using namespace PatternMatch;
7517 
7518     ConstantInt *ShiftAmt;
7519     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7520       OutOpCode = Instruction::LShr;
7521     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7522       OutOpCode = Instruction::AShr;
7523     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7524       OutOpCode = Instruction::Shl;
7525     else
7526       return false;
7527 
7528     return ShiftAmt->getValue().isStrictlyPositive();
7529   };
7530 
7531   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7532   //
7533   // loop:
7534   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7535   //   %iv.shifted = lshr i32 %iv, <positive constant>
7536   //
7537   // Return true on a successful match.  Return the corresponding PHI node (%iv
7538   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7539   auto MatchShiftRecurrence =
7540       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7541     Optional<Instruction::BinaryOps> PostShiftOpCode;
7542 
7543     {
7544       Instruction::BinaryOps OpC;
7545       Value *V;
7546 
7547       // If we encounter a shift instruction, "peel off" the shift operation,
7548       // and remember that we did so.  Later when we inspect %iv's backedge
7549       // value, we will make sure that the backedge value uses the same
7550       // operation.
7551       //
7552       // Note: the peeled shift operation does not have to be the same
7553       // instruction as the one feeding into the PHI's backedge value.  We only
7554       // really care about it being the same *kind* of shift instruction --
7555       // that's all that is required for our later inferences to hold.
7556       if (MatchPositiveShift(LHS, V, OpC)) {
7557         PostShiftOpCode = OpC;
7558         LHS = V;
7559       }
7560     }
7561 
7562     PNOut = dyn_cast<PHINode>(LHS);
7563     if (!PNOut || PNOut->getParent() != L->getHeader())
7564       return false;
7565 
7566     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7567     Value *OpLHS;
7568 
7569     return
7570         // The backedge value for the PHI node must be a shift by a positive
7571         // amount
7572         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7573 
7574         // of the PHI node itself
7575         OpLHS == PNOut &&
7576 
7577         // and the kind of shift should be match the kind of shift we peeled
7578         // off, if any.
7579         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7580   };
7581 
7582   PHINode *PN;
7583   Instruction::BinaryOps OpCode;
7584   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7585     return getCouldNotCompute();
7586 
7587   const DataLayout &DL = getDataLayout();
7588 
7589   // The key rationale for this optimization is that for some kinds of shift
7590   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7591   // within a finite number of iterations.  If the condition guarding the
7592   // backedge (in the sense that the backedge is taken if the condition is true)
7593   // is false for the value the shift recurrence stabilizes to, then we know
7594   // that the backedge is taken only a finite number of times.
7595 
7596   ConstantInt *StableValue = nullptr;
7597   switch (OpCode) {
7598   default:
7599     llvm_unreachable("Impossible case!");
7600 
7601   case Instruction::AShr: {
7602     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7603     // bitwidth(K) iterations.
7604     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7605     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7606                                        Predecessor->getTerminator(), &DT);
7607     auto *Ty = cast<IntegerType>(RHS->getType());
7608     if (Known.isNonNegative())
7609       StableValue = ConstantInt::get(Ty, 0);
7610     else if (Known.isNegative())
7611       StableValue = ConstantInt::get(Ty, -1, true);
7612     else
7613       return getCouldNotCompute();
7614 
7615     break;
7616   }
7617   case Instruction::LShr:
7618   case Instruction::Shl:
7619     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7620     // stabilize to 0 in at most bitwidth(K) iterations.
7621     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7622     break;
7623   }
7624 
7625   auto *Result =
7626       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7627   assert(Result->getType()->isIntegerTy(1) &&
7628          "Otherwise cannot be an operand to a branch instruction");
7629 
7630   if (Result->isZeroValue()) {
7631     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7632     const SCEV *UpperBound =
7633         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7634     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7635   }
7636 
7637   return getCouldNotCompute();
7638 }
7639 
7640 /// Return true if we can constant fold an instruction of the specified type,
7641 /// assuming that all operands were constants.
7642 static bool CanConstantFold(const Instruction *I) {
7643   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7644       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7645       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7646     return true;
7647 
7648   if (const CallInst *CI = dyn_cast<CallInst>(I))
7649     if (const Function *F = CI->getCalledFunction())
7650       return canConstantFoldCallTo(CI, F);
7651   return false;
7652 }
7653 
7654 /// Determine whether this instruction can constant evolve within this loop
7655 /// assuming its operands can all constant evolve.
7656 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7657   // An instruction outside of the loop can't be derived from a loop PHI.
7658   if (!L->contains(I)) return false;
7659 
7660   if (isa<PHINode>(I)) {
7661     // We don't currently keep track of the control flow needed to evaluate
7662     // PHIs, so we cannot handle PHIs inside of loops.
7663     return L->getHeader() == I->getParent();
7664   }
7665 
7666   // If we won't be able to constant fold this expression even if the operands
7667   // are constants, bail early.
7668   return CanConstantFold(I);
7669 }
7670 
7671 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7672 /// recursing through each instruction operand until reaching a loop header phi.
7673 static PHINode *
7674 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7675                                DenseMap<Instruction *, PHINode *> &PHIMap,
7676                                unsigned Depth) {
7677   if (Depth > MaxConstantEvolvingDepth)
7678     return nullptr;
7679 
7680   // Otherwise, we can evaluate this instruction if all of its operands are
7681   // constant or derived from a PHI node themselves.
7682   PHINode *PHI = nullptr;
7683   for (Value *Op : UseInst->operands()) {
7684     if (isa<Constant>(Op)) continue;
7685 
7686     Instruction *OpInst = dyn_cast<Instruction>(Op);
7687     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7688 
7689     PHINode *P = dyn_cast<PHINode>(OpInst);
7690     if (!P)
7691       // If this operand is already visited, reuse the prior result.
7692       // We may have P != PHI if this is the deepest point at which the
7693       // inconsistent paths meet.
7694       P = PHIMap.lookup(OpInst);
7695     if (!P) {
7696       // Recurse and memoize the results, whether a phi is found or not.
7697       // This recursive call invalidates pointers into PHIMap.
7698       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7699       PHIMap[OpInst] = P;
7700     }
7701     if (!P)
7702       return nullptr;  // Not evolving from PHI
7703     if (PHI && PHI != P)
7704       return nullptr;  // Evolving from multiple different PHIs.
7705     PHI = P;
7706   }
7707   // This is a expression evolving from a constant PHI!
7708   return PHI;
7709 }
7710 
7711 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7712 /// in the loop that V is derived from.  We allow arbitrary operations along the
7713 /// way, but the operands of an operation must either be constants or a value
7714 /// derived from a constant PHI.  If this expression does not fit with these
7715 /// constraints, return null.
7716 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7717   Instruction *I = dyn_cast<Instruction>(V);
7718   if (!I || !canConstantEvolve(I, L)) return nullptr;
7719 
7720   if (PHINode *PN = dyn_cast<PHINode>(I))
7721     return PN;
7722 
7723   // Record non-constant instructions contained by the loop.
7724   DenseMap<Instruction *, PHINode *> PHIMap;
7725   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7726 }
7727 
7728 /// EvaluateExpression - Given an expression that passes the
7729 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7730 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7731 /// reason, return null.
7732 static Constant *EvaluateExpression(Value *V, const Loop *L,
7733                                     DenseMap<Instruction *, Constant *> &Vals,
7734                                     const DataLayout &DL,
7735                                     const TargetLibraryInfo *TLI) {
7736   // Convenient constant check, but redundant for recursive calls.
7737   if (Constant *C = dyn_cast<Constant>(V)) return C;
7738   Instruction *I = dyn_cast<Instruction>(V);
7739   if (!I) return nullptr;
7740 
7741   if (Constant *C = Vals.lookup(I)) return C;
7742 
7743   // An instruction inside the loop depends on a value outside the loop that we
7744   // weren't given a mapping for, or a value such as a call inside the loop.
7745   if (!canConstantEvolve(I, L)) return nullptr;
7746 
7747   // An unmapped PHI can be due to a branch or another loop inside this loop,
7748   // or due to this not being the initial iteration through a loop where we
7749   // couldn't compute the evolution of this particular PHI last time.
7750   if (isa<PHINode>(I)) return nullptr;
7751 
7752   std::vector<Constant*> Operands(I->getNumOperands());
7753 
7754   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7755     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7756     if (!Operand) {
7757       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7758       if (!Operands[i]) return nullptr;
7759       continue;
7760     }
7761     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7762     Vals[Operand] = C;
7763     if (!C) return nullptr;
7764     Operands[i] = C;
7765   }
7766 
7767   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7768     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7769                                            Operands[1], DL, TLI);
7770   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7771     if (!LI->isVolatile())
7772       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7773   }
7774   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7775 }
7776 
7777 
7778 // If every incoming value to PN except the one for BB is a specific Constant,
7779 // return that, else return nullptr.
7780 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7781   Constant *IncomingVal = nullptr;
7782 
7783   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7784     if (PN->getIncomingBlock(i) == BB)
7785       continue;
7786 
7787     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7788     if (!CurrentVal)
7789       return nullptr;
7790 
7791     if (IncomingVal != CurrentVal) {
7792       if (IncomingVal)
7793         return nullptr;
7794       IncomingVal = CurrentVal;
7795     }
7796   }
7797 
7798   return IncomingVal;
7799 }
7800 
7801 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7802 /// in the header of its containing loop, we know the loop executes a
7803 /// constant number of times, and the PHI node is just a recurrence
7804 /// involving constants, fold it.
7805 Constant *
7806 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7807                                                    const APInt &BEs,
7808                                                    const Loop *L) {
7809   auto I = ConstantEvolutionLoopExitValue.find(PN);
7810   if (I != ConstantEvolutionLoopExitValue.end())
7811     return I->second;
7812 
7813   if (BEs.ugt(MaxBruteForceIterations))
7814     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7815 
7816   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7817 
7818   DenseMap<Instruction *, Constant *> CurrentIterVals;
7819   BasicBlock *Header = L->getHeader();
7820   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7821 
7822   BasicBlock *Latch = L->getLoopLatch();
7823   if (!Latch)
7824     return nullptr;
7825 
7826   for (PHINode &PHI : Header->phis()) {
7827     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7828       CurrentIterVals[&PHI] = StartCST;
7829   }
7830   if (!CurrentIterVals.count(PN))
7831     return RetVal = nullptr;
7832 
7833   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7834 
7835   // Execute the loop symbolically to determine the exit value.
7836   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7837          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7838 
7839   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7840   unsigned IterationNum = 0;
7841   const DataLayout &DL = getDataLayout();
7842   for (; ; ++IterationNum) {
7843     if (IterationNum == NumIterations)
7844       return RetVal = CurrentIterVals[PN];  // Got exit value!
7845 
7846     // Compute the value of the PHIs for the next iteration.
7847     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7848     DenseMap<Instruction *, Constant *> NextIterVals;
7849     Constant *NextPHI =
7850         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7851     if (!NextPHI)
7852       return nullptr;        // Couldn't evaluate!
7853     NextIterVals[PN] = NextPHI;
7854 
7855     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7856 
7857     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7858     // cease to be able to evaluate one of them or if they stop evolving,
7859     // because that doesn't necessarily prevent us from computing PN.
7860     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7861     for (const auto &I : CurrentIterVals) {
7862       PHINode *PHI = dyn_cast<PHINode>(I.first);
7863       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7864       PHIsToCompute.emplace_back(PHI, I.second);
7865     }
7866     // We use two distinct loops because EvaluateExpression may invalidate any
7867     // iterators into CurrentIterVals.
7868     for (const auto &I : PHIsToCompute) {
7869       PHINode *PHI = I.first;
7870       Constant *&NextPHI = NextIterVals[PHI];
7871       if (!NextPHI) {   // Not already computed.
7872         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7873         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7874       }
7875       if (NextPHI != I.second)
7876         StoppedEvolving = false;
7877     }
7878 
7879     // If all entries in CurrentIterVals == NextIterVals then we can stop
7880     // iterating, the loop can't continue to change.
7881     if (StoppedEvolving)
7882       return RetVal = CurrentIterVals[PN];
7883 
7884     CurrentIterVals.swap(NextIterVals);
7885   }
7886 }
7887 
7888 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7889                                                           Value *Cond,
7890                                                           bool ExitWhen) {
7891   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7892   if (!PN) return getCouldNotCompute();
7893 
7894   // If the loop is canonicalized, the PHI will have exactly two entries.
7895   // That's the only form we support here.
7896   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7897 
7898   DenseMap<Instruction *, Constant *> CurrentIterVals;
7899   BasicBlock *Header = L->getHeader();
7900   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7901 
7902   BasicBlock *Latch = L->getLoopLatch();
7903   assert(Latch && "Should follow from NumIncomingValues == 2!");
7904 
7905   for (PHINode &PHI : Header->phis()) {
7906     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7907       CurrentIterVals[&PHI] = StartCST;
7908   }
7909   if (!CurrentIterVals.count(PN))
7910     return getCouldNotCompute();
7911 
7912   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7913   // the loop symbolically to determine when the condition gets a value of
7914   // "ExitWhen".
7915   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7916   const DataLayout &DL = getDataLayout();
7917   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7918     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7919         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7920 
7921     // Couldn't symbolically evaluate.
7922     if (!CondVal) return getCouldNotCompute();
7923 
7924     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7925       ++NumBruteForceTripCountsComputed;
7926       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7927     }
7928 
7929     // Update all the PHI nodes for the next iteration.
7930     DenseMap<Instruction *, Constant *> NextIterVals;
7931 
7932     // Create a list of which PHIs we need to compute. We want to do this before
7933     // calling EvaluateExpression on them because that may invalidate iterators
7934     // into CurrentIterVals.
7935     SmallVector<PHINode *, 8> PHIsToCompute;
7936     for (const auto &I : CurrentIterVals) {
7937       PHINode *PHI = dyn_cast<PHINode>(I.first);
7938       if (!PHI || PHI->getParent() != Header) continue;
7939       PHIsToCompute.push_back(PHI);
7940     }
7941     for (PHINode *PHI : PHIsToCompute) {
7942       Constant *&NextPHI = NextIterVals[PHI];
7943       if (NextPHI) continue;    // Already computed!
7944 
7945       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7946       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7947     }
7948     CurrentIterVals.swap(NextIterVals);
7949   }
7950 
7951   // Too many iterations were needed to evaluate.
7952   return getCouldNotCompute();
7953 }
7954 
7955 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7956   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7957       ValuesAtScopes[V];
7958   // Check to see if we've folded this expression at this loop before.
7959   for (auto &LS : Values)
7960     if (LS.first == L)
7961       return LS.second ? LS.second : V;
7962 
7963   Values.emplace_back(L, nullptr);
7964 
7965   // Otherwise compute it.
7966   const SCEV *C = computeSCEVAtScope(V, L);
7967   for (auto &LS : reverse(ValuesAtScopes[V]))
7968     if (LS.first == L) {
7969       LS.second = C;
7970       break;
7971     }
7972   return C;
7973 }
7974 
7975 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7976 /// will return Constants for objects which aren't represented by a
7977 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7978 /// Returns NULL if the SCEV isn't representable as a Constant.
7979 static Constant *BuildConstantFromSCEV(const SCEV *V, const DataLayout &DL) {
7980   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7981     case scCouldNotCompute:
7982     case scAddRecExpr:
7983       break;
7984     case scConstant:
7985       return cast<SCEVConstant>(V)->getValue();
7986     case scUnknown:
7987       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7988     case scSignExtend: {
7989       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7990       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand(), DL)) {
7991         if (CastOp->getType()->isPointerTy())
7992           // Note that for SExt, unlike ZExt/Trunc, it is incorrect to just call
7993           // ConstantExpr::getPtrToInt() and be done with it, because PtrToInt
7994           // will zero-extend (otherwise ZExt case wouldn't work). So we need to
7995           // first cast to the same-bitwidth integer, and then SExt it.
7996           CastOp = ConstantExpr::getPtrToInt(
7997               CastOp, DL.getIntPtrType(CastOp->getType()));
7998         // And now, we can actually perform the sign-extension.
7999         return ConstantExpr::getSExt(CastOp, SS->getType());
8000       }
8001       break;
8002     }
8003     case scZeroExtend: {
8004       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8005       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand(), DL)) {
8006         if (!CastOp->getType()->isPointerTy())
8007           return ConstantExpr::getZExt(CastOp, SZ->getType());
8008         return ConstantExpr::getPtrToInt(CastOp, SZ->getType());
8009       }
8010       break;
8011     }
8012     case scTruncate: {
8013       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8014       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand(), DL)) {
8015         if (!CastOp->getType()->isPointerTy())
8016           return ConstantExpr::getTrunc(CastOp, ST->getType());
8017         return ConstantExpr::getPtrToInt(CastOp, ST->getType());
8018       }
8019       break;
8020     }
8021     case scAddExpr: {
8022       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8023       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0), DL)) {
8024         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8025           unsigned AS = PTy->getAddressSpace();
8026           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8027           C = ConstantExpr::getBitCast(C, DestPtrTy);
8028         }
8029         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8030           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i), DL);
8031           if (!C2) return nullptr;
8032 
8033           // First pointer!
8034           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8035             unsigned AS = C2->getType()->getPointerAddressSpace();
8036             std::swap(C, C2);
8037             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8038             // The offsets have been converted to bytes.  We can add bytes to an
8039             // i8* by GEP with the byte count in the first index.
8040             C = ConstantExpr::getBitCast(C, DestPtrTy);
8041           }
8042 
8043           // Don't bother trying to sum two pointers. We probably can't
8044           // statically compute a load that results from it anyway.
8045           if (C2->getType()->isPointerTy())
8046             return nullptr;
8047 
8048           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8049             if (PTy->getElementType()->isStructTy())
8050               C2 = ConstantExpr::getIntegerCast(
8051                   C2, Type::getInt32Ty(C->getContext()), true);
8052             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8053           } else
8054             C = ConstantExpr::getAdd(C, C2);
8055         }
8056         return C;
8057       }
8058       break;
8059     }
8060     case scMulExpr: {
8061       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8062       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0), DL)) {
8063         // Don't bother with pointers at all.
8064         if (C->getType()->isPointerTy()) return nullptr;
8065         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8066           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i), DL);
8067           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8068           C = ConstantExpr::getMul(C, C2);
8069         }
8070         return C;
8071       }
8072       break;
8073     }
8074     case scUDivExpr: {
8075       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8076       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS(), DL))
8077         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS(), DL))
8078           if (LHS->getType() == RHS->getType())
8079             return ConstantExpr::getUDiv(LHS, RHS);
8080       break;
8081     }
8082     case scSMaxExpr:
8083     case scUMaxExpr:
8084     case scSMinExpr:
8085     case scUMinExpr:
8086       break; // TODO: smax, umax, smin, umax.
8087   }
8088   return nullptr;
8089 }
8090 
8091 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8092   if (isa<SCEVConstant>(V)) return V;
8093 
8094   // If this instruction is evolved from a constant-evolving PHI, compute the
8095   // exit value from the loop without using SCEVs.
8096   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8097     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8098       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8099         const Loop *CurrLoop = this->LI[I->getParent()];
8100         // Looking for loop exit value.
8101         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8102             PN->getParent() == CurrLoop->getHeader()) {
8103           // Okay, there is no closed form solution for the PHI node.  Check
8104           // to see if the loop that contains it has a known backedge-taken
8105           // count.  If so, we may be able to force computation of the exit
8106           // value.
8107           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8108           // This trivial case can show up in some degenerate cases where
8109           // the incoming IR has not yet been fully simplified.
8110           if (BackedgeTakenCount->isZero()) {
8111             Value *InitValue = nullptr;
8112             bool MultipleInitValues = false;
8113             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8114               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8115                 if (!InitValue)
8116                   InitValue = PN->getIncomingValue(i);
8117                 else if (InitValue != PN->getIncomingValue(i)) {
8118                   MultipleInitValues = true;
8119                   break;
8120                 }
8121               }
8122             }
8123             if (!MultipleInitValues && InitValue)
8124               return getSCEV(InitValue);
8125           }
8126           // Do we have a loop invariant value flowing around the backedge
8127           // for a loop which must execute the backedge?
8128           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8129               isKnownPositive(BackedgeTakenCount) &&
8130               PN->getNumIncomingValues() == 2) {
8131 
8132             unsigned InLoopPred =
8133                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8134             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8135             if (CurrLoop->isLoopInvariant(BackedgeVal))
8136               return getSCEV(BackedgeVal);
8137           }
8138           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8139             // Okay, we know how many times the containing loop executes.  If
8140             // this is a constant evolving PHI node, get the final value at
8141             // the specified iteration number.
8142             Constant *RV = getConstantEvolutionLoopExitValue(
8143                 PN, BTCC->getAPInt(), CurrLoop);
8144             if (RV) return getSCEV(RV);
8145           }
8146         }
8147 
8148         // If there is a single-input Phi, evaluate it at our scope. If we can
8149         // prove that this replacement does not break LCSSA form, use new value.
8150         if (PN->getNumOperands() == 1) {
8151           const SCEV *Input = getSCEV(PN->getOperand(0));
8152           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8153           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8154           // for the simplest case just support constants.
8155           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8156         }
8157       }
8158 
8159       // Okay, this is an expression that we cannot symbolically evaluate
8160       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8161       // the arguments into constants, and if so, try to constant propagate the
8162       // result.  This is particularly useful for computing loop exit values.
8163       if (CanConstantFold(I)) {
8164         SmallVector<Constant *, 4> Operands;
8165         bool MadeImprovement = false;
8166         for (Value *Op : I->operands()) {
8167           if (Constant *C = dyn_cast<Constant>(Op)) {
8168             Operands.push_back(C);
8169             continue;
8170           }
8171 
8172           // If any of the operands is non-constant and if they are
8173           // non-integer and non-pointer, don't even try to analyze them
8174           // with scev techniques.
8175           if (!isSCEVable(Op->getType()))
8176             return V;
8177 
8178           const SCEV *OrigV = getSCEV(Op);
8179           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8180           MadeImprovement |= OrigV != OpV;
8181 
8182           Constant *C = BuildConstantFromSCEV(OpV, getDataLayout());
8183           if (!C) return V;
8184           if (C->getType() != Op->getType())
8185             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8186                                                               Op->getType(),
8187                                                               false),
8188                                       C, Op->getType());
8189           Operands.push_back(C);
8190         }
8191 
8192         // Check to see if getSCEVAtScope actually made an improvement.
8193         if (MadeImprovement) {
8194           Constant *C = nullptr;
8195           const DataLayout &DL = getDataLayout();
8196           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8197             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8198                                                 Operands[1], DL, &TLI);
8199           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8200             if (!Load->isVolatile())
8201               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8202                                                DL);
8203           } else
8204             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8205           if (!C) return V;
8206           return getSCEV(C);
8207         }
8208       }
8209     }
8210 
8211     // This is some other type of SCEVUnknown, just return it.
8212     return V;
8213   }
8214 
8215   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8216     // Avoid performing the look-up in the common case where the specified
8217     // expression has no loop-variant portions.
8218     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8219       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8220       if (OpAtScope != Comm->getOperand(i)) {
8221         // Okay, at least one of these operands is loop variant but might be
8222         // foldable.  Build a new instance of the folded commutative expression.
8223         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8224                                             Comm->op_begin()+i);
8225         NewOps.push_back(OpAtScope);
8226 
8227         for (++i; i != e; ++i) {
8228           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8229           NewOps.push_back(OpAtScope);
8230         }
8231         if (isa<SCEVAddExpr>(Comm))
8232           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8233         if (isa<SCEVMulExpr>(Comm))
8234           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8235         if (isa<SCEVMinMaxExpr>(Comm))
8236           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8237         llvm_unreachable("Unknown commutative SCEV type!");
8238       }
8239     }
8240     // If we got here, all operands are loop invariant.
8241     return Comm;
8242   }
8243 
8244   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8245     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8246     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8247     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8248       return Div;   // must be loop invariant
8249     return getUDivExpr(LHS, RHS);
8250   }
8251 
8252   // If this is a loop recurrence for a loop that does not contain L, then we
8253   // are dealing with the final value computed by the loop.
8254   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8255     // First, attempt to evaluate each operand.
8256     // Avoid performing the look-up in the common case where the specified
8257     // expression has no loop-variant portions.
8258     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8259       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8260       if (OpAtScope == AddRec->getOperand(i))
8261         continue;
8262 
8263       // Okay, at least one of these operands is loop variant but might be
8264       // foldable.  Build a new instance of the folded commutative expression.
8265       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8266                                           AddRec->op_begin()+i);
8267       NewOps.push_back(OpAtScope);
8268       for (++i; i != e; ++i)
8269         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8270 
8271       const SCEV *FoldedRec =
8272         getAddRecExpr(NewOps, AddRec->getLoop(),
8273                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8274       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8275       // The addrec may be folded to a nonrecurrence, for example, if the
8276       // induction variable is multiplied by zero after constant folding. Go
8277       // ahead and return the folded value.
8278       if (!AddRec)
8279         return FoldedRec;
8280       break;
8281     }
8282 
8283     // If the scope is outside the addrec's loop, evaluate it by using the
8284     // loop exit value of the addrec.
8285     if (!AddRec->getLoop()->contains(L)) {
8286       // To evaluate this recurrence, we need to know how many times the AddRec
8287       // loop iterates.  Compute this now.
8288       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8289       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8290 
8291       // Then, evaluate the AddRec.
8292       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8293     }
8294 
8295     return AddRec;
8296   }
8297 
8298   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8299     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8300     if (Op == Cast->getOperand())
8301       return Cast;  // must be loop invariant
8302     return getZeroExtendExpr(Op, Cast->getType());
8303   }
8304 
8305   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8306     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8307     if (Op == Cast->getOperand())
8308       return Cast;  // must be loop invariant
8309     return getSignExtendExpr(Op, Cast->getType());
8310   }
8311 
8312   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8313     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8314     if (Op == Cast->getOperand())
8315       return Cast;  // must be loop invariant
8316     return getTruncateExpr(Op, Cast->getType());
8317   }
8318 
8319   llvm_unreachable("Unknown SCEV type!");
8320 }
8321 
8322 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8323   return getSCEVAtScope(getSCEV(V), L);
8324 }
8325 
8326 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8327   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8328     return stripInjectiveFunctions(ZExt->getOperand());
8329   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8330     return stripInjectiveFunctions(SExt->getOperand());
8331   return S;
8332 }
8333 
8334 /// Finds the minimum unsigned root of the following equation:
8335 ///
8336 ///     A * X = B (mod N)
8337 ///
8338 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8339 /// A and B isn't important.
8340 ///
8341 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8342 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8343                                                ScalarEvolution &SE) {
8344   uint32_t BW = A.getBitWidth();
8345   assert(BW == SE.getTypeSizeInBits(B->getType()));
8346   assert(A != 0 && "A must be non-zero.");
8347 
8348   // 1. D = gcd(A, N)
8349   //
8350   // The gcd of A and N may have only one prime factor: 2. The number of
8351   // trailing zeros in A is its multiplicity
8352   uint32_t Mult2 = A.countTrailingZeros();
8353   // D = 2^Mult2
8354 
8355   // 2. Check if B is divisible by D.
8356   //
8357   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8358   // is not less than multiplicity of this prime factor for D.
8359   if (SE.GetMinTrailingZeros(B) < Mult2)
8360     return SE.getCouldNotCompute();
8361 
8362   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8363   // modulo (N / D).
8364   //
8365   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8366   // (N / D) in general. The inverse itself always fits into BW bits, though,
8367   // so we immediately truncate it.
8368   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8369   APInt Mod(BW + 1, 0);
8370   Mod.setBit(BW - Mult2);  // Mod = N / D
8371   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8372 
8373   // 4. Compute the minimum unsigned root of the equation:
8374   // I * (B / D) mod (N / D)
8375   // To simplify the computation, we factor out the divide by D:
8376   // (I * B mod N) / D
8377   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8378   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8379 }
8380 
8381 /// For a given quadratic addrec, generate coefficients of the corresponding
8382 /// quadratic equation, multiplied by a common value to ensure that they are
8383 /// integers.
8384 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8385 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8386 /// were multiplied by, and BitWidth is the bit width of the original addrec
8387 /// coefficients.
8388 /// This function returns None if the addrec coefficients are not compile-
8389 /// time constants.
8390 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8391 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8392   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8393   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8394   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8395   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8396   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8397                     << *AddRec << '\n');
8398 
8399   // We currently can only solve this if the coefficients are constants.
8400   if (!LC || !MC || !NC) {
8401     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8402     return None;
8403   }
8404 
8405   APInt L = LC->getAPInt();
8406   APInt M = MC->getAPInt();
8407   APInt N = NC->getAPInt();
8408   assert(!N.isNullValue() && "This is not a quadratic addrec");
8409 
8410   unsigned BitWidth = LC->getAPInt().getBitWidth();
8411   unsigned NewWidth = BitWidth + 1;
8412   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8413                     << BitWidth << '\n');
8414   // The sign-extension (as opposed to a zero-extension) here matches the
8415   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8416   N = N.sext(NewWidth);
8417   M = M.sext(NewWidth);
8418   L = L.sext(NewWidth);
8419 
8420   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8421   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8422   //   L+M, L+2M+N, L+3M+3N, ...
8423   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8424   //
8425   // The equation Acc = 0 is then
8426   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8427   // In a quadratic form it becomes:
8428   //   N n^2 + (2M-N) n + 2L = 0.
8429 
8430   APInt A = N;
8431   APInt B = 2 * M - A;
8432   APInt C = 2 * L;
8433   APInt T = APInt(NewWidth, 2);
8434   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8435                     << "x + " << C << ", coeff bw: " << NewWidth
8436                     << ", multiplied by " << T << '\n');
8437   return std::make_tuple(A, B, C, T, BitWidth);
8438 }
8439 
8440 /// Helper function to compare optional APInts:
8441 /// (a) if X and Y both exist, return min(X, Y),
8442 /// (b) if neither X nor Y exist, return None,
8443 /// (c) if exactly one of X and Y exists, return that value.
8444 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8445   if (X.hasValue() && Y.hasValue()) {
8446     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8447     APInt XW = X->sextOrSelf(W);
8448     APInt YW = Y->sextOrSelf(W);
8449     return XW.slt(YW) ? *X : *Y;
8450   }
8451   if (!X.hasValue() && !Y.hasValue())
8452     return None;
8453   return X.hasValue() ? *X : *Y;
8454 }
8455 
8456 /// Helper function to truncate an optional APInt to a given BitWidth.
8457 /// When solving addrec-related equations, it is preferable to return a value
8458 /// that has the same bit width as the original addrec's coefficients. If the
8459 /// solution fits in the original bit width, truncate it (except for i1).
8460 /// Returning a value of a different bit width may inhibit some optimizations.
8461 ///
8462 /// In general, a solution to a quadratic equation generated from an addrec
8463 /// may require BW+1 bits, where BW is the bit width of the addrec's
8464 /// coefficients. The reason is that the coefficients of the quadratic
8465 /// equation are BW+1 bits wide (to avoid truncation when converting from
8466 /// the addrec to the equation).
8467 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8468   if (!X.hasValue())
8469     return None;
8470   unsigned W = X->getBitWidth();
8471   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8472     return X->trunc(BitWidth);
8473   return X;
8474 }
8475 
8476 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8477 /// iterations. The values L, M, N are assumed to be signed, and they
8478 /// should all have the same bit widths.
8479 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8480 /// where BW is the bit width of the addrec's coefficients.
8481 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8482 /// returned as such, otherwise the bit width of the returned value may
8483 /// be greater than BW.
8484 ///
8485 /// This function returns None if
8486 /// (a) the addrec coefficients are not constant, or
8487 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8488 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8489 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8490 static Optional<APInt>
8491 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8492   APInt A, B, C, M;
8493   unsigned BitWidth;
8494   auto T = GetQuadraticEquation(AddRec);
8495   if (!T.hasValue())
8496     return None;
8497 
8498   std::tie(A, B, C, M, BitWidth) = *T;
8499   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8500   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8501   if (!X.hasValue())
8502     return None;
8503 
8504   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8505   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8506   if (!V->isZero())
8507     return None;
8508 
8509   return TruncIfPossible(X, BitWidth);
8510 }
8511 
8512 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8513 /// iterations. The values M, N are assumed to be signed, and they
8514 /// should all have the same bit widths.
8515 /// Find the least n such that c(n) does not belong to the given range,
8516 /// while c(n-1) does.
8517 ///
8518 /// This function returns None if
8519 /// (a) the addrec coefficients are not constant, or
8520 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8521 ///     bounds of the range.
8522 static Optional<APInt>
8523 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8524                           const ConstantRange &Range, ScalarEvolution &SE) {
8525   assert(AddRec->getOperand(0)->isZero() &&
8526          "Starting value of addrec should be 0");
8527   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8528                     << Range << ", addrec " << *AddRec << '\n');
8529   // This case is handled in getNumIterationsInRange. Here we can assume that
8530   // we start in the range.
8531   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8532          "Addrec's initial value should be in range");
8533 
8534   APInt A, B, C, M;
8535   unsigned BitWidth;
8536   auto T = GetQuadraticEquation(AddRec);
8537   if (!T.hasValue())
8538     return None;
8539 
8540   // Be careful about the return value: there can be two reasons for not
8541   // returning an actual number. First, if no solutions to the equations
8542   // were found, and second, if the solutions don't leave the given range.
8543   // The first case means that the actual solution is "unknown", the second
8544   // means that it's known, but not valid. If the solution is unknown, we
8545   // cannot make any conclusions.
8546   // Return a pair: the optional solution and a flag indicating if the
8547   // solution was found.
8548   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8549     // Solve for signed overflow and unsigned overflow, pick the lower
8550     // solution.
8551     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8552                       << Bound << " (before multiplying by " << M << ")\n");
8553     Bound *= M; // The quadratic equation multiplier.
8554 
8555     Optional<APInt> SO = None;
8556     if (BitWidth > 1) {
8557       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8558                            "signed overflow\n");
8559       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8560     }
8561     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8562                          "unsigned overflow\n");
8563     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8564                                                               BitWidth+1);
8565 
8566     auto LeavesRange = [&] (const APInt &X) {
8567       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8568       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8569       if (Range.contains(V0->getValue()))
8570         return false;
8571       // X should be at least 1, so X-1 is non-negative.
8572       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8573       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8574       if (Range.contains(V1->getValue()))
8575         return true;
8576       return false;
8577     };
8578 
8579     // If SolveQuadraticEquationWrap returns None, it means that there can
8580     // be a solution, but the function failed to find it. We cannot treat it
8581     // as "no solution".
8582     if (!SO.hasValue() || !UO.hasValue())
8583       return { None, false };
8584 
8585     // Check the smaller value first to see if it leaves the range.
8586     // At this point, both SO and UO must have values.
8587     Optional<APInt> Min = MinOptional(SO, UO);
8588     if (LeavesRange(*Min))
8589       return { Min, true };
8590     Optional<APInt> Max = Min == SO ? UO : SO;
8591     if (LeavesRange(*Max))
8592       return { Max, true };
8593 
8594     // Solutions were found, but were eliminated, hence the "true".
8595     return { None, true };
8596   };
8597 
8598   std::tie(A, B, C, M, BitWidth) = *T;
8599   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8600   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8601   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8602   auto SL = SolveForBoundary(Lower);
8603   auto SU = SolveForBoundary(Upper);
8604   // If any of the solutions was unknown, no meaninigful conclusions can
8605   // be made.
8606   if (!SL.second || !SU.second)
8607     return None;
8608 
8609   // Claim: The correct solution is not some value between Min and Max.
8610   //
8611   // Justification: Assuming that Min and Max are different values, one of
8612   // them is when the first signed overflow happens, the other is when the
8613   // first unsigned overflow happens. Crossing the range boundary is only
8614   // possible via an overflow (treating 0 as a special case of it, modeling
8615   // an overflow as crossing k*2^W for some k).
8616   //
8617   // The interesting case here is when Min was eliminated as an invalid
8618   // solution, but Max was not. The argument is that if there was another
8619   // overflow between Min and Max, it would also have been eliminated if
8620   // it was considered.
8621   //
8622   // For a given boundary, it is possible to have two overflows of the same
8623   // type (signed/unsigned) without having the other type in between: this
8624   // can happen when the vertex of the parabola is between the iterations
8625   // corresponding to the overflows. This is only possible when the two
8626   // overflows cross k*2^W for the same k. In such case, if the second one
8627   // left the range (and was the first one to do so), the first overflow
8628   // would have to enter the range, which would mean that either we had left
8629   // the range before or that we started outside of it. Both of these cases
8630   // are contradictions.
8631   //
8632   // Claim: In the case where SolveForBoundary returns None, the correct
8633   // solution is not some value between the Max for this boundary and the
8634   // Min of the other boundary.
8635   //
8636   // Justification: Assume that we had such Max_A and Min_B corresponding
8637   // to range boundaries A and B and such that Max_A < Min_B. If there was
8638   // a solution between Max_A and Min_B, it would have to be caused by an
8639   // overflow corresponding to either A or B. It cannot correspond to B,
8640   // since Min_B is the first occurrence of such an overflow. If it
8641   // corresponded to A, it would have to be either a signed or an unsigned
8642   // overflow that is larger than both eliminated overflows for A. But
8643   // between the eliminated overflows and this overflow, the values would
8644   // cover the entire value space, thus crossing the other boundary, which
8645   // is a contradiction.
8646 
8647   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8648 }
8649 
8650 ScalarEvolution::ExitLimit
8651 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8652                               bool AllowPredicates) {
8653 
8654   // This is only used for loops with a "x != y" exit test. The exit condition
8655   // is now expressed as a single expression, V = x-y. So the exit test is
8656   // effectively V != 0.  We know and take advantage of the fact that this
8657   // expression only being used in a comparison by zero context.
8658 
8659   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8660   // If the value is a constant
8661   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8662     // If the value is already zero, the branch will execute zero times.
8663     if (C->getValue()->isZero()) return C;
8664     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8665   }
8666 
8667   const SCEVAddRecExpr *AddRec =
8668       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8669 
8670   if (!AddRec && AllowPredicates)
8671     // Try to make this an AddRec using runtime tests, in the first X
8672     // iterations of this loop, where X is the SCEV expression found by the
8673     // algorithm below.
8674     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8675 
8676   if (!AddRec || AddRec->getLoop() != L)
8677     return getCouldNotCompute();
8678 
8679   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8680   // the quadratic equation to solve it.
8681   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8682     // We can only use this value if the chrec ends up with an exact zero
8683     // value at this index.  When solving for "X*X != 5", for example, we
8684     // should not accept a root of 2.
8685     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8686       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8687       return ExitLimit(R, R, false, Predicates);
8688     }
8689     return getCouldNotCompute();
8690   }
8691 
8692   // Otherwise we can only handle this if it is affine.
8693   if (!AddRec->isAffine())
8694     return getCouldNotCompute();
8695 
8696   // If this is an affine expression, the execution count of this branch is
8697   // the minimum unsigned root of the following equation:
8698   //
8699   //     Start + Step*N = 0 (mod 2^BW)
8700   //
8701   // equivalent to:
8702   //
8703   //             Step*N = -Start (mod 2^BW)
8704   //
8705   // where BW is the common bit width of Start and Step.
8706 
8707   // Get the initial value for the loop.
8708   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8709   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8710 
8711   // For now we handle only constant steps.
8712   //
8713   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8714   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8715   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8716   // We have not yet seen any such cases.
8717   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8718   if (!StepC || StepC->getValue()->isZero())
8719     return getCouldNotCompute();
8720 
8721   // For positive steps (counting up until unsigned overflow):
8722   //   N = -Start/Step (as unsigned)
8723   // For negative steps (counting down to zero):
8724   //   N = Start/-Step
8725   // First compute the unsigned distance from zero in the direction of Step.
8726   bool CountDown = StepC->getAPInt().isNegative();
8727   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8728 
8729   // Handle unitary steps, which cannot wraparound.
8730   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8731   //   N = Distance (as unsigned)
8732   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8733     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
8734     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
8735     if (MaxBECountBase.ult(MaxBECount))
8736       MaxBECount = MaxBECountBase;
8737 
8738     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8739     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8740     // case, and see if we can improve the bound.
8741     //
8742     // Explicitly handling this here is necessary because getUnsignedRange
8743     // isn't context-sensitive; it doesn't know that we only care about the
8744     // range inside the loop.
8745     const SCEV *Zero = getZero(Distance->getType());
8746     const SCEV *One = getOne(Distance->getType());
8747     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8748     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8749       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8750       // as "unsigned_max(Distance + 1) - 1".
8751       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8752       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8753     }
8754     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8755   }
8756 
8757   // If the condition controls loop exit (the loop exits only if the expression
8758   // is true) and the addition is no-wrap we can use unsigned divide to
8759   // compute the backedge count.  In this case, the step may not divide the
8760   // distance, but we don't care because if the condition is "missed" the loop
8761   // will have undefined behavior due to wrapping.
8762   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8763       loopHasNoAbnormalExits(AddRec->getLoop())) {
8764     const SCEV *Exact =
8765         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8766     const SCEV *Max =
8767         Exact == getCouldNotCompute()
8768             ? Exact
8769             : getConstant(getUnsignedRangeMax(Exact));
8770     return ExitLimit(Exact, Max, false, Predicates);
8771   }
8772 
8773   // Solve the general equation.
8774   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8775                                                getNegativeSCEV(Start), *this);
8776   const SCEV *M = E == getCouldNotCompute()
8777                       ? E
8778                       : getConstant(getUnsignedRangeMax(E));
8779   return ExitLimit(E, M, false, Predicates);
8780 }
8781 
8782 ScalarEvolution::ExitLimit
8783 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8784   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8785   // handle them yet except for the trivial case.  This could be expanded in the
8786   // future as needed.
8787 
8788   // If the value is a constant, check to see if it is known to be non-zero
8789   // already.  If so, the backedge will execute zero times.
8790   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8791     if (!C->getValue()->isZero())
8792       return getZero(C->getType());
8793     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8794   }
8795 
8796   // We could implement others, but I really doubt anyone writes loops like
8797   // this, and if they did, they would already be constant folded.
8798   return getCouldNotCompute();
8799 }
8800 
8801 std::pair<const BasicBlock *, const BasicBlock *>
8802 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
8803     const {
8804   // If the block has a unique predecessor, then there is no path from the
8805   // predecessor to the block that does not go through the direct edge
8806   // from the predecessor to the block.
8807   if (const BasicBlock *Pred = BB->getSinglePredecessor())
8808     return {Pred, BB};
8809 
8810   // A loop's header is defined to be a block that dominates the loop.
8811   // If the header has a unique predecessor outside the loop, it must be
8812   // a block that has exactly one successor that can reach the loop.
8813   if (const Loop *L = LI.getLoopFor(BB))
8814     return {L->getLoopPredecessor(), L->getHeader()};
8815 
8816   return {nullptr, nullptr};
8817 }
8818 
8819 /// SCEV structural equivalence is usually sufficient for testing whether two
8820 /// expressions are equal, however for the purposes of looking for a condition
8821 /// guarding a loop, it can be useful to be a little more general, since a
8822 /// front-end may have replicated the controlling expression.
8823 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8824   // Quick check to see if they are the same SCEV.
8825   if (A == B) return true;
8826 
8827   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8828     // Not all instructions that are "identical" compute the same value.  For
8829     // instance, two distinct alloca instructions allocating the same type are
8830     // identical and do not read memory; but compute distinct values.
8831     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8832   };
8833 
8834   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8835   // two different instructions with the same value. Check for this case.
8836   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8837     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8838       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8839         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8840           if (ComputesEqualValues(AI, BI))
8841             return true;
8842 
8843   // Otherwise assume they may have a different value.
8844   return false;
8845 }
8846 
8847 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8848                                            const SCEV *&LHS, const SCEV *&RHS,
8849                                            unsigned Depth) {
8850   bool Changed = false;
8851   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8852   // '0 != 0'.
8853   auto TrivialCase = [&](bool TriviallyTrue) {
8854     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8855     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8856     return true;
8857   };
8858   // If we hit the max recursion limit bail out.
8859   if (Depth >= 3)
8860     return false;
8861 
8862   // Canonicalize a constant to the right side.
8863   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8864     // Check for both operands constant.
8865     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8866       if (ConstantExpr::getICmp(Pred,
8867                                 LHSC->getValue(),
8868                                 RHSC->getValue())->isNullValue())
8869         return TrivialCase(false);
8870       else
8871         return TrivialCase(true);
8872     }
8873     // Otherwise swap the operands to put the constant on the right.
8874     std::swap(LHS, RHS);
8875     Pred = ICmpInst::getSwappedPredicate(Pred);
8876     Changed = true;
8877   }
8878 
8879   // If we're comparing an addrec with a value which is loop-invariant in the
8880   // addrec's loop, put the addrec on the left. Also make a dominance check,
8881   // as both operands could be addrecs loop-invariant in each other's loop.
8882   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8883     const Loop *L = AR->getLoop();
8884     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8885       std::swap(LHS, RHS);
8886       Pred = ICmpInst::getSwappedPredicate(Pred);
8887       Changed = true;
8888     }
8889   }
8890 
8891   // If there's a constant operand, canonicalize comparisons with boundary
8892   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8893   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8894     const APInt &RA = RC->getAPInt();
8895 
8896     bool SimplifiedByConstantRange = false;
8897 
8898     if (!ICmpInst::isEquality(Pred)) {
8899       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8900       if (ExactCR.isFullSet())
8901         return TrivialCase(true);
8902       else if (ExactCR.isEmptySet())
8903         return TrivialCase(false);
8904 
8905       APInt NewRHS;
8906       CmpInst::Predicate NewPred;
8907       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8908           ICmpInst::isEquality(NewPred)) {
8909         // We were able to convert an inequality to an equality.
8910         Pred = NewPred;
8911         RHS = getConstant(NewRHS);
8912         Changed = SimplifiedByConstantRange = true;
8913       }
8914     }
8915 
8916     if (!SimplifiedByConstantRange) {
8917       switch (Pred) {
8918       default:
8919         break;
8920       case ICmpInst::ICMP_EQ:
8921       case ICmpInst::ICMP_NE:
8922         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8923         if (!RA)
8924           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8925             if (const SCEVMulExpr *ME =
8926                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8927               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8928                   ME->getOperand(0)->isAllOnesValue()) {
8929                 RHS = AE->getOperand(1);
8930                 LHS = ME->getOperand(1);
8931                 Changed = true;
8932               }
8933         break;
8934 
8935 
8936         // The "Should have been caught earlier!" messages refer to the fact
8937         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8938         // should have fired on the corresponding cases, and canonicalized the
8939         // check to trivial case.
8940 
8941       case ICmpInst::ICMP_UGE:
8942         assert(!RA.isMinValue() && "Should have been caught earlier!");
8943         Pred = ICmpInst::ICMP_UGT;
8944         RHS = getConstant(RA - 1);
8945         Changed = true;
8946         break;
8947       case ICmpInst::ICMP_ULE:
8948         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8949         Pred = ICmpInst::ICMP_ULT;
8950         RHS = getConstant(RA + 1);
8951         Changed = true;
8952         break;
8953       case ICmpInst::ICMP_SGE:
8954         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8955         Pred = ICmpInst::ICMP_SGT;
8956         RHS = getConstant(RA - 1);
8957         Changed = true;
8958         break;
8959       case ICmpInst::ICMP_SLE:
8960         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8961         Pred = ICmpInst::ICMP_SLT;
8962         RHS = getConstant(RA + 1);
8963         Changed = true;
8964         break;
8965       }
8966     }
8967   }
8968 
8969   // Check for obvious equality.
8970   if (HasSameValue(LHS, RHS)) {
8971     if (ICmpInst::isTrueWhenEqual(Pred))
8972       return TrivialCase(true);
8973     if (ICmpInst::isFalseWhenEqual(Pred))
8974       return TrivialCase(false);
8975   }
8976 
8977   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8978   // adding or subtracting 1 from one of the operands.
8979   switch (Pred) {
8980   case ICmpInst::ICMP_SLE:
8981     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8982       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8983                        SCEV::FlagNSW);
8984       Pred = ICmpInst::ICMP_SLT;
8985       Changed = true;
8986     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8987       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8988                        SCEV::FlagNSW);
8989       Pred = ICmpInst::ICMP_SLT;
8990       Changed = true;
8991     }
8992     break;
8993   case ICmpInst::ICMP_SGE:
8994     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8995       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8996                        SCEV::FlagNSW);
8997       Pred = ICmpInst::ICMP_SGT;
8998       Changed = true;
8999     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9000       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9001                        SCEV::FlagNSW);
9002       Pred = ICmpInst::ICMP_SGT;
9003       Changed = true;
9004     }
9005     break;
9006   case ICmpInst::ICMP_ULE:
9007     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9008       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9009                        SCEV::FlagNUW);
9010       Pred = ICmpInst::ICMP_ULT;
9011       Changed = true;
9012     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9013       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9014       Pred = ICmpInst::ICMP_ULT;
9015       Changed = true;
9016     }
9017     break;
9018   case ICmpInst::ICMP_UGE:
9019     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9020       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9021       Pred = ICmpInst::ICMP_UGT;
9022       Changed = true;
9023     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9024       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9025                        SCEV::FlagNUW);
9026       Pred = ICmpInst::ICMP_UGT;
9027       Changed = true;
9028     }
9029     break;
9030   default:
9031     break;
9032   }
9033 
9034   // TODO: More simplifications are possible here.
9035 
9036   // Recursively simplify until we either hit a recursion limit or nothing
9037   // changes.
9038   if (Changed)
9039     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9040 
9041   return Changed;
9042 }
9043 
9044 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9045   return getSignedRangeMax(S).isNegative();
9046 }
9047 
9048 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9049   return getSignedRangeMin(S).isStrictlyPositive();
9050 }
9051 
9052 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9053   return !getSignedRangeMin(S).isNegative();
9054 }
9055 
9056 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9057   return !getSignedRangeMax(S).isStrictlyPositive();
9058 }
9059 
9060 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9061   return isKnownNegative(S) || isKnownPositive(S);
9062 }
9063 
9064 std::pair<const SCEV *, const SCEV *>
9065 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9066   // Compute SCEV on entry of loop L.
9067   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9068   if (Start == getCouldNotCompute())
9069     return { Start, Start };
9070   // Compute post increment SCEV for loop L.
9071   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9072   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9073   return { Start, PostInc };
9074 }
9075 
9076 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9077                                           const SCEV *LHS, const SCEV *RHS) {
9078   // First collect all loops.
9079   SmallPtrSet<const Loop *, 8> LoopsUsed;
9080   getUsedLoops(LHS, LoopsUsed);
9081   getUsedLoops(RHS, LoopsUsed);
9082 
9083   if (LoopsUsed.empty())
9084     return false;
9085 
9086   // Domination relationship must be a linear order on collected loops.
9087 #ifndef NDEBUG
9088   for (auto *L1 : LoopsUsed)
9089     for (auto *L2 : LoopsUsed)
9090       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9091               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9092              "Domination relationship is not a linear order");
9093 #endif
9094 
9095   const Loop *MDL =
9096       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9097                         [&](const Loop *L1, const Loop *L2) {
9098          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9099        });
9100 
9101   // Get init and post increment value for LHS.
9102   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9103   // if LHS contains unknown non-invariant SCEV then bail out.
9104   if (SplitLHS.first == getCouldNotCompute())
9105     return false;
9106   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9107   // Get init and post increment value for RHS.
9108   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9109   // if RHS contains unknown non-invariant SCEV then bail out.
9110   if (SplitRHS.first == getCouldNotCompute())
9111     return false;
9112   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9113   // It is possible that init SCEV contains an invariant load but it does
9114   // not dominate MDL and is not available at MDL loop entry, so we should
9115   // check it here.
9116   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9117       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9118     return false;
9119 
9120   // It seems backedge guard check is faster than entry one so in some cases
9121   // it can speed up whole estimation by short circuit
9122   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9123                                      SplitRHS.second) &&
9124          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9125 }
9126 
9127 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9128                                        const SCEV *LHS, const SCEV *RHS) {
9129   // Canonicalize the inputs first.
9130   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9131 
9132   if (isKnownViaInduction(Pred, LHS, RHS))
9133     return true;
9134 
9135   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9136     return true;
9137 
9138   // Otherwise see what can be done with some simple reasoning.
9139   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9140 }
9141 
9142 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9143                                          const SCEV *LHS, const SCEV *RHS,
9144                                          const Instruction *Context) {
9145   // TODO: Analyze guards and assumes from Context's block.
9146   return isKnownPredicate(Pred, LHS, RHS) ||
9147          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9148 }
9149 
9150 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9151                                               const SCEVAddRecExpr *LHS,
9152                                               const SCEV *RHS) {
9153   const Loop *L = LHS->getLoop();
9154   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9155          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9156 }
9157 
9158 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9159                                            ICmpInst::Predicate Pred,
9160                                            bool &Increasing) {
9161   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9162 
9163 #ifndef NDEBUG
9164   // Verify an invariant: inverting the predicate should turn a monotonically
9165   // increasing change to a monotonically decreasing one, and vice versa.
9166   bool IncreasingSwapped;
9167   bool ResultSwapped = isMonotonicPredicateImpl(
9168       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9169 
9170   assert(Result == ResultSwapped && "should be able to analyze both!");
9171   if (ResultSwapped)
9172     assert(Increasing == !IncreasingSwapped &&
9173            "monotonicity should flip as we flip the predicate");
9174 #endif
9175 
9176   return Result;
9177 }
9178 
9179 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9180                                                ICmpInst::Predicate Pred,
9181                                                bool &Increasing) {
9182 
9183   // A zero step value for LHS means the induction variable is essentially a
9184   // loop invariant value. We don't really depend on the predicate actually
9185   // flipping from false to true (for increasing predicates, and the other way
9186   // around for decreasing predicates), all we care about is that *if* the
9187   // predicate changes then it only changes from false to true.
9188   //
9189   // A zero step value in itself is not very useful, but there may be places
9190   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9191   // as general as possible.
9192 
9193   switch (Pred) {
9194   default:
9195     return false; // Conservative answer
9196 
9197   case ICmpInst::ICMP_UGT:
9198   case ICmpInst::ICMP_UGE:
9199   case ICmpInst::ICMP_ULT:
9200   case ICmpInst::ICMP_ULE:
9201     if (!LHS->hasNoUnsignedWrap())
9202       return false;
9203 
9204     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9205     return true;
9206 
9207   case ICmpInst::ICMP_SGT:
9208   case ICmpInst::ICMP_SGE:
9209   case ICmpInst::ICMP_SLT:
9210   case ICmpInst::ICMP_SLE: {
9211     if (!LHS->hasNoSignedWrap())
9212       return false;
9213 
9214     const SCEV *Step = LHS->getStepRecurrence(*this);
9215 
9216     if (isKnownNonNegative(Step)) {
9217       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9218       return true;
9219     }
9220 
9221     if (isKnownNonPositive(Step)) {
9222       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9223       return true;
9224     }
9225 
9226     return false;
9227   }
9228 
9229   }
9230 
9231   llvm_unreachable("switch has default clause!");
9232 }
9233 
9234 bool ScalarEvolution::isLoopInvariantPredicate(
9235     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9236     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9237     const SCEV *&InvariantRHS) {
9238 
9239   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9240   if (!isLoopInvariant(RHS, L)) {
9241     if (!isLoopInvariant(LHS, L))
9242       return false;
9243 
9244     std::swap(LHS, RHS);
9245     Pred = ICmpInst::getSwappedPredicate(Pred);
9246   }
9247 
9248   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9249   if (!ArLHS || ArLHS->getLoop() != L)
9250     return false;
9251 
9252   bool Increasing;
9253   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9254     return false;
9255 
9256   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9257   // true as the loop iterates, and the backedge is control dependent on
9258   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9259   //
9260   //   * if the predicate was false in the first iteration then the predicate
9261   //     is never evaluated again, since the loop exits without taking the
9262   //     backedge.
9263   //   * if the predicate was true in the first iteration then it will
9264   //     continue to be true for all future iterations since it is
9265   //     monotonically increasing.
9266   //
9267   // For both the above possibilities, we can replace the loop varying
9268   // predicate with its value on the first iteration of the loop (which is
9269   // loop invariant).
9270   //
9271   // A similar reasoning applies for a monotonically decreasing predicate, by
9272   // replacing true with false and false with true in the above two bullets.
9273 
9274   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9275 
9276   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9277     return false;
9278 
9279   InvariantPred = Pred;
9280   InvariantLHS = ArLHS->getStart();
9281   InvariantRHS = RHS;
9282   return true;
9283 }
9284 
9285 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9286     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9287   if (HasSameValue(LHS, RHS))
9288     return ICmpInst::isTrueWhenEqual(Pred);
9289 
9290   // This code is split out from isKnownPredicate because it is called from
9291   // within isLoopEntryGuardedByCond.
9292 
9293   auto CheckRanges =
9294       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9295     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9296         .contains(RangeLHS);
9297   };
9298 
9299   // The check at the top of the function catches the case where the values are
9300   // known to be equal.
9301   if (Pred == CmpInst::ICMP_EQ)
9302     return false;
9303 
9304   if (Pred == CmpInst::ICMP_NE)
9305     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9306            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9307            isKnownNonZero(getMinusSCEV(LHS, RHS));
9308 
9309   if (CmpInst::isSigned(Pred))
9310     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9311 
9312   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9313 }
9314 
9315 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9316                                                     const SCEV *LHS,
9317                                                     const SCEV *RHS) {
9318   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9319   // Return Y via OutY.
9320   auto MatchBinaryAddToConst =
9321       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9322              SCEV::NoWrapFlags ExpectedFlags) {
9323     const SCEV *NonConstOp, *ConstOp;
9324     SCEV::NoWrapFlags FlagsPresent;
9325 
9326     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9327         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9328       return false;
9329 
9330     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9331     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9332   };
9333 
9334   APInt C;
9335 
9336   switch (Pred) {
9337   default:
9338     break;
9339 
9340   case ICmpInst::ICMP_SGE:
9341     std::swap(LHS, RHS);
9342     LLVM_FALLTHROUGH;
9343   case ICmpInst::ICMP_SLE:
9344     // X s<= (X + C)<nsw> if C >= 0
9345     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9346       return true;
9347 
9348     // (X + C)<nsw> s<= X if C <= 0
9349     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9350         !C.isStrictlyPositive())
9351       return true;
9352     break;
9353 
9354   case ICmpInst::ICMP_SGT:
9355     std::swap(LHS, RHS);
9356     LLVM_FALLTHROUGH;
9357   case ICmpInst::ICMP_SLT:
9358     // X s< (X + C)<nsw> if C > 0
9359     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9360         C.isStrictlyPositive())
9361       return true;
9362 
9363     // (X + C)<nsw> s< X if C < 0
9364     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9365       return true;
9366     break;
9367 
9368   case ICmpInst::ICMP_UGE:
9369     std::swap(LHS, RHS);
9370     LLVM_FALLTHROUGH;
9371   case ICmpInst::ICMP_ULE:
9372     // X u<= (X + C)<nuw> for any C
9373     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9374       return true;
9375     break;
9376 
9377   case ICmpInst::ICMP_UGT:
9378     std::swap(LHS, RHS);
9379     LLVM_FALLTHROUGH;
9380   case ICmpInst::ICMP_ULT:
9381     // X u< (X + C)<nuw> if C != 0
9382     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9383       return true;
9384     break;
9385   }
9386 
9387   return false;
9388 }
9389 
9390 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9391                                                    const SCEV *LHS,
9392                                                    const SCEV *RHS) {
9393   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9394     return false;
9395 
9396   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9397   // the stack can result in exponential time complexity.
9398   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9399 
9400   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9401   //
9402   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9403   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9404   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9405   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9406   // use isKnownPredicate later if needed.
9407   return isKnownNonNegative(RHS) &&
9408          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9409          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9410 }
9411 
9412 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9413                                         ICmpInst::Predicate Pred,
9414                                         const SCEV *LHS, const SCEV *RHS) {
9415   // No need to even try if we know the module has no guards.
9416   if (!HasGuards)
9417     return false;
9418 
9419   return any_of(*BB, [&](const Instruction &I) {
9420     using namespace llvm::PatternMatch;
9421 
9422     Value *Condition;
9423     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9424                          m_Value(Condition))) &&
9425            isImpliedCond(Pred, LHS, RHS, Condition, false);
9426   });
9427 }
9428 
9429 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9430 /// protected by a conditional between LHS and RHS.  This is used to
9431 /// to eliminate casts.
9432 bool
9433 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9434                                              ICmpInst::Predicate Pred,
9435                                              const SCEV *LHS, const SCEV *RHS) {
9436   // Interpret a null as meaning no loop, where there is obviously no guard
9437   // (interprocedural conditions notwithstanding).
9438   if (!L) return true;
9439 
9440   if (VerifyIR)
9441     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9442            "This cannot be done on broken IR!");
9443 
9444 
9445   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9446     return true;
9447 
9448   BasicBlock *Latch = L->getLoopLatch();
9449   if (!Latch)
9450     return false;
9451 
9452   BranchInst *LoopContinuePredicate =
9453     dyn_cast<BranchInst>(Latch->getTerminator());
9454   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9455       isImpliedCond(Pred, LHS, RHS,
9456                     LoopContinuePredicate->getCondition(),
9457                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9458     return true;
9459 
9460   // We don't want more than one activation of the following loops on the stack
9461   // -- that can lead to O(n!) time complexity.
9462   if (WalkingBEDominatingConds)
9463     return false;
9464 
9465   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9466 
9467   // See if we can exploit a trip count to prove the predicate.
9468   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9469   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9470   if (LatchBECount != getCouldNotCompute()) {
9471     // We know that Latch branches back to the loop header exactly
9472     // LatchBECount times.  This means the backdege condition at Latch is
9473     // equivalent to  "{0,+,1} u< LatchBECount".
9474     Type *Ty = LatchBECount->getType();
9475     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9476     const SCEV *LoopCounter =
9477       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9478     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9479                       LatchBECount))
9480       return true;
9481   }
9482 
9483   // Check conditions due to any @llvm.assume intrinsics.
9484   for (auto &AssumeVH : AC.assumptions()) {
9485     if (!AssumeVH)
9486       continue;
9487     auto *CI = cast<CallInst>(AssumeVH);
9488     if (!DT.dominates(CI, Latch->getTerminator()))
9489       continue;
9490 
9491     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9492       return true;
9493   }
9494 
9495   // If the loop is not reachable from the entry block, we risk running into an
9496   // infinite loop as we walk up into the dom tree.  These loops do not matter
9497   // anyway, so we just return a conservative answer when we see them.
9498   if (!DT.isReachableFromEntry(L->getHeader()))
9499     return false;
9500 
9501   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9502     return true;
9503 
9504   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9505        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9506     assert(DTN && "should reach the loop header before reaching the root!");
9507 
9508     BasicBlock *BB = DTN->getBlock();
9509     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9510       return true;
9511 
9512     BasicBlock *PBB = BB->getSinglePredecessor();
9513     if (!PBB)
9514       continue;
9515 
9516     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9517     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9518       continue;
9519 
9520     Value *Condition = ContinuePredicate->getCondition();
9521 
9522     // If we have an edge `E` within the loop body that dominates the only
9523     // latch, the condition guarding `E` also guards the backedge.  This
9524     // reasoning works only for loops with a single latch.
9525 
9526     BasicBlockEdge DominatingEdge(PBB, BB);
9527     if (DominatingEdge.isSingleEdge()) {
9528       // We're constructively (and conservatively) enumerating edges within the
9529       // loop body that dominate the latch.  The dominator tree better agree
9530       // with us on this:
9531       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9532 
9533       if (isImpliedCond(Pred, LHS, RHS, Condition,
9534                         BB != ContinuePredicate->getSuccessor(0)))
9535         return true;
9536     }
9537   }
9538 
9539   return false;
9540 }
9541 
9542 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9543                                                      ICmpInst::Predicate Pred,
9544                                                      const SCEV *LHS,
9545                                                      const SCEV *RHS) {
9546   if (VerifyIR)
9547     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9548            "This cannot be done on broken IR!");
9549 
9550   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9551     return true;
9552 
9553   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9554   // the facts (a >= b && a != b) separately. A typical situation is when the
9555   // non-strict comparison is known from ranges and non-equality is known from
9556   // dominating predicates. If we are proving strict comparison, we always try
9557   // to prove non-equality and non-strict comparison separately.
9558   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9559   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9560   bool ProvedNonStrictComparison = false;
9561   bool ProvedNonEquality = false;
9562 
9563   if (ProvingStrictComparison) {
9564     ProvedNonStrictComparison =
9565         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9566     ProvedNonEquality =
9567         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9568     if (ProvedNonStrictComparison && ProvedNonEquality)
9569       return true;
9570   }
9571 
9572   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9573   auto ProveViaGuard = [&](const BasicBlock *Block) {
9574     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9575       return true;
9576     if (ProvingStrictComparison) {
9577       if (!ProvedNonStrictComparison)
9578         ProvedNonStrictComparison =
9579             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9580       if (!ProvedNonEquality)
9581         ProvedNonEquality =
9582             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9583       if (ProvedNonStrictComparison && ProvedNonEquality)
9584         return true;
9585     }
9586     return false;
9587   };
9588 
9589   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9590   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
9591     const Instruction *Context = &BB->front();
9592     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
9593       return true;
9594     if (ProvingStrictComparison) {
9595       if (!ProvedNonStrictComparison)
9596         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
9597                                                   Condition, Inverse, Context);
9598       if (!ProvedNonEquality)
9599         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
9600                                           Condition, Inverse, Context);
9601       if (ProvedNonStrictComparison && ProvedNonEquality)
9602         return true;
9603     }
9604     return false;
9605   };
9606 
9607   // Starting at the block's predecessor, climb up the predecessor chain, as long
9608   // as there are predecessors that can be found that have unique successors
9609   // leading to the original block.
9610   const Loop *ContainingLoop = LI.getLoopFor(BB);
9611   const BasicBlock *PredBB;
9612   if (ContainingLoop && ContainingLoop->getHeader() == BB)
9613     PredBB = ContainingLoop->getLoopPredecessor();
9614   else
9615     PredBB = BB->getSinglePredecessor();
9616   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
9617        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9618     if (ProveViaGuard(Pair.first))
9619       return true;
9620 
9621     const BranchInst *LoopEntryPredicate =
9622         dyn_cast<BranchInst>(Pair.first->getTerminator());
9623     if (!LoopEntryPredicate ||
9624         LoopEntryPredicate->isUnconditional())
9625       continue;
9626 
9627     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9628                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9629       return true;
9630   }
9631 
9632   // Check conditions due to any @llvm.assume intrinsics.
9633   for (auto &AssumeVH : AC.assumptions()) {
9634     if (!AssumeVH)
9635       continue;
9636     auto *CI = cast<CallInst>(AssumeVH);
9637     if (!DT.dominates(CI, BB))
9638       continue;
9639 
9640     if (ProveViaCond(CI->getArgOperand(0), false))
9641       return true;
9642   }
9643 
9644   return false;
9645 }
9646 
9647 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9648                                                ICmpInst::Predicate Pred,
9649                                                const SCEV *LHS,
9650                                                const SCEV *RHS) {
9651   // Interpret a null as meaning no loop, where there is obviously no guard
9652   // (interprocedural conditions notwithstanding).
9653   if (!L)
9654     return false;
9655 
9656   // Both LHS and RHS must be available at loop entry.
9657   assert(isAvailableAtLoopEntry(LHS, L) &&
9658          "LHS is not available at Loop Entry");
9659   assert(isAvailableAtLoopEntry(RHS, L) &&
9660          "RHS is not available at Loop Entry");
9661   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
9662 }
9663 
9664 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9665                                     const SCEV *RHS,
9666                                     const Value *FoundCondValue, bool Inverse,
9667                                     const Instruction *Context) {
9668   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9669     return false;
9670 
9671   auto ClearOnExit =
9672       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9673 
9674   // Recursively handle And and Or conditions.
9675   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9676     if (BO->getOpcode() == Instruction::And) {
9677       if (!Inverse)
9678         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
9679                              Context) ||
9680                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
9681                              Context);
9682     } else if (BO->getOpcode() == Instruction::Or) {
9683       if (Inverse)
9684         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
9685                              Context) ||
9686                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
9687                              Context);
9688     }
9689   }
9690 
9691   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9692   if (!ICI) return false;
9693 
9694   // Now that we found a conditional branch that dominates the loop or controls
9695   // the loop latch. Check to see if it is the comparison we are looking for.
9696   ICmpInst::Predicate FoundPred;
9697   if (Inverse)
9698     FoundPred = ICI->getInversePredicate();
9699   else
9700     FoundPred = ICI->getPredicate();
9701 
9702   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9703   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9704 
9705   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
9706 }
9707 
9708 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9709                                     const SCEV *RHS,
9710                                     ICmpInst::Predicate FoundPred,
9711                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
9712                                     const Instruction *Context) {
9713   // Balance the types.
9714   if (getTypeSizeInBits(LHS->getType()) <
9715       getTypeSizeInBits(FoundLHS->getType())) {
9716     if (CmpInst::isSigned(Pred)) {
9717       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9718       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9719     } else {
9720       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9721       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9722     }
9723   } else if (getTypeSizeInBits(LHS->getType()) >
9724       getTypeSizeInBits(FoundLHS->getType())) {
9725     if (CmpInst::isSigned(FoundPred)) {
9726       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9727       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9728     } else {
9729       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9730       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9731     }
9732   }
9733 
9734   // Canonicalize the query to match the way instcombine will have
9735   // canonicalized the comparison.
9736   if (SimplifyICmpOperands(Pred, LHS, RHS))
9737     if (LHS == RHS)
9738       return CmpInst::isTrueWhenEqual(Pred);
9739   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9740     if (FoundLHS == FoundRHS)
9741       return CmpInst::isFalseWhenEqual(FoundPred);
9742 
9743   // Check to see if we can make the LHS or RHS match.
9744   if (LHS == FoundRHS || RHS == FoundLHS) {
9745     if (isa<SCEVConstant>(RHS)) {
9746       std::swap(FoundLHS, FoundRHS);
9747       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9748     } else {
9749       std::swap(LHS, RHS);
9750       Pred = ICmpInst::getSwappedPredicate(Pred);
9751     }
9752   }
9753 
9754   // Check whether the found predicate is the same as the desired predicate.
9755   if (FoundPred == Pred)
9756     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
9757 
9758   // Check whether swapping the found predicate makes it the same as the
9759   // desired predicate.
9760   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9761     if (isa<SCEVConstant>(RHS))
9762       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
9763     else
9764       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
9765                                    LHS, FoundLHS, FoundRHS, Context);
9766   }
9767 
9768   // Unsigned comparison is the same as signed comparison when both the operands
9769   // are non-negative.
9770   if (CmpInst::isUnsigned(FoundPred) &&
9771       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9772       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9773     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
9774 
9775   // Check if we can make progress by sharpening ranges.
9776   if (FoundPred == ICmpInst::ICMP_NE &&
9777       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9778 
9779     const SCEVConstant *C = nullptr;
9780     const SCEV *V = nullptr;
9781 
9782     if (isa<SCEVConstant>(FoundLHS)) {
9783       C = cast<SCEVConstant>(FoundLHS);
9784       V = FoundRHS;
9785     } else {
9786       C = cast<SCEVConstant>(FoundRHS);
9787       V = FoundLHS;
9788     }
9789 
9790     // The guarding predicate tells us that C != V. If the known range
9791     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9792     // range we consider has to correspond to same signedness as the
9793     // predicate we're interested in folding.
9794 
9795     APInt Min = ICmpInst::isSigned(Pred) ?
9796         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9797 
9798     if (Min == C->getAPInt()) {
9799       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9800       // This is true even if (Min + 1) wraps around -- in case of
9801       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9802 
9803       APInt SharperMin = Min + 1;
9804 
9805       switch (Pred) {
9806         case ICmpInst::ICMP_SGE:
9807         case ICmpInst::ICMP_UGE:
9808           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9809           // RHS, we're done.
9810           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
9811                                     Context))
9812             return true;
9813           LLVM_FALLTHROUGH;
9814 
9815         case ICmpInst::ICMP_SGT:
9816         case ICmpInst::ICMP_UGT:
9817           // We know from the range information that (V `Pred` Min ||
9818           // V == Min).  We know from the guarding condition that !(V
9819           // == Min).  This gives us
9820           //
9821           //       V `Pred` Min || V == Min && !(V == Min)
9822           //   =>  V `Pred` Min
9823           //
9824           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9825 
9826           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
9827                                     Context))
9828             return true;
9829           break;
9830 
9831         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
9832         case ICmpInst::ICMP_SLE:
9833         case ICmpInst::ICMP_ULE:
9834           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9835                                     LHS, V, getConstant(SharperMin), Context))
9836             return true;
9837           LLVM_FALLTHROUGH;
9838 
9839         case ICmpInst::ICMP_SLT:
9840         case ICmpInst::ICMP_ULT:
9841           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9842                                     LHS, V, getConstant(Min), Context))
9843             return true;
9844           break;
9845 
9846         default:
9847           // No change
9848           break;
9849       }
9850     }
9851   }
9852 
9853   // Check whether the actual condition is beyond sufficient.
9854   if (FoundPred == ICmpInst::ICMP_EQ)
9855     if (ICmpInst::isTrueWhenEqual(Pred))
9856       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
9857         return true;
9858   if (Pred == ICmpInst::ICMP_NE)
9859     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9860       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
9861                                 Context))
9862         return true;
9863 
9864   // Otherwise assume the worst.
9865   return false;
9866 }
9867 
9868 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9869                                      const SCEV *&L, const SCEV *&R,
9870                                      SCEV::NoWrapFlags &Flags) {
9871   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9872   if (!AE || AE->getNumOperands() != 2)
9873     return false;
9874 
9875   L = AE->getOperand(0);
9876   R = AE->getOperand(1);
9877   Flags = AE->getNoWrapFlags();
9878   return true;
9879 }
9880 
9881 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9882                                                            const SCEV *Less) {
9883   // We avoid subtracting expressions here because this function is usually
9884   // fairly deep in the call stack (i.e. is called many times).
9885 
9886   // X - X = 0.
9887   if (More == Less)
9888     return APInt(getTypeSizeInBits(More->getType()), 0);
9889 
9890   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9891     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9892     const auto *MAR = cast<SCEVAddRecExpr>(More);
9893 
9894     if (LAR->getLoop() != MAR->getLoop())
9895       return None;
9896 
9897     // We look at affine expressions only; not for correctness but to keep
9898     // getStepRecurrence cheap.
9899     if (!LAR->isAffine() || !MAR->isAffine())
9900       return None;
9901 
9902     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9903       return None;
9904 
9905     Less = LAR->getStart();
9906     More = MAR->getStart();
9907 
9908     // fall through
9909   }
9910 
9911   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9912     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9913     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9914     return M - L;
9915   }
9916 
9917   SCEV::NoWrapFlags Flags;
9918   const SCEV *LLess = nullptr, *RLess = nullptr;
9919   const SCEV *LMore = nullptr, *RMore = nullptr;
9920   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9921   // Compare (X + C1) vs X.
9922   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9923     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9924       if (RLess == More)
9925         return -(C1->getAPInt());
9926 
9927   // Compare X vs (X + C2).
9928   if (splitBinaryAdd(More, LMore, RMore, Flags))
9929     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9930       if (RMore == Less)
9931         return C2->getAPInt();
9932 
9933   // Compare (X + C1) vs (X + C2).
9934   if (C1 && C2 && RLess == RMore)
9935     return C2->getAPInt() - C1->getAPInt();
9936 
9937   return None;
9938 }
9939 
9940 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
9941     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9942     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
9943   // Try to recognize the following pattern:
9944   //
9945   //   FoundRHS = ...
9946   // ...
9947   // loop:
9948   //   FoundLHS = {Start,+,W}
9949   // context_bb: // Basic block from the same loop
9950   //   known(Pred, FoundLHS, FoundRHS)
9951   //
9952   // If some predicate is known in the context of a loop, it is also known on
9953   // each iteration of this loop, including the first iteration. Therefore, in
9954   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
9955   // prove the original pred using this fact.
9956   if (!Context)
9957     return false;
9958   const BasicBlock *ContextBB = Context->getParent();
9959   // Make sure AR varies in the context block.
9960   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
9961     const Loop *L = AR->getLoop();
9962     // Make sure that context belongs to the loop and executes on 1st iteration
9963     // (if it ever executes at all).
9964     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
9965       return false;
9966     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
9967       return false;
9968     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
9969   }
9970 
9971   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
9972     const Loop *L = AR->getLoop();
9973     // Make sure that context belongs to the loop and executes on 1st iteration
9974     // (if it ever executes at all).
9975     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
9976       return false;
9977     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
9978       return false;
9979     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
9980   }
9981 
9982   return false;
9983 }
9984 
9985 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9986     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9987     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9988   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9989     return false;
9990 
9991   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9992   if (!AddRecLHS)
9993     return false;
9994 
9995   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9996   if (!AddRecFoundLHS)
9997     return false;
9998 
9999   // We'd like to let SCEV reason about control dependencies, so we constrain
10000   // both the inequalities to be about add recurrences on the same loop.  This
10001   // way we can use isLoopEntryGuardedByCond later.
10002 
10003   const Loop *L = AddRecFoundLHS->getLoop();
10004   if (L != AddRecLHS->getLoop())
10005     return false;
10006 
10007   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10008   //
10009   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10010   //                                                                  ... (2)
10011   //
10012   // Informal proof for (2), assuming (1) [*]:
10013   //
10014   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10015   //
10016   // Then
10017   //
10018   //       FoundLHS s< FoundRHS s< INT_MIN - C
10019   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10020   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10021   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10022   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10023   // <=>  FoundLHS + C s< FoundRHS + C
10024   //
10025   // [*]: (1) can be proved by ruling out overflow.
10026   //
10027   // [**]: This can be proved by analyzing all the four possibilities:
10028   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10029   //    (A s>= 0, B s>= 0).
10030   //
10031   // Note:
10032   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10033   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10034   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10035   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10036   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10037   // C)".
10038 
10039   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10040   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10041   if (!LDiff || !RDiff || *LDiff != *RDiff)
10042     return false;
10043 
10044   if (LDiff->isMinValue())
10045     return true;
10046 
10047   APInt FoundRHSLimit;
10048 
10049   if (Pred == CmpInst::ICMP_ULT) {
10050     FoundRHSLimit = -(*RDiff);
10051   } else {
10052     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10053     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10054   }
10055 
10056   // Try to prove (1) or (2), as needed.
10057   return isAvailableAtLoopEntry(FoundRHS, L) &&
10058          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10059                                   getConstant(FoundRHSLimit));
10060 }
10061 
10062 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10063                                         const SCEV *LHS, const SCEV *RHS,
10064                                         const SCEV *FoundLHS,
10065                                         const SCEV *FoundRHS, unsigned Depth) {
10066   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10067 
10068   auto ClearOnExit = make_scope_exit([&]() {
10069     if (LPhi) {
10070       bool Erased = PendingMerges.erase(LPhi);
10071       assert(Erased && "Failed to erase LPhi!");
10072       (void)Erased;
10073     }
10074     if (RPhi) {
10075       bool Erased = PendingMerges.erase(RPhi);
10076       assert(Erased && "Failed to erase RPhi!");
10077       (void)Erased;
10078     }
10079   });
10080 
10081   // Find respective Phis and check that they are not being pending.
10082   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10083     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10084       if (!PendingMerges.insert(Phi).second)
10085         return false;
10086       LPhi = Phi;
10087     }
10088   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10089     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10090       // If we detect a loop of Phi nodes being processed by this method, for
10091       // example:
10092       //
10093       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10094       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10095       //
10096       // we don't want to deal with a case that complex, so return conservative
10097       // answer false.
10098       if (!PendingMerges.insert(Phi).second)
10099         return false;
10100       RPhi = Phi;
10101     }
10102 
10103   // If none of LHS, RHS is a Phi, nothing to do here.
10104   if (!LPhi && !RPhi)
10105     return false;
10106 
10107   // If there is a SCEVUnknown Phi we are interested in, make it left.
10108   if (!LPhi) {
10109     std::swap(LHS, RHS);
10110     std::swap(FoundLHS, FoundRHS);
10111     std::swap(LPhi, RPhi);
10112     Pred = ICmpInst::getSwappedPredicate(Pred);
10113   }
10114 
10115   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10116   const BasicBlock *LBB = LPhi->getParent();
10117   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10118 
10119   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10120     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10121            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10122            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10123   };
10124 
10125   if (RPhi && RPhi->getParent() == LBB) {
10126     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10127     // If we compare two Phis from the same block, and for each entry block
10128     // the predicate is true for incoming values from this block, then the
10129     // predicate is also true for the Phis.
10130     for (const BasicBlock *IncBB : predecessors(LBB)) {
10131       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10132       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10133       if (!ProvedEasily(L, R))
10134         return false;
10135     }
10136   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10137     // Case two: RHS is also a Phi from the same basic block, and it is an
10138     // AddRec. It means that there is a loop which has both AddRec and Unknown
10139     // PHIs, for it we can compare incoming values of AddRec from above the loop
10140     // and latch with their respective incoming values of LPhi.
10141     // TODO: Generalize to handle loops with many inputs in a header.
10142     if (LPhi->getNumIncomingValues() != 2) return false;
10143 
10144     auto *RLoop = RAR->getLoop();
10145     auto *Predecessor = RLoop->getLoopPredecessor();
10146     assert(Predecessor && "Loop with AddRec with no predecessor?");
10147     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10148     if (!ProvedEasily(L1, RAR->getStart()))
10149       return false;
10150     auto *Latch = RLoop->getLoopLatch();
10151     assert(Latch && "Loop with AddRec with no latch?");
10152     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10153     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10154       return false;
10155   } else {
10156     // In all other cases go over inputs of LHS and compare each of them to RHS,
10157     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10158     // At this point RHS is either a non-Phi, or it is a Phi from some block
10159     // different from LBB.
10160     for (const BasicBlock *IncBB : predecessors(LBB)) {
10161       // Check that RHS is available in this block.
10162       if (!dominates(RHS, IncBB))
10163         return false;
10164       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10165       if (!ProvedEasily(L, RHS))
10166         return false;
10167     }
10168   }
10169   return true;
10170 }
10171 
10172 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10173                                             const SCEV *LHS, const SCEV *RHS,
10174                                             const SCEV *FoundLHS,
10175                                             const SCEV *FoundRHS,
10176                                             const Instruction *Context) {
10177   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10178     return true;
10179 
10180   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10181     return true;
10182 
10183   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10184                                           Context))
10185     return true;
10186 
10187   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10188                                      FoundLHS, FoundRHS) ||
10189          // ~x < ~y --> x > y
10190          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10191                                      getNotSCEV(FoundRHS),
10192                                      getNotSCEV(FoundLHS));
10193 }
10194 
10195 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10196 template <typename MinMaxExprType>
10197 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10198                                  const SCEV *Candidate) {
10199   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10200   if (!MinMaxExpr)
10201     return false;
10202 
10203   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10204 }
10205 
10206 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10207                                            ICmpInst::Predicate Pred,
10208                                            const SCEV *LHS, const SCEV *RHS) {
10209   // If both sides are affine addrecs for the same loop, with equal
10210   // steps, and we know the recurrences don't wrap, then we only
10211   // need to check the predicate on the starting values.
10212 
10213   if (!ICmpInst::isRelational(Pred))
10214     return false;
10215 
10216   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10217   if (!LAR)
10218     return false;
10219   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10220   if (!RAR)
10221     return false;
10222   if (LAR->getLoop() != RAR->getLoop())
10223     return false;
10224   if (!LAR->isAffine() || !RAR->isAffine())
10225     return false;
10226 
10227   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10228     return false;
10229 
10230   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10231                          SCEV::FlagNSW : SCEV::FlagNUW;
10232   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10233     return false;
10234 
10235   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10236 }
10237 
10238 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10239 /// expression?
10240 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10241                                         ICmpInst::Predicate Pred,
10242                                         const SCEV *LHS, const SCEV *RHS) {
10243   switch (Pred) {
10244   default:
10245     return false;
10246 
10247   case ICmpInst::ICMP_SGE:
10248     std::swap(LHS, RHS);
10249     LLVM_FALLTHROUGH;
10250   case ICmpInst::ICMP_SLE:
10251     return
10252         // min(A, ...) <= A
10253         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10254         // A <= max(A, ...)
10255         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10256 
10257   case ICmpInst::ICMP_UGE:
10258     std::swap(LHS, RHS);
10259     LLVM_FALLTHROUGH;
10260   case ICmpInst::ICMP_ULE:
10261     return
10262         // min(A, ...) <= A
10263         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10264         // A <= max(A, ...)
10265         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10266   }
10267 
10268   llvm_unreachable("covered switch fell through?!");
10269 }
10270 
10271 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10272                                              const SCEV *LHS, const SCEV *RHS,
10273                                              const SCEV *FoundLHS,
10274                                              const SCEV *FoundRHS,
10275                                              unsigned Depth) {
10276   assert(getTypeSizeInBits(LHS->getType()) ==
10277              getTypeSizeInBits(RHS->getType()) &&
10278          "LHS and RHS have different sizes?");
10279   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10280              getTypeSizeInBits(FoundRHS->getType()) &&
10281          "FoundLHS and FoundRHS have different sizes?");
10282   // We want to avoid hurting the compile time with analysis of too big trees.
10283   if (Depth > MaxSCEVOperationsImplicationDepth)
10284     return false;
10285 
10286   // We only want to work with GT comparison so far.
10287   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10288     Pred = CmpInst::getSwappedPredicate(Pred);
10289     std::swap(LHS, RHS);
10290     std::swap(FoundLHS, FoundRHS);
10291   }
10292 
10293   // For unsigned, try to reduce it to corresponding signed comparison.
10294   if (Pred == ICmpInst::ICMP_UGT)
10295     // We can replace unsigned predicate with its signed counterpart if all
10296     // involved values are non-negative.
10297     // TODO: We could have better support for unsigned.
10298     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10299       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10300       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10301       // use this fact to prove that LHS and RHS are non-negative.
10302       const SCEV *MinusOne = getNegativeSCEV(getOne(LHS->getType()));
10303       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10304                                 FoundRHS) &&
10305           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10306                                 FoundRHS))
10307         Pred = ICmpInst::ICMP_SGT;
10308     }
10309 
10310   if (Pred != ICmpInst::ICMP_SGT)
10311     return false;
10312 
10313   auto GetOpFromSExt = [&](const SCEV *S) {
10314     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10315       return Ext->getOperand();
10316     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10317     // the constant in some cases.
10318     return S;
10319   };
10320 
10321   // Acquire values from extensions.
10322   auto *OrigLHS = LHS;
10323   auto *OrigFoundLHS = FoundLHS;
10324   LHS = GetOpFromSExt(LHS);
10325   FoundLHS = GetOpFromSExt(FoundLHS);
10326 
10327   // Is the SGT predicate can be proved trivially or using the found context.
10328   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10329     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10330            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10331                                   FoundRHS, Depth + 1);
10332   };
10333 
10334   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10335     // We want to avoid creation of any new non-constant SCEV. Since we are
10336     // going to compare the operands to RHS, we should be certain that we don't
10337     // need any size extensions for this. So let's decline all cases when the
10338     // sizes of types of LHS and RHS do not match.
10339     // TODO: Maybe try to get RHS from sext to catch more cases?
10340     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10341       return false;
10342 
10343     // Should not overflow.
10344     if (!LHSAddExpr->hasNoSignedWrap())
10345       return false;
10346 
10347     auto *LL = LHSAddExpr->getOperand(0);
10348     auto *LR = LHSAddExpr->getOperand(1);
10349     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10350 
10351     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10352     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10353       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10354     };
10355     // Try to prove the following rule:
10356     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10357     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10358     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10359       return true;
10360   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10361     Value *LL, *LR;
10362     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10363 
10364     using namespace llvm::PatternMatch;
10365 
10366     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10367       // Rules for division.
10368       // We are going to perform some comparisons with Denominator and its
10369       // derivative expressions. In general case, creating a SCEV for it may
10370       // lead to a complex analysis of the entire graph, and in particular it
10371       // can request trip count recalculation for the same loop. This would
10372       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10373       // this, we only want to create SCEVs that are constants in this section.
10374       // So we bail if Denominator is not a constant.
10375       if (!isa<ConstantInt>(LR))
10376         return false;
10377 
10378       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10379 
10380       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10381       // then a SCEV for the numerator already exists and matches with FoundLHS.
10382       auto *Numerator = getExistingSCEV(LL);
10383       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10384         return false;
10385 
10386       // Make sure that the numerator matches with FoundLHS and the denominator
10387       // is positive.
10388       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10389         return false;
10390 
10391       auto *DTy = Denominator->getType();
10392       auto *FRHSTy = FoundRHS->getType();
10393       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10394         // One of types is a pointer and another one is not. We cannot extend
10395         // them properly to a wider type, so let us just reject this case.
10396         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10397         // to avoid this check.
10398         return false;
10399 
10400       // Given that:
10401       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10402       auto *WTy = getWiderType(DTy, FRHSTy);
10403       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10404       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10405 
10406       // Try to prove the following rule:
10407       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10408       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10409       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10410       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10411       if (isKnownNonPositive(RHS) &&
10412           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10413         return true;
10414 
10415       // Try to prove the following rule:
10416       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10417       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10418       // If we divide it by Denominator > 2, then:
10419       // 1. If FoundLHS is negative, then the result is 0.
10420       // 2. If FoundLHS is non-negative, then the result is non-negative.
10421       // Anyways, the result is non-negative.
10422       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10423       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10424       if (isKnownNegative(RHS) &&
10425           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10426         return true;
10427     }
10428   }
10429 
10430   // If our expression contained SCEVUnknown Phis, and we split it down and now
10431   // need to prove something for them, try to prove the predicate for every
10432   // possible incoming values of those Phis.
10433   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10434     return true;
10435 
10436   return false;
10437 }
10438 
10439 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10440                                         const SCEV *LHS, const SCEV *RHS) {
10441   // zext x u<= sext x, sext x s<= zext x
10442   switch (Pred) {
10443   case ICmpInst::ICMP_SGE:
10444     std::swap(LHS, RHS);
10445     LLVM_FALLTHROUGH;
10446   case ICmpInst::ICMP_SLE: {
10447     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10448     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10449     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10450     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10451       return true;
10452     break;
10453   }
10454   case ICmpInst::ICMP_UGE:
10455     std::swap(LHS, RHS);
10456     LLVM_FALLTHROUGH;
10457   case ICmpInst::ICMP_ULE: {
10458     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10459     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10460     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10461     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10462       return true;
10463     break;
10464   }
10465   default:
10466     break;
10467   };
10468   return false;
10469 }
10470 
10471 bool
10472 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10473                                            const SCEV *LHS, const SCEV *RHS) {
10474   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10475          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10476          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10477          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10478          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10479 }
10480 
10481 bool
10482 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10483                                              const SCEV *LHS, const SCEV *RHS,
10484                                              const SCEV *FoundLHS,
10485                                              const SCEV *FoundRHS) {
10486   switch (Pred) {
10487   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10488   case ICmpInst::ICMP_EQ:
10489   case ICmpInst::ICMP_NE:
10490     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10491       return true;
10492     break;
10493   case ICmpInst::ICMP_SLT:
10494   case ICmpInst::ICMP_SLE:
10495     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10496         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10497       return true;
10498     break;
10499   case ICmpInst::ICMP_SGT:
10500   case ICmpInst::ICMP_SGE:
10501     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10502         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10503       return true;
10504     break;
10505   case ICmpInst::ICMP_ULT:
10506   case ICmpInst::ICMP_ULE:
10507     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10508         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10509       return true;
10510     break;
10511   case ICmpInst::ICMP_UGT:
10512   case ICmpInst::ICMP_UGE:
10513     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10514         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10515       return true;
10516     break;
10517   }
10518 
10519   // Maybe it can be proved via operations?
10520   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10521     return true;
10522 
10523   return false;
10524 }
10525 
10526 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10527                                                      const SCEV *LHS,
10528                                                      const SCEV *RHS,
10529                                                      const SCEV *FoundLHS,
10530                                                      const SCEV *FoundRHS) {
10531   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10532     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10533     // reduce the compile time impact of this optimization.
10534     return false;
10535 
10536   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10537   if (!Addend)
10538     return false;
10539 
10540   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10541 
10542   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10543   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10544   ConstantRange FoundLHSRange =
10545       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10546 
10547   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10548   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10549 
10550   // We can also compute the range of values for `LHS` that satisfy the
10551   // consequent, "`LHS` `Pred` `RHS`":
10552   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10553   ConstantRange SatisfyingLHSRange =
10554       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10555 
10556   // The antecedent implies the consequent if every value of `LHS` that
10557   // satisfies the antecedent also satisfies the consequent.
10558   return SatisfyingLHSRange.contains(LHSRange);
10559 }
10560 
10561 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10562                                          bool IsSigned, bool NoWrap) {
10563   assert(isKnownPositive(Stride) && "Positive stride expected!");
10564 
10565   if (NoWrap) return false;
10566 
10567   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10568   const SCEV *One = getOne(Stride->getType());
10569 
10570   if (IsSigned) {
10571     APInt MaxRHS = getSignedRangeMax(RHS);
10572     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10573     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10574 
10575     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10576     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10577   }
10578 
10579   APInt MaxRHS = getUnsignedRangeMax(RHS);
10580   APInt MaxValue = APInt::getMaxValue(BitWidth);
10581   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10582 
10583   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10584   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10585 }
10586 
10587 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10588                                          bool IsSigned, bool NoWrap) {
10589   if (NoWrap) return false;
10590 
10591   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10592   const SCEV *One = getOne(Stride->getType());
10593 
10594   if (IsSigned) {
10595     APInt MinRHS = getSignedRangeMin(RHS);
10596     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10597     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10598 
10599     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10600     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10601   }
10602 
10603   APInt MinRHS = getUnsignedRangeMin(RHS);
10604   APInt MinValue = APInt::getMinValue(BitWidth);
10605   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10606 
10607   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10608   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10609 }
10610 
10611 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10612                                             bool Equality) {
10613   const SCEV *One = getOne(Step->getType());
10614   Delta = Equality ? getAddExpr(Delta, Step)
10615                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10616   return getUDivExpr(Delta, Step);
10617 }
10618 
10619 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10620                                                     const SCEV *Stride,
10621                                                     const SCEV *End,
10622                                                     unsigned BitWidth,
10623                                                     bool IsSigned) {
10624 
10625   assert(!isKnownNonPositive(Stride) &&
10626          "Stride is expected strictly positive!");
10627   // Calculate the maximum backedge count based on the range of values
10628   // permitted by Start, End, and Stride.
10629   const SCEV *MaxBECount;
10630   APInt MinStart =
10631       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10632 
10633   APInt StrideForMaxBECount =
10634       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10635 
10636   // We already know that the stride is positive, so we paper over conservatism
10637   // in our range computation by forcing StrideForMaxBECount to be at least one.
10638   // In theory this is unnecessary, but we expect MaxBECount to be a
10639   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10640   // is nothing to constant fold it to).
10641   APInt One(BitWidth, 1, IsSigned);
10642   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10643 
10644   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10645                             : APInt::getMaxValue(BitWidth);
10646   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10647 
10648   // Although End can be a MAX expression we estimate MaxEnd considering only
10649   // the case End = RHS of the loop termination condition. This is safe because
10650   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10651   // taken count.
10652   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10653                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10654 
10655   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10656                               getConstant(StrideForMaxBECount) /* Step */,
10657                               false /* Equality */);
10658 
10659   return MaxBECount;
10660 }
10661 
10662 ScalarEvolution::ExitLimit
10663 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10664                                   const Loop *L, bool IsSigned,
10665                                   bool ControlsExit, bool AllowPredicates) {
10666   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10667 
10668   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10669   bool PredicatedIV = false;
10670 
10671   if (!IV && AllowPredicates) {
10672     // Try to make this an AddRec using runtime tests, in the first X
10673     // iterations of this loop, where X is the SCEV expression found by the
10674     // algorithm below.
10675     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10676     PredicatedIV = true;
10677   }
10678 
10679   // Avoid weird loops
10680   if (!IV || IV->getLoop() != L || !IV->isAffine())
10681     return getCouldNotCompute();
10682 
10683   bool NoWrap = ControlsExit &&
10684                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10685 
10686   const SCEV *Stride = IV->getStepRecurrence(*this);
10687 
10688   bool PositiveStride = isKnownPositive(Stride);
10689 
10690   // Avoid negative or zero stride values.
10691   if (!PositiveStride) {
10692     // We can compute the correct backedge taken count for loops with unknown
10693     // strides if we can prove that the loop is not an infinite loop with side
10694     // effects. Here's the loop structure we are trying to handle -
10695     //
10696     // i = start
10697     // do {
10698     //   A[i] = i;
10699     //   i += s;
10700     // } while (i < end);
10701     //
10702     // The backedge taken count for such loops is evaluated as -
10703     // (max(end, start + stride) - start - 1) /u stride
10704     //
10705     // The additional preconditions that we need to check to prove correctness
10706     // of the above formula is as follows -
10707     //
10708     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10709     //    NoWrap flag).
10710     // b) loop is single exit with no side effects.
10711     //
10712     //
10713     // Precondition a) implies that if the stride is negative, this is a single
10714     // trip loop. The backedge taken count formula reduces to zero in this case.
10715     //
10716     // Precondition b) implies that the unknown stride cannot be zero otherwise
10717     // we have UB.
10718     //
10719     // The positive stride case is the same as isKnownPositive(Stride) returning
10720     // true (original behavior of the function).
10721     //
10722     // We want to make sure that the stride is truly unknown as there are edge
10723     // cases where ScalarEvolution propagates no wrap flags to the
10724     // post-increment/decrement IV even though the increment/decrement operation
10725     // itself is wrapping. The computed backedge taken count may be wrong in
10726     // such cases. This is prevented by checking that the stride is not known to
10727     // be either positive or non-positive. For example, no wrap flags are
10728     // propagated to the post-increment IV of this loop with a trip count of 2 -
10729     //
10730     // unsigned char i;
10731     // for(i=127; i<128; i+=129)
10732     //   A[i] = i;
10733     //
10734     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10735         !loopHasNoSideEffects(L))
10736       return getCouldNotCompute();
10737   } else if (!Stride->isOne() &&
10738              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10739     // Avoid proven overflow cases: this will ensure that the backedge taken
10740     // count will not generate any unsigned overflow. Relaxed no-overflow
10741     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10742     // undefined behaviors like the case of C language.
10743     return getCouldNotCompute();
10744 
10745   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10746                                       : ICmpInst::ICMP_ULT;
10747   const SCEV *Start = IV->getStart();
10748   const SCEV *End = RHS;
10749   // When the RHS is not invariant, we do not know the end bound of the loop and
10750   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10751   // calculate the MaxBECount, given the start, stride and max value for the end
10752   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10753   // checked above).
10754   if (!isLoopInvariant(RHS, L)) {
10755     const SCEV *MaxBECount = computeMaxBECountForLT(
10756         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10757     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10758                      false /*MaxOrZero*/, Predicates);
10759   }
10760   // If the backedge is taken at least once, then it will be taken
10761   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10762   // is the LHS value of the less-than comparison the first time it is evaluated
10763   // and End is the RHS.
10764   const SCEV *BECountIfBackedgeTaken =
10765     computeBECount(getMinusSCEV(End, Start), Stride, false);
10766   // If the loop entry is guarded by the result of the backedge test of the
10767   // first loop iteration, then we know the backedge will be taken at least
10768   // once and so the backedge taken count is as above. If not then we use the
10769   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10770   // as if the backedge is taken at least once max(End,Start) is End and so the
10771   // result is as above, and if not max(End,Start) is Start so we get a backedge
10772   // count of zero.
10773   const SCEV *BECount;
10774   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10775     BECount = BECountIfBackedgeTaken;
10776   else {
10777     // If we know that RHS >= Start in the context of loop, then we know that
10778     // max(RHS, Start) = RHS at this point.
10779     if (isLoopEntryGuardedByCond(
10780             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
10781       End = RHS;
10782     else
10783       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10784     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10785   }
10786 
10787   const SCEV *MaxBECount;
10788   bool MaxOrZero = false;
10789   if (isa<SCEVConstant>(BECount))
10790     MaxBECount = BECount;
10791   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10792     // If we know exactly how many times the backedge will be taken if it's
10793     // taken at least once, then the backedge count will either be that or
10794     // zero.
10795     MaxBECount = BECountIfBackedgeTaken;
10796     MaxOrZero = true;
10797   } else {
10798     MaxBECount = computeMaxBECountForLT(
10799         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10800   }
10801 
10802   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10803       !isa<SCEVCouldNotCompute>(BECount))
10804     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10805 
10806   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10807 }
10808 
10809 ScalarEvolution::ExitLimit
10810 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10811                                      const Loop *L, bool IsSigned,
10812                                      bool ControlsExit, bool AllowPredicates) {
10813   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10814   // We handle only IV > Invariant
10815   if (!isLoopInvariant(RHS, L))
10816     return getCouldNotCompute();
10817 
10818   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10819   if (!IV && AllowPredicates)
10820     // Try to make this an AddRec using runtime tests, in the first X
10821     // iterations of this loop, where X is the SCEV expression found by the
10822     // algorithm below.
10823     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10824 
10825   // Avoid weird loops
10826   if (!IV || IV->getLoop() != L || !IV->isAffine())
10827     return getCouldNotCompute();
10828 
10829   bool NoWrap = ControlsExit &&
10830                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10831 
10832   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10833 
10834   // Avoid negative or zero stride values
10835   if (!isKnownPositive(Stride))
10836     return getCouldNotCompute();
10837 
10838   // Avoid proven overflow cases: this will ensure that the backedge taken count
10839   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10840   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10841   // behaviors like the case of C language.
10842   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10843     return getCouldNotCompute();
10844 
10845   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10846                                       : ICmpInst::ICMP_UGT;
10847 
10848   const SCEV *Start = IV->getStart();
10849   const SCEV *End = RHS;
10850   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
10851     // If we know that Start >= RHS in the context of loop, then we know that
10852     // min(RHS, Start) = RHS at this point.
10853     if (isLoopEntryGuardedByCond(
10854             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
10855       End = RHS;
10856     else
10857       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10858   }
10859 
10860   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10861 
10862   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10863                             : getUnsignedRangeMax(Start);
10864 
10865   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10866                              : getUnsignedRangeMin(Stride);
10867 
10868   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10869   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10870                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10871 
10872   // Although End can be a MIN expression we estimate MinEnd considering only
10873   // the case End = RHS. This is safe because in the other case (Start - End)
10874   // is zero, leading to a zero maximum backedge taken count.
10875   APInt MinEnd =
10876     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10877              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10878 
10879   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10880                                ? BECount
10881                                : computeBECount(getConstant(MaxStart - MinEnd),
10882                                                 getConstant(MinStride), false);
10883 
10884   if (isa<SCEVCouldNotCompute>(MaxBECount))
10885     MaxBECount = BECount;
10886 
10887   return ExitLimit(BECount, MaxBECount, false, Predicates);
10888 }
10889 
10890 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10891                                                     ScalarEvolution &SE) const {
10892   if (Range.isFullSet())  // Infinite loop.
10893     return SE.getCouldNotCompute();
10894 
10895   // If the start is a non-zero constant, shift the range to simplify things.
10896   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10897     if (!SC->getValue()->isZero()) {
10898       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10899       Operands[0] = SE.getZero(SC->getType());
10900       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10901                                              getNoWrapFlags(FlagNW));
10902       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10903         return ShiftedAddRec->getNumIterationsInRange(
10904             Range.subtract(SC->getAPInt()), SE);
10905       // This is strange and shouldn't happen.
10906       return SE.getCouldNotCompute();
10907     }
10908 
10909   // The only time we can solve this is when we have all constant indices.
10910   // Otherwise, we cannot determine the overflow conditions.
10911   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10912     return SE.getCouldNotCompute();
10913 
10914   // Okay at this point we know that all elements of the chrec are constants and
10915   // that the start element is zero.
10916 
10917   // First check to see if the range contains zero.  If not, the first
10918   // iteration exits.
10919   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10920   if (!Range.contains(APInt(BitWidth, 0)))
10921     return SE.getZero(getType());
10922 
10923   if (isAffine()) {
10924     // If this is an affine expression then we have this situation:
10925     //   Solve {0,+,A} in Range  ===  Ax in Range
10926 
10927     // We know that zero is in the range.  If A is positive then we know that
10928     // the upper value of the range must be the first possible exit value.
10929     // If A is negative then the lower of the range is the last possible loop
10930     // value.  Also note that we already checked for a full range.
10931     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10932     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10933 
10934     // The exit value should be (End+A)/A.
10935     APInt ExitVal = (End + A).udiv(A);
10936     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10937 
10938     // Evaluate at the exit value.  If we really did fall out of the valid
10939     // range, then we computed our trip count, otherwise wrap around or other
10940     // things must have happened.
10941     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10942     if (Range.contains(Val->getValue()))
10943       return SE.getCouldNotCompute();  // Something strange happened
10944 
10945     // Ensure that the previous value is in the range.  This is a sanity check.
10946     assert(Range.contains(
10947            EvaluateConstantChrecAtConstant(this,
10948            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10949            "Linear scev computation is off in a bad way!");
10950     return SE.getConstant(ExitValue);
10951   }
10952 
10953   if (isQuadratic()) {
10954     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10955       return SE.getConstant(S.getValue());
10956   }
10957 
10958   return SE.getCouldNotCompute();
10959 }
10960 
10961 const SCEVAddRecExpr *
10962 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10963   assert(getNumOperands() > 1 && "AddRec with zero step?");
10964   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10965   // but in this case we cannot guarantee that the value returned will be an
10966   // AddRec because SCEV does not have a fixed point where it stops
10967   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10968   // may happen if we reach arithmetic depth limit while simplifying. So we
10969   // construct the returned value explicitly.
10970   SmallVector<const SCEV *, 3> Ops;
10971   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10972   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10973   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10974     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10975   // We know that the last operand is not a constant zero (otherwise it would
10976   // have been popped out earlier). This guarantees us that if the result has
10977   // the same last operand, then it will also not be popped out, meaning that
10978   // the returned value will be an AddRec.
10979   const SCEV *Last = getOperand(getNumOperands() - 1);
10980   assert(!Last->isZero() && "Recurrency with zero step?");
10981   Ops.push_back(Last);
10982   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10983                                                SCEV::FlagAnyWrap));
10984 }
10985 
10986 // Return true when S contains at least an undef value.
10987 static inline bool containsUndefs(const SCEV *S) {
10988   return SCEVExprContains(S, [](const SCEV *S) {
10989     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10990       return isa<UndefValue>(SU->getValue());
10991     return false;
10992   });
10993 }
10994 
10995 namespace {
10996 
10997 // Collect all steps of SCEV expressions.
10998 struct SCEVCollectStrides {
10999   ScalarEvolution &SE;
11000   SmallVectorImpl<const SCEV *> &Strides;
11001 
11002   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11003       : SE(SE), Strides(S) {}
11004 
11005   bool follow(const SCEV *S) {
11006     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11007       Strides.push_back(AR->getStepRecurrence(SE));
11008     return true;
11009   }
11010 
11011   bool isDone() const { return false; }
11012 };
11013 
11014 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11015 struct SCEVCollectTerms {
11016   SmallVectorImpl<const SCEV *> &Terms;
11017 
11018   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11019 
11020   bool follow(const SCEV *S) {
11021     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11022         isa<SCEVSignExtendExpr>(S)) {
11023       if (!containsUndefs(S))
11024         Terms.push_back(S);
11025 
11026       // Stop recursion: once we collected a term, do not walk its operands.
11027       return false;
11028     }
11029 
11030     // Keep looking.
11031     return true;
11032   }
11033 
11034   bool isDone() const { return false; }
11035 };
11036 
11037 // Check if a SCEV contains an AddRecExpr.
11038 struct SCEVHasAddRec {
11039   bool &ContainsAddRec;
11040 
11041   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11042     ContainsAddRec = false;
11043   }
11044 
11045   bool follow(const SCEV *S) {
11046     if (isa<SCEVAddRecExpr>(S)) {
11047       ContainsAddRec = true;
11048 
11049       // Stop recursion: once we collected a term, do not walk its operands.
11050       return false;
11051     }
11052 
11053     // Keep looking.
11054     return true;
11055   }
11056 
11057   bool isDone() const { return false; }
11058 };
11059 
11060 // Find factors that are multiplied with an expression that (possibly as a
11061 // subexpression) contains an AddRecExpr. In the expression:
11062 //
11063 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11064 //
11065 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11066 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11067 // parameters as they form a product with an induction variable.
11068 //
11069 // This collector expects all array size parameters to be in the same MulExpr.
11070 // It might be necessary to later add support for collecting parameters that are
11071 // spread over different nested MulExpr.
11072 struct SCEVCollectAddRecMultiplies {
11073   SmallVectorImpl<const SCEV *> &Terms;
11074   ScalarEvolution &SE;
11075 
11076   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11077       : Terms(T), SE(SE) {}
11078 
11079   bool follow(const SCEV *S) {
11080     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11081       bool HasAddRec = false;
11082       SmallVector<const SCEV *, 0> Operands;
11083       for (auto Op : Mul->operands()) {
11084         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11085         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11086           Operands.push_back(Op);
11087         } else if (Unknown) {
11088           HasAddRec = true;
11089         } else {
11090           bool ContainsAddRec = false;
11091           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11092           visitAll(Op, ContiansAddRec);
11093           HasAddRec |= ContainsAddRec;
11094         }
11095       }
11096       if (Operands.size() == 0)
11097         return true;
11098 
11099       if (!HasAddRec)
11100         return false;
11101 
11102       Terms.push_back(SE.getMulExpr(Operands));
11103       // Stop recursion: once we collected a term, do not walk its operands.
11104       return false;
11105     }
11106 
11107     // Keep looking.
11108     return true;
11109   }
11110 
11111   bool isDone() const { return false; }
11112 };
11113 
11114 } // end anonymous namespace
11115 
11116 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11117 /// two places:
11118 ///   1) The strides of AddRec expressions.
11119 ///   2) Unknowns that are multiplied with AddRec expressions.
11120 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11121     SmallVectorImpl<const SCEV *> &Terms) {
11122   SmallVector<const SCEV *, 4> Strides;
11123   SCEVCollectStrides StrideCollector(*this, Strides);
11124   visitAll(Expr, StrideCollector);
11125 
11126   LLVM_DEBUG({
11127     dbgs() << "Strides:\n";
11128     for (const SCEV *S : Strides)
11129       dbgs() << *S << "\n";
11130   });
11131 
11132   for (const SCEV *S : Strides) {
11133     SCEVCollectTerms TermCollector(Terms);
11134     visitAll(S, TermCollector);
11135   }
11136 
11137   LLVM_DEBUG({
11138     dbgs() << "Terms:\n";
11139     for (const SCEV *T : Terms)
11140       dbgs() << *T << "\n";
11141   });
11142 
11143   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11144   visitAll(Expr, MulCollector);
11145 }
11146 
11147 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11148                                    SmallVectorImpl<const SCEV *> &Terms,
11149                                    SmallVectorImpl<const SCEV *> &Sizes) {
11150   int Last = Terms.size() - 1;
11151   const SCEV *Step = Terms[Last];
11152 
11153   // End of recursion.
11154   if (Last == 0) {
11155     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11156       SmallVector<const SCEV *, 2> Qs;
11157       for (const SCEV *Op : M->operands())
11158         if (!isa<SCEVConstant>(Op))
11159           Qs.push_back(Op);
11160 
11161       Step = SE.getMulExpr(Qs);
11162     }
11163 
11164     Sizes.push_back(Step);
11165     return true;
11166   }
11167 
11168   for (const SCEV *&Term : Terms) {
11169     // Normalize the terms before the next call to findArrayDimensionsRec.
11170     const SCEV *Q, *R;
11171     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11172 
11173     // Bail out when GCD does not evenly divide one of the terms.
11174     if (!R->isZero())
11175       return false;
11176 
11177     Term = Q;
11178   }
11179 
11180   // Remove all SCEVConstants.
11181   Terms.erase(
11182       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11183       Terms.end());
11184 
11185   if (Terms.size() > 0)
11186     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11187       return false;
11188 
11189   Sizes.push_back(Step);
11190   return true;
11191 }
11192 
11193 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11194 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11195   for (const SCEV *T : Terms)
11196     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11197       return true;
11198 
11199   return false;
11200 }
11201 
11202 // Return the number of product terms in S.
11203 static inline int numberOfTerms(const SCEV *S) {
11204   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11205     return Expr->getNumOperands();
11206   return 1;
11207 }
11208 
11209 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11210   if (isa<SCEVConstant>(T))
11211     return nullptr;
11212 
11213   if (isa<SCEVUnknown>(T))
11214     return T;
11215 
11216   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11217     SmallVector<const SCEV *, 2> Factors;
11218     for (const SCEV *Op : M->operands())
11219       if (!isa<SCEVConstant>(Op))
11220         Factors.push_back(Op);
11221 
11222     return SE.getMulExpr(Factors);
11223   }
11224 
11225   return T;
11226 }
11227 
11228 /// Return the size of an element read or written by Inst.
11229 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11230   Type *Ty;
11231   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11232     Ty = Store->getValueOperand()->getType();
11233   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11234     Ty = Load->getType();
11235   else
11236     return nullptr;
11237 
11238   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11239   return getSizeOfExpr(ETy, Ty);
11240 }
11241 
11242 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11243                                           SmallVectorImpl<const SCEV *> &Sizes,
11244                                           const SCEV *ElementSize) {
11245   if (Terms.size() < 1 || !ElementSize)
11246     return;
11247 
11248   // Early return when Terms do not contain parameters: we do not delinearize
11249   // non parametric SCEVs.
11250   if (!containsParameters(Terms))
11251     return;
11252 
11253   LLVM_DEBUG({
11254     dbgs() << "Terms:\n";
11255     for (const SCEV *T : Terms)
11256       dbgs() << *T << "\n";
11257   });
11258 
11259   // Remove duplicates.
11260   array_pod_sort(Terms.begin(), Terms.end());
11261   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11262 
11263   // Put larger terms first.
11264   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11265     return numberOfTerms(LHS) > numberOfTerms(RHS);
11266   });
11267 
11268   // Try to divide all terms by the element size. If term is not divisible by
11269   // element size, proceed with the original term.
11270   for (const SCEV *&Term : Terms) {
11271     const SCEV *Q, *R;
11272     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11273     if (!Q->isZero())
11274       Term = Q;
11275   }
11276 
11277   SmallVector<const SCEV *, 4> NewTerms;
11278 
11279   // Remove constant factors.
11280   for (const SCEV *T : Terms)
11281     if (const SCEV *NewT = removeConstantFactors(*this, T))
11282       NewTerms.push_back(NewT);
11283 
11284   LLVM_DEBUG({
11285     dbgs() << "Terms after sorting:\n";
11286     for (const SCEV *T : NewTerms)
11287       dbgs() << *T << "\n";
11288   });
11289 
11290   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11291     Sizes.clear();
11292     return;
11293   }
11294 
11295   // The last element to be pushed into Sizes is the size of an element.
11296   Sizes.push_back(ElementSize);
11297 
11298   LLVM_DEBUG({
11299     dbgs() << "Sizes:\n";
11300     for (const SCEV *S : Sizes)
11301       dbgs() << *S << "\n";
11302   });
11303 }
11304 
11305 void ScalarEvolution::computeAccessFunctions(
11306     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11307     SmallVectorImpl<const SCEV *> &Sizes) {
11308   // Early exit in case this SCEV is not an affine multivariate function.
11309   if (Sizes.empty())
11310     return;
11311 
11312   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11313     if (!AR->isAffine())
11314       return;
11315 
11316   const SCEV *Res = Expr;
11317   int Last = Sizes.size() - 1;
11318   for (int i = Last; i >= 0; i--) {
11319     const SCEV *Q, *R;
11320     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11321 
11322     LLVM_DEBUG({
11323       dbgs() << "Res: " << *Res << "\n";
11324       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11325       dbgs() << "Res divided by Sizes[i]:\n";
11326       dbgs() << "Quotient: " << *Q << "\n";
11327       dbgs() << "Remainder: " << *R << "\n";
11328     });
11329 
11330     Res = Q;
11331 
11332     // Do not record the last subscript corresponding to the size of elements in
11333     // the array.
11334     if (i == Last) {
11335 
11336       // Bail out if the remainder is too complex.
11337       if (isa<SCEVAddRecExpr>(R)) {
11338         Subscripts.clear();
11339         Sizes.clear();
11340         return;
11341       }
11342 
11343       continue;
11344     }
11345 
11346     // Record the access function for the current subscript.
11347     Subscripts.push_back(R);
11348   }
11349 
11350   // Also push in last position the remainder of the last division: it will be
11351   // the access function of the innermost dimension.
11352   Subscripts.push_back(Res);
11353 
11354   std::reverse(Subscripts.begin(), Subscripts.end());
11355 
11356   LLVM_DEBUG({
11357     dbgs() << "Subscripts:\n";
11358     for (const SCEV *S : Subscripts)
11359       dbgs() << *S << "\n";
11360   });
11361 }
11362 
11363 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11364 /// sizes of an array access. Returns the remainder of the delinearization that
11365 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11366 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11367 /// expressions in the stride and base of a SCEV corresponding to the
11368 /// computation of a GCD (greatest common divisor) of base and stride.  When
11369 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11370 ///
11371 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11372 ///
11373 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11374 ///
11375 ///    for (long i = 0; i < n; i++)
11376 ///      for (long j = 0; j < m; j++)
11377 ///        for (long k = 0; k < o; k++)
11378 ///          A[i][j][k] = 1.0;
11379 ///  }
11380 ///
11381 /// the delinearization input is the following AddRec SCEV:
11382 ///
11383 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11384 ///
11385 /// From this SCEV, we are able to say that the base offset of the access is %A
11386 /// because it appears as an offset that does not divide any of the strides in
11387 /// the loops:
11388 ///
11389 ///  CHECK: Base offset: %A
11390 ///
11391 /// and then SCEV->delinearize determines the size of some of the dimensions of
11392 /// the array as these are the multiples by which the strides are happening:
11393 ///
11394 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11395 ///
11396 /// Note that the outermost dimension remains of UnknownSize because there are
11397 /// no strides that would help identifying the size of the last dimension: when
11398 /// the array has been statically allocated, one could compute the size of that
11399 /// dimension by dividing the overall size of the array by the size of the known
11400 /// dimensions: %m * %o * 8.
11401 ///
11402 /// Finally delinearize provides the access functions for the array reference
11403 /// that does correspond to A[i][j][k] of the above C testcase:
11404 ///
11405 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11406 ///
11407 /// The testcases are checking the output of a function pass:
11408 /// DelinearizationPass that walks through all loads and stores of a function
11409 /// asking for the SCEV of the memory access with respect to all enclosing
11410 /// loops, calling SCEV->delinearize on that and printing the results.
11411 void ScalarEvolution::delinearize(const SCEV *Expr,
11412                                  SmallVectorImpl<const SCEV *> &Subscripts,
11413                                  SmallVectorImpl<const SCEV *> &Sizes,
11414                                  const SCEV *ElementSize) {
11415   // First step: collect parametric terms.
11416   SmallVector<const SCEV *, 4> Terms;
11417   collectParametricTerms(Expr, Terms);
11418 
11419   if (Terms.empty())
11420     return;
11421 
11422   // Second step: find subscript sizes.
11423   findArrayDimensions(Terms, Sizes, ElementSize);
11424 
11425   if (Sizes.empty())
11426     return;
11427 
11428   // Third step: compute the access functions for each subscript.
11429   computeAccessFunctions(Expr, Subscripts, Sizes);
11430 
11431   if (Subscripts.empty())
11432     return;
11433 
11434   LLVM_DEBUG({
11435     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11436     dbgs() << "ArrayDecl[UnknownSize]";
11437     for (const SCEV *S : Sizes)
11438       dbgs() << "[" << *S << "]";
11439 
11440     dbgs() << "\nArrayRef";
11441     for (const SCEV *S : Subscripts)
11442       dbgs() << "[" << *S << "]";
11443     dbgs() << "\n";
11444   });
11445 }
11446 
11447 bool ScalarEvolution::getIndexExpressionsFromGEP(
11448     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11449     SmallVectorImpl<int> &Sizes) {
11450   assert(Subscripts.empty() && Sizes.empty() &&
11451          "Expected output lists to be empty on entry to this function.");
11452   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11453   Type *Ty = GEP->getPointerOperandType();
11454   bool DroppedFirstDim = false;
11455   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11456     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11457     if (i == 1) {
11458       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11459         Ty = PtrTy->getElementType();
11460       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11461         Ty = ArrayTy->getElementType();
11462       } else {
11463         Subscripts.clear();
11464         Sizes.clear();
11465         return false;
11466       }
11467       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11468         if (Const->getValue()->isZero()) {
11469           DroppedFirstDim = true;
11470           continue;
11471         }
11472       Subscripts.push_back(Expr);
11473       continue;
11474     }
11475 
11476     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11477     if (!ArrayTy) {
11478       Subscripts.clear();
11479       Sizes.clear();
11480       return false;
11481     }
11482 
11483     Subscripts.push_back(Expr);
11484     if (!(DroppedFirstDim && i == 2))
11485       Sizes.push_back(ArrayTy->getNumElements());
11486 
11487     Ty = ArrayTy->getElementType();
11488   }
11489   return !Subscripts.empty();
11490 }
11491 
11492 //===----------------------------------------------------------------------===//
11493 //                   SCEVCallbackVH Class Implementation
11494 //===----------------------------------------------------------------------===//
11495 
11496 void ScalarEvolution::SCEVCallbackVH::deleted() {
11497   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11498   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11499     SE->ConstantEvolutionLoopExitValue.erase(PN);
11500   SE->eraseValueFromMap(getValPtr());
11501   // this now dangles!
11502 }
11503 
11504 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11505   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11506 
11507   // Forget all the expressions associated with users of the old value,
11508   // so that future queries will recompute the expressions using the new
11509   // value.
11510   Value *Old = getValPtr();
11511   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11512   SmallPtrSet<User *, 8> Visited;
11513   while (!Worklist.empty()) {
11514     User *U = Worklist.pop_back_val();
11515     // Deleting the Old value will cause this to dangle. Postpone
11516     // that until everything else is done.
11517     if (U == Old)
11518       continue;
11519     if (!Visited.insert(U).second)
11520       continue;
11521     if (PHINode *PN = dyn_cast<PHINode>(U))
11522       SE->ConstantEvolutionLoopExitValue.erase(PN);
11523     SE->eraseValueFromMap(U);
11524     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11525   }
11526   // Delete the Old value.
11527   if (PHINode *PN = dyn_cast<PHINode>(Old))
11528     SE->ConstantEvolutionLoopExitValue.erase(PN);
11529   SE->eraseValueFromMap(Old);
11530   // this now dangles!
11531 }
11532 
11533 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11534   : CallbackVH(V), SE(se) {}
11535 
11536 //===----------------------------------------------------------------------===//
11537 //                   ScalarEvolution Class Implementation
11538 //===----------------------------------------------------------------------===//
11539 
11540 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11541                                  AssumptionCache &AC, DominatorTree &DT,
11542                                  LoopInfo &LI)
11543     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11544       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11545       LoopDispositions(64), BlockDispositions(64) {
11546   // To use guards for proving predicates, we need to scan every instruction in
11547   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11548   // time if the IR does not actually contain any calls to
11549   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11550   //
11551   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11552   // to _add_ guards to the module when there weren't any before, and wants
11553   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11554   // efficient in lieu of being smart in that rather obscure case.
11555 
11556   auto *GuardDecl = F.getParent()->getFunction(
11557       Intrinsic::getName(Intrinsic::experimental_guard));
11558   HasGuards = GuardDecl && !GuardDecl->use_empty();
11559 }
11560 
11561 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11562     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11563       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11564       ValueExprMap(std::move(Arg.ValueExprMap)),
11565       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11566       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11567       PendingMerges(std::move(Arg.PendingMerges)),
11568       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11569       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11570       PredicatedBackedgeTakenCounts(
11571           std::move(Arg.PredicatedBackedgeTakenCounts)),
11572       ConstantEvolutionLoopExitValue(
11573           std::move(Arg.ConstantEvolutionLoopExitValue)),
11574       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11575       LoopDispositions(std::move(Arg.LoopDispositions)),
11576       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11577       BlockDispositions(std::move(Arg.BlockDispositions)),
11578       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11579       SignedRanges(std::move(Arg.SignedRanges)),
11580       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11581       UniquePreds(std::move(Arg.UniquePreds)),
11582       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11583       LoopUsers(std::move(Arg.LoopUsers)),
11584       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11585       FirstUnknown(Arg.FirstUnknown) {
11586   Arg.FirstUnknown = nullptr;
11587 }
11588 
11589 ScalarEvolution::~ScalarEvolution() {
11590   // Iterate through all the SCEVUnknown instances and call their
11591   // destructors, so that they release their references to their values.
11592   for (SCEVUnknown *U = FirstUnknown; U;) {
11593     SCEVUnknown *Tmp = U;
11594     U = U->Next;
11595     Tmp->~SCEVUnknown();
11596   }
11597   FirstUnknown = nullptr;
11598 
11599   ExprValueMap.clear();
11600   ValueExprMap.clear();
11601   HasRecMap.clear();
11602 
11603   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11604   // that a loop had multiple computable exits.
11605   for (auto &BTCI : BackedgeTakenCounts)
11606     BTCI.second.clear();
11607   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11608     BTCI.second.clear();
11609 
11610   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11611   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11612   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11613   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11614   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11615 }
11616 
11617 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11618   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11619 }
11620 
11621 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11622                           const Loop *L) {
11623   // Print all inner loops first
11624   for (Loop *I : *L)
11625     PrintLoopInfo(OS, SE, I);
11626 
11627   OS << "Loop ";
11628   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11629   OS << ": ";
11630 
11631   SmallVector<BasicBlock *, 8> ExitingBlocks;
11632   L->getExitingBlocks(ExitingBlocks);
11633   if (ExitingBlocks.size() != 1)
11634     OS << "<multiple exits> ";
11635 
11636   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11637     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11638   else
11639     OS << "Unpredictable backedge-taken count.\n";
11640 
11641   if (ExitingBlocks.size() > 1)
11642     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11643       OS << "  exit count for " << ExitingBlock->getName() << ": "
11644          << *SE->getExitCount(L, ExitingBlock) << "\n";
11645     }
11646 
11647   OS << "Loop ";
11648   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11649   OS << ": ";
11650 
11651   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11652     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11653     if (SE->isBackedgeTakenCountMaxOrZero(L))
11654       OS << ", actual taken count either this or zero.";
11655   } else {
11656     OS << "Unpredictable max backedge-taken count. ";
11657   }
11658 
11659   OS << "\n"
11660         "Loop ";
11661   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11662   OS << ": ";
11663 
11664   SCEVUnionPredicate Pred;
11665   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11666   if (!isa<SCEVCouldNotCompute>(PBT)) {
11667     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11668     OS << " Predicates:\n";
11669     Pred.print(OS, 4);
11670   } else {
11671     OS << "Unpredictable predicated backedge-taken count. ";
11672   }
11673   OS << "\n";
11674 
11675   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11676     OS << "Loop ";
11677     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11678     OS << ": ";
11679     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11680   }
11681 }
11682 
11683 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11684   switch (LD) {
11685   case ScalarEvolution::LoopVariant:
11686     return "Variant";
11687   case ScalarEvolution::LoopInvariant:
11688     return "Invariant";
11689   case ScalarEvolution::LoopComputable:
11690     return "Computable";
11691   }
11692   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11693 }
11694 
11695 void ScalarEvolution::print(raw_ostream &OS) const {
11696   // ScalarEvolution's implementation of the print method is to print
11697   // out SCEV values of all instructions that are interesting. Doing
11698   // this potentially causes it to create new SCEV objects though,
11699   // which technically conflicts with the const qualifier. This isn't
11700   // observable from outside the class though, so casting away the
11701   // const isn't dangerous.
11702   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11703 
11704   if (ClassifyExpressions) {
11705     OS << "Classifying expressions for: ";
11706     F.printAsOperand(OS, /*PrintType=*/false);
11707     OS << "\n";
11708     for (Instruction &I : instructions(F))
11709       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11710         OS << I << '\n';
11711         OS << "  -->  ";
11712         const SCEV *SV = SE.getSCEV(&I);
11713         SV->print(OS);
11714         if (!isa<SCEVCouldNotCompute>(SV)) {
11715           OS << " U: ";
11716           SE.getUnsignedRange(SV).print(OS);
11717           OS << " S: ";
11718           SE.getSignedRange(SV).print(OS);
11719         }
11720 
11721         const Loop *L = LI.getLoopFor(I.getParent());
11722 
11723         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11724         if (AtUse != SV) {
11725           OS << "  -->  ";
11726           AtUse->print(OS);
11727           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11728             OS << " U: ";
11729             SE.getUnsignedRange(AtUse).print(OS);
11730             OS << " S: ";
11731             SE.getSignedRange(AtUse).print(OS);
11732           }
11733         }
11734 
11735         if (L) {
11736           OS << "\t\t" "Exits: ";
11737           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11738           if (!SE.isLoopInvariant(ExitValue, L)) {
11739             OS << "<<Unknown>>";
11740           } else {
11741             OS << *ExitValue;
11742           }
11743 
11744           bool First = true;
11745           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11746             if (First) {
11747               OS << "\t\t" "LoopDispositions: { ";
11748               First = false;
11749             } else {
11750               OS << ", ";
11751             }
11752 
11753             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11754             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11755           }
11756 
11757           for (auto *InnerL : depth_first(L)) {
11758             if (InnerL == L)
11759               continue;
11760             if (First) {
11761               OS << "\t\t" "LoopDispositions: { ";
11762               First = false;
11763             } else {
11764               OS << ", ";
11765             }
11766 
11767             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11768             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11769           }
11770 
11771           OS << " }";
11772         }
11773 
11774         OS << "\n";
11775       }
11776   }
11777 
11778   OS << "Determining loop execution counts for: ";
11779   F.printAsOperand(OS, /*PrintType=*/false);
11780   OS << "\n";
11781   for (Loop *I : LI)
11782     PrintLoopInfo(OS, &SE, I);
11783 }
11784 
11785 ScalarEvolution::LoopDisposition
11786 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11787   auto &Values = LoopDispositions[S];
11788   for (auto &V : Values) {
11789     if (V.getPointer() == L)
11790       return V.getInt();
11791   }
11792   Values.emplace_back(L, LoopVariant);
11793   LoopDisposition D = computeLoopDisposition(S, L);
11794   auto &Values2 = LoopDispositions[S];
11795   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11796     if (V.getPointer() == L) {
11797       V.setInt(D);
11798       break;
11799     }
11800   }
11801   return D;
11802 }
11803 
11804 ScalarEvolution::LoopDisposition
11805 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11806   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11807   case scConstant:
11808     return LoopInvariant;
11809   case scTruncate:
11810   case scZeroExtend:
11811   case scSignExtend:
11812     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11813   case scAddRecExpr: {
11814     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11815 
11816     // If L is the addrec's loop, it's computable.
11817     if (AR->getLoop() == L)
11818       return LoopComputable;
11819 
11820     // Add recurrences are never invariant in the function-body (null loop).
11821     if (!L)
11822       return LoopVariant;
11823 
11824     // Everything that is not defined at loop entry is variant.
11825     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11826       return LoopVariant;
11827     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11828            " dominate the contained loop's header?");
11829 
11830     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11831     if (AR->getLoop()->contains(L))
11832       return LoopInvariant;
11833 
11834     // This recurrence is variant w.r.t. L if any of its operands
11835     // are variant.
11836     for (auto *Op : AR->operands())
11837       if (!isLoopInvariant(Op, L))
11838         return LoopVariant;
11839 
11840     // Otherwise it's loop-invariant.
11841     return LoopInvariant;
11842   }
11843   case scAddExpr:
11844   case scMulExpr:
11845   case scUMaxExpr:
11846   case scSMaxExpr:
11847   case scUMinExpr:
11848   case scSMinExpr: {
11849     bool HasVarying = false;
11850     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11851       LoopDisposition D = getLoopDisposition(Op, L);
11852       if (D == LoopVariant)
11853         return LoopVariant;
11854       if (D == LoopComputable)
11855         HasVarying = true;
11856     }
11857     return HasVarying ? LoopComputable : LoopInvariant;
11858   }
11859   case scUDivExpr: {
11860     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11861     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11862     if (LD == LoopVariant)
11863       return LoopVariant;
11864     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11865     if (RD == LoopVariant)
11866       return LoopVariant;
11867     return (LD == LoopInvariant && RD == LoopInvariant) ?
11868            LoopInvariant : LoopComputable;
11869   }
11870   case scUnknown:
11871     // All non-instruction values are loop invariant.  All instructions are loop
11872     // invariant if they are not contained in the specified loop.
11873     // Instructions are never considered invariant in the function body
11874     // (null loop) because they are defined within the "loop".
11875     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11876       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11877     return LoopInvariant;
11878   case scCouldNotCompute:
11879     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11880   }
11881   llvm_unreachable("Unknown SCEV kind!");
11882 }
11883 
11884 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11885   return getLoopDisposition(S, L) == LoopInvariant;
11886 }
11887 
11888 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11889   return getLoopDisposition(S, L) == LoopComputable;
11890 }
11891 
11892 ScalarEvolution::BlockDisposition
11893 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11894   auto &Values = BlockDispositions[S];
11895   for (auto &V : Values) {
11896     if (V.getPointer() == BB)
11897       return V.getInt();
11898   }
11899   Values.emplace_back(BB, DoesNotDominateBlock);
11900   BlockDisposition D = computeBlockDisposition(S, BB);
11901   auto &Values2 = BlockDispositions[S];
11902   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11903     if (V.getPointer() == BB) {
11904       V.setInt(D);
11905       break;
11906     }
11907   }
11908   return D;
11909 }
11910 
11911 ScalarEvolution::BlockDisposition
11912 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11913   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11914   case scConstant:
11915     return ProperlyDominatesBlock;
11916   case scTruncate:
11917   case scZeroExtend:
11918   case scSignExtend:
11919     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11920   case scAddRecExpr: {
11921     // This uses a "dominates" query instead of "properly dominates" query
11922     // to test for proper dominance too, because the instruction which
11923     // produces the addrec's value is a PHI, and a PHI effectively properly
11924     // dominates its entire containing block.
11925     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11926     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11927       return DoesNotDominateBlock;
11928 
11929     // Fall through into SCEVNAryExpr handling.
11930     LLVM_FALLTHROUGH;
11931   }
11932   case scAddExpr:
11933   case scMulExpr:
11934   case scUMaxExpr:
11935   case scSMaxExpr:
11936   case scUMinExpr:
11937   case scSMinExpr: {
11938     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11939     bool Proper = true;
11940     for (const SCEV *NAryOp : NAry->operands()) {
11941       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11942       if (D == DoesNotDominateBlock)
11943         return DoesNotDominateBlock;
11944       if (D == DominatesBlock)
11945         Proper = false;
11946     }
11947     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11948   }
11949   case scUDivExpr: {
11950     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11951     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11952     BlockDisposition LD = getBlockDisposition(LHS, BB);
11953     if (LD == DoesNotDominateBlock)
11954       return DoesNotDominateBlock;
11955     BlockDisposition RD = getBlockDisposition(RHS, BB);
11956     if (RD == DoesNotDominateBlock)
11957       return DoesNotDominateBlock;
11958     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11959       ProperlyDominatesBlock : DominatesBlock;
11960   }
11961   case scUnknown:
11962     if (Instruction *I =
11963           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11964       if (I->getParent() == BB)
11965         return DominatesBlock;
11966       if (DT.properlyDominates(I->getParent(), BB))
11967         return ProperlyDominatesBlock;
11968       return DoesNotDominateBlock;
11969     }
11970     return ProperlyDominatesBlock;
11971   case scCouldNotCompute:
11972     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11973   }
11974   llvm_unreachable("Unknown SCEV kind!");
11975 }
11976 
11977 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11978   return getBlockDisposition(S, BB) >= DominatesBlock;
11979 }
11980 
11981 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11982   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11983 }
11984 
11985 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11986   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11987 }
11988 
11989 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11990   auto IsS = [&](const SCEV *X) { return S == X; };
11991   auto ContainsS = [&](const SCEV *X) {
11992     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11993   };
11994   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11995 }
11996 
11997 void
11998 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11999   ValuesAtScopes.erase(S);
12000   LoopDispositions.erase(S);
12001   BlockDispositions.erase(S);
12002   UnsignedRanges.erase(S);
12003   SignedRanges.erase(S);
12004   ExprValueMap.erase(S);
12005   HasRecMap.erase(S);
12006   MinTrailingZerosCache.erase(S);
12007 
12008   for (auto I = PredicatedSCEVRewrites.begin();
12009        I != PredicatedSCEVRewrites.end();) {
12010     std::pair<const SCEV *, const Loop *> Entry = I->first;
12011     if (Entry.first == S)
12012       PredicatedSCEVRewrites.erase(I++);
12013     else
12014       ++I;
12015   }
12016 
12017   auto RemoveSCEVFromBackedgeMap =
12018       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12019         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12020           BackedgeTakenInfo &BEInfo = I->second;
12021           if (BEInfo.hasOperand(S, this)) {
12022             BEInfo.clear();
12023             Map.erase(I++);
12024           } else
12025             ++I;
12026         }
12027       };
12028 
12029   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12030   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12031 }
12032 
12033 void
12034 ScalarEvolution::getUsedLoops(const SCEV *S,
12035                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12036   struct FindUsedLoops {
12037     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12038         : LoopsUsed(LoopsUsed) {}
12039     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12040     bool follow(const SCEV *S) {
12041       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12042         LoopsUsed.insert(AR->getLoop());
12043       return true;
12044     }
12045 
12046     bool isDone() const { return false; }
12047   };
12048 
12049   FindUsedLoops F(LoopsUsed);
12050   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12051 }
12052 
12053 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12054   SmallPtrSet<const Loop *, 8> LoopsUsed;
12055   getUsedLoops(S, LoopsUsed);
12056   for (auto *L : LoopsUsed)
12057     LoopUsers[L].push_back(S);
12058 }
12059 
12060 void ScalarEvolution::verify() const {
12061   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12062   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12063 
12064   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12065 
12066   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12067   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12068     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12069 
12070     const SCEV *visitConstant(const SCEVConstant *Constant) {
12071       return SE.getConstant(Constant->getAPInt());
12072     }
12073 
12074     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12075       return SE.getUnknown(Expr->getValue());
12076     }
12077 
12078     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12079       return SE.getCouldNotCompute();
12080     }
12081   };
12082 
12083   SCEVMapper SCM(SE2);
12084 
12085   while (!LoopStack.empty()) {
12086     auto *L = LoopStack.pop_back_val();
12087     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12088 
12089     auto *CurBECount = SCM.visit(
12090         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12091     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12092 
12093     if (CurBECount == SE2.getCouldNotCompute() ||
12094         NewBECount == SE2.getCouldNotCompute()) {
12095       // NB! This situation is legal, but is very suspicious -- whatever pass
12096       // change the loop to make a trip count go from could not compute to
12097       // computable or vice-versa *should have* invalidated SCEV.  However, we
12098       // choose not to assert here (for now) since we don't want false
12099       // positives.
12100       continue;
12101     }
12102 
12103     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12104       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12105       // not propagate undef aggressively).  This means we can (and do) fail
12106       // verification in cases where a transform makes the trip count of a loop
12107       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12108       // both cases the loop iterates "undef" times, but SCEV thinks we
12109       // increased the trip count of the loop by 1 incorrectly.
12110       continue;
12111     }
12112 
12113     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12114         SE.getTypeSizeInBits(NewBECount->getType()))
12115       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12116     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12117              SE.getTypeSizeInBits(NewBECount->getType()))
12118       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12119 
12120     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12121 
12122     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12123     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12124       dbgs() << "Trip Count for " << *L << " Changed!\n";
12125       dbgs() << "Old: " << *CurBECount << "\n";
12126       dbgs() << "New: " << *NewBECount << "\n";
12127       dbgs() << "Delta: " << *Delta << "\n";
12128       std::abort();
12129     }
12130   }
12131 
12132   // Collect all valid loops currently in LoopInfo.
12133   SmallPtrSet<Loop *, 32> ValidLoops;
12134   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12135   while (!Worklist.empty()) {
12136     Loop *L = Worklist.pop_back_val();
12137     if (ValidLoops.contains(L))
12138       continue;
12139     ValidLoops.insert(L);
12140     Worklist.append(L->begin(), L->end());
12141   }
12142   // Check for SCEV expressions referencing invalid/deleted loops.
12143   for (auto &KV : ValueExprMap) {
12144     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12145     if (!AR)
12146       continue;
12147     assert(ValidLoops.contains(AR->getLoop()) &&
12148            "AddRec references invalid loop");
12149   }
12150 }
12151 
12152 bool ScalarEvolution::invalidate(
12153     Function &F, const PreservedAnalyses &PA,
12154     FunctionAnalysisManager::Invalidator &Inv) {
12155   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12156   // of its dependencies is invalidated.
12157   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12158   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12159          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12160          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12161          Inv.invalidate<LoopAnalysis>(F, PA);
12162 }
12163 
12164 AnalysisKey ScalarEvolutionAnalysis::Key;
12165 
12166 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12167                                              FunctionAnalysisManager &AM) {
12168   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12169                          AM.getResult<AssumptionAnalysis>(F),
12170                          AM.getResult<DominatorTreeAnalysis>(F),
12171                          AM.getResult<LoopAnalysis>(F));
12172 }
12173 
12174 PreservedAnalyses
12175 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12176   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12177   return PreservedAnalyses::all();
12178 }
12179 
12180 PreservedAnalyses
12181 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12182   // For compatibility with opt's -analyze feature under legacy pass manager
12183   // which was not ported to NPM. This keeps tests using
12184   // update_analyze_test_checks.py working.
12185   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12186      << F.getName() << "':\n";
12187   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12188   return PreservedAnalyses::all();
12189 }
12190 
12191 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12192                       "Scalar Evolution Analysis", false, true)
12193 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12194 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12195 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12196 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12197 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12198                     "Scalar Evolution Analysis", false, true)
12199 
12200 char ScalarEvolutionWrapperPass::ID = 0;
12201 
12202 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12203   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12204 }
12205 
12206 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12207   SE.reset(new ScalarEvolution(
12208       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12209       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12210       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12211       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12212   return false;
12213 }
12214 
12215 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12216 
12217 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12218   SE->print(OS);
12219 }
12220 
12221 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12222   if (!VerifySCEV)
12223     return;
12224 
12225   SE->verify();
12226 }
12227 
12228 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12229   AU.setPreservesAll();
12230   AU.addRequiredTransitive<AssumptionCacheTracker>();
12231   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12232   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12233   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12234 }
12235 
12236 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12237                                                         const SCEV *RHS) {
12238   FoldingSetNodeID ID;
12239   assert(LHS->getType() == RHS->getType() &&
12240          "Type mismatch between LHS and RHS");
12241   // Unique this node based on the arguments
12242   ID.AddInteger(SCEVPredicate::P_Equal);
12243   ID.AddPointer(LHS);
12244   ID.AddPointer(RHS);
12245   void *IP = nullptr;
12246   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12247     return S;
12248   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12249       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12250   UniquePreds.InsertNode(Eq, IP);
12251   return Eq;
12252 }
12253 
12254 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12255     const SCEVAddRecExpr *AR,
12256     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12257   FoldingSetNodeID ID;
12258   // Unique this node based on the arguments
12259   ID.AddInteger(SCEVPredicate::P_Wrap);
12260   ID.AddPointer(AR);
12261   ID.AddInteger(AddedFlags);
12262   void *IP = nullptr;
12263   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12264     return S;
12265   auto *OF = new (SCEVAllocator)
12266       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12267   UniquePreds.InsertNode(OF, IP);
12268   return OF;
12269 }
12270 
12271 namespace {
12272 
12273 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12274 public:
12275 
12276   /// Rewrites \p S in the context of a loop L and the SCEV predication
12277   /// infrastructure.
12278   ///
12279   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12280   /// equivalences present in \p Pred.
12281   ///
12282   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12283   /// \p NewPreds such that the result will be an AddRecExpr.
12284   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12285                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12286                              SCEVUnionPredicate *Pred) {
12287     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12288     return Rewriter.visit(S);
12289   }
12290 
12291   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12292     if (Pred) {
12293       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12294       for (auto *Pred : ExprPreds)
12295         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12296           if (IPred->getLHS() == Expr)
12297             return IPred->getRHS();
12298     }
12299     return convertToAddRecWithPreds(Expr);
12300   }
12301 
12302   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12303     const SCEV *Operand = visit(Expr->getOperand());
12304     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12305     if (AR && AR->getLoop() == L && AR->isAffine()) {
12306       // This couldn't be folded because the operand didn't have the nuw
12307       // flag. Add the nusw flag as an assumption that we could make.
12308       const SCEV *Step = AR->getStepRecurrence(SE);
12309       Type *Ty = Expr->getType();
12310       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12311         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12312                                 SE.getSignExtendExpr(Step, Ty), L,
12313                                 AR->getNoWrapFlags());
12314     }
12315     return SE.getZeroExtendExpr(Operand, Expr->getType());
12316   }
12317 
12318   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12319     const SCEV *Operand = visit(Expr->getOperand());
12320     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12321     if (AR && AR->getLoop() == L && AR->isAffine()) {
12322       // This couldn't be folded because the operand didn't have the nsw
12323       // flag. Add the nssw flag as an assumption that we could make.
12324       const SCEV *Step = AR->getStepRecurrence(SE);
12325       Type *Ty = Expr->getType();
12326       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12327         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12328                                 SE.getSignExtendExpr(Step, Ty), L,
12329                                 AR->getNoWrapFlags());
12330     }
12331     return SE.getSignExtendExpr(Operand, Expr->getType());
12332   }
12333 
12334 private:
12335   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12336                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12337                         SCEVUnionPredicate *Pred)
12338       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12339 
12340   bool addOverflowAssumption(const SCEVPredicate *P) {
12341     if (!NewPreds) {
12342       // Check if we've already made this assumption.
12343       return Pred && Pred->implies(P);
12344     }
12345     NewPreds->insert(P);
12346     return true;
12347   }
12348 
12349   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12350                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12351     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12352     return addOverflowAssumption(A);
12353   }
12354 
12355   // If \p Expr represents a PHINode, we try to see if it can be represented
12356   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12357   // to add this predicate as a runtime overflow check, we return the AddRec.
12358   // If \p Expr does not meet these conditions (is not a PHI node, or we
12359   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12360   // return \p Expr.
12361   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12362     if (!isa<PHINode>(Expr->getValue()))
12363       return Expr;
12364     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12365     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12366     if (!PredicatedRewrite)
12367       return Expr;
12368     for (auto *P : PredicatedRewrite->second){
12369       // Wrap predicates from outer loops are not supported.
12370       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12371         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12372         if (L != AR->getLoop())
12373           return Expr;
12374       }
12375       if (!addOverflowAssumption(P))
12376         return Expr;
12377     }
12378     return PredicatedRewrite->first;
12379   }
12380 
12381   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12382   SCEVUnionPredicate *Pred;
12383   const Loop *L;
12384 };
12385 
12386 } // end anonymous namespace
12387 
12388 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12389                                                    SCEVUnionPredicate &Preds) {
12390   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12391 }
12392 
12393 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12394     const SCEV *S, const Loop *L,
12395     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12396   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12397   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12398   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12399 
12400   if (!AddRec)
12401     return nullptr;
12402 
12403   // Since the transformation was successful, we can now transfer the SCEV
12404   // predicates.
12405   for (auto *P : TransformPreds)
12406     Preds.insert(P);
12407 
12408   return AddRec;
12409 }
12410 
12411 /// SCEV predicates
12412 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12413                              SCEVPredicateKind Kind)
12414     : FastID(ID), Kind(Kind) {}
12415 
12416 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12417                                        const SCEV *LHS, const SCEV *RHS)
12418     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12419   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12420   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12421 }
12422 
12423 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12424   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12425 
12426   if (!Op)
12427     return false;
12428 
12429   return Op->LHS == LHS && Op->RHS == RHS;
12430 }
12431 
12432 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12433 
12434 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12435 
12436 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12437   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12438 }
12439 
12440 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12441                                      const SCEVAddRecExpr *AR,
12442                                      IncrementWrapFlags Flags)
12443     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12444 
12445 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12446 
12447 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12448   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12449 
12450   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12451 }
12452 
12453 bool SCEVWrapPredicate::isAlwaysTrue() const {
12454   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12455   IncrementWrapFlags IFlags = Flags;
12456 
12457   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12458     IFlags = clearFlags(IFlags, IncrementNSSW);
12459 
12460   return IFlags == IncrementAnyWrap;
12461 }
12462 
12463 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12464   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12465   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12466     OS << "<nusw>";
12467   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12468     OS << "<nssw>";
12469   OS << "\n";
12470 }
12471 
12472 SCEVWrapPredicate::IncrementWrapFlags
12473 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12474                                    ScalarEvolution &SE) {
12475   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12476   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12477 
12478   // We can safely transfer the NSW flag as NSSW.
12479   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12480     ImpliedFlags = IncrementNSSW;
12481 
12482   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12483     // If the increment is positive, the SCEV NUW flag will also imply the
12484     // WrapPredicate NUSW flag.
12485     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12486       if (Step->getValue()->getValue().isNonNegative())
12487         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12488   }
12489 
12490   return ImpliedFlags;
12491 }
12492 
12493 /// Union predicates don't get cached so create a dummy set ID for it.
12494 SCEVUnionPredicate::SCEVUnionPredicate()
12495     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12496 
12497 bool SCEVUnionPredicate::isAlwaysTrue() const {
12498   return all_of(Preds,
12499                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12500 }
12501 
12502 ArrayRef<const SCEVPredicate *>
12503 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12504   auto I = SCEVToPreds.find(Expr);
12505   if (I == SCEVToPreds.end())
12506     return ArrayRef<const SCEVPredicate *>();
12507   return I->second;
12508 }
12509 
12510 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12511   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12512     return all_of(Set->Preds,
12513                   [this](const SCEVPredicate *I) { return this->implies(I); });
12514 
12515   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12516   if (ScevPredsIt == SCEVToPreds.end())
12517     return false;
12518   auto &SCEVPreds = ScevPredsIt->second;
12519 
12520   return any_of(SCEVPreds,
12521                 [N](const SCEVPredicate *I) { return I->implies(N); });
12522 }
12523 
12524 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12525 
12526 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12527   for (auto Pred : Preds)
12528     Pred->print(OS, Depth);
12529 }
12530 
12531 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12532   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12533     for (auto Pred : Set->Preds)
12534       add(Pred);
12535     return;
12536   }
12537 
12538   if (implies(N))
12539     return;
12540 
12541   const SCEV *Key = N->getExpr();
12542   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12543                 " associated expression!");
12544 
12545   SCEVToPreds[Key].push_back(N);
12546   Preds.push_back(N);
12547 }
12548 
12549 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12550                                                      Loop &L)
12551     : SE(SE), L(L) {}
12552 
12553 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12554   const SCEV *Expr = SE.getSCEV(V);
12555   RewriteEntry &Entry = RewriteMap[Expr];
12556 
12557   // If we already have an entry and the version matches, return it.
12558   if (Entry.second && Generation == Entry.first)
12559     return Entry.second;
12560 
12561   // We found an entry but it's stale. Rewrite the stale entry
12562   // according to the current predicate.
12563   if (Entry.second)
12564     Expr = Entry.second;
12565 
12566   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12567   Entry = {Generation, NewSCEV};
12568 
12569   return NewSCEV;
12570 }
12571 
12572 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12573   if (!BackedgeCount) {
12574     SCEVUnionPredicate BackedgePred;
12575     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12576     addPredicate(BackedgePred);
12577   }
12578   return BackedgeCount;
12579 }
12580 
12581 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12582   if (Preds.implies(&Pred))
12583     return;
12584   Preds.add(&Pred);
12585   updateGeneration();
12586 }
12587 
12588 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12589   return Preds;
12590 }
12591 
12592 void PredicatedScalarEvolution::updateGeneration() {
12593   // If the generation number wrapped recompute everything.
12594   if (++Generation == 0) {
12595     for (auto &II : RewriteMap) {
12596       const SCEV *Rewritten = II.second.second;
12597       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12598     }
12599   }
12600 }
12601 
12602 void PredicatedScalarEvolution::setNoOverflow(
12603     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12604   const SCEV *Expr = getSCEV(V);
12605   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12606 
12607   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12608 
12609   // Clear the statically implied flags.
12610   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12611   addPredicate(*SE.getWrapPredicate(AR, Flags));
12612 
12613   auto II = FlagsMap.insert({V, Flags});
12614   if (!II.second)
12615     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12616 }
12617 
12618 bool PredicatedScalarEvolution::hasNoOverflow(
12619     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12620   const SCEV *Expr = getSCEV(V);
12621   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12622 
12623   Flags = SCEVWrapPredicate::clearFlags(
12624       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12625 
12626   auto II = FlagsMap.find(V);
12627 
12628   if (II != FlagsMap.end())
12629     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12630 
12631   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12632 }
12633 
12634 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12635   const SCEV *Expr = this->getSCEV(V);
12636   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12637   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12638 
12639   if (!New)
12640     return nullptr;
12641 
12642   for (auto *P : NewPreds)
12643     Preds.add(P);
12644 
12645   updateGeneration();
12646   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12647   return New;
12648 }
12649 
12650 PredicatedScalarEvolution::PredicatedScalarEvolution(
12651     const PredicatedScalarEvolution &Init)
12652     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12653       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12654   for (auto I : Init.FlagsMap)
12655     FlagsMap.insert(I);
12656 }
12657 
12658 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12659   // For each block.
12660   for (auto *BB : L.getBlocks())
12661     for (auto &I : *BB) {
12662       if (!SE.isSCEVable(I.getType()))
12663         continue;
12664 
12665       auto *Expr = SE.getSCEV(&I);
12666       auto II = RewriteMap.find(Expr);
12667 
12668       if (II == RewriteMap.end())
12669         continue;
12670 
12671       // Don't print things that are not interesting.
12672       if (II->second.second == Expr)
12673         continue;
12674 
12675       OS.indent(Depth) << "[PSE]" << I << ":\n";
12676       OS.indent(Depth + 2) << *Expr << "\n";
12677       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12678     }
12679 }
12680 
12681 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12682 // arbitrary expressions.
12683 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12684 // 4, A / B becomes X / 8).
12685 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12686                                 const SCEV *&RHS) {
12687   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12688   if (Add == nullptr || Add->getNumOperands() != 2)
12689     return false;
12690 
12691   const SCEV *A = Add->getOperand(1);
12692   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12693 
12694   if (Mul == nullptr)
12695     return false;
12696 
12697   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12698     // (SomeExpr + (-(SomeExpr / B) * B)).
12699     if (Expr == getURemExpr(A, B)) {
12700       LHS = A;
12701       RHS = B;
12702       return true;
12703     }
12704     return false;
12705   };
12706 
12707   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12708   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12709     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12710            MatchURemWithDivisor(Mul->getOperand(2));
12711 
12712   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12713   if (Mul->getNumOperands() == 2)
12714     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12715            MatchURemWithDivisor(Mul->getOperand(0)) ||
12716            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12717            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12718   return false;
12719 }
12720 
12721 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) {
12722   SmallVector<BasicBlock*, 16> ExitingBlocks;
12723   L->getExitingBlocks(ExitingBlocks);
12724 
12725   // Form an expression for the maximum exit count possible for this loop. We
12726   // merge the max and exact information to approximate a version of
12727   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
12728   SmallVector<const SCEV*, 4> ExitCounts;
12729   for (BasicBlock *ExitingBB : ExitingBlocks) {
12730     const SCEV *ExitCount = getExitCount(L, ExitingBB);
12731     if (isa<SCEVCouldNotCompute>(ExitCount))
12732       ExitCount = getExitCount(L, ExitingBB,
12733                                   ScalarEvolution::ConstantMaximum);
12734     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
12735       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
12736              "We should only have known counts for exiting blocks that "
12737              "dominate latch!");
12738       ExitCounts.push_back(ExitCount);
12739     }
12740   }
12741   if (ExitCounts.empty())
12742     return getCouldNotCompute();
12743   return getUMinFromMismatchedTypes(ExitCounts);
12744 }
12745 
12746 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
12747 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
12748 /// we cannot guarantee that the replacement is loop invariant in the loop of
12749 /// the AddRec.
12750 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
12751   ValueToSCEVMapTy &Map;
12752 
12753 public:
12754   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
12755       : SCEVRewriteVisitor(SE), Map(M) {}
12756 
12757   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
12758 
12759   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12760     auto I = Map.find(Expr->getValue());
12761     if (I == Map.end())
12762       return Expr;
12763     return I->second;
12764   }
12765 };
12766 
12767 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
12768   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
12769                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
12770     if (!isa<SCEVUnknown>(LHS)) {
12771       std::swap(LHS, RHS);
12772       Predicate = CmpInst::getSwappedPredicate(Predicate);
12773     }
12774 
12775     // For now, limit to conditions that provide information about unknown
12776     // expressions.
12777     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
12778     if (!LHSUnknown)
12779       return;
12780 
12781     // TODO: use information from more predicates.
12782     switch (Predicate) {
12783     case CmpInst::ICMP_ULT: {
12784       if (!containsAddRecurrence(RHS)) {
12785         const SCEV *Base = LHS;
12786         auto I = RewriteMap.find(LHSUnknown->getValue());
12787         if (I != RewriteMap.end())
12788           Base = I->second;
12789 
12790         RewriteMap[LHSUnknown->getValue()] =
12791             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
12792       }
12793       break;
12794     }
12795     case CmpInst::ICMP_ULE: {
12796       if (!containsAddRecurrence(RHS)) {
12797         const SCEV *Base = LHS;
12798         auto I = RewriteMap.find(LHSUnknown->getValue());
12799         if (I != RewriteMap.end())
12800           Base = I->second;
12801         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
12802       }
12803       break;
12804     }
12805     case CmpInst::ICMP_EQ:
12806       if (isa<SCEVConstant>(RHS))
12807         RewriteMap[LHSUnknown->getValue()] = RHS;
12808       break;
12809     case CmpInst::ICMP_NE:
12810       if (isa<SCEVConstant>(RHS) &&
12811           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
12812         RewriteMap[LHSUnknown->getValue()] =
12813             getUMaxExpr(LHS, getOne(RHS->getType()));
12814       break;
12815     default:
12816       break;
12817     }
12818   };
12819   // Starting at the loop predecessor, climb up the predecessor chain, as long
12820   // as there are predecessors that can be found that have unique successors
12821   // leading to the original header.
12822   // TODO: share this logic with isLoopEntryGuardedByCond.
12823   ValueToSCEVMapTy RewriteMap;
12824   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
12825            L->getLoopPredecessor(), L->getHeader());
12826        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
12827 
12828     const BranchInst *LoopEntryPredicate =
12829         dyn_cast<BranchInst>(Pair.first->getTerminator());
12830     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
12831       continue;
12832 
12833     // TODO: use information from more complex conditions, e.g. AND expressions.
12834     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
12835     if (!Cmp)
12836       continue;
12837 
12838     auto Predicate = Cmp->getPredicate();
12839     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
12840       Predicate = CmpInst::getInversePredicate(Predicate);
12841     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
12842                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12843   }
12844 
12845   // Also collect information from assumptions dominating the loop.
12846   for (auto &AssumeVH : AC.assumptions()) {
12847     if (!AssumeVH)
12848       continue;
12849     auto *AssumeI = cast<CallInst>(AssumeVH);
12850     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
12851     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
12852       continue;
12853     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
12854                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12855   }
12856 
12857   if (RewriteMap.empty())
12858     return Expr;
12859   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
12860   return Rewriter.visit(Expr);
12861 }
12862